
ALGORITHMS FOR MOBILE EDGE

CACHING IN FUTURE WIRELESS

NETWORKS

Ph.D. Thesis

by

KRISHNENDU S

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE
JUNE, 2022

ALGORITHMS FOR MOBILE EDGE

CACHING IN FUTURE WIRELESS

NETWORKS

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

KRISHNENDU S

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE
JUNE, 2022

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled
“ALGORITHMS FOR MOBILE EDGE CACHING IN FUTURE WIRE-
LESS NETWORKS” in the partial fulfillment of the requirements for the award of
the degree of DOCTOR OF PHILOSOPHY and submitted in the DEPARTMENT
OF ELECTRICAL ENGINEERING, Indian Institute of Technology Indore,
is an authentic record of my own work carried out during the time period from May
2017 to June 2022 under the supervision of Dr. Vimal Bhatia, Professor, Indian
Institute of Technology Indore, India.

The matter presented in this thesis has not been submitted for the award of any
other degree of this or any other institute.

Signature of the student with date

(KRISHNENDU S)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This is to certify that the above statement made by the candidate is correct to
the best of my/our knowledge.

Signature of Thesis Supervisor with date

(Prof. VIMAL BHATIA)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Krishnendu S has successfully given her Ph.D. Oral Examination held on 31/10/2022.

Signature of Thesis Supervisor with date

(Prof. VIMAL BHATIA)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ACKNOWLEDGEMENTS

I express my heartfelt and profound gratitude to my Ph.D. supervisor Prof. Vimal
Bhatia for his invaluable guidance, encouragement, vision, direction throughout my
thesis work and especially for his calm nature. It is my great honour and pleasure
to work under the esteemed guidance of kind and responsible supervisor like Prof.
Vimal Bhatia. I am thankful for all the freedom he gave me to explore various
research topics and was always available for discussion despite his busy schedule. I
would also like to thank my PSPC committee members Prof. Shaibal Mukherjee
and Prof. Bhupesh Kumar Lad for their fruitful discussions and suggestions towards
my research.

I would like to thank the Visvesvaraya PhD Scheme of the Ministry of Electronics
& Information Technology, Government of India, being implemented by Digital India
Corporation for providing financial assistance. I would also take this opportunity
to thank Department of Electrical Engineering and the UKIERI project for funding
my travels for conferences, workshops, and my research publication charges which
provided me an excellent platform to share and discuss my ideas with the fellow
researchers and experts who have helped to shape my Ph.D. thesis.

I am very thankful to Dr. Bharath B. N. at Indian Institute of Technology Dhar-
wad, whose expertise and insightful feedback pushed me to sharpen my thinking and
widen my research from various perspectives. I am very thankful for his assistance
throughout my research period.

I am truly thankful to all the faculty members and the staff of IIT Indore for their
invaluable cooperation throughout my thesis work. I would also like to thank all
the members in the Signal and Software group (SaSg) for their encouragement and
support. Specially, I would like to extend my appreciation to my seniors Dr. Abhijeet
Bishnu, Dr. Praveen Kumar Singya and Dr. Arijit Datta, who helped me whenever
required. I would also like to thank my cohort members and juniors: Puneet Singh
Thakur, Kamal Kishore Garg, Anupma Sharma, Vaishali Sharma, Shubham Bisen,
Abhinav Singh Parihar, Justin Jose, Deepak Kumar, Vidya Bhaskar Shukla, and
other colleagues who helped me in several ways during my thesis work.

Life in campus and in general would be incomplete without mentioning few
names to whom I will always be grateful for their constant companionship during
all the ups and downs: Dr. Shanuja, Meghna, Tanushree, Hussain, Tinto, Kavin,
Bhavana, Dr. Sandeep, Pooja, Nirmal, Ansil, Ashin, Robi and Jacob. Thanks for
all the support and for all the happy times we had.

Moreover, whatever little I have achieved in my life, the credit goes to my family
members, especially my parents and my brother, whom I take great pride in dedi-
cating this thesis. They have always been a source of inspiration for me and have
kept trust and faith in whatever I did. This journey was not possible without their
support at each and every step of my life. Finally, I cannot express my gratitude
towards my family, especially my mother, in words for being my constant anchor. I
would have never made this far without her believing in me.

Krishnendu S

Dedicated to my parents
Amma & Achan

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7

ABSTRACT

This thesis explores one of the key enablers of 5G wireless networks leveraging small
cell network deployment, namely mobile edge caching. Endowed with predictive
capabilities and harnessing recent developments in storage, context-awareness and
social networks, peak traffic demands can be substantially reduced by caching at
the edge of the network. The surge in Internet usage through smart phones, social
media platforms and online video streaming has heralded an explosive growth in
the amount of data being created. Due to the fast development of communication
based applications, it is expected that there will be 5.3 billion total Internet users
(66 percent of global population) by 2023, up from 3.9 billion (51 percent of global
population) in 2018. This new phenomenon has urged mobile operators to redesign
their current networks and seek more advanced and sophisticated techniques to
increase coverage, boost network capacity, and cost-effectively bring contents closer
to users. A promising approach to meet these unprecedented traffic demands is via
the deployment of small cell networks (SCNs). SCNs represent a novel networking
paradigm based on the idea of deploying short-range, low-power, and low-cost small
base stations (SBSs) underlaying the macro cellular network. In addition to the
vast and dynamic mobile data generated, the limited spectrum especially in the
wireless link, due to the extensive use of smart phones and other devices, ultimately
leads to congestion in the backhaul links. The implementation of dense and SBSs
does reduce the latency and provides immense throughput in the 5G and beyond
network, but the bottleneck issue still remains the same. Thus, the existing small cell
networking paradigm falls short of solving peak traffic demands whose large-scale
deployment hinges on expensive site acquisition, installation and backhaul costs.
These shortcomings are set to become increasingly acute, due to the surging number
of connected devices and the advent of ultra-dense networks, which will continue to
strain current cellular network infrastructures. These key observations mandate
a novel networking paradigm which goes beyond current heterogeneous small cell
deployments leveraging the latest developments in storage, context-awareness, and
social networking. This novel paradigm helps in storing the data locally at the edge
of the network and is referred to as mobile edge caching. Mobile edge caching which
exploits the vast data, compensates for the shortage of local computing capacity
and high transmission costs of individual cloud computing. Thus, the demand of
the hour is a shift from the large scale cloud data to wide range edge devices.
Both edge caching and computation helps in storing and implementation of learning
algorithms at the edge, hence making the edge intelligent and further reducing the
burden on the backhaul. The standard simplified algorithms such as least frequently
used (LFU), least recently used (LRU), least recently/frequently used (LRFU) and
other variants, can be inefficient when it comes to dynamic environments, since
they do not take into account the correlation and non-stationarity of the demand
requests. Therefore, a gradual shift towards learning and optimizing the edge devices
for content prediction is observed. This in turn yields significant gains in terms of
network resources, minimizing operational and capital expenditures.

To strike a balance between increasing mobile traffic and user experience, mobile
edge caching and computing can be seen as invariable solution by bringing stor-
age and computation close to the edge. Further, it is observed that, users who
have similar interests and backgrounds tend to rank the content in a similar way.
However, in a realistic network, the content popularity tends to be dynamic hence

motivating the dynamic cache. Thus borrowing the tools from probability theory,
machine learning, we have designed algorithms which take advantage of the memory
distributed across the network. The proposed network architecture involves caching
popular data sets closer to users, which will yield higher user’s satisfaction; attain
high backhaul offloading gains and more revenue for the operators. In the coming
years, mobile edge caching is seen as a potential alternative to reduce congestion in
the backhaul. Caching contents at the edge of the network not only brings the data
closer to the user and makes the content access easier but also gives an opportunity
for network service provider to fulfill user demands with limited resources. Recently,
there is much work focusing on mobile caching strategies due to the advantages of
fast response.

ii

Contents

ABSTRACT i

LIST OF FIGURES vii

LIST OF ABBREVIATIONS/ACRONYMS vii

List of Symbols x

1 Introduction 1
1.1 Overview . 1
1.2 Background & Motivation . 1
1.3 Caching: A Brief History and Related Works 2

1.3.1 Proactive Caching and Content Popularity Estimation 3
1.3.2 Coded Caching Gains . 4
1.3.3 Joint Designs . 5
1.3.4 Mobility . 5
1.3.5 Energy Consumption . 6
1.3.6 Deployment Aspects . 6
1.3.7 Learning Algorithms . 7

1.4 Thesis Outline and Contributions . 8

2 Caching at Base Station 11
2.1 Overview . 11
2.2 System Model . 13
2.3 Theoretical Guarantees . 18

2.3.1 Complexity Analysis . 18
2.4 DNN based popularity prediction . 19
2.5 K-means clustering . 20
2.6 DNN based Popularity Prediction . 21
2.7 Simulation Results . 23
2.8 Summary . 30

3 Federated Learning 31
3.1 Overview . 31
3.2 System Model . 35

3.2.1 Caching Policy . 37
3.2.2 Problem Statement . 37

3.3 Online Federated Learning based Caching 38
3.3.1 Algorithm for Federated Learning based Caching 42

iii

CONTENTS

3.3.2 Federated Learning Based Heuristics Caching Mechanism . . . 46

3.4 Simulation Results . 50

3.5 Summary . 53

4 Bayesian Learning for Joint Optimization 55

4.1 Overview . 55

4.2 System Model and Problem Statement 60

4.3 Joint Caching and Recommendation for Single SBS Scenario 63

4.3.1 Theoretical Guarantees . 66

4.3.2 Bayesian Estimation: Single SBS Scenario 67

4.4 Proposed Caching and Recommendation Strategies With Multiple SBSs 68

4.4.1 Two Small Base Station Scenario 68

4.4.2 Multiple Small Base Station Scenario 72

4.5 Simulation Results . 74

4.6 Summary . 77

5 Recommendation based Caching using Whittle Index 79

5.1 Overview . 79

5.2 System Model . 80

5.2.1 Caching Model . 81

5.3 Optimal Caching Cost . 83

5.4 RMAB and Whittle’s Indexability . 84

5.4.1 Thresholdability of the ω-subsidy policy 85

5.4.2 Whittle Indexability . 86

5.5 Simulation Results . 87

5.6 Summary . 88

6 Conclusions and Future Works 91

6.1 Conclusions . 91

6.2 Future Work . 92

A Proofs for Chapter 3 95

A.1 Derivation of (3.3.2) . 95

A.2 Derivation of (3.3.3) . 98

B Proofs for Chapter 4 101

B.1 Derivation of (4.3.1) . 101

B.2 Derivation of (4.3.2) . 102

B.3 Genie Aided Regret Analysis: Heuristics for Two SBSs Case 103

B.4 Regret Analysis for Two SBS: Heuristics 104

B.4.1 Regret Analysis for Multiple SBS: Heuristics 105

B.5 Derivation of (4.3.4) . 106

B.6 Derivation of (4.4.1) . 109

B.7 Derivation of (4.4.2) . 110

B.8 Derivation of (4.4.3) . 111

B.9 Derivation of (4.4.4) . 112

iv

CONTENTS

C Proofs for Chapter 5 113
C.1 Derivation of (5.4.1) . 113
C.2 Derivation of (5.4.2) . 114
C.3 Derivation of (5.4.3) . 115

REFERENCES 119

LIST OF PUBLICATIONS 136

v

List of Figures

1.1 Illustration of mobile edge computation in future wireless networks.
Contents available in the origin server are cached at the base stations
and user devices, for offloading the backhaul and the wireless links. [1] 2

2.1 System model for the cache based wireless heterogeneous network . . 13
2.2 DNN based edge caching model. 22
2.3 Average delay versus cache size with 15 users for the fixed link scenario. 26
2.4 Average delay versus cache size with 35 users for the fixed link scenario. 26
2.5 Average delay versus cache size with 35 users for the SINR based

scenario. 27
2.6 Average MSE for various prediction models. 28
2.7 MSE versus content library size. 28
2.8 MSE versus number of hidden layers. 29
2.9 Average cache hit versus content library size. 29

3.1 System model showing multiple SBSs connected to users with limited
cache memory. 36

3.2 Average sum cache hit of all SBSs versus cache size. 51
3.3 Average cache hit of all SBSs versus cache size for different topologies

for Algorithm I. 51
3.4 Average cache hit of all SBSs versus cache size for different delay for

Algorithm I. 52
3.5 Average cache hit of all SBSs versus cache size for different iterations

for Algorithm I. 52

4.1 Distributed caching in a cellular network. 61
4.2 Distributed caching in a cellular network assuming single SBS. 64
4.3 Heterogeneous network with distributed caching consisting of two SBS. 69
4.4 Average throughput v/s cache size for 15 SBS model. 75
4.5 Average delay v/s cache size for two-SBS model. 76
4.6 Cache hit v/s cache size for 2 SBS and P1 = P2. 76
4.7 Cache hit v/s λ for 2 SBS and P1 ̸= P2. 77

5.1 Caching based wireless heterogeneous network 80
5.2 Average cache hit versus cache size for 500 files. 88

vii

List of Abbreviations/Acronyms

ADAM adaptive moment estimation.

BS base station.

CDN content delivery network.

CF collaborative filtering.

C-RAN cloud radio access network.

D2D device-to-device.

DL deep learning.

DMT diversity-multiplexing gain tradeoff.

DNN deep neural network.

FL federated learning.

FTPL follow-the-perturbed-leader.

i.i.d. independent and identically distributed.

IA interference alignment.

IAB integrated access and backhaul.

LFU least frequently used.

LRFU least recently/frequently used.

LRU least recently used.

MAB multiarm bandit.

MABP multi-armed bandit problem.

MAMB multi-agent multi-armed bandit.

MBS macro base station.

MDP markov decision process.

viii

List of Abbreviations/Acronyms

MEC mobile edge computing.

MIMO multiple-input and multiple-output.

MLE maximum likelihood estimation.

PDF probability density function.

PTM probability transition matrix.

QoE quality-of-experience.

QoS quality-of-service.

Relu Rectified linear unit.

RMAB restless multi-armed bandit.

SBSs small base stations.

SCN small cell networks.

SINR signal-to-interference-plus-noise ratio.

SNR signal-to-noise ratio.

TDMA time-division multiple access.

TTL time to live.

UAV unmanned aerial vehicle.

ix

List of Abbreviations/Acronyms

List of Symbols

� Basic arithmetic and calculus notations with their definitions.

Probability & Statistics

Let X be a random variable (RV).

Notation Definition

E[·] statistical expectation operator
P [·] statistical probability operator
fX(·) probability density function (PDF) of a RV X
FX(·) cumulative distribution function (CDF) of a RV X
CN (µ, σ2) complex normal distribution with mean µ and variance

σ2

supA supremum of the set A

Vectors & Matrices

Let a ∈ P1×n and A ∈ Pm×n be an 1 × n complex vector and an m × n complex
matrix, respectively.

Notation Definition/interpretation

ai ith element of a
Ai,j ith element of jth column of A
|| · ||2F Squared Frobenius norm of (·)
IN Identity matrix of rank N
(·)∗ conjugate of (·)

x

List of Abbreviations/Acronyms

Miscellaneous

Notation Definition

| · | absolute value
|| · ||op operator norm
|| · ||F Frobenius norm
≈ approximate value
vec represents vector(
n
k

)
binomial coefficient of n choose k

Dirch(α1, α2, . . . , αK) is the Dirichlet distribution with parameters
α1, α2, . . . , αK

arg max
i
bi index i corresponding to the largest bi

arg min
i
bi index i corresponding to the smallest bi

Superscript (·)T represents transposition

xi

Chapter 1

Introduction

1.1 Overview

1.2 Background & Motivation

The recent proliferation of smartphones has substantially enriched the mobile user

experience, leading to a vast array of new wireless services, including multimedia

streaming, web-browsing applications and socially-interconnected networks. This

phenomenon has been further fueled by mobile video streaming, which currently ac-

counts for almost 50% of mobile data traffic, with a projection of 500-fold increase

over the next 5 years [2]. At the same time, social networking is already the second

largest traffic volume contributor with a 60% average share [2]. This new phenomena

has urged the wireless network operators to redesign the current networks and opt

for more advanced techniques which helps in increasing the network capacity and

cost-effectively bring the contents closer to the users. While small cell densification

is clearly the way to go, a number of technical challenges remain unsolved. Indeed,

while small cell densification was shown to boost capacity, simply adding small cells

may turn out to be energy-inefficient [3, 4]. In addition, backhaul optimization and

the optimal location of small cells represent one of the main limiting factors before

a full rollout of small cells takes place. The importance of the backhaul is further

underscored with the unabated proliferation of smartphones with the vast array of

new wireless services. As a result, novel approaches to backhaul-aware small cell net-

working have been recently proposed in the literature [5] such as how to optimally

1

1.3. CACHING: A BRIEF HISTORY AND RELATED WORKS

Figure 1.1: Illustration of mobile edge computation in future wireless networks. Contents available
in the origin server are cached at the base stations and user devices, for offloading the backhaul
and the wireless links. [1]

decouple control and data planes to make cells more adaptive to traffic dynamics

and network state while having a global view of the network, backhaul offloading

via smart edge caching [6, 7], cloud radio access network (C-RAN), software defined

networking (SDN) [8], resource/network virtualization, ultra-dense networks, mas-

sive multiple-input and multiple-output (MIMO), etc. Among these approaches,

in this thesis, we focus on mobile edge caching as a way of dealing with backhaul

offloading, which is especially crucial in dense deployments (see [9], [10], or [11]).

Fig. 1.1 illustrates the mobile edge caching in a heterogeneous wireless network. As

shown in Fig. 1.1, in the network of the future, memory units can be installed in

gateway routers between the wireless network and the Internet, in SBSs of different

sizes (small or regular size cells), and in end-user devices (mobile phones, laptops,

routers, etc.).

In the following section, we first give an overview of history of mobile edge

caching and summarize the advancements in mobile edge caching. Afterwards, we

discuss the outline and contributions of the thesis accordingly.

1.3 Caching: A Brief History and Related Works

The idea of caching goes back to the sixties in the context of algorithm design in

operating systems. In the past decades, there has been extensive studies on web

2

CHAPTER 1. INTRODUCTION

caching algorithms, aiming to improve the world wide web scalability and offloading

the network, by caching contents in the proxy servers. Similarly, in wireless network

for improving the content delivery, mobile edge caching has been considered as one

of the important feature of the 5G networks. In recent years, numerous mobile edge

caching algorithms for content delivery network (CDN) have emerged [12], allowing

content providers to reduce access delays to the requested contents.

Similar to what we present in this thesis, the growing literature is mostly based

on wireless caching at the edge of network. An exhaustive list of recent literature

is given in [9, 12–15]. In the following, we summarize some of these works based on

their similarities and directions.

1.3.1 Proactive Caching and Content Popularity Estimation

Proactive caching in small cell networks (SCN)s with perfect knowledge of the con-

tent popularity is given in [16, 17]. In [17], exploiting context-awareness, social net-

works, device-to-device (D2D) communications, the proactive caching approaches for

SCNs are studied both at the SBSs and user terminals, showing that several gains are

possible under the given numerical setup. Therein, instead of perfect knowledge of

the content popularity, an estimation is done via machine learning tools (the collab-

orative filtering (CF) in particular), by exploiting correlations of human behaviour

on their preferences. Thus, having such an estimation, the caching decision is ap-

plied more efficiently, yielding better performance in terms of the users’ satisfaction

and offloading of the network. On the other hand, a well-known problem in the CF

literature is the cold-start problem which can occur in the case of estimation with

very few amount of information. Therefore, to boost the content popularity estima-

tion, one approach harnessing the machine learning literature is transfer learning,

based on the idea of smartly transferring information from a target domain to a

source domain (see [18] for a survey). Further investigations are needed to combine

this approach with the proactive caching in SCNs. Additionally, in the context of

proactive caching, the centrality measures for the content placement are exploited

in [19]. Therein, a simple content dissemination process is introduced and the pre-

liminary performance results of this centrality-based content placement methods are

given via numerical simulations. Alternative to these proactive approaches, a game

3

1.3. CACHING: A BRIEF HISTORY AND RELATED WORKS

theoretical formulation of the proactive caching problem as a many-to-many match-

ing game is introduced in [20]. A matching algorithm that reaches a pairwise stable

outcome is provided for the caching problem, showing that the number of satisfied

requests can be reach up to three times the satisfaction of a random caching policy.

1.3.2 Coded Caching Gains

Information-theoretic formulation of the caching problem is studied by [21]. Therein,

local and global caching gains, which depend on the available memory of each user

and cumulative memory of all users respectively, are derived based on a coded

caching scheme. The proposed scheme consists of placement and delivery phases (i)

is given for a centralized setup where the content placement is handled by a central

server, (ii) is essentially offline as there is no content placement during the delivery

phase, (iii) is shown to outperform conventional uncoded schemes under uniform

content popularities, and (iv) works in a single shared link instead of more general

networks. These results are then extended to non-uniform content popularities in

[22, 23], non-uniform cache access in [24], heterogeneous cache sizes in [25], online

caching systems in [26], hierarchical caching networks in [27] and multi-server case in

[28]. Moreover, the improved bounds are given in [29], delay-sensitive content case

is studied in [30] and the information-theoretic security aspects are shown in [31].

With similar line to these works, a decentralized approach for D2D networks with

random coded caching is studied in [32] in terms of scaling laws where a protocol

channel model similar to [33] is taken into account. In the same vein, the perfor-

mance of decentralized random caching placement with a coded delivery scheme is

given in [34], where the expected rate is characterized for random demands with Zipf

popularity distribution. In the context of distributed storage systems and coding,

the performance of simple caching, replication and regenerating codes is studied in

a D2D scenario in [35], in which a simple decision rule for choosing simple caching

and replication is derived for minimizing the expected total cost in terms of energy

consumption. On the other hand, the study of the physical layer functionality of

wireless distributed storage systems is given in [36] from point of space-time storage

codes. Based on that work, a wireless storage system that communicates over a

fading channel is studied in and a novel protocol for the transmission is proposed

4

CHAPTER 1. INTRODUCTION

based on algebraic space-time codes, in order to improve the system reliability while

keeping the decoding at a feasible level. It is shown that the proposed protocol per-

forms better than the simple time-division multiple access (TDMA) protocol and

falls behind the optimal diversity-multiplexing gain tradeoff (DMT). Alternatively, a

triangular network coding approach for cache content placement is presented in [37],

in which the uncoded content placement and the triangular network coding strate-

gies are compared in a numerical setup. Additionally, a coded caching scheme over

wireless fading channel is presented in [38], whereas [39] casts the caching problem

into a multi-terminal source coding problem with side information.

1.3.3 Joint Designs

In terms of joint designs, a two time-scale joint optimization of power and cache

control is given in [40] for cache-enabled opportunistic cooperative MIMO. First,

for the short time scales, the closed-form expressions for the power control are de-

rived from an approximated Bellman equation. Then, for the long time scales, the

caching problem is translated into a convex stochastic optimization problem and a

stochastic subgradient algorithm is provided for its solution. The proposed solution

is shown to be asymptotically optimal for high signal-to-noise ratio (SNR) whereas

its comparison with baseline approaches are done via simulations. Another mixed

time-scale solution for cooperative MIMO is given in [41]. Therein, in order to min-

imize the transmit power under the quality-of-service (QoS) constraint, the MIMO

precoding is optimized in the short time scale and cache control is done in the long

time scale. Additional to these approaches, the joint optimization of cache control

and playback buffer management for video streaming is given in [42]. The joint

caching and beamforming for backhaul limited caching networks is studied in [43],

and

finally the joint caching and interference alignment (IA) in MIMO interference

channel under limited backhaul capacity is presented in [44].

