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Abstract
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Localized Multiple Kernel Learning for Anomaly Detection

Multi-kernel learning has been well explored in the recent past and has exhibited promising
outcomes for multi-class classification and regression tasks. In this project, I present a multiple
Kernel learning approach for the One-Class Classification (OCC) task and employ it for anomaly
detection. Recently, the basic multi-kernel approach has been proposed to solve the OCC prob-
lem, which is simply a convex combination of different Kernels with equal weights. This paper
proposes a localized multiple Kernel learning approach for anomaly detection (LMKAD) us-
ing OCC, where the weight for each Kernel is assigned locally. Proposed LMKAD approach
adapts the weight for each Kernel using a gating model. The parameters of the gating model
and one class classifier are optimized simultaneously through a two-step optimization process.
We present the empirical results of performance of LMKAD on 20 benchmark datasets from
various disciplines. This performance is evaluated against existing Multi Kernel Anomaly de-
tection (MKAD) algorithm, and other existing one class classifiers to showcase the credibility
of our approach. Our algorithm achieves significantly better Gmean scores while using a lesser
number of support vectors compared to conventional OCSVM and MKAD. Friedman test is also
performed to verify the statistical significance of the results claimed in this project.
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Chapter 1

Introduction

1.1 Background

The problem of Anomaly Detection is the problem of finding instances of the input data that do
not conform to the general pattern or behavior exhibited by majority of the data points. This
problem has been well explored and addressed in the past using One-Class Classification [1].
The One-Class Classification (OCC) problem is unlike the conventional binary and multi-class
classification problems in that in OCC, one has data about only one of the many classes that
could constitute the input space. Outliers on the other hand could belong to any class or even
be isolated anomalies.

Imagine a factory type of setting; heavy machinery under constant surveillance of some ad-
vanced system. The task of the controlling system is to determine when something goes wrong;
the products are below quality, the machine produces strange vibrations or something like a
temperature that rises. It is relatively easy to gather training data of situations that are OK; it is
just the normal production situation. But on the other side, collection example data of a faulty
system state can be rather expensive, or just impossible. If a faulty system state could be simu-
lated, there is no way to guarantee that all the faulty states are simulated and thus recognized in
a traditional two-class problem.

To cope with this problem, one-class classification problems (and solutions) are introduced. By
just providing the normal training data, an algorithm creates a (representational) model of this
data. If newly encountered data is too different, according to some measurement, from this
model, it is labeled as out-of-class.

Various models to handle OCC problems have been developed [1].Tax [2] has developed three
models which are density based viz., (i) Gaussian model (ii) mixture of Gaussians and (iii)
Parzen density estimator, three models are boundary based viz., (i) k-centers method (ii) KN-
Ndd and (iii) svdd and three models are reconstruction based viz., (i) k-mean clustering (ii)
self-organizing maps (iii) PCA and mixtures of PCA’s. Scholkopf [3] and Tax and Duin [4] have
developed methods based on Support Vector Machine proposed by Vapnik [5]. One-class k-
nearest neighbor (KNN) based approach has been applied by Munroe and Madden [20] for
vehicle model recognition from images.

Out of these, SVM based methods have gotten more attention from researchers due to their ef-
ficiency, kernel learning ability and generalization capability. In SVM based methods, the OCC
problem is redefined as the task of devising a boundary around the given data of target class
points, such that most of the target class points lie within the defined boundary, while at the
same time minimizing the chance that a given input outlier is accepted into the target class.
Two types of SVM based methods have been developed viz., Support Vector Data Description
(SVDD) [2] and OCSVM [3]. Tax and Duin [2] developed SVDD by finding a hyper-sphere of
minimum radius around the target class data such that it encloses almost all points in the target
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class data set. Scholkopf et al. [3] extend the idea of SVM for binary classification [6] to the do-
main of anomaly detection by proposing one class SVM. They construct a hyper-plane such that
it separates all the data points from the origin and the hyper-plane’s distance from the origin is
maximum.

The general idea of kernel based methods such as SVM is to project the input space to a higher
dimension where they become linearly separable. Kernel based methods have received consid-
erable attention over the last decade due to their success in classification problems. An advance
in kernel based methods for classification problems is to use many different kernels or different
parameterization of kernels instead of a single fixed kernel [7] to get better performance. Using
multiple kernels gives two advantages. Firstly, this provides flexibility to select for an optimal
kernel or parameterizations of kernels from a larger set of kernels, thus reducing bias due to ker-
nel selection and at the same time allowing for a more automated approach. Secondly, multiple
kernels are also reflective of the need to combine knowledge from different data sources (such
as images and sound in video data). Thus they accommodate the different notions of similarity
in the different features of the input space. A further advance in multiple kernel learning for
binary classification [8] and image recognition problems [9] is to localize the kernel selection
process. Gonen et al. [8] propose a multiple kernel approach using a gating model to select the
appropriate kernel locally.

We choose Scholkopf’s one-class SVM as the classifier for our developments because of its robust
performance as reported by other researchers [10], guaranteed convergence and the flexibility of
kernel methods in general [11, 12].
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Chapter 2

Literature Survey

The following chapter discusses literature pertaining to previously known methods of one class
classification, focussing mainly on SVM based methods. It describes the conventional One class
SVM method and Multiple Kernel Anomaly Detection method in detail.

2.1 One Class Classification

Conventional multi-class classification algorithms aim to classify an unknown object into one of
several pre-defined categories. A problem arises when the unknown object does not belong to
any of those categories. In one-class classification one of the classes (referred to as the positive
class or target class) is well characterized by instances in the training data. For the other class
(nontarget), it has either no instances at all, very few of them, or they do not form a statistically-
representative sample of the negative concept.

2.1.1 One-Class SVM

One-Class SVM was proposed by Scholkopf et al. [3] for extending the utility offered by SVMs
to One-Class classification. Given a set of training vectors xi ∈ Rn, i = 1, . . . , l without class
labels, One-Class SVM constructs a hyperplane that basically separates all the target class data
points from the origin and maximizes the distance of this hyperplane from the origin. This is
done by solving the following optimization problem.

min
ω, ξ, ρ

1
2

ωTω− ρ +
1
νl

l

∑
i=1

ξi

s.t. ωTφ(xi) ≥ ρ− ξi i = 0, . . . , l,
ξi ≥ 0, i = 0, . . . , l

(2.1)

The dual of which can be written as

min
α

1
2

αTQα

s.t. 0 ≤ αi ≤ 1
νl i = 0, . . . , l,

eTα = 1

(2.2)

where Qij = K(xi, xj) = φ(xi)
Tφ(xj)

and αi are the Lagrange multipliers, l is the total number of training samples provided, ν is a
parameter that lets the user define the fraction of target class points rejected, K is the kernel
matrix and ρ is the bias term. This results in a binary function which returns +1 or −1 for target
class and outliers respectively and is called the decision function. The decision function thus
obtained is
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f (x) = sign(
l

∑
i=1

αiK(xi, x)− ρ) (2.3)

2.1.2 Non-OCSVM

Ridder et al. conduct an experimental comparison of various OCC algorithms, including: (a)
Global Gaussian approximation; (b) Parzen density estimation; (c) 1-Nearest Neighbor method;
and (d) Gaussian approximation (combines aspects of (a) and (b)). Manevitz and Yousef [13]
trained a simple neural network to filter documents when only positive information is available.
To incorporate the restriction of availability of positive examples only, they used a three-level
feed forward network with a “bottleneck”. DeComite et al. [14] modify the C4.5 decision tree
algorithm [15] to get an algorithm that takes as input a set of labeled examples, a set of positive
examples, and a set of unlabeled data, and then use these three sets to construct the decision tree.
Letouzey et al. [16] design an algorithm which is based on positive statistical queries (estimates
for probabilities over the set of positive instances)and instance statistical queries (estimates for
probabilities over the instance space). They design a decision tree induction algorithm, called
POSC4.5, using only positive and unlabeled data. They present experimental results on UCI
data sets that are comparable to the C4.5 algorithm. Wang et al. [17] investigate several one-
class classification methods in the context of Human-Robot interaction for face and non-face
classification. Some of the noteworthy methods used in their study are: (a) SVDD; (b) Gaussian
data description; (c) KMEANS-DD; (d) Principal Component Analysis-DD. In their experimen-
tation, they observe that SVDD attains better performance than the other OCC methods they
studied.
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2.2 Kernel Method

In machine learning, kernel methods are a class of algorithms for pattern analysis, whose best
known member is the support vector machine (SVM). The general task of pattern analysis is to
find and study general types of relations (for example clusters, rankings, principal components,
correlations, classifications) in datasets. For many algorithms that solve these tasks, the data in
raw representation have to be explicitly transformed into feature vector representations via a
user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e.,
a similarity function over pairs of data points in raw representation.

Kernel methods owe their name to the use of kernel functions, which enable them to operate
in a high-dimensional, implicit feature space without ever computing the coordinates of the data
in that space, but rather by simply computing the inner products between the images of all pairs
of data in the feature space. This operation is often computationally cheaper than the explicit
computation of the coordinates. This approach is called the "kernel trick"[1]. Kernel functions
have been introduced for sequence data, graphs, text, images, as well as vectors.