1.3.4 Mobility

Mobility aspects of coded content delivery is analyzed in [45] based on a discrete-time

Markov chain model. In order to minimize the probability of using the main base

5

1.3. CACHING: A BRIEF HISTORY AND RELATED WORKS

station in this model, a distributed approximation algorithm based on large deviation

inequalities is introduced and numerical experiments on a real world dataset are

conducted for the proposed algorithm. Another caching scheme that exploits users’

mobility is given in [46], in which the influence of the system parameters on the

delay gains are investigated via the system level simulations. The work in [47] also

consider the impact of mobility in cache-enabled networks.

1.3.5 Energy Consumption

Energy consumption aspects of caching both in terms of area power consumption and

energy efficiency are investigated in [48]. Therein, the cache-enabled base stations

(BSs) are distributed according to a homogeneous Poisson point process and the

optimization is done using a detailed power model. On the other hand, energy

harvesting aspects of proactive caching is highlighted in [49], and an effective push

mechanism for energy harvesting powered small-cell BSs is proposed in [50]. Also,

a joint caching and BS activation for green cellular networks is proposed in [51].

1.3.6 Deployment Aspects

Concerning the deployment aspects of cache-enabled SBSs with limited backhaul,

a study is given in [52]. In that study, the cache-enabled SBSs are stochastically

distributed for the analysis rather than the traditional grid models. The expres-

sions for the outage probability and average content delivery rate are derived as a

function of the SNR, SBSs intensity, target content bitrate, cache size and shape

of content popularity distribution. The results in [53] shows that storing the most

popular contents is beneficial only in some particular deployment scenarios. On the

other hand, for cache enabled D2D communications, another stochastic framework

is shown in [54], by relying on two performance metrics that quantify the local and

global fraction of served content requests. Yet another study for the stochastically

distributed cache-enabled nodes is given in [55]. Given the fact that the cost is de-

fined as a function of distance, the expected cost of obtaining the complete content

under coded as well as uncoded content allocation strategies is investigated. As an

extension to [55], the expected deployment cost of caches vs. the expected content

retrieval from the caches is analyzed in [56].

6

CHAPTER 1. INTRODUCTION

1.3.7 Learning Algorithms

One of the key problems to be addressed in mobile edge caching is that of esti-

mating/predicting the popularity profile or demands for the files. Majority of the

existing work assume static demands, and hence algorithms are designed to get a

good estimate of the popularity profile (see [57], [58], [59]-[62]). On the other hand,

estimating the popularity profile based on the data assumes a naive estimate, i.e.,

a simple averaging, which may not perform well in highly non-stationary environ-

ments. However, the demands in reality are non-stationary, and perhaps correlated

across time; this makes the algorithms designed for static demands/popularity pro-

files to underperform. One solution to solve this issue is to consider online learning

algorithm to proactively cache the contents [63]. The authors in [64] showed that

a good hit rate under non-stationary demands can be achieved through a time to

live (TTL) based algorithm. Some past work assumed that there is a stationary

caching policy such as LRU [65], climb [66, 67], and k-LRU [68] and have charac-

terized the learning errors as a function of time. The learning error depends on

the stationary distribution, which in turn depends on the mixing time [69]. Many

of these works result in a regret of ω(T). In [70], the authors propose a collabo-

rative caching optimization problem in a stationary environment to minimize the

accumulated transmission delay over a finite time horizon in cache-enabled wireless

networks in a multi-agent multi-armed bandit (MAMB) perspective, which results

in a regret of O(log T). In [71], function approximation based reinforcement learn-

ing approaches are proposed for a massive MIMO based network. In [72] integrated

access and backhaul heterogeneous network for cache-enabled in-band full-duplex in

the millimeter wave band is developed. Moreover, in order to use spatio-temporal

information, the authors in [73] developed a Bayesian dynamical model to predict

the popularity and minimized the cost for transferring data among the SBSs in the

network. On the other hand, in [74], active learning approach is used to learn the

content popularities to design an accurate content request prediction model. In [75],

the authors propose joint caching and the dynamic multicast scheduling to increase

the robustness of wireless transmission. The approach taken so far is either online

learning in the adversarial setting leading to regret minimization or by designing

7

1.4. THESIS OUTLINE AND CONTRIBUTIONS

caching strategies by estimating the popularity profile (see [76]). The disadvantage

in the adversarial setting is that the statistical pattern in the data is completely

ignored. An improvement on this is to account for statistical pattern and combine

the strategies in a systematic way, this is termed as online-to-batch conversion in

the literature [77].

1.4 Thesis Outline and Contributions

This thesis consists of Chapters 1 to 6, whose brief description is as follows:

Chapter 1. Introduction : In this chapter, a brief introduction about, wire-

less edge caching, motivation, and main contributions of the thesis are provided.

Chapter 2. Caching at Base Station : In this chapter, the problem of max-

imizing the average rate of cache hit in a heterogeneous wireless network for a given

probability distribution of content popularity and a given network topology, under

the constraint of cache size at each SBS is proposed [78].

Chapter 3. Federated Learning: In this chapter, Federated learning based

caching strategy is proposed which is assumed to be a weighted combination of past

caching strategies of neighbouring BSs [11]. Therefore, a structure on the caching

strategy is assumed, and a high probability guarantee/bound on the conditional

average cache hit is derived.

Chapter 4. Bayesian Learning for Joint Optimization : In this chap-

ter, joint optimization of both caching and recommendation is formulated and the

influence of the recommendation on the popularity is modelled through a probabil-

ity transition matrix. Two estimation procedures namely Point estimation and

Bayesian estimation methods are presented [10]. Further, theoretical guarantees

are also provided on the performance of the algorithm.

Chapter 5. Recommendation based Caching using Whittle Index : In

this chapter, caching and recommendation in a wireless network is jointly looked

8

CHAPTER 1. INTRODUCTION

into. The demands are modelled as a two-state markov chains. The two objectives

results in the classic exploration v/s exploitation tradeoff seen in sequential decision

making problems and Whittle’s indexability is established

Chapter 6. Conclusion and Future Work: In this chapter, the conclusions

made from proposed algorithms in this thesis are summarized, and suggestions for

future research are provided.

The contribution of this thesis include;

1. The problem of edge caching in a cellular network with a given topology and

storage size in each SBS is looked into. The problem of maximizing the cache

hit with respect to the cache placement strategy (which takes values in {0, 1})

subject to storage size constraint in each SBS turns out to be NP hard, and

hence, an approximation is proposed to the problem. Theoretical guarantees

are proven on the performance of the proposed method. A complexity analysis

is also presented of the proposed algorithm.

2. Assuming structured cache placement, high probability bounds on the condi-

tional average cache hits are derived using Martingale difference equation [79].

In particular, it is assumed that the caching strategy at a given time is a linear

combination of past caching decisions across time and across other SBSs in the

given region. Insights provided by the bound including regret and discrepancy

across temporal and spatial cache hits are used to design the iterative feder-

ated based caching algorithm, which optimizes the weights of the linear sum.

As a corollary of the bound, a guarantee on the performance of the proposed

algorithm using equal caching-weights is also obtained.

3. Two estimation procedures, Point and Bayesian estimation are provided.

A probabilistic model using Bayesian inference based on Dirichlet distribution

is proposed. Specifically, the influence of recommendation on the popularity

profile is modelled using a conditional probability distribution. A high prob-

ability guarantee on the estimated caching and recommendation strategies is

provided. Irrespective of the estimation method, it is shown that with a prob-

ability of 1 − δ the proposed caching and recommendation strategy is ϵ close

9

1.4. THESIS OUTLINE AND CONTRIBUTIONS

to the optimal solution.

4. The joint caching and recommendation is modeled as an markov decision pro-

cess (MDP) and its Whittle’s indexability is established. Based on the Whit-

tle’s indexability condition, the whittle index policy for the caching problem

is provided. The Whittle’s index policy is known to have near-optimal perfor-

mance and have shown low-complexity [80].

10

Chapter 2

Caching at Base Station

2.1 Overview

In the design of distributed content network, content popularity distribution is an

important factor guiding SBSs to cache content preferred by users [15, 81]. The

content popularity profile does not always follow a uniform distribution; in practice,

some contents are accessed much more frequently than others, thereby rendering the

problem of optimal edge caching an uphill and uncertain task. The cache algorithms

such as LRU and LFU are being used in CDN, to improve the overall network

capacity. Both these algorithms primarily work on the principle governing the last

access time of the files. In these algorithms, each block or file is assigned a counter,

which keeps track of the number of times the content is accessed. Whenever the

cache memory is full, the block with the least count number is discarded to make

room for the new content. For example, in case of LRU, the file which is least used

in the past, is assumed to have least probability of use in the future, and hence

evicted. On the other hand, LFU replaces the file that has been used least recently

when a new file arrives. Nevertheless, these algorithms are not suitable for mobile

edge caching in a wireless scenario with multiple SBSs, since a mobile user can fetch

the requested content from multiple SBSs to which it is connected [82].

While there has been a lot of study on edge caching, this chapter proposes a

ϵ close-to-optimal cache placement solution that performs better than the existing

solutions. In particular, for a given popularity profile and network topology, a cache

placement mechanism at the SBS is proposed such that the average rate of cache

11

2.1. OVERVIEW

hit is maximized. Despite the knowledge of the popularity profile, the problem of

optimal cache content placement turns out to be combinatorial, and more often

NP-hard [83]. Thus, the hard combinatorial problem lies at the heart of most of

the cache placement problems. This chapter proposes an efficient method of solving

the problem of edge caching in a cellular network, where the caching is done only

at the SBSs. The topology is assumed to be constant, and each user requests one

of the J popular items with a certain rate; the rate is assumed to be known at

each SBS. This chapter considers the problem of edge caching in a cellular network

with a given topology and storage size in each SBS. The problem of maximizing

the cache hit with respect to the cache placement strategy (which takes values in

{0, 1}) subject to storage size constraint in each SBS turns out to be NP hard, and

hence, an approximation is proposed to the problem. In particular, the following

method is used to find an approximate solution: (i) the 0/1 variable is relaxed to take

any value in [0, 1]; (ii) a perturbation term is added to the objective function, and a

condition is derived under which the resulting function is convex. Thus, the resulting

problem is convex, and hence an optimal solution is found through optimization

techniques, and finally (iii) the resulting non-integer solution is converted into an

integer solution through randomized rounding algorithm. Theoretical guarantees

are proven on the performance of the proposed method. Significant improvement

in the cache hit performance of the proposed method over the popular greedy, LRU

and LFU algorithms is demonstrated through simulation. A complexity analysis is

also presented of the proposed algorithm in comparison with the greedy algorithm

and exhaustive algorithm. Further, a deep learning (DL) model is incorporated to

predict the popular contents. K-means clustering based DL framework is used to

predict popularity at the central BS, which in turn collects the information from

all the SBSs to learn the data. Simulation results are provided to show that the

proposed DL model significantly outperforms the recent prediction models in terms

of average cache hit rate and mean squared error.

12

CHAPTER 2. CACHING AT BASE STATION

2.2 System Model

The system model shown in Fig. 2.1 consists of a wireless cellular network with M

SBSs and N users denoted by the sets B and U , respectively. The variable lim = 1

is used to denote the presence of a link between a user i and the SBS m, and lim =

0, otherwise. This induces a bipartite graph, where the neighboring SBS of a user i

is denoted by NU(i) := {m ∈ B : lim = 1}. Further, without loss of generality, each

data file is assumed to be of equal size. The total number of files is assumed to be

J .

Figure 2.1: System model for the cache based wireless heterogeneous network

The m-th SBS is assumed to have a storage capacity of Cm files, m = 1, 2, . . . ,M ;

this forms a distributed caching network. The term Xjm ∈ {0, 1} is used to denote

the presence of the file j, j = 1, 2, . . . , J in the SBS m:

Xjm =

1, if jth file is present in mth SBS,

0, otherwise.

(2.1)

Assuming that SBS m can store at most Cm files leads to the following constraint

J∑
j=1

Xjm ≤ Cm, m = 1, 2, . . . ,M. (2.2)

Each user i is assumed to make requests for a file j at a rate of λij > 0. Here, λij

denotes the arrival rate of the files. For concreteness, it can be assumed that the

13

2.2. SYSTEM MODEL

request follows Poisson distribution with rate λij. However, this is not required for

the rest of the analysis. Thus, the average rate of cache hit is given by

F (X) =
∑
i,j

λij

1−
∏

m∈NU (i)

(1−Xjm)

 , (2.3)

where for brevity X := {Xjm : 1 ≤ j ≤ J, 1 ≤ m ≤ M}. Without loss of generality,

the knowledge of λij at the central SBS is assumed, then the objective is to solve

the following optimization problem:

maxX∈{0,1}MJ F (X)

s.t.
J∑
j=1

Xjm ≤ Cm, m = 1, 2, . . .M (2.4)

In practice, the rate needs to be estimated from the requests, however for simplicity

we assume it is known a priori. The above problem is shown to be NP hard, as it can

not be solved in polynomial time and hence an approximate method of solving this

is explained next. As a first step, a term is added to F (X) such that the objective

function remains unchanged. In other words, the above problem is equivalent to the

following optimization problem

maxX∈{0,1}MJ F (X) +
∑
j,m

ϵjmXjm(1−Xjm),

s.t.
J∑
j=1

Xjm ≤ Cm, m = 1, 2, . . .M (2.5)

where ϵjm ≥ 0, ∀ 1 ≤ j ≤ J, 1 ≤ m ≤M . As a second step, the variable Xjm ∈ {0, 1}

is replaced by a continuous variable X̃jm ∈ [0, 1] to obtain an approximated version

of the above problem:

maxX̃∈[0,1]MJ F (X̃) +
∑
j,m

ϵjmX̃jm(1− X̃jm)

s.t.
J∑
j=1

X̃jm ≤ Cm, m = 1, 2, . . .M (2.6)

where X̃ := {X̃jm : 1 ≤ j ≤ J, 1 ≤ m ≤ M}. Let the optimal solution to (2.5) and

14

CHAPTER 2. CACHING AT BASE STATION

(2.6) be X∗ and X̃∗, respectively. Note that for any positive value ϵjm ≥ 0, we have

F (X̃∗) +
∑
j,m

ϵjmX̃
∗
jm(1− X̃∗jm) ≥ F (X∗). (2.7)

Let F∆(X̃) := F (X̃) +
∑

j,m ϵjmX̃jm(1 − X̃jm). To simplify the presentation, vec-

torized X̃ can be written as X̃ := {Ỹ1, Ỹ2, . . . , ỸJM}, where Ỹs = X̃jm such that

s = M(j − 1) + m, 1 ≤ m ≤ M, 1 ≤ j ≤ J . Similarly, ϵ := {δ1, δ2, . . . , δJM}, where

δs = ϵjm and s = M(j − 1) + m. With the above notation F (X̃) is same as F (Y),

and hence F∆(X̃) is same as F∆(Ỹ). Note that the relaxed problem in general is not

convex, and hence δk’s are chosen (equivalently ϵ′jms) in such a way that the problem

becomes a convex problem. The following Lemma provides a necessary condition

for the problem to be a convex optimization.

Lemma I: The function F∆(Ỹ) (or equivalently F∆(Y)) above is concave provided

δk >
1

2

∑
j ̸=m

|H(Ỹ)jm|, k = 1, 2, . . . , JM. (2.8)

where H(Ỹ)jm is the jm-th term of the Hessian of -F (Ỹ).1

Proof: To prove that the function F∆(Ỹ) is concave, it is sufficient to prove that

-F∆(Ỹ) is convex. Let Hϵ(Y) denote the Hessian of the objective function -F (Y).

The proof is complete by showing that it is positive semidefinite or equivalently,

all its eigenvalues are positive. From the objective function -F∆(Ỹ), it is seen that

the diagonal entries of the Hessian matrix constitute ϵ := {2δ1,2δ2,...,2δJM}. The

Gershgorin disc theorem [84] states that for every square matrix A, its eigenvalues

lie within a Gershgorin disc, i.e.,

|γ − Ajj| <
∑
j ̸=m

|Ajm|. (2.9)

Thus, from the Gershgorin disc theorem, there exists an index k such that all the

eigenvalues of the Hessian matrix Hϵ(Y) satisfy

1H(Ỹ) denotes the Hessian of the objective function.

15

2.2. SYSTEM MODEL

γ ∈

[
2δk −

∑
j ̸=m

|Hϵ(Y)jm|, 2δk +
∑
j ̸=m

|Hϵ(Y)jm|

]
. (2.10)

The proof is complete by noting that all the eigenvalues of Hϵ(Y)jm are positive if

(2.8) is satisfied, and hence the function -F∆(Ỹ) is convex, consequently F∆(Ỹ) is

concave.

From (2.7), it follows that F (X̃∗) +
∑

jm ϵjmX̃jm(1− X̃jm) ≥ F (X∗), where X∗

is the solution of the original problem (2.5), and Ỹ ∗ (and, equivalently X̃∗) is the

solution to the relaxed problem (2.6). Note that the resulting solution is fractional,

and hence needs to be converted to a 0/1 solution. This is done using randomized

rounding, as explained next.

Randomized Rounding : As shown in Raghavan and Thompson [85], this tech-

nique is probabilistic, i.e., with high probability, the algorithm will provide a solution

in which the objective function takes on a value close to the optimum of the rational

relaxation. The procedure for randomized rounding is as follows. The fractional op-

timal solution X̃∗jm ∈ [0, 1] obtained above is independently and randomly rounded

to 1 with probability X̃∗jm, and zero with probability (1 − X̃∗jm). Let the resulting

0/1 solution be denoted by Z̃∗jm. Note that the resulting objective function F (Z̃∗)

is random. The details of the proposed algorithm is shown in Algorithm 1.

Algorithm 1 Cache Placement Algorithm

1: for ∀ j, m do
2: Initialize Xjm ← 0;
3: end for
4: Solve (2.6) with ϵjm as obtained from (2.8).
5: for ∀ j, m do
6: Randomized rounding of X̃∗jm to get Z̃∗jm ∈ {0, 1} as described above.
7: end for

In the following, a theoretical guarantee of the proposed algorithm is presented.

In particular, it is shown that on an average, the proposed cache hit is close to the

cache hit of the optimal scheme.

Theorem 1: The proposed randomized algorithm satisfies the following inequality

F (X∗)− E[F (Z̃∗)] ≤
JM maxj,m δ(M(j−1)+m)

4
, (2.11)

16

CHAPTER 2. CACHING AT BASE STATION

where the expectation E[·] is with respect to the randomness involved in the round-

ing method.

Proof: Since F (X∗) ≤ F (X̃∗) +
∑

j,m ϵjmX̃
∗
jm(1 − X̃∗jm), and E[F (Z̃∗)] = F (X̃∗),

we have F (X∗) − E[F (Z̃∗)] ≤
∑

j,m ϵjmX̃
∗
jm(1 − X̃∗jm). However, each term in

the summation X∗jm(1 − X̃∗jm) ≤ 1/4, which results in (B.14) after noting that

maxj,m ϵjm = maxj,m δM(j−1)+m.

In the following it is shown that the proposed algorithm guarantee is better than

the greedy algorithm, i.e. the proposed randomized algorithm has greater than

(1/2)-approximation if it follows the following inequality:

maxj,m δ(M(j−1)+m)

F (X∗)
≤ 2

JM
(2.12)

where F (X∗) is the optimal solution. By rearranging the terms in Theorem 1, we

get:

1−
JM maxj,m δ(M(j−1)+m)

4F (X∗)
≤ F (X̃∗)

F (X∗)
(2.13)

The greedy algorithm has the following approximation [86]:

(1/2) ≤
F (X∗greedy)

F (X∗)
(2.14)

Thus from (2.13) and (2.14) it is seen that the proposed algorithm has a greater than

(1/2)-approximation or a better bound when compared to the greedy algorithm, if

it satisfies the following constraint:

(1/2) ≤ 1−
JM maxj,m δ(M(j−1)+m)

4F (X∗)

maxj,m δ(M(j−1)+m)

F (X∗)
≤ 2

JM
(2.15)

One such configuration where (2.15) is satisfied is when the number of files, J =

150, number of BSs, M = 30, value of F (X∗) = 0.71 and the maximum value of

delta is 3 x 10−4. Thus the proposed algorithm gives a better approximation than

the (1/2)-approximation of the greedy algorithm.

17

2.3. THEORETICAL GUARANTEES

2.3 Theoretical Guarantees

2.3.1 Complexity Analysis

The function F (X) in (2.16) results in a computational complexity of O(dmaxJN)

multiplications and O(JN) additions, where dmax is the maximum degree of the

topology of the network presented earlier. Thus, the computational cost for greedy

algorithm is O(dmaxJN) multiplications and O(JN) additions. And for exhaustive

search, the computational cost is O(2dmaxJN) multiplications and O(2JN) additions.

The proposed algorithm involves solving a convex optimization problem, whose com-

plexity is analyzed under the assumption that the gradient descent method is used

to find the optimal point. The gradient descent method involves the following two

steps; (a) computing the updated vector, which involves using the current point and

move in the direction of the gradient (see [87]), and (b) projecting the result onto

the constraint region. The first step involves computing the gradient vector, which

requires O(dmaxJN) number of multiplications, and O(JN) number of additions.

The projection step involves finding the closest point in the constraint set from the

query point; this, however, has a closed form expression, and hence requires O(1)

additions and multiplications. Thus, the total complexity is the number of times

step (a) above is required to solve the problem with an accuracy of ζ, i.e., the differ-

ence between the solution obtained and the optimal value of the objective function,

times the complexity of step (a). Note that the objective function in (2.16) has

bounded Hessian, and hence Lipschitz continuous. Further, the constraint set in

(2.5) is also bounded. Thus, applying Theorem 3.2 of [87], the number of times

step (a) is executed is of the order of O(1/ζ2). Therefore, the total complexity is

O(dmaxJN
ζ2

) multiplications and O(JN
ζ2

) additions. Comparing this with the greedy

algorithm, it can be observed that the proposed algorithm performs significantly

better than the greedy method at the expense of a slight increase in the complexity

depending on the accuracy attained. Though exhaustive search algorithm is simple

and gives the correct answer to this optimization problem, it goes over all the possi-

ble solutions and thus results in exponential complexity. Moreover, for an exhaustive

search algorithm, when the possible solution set increases, it becomes impractical

18

CHAPTER 2. CACHING AT BASE STATION

to go over all the points in the set and find an optimum point. Therefore, with

respect to computational complexity the proposed algorithm performs better than

the exhaustive search algorithm.

2.4 DNN based popularity prediction

Due to limited coverage range, each SBS can interact with only limited number of

users, thus the dataset available in each SBS is sparse and hence it becomes diffi-

cult to predict the user popularity accurately. Since, the accuracy of prediction of

popularity content directly affects the caching decision, proactive caching is one of

the efficient methods to increase the cache hit rate by predicting the user’s demand

accurately. Further, in a heterogeneous network, the caching decision among multi-

ple nodes should be made collaboratively and hence it suffers from dimensionality.

Thus, in this section, we address the above challenges by applying a DL framework

in heterogeneous network with a central BS, connected with multiple SBSs. We

propose to equip the edge devices mainly BS with DL capabilities, such that the

central BS is used to predict the demand requests of the users. A clustering based

DL framework is used at the BS, which collects the information from all the SBSs.

The clustering helps in analyzing the correlation in the past request patterns of

all files. Then the clustering results are sent to the DL framework which further

predicts the content. In this section, a heterogeneous network has been considered

with M SBS with U multiple users, and is denoted by sets B and U , respectively.

The M SBSs are connected to a central BS, where all the computing takes place.

The set of files is denoted by N and the user requests the files from the catalogue:

{f1, f2, . . . , fN}. Each file is of variable size cf . Each mth SBS is assumed to have

varying cache size Cm. The variable lim = 1 is used to denote the presence of a link

between a user i and the SBS m, and lim = 0, otherwise, hence induces a bipartite

graph. The neighboring SBS of a user i is denoted by NU(i) := {m ∈ B : lim = 1}.

Let the decision variable be denoted as xfm ∈ {0, 1}, where xfm = 1 if the file f

is cached at SBS m, and xfm = 0 otherwise. It is assumed that each user i makes

requests for file f at a rate of λif . The average rate of cache hit (F (X)) is given by

the following equation:

19

2.5. K-MEANS CLUSTERING

F (X) =
∑
i,f

λif

1−
∏

m∈NU (i)

(1− xfm)

 , (2.16)

where the set X := {xfm : 1 ≤ f ≤ N, 1 ≤ m ≤M} and 1 ≤ i ≤ U . Maximizing the

above function is an NP hard problem. Hence, we relax the constraint xfm ∈ {0, 1}

to xfm ∈ [0, 1], and make the objective function concave by adding the term as

follows:

maxX∈[0,1]MF F (x) +
∑
f,m

ϵfmxfm(1− xfm),

subject to
F∑
f=1

xfmcf ≤ Cm,∀m, (2.17)

where ϵfm ≥ 0. Since deep neural networks (DNNs) are known to have high accuracy,

and are helpful in analyzing the temporal dynamics of input data, DNN is chosen

for the estimation of the popularity profile. The next section explains how K-means

clustering is used to analyze the correlation among the files.

2.5 K-means clustering

In this section, the time-varying content requests are clustered using the K-means

clustering, which exploits the historical correlation among the files. Then a DL

based framework is used to predict the content in each time slot for each cluster.

Let d̄(t) = [d̄1(t), . . . , d̄N(t)] denote the predicted number of requests for file f ∈ N

in time slot t. Let pt,f denote a µ-dimensional feature vector of file f in time slot t,

which is defined as follows:

pt,f = [df (t− µ), df (t− µ− 1), . . . , df (t− 1)] (2.18)

Thus the vector pf.t contains the historical requests of file f during the previous

time slot µ. With the help of clustering, the prediction algorithm can use the

request information from other files also and hence increases the accuracy. Further,

each feature vector is partitioned into C cluster. A K-means clustering algorithm is

adopted for classification [88]. The similarity between each feature vector is found

20

CHAPTER 2. CACHING AT BASE STATION

by the Euclidean distance. As proposed in [88], C points from the N feature vectors

are selected and is denoted as {pc1,pc2, . . . ,pcC}, be the initial cluster centers. At

the beginning of each time slot t ≥ µ + 1, the cluster membership is determined

according to the minimum Euclidean distance as follows:

lpt,f
= argmin

i∈1,2,...,C
||pt,f − pci ||22 (2.19)

At the end of each time slot t, the center of the cluster is updated by averaging the

feature vector within the cluster as follows:

pci =
pciUi(t− 1) +

∑
I(pt,f)=i,f∈N

pt,f

Ui(t− 1) +
∑

I(pt,f)=i,f∈N
1

, (2.20)

where Ui(t) is the accumulated number of feature vector in the cluster i at the end

of time slot t.

2.6 DNN based Popularity Prediction

A DNN consists of stacked neural networks and performs computations through

many layers. These neural networks consists of layers with multiple neurons. Each

neuron takes the input and generates an output, which is a nonlinear weighted sum

of the output generated in the previous layer. The nonlinear function can be defined

as:

f(z) =

1, for z < 0,

z, for z ≥ 0,

(2.21)

which corresponds to rectified linear unit function (Relu function) with z represent-

ing the input vector.

It is assumed that K layers are present in the DL model and the kth layer has

Nk neurons. The output of each layer is denoted by the vector o, and is written as

follows:

o(k+1) = f (k)(o(k)) = f(W(k)o(k) + b(k)), (2.22)

where W(k) is the Nk × Nk weight matrix and b(k) is the Nk × 1 bias vector. The

21

2.6. DNN BASED POPULARITY PREDICTION

output at the final layer, which is also a N × 1 vector is generated as follows:

d̄ = f(zin, ψ) = f (K)(f (K−1)(. . . f (1)(zin))), (2.23)

where ψ = {W(1), . . . ,W(k),b(1), . . . ,b(k)}; d̄ and zin are estimate of the popularity

vector (N × 1) and input vector (N × 1) respectively. To measure the loss, mean

squared error (MSE) function is written as follows:

L(d̄,d) = ||d̄− d||22, (2.24)

where d is the true content request vector (N × 1), and d̄ is the estimated content

request vector (N × 1).

Figure 2.2: DNN based edge caching model.

22

CHAPTER 2. CACHING AT BASE STATION

To update the weight and bias, adaptive moment estimation (ADAM) is used

as the optimizer, due to its superior performance [89]. The MovieLens data is used,

consisting of ratings of various movies accumulated over decades. The central BS

collects the data from the SBSs such as ratings for each movie-id, genre, name of

the requested content, timestamp of the request, and type of the movie. The central

BS collects all these information for a time duration T . The two input features of

the data namely the movie name and the ratings are fed into the DL model. The

model is trained such that it predicts how a user u would rate a file based on the

available dataset of ratings, as shown in Fig. 2.2. The user input layer and the movie

input layer are first processed parallelly and then later combined as explained next.

Keras is used to define the three models: (a) user embedder that learns to represent

each user’s preference as a vector, (b) movie embedder that learns to represent

each movie as a vector, and (c) rating model that concatenates user and movie

embedding networks and applies a dense neural network to predict the rating. The

flatten function reshapes the input vector to create a single long feature vector. The

dense layer along with ReLU activation function is added after the concatenation.

The output layer also consists of the dense layer, which is deeply connected to the

preceding layer and the neural network layer in the dense layer introduces the non-

linearity into the networks of neural networks so that the networks can learn the

relationship between the input and output values. Keras functional API is used, in

which the users have shared API model such that the inputs and embedding layers

are shared. Therefore, any changes made to the user model are available in the

rating model. The training iterations are then repeated over many epochs for loss

minimalization.

2.7 Simulation Results

The simulation setup consists of SBSs and users distributed in a geographical area,

and time slotted communication channel. The following two scenarios, namely fixed

link and signal-to-interference-plus-noise ratio (SINR) based schemes, are considered

in the simulation:

1. Fixed Link Scheme: The links between SBSs and users are uniformly and in-

23

2.7. SIMULATION RESULTS

dependently distributed in {0, 1} with probability 1/2, where 0 and 1 represent

absence and presence of a link, respectively. Note that the absence/presence

of a link dictates whether a user can download the file or not from the corre-

sponding SBS.

2. SINR Based Scheme: Here, 5 SBSs and 35 users are distributed uniformly in

a geographical area of radius 500m. The link between a SBS and a user exists

if the corresponding SINR is greater than a threshold. The SINR is defined by

SINR :=
Pd−2im|him|2∑

b:b ̸=m Pd
−2
ib |hib|2 + σ2

, (2.25)

where P indicates the power used by SBSs, him is the Rayleigh fading channel

between user i and SBS m, and dim is the distance between user u and the SBS

m. Hence, the links form a dynamic bipartite graph. Further, the threshold

indicates the minimum rate at which a file will be transferred to the user

from the SBS, and hence the reciprocal of the rate indicates the delay. In the

simulation, τ := 1
log(1+SINR)

is used as a measure of the delay between a SBS

and a user. However, when the requested file is absent, a backhaul fetching

delay of α× τ is added to the down link delay of τ , i.e., the overall delay when

the file is absent is (α + 1)τ . In the simulation, α = 5.

In both the scenarios, the popularity of the files is assumed to be Zipf distributed

with the corresponding parameter θ = 1.2. Without loss of generality, each file

requested by the user is assumed to be of the same size. The rate at which files

are request is assumed to be the same, and the requests follow Poisson distribution

with rate of 20× 10−3 files per second for all SBSs and users, and the requested file

follows the Zipf distribution. In other words, the request for a file j from any user

i follows a Poisson distribution with rate λij := 2× 10−3pj, where pj = 1/jθ∑
j 1/j

θ .

Fixed Link Scheme: Figs. 2.3 and 2.4 show plots of the average cache hit per-

formance of (a) the proposed caching algorithm, (b) greedy algorithm [90], (c) LRU

and LFU algorithms [91], and (d) exhaustive search based caching algorithm ver-

sus cache size for various parameters of the system. In Fig. 2.3, the total number

of files, the number of users and SBSs are 10, 15, and 3, respectively. While for

Fig. 2.4, the total number of files, the number of users and SBSs are 50, 35, and

24

CHAPTER 2. CACHING AT BASE STATION

5, respectively. The results are obtained by averaging over different realizations of

links. It is clear from Figs. 2.3 and 2.4, that the proposed caching algorithm per-

forms much better compared to LRU/LFU, and greedy algorithms. Further, from

Fig. 2.3, it is important to note that the proposed caching algorithm is reasonably

close to the exhaustive search. Specifically, to achieve the same performance as that

of the proposed scheme with 35 users and a cache size of 20 (see Fig. 2.4), the greedy

algorithm requires approximately 40 percentage more memory to achieve the same

average cache hit. Note that by scaling the number of users, and SBSs, the perfor-

mance gap in terms of memory increases significantly. Further, the average cache

hit performance decreases with the increase in the number of users, as observed from

Figs. 2.3 and 2.4.

SINR Based Scheme: Fig. 2.5 shows the average delay versus the cache size for

(a) proposed caching scheme, (b) greedy, (c) LRU and (d) LFU algorithms. In

Fig. 2.5, the total number of files, the number of users, SBSs and threshold value

for SINR are 50, 35, 5 and 12dB, respectively. The average delay is calculated as

explained earlier in this section. It is important to note that this model captures

more realistic scenarios such as the effect of distance, the power used etc., on the

overall caching performance of the cellular network. Thus it is clear from the figure

that the proposed algorithm outperforms the greedy, LRU and LFU algorithms in

terms of the average cache hit and average delay.

The total number of SBS and users are assumed to be as 5 and 20 respectively

for the proposed DL based caching framework. File sizes are assumed to take value

between [2, 10] units. To know the nature of user access patterns, the exploratory

data analysis on the MovieLens dataset is performed. For training and testing the

performance of prediction models, the dataset covering 100,000 ratings from 1000

users on 1700 movies (N) are used. The dataset is split into two parts, wherein the

80% is used for training and the rest 20% is used for testing.

The DNN consists of an input layer, five hidden layers and an output layer. The

five hidden layers have 1000, 1000, 3000, 3000 and 1000 neurons. Further, we assume

1000 neurons in the input layer and 1700 neurons in the output layer. We consider

1000 epochs for DNN training.

Fig. 2.6 compares the DL model with the GPM, PPM, AR prediction model,

25

2.7. SIMULATION RESULTS

3 4 5 6 7 8 9

Cache size for 15 users

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
v
e
ra

g
e
 c

a
c
h
e
 h

it

Exhaustive Algorithm
Proposed algorithm
Greedy algorithm
LRU algorithm
LFU Algorithm

Figure 2.3: Average delay versus cache size with 15 users for the fixed link scenario.

Cache size for 35 users

15 20 25 30 35

A
v
e
ra

g
e
 C

a
c
h
e
 h

it

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Proposed Algorithm

Greedy Algorithm

LRU Algorithm

LFU Algorithm

Cache gain of 7

Figure 2.4: Average delay versus cache size with 35 users for the fixed link scenario.

weighted FTL, weighted FoReL, and mean guessing prediction model. It is observed

from Fig. 2.6 that DL has the high prediction accuracy, since it has the least MSE

value i.e. the value of MSE for the proposed DL algorithm is 0.025, while the MSE

value for GPM, PPM, mean guessing, FTL, FoReL and AR are 0.06, 0.07, 0.09.

0.16, 0.36 and 0.45 respectively. Hence, DL based model outperforms the GPM,

26

CHAPTER 2. CACHING AT BASE STATION

Cache size for 35 users

15 20 25 30 35

A
v
e

ra
g

e
 D

e
la

y

2

4

6

8

10

12

Proposed Algorithm

Greedy Algorithm

LRU Algorithm

LFU Algorithm

Delay gain = 0.6s

Figure 2.5: Average delay versus cache size with 35 users for the SINR based scenario.

PPM, FTL, AR, mean guessing and FoReL for MSE.

Fig. 2.7 compares the MSE metric with respect to content library size (log2N).

The content library size is varied from 22 to 210. The DL model is compared with

GPM, PPM, FTL, AR, mean guessing and FoReL. From Fig. 2.7, we can observe

that as the library size is varied, the MSE for the DL model is lower than the

other prediction models. For a library size of 6 the MSE value of the proposed DL

algorithm is 0.022, while for GPM, PPM, mean guessing, FTL, FoReL and AR, the

MSE values are 0.079, 0.085, 0.095. 0.17, 0.5 and 0.8 respectively.

Fig. 2.8 shows the relationship between the hidden layers in DL model versus

MSE. The content library size is fixed at 500 files (N). When the number of hidden

layer is one, the model is referred to as a simple neural network (NN). The value

of MSE for the proposed algorithm is 0.0335 when the number of hidden layers is 8

and for the simple neural network, the MSE value is 0.0426. Hence, as we increase

the number of layers in the DNN model, the MSE reduces further and results in

better performance.

Fig. 2.9 shows the average cache hit versus different cache size (C) and Cm = C,

∀ m. The content library size is fixed at 500 files (N). In this plot, the comparison

is done with linear prediction model (AR), and we can observe that DL model

outperforms the linear prediction model in terms of average cache hit.

27

2.7. SIMULATION RESULTS

AR GPM PPM MeanGuess FTL DL FoReL
10

-2

10
-1

10
0

M
S

E

AR

GPM

PPM

MeanGuess

FTL

DL (proposed)

FoReL

Figure 2.6: Average MSE for various prediction models.

2 4 6 8 10

Content Library Size (logN)

10-2

10-1

100

M
S

E

AR
FoReL
FTL
MeanGuess
PPM
GPM
DL (propopsed)

Figure 2.7: MSE versus content library size.

28

CHAPTER 2. CACHING AT BASE STATION

2 4 6 8 10 12 14

Number of hidden layers

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

M
S

E

NN
DNN

Figure 2.8: MSE versus number of hidden layers.

2 3 4 5 6 7

Cache Size (C)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
v
e
ra

g
e
 c

a
c
h
e
 h

it

Proposed DL model
Linear model

Figure 2.9: Average cache hit versus content library size.

29

2.8. SUMMARY

2.8 Summary

In this chapter, an approximate cache placement algorithm in a cellular network is

presented, where SBSs store contents from a large database. Using average cache hit

as a metric, it is observed that solving for optimal cache placement that maximizes

the cache hit is NP hard. Thus, the problem is relaxed to a convex optimization

problem, and a solution is presented with performance guarantees. The approxima-

tion is performed such that the perturbation term that makes the problem convex,

is small. Simulation results demonstrated that the proposed algorithm significantly

outperforms the existing greedy based caching strategies, LRU and LFU algorithms

in terms of the average cache hit and average delay. The proposed algorithm is

shown to have a similar computational complexity compared to the conventional

greedy algorithm with better overall performance. Further, a DL based prediction

model is also proposed to predict the content popularity profile. K-means clustering

framework at the central BS is used which collects the information from the SBSs

and the training is performed on the MovieLens dataset in the offline mode. Simu-

lation results support that the proposed DL model outperforms the existing models

for MSE and average cache hit. However, the system model is far from a realistic

practical scenario. Hence to bridge this gap, a distributed learning based caching

model is analyzed in the next chapter.

30

Chapter 3

Federated Learning

3.1 Overview

In the previous chapter, mobile edge caching in a cellular network with a given

topology and storage size in each SBS is looked into. The problem of maximizing

the cache hit with respect to the cache placement strategy (which takes values in

{0, 1}) subject to storage size constraint in each SBS turns out to be NP hard, and

hence, an approximation is proposed to the problem. However, this model does not

take into factor non-stationarity of popularity profile and correlation across time.

In this chapter, assuming structured cache placement, high probability bounds on

the conditional average cache hits are derived using Martingale difference equation

[79]. In particular, it is assumed that the caching strategy at a given time is a

linear combination of past caching decisions across time and across other SBSs in

the given region. Insights provided by the bound including regret and discrepancy

across temporal and spatial cache hits are used to design the iterative federated based

caching algorithm, which optimizes the weights of the linear sum. As a corollary of

the bound, a guarantee on the performance of the proposed algorithm using equal

caching-weights is also obtained.

In the literature, there has been several proposals for new wireless network de-

signs for handling this surge in the data demand. A few examples designs include

Fog network [92, 93] with edge computing, deployment of small cells to offload wire-

less data from a macro BS, integrating existing WiFi access points to share the

load, distributed cache replacement strategy based on Q-learning, to name a few

31

3.1. OVERVIEW

[94], [95], [96]. It is well known that small-cell infrastructure with edge computing

facility alone cannot support the data demand since the data clogging in the back-

haul acts as a bottleneck. A new paradigm to handle this data clogging is through

caching in the cellular networks. Caching can reduce the peak traffic by prefetching

popular contents into memories at the SBSs or the end users [97–99]. Past works

in caching include the classical work from the point-of-view of information theory

by Niesen et al. [100] (also, see [101]), combinatorial optimization approach [102],

energy efficient caching of files in a D2D network (see [102] - [104]), and proactive

caching strategy, as in [63]. In [105], the authors employ unmanned aerial vehi-

cle (UAV) as aerial BSs and jointly optimize UAV trajectory and time scheduling

to guarantee the secure transmission in UAV-relaying systems with local caching.

Similarly, in [106], an efficient vehicular task offloading via heat-aware mobile edge

computing cooperation is proposed.

One of the key problems to be addressed in caching is that of estimating/predicting

the popularity profile or demands for the files. Majority of the existing work assume

static demands, and hence algorithms are designed to get a good estimate of the

popularity profile (see [59]-[62]). On the other hand, estimating the popularity pro-

file based on the data assumes a naive estimate, i.e., a simple averaging, which may

not perform well in highly non-stationary environments. However, the demands

in reality are non-stationary, and perhaps correlated across time; this makes the

algorithms designed for static demands/popularity profiles to underperform. One

solution to solve this issue is to consider online learning algorithm to proactively

cache the contents [63]. The authors in [64] showed that a good hit rate under

non-stationary demands can be achieved through a TTL based algorithm. Some

past work assumed that there is a stationary caching policy such as LRU [65], climb

[66, 67], and k-LRU [68] and have characterized the learning errors as a function

of time. The learning error depends on the stationary distribution, which in turn

depends on the mixing time [69]. Many of these works result in a regret of Ω(T).

In [70], the authors propose a collaborative caching optimization problem in a sta-

tionary environment to minimize the accumulated transmission delay over a finite

time horizon in cache-enabled wireless networks in a MAMB perspective, which re-

sults in a regret of O(log T). In [71], function approximation based reinforcement

32

CHAPTER 3. FEDERATED LEARNING

learning approaches are proposed for a massive MIMO based network. In [72] inte-

grated access and backhaul (IAB) heterogeneous network for cache-enabled in-band

full-duplex in the millimeter wave band is developed. Moreover, in order to use

spatio-temporal information, the authors in [73] developed a Bayesian dynamical

model to predict the popularity and minimized the cost for transferring data among

the SBSs in the network. On the other hand, in [74], active learning approach is

used to learn the content popularities to design an accurate content request predic-

tion model. In [75], the authors propose joint caching and the dynamic multicast

scheduling to increase the robustness of wireless transmission.

The approach taken so far is either online learning in the adversarial setting

leading to regret minimization or by designing caching strategies by estimating the

popularity profile (see [76]). The disadvantage in the adversarial setting is that the

statistical pattern in the data is completely ignored. An improvement on this is

to account for statistical pattern and combine the strategies in a systematic way,

this is termed as online-to-batch conversion in the literature [77]. There are several

heuristics such as LRU, LFU and LRFU (and its variants) which tend to work well in

a non-stationary environment. However, these lack theoretical guarantees when the

demand statistics are non-stationary with correlation across requests. The LRFU

algorithm combines both LRU and LFU. In this algorithm, each file has combined

recency and frequency count which is updated during each reference [107].

One of the most promising distributed learning algorithms is the emerging fed-

erated learning (FL) framework (see [108–111]). In FL framework (a special case

of distributed optimization), each node uses its own data to compute, say, a strat-

egy, and sends the result to its neighbours or a central node. Thus, in FL, wireless

devices can cooperatively execute a learning task by only uploading local learning

models to the central BS or its neighbours instead of sharing the entirety of their

training data. A framework similar to FL is adapted in this chapter to solve the

caching problem, where an objective called cache miss (hit) is minimized (maxi-

mized) by combining caching strategies obtained using local data from each node.

In general, this objective needs to be optimized with respect to a general caching

strategy [110, 112–114]. This leads to a complex online functional optimization

problem, which is mathematically intractable and may lead to more complex al-

33

3.1. OVERVIEW

gorithms. Therefore, before attempting to solve a general problem, it is natural

to make suitable assumptions on the structure of the caching strategy that leads

to a tractable problem, and provides insights on the general setting as well. The

motivation for using a linear combination of caching strategies comes from online

learning literature with independent and identically distributed (iid) data [115, 116].

It is shown that the technique called online-to-batch conversion, where the current

strategy is the average of the past strategies (assumes convexity of the strategy set)

results in a regret of the order of 1/T , where T denotes the time slot. In contrast to

1/T regret, online learning algorithms often adopt an adversarial model, and obtain

a convergence rate of O(1/
√
T) [117, 118]. Although, the references above were in

the general context, it can be easily extended to the caching problem. A practical

extension of the above to non-iid correlated requests is to use weighted average of

the past strategies, and optimize the weights. An approach similar to this has been

taken in the context of prediction problems in [119]. Towards filling shortcoming

in the existing work, in this chapter, a systematic approach driven by theory to

designing caching strategy when the demands/requests are highly non-stationary

is addressed. Further, the mathematical framework developed in this chapter are

used to provide guarantees for LRFU, and its variants under non-stationary and

correlated demands.

In this chapter, the problem of FL based caching across multiple SBSs with

correlated demands across time as well as SBSs is considered. Since the demands

can be correlated, a conditional average of the cache hit is considered as a metric

to design caching strategies. Here, conditioning is with respect to the “local” data

available at the SBS. Following are the main contributions of this chapter:

� In this chapter, assuming structured cache placement, high probability bounds

on the conditional average cache hits are derived using Martingale difference

equation [79]. In particular, it is assumed that the caching strategy at a given

time is a linear combination of past caching decisions across time and across

other SBSs in the given region. Insights provided by the bound including regret

and discrepancy across temporal and spatial cache hits are used to design the

iterative federated based caching algorithm, which optimizes the weights of

the linear sum. As a corollary of the bound, a guarantee on the performance

34

CHAPTER 3. FEDERATED LEARNING

of the proposed algorithm using equal caching-weights is also obtained.

� Using the mathematical tools developed in the chapter, a similar theoreti-

cal guarantee on the performance of the LRFU caching strategy under non-

stationary demands is derived. Further, in the iid setting, it is shown that the

LRFU performs close to the proposed caching strategy, as expected.