Algorithms capable of operating with kernels include the kernel perceptron, support vector
machines (SVM), Gaussian processes, principal components analysis (PCA), canonical correla-
tion analysis, ridge regression, spectral clustering, linear adaptive filters and many others. Any
linear model can be turned into a non-linear model by applying the kernel trick to the model:
replacing its features (predictors) by a kernel function.

Most kernel algorithms are based on convex optimization or eigenproblems and are statisti-
cally well-founded. Typically, their statistical properties are analyzed using statistical learning
theory

In the next section we describe anomaly detection using One-Class SVM and more than one
kernel.

2.3 Multiple Kernel Anomaly Detection

Das et al. [18] propose MKAD to detect anomalies in aviation data. Aviation data consists of
features that can be grouped into two categories - (i) Real valued data such as flight velocity, al-
titude, flap angle, etc and (ii) Binary valued data such as cockpit switch positions. Single-kernel
One-Class SVM cannot capture the different notions of similarity in the Real and Binary valued
data.Instead a composite Kernel K is used. This composite kernel can be any valid combination
of individual kernels.

2.3.1 Weighted sum

This is the method used by Das et al. [18]. Here the composite kernel is a simple weighted
sum of the individual kernels computed over all or a subset of the features i.e. K(xi, xj) =

∑n
p=1 ηpkp(xi, xj), with ηp ≥ 0 and ∑n

p=1 ηp = 1. Here kp(xi, xj) represents the pth kernel com-
puted for data points xi and xj, and ηp are to weight individual kernels. The dual of this op-
timization problem is similar to that of OCSVM, with the Kernel replaced by the composite
Kernel.
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min
α

1
2 ∑

i,j
αiαjK(xi, xj)

s.t. 0 ≤ αi ≤ 1
νl i = 0, . . . , l,

∑
i

αi = 1,

ρ ≥ 0

(2.4)

where αi are the Lagrange multipliers, ν is again a parameter that lets the user define the fraction
of training samples rejected, l is the total number of training samples provided, ρ is the bias and
K is the kernel matrix. Once the αi are obtained, the following decision function is computed.

f (x) = sign(
l

∑
i=1

αiK(xi, x)− ρ) (2.5)

2.3.2 Product

MKAD as given by Das et al. [18] can be extended to other valid kernel combinations. One
such combination is to take the product of the individual kernels i.e. K(xi, xj) = ∏n

p=1 kp(xi, xj).
Here kp(xi, xj) represents the pth kernel computed for data points xi and xj. The dual of this
optimization problem is the same as in 2.4 except that the composite Kernel is the product of the
individual kernels.

Note that here the advantage of the multiple kernel learning approach is to incorporate
knowledge of the differing notions of similarity in the decision process. Thus, we are able to
achieve an improvement in detecting anomalies in a system that involves various data sources.
A fixed combination rule (here a weighted summation or product) assigns the same weight to a
kernel which remains fixed over the entire input space. However, this does not take into account
the underlying localities in the data. Assigning different weights to a kernel in a data dependent
way may lead to a further improvement in detecting the anomalies. We explore this possibility
in the next section.
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Chapter 3

Analysis and Objectives

There have however been few attempts to transfer these ideas in multiple kernel learning to the
domain of One-Class Classification and Anomaly Detection. Das et al. [18] propose a simple
weighted sum of two kernels, each of which describes respectively, the discrete and continuous
streams in aviation data. This method takes advantage of multiple kernel learning to incorpo-
rate the different notions of similarity in the two streams for the task of detecting anomalies in a
heterogeneous system. Though the method takes advantage of the ability of multi-kernel learn-
ing to combine knowledge from different data sources, it does not take into account the first
advantage of multiple kernel learning, which is to allow more flexibility in selection of kernels.
As such MKAD is a useful algorithm for anomaly detection only when the input data is hetero-
geneous and therefore lacks wider applicability. This report extends the MKAD algorithm by
providing a localized formulation of multiple kernel based OCSVM for anomaly detection.
The main contributions of this project are:

• We propose an optimization problem for data driven anomaly detection in which a convex
combination of kernels is used, with weights assigned locally. This optimization problem
is analogous to the conventional One Class SVM and can be solved similarly.

• Our algorithm achieves significantly better Gmean scores and at the same time uses a lesser
number of support vectors compared to conventional OCSVM and MKAD. For demon-
strating the credibility of our algorithm, we perform extensive testing using five fold cross
validation on benchmark datasets.