� A FL based heuristic caching algorithm motivated by a well-known algorithm

called FedProx [120] is developed, where a proximal term is added to the

local cache hit maximization problem, which enables to achieve the local poli-

cies close to the averaged caching policies across neighbors. In the numer-

ical results, the proposed algorithms (both federated caching and federated

caching heuristic algorithm) have been compared with other online learning

algorithm such as follow-the-perturbed-leader (FTPL), follow-the-leader and

average LFU [121, 122]. The results show that the proposed algorithms sig-

nificantly outperform the existing algorithms as well as the equal weight algo-

rithms.

3.2 System Model

A cellular network consisting of M SBSs denoted by the set B, and users denoted by

the set U, as shown in Fig. 3.1 is considered. Each SBS is assumed to have a limited

computation facility and a cache memory of size C bits to store popular contents.

This computation capability facilitates distributed caching decisions to be taken at

individual SBS without leveraging heavily on the central computing facility such as

cloud service, thus saving tremendously on communication and computation costs.

Further, it is assumed that the SBSs can communicate with each other through a

limited capacity link. For example, the neighboring SBSs can share limited infor-

mation such as caching decisions, popular demands and its trends amongst each

other. Note that this edge computing paradigm with communication links between

SBSs encompasses the proposed Fog network architecture [93]. We assume a time

slotted system, where in each slot a user requests contents from the content library

F having N contents, i.e., |F| = N . The demand for the content f ∈ F by the user

u in the slot t is denoted by df,u(t). The requests across time slots and SBSs can

35

3.2. SYSTEM MODEL

be correlated with an arbitrary distribution. Since in a practical content library,

the files are of different sizes, hence the same is assumed in this work (see the next

subsection).

Figure 3.1: System model showing multiple SBSs connected to users with limited cache memory.

In the standard cellular network setting without caching, the requested file is

served by the SBS to which the user is associated by fetching the content from

the server through backhaul and front-haul links of the network. Note that in the

current implementation, each user is associated with a single SBS based on the SINR

criterion. Keeping minimal changes to the current design, it is assumed that the

scheduler associates a user to a SBS based on the SINR criterion. Let the set of users

associated to the SBS b in the time slot t be denoted by Ub(t). The total demand

for the file f at the SBS b in the time slot t is given by Df,b(t) =
∑

u∈Ub(t)
df,u(t).

Let the data available at the SBS b at time T be denoted by ZT
b,1 ⊆ ZTb,1, which

includes demands of SBS b until time slot T , and the data shared by the neighboring

SBSs. Here, Z tb,1 denotes the set of all possible demands and caching strategy of the

neighboring SBSs at the end of time slot t. The exact data that the neighboring SBSs

provide will be explained in the later part of this chapter. Further, ZT
G,1 :=

⋃
b∈B Z

T
b,1

denotes the global data till time T . The following subsections describe the caching

strategy employed, and the corresponding metric used to find the optimal strategy.

36

CHAPTER 3. FEDERATED LEARNING

3.2.1 Caching Policy

At each SBS b, the cache placement is assumed to happen at the end of every time

slot. In this chapter, a FL based caching policy is considered, i.e., at the end of

time slot t − 1 for each file f , the caching policy for the next time slot is given

by πb,f,t : Z t−1b,1 → Cb,f , where Cb,f is the fraction of the file f stored at bth SBS.

Thus, the overall caching policy is defined as πb,t := ×Nf=1πb,f,t : Z t−1b,1 → ×Nf=1Cb,f .

The choice of Cb,f depends on the type of caching employed. Here, online FL based

caching is employed, as explained below:

� Online FL based caching: In a typical online caching scheme, an original

file f of size Kf bits is mapped into Sf sub-packets of size l bits each in such

a way that if a user recovers any Lf out of Sf sub-packets, it can recover the

whole file. This gives the flexibility to store Lf or less number of packets at

each SBS, and the remaining packets can be fetched from the server. For the

sake of simplicity in notation, Lf is used to represent the number of packets

instead of the size of the file in bits. Although storing any fraction is not

possible, choosing Cb,f = [0, 1] is a good approximation when the number of

sub-packets, i.e, Lf is large. Note that the caching strategy πb,t is a vector

of dimension N . Since the cache size is limited to C bits, it imposes the

constraint that
∑

f πb,f,tLf l ≤ C. Here, Lf l is the total number of bits that

needs to be recovered under the caching scheme, and πb,f,t is the fraction of

the packets stored.

The following subsection presents the problem of FL based caching addressed in

this chapter.

3.2.2 Problem Statement

In caching scheme, the “amount” of requests that are present in the caches of SBSs

to which the users are connected is a good measure of performance; this is termed

as hit rate. In view of this, the hit rate at the SBS b is given by

Rb,t(πb) :=
N∑
f=1

∑
u∈Ub(t)

df,u(t)πb,fLf . (3.1)

37

3.3. ONLINE FEDERATED LEARNING BASED CACHING

The above corresponds to the instantaneous hit rate at the SBS b in the time slot

t when caching strategy πb,f ∈ [0, 1] is employed with Lf := Lf l. Note that the

factor l does not impact the structure of the solution, and hence omitted from the

definition of the hit rate. Since the hit rate is random, a widely used measure of

performance is the average cache hit, i.e.,
∑

b E{Rb,t(πb,t)}, where the average is

with respect to the global demands.1 However, at time t, the SBS b will have access

to its “local” data Zt−1
b,1 , and hence, conditional mean is the appropriate metric, i.e.,∑

b E{Rb,t(πb,t) | Zt−1
b,1 }, where the expectation is conditioned on the local demands,

i.e., ZT
b,1. Thus, the following problem needs to be solved

max
πb,t

∑
b

E{Rb,t(πb,t) | Zt−1
b,1 }

subject to
∑
f

πb,f,tLf ≤ C. (3.2)

Let the set of all caching strategies be denoted by C := {πb,f : πb,f ≥ 0,
∑

f πb,fLf ≤

C}. The above is similar to the formulation considered in the prediction problems

[119]. Unfortunately, in the real world scenario, the conditional expectation is dif-

ficult to compute, and hence the above problem cannot be solved. One possible

approach could be to estimate the conditional expectation, and use it as a proxy in

the above problem. Since the user demands arrive in real-time, this estimate could

be updated online. However, in this chapter, instead of updating the estimates on-

line, the solution for caching problem will be obtained online using the available

“local” data. In the following section, solution to the above problem for online FL

based caching scenarios is presented.

3.3 Online Federated Learning based Caching

Towards addressing the problem, a few structural assumptions are made on the

caching strategy employed. In a typical online learning with adversarial framework,

a natural metric to consider is the “regret”. In the present setting, the demands

are random in nature and this corresponds to a stochastic setting rather than an

1Note that the demands across SBSs as well as time slots are correlated. Hence, the expectation
should be with respect to all the total randomness.

38

CHAPTER 3. FEDERATED LEARNING

adversarial setting, i.e., the nature reacts in a random fashion rather than an ad-

versarial fashion. A well known strategy to handle this is through online-to-batch

conversion [123], which is as follows: (i) at time slot t, solve the regret minimization

problem to get a sequence of caching strategies, and (ii) use the average of these

caching strategies at time t. This has the advantage of providing O(1
T

) regret when

the problem is stochastic. The model considered in this chapter has added complex-

ity that the demands of any SBS b across time slots can be correlated. Further, it

can also be correlated with the demands of other SBSs. In this scenario, a natural

extension of online-to-batch conversion is to take the average of regret minimizing

caching strategies across time as well as the SBSs [77, 119]. Towards this, consider

the following weighted average of a sequence of caching strategies πb,t from time slot

t = T − τ + 1 to T given by

π̄b,T+1 :=
T∑

t=T−τ+1

αb,tπb,t, (3.3)

where αb,t’s are the non-negative weights that satisfy
∑T

t=T−τ+1 αb,t = 1. The symbol

αb,T := (αb,T−τ+1, . . . , αb,t) is used to denote vector of weights corresponding to the

SBS b from time slot T − τ + 1 to T . The caching strategy has been taken as a

weighted linear combination of all the neighboring SBSs caching strategies. It is

important to note that the average of caching strategy across time is also a valid

caching strategy, i.e., the set of all caching strategies C is a convex set. Since the

demands are correlated across SBSs, a natural way to construct the caching strategy

for the time slot T + 1 is as follows

π
(av)
b,T+1 := wT+1

b π̄b,T+1 +
∑
b′∈Nb

wT+1

jb(b
′)
π̄b′ ,T+1, (3.4)

where the map jb : Nb → {1, 2, . . . , |Nb|}, |Nb| denotes the set of neighboring SBSs

to which it is connected, and the weights are chosen to be non-negative with the

constraint given by
∑

b′∈Nb
wT+1

jb(b
′)

+ wT+1
b = 1 ∀ SBS b. Now, the problem is to

choose weights in such a way that the average cache hit is maximized. One can

expect that in order to solve this problem, any SBS b ∈ B at the end of time slot T

should have access to neighboring SBSs’ data. In this chapter, a formal approach to

39

3.3. ONLINE FEDERATED LEARNING BASED CACHING

answer the above is detailed. Obviously the choice of the weights wT+1

jb(b
′)

as well as

αb,t depend on how relevant (i) is its past caching decisions to the current demands,

and (ii) caching decisions of neighboring SBSs are to the SBS b. These are captured

through the following notions of mismatch and regret.

Definition (Mismatch): The mismatch between a SBS b and its neighbor with

weights wT+1

jb(b
′)

, b
′ ∈ Nb is given by

Mb,T+1(w ̸=b,T) :=
∑
b′∈Nb

wT+1

jb(b
′)

∆b,T+1(αb,T+1,αb′ ,T+1), (3.5)

where the weight vector w ̸=b,T := (wT+1

jb(b
′)

: b
′ ∈ Nb), and

∆b,T+1(αb,T+1,αb′ ,T+1) := E{Rb,T+1(π̄b′ ,T+1) | ZT
b,1} − E{Rb,T+1(π̄b,T+1) | ZT

b,1}.

The above captures mismatch or discrepancy across SBSs, which will help us in

determining the relevance of the neighboring SBSs’ decisions. If the mismatch is

small for a SBS b essentially means that the neighboring SBSs strategy performs

well on the SBS b. Similarly, to determine the relevant caching strategies across

time to the current time slot, and to measure the performance, the two key metrics

are discrepancy across time and the regret, which are defined as follows.

Definition (Discrepancy): Given the local information at the SBS b with caching

strategies πb,t for b ∈ B, t = T − τ + 1, . . . , T , the discrepancy at the end of time

slot T is defined by

Db,T (αb,T) := sup
πb,t:t=T−τ+1,...,T

∣∣∣∣∣
T∑

t=T−τ+1

αb,t∆R̄T,t(πb,t)

∣∣∣∣∣ . (3.6)

where ∆R̄T,t(πb,t) := E{Rb,T+1(πb,t) | ZT
b,1} − E{Rb,t+1(πb,t) | Zt

b,1}.

Definition (Regret): The regret at the SBS b at time T with respect to a sequence

of strategy πb,t is defined as

Regb,T,τ (πb,t) := sup
π∗
b,t

T∑
t=T−τ+1

Rb,T+1(π
∗
b,t)−

T∑
t=T−τ+1

Rb,T+1(πb,t). (3.7)

40

CHAPTER 3. FEDERATED LEARNING

The following theorem gives guarantees for the proposed caching strategy, and also

provides insights on how to choose the weights, and the sequence of caching policies

across time. The main result of the chapter is stated below, and the corresponding

proof is presented in Appendix A.1.

Theorem 3.3.1. Given weights and a sequence of caching strategies as in (3.4) that

is adapted to ZT
b,1, with a probability of at least 1−δ, δ > 0, the following two bounds

hold:

E
[
Rb,T+1(π

(av)
b,T+1) | ZT

b,1

]
≥

T∑
t=T−τ+1

αb,tRb,t(πb,t)− E (1)b,T , (3.8)

where E (1)b,T := Hmax∥αb,T∥2
√

2
τ

log 1
δ
+Mb,T+1(w̸=b,T)+Db,T (αb,T), Hmax is the maximum

cache hit, and

E
[
Rb,T+1(π

(av)
b,T+1) | ZT

b,1

]
≥ sup

πb,t

T∑
t=T−τ

αb,tR̄t,T (πb,t)− E (2)r,T . (3.9)

for any γ > 0. In the above, R̄t,T (πb,t) := E
[
Rb,T+1(πb,t) | ZT

b,1

]
, and

E (2)b,T := 2Hmax∥αb,T∥2

√
2

τ
log

1

δ
+ Mb,T+1(w ̸=b,T) +

2Regb,T,τ (πb,t)

τ

+Hmax

T∑
t=T−τ+1

∣∣∣∣αb,t − 1

τ

∣∣∣∣+ 2Db,T (αb.T) + γ. (3.10)

An important special case of the above result is when uniform caching strategy

is used, i.e., αb,t = 1/τ ∀ t, which is presented as a corollary.

Corollary 3.3.2. Given equal weights, i.e., αb,t = 1/τ ∀ t, and a sequence of caching

strategies as in (3.4) that is adapted to ZT
b,1, with a probability of at least 1−δ, δ > 0,

the following two bounds hold:

E
[
Rb,T+1(π

(av)
b,T+1) | ZT

b,1

]
≥ 1

τ

T∑
t=T−τ+1

Rb,t(πb,t)− E (1)b,T , (3.11)

where

E (1)b,T :=
Hmax

τ

√
2 log

1

δ
+ Mb,T+1(w̸=b,T) + Db,T (uτ),

41

3.3. ONLINE FEDERATED LEARNING BASED CACHING

Hmax is the maximum cache hit, and

E
[
Rb,T+1(π

(av)
b,T+1) | ZT

b,1

]
≥ sup

πb,t

1

τ

T∑
t=T−τ

R̄t,T (πb,t)− E (2)r,T . (3.12)

for any γ > 0. In the above, uτ := (1
τ
, 1
τ
, . . . , 1

τ
) ∈ R1×τ , R̄t,T := E

[
Rb,T+1(πb,t) | ZT

b,1

]
,

and E (2)r,T := 2Hmax

τ

√
2 log 1

δ
+ Mb,T+1(w ̸=b,T) +

2Regb,T,τ (πb,t)

τ
+ 2Db,T (uτ) + γ.

Proof. Given in Appendix A.1.

A few observations are in order with reference to Theorem 3.3.1. The term

Hmax

∑T
t=T−τ

∣∣αb,t − 1
τ

∣∣ in the second bound suggests that all the weights should be

close to 1/τ , i.e., uniform weights. On the other hand, both the bounds also suggest

that the discrepancies should be made low by choosing the weights appropriately.

This requires non-uniform weights in general, and since the two tasks are conflicting,

a nice balance needs to be maintained by properly choosing the weights. Further,

it is clear from the second bound that the caching policy should be chosen in such

a way that the regret is minimized. The following subsection presents a systematic

approach to find an online distributed caching algorithm.

3.3.1 Algorithm for Federated Learning based Caching

In this subsection, the insights provided by the theory are used to propose an al-

gorithm for FL based online caching. The main result states that upon using the

caching strategy given in (3.4), the resulting cache hit is lower bounded by the ex-

pression in (3.9) with high probability. Now, at time slot T +1, the goal is to choose

the individual strategy πb,t to construct π
(av)
b,T+1 as in (3.4) such that the right hand

side of (3.9) consisting of regret and discrepancy terms to be maximized.2 In par-

ticular, this can be done by using the following two steps: (i) choose the sequence

πb,t in such a way that minimizes the regret term, and (ii) minimize the mismatch

terms Mb,T+1(w ̸=b,T) and Db,T (αb,T) to get the optimal weights, which can be used to

combine the caching sequence as in (3.4). The first step would be to find the regret

2The regret and discrepancy have negative signs on the right hand side.

42

CHAPTER 3. FEDERATED LEARNING

minimizing caching strategy by solving the following optimization problem

min
πb,t:1Tπb,t≤C

[
sup
π∗
b,t

T∑
t=T−τ+1

Rb,T+1(π
∗
b,t)−

T∑
t=T−τ+1

Rb,T+1(πb,t)

]
(3.13)

to get a sequence of caching policies denoted by πR
b,t ∀ t. Note that the above

problem can be solved optimally at the end of time slot T as each SBS has access to

the demands until time slot T . In the next step, we maximize the right hand side of

(3.9) excluding the regret term. Unfortunately, the discrepancy term is unknown,

and hence is estimated using the demands. Moreover, the discrepancy term involves

an optimization. One way to deal with this is to use the regret minimizing caching

strategy, and solve the following optimization problem to obtain the weights

sup
αb,t,w ̸=b,T

T∑
t=T−τ+1

αb,tRb,t(π
R
b,t)− aD̂b,T (αb)−

bM̂b,T+1(w̸=b,T) + λ
T∑

t=T−τ+1

∣∣∣∣αb,t − 1

τ

∣∣∣∣ (3.14)

for some λ > 0, and D̂b,T (αb) is an estimate of the discrepancy given by

D̂b,T (αb) := sup
πb,t:πb,t1T x≤C

∣∣∣∣∣
T∑

t=T−τ+1

αb,t
∑
f

ψ(f)
τ1,τ2

(t, T)πb,f (t)

∣∣∣∣∣ , (3.15)

where ψ
(f)
τ1,τ2(t, T) := Lf

(
1
τ1

∑T
l=T−τ1+1 ϕb,f (l)− 1

τ2

∑t−1
l=t−τ2+1 ϕb,f (l)

)
, and the sum

demand Φb,f (t) :=
∑

u∈Ub(t)
df,u(t). The constants a and b are fine tuned to get

better results. An estimate of the discrepancy across SBSs is given by

M̂b,T+1(w ̸=b,T) :=
1

τ

∑
b′∈Nb

wT+1

jb(b
′)

[
T∑

s,l=T−τ+1

αb,sRb,l(π
R
b,s)−

T∑
s,l=T−τ+1

αb′ ,sRb′ ,l(π
R
b′ ,s

)

]
. (3.16)

Note that the conditional expectations are replaced by the time average of the cache

hit as a proxy to get the above estimate of the discrepancy. In the time slot T , the

average cache hit from the time slot T − τ + 1 to T is used as a proxy for the con-

ditional mean in the expression for Mb,T+1(w̸=b,T). Although the objective in (3.14)

43

3.3. ONLINE FEDERATED LEARNING BASED CACHING

seems to be simple, it is a non-convex function of αb,t and w̸=b,T , making the problem

difficult to solve for global optima. However, a simple gradient descent algorithm

can be used to achieve a local optima. Using the gradient descent approach leads to

Algorithm 1, which is explained next. Note that the estimate of discrepancy above

involves solving an optimization problem with respect to the caching strategy πb,t.

However, this optimization problem depends on αb,t, which is unknown. A natural

approach to this is to assume some initial αb,t, and solving the above optimization

problem using gradient descent step, and project to satisfy the cache constraint.

This is done in steps 1 and 2 of the Subroutine. Using this, in the step k + 1, an

update πtb,f (k + 1) is obtained. This is used in the expression for an estimate of the

discrepancy in (3.15), and used in (3.14) to subsequently solve for weights αb,t and

wT+1

jb(b
′)

. This is done by taking a gradient descent step with respect to αb,t in the

problem in (3.14) followed by projection to satisfy the constraint
∑T

t=T−τ+1 αb,t = 1.

These two steps correspond to steps 3 and 4 of the Subroutine. Similar gradient

steps are taken for the weights wT+1

jb(b
′)

. These steps correspond to steps 5 and 6 of

the Subroutine. The details are provided in the algorithm below, and explained

later in this section.

Algorithm 2 Algorithm for Federated Learning based Caching

1: for T = 1, 2, . . ., and SBS b ∈ B do
2: Run regret minimization as in (3.13) to get a sequence
3: πRb,t, t = 1, . . . , T

4: Call Subroutine (T , τ , πRb,t, π
R
b′ ,t

for all b
′ ∈ Nb) .

5: to get πb,T+1

6: end for

The stopping criterion of the algorithm in the Subroutine is determined by

checking if the difference in weights is smaller than a threshold, which is chosen

based on extensive simulations. The learning rate ηk, βk, and γk are chosen such

that it decays as 1/
√
k with the iteration k.

Subroutine (T , τ , πR
b,t, π

R
b′ ,t

for all b
′ ∈ Nb):

� for each SBS b, for k = 0, 1, 2, . . . do

1. If (k = 0), then initialize π
(0)
b,f = C∑

f Lf
, ∀ f and α

(0)
b,t = 1/τ, ∀t ≥

T − τ + 1, and zero otherwise. Let Γt,T :=
∑

f π
t
b,f (k)Ψf

τ1,τ2
(t, T). For

44

CHAPTER 3. FEDERATED LEARNING

k ̸= 0, update

πtb,f (k + 1) = πtb,f (k) + 2ηkg, (3.17)

where g := αb,t(k)Ψf
τ1,τ2

(t, T) if
∑T

t=T−τ+1 Γt,T > 0, else choose g :=

−αb,t(k)Ψf
τ1,τ2

(t, T).

2. Project: πb,f (k + 1)← max{πb,f (k + 1), 0} and π
(k+1)
b,f ← Cπb,f (k+1)∑

f πb,f (k+1)Lf
.

3. Update the α-weights:

αb,t(k + 1) = αb,t(k) + βk

[
Rb,t(π

R
b,t)−Θ

− ∇αM̂b,T+1(w ̸=b,T)

]
, (3.18)

where βk is the step size, Γt,T is as defined in step 1 above, Θ :=

2 max{Γt,T ,−Γt,T} − λ∇α∥αb,t(k)− u∥1,

∇αM̂b,T+1(w ̸=b,T):=
2

τ

∑
b′∈Nb

wT+1

jb(b
′)

(k)
T∑

l=T−τ+1

Rb,l(π
R
b,t),

and ∇α∥αb,t(k)− u∥1 := 1{αb,t < 1
τ
} − 1{αb,t ≥ 1

τ
}.

4. Project: αb,t(k + 1)← max{αb,t(k + 1), 0}, and

αb,t(k + 1)← αb,t(k+1)∑T
t=T−τ+1 αb,t(k+1)

.

5. Update the w-weights for SBS b using data from neighboring SBSs as

follows:

wT+1

jb(b
′)

(k + 1)=wT+1

jb(b
′)

(k)− 2γk
τ

[
T∑

s,l=T−τ+1

αb,s(k)

×Rb,l(π
R
b,s)−

T∑
s,l=T−τ+1

αb′ ,s(k)Rb,l(π
R
b
′
,s

)

]
(3.19)

6. Project: wT+1

jb(b
′)

(k + 1)← max{wT+1

jb(b
′)

(k + 1), 0}, and

– Normalize: If
∑

b
′∈Nb

wT+1

jb(b
′)

(k+1) < 1, then wT+1
b = 1−

∑
b′∈Nb

wT+1

jb(b
′)

(k+

1), else wT+1
b = 0 and for all b

′ ∈ Nb, wT+1

j(b′)
(k+1) =

wT+1

jb(b
′
)
(k+1)∑

b
′∈Nb

wT+1

jb(b
′
)
(k+1)

.

7. if (not converged): Broadcast the weights obtained in the current it-

45

3.3. ONLINE FEDERATED LEARNING BASED CACHING

eration to all neighboring SBSs, and go back to step 1 else; return

π̄b,T+1 = wT+1
b (k + 1)

T∑
t=T−τ+1

αb,t(k + 1)πR
b,t +

∑
b
′∈Nb

wT+1

jb(b
′)

(k + 1)
T∑

t=T−τ+1

αb′ ,t(k + 1)πR
b′ ,t

(3.20)

� end for

Since the above algorithm is a modification of gradient descent algorithm,3 the

convergence can be proved in a similar manner to that of classical gradient descent.

In the following subsection, the proposed FL based heuristics algorithm for caching

mechanism design that takes into account neighboring SBSs requests is detailed.

3.3.2 Federated Learning Based Heuristics Caching Mech-

anism

In the single SBS scenario, a natural approach to find a caching strategy is to solve

the following optimization problem:

min
π:
∑

f πf lf≤L
F̂k(π), (3.21)

where F̂k(π) :=
∑

f∈F(1 − πf)lf d̂
(t)
f,k is an estimate of the average cache miss, and

d̂
(t)
f,k := 1

τ

∑t−1
s=t−τ d

(s)
f,k. However, if the amount of data available is less, the estimate

will be poor, and hence results in a poor caching strategy. One way to overcome

this is to use the information available from the neighboring SBSs. This can be

done by penalizing the caching strategies that are far from some average of the

caching strategies of the neighboring SBSs, i.e., λ∥π − π̄
(t)
Nk
∥2, where π̄

(t)
Nk

is the

average of neighboring SBSs caching strategies. This requires information about past

caching strategies from the neighboring SBSs, which is assumed to be available. The

parameter λ > 0 controls the amount of deviation that can be tolerated. More details

of the heuristic algorithm are provided in Algorithm 2. The following subsection

3The algorithm deviates from the classical gradient descent in the step 2 of the subroutine as
the problem involves two optimization problems.

46

CHAPTER 3. FEDERATED LEARNING

presents an analysis of the LRFU scheme. To the best of authors knowledge, this

analysis is the first of its kind in the literature.

Algorithm 3 Algorithm for Federated Learning based Heuristics Caching

1: procedure Federated Learning based Heuristics for caching
2: for ∀ SBS k = 1, . . . , N and ∀f = 1, . . . , F do
3: d̂

(0)
f,k ← initial demand

4: π
(0)
Nk
← initial caching vector s.t.

∑
f πfLf ≤ C

5: end for
6: for t = 1, 2 . . . , do
7: SBS k sents π̂∗k,t−1 to its neighboring SBSs.
8: At each SBS k, estimate demand vectors
9: and average caching vectors as follows:

d̂
(t)
f,k :=

1

τ

t−1∑
s=t−τ

d
(s)
f,k, and π̄

(t)
Nk

:=
1

|Nk|
∑
j∈Nk

π̂∗k,t−1. (3.22)

10: Solve the following optimization problem to get
11: π̂∗k,t:

π̂∗k,t := arg min
π
F̂k,t(π) + λ∥π − π̄

(t)
Nk
∥2, (3.23)

where F̂k,t(π) :=
∑

f∈F(1− πf,k)Lf d̂(t)f,k, and λ > 0.
12: Cache files at SBS k according to π̂∗k,t, and
13: distribute across its neighboring SBSs.
14: end for
15: end procedure

LRFU Caching Policy: Analysis and Guarantees : In this scheme, an average of

the past demands of each file is listed in the decreasing order, and the first k files

are stored, where k is chosen in such a way that the cache size constraint is satisfied.

In particular, in time slot t, at SBS b, the following optimization problem is solved:

max
π:

∑
f πfLf≤C

∑
f

πf d̂b,f,tLf , (3.24)

where d̂b,f,t := 1
τ

∑t−1
s=t−τ−1 db,f,s ∀ f . In the case of constant file sizes, i.e., Lf := L

∀ f , the solution to the above amounts to listing the files in the decreasing order of

d̂b,f,t, and storing the top k files, where k is chosen to satisfy the cache constraint.

However, when the files sizes are different, instead of the “average” demands d̂b,f,t,

one should consider Lf d̂b,f,t in the above argument. By imposing the constraint

πf ∈ {0, 1} ∀ f leads to the classical LRFU solution and the corresponding caching

47

3.3. ONLINE FEDERATED LEARNING BASED CACHING

strategy is denoted by πLRFU
b,t . Before stating the main theorem, the following notions

of discrepancy (similar to discrepancy described earlier) will be used to state the

main result.

Definition (Discrepancy across time and information): Given local and global

information at the SBS b with caching strategies πb,t for b ∈ B, t = T − τ + 1, . . . , T ,

the corresponding discrepancy between local and global information at the end of

time slot T is defined by

DGL,T (τ) := sup
πb,t:t=T−τ+1,...,T

∣∣∣∣∣1τ
T∑

t=T−τ+1

(
∆R̄T,t

)∣∣∣∣∣ , (3.25)

where ∆R̄T,t := E{Rb,T+1(πb,t) | ZT
b,1} − E{Rb,t(πb,t) | ZT

G,1}.

The above measures the discrepancy between the local and the global data,

i.e., the demands at SBS b and all other SBSs. In the iid demands scenario, it is

clear that the discrepancy is zero, as expected. In other words, having access to

global information is useful to improve the accuracy of the future demand estimate

through averaging, and hence the average cache hit as well. The following theorem

provides guarantees on the performance of the LRFU scheme in comparison with

(3.2), which assumes perfect knowledge of statistics of the demands. Note that the

analysis included in the proof of the following result does not depend on whether

πf ∈ {0, 1} or πf ∈ [0, 1]. Therefore, this constraint is not explicitly stated.

Theorem 3.3.3. For the LRFU caching strategy πLRFU
b,t , with a probability of at least

1− δ, δ > 0, the following bound hold:

∑
f

πLRFU
b,t d̂b,f,tLf ≤ sup

πb

E
[
Rb,t(πb) | Zt−1

b,1

]
+ DGL,t(αb) + Db,t(uτ)

+ Hmax∥αb,T ∥2

√
2 log 1

δ

τ
(3.26)

where Db,t(uτ) is as defined in (3.6) with uτ := (1
τ
, 1
τ
, . . . , 1

τ
) is a 1× τ vector, and

DGL,t(αb) is as defined in (3.25).

Proof. Given in Appendix A.2.

48

CHAPTER 3. FEDERATED LEARNING

It is clear from the above theorem that in the iid demands scenario, the right

hand side will be supπb
E
[
Rb,t(πb) | Zt−1

b,1

]
+Hmax∥αb,T ∥2

√
2 log 1

δ

τ
. It is clear that as

τ → ∞, i.e., using more local data to compute the demand estimate, the metric

used in the case of LRFU approaches that of the optimal cache hit in (3.2). The

above result is independent of the demand process, as opposed to the existing work

on LRFU, which typically assume iid demands. The following section presents

simulation results to validate some of the insights provided by our theory to design

online caching algorithm, and compare it with some of the well known algorithms.

Complexity Analysis

� Algorithm I: The function in (3.2) O(d2maxτN) multiplications and O(dmaxτN)

additions, where dmax is the maximum degree of the topology of the network

presented earlier, N is the number of files and τ is the time slot. The pro-

posed algorithm involves solving a optimization problem, whose complexity is

analyzed under the assumption that the gradient descent method is used to

find the optimal point. The gradient descent method involves the following

two steps; (a) computing the updated vector, which involves using the current

point and move in the direction of the gradient, and (b) projecting the result

onto the constraint region. Thus, the total complexity is the number of times

step (a) above is required to solve the problem with an accuracy of ζ, i.e., the

difference between the solution obtained and the optimal value of the objec-

tive function, times the complexity of step (a). Thus, from [87], the number

of times step (a) is executed is of the order of O(1/ζ). Therefore, the total

complexity is O(d
2
maxτN
ζ

) multiplications and O(dmaxτN
ζ

) additions.

� Algorithm II : The function in (3.21) requires O(dmaxτN) multiplications and

O(dmaxτN) additions, where dmax is the maximum degree of the topology of the

network presented earlier. Similar to the complexity analysis of Algorithm I,

the total complexity of Algorithm II is O(dmaxτN
ζ

) multiplications and O(dmaxτN
ζ

)

additions. The computational complexity if the LRFU algorithm is O(log2 τ)

where τ is the cache size. Comparing this with the LRFU algorithm, it can

be observed that both the proposed algorithms performs significantly better

than the LRFU method at the expense of a slight increase in the complexity

49

3.4. SIMULATION RESULTS

depending on the accuracy attained.

3.4 Simulation Results

The simulation setup consists of five SBSs with multiple users connected to each

of the SBS as shown in Fig. 3.1. Without loss of generality, it is assumed that

the users can move, and over time connect to different SBSs. The demands from

the users are generated using the Movie Lens data set.4 The total number of files

is 800, i.e., the users can possibly request from only these catalog of Movie Lens

data. The size of each file is assumed to be chosen uniformly random from 10 to 100

units. The demands at each SBS are obtained by randomly dividing Movie Lens

data into 5 disjoint chunks, which are spread across 200 time slots (here one time

slot equals one day). Further, the demands are normalized in each slot to get the

popularity profile. This is used in place of demands while defining the (weighted

cache hit and discrepancy) metric to compute the optimal weights in Algorithm

1. The average cache hit with un-normalized demands is used as a performance

measure. The optimization is done with respect to the weights across time as well

as SBSs. In this section, for simplicity, the weights across time will be referred to

as α, and the weights allocated across SBSs as w. To understand the importance

of past demands and the neighboring SBSs demand, it is important to compare the

proposed scheme under various conditions. In particular, the proposed FL based

caching algorithm is compared with (i) the FL based heuristic algorithm proposed

in Sec. 3.3.2, (ii) the algorithm that uses uniform w and optimal α, (iii) LRFU,

(iv) algorithm with uniform α and optimal w, and (v) follow-the-leader, (vi) FTPL,

and (vii) average LFU. The following parameters were used: τ = 10, τ1 = τ2 = 5,

ηk = 1/
√
k, βk = 0.01/

√
k, and γk = 0.4/

√
k, where k is the iteration index in the

algorithm. The topology of the SBSs for Fig. 3.2 shows a plot of cache hit versus

cache size for different caching algorithms. The topology of the SBS is described

by 1 ↔ 2 ↔ 3, 3 ↔ 4 ↔ 5, and 5 ↔ 1, where a ↔ b indicates that SBSs a and

b can communicate with each other. Fig. 3.2 shows the sum cache hit rate of all

the SBSs summarizing the trends in all the SBSs. It is clear from the figure that

4http://grouplens.org/datasets/movielens/

50

CHAPTER 3. FEDERATED LEARNING

the proposed algorithm (both proposed FL based caching algorithm and proposed

FL based heuristic caching algorithm) performs better than the LRFU, follow-the-

leader, FTPL, average LFU, uniform α and optimal w, as well as uniform w with

optimal values of α. The difference here is around 104 demonstrating the benefit of

using the proposed scheme(s).

5 10 15 20 25

Average Cache Size (%)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
A

v
e

ra
g

e
 c

a
c
h

e
 h

it
×104

Proposed Heuristic algorithm

Proposed Federated algorithm

Uniform alpha and optimal weights

Equal weights and optimal alpha

FTPL

follow-the-leader

LRFU

Avg LFU

Figure 3.2: Average sum cache hit of all SBSs versus cache size.

10 15 20 25

Average Cache Size (%)

1

2

3

4

5

6

7

A
v
e
ra

g
e
 C

a
c
h
e
 h

it

×10
5

Topology 1: Centralized

Topology 2: Circle

Topology 3: Line graph

Figure 3.3: Average cache hit of all SBSs versus cache size for different topologies for Algorithm I.

51

3.4. SIMULATION RESULTS

0 0.5 1 1.5 2 2.5 3 3.5 4

Delay (Timeslot)

0.5

1

1.5

2

2.5

3

3.5

A
v
e

ra
g

e
 c

a
c
h

e
 h

it

×104

proposed scheme with cache size 25

Proposed Scheme with cache size 20

Proposed Scheme with cache size 15

Proposed Scheme with cache size 10

Proposed Scheme with cache size 5

Figure 3.4: Average cache hit of all SBSs versus cache size for different delay for Algorithm I.

4 6 8 10 12 14 16 18 20

Iterations

0.5

1

1.5

2

2.5

3

3.5

A
v
e

ra
g

e
 c

a
c
h

e
 h

it

×104

proposed scheme with cache size 25

Proposed Scheme with cache size 20

Proposed Scheme with cache size 15

Proposed Scheme with cache size 10

Proposed Scheme with cache size 5

Figure 3.5: Average cache hit of all SBSs versus cache size for different iterations for Algorithm I.

The cache hit performance of the proposed caching algorithm (FL based) under

various inter-SBS topologies are shown in Fig. 3.3. The following three topologies

were considered: (i) centralized topology (a ↔ b ∀a, b ∈ [1, 5]), (ii) circular (1 ↔

2 ↔ 3 ↔ 4 ↔ 5 ↔ 1) and (iii) linear (1 ↔ 2 ↔ 3 ↔ 4 ↔ 5). It can seen from

the Fig. 3.3 that for the centralized topology, the average cache hit is maximum

52

CHAPTER 3. FEDERATED LEARNING

since each SBS has access to all of its neighbouring SBSs data. The SBS needs to

exchange real-time caching information with its neighbouring SBSs, and hence in

real settings will lead to a delay while exchanging the information which in turn

affects the performance of the online caching strategies. In Fig. 3.4, the average

cache hit is plotted as the delay is varied for circular topology. As seen from Fig. 3.4

as the delay increases while exchanging the information among the SBSs, the average

cache hit eventually reduces. In Fig. 3.5, average cache hit for different iterations

(number of times each cycle is repeated) is plotted and we can observe that as the

number of iterations increases the average cache hit also increase.

3.5 Summary

In this chapter, assuming structured cache placement, high probability bounds on

the conditional average cache hits are derived using Martingale difference equation.

Insights provided by the bound including regret and discrepancy across temporal and

spatial cache hits are used to design the iterative federated based caching algorithm.

Simulation results demonstrated that the proposed federated algorithm significantly

outperforms the existing FTPL, LRFU and average LFU algorithms in terms of the

average cache hit. Further, simulation results support that the proposed federated

model works well in the centralized topology scenario. However, this chapter confines

to a specific distributed scenario, wherein the joint optimization problems are not

addressed and this is addressed by considering a general scenario of mobile edge

caching in the next chapter.

53

Chapter 4

Bayesian Learning for Joint

Optimization

4.1 Overview

In the previous chapter, a FL based caching strategy was proposed which takes into

account the correlation between the past caching decisions across time and across

other SBSs in the given region. Insights provided by the bound including regret and

discrepancy across temporal and spatial cache hits are used to design the iterative

federated based caching algorithm, which optimizes the weights of the linear sum.

However, this model is specific to distributed algorithms and does not consider the

recommendation based systems. To fill this gap, in this chapter, a general setting has

been used, wherein the joint optimization of caching and recommendation is looked

into. Two estimation procedures, point and Bayesian estimation are provided. A

probabilistic model using Bayesian inference based on Dirichlet distribution is pro-

posed. Specifically, the influence of recommendation on the popularity profile is

modelled using a conditional probability distribution. A high probability guarantee

on the estimated caching and recommendation strategies is provided. Irrespective

of the estimation method, it is shown that with a probability of 1− δ the proposed

caching and recommendation strategy is ϵ close to the optimal solution.

In the literature, to further enhance the user’s quality of experience, mobile edge

computing (MEC) jointly with recommendation has been proposed which stores the

popular contents close to the edge devices beforehand, and hence reduces the de-

55

4.1. OVERVIEW

lay and alleviates the backhaul congestion [10]. While, on the other hand rapidly

growing file sizes, reducing cache sizes (compared to the traditional content delivery

networks), and unpredictable user demands make the task of caching algorithms

even more difficult. For example, the total data generated by Google per day is

in the order of PBs, while installing 1TB in every small cell in the heterogeneous

network will only shift less than 1 % of the data for even one content provider.

To overcome these issues, it has been observed that user demands are increasingly

driven by recommendation based systems. Recommendation based on an individ-

ual’s preference have become an integral part of e-commerce, entertainment and

other applications. The success of recommender systems in Netflix and Youtube

shows that 80% of hours streamed at Netflix and 30% of the overall videos viewed

owes to recommender systems [124, 125]. With recommendation the user’s request

can be nudged towards locally cached contents, and hence resulting in lower access

cost and latency.

Usually, the recommender systems and the caches at the wireless network are

owned by different entities. The recommender engines are managed through ap-

plications that interact with users, while the caching systems are controlled by the

wireless network operators. This further motivates the need for coordination of the

different mechanisms towards optimization of user and network-centric performance

measures. Firstly, caching reduces backhaul traffic and brings the content closer

to the user. Secondly, with recommendation, quality-of-experience (QoE) of users

enhances hence benefiting the caching mechanism.

The idea of content caching is borrowed from the domains of wired network,

where contents were replicated at CDNs that are closer to the end users. A simi-

lar approach was adopted in wireless network due to the increasing network traffic

[17]. However, the content placement in the wireless network largely depends on

the user behaviour and file popularity. The recent success of integration of artificial

intelligence in the wireless communications has further led to better understanding

of user behaviors and the characteristics of the network [126]. Especially the edge

networks can now predict the content popularity profile hence increasing the aver-

age cache hit. The high accuracy in prediction by the neural networks has resulted

in many of the content popularity prediction models, such as, collaborative filter-

56

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

ing with recurrent neural networks [127], the stack auto encoder [128], deep neural

networks [129] and others. However, the local content popularity profile need not

match the global prediction by the central server. Many of the recent works have

proposed the edge caching strategies by learning the user preferences and content

popularity [130–132]. Context awareness helps in classifying the environment, hence

enabling the intelligent decisions at the edge to select the appropriate contents, for

instance, Chen et al. [133] presented the edge cooperative strategy based on neural

collaborative filtering. Jiang et al. [134] used the offline user preferences data and

statistical traffic patterns and proposed an online content popularity tracking algo-

rithm. However, the offline data will not be available always. The multiarm bandit

(MAB) problem has also been extensively investigated, [135, 136] which addresses

the tradeoff between the exploration and exploitation to achieve the maximum re-

ward. These works assume that users have identical preferences and no correlation

amongst the data, which may not be the case in a practical situation.

For example, consider a SBS to which mobile users are connected. The idea

is to recommend files which adequately matches the users’ preference rather than

the file which ranks as the top most relevant content, thus nudging the content

access patterns of users and achieving higher caching efficiency and better users’

QoE. However, while jointly considering caching and recommendation, computa-

tional complexity of optimizing both has to be taken into account. Recommendation

and caching can be individually approximated, however the joint optimization is NP

hard without an optimal decomposition [13]. Hence, in this chapter, two estimation

procedures namely point estimation and Bayesian estimation have been proposed for

optimization [137–139]. Further, considering a real-time system, the estimation has

been applied to a more practical heterogeneous network. A typical heterogeneous

network consists of a macro base station (MBS) and various low power nodes [140].

Similarly, in this work we have considered a heterogeneous system for the estimation

model.

In order to determine which content needs to be cached in SBS, it is important

to predict the user’s content probability request. One way of estimating the user

requests, is to take the average of the instantaneous requests, which is also equiv-

alent to maximum likelihood estimation (MLE) [141]. This performs well as long

57

4.1. OVERVIEW

as the size of the request sample is large. Since the number of content requests

is comparatively small, it is difficult to use the conventional frequentist approach

where the request is observed over an interval of time and inference is drawn based

on the data. A typical SBS receives 0.1 requests/content/day and hence MLE pro-

vides an inaccurate estimation of content popularity in local caches. Hence, with

this motivation, a probabilistic model for content requests has also been proposed.

Bayesian approach is used to obtain a prior belief and is also used to determine the

parameters. In Bayesian estimation, probability is expressed as a degree of belief

in an event. Bayesian estimation helps in providing a framework to overcome the

overfitting problem. To predict the future requests, a multivariate distribution i.e.

Dirichlet distribution is used to model the prior probabilities. In Bayesian statistics,

Dirichlet distribution is a popular conjugate prior for the multinomial distribution.

Dirichlet distribution is used to appropriately model the prior knowledge about

the requests and hence improve the accuracy of popularity estimation. One use of

Dirichlet prior is that it avoids over-fitting the estimate of a multinomial distribution

from a small amount of data. For recommendation systems, where only few user

ratings are available for a particular file, the MLE of the rating distribution can be

very inaccurate and hence cannot estimate the true popularity. While on the other

hand, when only few user ratings are present, Dirichlet prior prevents the estimate

from being overfitted. The popularity distribution starts with a Dirichlet prior and

is updated whenever new data is received. With this knowledge, the caching and

recommendation action is updated accordingly. Simulation results further verify

that the proposed method performs better than the existing benchmark algorithms

in terms of delay, average cache hit and throughput.

The main contributions of the chapter are summarized as follows:

� For the first time two estimation procedures, Point and Bayesian estimation

are provided. A probabilistic model using Bayesian inference based on Dirich-

let distribution is proposed. Specifically, the influence of recommendation on

the popularity profile is modelled using a conditional probability distribution.

A high probability guarantee on the estimated caching and recommendation

strategies is provided. Irrespective of the estimation method, it is shown that

with a probability of 1−δ the proposed caching and recommendation strategy

58

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

is ϵ close to the optimal solution.

� A high probability bound on the regret for Bayesian estimation method

is provided. To compare and contrast the obtained regret bound, we also

derive a regret bound on the genie aided scenario using the Point estimation

method. First, we consider the Point estimation case and provide lower

bound on the waiting time that is required to achieve an error ϵ optimal

solution with high probability. Assuming a genie aided scenario, we prove a

regret bound of O(T 2/3
√

log T). Using the Martingale difference technique,

we prove a high probability bound on the regret achieved by the Bayesian

estimation method. In particular, we show that O(
√
T) regret is achievable,

which is better than the genie aided scenario.

� The proposed Point estimation and Bayesian estimation are further ex-

tended to a heterogeneous network consisting of M SBSs with a central MBS.

The MBS computes an estimate of the probability transition matrix (PTM)

and gives an update to each of the SBSs. For computing guarantees, first M is

taken as two for the sake of simplicity and a lower bound on the waiting time

is provided. The same is generalized to a heterogeneous network consisting of

M SBSs, the estimation of the probability matrix has been derived and useful

insights are drawn.

� Numerical results are presented and it is shown that the proposed algorithm

outperforms the existing least recently/frequently used (LRFU), least fre-

quently used (LFU) and least recently used (LRU) in terms of average cache

hit.

To the best of the author’s knowledge, this is the first time in the literature that

point estimation and Bayesian estimation has been used to obtain a lower

bound on the training time in the wireless edge caching. In Section 4.2, we present

the system model followed by the problem statement. The two estimation methods:

point estimation and Bayesian estimation are also developed in Section 4.2.

In Section 4.3.1, theoretical guarantees have been provided, in which a lower bound

on the training time is derived which estimates the caching and recommendation

strategies which are ϵ close to the optimal strategies. Further, in Section 4.4, the

59

4.2. SYSTEM MODEL AND PROBLEM STATEMENT

system model has been generalized to a heterogeneous network consisting of M SBSs

and to make the analysis simpler, first the model is developed using M as two and

then is generalized for a M SBS model. Simulation results are provided in Section

V.