The rest of the report is organized as follows. In section 4, we propose OCSVM based Local-
ized Multiple Kernel Anomaly Detection (LMKAD). Section 5 describes the experimental setup
and evaluates the proposed (LMKAD) and existing One-Class Classifiers (OCSVM and MKAD)
against 7 benchmark datasets. The report concludes in Section 6.
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Chapter 4

Design Proposal

4.1 Localized Multiple Kernel Anomaly Detection

In this section we propose Localized Multiple Kernel Anomaly Detection. By assigning weights
in a data dependent way we intend to give more weights to kernel functions which best match
the underlying locality of the data in different regions of the input space. We modify the decision
function in the previous sections to the following

f (x) =
p

∑
m=1

ηm(x)〈ωm, φm(x)〉 − ρ (4.1)

where ηm(x) is the weight corresponding to each kernel and is given by the gating model. The
value of ηm(x) is a function of the input and is defined by the parameters of the gating model.
These parameters are in turn learned from the data during optimization as shown later in this
section. We rewrite the original One-Class SVM optimization problem with our new decision
function to get the following primal optimization problem

min
ωm, ηm, ξ, ρ

1
2

p

∑
m=1

ωT
mωm − ρ +

1
νl

l

∑
i=1

ξi

s.t.
p

∑
m=1

ηm(x)〈ωm, φm(x)〉 ≥ ρ− ξi ∀i,

ξi ≥ 0 ∀i

(4.2)

where ν is the rate of rejection, l is the total number of training samples, and ξi are the slack
variables as usual. We now need to solve this optimization problem for the above parameters.
However, we do not solve this optimization problem directly, but use a two-step optimization
scheme inspired by Rakotomamonjy et al. [19] to find the values of the parameters of both the
gating model, ηm(x) and the parameters of the decision function.

Before starting the optimization procedure we initialize the value of ηm(x). Then, in the first
step of the procedure we treat ηm(x) as constant and solve the optimization problem (4.2) for
ω, ξ and ρ. Note that if we treat ηm(x) as constant, this step is essentially the same as solving
canonical OCSVM under certain conditions as we will explain shortly. Solving the canonical
OCSVM returns the optimal value of the Objective function and the Lagrange multipliers. In
the second step we update the value of the parameters of ηm(x) using gradient descent on the
Objective function. The updated parameters define a new ηm(x) which is used for the next
iteration. The above two steps are repeated until convergence. From the Objective function in
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(4.2) and the constraints, for fixed ηm(x) the Lagrangian of the primal problem is written as:

LD =
1
2

p

∑
m=1

ωT
mωm +

l

∑
i=1

( 1
νl
− βi − αi

)
ξi − ρ

−
l

∑
i=1

αi

( p

∑
m=1

ηm(xi)〈ωm, φm(xi)〉 − ρ

)
and taking the derivatives of the Lagrangian LD with respect to the variables in 4.2 gives :

∂LD

∂ωm
⇒ ωm =

l

∑
i=1

αiηm(xi)φm(xi) ∀m (4.3)

∂LD

∂ρ
⇒

l

∑
i=1

αi = 1 (4.4)

∂LD

∂ξi
⇒ 1

νl
= βi + αi (4.5)

Substituting, (4.3), (4.4), and (4.5) we obtain the dual problem,

max
α

− 1
2

αTQα

s.t. 0 ≤αi ≤ 1 i = 0, . . . , l,

eTα = 1

(4.6)

where Qij = Kη(xi, xj)

Where the kernel matrix is defined as

Kη(xi, xj) =
p

∑
m=1

ηm(xi)〈φm(xi), φm(xj)〉ηm(xj) (4.7)

The dual formulation is exactly the same as the original One Class SVM formulation with Kernel
function Kη(xi, xj) . Multiplying the Kernel matrix with a non-negative value will still give
a positive definite matrix [20]. Note that the locally combined Kernel function will therefore
satisfy the Mercer’s condition if the gating function is non negative for both input instances.
This can be easily ensured by picking a non-negative ηm(x).In order to choose from among the
different kernels a gating model is used. Here, the gating model is defined as

ηm(x) =
exp(〈vm, x〉+ vm0)

∑
p
k=1 exp(〈vm, x〉+ vm0)

And is characterized by the parameters vm and vm0 . The above function is called the Softmax
function and ensures that ηm(x) is non-negative. Note that if we use a constant gating function,
the algorithm reduces to that of MKAD [18], and assigns fixed weights over the entire input
space.

We can say that the objective value of the dual formulation (4.6) is equal to the objective
value of the primal (4.2) , by strong duality provided that ηm(x) is fixed. Therefore the objective
function of the dual, J(η) can be used as to calculate the gradient of the primal formulation with
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respect to the parameters of the gating model (vm and vm0).