4.2 System Model and Problem Statement

The considered system model is shown in Fig. 4.1 which consists of a wireless net-

work with single SBS serving multiple users. The heterogeneous scenario, which

is an extension of the problem, is presented later in the chapter. The SBS is as-

sumed to have a storage capacity of F contents of equal sizes from a catalog of

contents C := {1, 2, . . . , F}. The requests are assumed to be independent-and-

identically-distributed (iid) across time. Since, recommending a file influences the

users requests’, thus, by jointly optimizing caching and recommendation improves

the overall performance significantly. Using a conditional probability distribution,

the influence of recommendation on the popularity of a file is modelled, i.e., pij

represents the probability that a user requests a file i given content j was recom-

mended. This leads to a PTM denoted by P ∈ RF×F . The matrix P is assumed

to be fixed across time slots and the time is assumed to be slotted. For the sake of

simplicity, it is assumed that at least one file every slot is requested by each user N

in the network. Initially, the recommendation and caching strategies are sampled

from a uniform distribution. The set of caching and recommendation strategies are

denoted by

Cc,r := {(u,v) ∈ [0, 1]2×F : uT1 ≤ c,vT1 ≤ r}, (4.1)

where r and c are recommendation and cache constraints, respectively. The variables

v and u are the recommendation and caching probabilities. In the sequel, the

strategy is defined by the pair (u,v). For a given strategy (u,v) ∈ Cc,r, the average

cache hit is given by uTPv, in the t-th time slot. If the matrix P is known apriori,

the optimal strategy is found by solving max(u,v)∈Cc,r u
TPv. However, the matrix

P is not known, and therefore it is estimated from the demands. The variable d
(t)
i

denotes the demand and is defined as the total number of requests in the time slot

t for the file i. Following two estimation procedure will be addressed in this chapter

60

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

Figure 4.1: Distributed caching in a cellular network.

using the above demand:

� Point estimation: In this method, the demands until t time slots is used

to compute an estimate of the matrix P. During the first t time slots, recom-

mendation and caching are done with probabilities q and p, respectively. Let

vtj = 1 if file j was recommended in slot t − 1, and zero otherwise. The rec-

ommendation and caching constraints in (4.1) are satisfied by, q := r/F and

p := C/F . We can see that as the value of t increases, the estimate becomes

better, and hence results in better performance. The estimate of the ij-th

entry of the P matrix is given as follows

p̂
(t)
ij :=

∑t−1
s=0 d

(s)
i vs−1j

N
∑t−1

s=0 v
s−1
j

. (4.2)

The corresponding estimate of the matrix P be denoted by P̂
(t)

. Since E{p̂(t+1)
ij |∑t−1

s=0 v
s
j > 0} = pij, the point estimator is an unbiased estimator. The rec-

ommendation and caching probabilities are selected by solving the following

optimization problem, after t time slots:

(û∗o,t, v̂
∗
o,t) = arg max

(u,v)∈Cc,r
uT P̂

(t)
v. (4.3)

61

4.2. SYSTEM MODEL AND PROBLEM STATEMENT

� Bayesian estimation: In this method, for a given time slot, a prior on the

rows of the matrix P is obtained. Dirichlet distribution is chosen as a prior

which is based on the past demands. The Dirichlet pdf is a multivariate

generalization of the Beta distribution, and is given by

f(x1, . . . , xK , α1, . . . , αK) =
Γ(
∑K

j=1 αj)∏K
j=1 Γ(αj)

K∏
j=1

x
αj−1
j , (4.4)

αj ≥ 0 ∀ j. The Dirichlet distribution is used as a conjugate pair in Bayesian

analysis and the shape of the distribution is determined by the parameter

α. If αj = 1 ∀ j, then it leads to an uniform distribution. The higher the

value of αj, the greater the probability of xj. The notation (x1, x2, . . . , xK) ∼

Dirch(α1, α2, . . . , αK) indicates that (x1, x2, . . . , xK) is sampled from a Dirich-

let distribution in (4.10). An estimate in the beginning of the time slot t of

the i-th row of the matrix P̂ is given by

(P̂
(t)

)i ∼ Dirch

(
t−1∑
i=1

d
(i)
1 v

i−1
j ,

t−1∑
i=1

d
(i)
2 v

i−1
j ,

t−1∑
i=1

d
(i)
F v

i−1
j

)
, (4.5)

where vi−1j is as defined earlier with v0j sampled from {0, 1} with probability

q := r/F . Using the above estimate, the recommendation and caching strategy

at time slot t is obtained by solving the following problem:

(û∗b,t, v̂
∗
b,t) = arg max

(u,v)∈Cc,r
uT P̂

(t)
v. (4.6)

A procedure to find a strategy is given in Algorithm 1.

In the sequel, the strategy is defined by the pair (u,v). For a given strategy

(u,v) ∈ Cc,r, the average cache hit at the SBS k is given by uTPkv. If the ma-

trix Pk is known apriori at the SBS k, the optimal strategy can be found by solving

max(u,v)∈Cc,r u
TPkv. However, the matrix Pk is unknown, and therefore it needs to

be estimated from the demands. Let the variable d
(t)
k,i denotes the demand at the

SBS k, and is defined as the total number of requests in the time slot t for the file i.

Since the demands arrive in a sequential manner, the PTMs need to be estimated

and updated in an online fashion. The performance of such algorithms is measured

62

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

in terms of regret. As apposed to adversarial setting of online learning, here we

have assumed that there is an underlying distribution from which the requests are

generated, namely the PTM. Accordingly, the following provides the definition of

the regret, which depends on the PTM:

Definition 1. (Regret) The regret at the SBS k after T time slots with respect to

any sequence of strategy (uk,t,vk,t), t = 1, 2, . . . , T is defined as

Regk,T := TuTk,∗Pkvk,∗ −
T∑
t=1

uTt Pkvt, (4.7)

where (uk,∗,vk,∗) := arg max(u,v)∈Cc,r u
TPkv is the optimal strategy at the SBS k.

The goal of the paper is to come up with a strategy at each SBS that results in

a minimum regret. Any caching and recommendation algorithm, either directly or

indirectly estimates the PTM Pk. Therefore, the above goal translates to finding

better estimates of the PTMs. In this paper, we consider two approaches to finding

the estimates of the PTMs in an online fashion, namely (i) Point estimation and

(ii) Bayesian estimation methods. Further, when there are multiple SBSs, any

given SBS can potentially improve its estimate of PTM by fusing the estimates of the

other SBSs. The question of how to fuse the estimates that results in a good regret

is another question to which we will shed some lights. In the following section,

we provide caching and recommendation algorithms for single SBS scenario, and

provide theoretical guarantees for them.

4.3 Joint Caching and Recommendation for Sin-

gle SBS Scenario

In this section, we assume single SBS, and therefore, M = 1 as shown in Fig. 4.2.

As mentioned above, using the demands obtained at the SBS, an estimate of the

PTM matrix is computed using either Point estimation or Bayesian estimation

method. Given an estimate P̂
(t)
k , the caching and recommendation strategies will

be found by solving the following problem1

1For theoretical analysis, we assume that the problem can be solved exactly.

63

4.3. JOINT CACHING AND RECOMMENDATION FOR SINGLE SBS
SCENARIO

Figure 4.2: Distributed caching in a cellular network assuming single SBS.

(û∗o,t, v̂
∗
o,t) = arg max

(u,v)∈Cc,r
uT P̂

(t)
k v. (4.8)

Now, we present the following two estimation procedures used in this paper.

� Point estimation: Given any SBS k, in this method, the demands until t

time slots is used to compute an estimate of the matrix Pk. During the first

t time slots, recommendation and caching are done with probabilities q and

p, respectively. Let vtjk = 1 if file j was recommended in slot t − 1, and zero

otherwise. The recommendation and caching constraints in (4.1) are satisfied

by choosing q := r/F and p := c/F . We can see that as the value of t increases,

the estimate becomes better, and hence results in better performance. The

estimate of the ij-th entry for SBS k of the Pk matrix is given by

p̂
(t)
ij,k :=

∑t−1
s=0 d

(s)
ik v

s−1
jk

N
∑t−1

s=0 v
s−1
jk

. (4.9)

The above is a naive estimate of the probabilities by using a simple counting

of events. The corresponding estimate of the matrix Pk be denoted by P̂k

(t)
.

Since E{p̂(t+1)
ij,k |

∑t−1
s=0 v

s
jk > 0} = pij,k, the point estimator is an unbiased esti-

mator. After every time slot t, the recommendation and caching probabilities

are selected by solving the optimization problem in (4.8) with P̂
(t)
k obtained

in (4.9). A procedure to find a strategy is given in Algorithm 1.

� Bayesian estimation: In this method, for a given time slot, the rows of

the matrix P
(t)
k is sampled using a prior distribution, which is updated based

64

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

on the past demands. This may tradeoff the exploration versus exploitation

while solving for the optimal recommendation and caching strategies. Here,

Dirichlet distribution is chosen as a prior. The Dirichlet pdf is a multivariate

generalization of the Beta distribution, and is given by

f(x1, xM , α1, αM) =
Γ(
∑M

j=1 αj)∏M
j=1 Γ(αj)

M∏
j=1

x
αj−1
j , (4.10)

αj ≥ 0 ∀ j. The Dirichlet distribution is used as a conjugate pair in bayesian

analysis and the shape of the distribution is determined by the parameter

αj. If αj = 1 for all j, then it leads to a uniform distribution. The higher

the value of αj, the greater the probability of occurence of xj. The nota-

tion (x1, x2, . . . , xM) ∼ Dirch(α1, α2, . . . , αM) indicates that (x1, x2, . . . , xM)

is sampled from a Dirichlet distribution in (4.10). An estimate in the beginning

of the time slot t of the i-th row of the matrix P̂
(t)
k is given by

(P̂k

(t)
)i ∼ Dirch

(
t−1∑
s=1

d
(s)
1k v

s−1
jk ,

t−1∑
i=1

d
(s)
2k v

s−1
jk ,

t−1∑
s=1

d
(s)
Fkv

s−1
jk

)
, (4.11)

where vs−1jk is as defined earlier with v0jk sampled from {0, 1} with probability

q := r/F . After every time slot t, the recommendation and caching prob-

Algorithm 4 Caching and recommendation algorithm (one SBS case)

1: procedure Point estimation/Bayesian estimation

2: û∗b,0
i.i.d.∼ {0, 1} from p = c/F , & v̂∗b,0

i.i.d.∼ {0, 1} from q = r/F .
3: Recommend & cache according to v̂∗b,0 & û∗b,0.
4: for t = 0, 1, . . . , T do
5: Observe demands d

(t)
ik in slot t.

6: Compute P̂
(t)
k from (4.9) for point estimation

7: Compute P̂
(t)
k from (4.11) for Bayesian estimation

8: Solve (4.8)
9: Use (v̂∗b,t, û

∗
b,t) to recommend and cache.

10: end for
11: end procedure

abilities are selected by solving the optimization problem in (4.8) with P̂
(t)
k

obtained in (4.11). A procedure to find a strategy is given in Algorithm 4.

In the following subsection, we provide theoretical guarantees of the above algorithm.

65

4.3. JOINT CACHING AND RECOMMENDATION FOR SINGLE SBS
SCENARIO

4.3.1 Theoretical Guarantees

In this section, we provide a high probability bound on the regret for both Point

estimation and Bayesian estimation. For the Point estimation case, we start

by providing a lower bound on the waiting time which is ϵ close to the optimal

caching strategies. The result will be of the following form: With a probability of

at least 1− δ, the following holds provided t ≥ constant

uTt Pkvt ≥ sup
(u,v)∈Cc,r

uTPkv − ϵ, (4.12)

where (ut,vt) is the caching strategy obtained by using any algorithm. The constant

ϵ depends on various parameters, as explained next. Towards stating theoretical

guarantees, the following definition is useful.

Definition 2. (Covering number) A set Nϵ := {(x1,y1), (x2,y2), . . . , (xNϵ ,yNϵ)} is

said to be an ϵ-cover of Cc,r if for any (u,v) ∈ Cc,r, there exists (xj,yj) ∈ Nϵ for

some j such that ∥u− xj∥ ≤ ϵ
8
and ∥v − yj∥ ≤ ϵ

8
.

The following theorem provides a bound that is useful to provide the final result.

Theorem 4.3.1. For a given estimate of the PTM denoted P̂
(t)
k using Point

estimation or Bayesian estimation, the following holds good

Pr

{
sup

(u,v)∈Cc,r
uTPkv − utPkvt ≥ ϵ

}
≤ |Nϵ|Pr

{
∥∆̂P

(t)
∥F ≥

ϵ

4κrc

}
, (4.13)

where (ut,vt) is the output of the Algorithm 4 at time t, and ∆̂P
(t)

:= Pk − P̂
(t)
k .

Further, κ > 0 is some constant.

Proof. Given in Appendix B.1.

Using the above result, in the following, we provide our first main result on the

performance of the Point estimation scheme.

Theorem 4.3.2. Using (4.8) for caching and recommendation in slot t, for any

ϵ > 0, with a probability of at least 1−δ, δ > 0, (u∗o,t)
TPkv

∗
o,t ≥ sup(u,v)∈Cc,r u

TPkv−ϵ

provided

t ≥ 1

q
(
1− exp{− Nϵ2

8κ2F 2c2r2
}
) log

2NϵF 2

δ
. (4.14)

66

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

Proof. Given in Appendix B.2.

As we know, the regret achieved by the Point estimation method is O(T) as

it incurs non-zero constant average error for all the slots t satisfying (4.14). In

this method, the estimation of PTM is done using the samples obtained from the

first t slots, and the caching strategy is decided based on this estimate. How-

ever, an improvement over this is to continuously update the estimates, and the

caching/recommendation strategies. Instead of analyzing the regret for this, we

assume that at any time slot t, a genie provides an estimate of the PTM as in

(4.9) to compute the caching/recommendation strategies, and provide the corre-

sponding approximate regret bound. In particular, in Appendix B.3, we show

that a regret of O(T 2/3
√

log T) can be achieved through the genie aided point

estimation method. As opposed to point estimation method, here (genie aided)

the caching/recommendation decisions can be made using an improved estimate of

the PTM in every time slot leading to a better regret. We use this as a benchmark to

compare the regret obtained from the Bayesian estimation method. In the next

section, we extend the result to two SBS scenario, and use the insights to extend it

further in the later part of the paper to any number of SBSs.

4.3.2 Bayesian Estimation: Single SBS Scenario

Note that unlike the analysis for point estimation, in this case, the strategies are

correlated across time. This makes the analysis non-trivial. The approach we take

is to convert a sequence of random variables (function of caching and recommenda-

tion across time) into a Martingale difference. This enables us to use the Azuma’s

inequality, which can be used to provide high probability result on the regret. In

the following, we provide the result.

Theorem 4.3.3. For the Bayesian estimation in Algorithm 4, for any ϵ > 0,

with a probability of at least 1− δ, δ > 0, the following bound on the regret holds

RegT ≤ 2rcmax
ij

pij|Nϵ|
∑
t

exp

{
−8ψ2

t

cr |Nϵ|2 σ̄2
t (t)

}
+ 2

∑
t

ψt +
√

128r2c2T log(1/δ),

(4.15)

67

4.4. PROPOSED CACHING AND RECOMMENDATION STRATEGIES
WITH MULTIPLE SBSS

where α
(t)
ij =

∑t−1
q=1 d

(q)
i v

(q−1)
j , σ̄2

t :=

[∑F
j=1

1(∑
i α

(t)
ij +1

)2

]
, and ψt is any non-negative

number.

Proof. Given in Appendix B.5.

Remark: Note that the above result is an algorithm dependent bound as it

depends on the recommendation strategy, which is determined by the algorithm. In

order to provide more insights into the result, we will make certain assumption about

the demands. In particular, if the demands d
(q)
i > 0 almost surely for all i and q, then,

α
(t)
ij will be 0 when v

(q−1)
j = 0 for all q ≤ t−1 or O(t) in case of

∑t
q=1 v

(q−1)
j = O(

√
t).

Note that this depends on the algorithm output, which we presume that at least files

of higher probability transition values with recommendation will be sampled multiple

times in a time frame. This leads to σ̄2
t = O(1

t2
). Thus, assuming Ψt = O(

√
t), the

summation in the first term of the regret is O(1). Overall, this results in O(
√
T)

regret. Recall that an approximate regret of O(T 2/3
√

log T) is shown for the genie

aided case while the Bayesian estimation method achieves a regret of the order
√
T . The genie aided regret is worse by an order of T 1/6, which is partly due to the

fact that the genie estimation of PTM is less accurate than the point estimation

method. In the next section, we extend our results to two SBS scenario.

4.4 Proposed Caching and Recommendation Strate-

gies With Multiple SBSs

In this section, we present caching and recommendation algorithms when there are

multiple SBSs. In particular, we provide insights on how to use the neighboring SBSs

estimates to further improve the overall caching and recommendation performance

of the network. First, we present the results for two SBS scenario, and similar

analysis will be used to extend the results to multiple SBSs.

4.4.1 Two Small Base Station Scenario

In this subsection, we consider a two SBSs scenario, as shown in Fig. 4.3. As de-

scribed in Section 4.2, P1 and P2 represents PTM for SBS-1 and SBS-2, respectively.

68

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

The central MBS sends the global update of the recommendation and caching de-

cisions to each SBS. Assume that the request across SBSs are independent. Let

each SBS use one of the estimation methods in Algorithm 4. Let P̂
(t)

1 and P̂
(t)

2 be

the corresponding estimates (either point or Bayesian estimate) of P1 and P2,

respectively. The two SBSs convey their respective PTM to the central MBS. The

central MBS computes an estimate Q̂
(t)

k , k = 1, 2 for SBS 1 and SBS 2 as a linear

combination of the two estimates as given below

Figure 4.3: Heterogeneous network with distributed caching consisting of two SBS.

Q̂
(t)

k = λkP̂
(t)

1 + (1− λk)P̂
(t)

2 , (4.16)

where λk ∈ [0, 1], k = 1, 2 strikes a balance between the two estimates. The above

estimate is used to compute the respective caching and recommendation strategies

for the two SBSs and will be communicated to the respective SBSs. The above

results in a better estimate, for example, when P1 = P2 or when the two matrices

are close to each other. The corresponding algorithm is shown below. First, we

prove the following guarantee for the Point estimation method.

Theorem 4.4.1. For Algorithm 5 with point estimation, for any SBS k and for

any ϵ > 0, with a probability of at least 1 − δ, δ > 0, the regret Regk,T < ϵ, i.e.,

69

4.4. PROPOSED CACHING AND RECOMMENDATION STRATEGIES
WITH MULTIPLE SBSS

Pr

{
(u∗k,t)

TPkv
∗
k,t ≥ sup(u,v)∈Cc,r u

T Q̂
(t)
k v − ϵk

}
> 1− δ provided

t ≥ max

{
τ

(
ϵk
λk
,
δ

2

)
, τ

(
ϵk

(1− λk)
,
δ

2

)}
, (4.17)

where

τ(ϵ, δ) :=
1

q
(
1− exp{− Nϵ2

8κ2F 2c2r2
}
) log

2|Nϵ|F 2

δ
. (4.18)

Further, ϵk := ϵ/2− (1− λk) sup(u,v)∈Cc,r

∣∣uT (P2 −P1)v
∣∣

Proof. Given in Appendix B.6.

Algorithm 5 Caching and recommendation algorithm (two SBS case)

1: procedure Point estimation/Bayesian estimation

2: û∗b,0
i.i.d.∼ {0, 1} from p = c/F , and v̂∗b,0

i.i.d.∼ {0, 1} from q = r/F .
3: Recommend & cache according to v̂∗b,0 & û∗b,0.
4: for t = 0, 1, . . . , T do
5: Observe demands d

(t)
ijk in slot t, k = 1, 2.

6: if point estimation then

7: Compute P̂
(t)
k from (4.9) for point estimation

8: else
9: Compute P̂

(t)
k from (4.11) for Bayesian estimation

10: end if
11: Choose λi, and find Q̂

(t)
i from (4.16), and solve (û∗k,t, v̂

∗
k,t) =

arg max(u,v)∈Cc,r u
T Q̂

(t)
k v

12: Use (v̂∗k,t, û
∗
k,t) to recommend and cache.

13: end for
14: end procedure

As in the single SBS case, to benchmark the performance of Bayesian estimation

method, we consider a genie aided scenario, and in Appendix B.4, we show that it

achieves an approximate regret of

Regk,T ⪅ max

{
Θλk,Θ(1− λk)

}
T 2/3 + 2T (1− λk)V12,

where V12 := sup(u,v)∈Cc,r

∣∣uT (P2 −P1)v
∣∣ and Θ = 3

√
8κ2F 2c2r2(log 4F 2T 2+F)

qN
. The

above clearly shows the trade-off between the two terms. The first term scales as

T 2/3 while the second term scales with T linearly. This can be balanced by using

λk = 1 − 1√
T

, which results in O(
√
T) scaling of regret. Note that the choice

70

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

λk = 1− 1√
T

reveals that as time progresses, i.e., as the BS k collects more samples,

the weights allocated to the neighboring BS should go down to zero, as expected.

Furthermore, by appropriately choosing λk as above, the regret obtained is of the

order T 2/3. Next, we present the guarantees for Algorithm 5.

Theorem 4.4.2. For Algorithm 5 with Bayesian estimation, for

ϵ > 2 max
k=1,2

(1− λk)T sup
(u,v)∈Cc,r

∣∣uT (P1 −P2)v
∣∣ , (4.19)

with probability of at least 1 − δ, δ > 0, for any BS k ∈ {1, 2}, the regret can be

bounded as

Regk,T ≤ max

{
Rk

(
2ϵk
λk
,
δ

2

)
, Rk

(
2ϵk

(1− λk)
,
δ

2

)}
. (4.20)

In the above,

Rk(ϵ, δ) := 2rcmax
ijk

pijk|Nϵ|
∑
t

exp

{
−8ψ2

t

cr |Nϵ|2 σ̄2
k(t)

}
+ 2

∑
t

ψt +
√

128r2c2T log(1/δ),

α
(t)
ijk =

∑t−1
q=1 d

(q)
ik v

(q−1)
jk , ϵk := ϵ/2 − (1 − λk)T sup(u,v)∈Cc,r

∣∣uT (P1 −P2)v
∣∣, and

σ̄2
k(t) :=

[∑F
j=1

1(∑
i α

(t)
ijk+1

)2

]
.

Proof. Given in Appendix B.7.

Remark: The result shows the tradeoff exhibited by λk. In particular, larger λk

makes the first regret inside the max term in (4.21) larger, and smaller λk ensures

that the second term inside the max above dominates. It is essential to balance the

two depending on the number of samples received. We further elaborate this in the

simulation results. Further, the above result is an algorithm dependent bound as the

bound depends on the recommendation strategy, which is determined by the algo-

rithm. Following the single SBS analysis, we make similar assumptions in two SBS

scenario. In particular, if the demands d
(q)
ik > 0 almost surely for all i and q, then,

α
(t)
ijk will be 0 when v

(q−1)
jk = 0 for all q ≤ t−1 or O(t) in case of

∑t
q=1 v

(q−1)
jk = O(

√
t).

Note that this depends on the algorithm output, which we presume that at least files

of higher probability transition values with recommendation will be sampled multi-

ple times in a time frame. This leads to σ̄2
k(t) = O(1

t2
). Thus, assuming Ψt = O(

√
t),

the summation in the first term of the regret is O(1). Overall, this results in O(
√
T)

71

4.4. PROPOSED CACHING AND RECOMMENDATION STRATEGIES
WITH MULTIPLE SBSS

regret. Furthermore, the regret obtained by the genie aided method is of the order

T 2/3, which is higher than the one achieved by the Bayesian estimation method.

This along with the experimental results establishes the superiority of the proposed

Bayesian estimation method.

4.4.2 Multiple Small Base Station Scenario

In this section, we consider a heterogeneous network with M SBSs connected to

a central MBS. The requests at each SBS are assumed to be i.i.d. with PTM

P1,P2, . . . ,PM as described in Section 4.2. Similar to the two SBS model, each

SBS computes an estimate of the PTM as follows

Q̂
(t)

k = λ
(k)
1 P̂

(t)

1 + λ
(k)
2 P̂

(t)

2 + . . .+ λ
(k)
M P̂

(t)

M , (4.21)

where λ
(k)
1 , λ

(k)
2 , . . . , λ

(k)
M , k = 1, 2, . . . ,M are coefficients to be determined later.