∂J(η)
∂vm0

= −1
2

n

∑
i=1

n

∑
j=1

p

∑
k=1

αiαjηk(xi)Kk(xi, xj)ηk(xj)

(δk
m − ηm(xi) + δk

m − ηm(xj))

∂J(η)
∂vm

= −1
2

n

∑
i=1

n

∑
j=1

p

∑
k=1

αiαjηk(xi)Kk(xi, xj)ηk(xj)

(xi[δ
k
m − ηm(xi)] + xj[δ

k
m − ηm(xj)])

f where, δk
m =

{
1, if m = k

0, otherwise

Once we obtain the updated values of the parameters vm and vm0 we calculate the new value
of ηm(x) using the gating function. Now substituting the new value of ηm(x) in (4.7) gives us
the new Kη(xi, xj) which we use to solve the dual formulation (4.6). We again update the value
of the gating model parameters and repeat until convergence.

4.2 Algorithm

The entire algorithm can be summarized as follows :

Algorithm 1 LMKAD algorithm

1: Initialize the values of vm and vm0 to random values
2: while v(t+1)

m − v(t)m ≥ ε or v(t+1)
m0 − v(t)m0 ≥ ε do

3: Calculate ηm using vt
m and vt

m0
4: Calculate Kη(xi, xj) using the gating model
5: Solve canonical one class SVM with Kη(xi, xj)

6: v(t+1)
m ⇐ v(t)m − µ(t) ∂J(η)

∂vm
∀m

7: v(t+1)
m0 ⇐ v(t)m0 − µ(t) ∂J(η)

∂vm0
∀m

8: end

Once the algorithm converges and the final ηm(x) and the Lagrange multipliers are obtained,
the decision function can be rewritten as

f (x) =
n

∑
i=1

p

∑
m=1

αiηm(x)Km(x, xi)ηm(xi)− ρ

The sign of this decision function tells us whether the given input is target or outlier. Also we
compute the average error using the sum over the (target value - predicted value) on the training
data. Then we set the bias term to this mean value.
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Chapter 5

Experiments

5.1 Datasets

In this section, the performance of the algorithm is tested on 20 datasets, which are selected from
two disciplines viz. medical and signal processing. These datasets were originally proposed
for binary or multi-class classification problems. We adapt these datasets for the OCC task by
considering one class as the target class and the remaining classes as representative of the outlier
class.

5.2 Experimental Setup:

All the experiments1 have been conducted on MATLAB 2016a in Windows 7 (64 bit) environ-
ment with 64 GB RAM, 3.00 GHz Intel Xeon processor. For implementing existing SVM based
One-Class classifiers, LIBSVM package [5] is used. For implementing other existing One Class
classifiers, DDTOOLS package by Tax [21] is used. For every dataset 5 fold cross-validation in-
dices are generated and this procedure is repeated 5 times each time constituting a run. These
indices are kept same throughout the experiment for all the classifiers. In 5-fold CV, 4 folds are
used for training and 1 fold is used for testing. However, out of the 4-folds used for training,
only samples from one of the classes (i.e. target class) are used for training the model. Samples
from the other classes are used as validation samples to find optimal parameters. We calculate
and report the the average Gmean for 5-fold cross validation over 5 runs. Gmean is defined as
follows equation:

Gmean =
√

precision ∗ recall

In our experiments, three commonly used Kernels are employed which are defined as fol-
lows:

1. Linear Kernel (l):
KL(xi, xj) = xT

i xj

2. Polynomial Kernel (p):
KP(xi, xj) = (xT

i xj + 1)q

3. Gaussian Kernel (g):

KG(xi, xj) = e−
(xi−xj)

T(xi−xj)

σ2

The order of the Polynomial Kernel is chosen through the parameter q to be 2 or 3. The value
of σ used in the Gaussian Kernel is set to the average Euclidean distance between the points
in the training data. The Linear Kernel has no special parameters. The kernel parameter set

1All presented results in this report are reproducible. Codes with datasets can be produced on request.
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that has the highest Gmean on the validation folds is considered to be the best configuration
and these parameters are used as input along with the training folds for training the model.
The trained model is then evaluated over the test set. Since we use 5-fold CV and repeat the
experiment five times, for each dataset, we have twenty five test set results from which we find
and report the average Gmean value and the average percentage of support vectors used. The
same setup is followed for evaluating MKAD, One Class SVM and other one class classifiers .
While evaluating MKAD we run the experiment twice, first where the composite kernel is taken
as the mean of the individual kernels. Second, we run it with the composite kernel taken as
the product of the individual kernels. We have also performed z-score normalization on each
dataset before training and testing.

5.3 Results and Discussion:

In order to illustrate the significance of the multiple kernel approach, we have performed ex-
tensive experiments on 7 triple combinations of kernels for the existing (MKAD) as well as pro-
posed (LMKAD) method. Table 5.1and 5.2 shows the results of OCSVM for Linear and Polyno-
mial Kernels along with the results for MKAD and LMKAD for two combinations of Linear and
Polynomial Kernels viz., (l-l-l) and (p-p-p). Table 5.3 presents results based on the two more pos-
sible combinations of Linear and Polynomial Kernels viz., (p-l-l) and (p-p-l). Similarly, Table 5.4
presents results of OCSVM for Gaussian Kernel along with results for MKAD and LMKAD for
the triplet combination of Gaussian kernel with Polynomial and Linear respectively i.e. (g-p-p)
and (g-l-l). Lastly, Table 5.5 presents the combination of all three Kernels i.e. (g-p-l).

TABLE 5.1: Linear Kernels

DATASET
OCSVM MKAD Sum MKAD Prod LMKAD
Linear l-l-l l-l-l l-l-l

Gmean SV Gmean SV Gmean SV Gmean SV
Iris setosa 59.21 21.30 58.77 27.50 58.25 62.50 57.74 25.00

Iris versicolor 48.80 25.80 57.74 25.00 57.74 57.50 57.74 27.50
Ionosphere good 62.77 40.24 80.07 35.56 80.07 33.33 80.32 5.56
Ionosphere bad 45.60 57.42 59.91 55.45 59.69 95.05 59.91 47.52
Diabetes present 55.79 8.79 80.69 7.50 80.69 30.00 80.69 40.75
Diabetes absent 47.94 12.39 59.07 10.28 59.07 40.65 59.04 41.59

Liver 1 55.00 15.83 64.83 11.21 64.83 41.38 64.83 52.59
Liver 2 61.32 13.43 76.14 10.00 76.14 36.88 76.14 11.88

Breast Malignant 63.69 48.18 79.21 32.87 79.21 60.14 79.25 21.33
Breast Benign 43.83 53.51 61.04 34.12 61.04 69.41 61.04 28.24

German credit (good risk) 68.51 16.64 83.67 14.82 83.67 66.43 83.67 33.57
German credit (bad risk) 45.54 26.50 54.77 19.58 54.77 86.25 54.77 45.42

Australia credit (good risk) 43.48 17.17 66.70 14.29 66.70 62.86 66.70 54.29
Autralia credit (bad risk) 52.70 15.10 74.50 10.78 74.50 53.92 74.44 43.14
Japan credit (good risk) 46.63 18.74 67.20 13.56 67.20 60.59 67.20 31.78
Japan credit (bad risk) 54.30 15.67 74.05 11.89 74.05 51.40 74.05 30.07

Heart diseased 56.23 26.13 73.40 19.53 73.40 84.38 73.40 42.97
Heart healthy 55.34 28.17 67.91 24.55 67.91 85.45 67.91 50.00

Parkinson patient 56.51 34.38 70.71 29.81 70.71 35.34 70.71 20.19
Parkinson Healthy 58.50 31.95 70.71 26.92 70.71 40.14 70.69 5.77
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These results clearly indicate that multiple kernel approaches i.e. MKAD and LMKAD, out-
perform conventional One Class SVM with respect to Gmean scores. For the Linear Kernel com-
binations in Table 5.1, the results of LMKAD(l-l-l) are similar or better compared to MKAD(l-l-l).
However, at the same time, LMKAD uses fewer support vectors than MKAD. A similar obser-
vation can be made for the Polynomial kernel combination in Table 5.2 with the exception of
iris and ionosphere datasets. For these two datasets, LMKAD (p-p-p) significantly outperforms
MKAD (p-p-p) by margins of 35% and 8%.

TABLE 5.2: Polynomial Kernels

DATASET
OCSVM MKAD Sum MKAD Prod LMKAD

Polynomial p-p-p p-p-p p-p-p
Gmean SV Gmean SV Gmean SV Gmean SV

Iris setosa 65.90 43.90 57.74 30.00 58.10 80.00 69.76 32.50
Iris versicolor 50.03 15.40 59.86 27.50 58.67 70.00 69.29 40.00

Ionosphere good 74.82 9.87 80.11 19.44 80.07 44.44 87.81 19.44
Ionosphere bad 49.46 25.95 59.91 73.27 59.51 97.03 59.91 76.24
Diabetes present 76.96 7.37 80.69 12.00 80.69 58.50 80.68 19.00
Diabetes absent 54.33 11.20 59.07 21.96 59.07 80.84 59.52 35.05