Further, it satisfies
∑M

j=1 λ
(k)
j . The following theorem is a generalization of two BS

model which provides a guarantee on the minimum time required to achieve a certail

level of accuracy with high probability.

Theorem 4.4.3. Using (4.21) for any

ϵ > M2 max
k
{(1− λ(k)1)D1 − λ(k)2 D2 − . . .− λ(k)M DM},

for point estimation, with a probability of at least 1− δ, δ > 0, for any BS k, the

regret (Regk,T) is less than ϵ

{
i.e. (u∗o,t)

TP1v
∗
o,t ≥ sup(u,v)∈Cc,r u

TP1v− ϵ
}

provided

t ≥ max

{
τ

(
ϵ1

λ
(k)
1

,
δ

M

)
, τ

(
ϵ2

λ
(k)
2

,
δ

M

)
, . . . , τ

(
ϵM

λ
(k)
M

,
δ

M

)}
, (4.22)

τ(ϵ, δ) :=
1

q
(
1− exp{− Nϵ2

8κ2F 2c2r2
}
) log

2NϵF 2

δ
, (4.23)

where, ϵk := ϵ/M2 − (1− λ(k)1)D1 + λ
(k)
2 D2+, . . . ,+λ

(k)
M DM , and

Dk := sup(u,v)∈Cc,r

∣∣uTPkv∣∣ ∀ k = 1, 2, . . . ,M .

Proof. Given in Appendix B.8.

72

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

The regret for the genie aided case after appropriate choice for λk turns out to

be of the order of
√
T . The genie aided regret analysis is relegated to Appendix

B.4.1. Next we present the regret bound for the Bayesian estimation method.

Theorem 4.4.4. Using (4.21) for any

ϵ > M2 max
k
{(1− λ(k)1)I1 − λ(k)2 I2−, . . . ,−λ

(k)
M IM},

with probability of at least 1− δ, δ > 0, for any BS k, k ∈ {1, 2, . . . ,M} Regk,T , the

regret of the Bayesian estimation method satisfies the following bound

Regk,T ≤ max

{
Rk

(
ϵ1

λ
(k)
1

,
δ

M

)
, Rk

(
ϵ2

λ
(k)
2

,
δ

M

)
, . . . , Rk

(
ϵM

λ
(k)
M

,
δ

M

)}
. (4.24)

In the above

Rk(ϵ, δ):=2rcmax
ijk

pijk|Nϵ|
∑
t

exp

{
−8ψ2

t

cr |Nϵ|2 σ̄2
k(t)

}
+ 2

∑
t

ψt +
√

128r2c2T log(1/δ),

α
(t)
ijk =

∑t−1
q=1 d

(q)
ik v

(q−1)
jk , ϵk := ϵ/M2 − (1− λ(k)1)I1 + λ

(k)
2 I2+, . . . ,+λ

(k)
M IM ,

Ik :=
∑

t sup(u,v)∈Cc,r

∣∣uTPkv∣∣ ∀ k = 1, 2, . . . ,M and σ̄2
k(t) :=

[∑F
j=1

1(∑
i α

(t)
ijk+1

)2

]
.

Proof. Given in Appendix B.9.

Remark: Note that the above result is an algorithm dependent bound as it

depends on the recommendation strategy, which is determined by the algorithm.

Following the single SBS analysis, we make similar assumptions in multiple SBS

scenario. In particular, if the demands d
(q)
ik > 0 almost surely for all i and q, then,

α
(t)
ijk will be 0 when v

(q−1)
jk = 0 for all q ≤ t−1 or O(t) in case of

∑t
q=1 v

(q−1)
jk = O(

√
t).

Note that this depends on the algorithm output, which we presume that at least

files of higher probability transition values with recommendation will be sampled

multiple times in a time frame. This leads to σ̄2
k(t) = O(1

t2
). Thus, assuming

Ψt = O(
√
t), the summation in the first term of the regret is O(1). Overall, this

results in O(
√
T) regret. As in the case of two SBS, the regret obtained is better

than the genie aided scenario. In the next section, we present experimental results

that corroborates some of our theoretical observations.

73

4.5. SIMULATION RESULTS

4.5 Simulation Results

In this section, simulation results are presented to highlight performance of the

proposed caching and recommendation model. The simulation setup consists of one

SBS model, two-SBS model and a heterogeneous model with multiple users. We

assume a time-slotted system in the simulation setup. For the heterogeneous model,

the simulation consists of two scenarios as follows:

� Fixed Link Scenario: In this, the links between SBS and users are uniformly

and independently distributed in {0, 1} with probability 1/2.

� SINR Based Scenario: In this, the SBS and users are assumed to be distributed

uniformly in a geographical area of radius 500m. It is assumed that a SBS

and user can communicate only if the corresponding SINR is greater than a

threshold. This SINR takes into account the fading channel, the path loss,

power used, and the distance between the user and the SBS. The minimum

rate at which a file can be transferred from the SBS to a user is given by

the threshold, and hence the reciprocal of the rate indicates the delay. In the

simulation, we have used τ := 1
log(1+SINR)

as a measure of the delay between

a user and a SBS. However, when the requested file is absent, a backhaul

fetching delay of α× τ is counted in addition to the down link delay of τ , i.e.,

the overall delay when the file is absent is (α + 1)τ , with α = 10. Also, if the

threshold is R, then at least R bits can be sent in a time duration of at most

1/ log(1+SINR) seconds, and hence the throughput is roughly R log(1+SINR)

bits/second.

Fig. 4.4 shows the plot for a heterogeneous system the metric used for comparison

is throughput. In Fig. 4.4, the number of SBSs, users, the total number of files and

threshold value for SINR are 5, 30, 100,and 12dB, respectively. The throughput for

the proposed algorithm with recommendation is 225 bits/s for a cache size of 24,

while LRFU, LRU and LFU algorithm has a throughput of 100 bits/s, 85 bits/s and

70 bits/s respectively for the same cache size. Thus from Fig. 4.4 we can see that the

proposed algorithm has higher throughput as compared to the existing algorithms.

Fig. 4.5 corresponds to the SINR scenario for a two SBS model. Fig. 4.5 shows

74

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

the average delay versus cache size plot for (a) cache placement algorithm with

recommendation (b) cache placement algorithm without recommendation, (c) LRFU

algorithm, (d) LRU algorithm and (e) LFU algorithm. In Fig. 4.5, SBSs, the number

of users, the total number of files and threshold value for SINR are 2, 25, 100 and

12dB, respectively. From Fig. 4.5 we can observe that the delay of both the proposed

algorithms is less as compared to the other benchmark algorithms, since pre-fetching

files according to the estimated methods results in lower fetching costs from the

backhaul and hence less delay.

16 18 20 22 24 26 28 30

Cache size for 30 users

50

100

150

200

250

300

T
h

ro
u

g
h

p
u

t
(R

b
it
s
/s

e
c
)

Proposed Algorithm: Bayesian estimation

Proposed Algorithm: Point estimation

Proposed Algorithm without recommendation

LRFU Algorithm

LRU Algorithm

LFU Algorithm

Figure 4.4: Average throughput v/s cache size for 15 SBS model.

Fig. 4.6 shows the plot for two BS model. The value of λ1 is varied between 0.1

and 1. From the Fig. 4.6, we can observe that as the value of λ1 approaches 0.5,

the average cache hit increases, this is because for λ1 = 0.5 and P1 = P2 , the Q

popularity profile matrix of BS will have maximum similarity to the individual SBS

popularity profile matrix and hence the cache hit will be maximum for λ1 = 0.5 and

it will gradually decrease as we further increase the value of λ1. Fig. 4.7 shows the

plot for average cache hit versus λ for 2 SBS when P1 ̸= P2. From the Fig. 4.7,

we can observe that for larger T , the optimal lambda value is close to 1. Also, for

smaller value of T , depending on the value of Θ, the optimal value of λ is less than 1.

Thus, the simulation results prove that the recommendation helps in increasing the

75

4.5. SIMULATION RESULTS

16 18 20 22 24 26 28 30

Cache size for 25 users

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

A
v
e

ra
g

e
 d

e
la

y
 (

s
e

c
o

n
d

)

Proposed Algorithm: Bayesian estimation

Proposed Algorithm: Point estimation

Proposed Algorithm without recommendation

LRFU Algorithm

LRU Algorithm

LFU Algorithm

Figure 4.5: Average delay v/s cache size for two-SBS model.

10 15 20 25 30 35 40 45

Cache size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e

ra
g

e
 C

a
c
h

e
 h

it

lambda value = 0.5
lambda value = 0.2
lambda value = 0.7

Figure 4.6: Cache hit v/s cache size for 2 SBS and P1 = P2.

average cache hit when compared to the algorithm without recommendation and it

also performs better than the existing popular LRFU, LRU and LFU algorithms.

76

CHAPTER 4. BAYESIAN LEARNING FOR JOINT OPTIMIZATION

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lambda value

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 C

a
c
h
e
 h

it

 T = 5000
T = 50

Figure 4.7: Cache hit v/s λ for 2 SBS and P1 ̸= P2.

4.6 Summary

The deployment of MEC in the current wireless heterogeneous networks is an impor-

tant application for the smooth transition to the distributed cloud based platform.

In this chapter, a model that captures the caching decisions along with recommen-

dation has been introduced. Implications of recommendation on user requests has

been studied and it has been observed that the recommendation does influence the

demands from the users. Bayesian and point estimation methods are used to deter-

mine the user request pattern. An algorithm is then proposed to jointly optimize

caching and recommendation. A multi-tier heterogeneous model consisting of MBS

and SBSs is also presented and an upper bound on the estimation accuracy of pop-

ularity profile is provided. Finally, simulation results and theoretical proofs support

the superior performance of the proposed method over the existing algorithms. In

this chapter, we addressed the joint optimization problem of caching and recom-

mendation, however, we have not considered the situations wherein the outcomes

are partly under the control of a decision maker and sequential. Hence, in the next

chapter, we look into discrete time stochastic process (MDP) and jointly optimize

caching and recommendation.

77

Chapter 5

Recommendation based Caching

using Whittle Index

5.1 Overview

In this chapter, the joint caching and recommendation is modeled as an MDP pro-

cess and. The joint optimization problem is a partially observable MDP with the

classic exploitation versus exploration tradeoff that is difficult to quantify. We, there-

fore, study the problem in the framework of restless multiarmed bandit processes,

and perform a Whittle’s indexability analysis. The multi-armed bandit problem

(MABP) is a decision making problem that sequentially activates one out of I par-

allel Markov processes and leaves the remaining I − 1 passive, the passive processes

will be frozen (with no state transition) until they become active. Gittins [142]

proved the optimality of a simple index policy for the MABP, subsequently referred

to as the Gittins index policy, which always activates the process with the highest

state-dependent index. Whittle extended the conventional MABP to a restless case

and proposed an index policy, referred to as the Whittle index policy, and conjec-

tured it to be asymptotically optimal as the number of parallel processes tends to

infinity. The Whittle index policy, always prioritizes the processes with the highest

statedependent indices, referred to as the Whittle indices, which are calculated by

solving sub-problems with remarkably reduced state spaces.

The edge systems should be capable of determining the environment and then

take optimal or near optimal caching actions, without any explicit programming.

79

5.2. SYSTEM MODEL

The task of Q-learning is usually described as MDP, however, state space, transition

probabilities and reward functions are not required. Inspired by the success of the

MDP models, it can be deployed at user edge networks to understand the user’s

behaviour and network patterns.

In this chapter, caching and recommendation in a wireless network is jointly

looked into. The demands are modelled as a two-state markov chains. At the end

of each slot, the caching decision is associated with two objectives: (a) the reward

achieved when a cached file is served to a user, (b) exploration of the recommendation

of a file for more informed decisions and associated rewards in the future. These

two objectives results in the classic exploration v/s exploitation tradeoff seen in

sequential decision making problems. Specifically the contributions are as follows:

� In this chapter, the joint caching and recommendation is modeled as an MDP

and its Whittle’s indexability is established.

� Based on the Whittle’s indexability condition, the whittle index policy for the

caching problem is provided. The Whittle’s index policy is known to have

near-optimal performance and have shown low-complexity [80].

5.2 System Model

Figure 5.1: Caching based wireless heterogeneous network

80

CHAPTER 5. RECOMMENDATION BASED CACHING USING
WHITTLE INDEX

Fig. 5.1 depicts the wireless caching network consisting of one BS, U mobile users

and F files. The assumption is made that the SBS is capable of storing C files of

equal sizes. Fig. 5.1 illustrates how the SBS is connected with the user, and this

connection is scheduled by the scheduler, irrespective of the caching algorithm used.

It is assumed that the time is slotted. The demand variable df,t denotes the total

number of files requested from all the connected users to the BS in time slot t. The

demand for each file is modelled as a two-state Markov chain i.e. the state remains

static within each time slot and evolves across time slots according to Markov chain

statistics. The state space Ai for each file i is given as Si = {li, hi}. State hi

corresponds to when the complete file is cached. When the demand in state li, there

exists a fraction δi, 0 ≤ δi < 1, such that demands below the fraction δi do not get

cached, and is cached above the fraction δi. Thus for a file i, the two-state Markov

process is given by a 2 x 2 PTM.

Pi =

pi 1− pi
ri 1− ri

 ,
where

pi := prob(Ai[t] = hi|Ai[t− 1] = hi),

ri := prob(Ai[t] = hi|Ai[t− 1] = li),

where Ai[t] denote the state of the cached file in the BS in time slot t.

5.2.1 Caching Model

At the beginning of the time slot, the BS does not have the exact knowledge of the

state for each files. Thus it maintains a belief value πi for each file i which is the

probability that Ai is in state hi. Specifically, in each slot the BS jointly makes

the following decisions: (a) the BS decides on the optimal files to be cached and

calculates the expected reward, (b) based on the reward achieved the BS picks a

file for recommendation, while simultaneously taking into account the effect of this

decision on the long-term reward. At the end of the time slot, the BS receives the

information on the Markov state and this is used as an feedback to update its belief.

81

5.2. SYSTEM MODEL

Let u be the cached file and v be the recommended file. The caching problem can be

modelled as a partially observable MDP. Hence, ϕ : {u, v} denote the caching and

recommendation pair and Φ denote the set of such pairs. In each slot, the aim is to

find the optimal pair which maximizes the reward. Let π denote the belief value for

each file i. Then the optimal pair ϕ∗i,πi = {u∗i,πi , v
∗
i,πi
}, for file i, as a function of the

belief πi is given as

ϕ∗i,πi = argmax
ϕ∈Φ

EAi
[γi(Ai, ϕ)], (5.1)

where γ(Ai, ϕ) is the average cost of caching for file i when the underlying Markov

process is in state Ai and the caching and recommendation pair ϕ is deployed. The

distribution of the state Ai is characterized by the belief value πi as follows:

Ai =

hi, w. p. πi ,

li, w. p. 1− πi.
(5.2)

The expected immediate reward when file i is cached is given by

Ri(πi) = EAi
[γi(Ai, ϕ

∗
i,πi

)] (5.3)

Here ϕ∗i,πi denotes the optimal caching strategy that maximizes the expected imme-

diate reward.

Let π̄[t] = (π1[t], . . . , πN [t]) denote the belief vector at the beginning of the time

slot. A stationary caching policy, Ψ, is a stationary mapping Ψ : π̂ → I between

the belief vector and the index of the cached file. For this stationary policy Ψ, the

infinite horizon discounted reward under initial belief π̄ is given by

V (Ψ, π̄) =
∞∑
t=0

βtEπ̄RI[t]=Ψ(π̄[t])(πI[t][t]) (5.4)

where π̄ is the belief vector in time slot t, πi[t] denotes the belief value of file i in

slot t, π̄[0] = π̄, I[t] denotes the index of the file cached in time slot t. The discount

factor is given by β ∈ [0, 1]. The optimal expected discount reward is given by the

Bellman equation as follows:

V (π̄) = max
I
{RI(πI) + βEπ̄[t+1][V (π̄[t+ 1])]} (5.5)

82

CHAPTER 5. RECOMMENDATION BASED CACHING USING
WHITTLE INDEX

The belief evolution π̄[t]→ π̄[t+ 1] proceeds as follows:

πi[t+ 1] =


pi if I[t] = i and Ai[t] = hi,

ri if I[t] = i and Ai[t] = li,

Qi(πi[t]) if I[t] ̸= i

(5.6)

where Qi(πi) = πipi + (1− πi)ri is the belief evolution when the file i is not cached

in time slot t.

The expected average cost of caching for each arm i is given by

Cavg
i (π)

∆
= lim

T→∞
sup

1

T
E
[T∑
t=1

fi(A
π
i (t))

]
(5.7)

where Aπi (t) is the fraction of the ith file cached under caching policy π. The aim

is to find the caching policy π such that it minimizes the average costs for caching.

Let Π denote the set of all the caching policies, then the optimization problem is as

follows :

C∗ = minπ∈Π

N∑
i=1

Cavg
i (π) (5.8)

where C∗ is the minimum average cost and π∗ is the optimal caching policy.

5.3 Optimal Caching Cost

In this section, bounds on the expected reward has been derived.

Lemma 1:The expected immediate reward R(π) has the following properties::

(a) R(π) is convex and increasing in π for π ∈ [0, 1]

(b) R(π) is bounded as follows:

max{δ, π} ≤ R(π) ≤ (1− δ)π + δ (5.9)

Proof: Let Φ∗ be the set of optimal caching and recommendation strategy pairs

for all π ∈ [0, 1], i.e. Φ∗ = {ϕ∗, π ∈ [0, 1]}. The expected reward in (5.3) can be

83

5.4. RMAB AND WHITTLE’S INDEXABILITY

rewritten as

R(π) = max
ϕ∈Φ∗

EA[γ(A, ϕ)]

= max
ϕ∈Φ∗

[πγ(h, ϕ) + (1− π)γ(l, ϕ)],

where γ(S, ϕ) denotes the average cost of caching when the demand state is S ∈

{l, h}. If we look at the average cost, when ϕ is fixed, we can see that πγ(h, ϕ) +

(1 − π)γ(l, ϕ) is linear in π. Hence, R(π) can be taken as a point-wise maximum

over a family of linear functions, and thus is convex. R(π) is convex thus proving

the convexity statement in (a).

Now to determine the bounds to R(π), from equation (5.3) we have,

R(π) = max
ϕ∈Φ

EA[γ(A, ϕ)] ≥ max
u

EA[γ(A, {u, ∗})]

where γ(A, {u, ∗}) is the average cost when only caching is considered without taking

into account the recommendation. Note that without the recommendation, caching

is only a function of the belief value π. Thus the average cost under the caching

strategy can be expressed in terms of the indicator functions as follows:

max
u

EA[γ(A, {u, ∗})]

= max
u

[P (A = l)u · I(u ≤ δ) + P (A = h)u · I(u ≤ 1)]

= max
u

u[P (A = l) · I(u ≤ δ) + P (A = h) · I(u ≤ 1)]

= max{δ, π}.

Thus the lower bound in (b) is proved. The upper bound corresponds to when the

full demand state information is available.

5.4 RMAB and Whittle’s Indexability

In this section we show that joint caching and recommendation problem can be

formulated as restless multi-armed bandit (RMAB). For our problem, the RMAB

can be defined as a family of sequential dynamic resource allocation problem in the

presence of several independent evolving demands. For each time slot, the state of

84

CHAPTER 5. RECOMMENDATION BASED CACHING USING
WHITTLE INDEX

each arm stochastically evolve in time based on the current state and the action

taken. At the end of each time slot, reward dependent on the states and the action

taken is obtained. Thus, RMABs can be denoted as a tradeoff between decisions

giving high immediate rewards versus those that sacrifice immediate rewards for

better future rewards. Whittle index policies, if existent, are known to have near

optimal performance in an average constraint RMAB problem. However, Whittle’s

index policy exists only if the RMAB problem satisfies the following condition known

as Whittle’s indexability. Let the activation charge to pull an arm be denoted by

ω, which is strictly positive. Let D(ω) be the set of states for the RMAB problem

such that it is optimal to to stay passive.

Indexability property: The RMAB problem is Whittle indexable if and only if,

as ω increases from 0 to∞, the set D(ω) monotonically decreases from entire set to

empty set {ϕ}.

For the joint caching and recommendation problem, in each time slot, based on

the current belief value π, the BS caches the file f (action a = 1) or stays idle (a = 0).

In an idle state, it obtains a subsidy of ω. The belief value is updated based on the

reward obtained and feedback received. Henceforth, the optimal scheduling policy

maximizes the infinite horizon discounted reward, which is given by the following

Bellman equation:

Vω(π) = max{[R(π) + β(πVω(p) + (1− π)Vω(r))], [ω + βVω(Q(π))]} (5.10)

The first term inside the max operator refers to the infinite horizon reward when

a file is cached and the second term corresponds to the idle decision in the current

slot.

5.4.1 Thresholdability of the ω-subsidy policy

The convexity property of the infinite horizon discounted reward is proved in the

following proposition:

Proposition 5.4.1. : The infinite horizon discounted reward, Vω(π) is convex in

π ∈ [0, 1].

Proof. Given in Appendix C.1.

85

5.4. RMAB AND WHITTLE’S INDEXABILITY

Proposition 5.4.2. : The optimal ω subsidy policy is thresholdable in the belief

space π. There exists a threshold π∗(ω) such that the optimal action a is 1 if the

current belief π > π∗ and the optimal action a is 0, otherwise. The value of the

threshold π∗(ω) depends on the subsidy ω as given below:

(i) if ω ≥ 1, π∗(ω) = 1,

(ii) if ω ≤ δ, π∗(ω) = κ, for some κ < 0,

(iii) if δ ≤ ω ≤ 1, π∗(ω) ∈ (0, 1).

Proof. Given in Appendix C.2.

5.4.2 Whittle Indexability

The caching problem is Whittle indexable if the threshold π∗(ω) monotonically in-

creases with the subsidy ω. To prove the indexability, the closed form expression of

the discounted reward Vω(p) and Vω(r) is important and is proved in the following

lemma.

Lemma 2: The closed form expression of Vω(p) and Vω(r) is given as follows.

Case 1: p > r (positive correlation)

Vω(p) =



∑∞
k=0 β

kR
(r+(p−r)k+1(1−p)

1+r−p

)
if π∗(ω) < π0,

β(1−p)ω+(1−β)R(p)
(1−β)(1−βp) if π0 ≤ π∗(ω) < p ,

ω
(1−β) if π∗(ω) ≥ p

Vω(r) =



∑∞
k=0 β

kR
(
r−(p−r)k+1r

1+r−p

)
if π∗(ω) < r,

υ if r ≤ π∗(ω) < π0 ,

ω
(1−β) if π∗(ω) ≥ π0

Case 2: p ≤ r (negative correlation)

Vω(p) =



∑∞
k=0 β

kR
(
r+(p−r)k+1(1−p)

1+r−p

)
if π∗(ω) < p,

ω+βR(Q(p))+β2(1−Q(p))Vω(r)
(1−β)2Q(p)

if p ≤ π∗(ω) < Q(p) ,

ω
(1−β) if π∗(ω) ≥ Q(p)

86

CHAPTER 5. RECOMMENDATION BASED CACHING USING
WHITTLE INDEX

Vω(r) =


R(r)+βrVω(p)

1−β(1−r) if π∗(ω) < p,

(1−β(1−r))[ω+βR(Q(p))]+β2(1−Q(p))R(r)
(1−β(1−r))(1−β2Q(p))−β3r(1−Q(p))

if Q(p) ≤ π∗(ω) < r ,

ω
(1−β) if π∗(ω) ≥ r

Proof. Given in Appendix C.2.