Liver 1 60.44 10.28 64.83 20.69 64.83 67.24 64.92 14.66
Liver 2 73.97 7.93 76.14 15.63 76.14 56.25 76.07 16.88

Breast Malignant 73.75 9.55 79.21 24.13 79.21 74.48 83.51 20.98
Breast Benign 54.63 12.81 61.04 28.24 61.04 76.47 61.56 28.24

German credit (good risk) 76.65 15.05 83.67 31.25 83.67 93.04 83.67 32.68
German credit (bad risk) 43.23 32.03 54.77 52.92 54.77 98.75 54.69 52.92

Australia credit (good risk) 58.63 21.70 66.70 34.29 66.70 86.53 66.67 33.06
Autralia credit (bad risk) 66.34 16.05 74.50 29.41 74.50 86.93 74.52 28.76
Japan credit (good risk) 60.74 15.65 67.20 30.51 67.20 87.29 67.21 30.93
Japan credit (bad risk) 65.44 18.52 74.05 30.77 74.05 82.87 74.07 50.70

Heart diseased 50.50 58.88 73.40 48.44 73.65 96.88 73.40 50.00
Heart healthy 51.72 35.37 67.91 58.18 67.91 98.18 67.91 58.18

Parkinson patient 66.41 8.17 91.53 13.22 70.71 60.82 99.41 21.88
Parkinson Healthy 66.30 8.15 70.71 15.87 70.71 60.82 70.94 31.01
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TABLE 5.5: Kernel combination containing all kernels

DATASET
MKAD-Prod MKAD Sum LMKAD

g-p-l g-p-l g-p-l
Gmean SV Gmean SV Gmean SV

Iris setosa 62.93 27.50 57.74 57.50 99.79 27.50
Iris versicolor 59.41 22.50 57.74 55.00 73.67 30.00

Ionosphere good 82.87 14.44 80.14 36.11 92.72 12.78
Ionosphere bad 59.91 39.60 59.91 94.06 60.05 38.61
Diabetes present 80.69 10.50 80.69 22.50 80.68 16.50
Diabetes absent 59.07 14.49 59.07 39.72 58.86 21.03

Liver 1 64.83 13.79 64.83 42.24 65.34 16.38
Liver 2 76.14 11.25 76.14 33.75 76.03 13.13

Breast Malignant 86.17 13.64 79.21 59.44 91.25 16.78
Breast Benign 60.95 14.71 61.04 72.94 61.71 14.71

German credit (good risk) 83.67 24.46 83.67 64.82 83.67 23.57
German credit (bad risk) 54.78 37.08 54.77 86.67 54.65 36.25

Australia credit (good risk) 66.70 18.37 66.70 62.45 66.54 20.41
Autralia credit (bad risk) 75.36 22.22 74.50 60.78 76.02 30.72
Japan credit (good risk) 67.20 20.76 67.20 61.86 66.96 26.27
Japan credit (bad risk) 74.79 20.63 74.05 54.55 75.57 33.57

Heart diseased 73.40 34.38 73.40 81.25 73.42 43.75
Heart healthy 67.91 40.00 67.91 87.27 67.84 32.73

Parkinson patient 91.27 11.30 70.71 39.42 96.06 12.26
Parkinson Healthy 70.83 12.02 70.71 39.90 71.38 8.89

For the rest of the combinations presented in Tables 5.3 to 5.5, LMKAD outperformed OCSVM
and performed similar to or significantly better (for iris, ionosphere and wdbc) when compared
to MKAD. Impact of localization can be observed in LMKAD (g-l-l), where even though the
Gaussian kernel is locally combined with the simplest kernel i.e. Linear kernel, it either out-
performed or produced a similar performance when compared to most Kernel combinations in
MKAD and also used fewer support vectors.
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TABLE 5.6: Increasing order of FRank and their MGmean value of all the one-class
classifiers

One-class
Classifier

FRank MGmean

LMKAD(g-p-l) 3.86 83.39
LMKAD(g-p-p) 4.71 83.50
MKAD(g-p-p) 5.64 81.79
LMKAD(g-l-l) 6.64 82.92
LMKAD(p-p-p) 7.00 81.84
MKAD(g-p-l) 7.07 80.40
MKAD(g-l-l) 7.21 78.84
MKAD(l-l-l) 7.79 74.86
LMKAD(p-p-l) 8.43 79.78
MKAD(p-p-p) 8.71 75.50
MKAD(p-p-l) 10.36 75.01
LMKAD(p-l-l) 10.57 75.77
MKAD(p-l-l) 10.86 74.86
LMKAD(l-l-l) 11.29 75.05
OCSVM(g) 12.14 72.41
OCSVM (l) 14.93 71.61
OCSVM(p) 15.79 65.20

As we have a total of 17 variants of One-Class classifiers viz. 7 combinations of MKAD
and LMKAD each and One-Class SVM for 3 different kernels, it is a cumbersome task to ana-
lyze them just by looking at the tables. Therefore, we have performed the Friedman test [22]
to verify the statistical significance of these classifiers. Friedman Rank (FRank) and mean of
Gmean (MGmean) over all 20 datasets for all the classifiers are presented in Table 5.6. This table
presents all the One-Class classifiers in the increasing order of their FRank. This table shows
that OCSVM stands last in the table. LMKAD(g-p-l) and LMKAD(g-p-p) stand first in the table
in terms of FRank and MGmean respectively. It is to be noted that the difference in the FRank
of LMKAD(g-p-l) and LMKAD(g-p-p) is significant, however, LMKAD(g-p-p) has a better MG-
mean. This shows that LMKAD(g-p-l) performs more stably compared to LMKAD(g-p-p). As
expected from above discussion LMKAD(g-l-l) yields better MGmean compared to the rest of
the classifiers, except LMKAD(g-p-l) and LMKAD(g-p-p). It can be observed from the table that
all combinations of LMKAD perform better compared to their corresponding MKAD in term
of FRank as well as MGmean, except LMKAD(l-l-l). In the all Linear Kernel combination case
, LMKAD(l-l-l) performs better in terms of MGmean but not in terms of FRank. The p-value of
the Friedman test is 0.000028, which is very less. The low p-value indicates that we can reject
the null hypothesis and state that presented results of the various classifiers are statistically sig-
nificant.
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TABLE 5.10: Summary of Classifier Performance

One-Class Classifiers FRank MGmean
LMKAD 3.65 75.25
Knndd 4.10 75.48
MKAD-Sum 4.90 71.59
Svdd 5.05 74.55
MKAD-Prod 5.05 70.33
Somdd 5.10 74.36
Gaussdd 5.30 74.21
Autoencdd 5.50 74.64
Pcadd 6.35 72.90

We further compare the results of LMKAD and MKAD with other existing One Class Clas-
sifiers in the tables 5.7, 5.8, 5.9. Here, for LMKAD and MKAD, the best kernel combinations for
each dataset is shown. Again as the number of classifiers are very large, we have calculated the
FRank and MGmean for each classifier so as to be able to compare them. Table 5.10 shows the
corresponding Frank and MGmean for each classifier. We can see that LMKAD with a score of
3.65 has the lowest FRank and is therefore at the top performing better than all existing one class
classifiers. Also LMKAD performs better than both MKAD(Sum) and MKAD(Product). In fact
some other classifiers perform better than MKAD. This shows that though MKAD is useful in
cases where the data is Heterogeneous, it lacks wider applicability and does not perform well
on homogeneous data. Proposed classifier LMKAD however is able to exploit the localities in
the input data space and performs better than the other classifiers.
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Chapter 6

Conclusion and Future Work

The objectives of this project were to

• Introduce a new and novel method for anomaly detection

• Prove its correctness

• Evaluate the performance of this new method against existing state-of-the-art methods.

• Showcase the statistical significance of our results.

In this project, we have proposed a new method of Anomaly Detection by extending MKAD
and creating a localized formulation for Multi kernel learning for anomaly detection based on
a local assignment of weights. Previous multiple kernel based anomaly detection method i.e.
MKAD has its strengths and shortcomings, which are explained in the report and addressed by
the proposed method.
We also proposed an optimization problem based on the localized decision function and de-
scribed a two-step optimization procedure to solve it. The derived formulation is also shown to
be analogous to conventional One-Class SVM and is solved in a similar fashion using a LIBSVM
solver. The algorithm is empirically tested against 20 benchmark datasets, and its performance
proves the credibility of our approach.
The results are discussed under two broad groupings. First, the results among different Kernel
combinations are studied in LMKAD and MKAD. Second,the best performing kernels, are cho-
sen and compared against other One Class Classifiers. LMKAD outperforms both conventional
One-Class SVM and MKAD for most of the datasets. For some other datasets, LMKAD performs
similar to MKAD but uses fewer support vectors. The Friedman test is performed which statis-
tically verifies that the algorithm performs significantly better than its counterparts.

Future work in this direction would be to extend the concept of Localized Multiple kernel Learn-
ing to SVDD and other Kernel based methods especially to Kernel Ridge regression.
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