Proposition 5.4.3. The threshold value is strictly increasing with ω. Therefore,

the problem is Whittle indexable.

Proof. The proof of indexability follows the lines of []. Details are given in Appendix

C.3.

5.5 Simulation Results

In the simulation setup, the number of files taken is 500. The number of SBS is

assumed to be 30. For simplicity, in the simulation, the assumption is made that

each user requests file of similar size. Average cache hit is obtained over an ensemble

of 100 simulation runs.

Fig. 5.2(a) and Fig. 5.2(b) compares the performance of the proposed algorithm

(MDP algorithm with recommendation) for the metric average cache hit with (a)

MDP algorithm without recommendation, (b) LRU and (c) LFU algorithms. The

number of users is 15 and 25 respectively for Fig. 5.2(a) and Fig. 5.2(b). It is

observed from Fig. 5.2(a) that with recommendation the average reward obtained

is higher compared to all other algorithms. When a file is recommended, the user

requests changes and this is captured by the recommendation vector. In Fig. 5.2(a),

we see that for the algorithm without recommendation to obtain the average cache

hit equal to that of the algorithm with recommendation, it has to increase its cache

size by 6 units. Similarly in Fig. 5.2(b), we observe that an increase of 9 cache

size is required for the algorithm without recommendation to perform equal to the

algorithm with recommendation. Further, in Fig. 5.2(b) we see that as the number of

users is increased from 15 to 25, the difference between both the algorithm increases.

Thus, the simulation results prove that the recommendation algorithm using whittle

index helps in increasing the average cache hit in comparison with the algorithm

87

5.6. SUMMARY

10 15 20 25 30

Cache size for 15 users

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 c

a
c
h
e
 h

it

Q-learning Algorithm with recommendation

Q-learning Algorithm without recommendation

Least Recently Used Algorithm

Least Frequently Used Algorithm

(a)

10 15 20 25 30

Cache size for 25 users

1

2

3

4

5

6

7

8

9

10

A
v
e
ra

g
e
 c

a
c
h
e
 h

it

Q-learning Algorithm with recommendation

Q-learning Algorithm without recommendation

Least Recently Used Algorithm

Least Frequently Used Algorithm

(b)

Figure 5.2: Average cache hit versus cache size for 500 files.

without recommendation and it also gives better result than the existing LFU and

LRU algorithms.

5.6 Summary

In this chapter, a model which captures the caching decisions along with recommen-

dation has been introduced. Implications of recommendation on user requests has

88

CHAPTER 5. RECOMMENDATION BASED CACHING USING
WHITTLE INDEX

been studied and it has been seen that recommendation does influence the demands

of the users. It has been shown that with recommendation the average reward in-

creases and thus, implying the fact the recommendation does affect the user request.

A MDP framework for the cache placement problem has been constructed and a

Whittle index based algorithm to update the caches has been developed. Based on

the Whittle’s indexability condition, the whittle index policy for the caching problem

is provided. Thus, in this chapter joint optimization of caching and recommendation

has been carried out using Whittle index algorithm. Further, the simulation results

show that the proposed algorithm with recommendation performs better when com-

pared with the algorithm which has no recommendation, as well as LRU and LFU

algorithms.

89

Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, we have focused on proactive caching paradigm by leveraging small

cell network deployments and caching capabilities at the edge of network, namely at

small cells. Initially, we have characterized the gains of caching for different topolo-

gies, content popularity distributions and caching policies. The modeling has been

carried out by using recent tools from probability theory, and our expressions for

average delivery rate and delay have been validated via numerical simulations. In

the second part of the thesis, we have approached to the problem from a distributed

point of view, and proposed several joint optimization algorithms for content pop-

ularity estimation and algorithmic aspects. The tools from machine learning and

enabling big data allowed us to show the benefits of mobile edge caching in practical

scenarios, where we have drawn several conclusions based on storage size, content

rating density, behaviour of content popularity and caching policy.

Initially, the problem of mobile edge caching in a cellular network with a given

topology and storage size in each SBS is looked into. The problem of maximizing

the cache hit with respect to the cache placement strategy (which takes values in

{0, 1}) subject to storage size constraint in each SBS turns out to be NP hard, and

hence, an approximation is proposed to the problem. Theoretical guarantees are

proven on the performance of the proposed method. A complexity analysis is also

presented of the proposed algorithm.

In the second chapter, assuming structured cache placement, high probability

91

6.2. FUTURE WORK

bounds on the conditional average cache hits are derived using Martingale difference

equation [79]. In particular, it is assumed that the caching strategy at a given time

is a linear combination of past caching decisions across time and across other SBSs

in the given region. Insights provided by the bound including regret and discrepancy

across temporal and spatial cache hits are used to design the iterative federated based

caching algorithm, which optimizes the weights of the linear sum. As a corollary of

the bound, a guarantee on the performance of the proposed algorithm using equal

caching-weights is also obtained.

In the third chapter, two estimation procedures, point and Bayesian estima-

tion are provided. A probabilistic model using Bayesian inference based on Dirich-

let distribution is proposed. Specifically, the influence of recommendation on the

popularity profile is modelled using a conditional probability distribution. A high

probability guarantee on the estimated caching and recommendation strategies is

provided. Irrespective of the estimation method, it is shown that with a probability

of 1− δ the proposed caching and recommendation strategy is ϵ close to the optimal

solution.

Finally, the joint caching and recommendation is modeled as an MDP and its

Whittle’s indexability is established. Based on the Whittle’s indexability condition,

the whittle index policy for the caching problem is provided. The Whittle’s index

policy is known to have near-optimal performance and have shown low-complexity

[80].

6.2 Future Work

Despite the fact that mobile edge caching is gainful especially in limited-backhaul

scenarios, there exist still several challenges which needs to be investigated in the

future. In particular, we have the following future directions.

1. Integrating with physical layer parameters: Integrating of the caching parame-

ters such as storage, average cache hit rate, with the physical layer parameters

such as SINR, bit rate, etc. would provide a holistic view to the system. Fur-

ther, integration of caching parameters with the physical parameters can be

decomposed and independently investigated.

92

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

2. D2D communications: D2D communication jointly with cache-enabled cellu-

lar networks will provide additional insights to the network designers. The

D2D cache-enabled communication requires understanding of user pattern,

similarity of content and geographical connectivity to the BSs.

3. Green aspects: The energy efficiency and area power consumption during

caching is of high interest, since the energy required to prefetch the files from

cache is usually considered low as compared to the energy required to prefetch

the files from backhaul. Some of the recent works [14, 143], have started to

focus on these areas, however more investigations are needed to gain insights

about the network deployment.

4. Average delivery rate: The performance metric we have defined is based on

fixed rate transmission and does not exploit the full potential of instantaneous

signal to noise ratio to achieve higher rates in downlink. Even though this

is done for tractability and we expect that new insights might be somewhat

similar, additional effort for detailing of this metric is of high interest, in order

to have a more realistic view to the system.

93

Appendix A

Proofs for Chapter 3

A.1 Derivation of (3.3.2)

Proof: Assume that each SBS b employs the caching strategy in (3.4) based on the

local data ZT
b,1. Then, the corresponding conditional average of the hit rate is given

by

E
[
Rb,T+1(π

(av)
b,T+1) | ZT

b,1

]
(a)
= wT+1

b

T∑
t=T−τ

αb,tE
[
Rb,T+1(πb,t) | ZT

b,1

]
+

∑
b′∈Nb

wT+1

b′

T∑
t=T−τ

αb′ ,tE
[
Rb,T+1(πb′ ,t) | ZT

b,1

]
(b)
=

T∑
t=T−τ

αb,tE
[
Rb,T+1(πb,t) | ZT

b,1

]
− Mb,T+1(w̸=b,T),

where (a) follows simply by substituting for π∗b,T+1 from (3.4). The equality (b) fol-

lows by (i) adding and subtracting the term
∑

b′∈Nb
wT+1

b′
∑T

t=T−τ αb,tE
[
Rb,T+1(πb,t) | ZT

b,1

]
,

and using the definition of Mb,T+1(w̸=b,T), and (ii) using the fact that wT+1
b +

∑
b′∈Nb

wT+1

b′
=

1 ∀ b ∈ B. Now, by adding and subtracting
∑T

t=T−τ αb,tE
[
Rb,T+1(πb,t) | Zt−1

b,1

]
, and

using the definition of Db,T (αb,T) in (3.6), the above equation can be lower bounded

as

E
[
Rb,T+1(π

(av)
b,T+1) | ZT

b,1

]
≥

T∑
t=T−τ

αb,tE
[
Rb,t(πb,t) | Zt−1

b,1

]
− Mb,T+1(w̸=b,T)− Db,T (αb,T). (A.1)

95

A.1. DERIVATION OF (3.3.2)

Similarly, an upper bound can also be obtained as follows

E
[
Rb,T+1(π

(av)
b,T+1) | ZT

b,1

]
≤

T∑
t=T−τ

αb,tE
[
Rb,t(πb,t) | Zt−1

b,1

]
+ Mb,T+1(w ̸=b,T) + Db,T (αb,T) (A.2)

where the above upper bound follows by adding the discrepancies instead of sub-

traction. Note that the term

At := αb,tRb,t(πb,t)− αb,tE
[
Rb,t(πb,t) | Zt

b,1

]
is a Martingale difference, i.e., E

{
At | Zt

b,1

}
= 0. Thus, the following event occurs

with a probability of at least 1− δ, which follows from the Azuma’s inequality

T∑
t=T−τ

At ≤ Hmax∥αb,T ∥2

√
2

τ
log

1

δ
. (A.3)

The above implies that

T∑
t=T−τ

αb,tE
[
Rb,t(πb,t) | Zt−1

b,1

]
≥

T∑
t=T−τ

αb,tRb,t(πb,t)

− Hmax∥αb,T ∥2

√
2

τ
log

1

δ
, (A.4)

where Hmax is the maximum possible hit rate. Since −At is also a Martingale dif-

ference, using Azuma’s inequality, the following holds good with a probability of at

least 1− δ

T∑
t=T−τ

αb,tRb,t(πb,t) ≥
T∑

t=T−τ

αb,tE
[
Rb,t(πb,t) | Zt−1

b,1

]
− Hmax∥αb,T ∥2

√
2

τ
log

1

δ
(A.5)

Using (A.4) in (A.1), the following holds good with a probability of at least 1− δ

E
[
Rb,T+1(π

(av)
b,T+1) | ZT

b,1

]
≥

T∑
t=T−τ

αb,tRb,t(πb,t)−Hmax∥αb,T ∥2

√
2

τ
log

1

δ

− Mb,T+1(w̸=b,T)− Db,T (αb,T). (A.6)

96

APPENDIX A. PROOFS FOR CHAPTER 3

This proves the first result in the theorem. Similar to the above equation, using

(A.5) in (A.2), the following holds good with a probability of at least 1− δ

T∑
t=T−τ

αb,tRb,T+1(πb,t) ≥ E
[
Rb,T+1(π

(av)
b,T+1) | ZT

b,1

]
−Hmax∥αb,T ∥2

√
2

τ
log

1

δ

− Mb,T+1(w ̸=b,T)− Db,T (αb,T) (A.7)

Let C∗b,t, t = T−τ, . . . , T , b ∈ B be some sequence of caching strategy. Now, consider

the following term

−
T∑

t=T−τ

αb,tRb,T+1(πb,t) +
T∑

t=T−τ

αb,tRb,T+1(C
∗
b,t)

≤
T∑

t=T−τ

(
αb,t −

1

τ

)(
Rb,T+1(C

∗
b,t)−Rb,T+1(πb,t)

)
+

1

τ

T∑
t=T−τ

(
Rb,T+1(C

∗
b,t)−Rb,T+1(πb,t)

)
≤ Hmax

T∑
t=T−τ

∣∣∣∣αb,t − 1

τ

∣∣∣∣+
Regb,T,τ (πb,t)

τ
, (A.8)

where the regret is as defined in (4.7). If the caching strategy used is C∗b,t, then, the

above implies that

T∑
t=T−τ

αb,tRb,T+1(πb,t) ≥
T∑

t=T−τ

αb,tRb,T+1(C
∗
b,t)−Hmax

T∑
t=T−τ

∣∣∣∣αb,t − 1

τ

∣∣∣∣
−

Regb,T,τ (πb,t)

τ
. (A.9)

From (A.6), we have

E[Rb,T+1(π
(av)
b,T+1)|ZT

b,1] ≥
T∑

t=T−τ

αb,tRb,T+1(C
∗
b,t)−Hmax

T∑
t=T−τ

∣∣∣∣αb,T − 1

τ

∣∣∣∣
−
Regb,T,τ (πb,t)

τ
−Hmax∥αb,T ∥2

√
2

τ
log

1

δ

−Mb,T+1(w̸=b,T)− Db,T (αb,T,τ). (A.10)

97

A.2. DERIVATION OF (3.3.3)

Now, using (A.7) with C∗b,T+1 :=
∑T

t=1 αb,tC
(av)
b,t in place of π

(av)
b,T+1, we get

E[Rb,T+1(π
(av)
b,T+1)|ZT

b,1] ≥ E
[
Rb,T+1(C

∗
b,T+1)|ZT

b,1

]
−Hmax

T∑
t=T−τ

∣∣∣∣αb,t − 1

τ

∣∣∣∣
−

2Regb,T,τ (πb,t)

τ
− 2Hmax∥αb,T ∥2

√
2

τ
log

1

δ

−Mb,T+1(w̸=b,T)− 2Db,T (αb,T,τ). (A.11)

It is possible to choose C∗b,t in such as way that

E
[
Rb,T+1(C

∗
b,T+1) | ZT

b,1

]
≥ sup

hb,t

T∑
t=T−τ

αb,tE
[
Rb,T+1(hb,t) | ZT

b,1

]
− γ

for some γ > 0. Using this in the above equation, and substituting the resulting

equation in (A.6) gives

E
[
Rb,T+1(π

(av)
b,T+1) | ZT

b,1

]
≥ sup

πb,t

T∑
t=T−τ

αb,tE
[
Rb,T+1(πb,t) | ZT

b,1

]
−2Hmax∥αb,T ∥2

√
2

τ
log

1

δ
− Mb,T+1(w ̸=b,T)

−
2Regb,T,τ (πb,t)

τ
−Hmax

T∑
t=T−τ

∣∣∣∣αb,t − 1

τ

∣∣∣∣−
2Db,T (αb,T,τ)− γ. (A.12)

This completes the proof of the theorem.

A.2 Derivation of (3.3.3)

Proof: Note that the sequence Ab,s := 1
τ

[
Rb,s(πs)− E

{
Rb,s(πs)|Zs−1

b,1

}]
for t −

τ − 1 ≤ s ≤ t − 1 is a Martingale difference. The sequence is also bounded,

i.e., |Ab,s| ≤ Hmax∥αb,T ∥2
τ

. Hence, by Azuma’s inequality, it can be seen that with a

probability of at least 1− δ, for any caching strategy πb, the following holds

∑
f

πb,td̂b,f,tLf ≤
1

τ

t−1∑
s=t−τ−1

E
[
Rb,s(πb) | Zs−1

b,1

]
+Hmax∥αb,T ∥2

√
2 log 1

δ

τ
,(A.13)

98

APPENDIX A. PROOFS FOR CHAPTER 3

where the estimate d̂b,f,t := 1
τ

∑t−1
s=t−τ−1 db,f,s for all f . Now, the following bound

can be obtained by adding and subtracting E
[
Rb,t(πb) | Zt−1

b,1

]
, and taking the supre-

mum of the modulus over caching strategies to get the following bound in terms of

discrepancy

∑
f

πb,td̂b,f,tLf ≤ E
[
Rb,t(πb) | Zt−1

b,1

]
+ Db,t(uτ) +Hmax∥αb,T ∥2

√
2 log 1

δ

τ
(A.14)

Similarly, the following bound can be obtained by adding and subtracting

E
[
Rb,t(πb) | Zt−1

G,1

]
, and taking supremum of the modulus over all caching strategies

(as done previously) to get

∑
f

πb,td̂b,f,tLf ≤ E
[
Rb,t(πb) | Zt−1

G,1

]
+ Db,t(uτ) + DGL,t(αb)

+ Hmax∥αb,T ∥2

√
2 log 1

δ

τ
(A.15)

The desired result in the theorem can by obtained by taking supremum over all

caching strategies πb, and identifying that the supremum in the right hand side

results in the LRFU caching strategy. This completes the proof.

99

Appendix B

Proofs for Chapter 4

B.1 Derivation of (4.3.1)

Proof: From [144], it follows that

sup
(u,v)∈Cc,r

u∗Pkv
∗ − uTPkv ≤ 2 sup

(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣ . (B.1)

Let x∗ and y∗ be solutions to sup(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣. Since x∗ and y∗ belong to

Cc,r, for some i = 1, 2, . . . ,Nϵ, there exist xi and yi in Aϵ such that ∥x∗−xi∥2 ≤ ϵ/8,

and ∥y∗−yi∥2 ≤ ϵ/8. Further, by adding and subtracting xi∆̂P
(t)
yi and xi∆̂P

(t)
yi,

we get ∣∣∣(u∗)T ∆̂P
(t)
v∗
∣∣∣ ≤ ∣∣∣xi∆̂P (t)

yi

∣∣∣+
ϵ∥∆̂P

(t)
∥op

4
. (B.2)

From (B.1) and (B.2)

Pr

{
sup

(u,v)∈Cc,r
uTPkv − u∗Pkv

∗ ≥ ϵ

}
≤ Pr

{
Nϵ⋃
i=1

Bi ≥ gϵ

}
≤
Nϵ∑
i=1

Pr
{
Bi ≥

ϵ

4

}
,

where gϵ := ϵ
2
− ϵ∥∆̂P

(t)
∥op/4 ≤ ϵ

4
, using ∥∆̂P

(t)
∥op ≤ 1, and Bi :=

∣∣∣xi∆̂P (t)
yi

∣∣∣.
Using the fact that

∣∣∣xi∆̂P (t)
yi

∣∣∣ ≤ κmaxj ∥xj∥1 maxi ∥yi∥1∥∆̂P
(t)
∥F ≤ κrc∥∆̂P

(t)
∥F ,

the above can be further bounded to get Nϵ Pr
{
∥∆̂P

(t)
∥F ≥ ϵ

4κrc

}
.

This completes the proof.

101

B.2. DERIVATION OF (4.3.2)

B.2 Derivation of (4.3.2)

Proof: Consider the following

Pr
{
∥∆̂P

(t)
∥2F ≥ γ

}
≤ Pr

{
max
k,l

(pkl − p̂(t)kl)2 ≥ γ

F 2

}
≤ F 2 Pr

{
(pkl − p̂(t)kl)2 ≥ γ

F 2

}
, (B.3)

where γ := ϵ
4κrc

, and the second inequality above follows from the union bound.

Conditioning on Vls :=
∑t

s=1 v
(s−1)
l = m, there are Nm i.i.d. samples available to

estimate pkl. Using Hoeffdings inequality

EPr
{

(pkl − p̂(t)kl)2 ≥ γ

F 2
| Vls = m

}
≤ 2E exp

{
−2Nmγ

F 2

}
.

Since Vls is a binomial random variable with parameter q, the above average with

respect to Vls becomes

2
(
1− q

(
1− exp{−2Nγ/F 2}

))t
. (B.4)

The following bound on the left hand side of (4.13) can be obtained using the above

in (B.3), and substituting it in (4.13)

2NϵF 2
(
1− q

(
1− exp{−2Nγ/F 2}

))t
. (B.5)

An upper bound on the above can be obtained by using 1 − x ≤ e−x. Using the

resulting bound, Pr
{

sup(u,v)∈Cc,r u
TPkv − u∗Pkv

∗ ≥ ϵ
}
< δ provided t satisfies the

bound in the theorem.

102

APPENDIX B. PROOFS FOR CHAPTER 4

B.3 Genie Aided Regret Analysis: Heuristics for

Two SBSs Case

Consider the instantaneous regret given by Regk(t) := (u∗k,t)
TPkv

∗
k,t ≥ sup(u,v)∈Cc,r

uTk,tPkvk,t at time t. Using the union bound, we can write

Pr

{
1

T

T∑
t=1

Regk(t) ≥
1

T

T∑
t=1

ϵt

}
≤

T∑
t=1

Pr {Regk(t) ≥ ϵt} , (B.6)

where ϵt > 0. From Theorem 4.3.2, it follows that for any ϵt > 0, we have

Pr {Regk(t) ≤ ϵt} ≥ 1 − δ provided (4.14). By choosing δ = 1
T 2 , the approx-

imation e−x ≈ 1 − x for small x, and |Nϵ| ⪅ 1/ϵF in Theorem 4.3.2, we get

Pr {Regk(t) ≤ ϵt} ≥ 1− 1
T 2 provided

t ⪆
8κ2F 2c2r2

qNϵ3t
log

2F 2T 2

ϵFt
, (B.7)

where ⪆ is used to denote “approximately greater than or equal to”. Assuming

ϵt < 1 and using log x ≈ x for small x, we have log 2F 2T 2

ϵFt
= log 2F 2T 2 + F log 1

ϵt
≤

(log 2F 2T 2+F)
ϵt

.1 Now, we can use (B.7) to write ϵt in terms of t to get

ϵt ⪆
3

√
8κ2F 2c2r2(log 2F 2T 2 + F)

qNt
. (B.8)

In other words, with a probability of at least 1− 1
T 2 , Regk(t) ≤ 3

√
8κ2F 2c2r2(log 2F 2T 2+F)

qNt
.

Using this result in (B.6), we get the following result. With a probability of at least

1− 1
T

,

Regk,T ⪅ 3

√
8κ2F 2c2r2(log 2F 2T 2 + F)

qN

T∑
t=1

1

t1/3
= O(T 2/3

√
log T). (B.9)

Thus, the above shows that the regret achieved grows sub-linearly with time, and

hence (genie aided) achieves a zero asymptotic average regret.

1The case of ϵt > 1 can be handled in a similar fashion, and hence ignored.

103

B.4. REGRET ANALYSIS FOR TWO SBS: HEURISTICS

B.4 Regret Analysis for Two SBS: Heuristics

The analysis here is very similar to the analysis of single BS case. We repeat some

of the analysis for the sake of clarity and completeness. Let the instantaneous regret

at the BS k at time t is given by Regk(t) := (u∗k,t)
TPkv

∗
k,t ≥ sup(u,v)∈Cc,r u

T
k,tPkvk,t

at time t. Using the union bound, we can write

Pr

{
1

T

T∑
t=1

Regk(t) ≥
1

T

T∑
t=1

ϵk,t

}
≤

T∑
t=1

Pr {Regk(t) ≥ ϵk,T} , (B.10)

where ϵk,t > 0 and ϵk,T = 1
T

∑T
t=1 ϵk,t. From Theorem 4.3.2, it follows that for any

ϵk,t > 0, we have Pr {Regk(t) ≤ ϵk,t} ≥ 1− δ provided (B.6) is satisfied. By choosing

δ = 1
T 2 , assuming ϵk,t < 1, using the approximations e−x ≈ 1 − x for small x, and

|Nϵ| ⪅ 1/ϵF , we have log 2F 2T 2

ϵFk,t
≤ (log 2F 2T 2+F)

ϵk,t
. Using this in Theorem 4.3.2, we get

Pr {Regk(t) ≤ ϵk,t} ≥ 1− 1
T 2 provided

τ

(
ϵk,t
λk
,
δ

2

)
⪆

8κ2F 2c2r2λ3k(log 4F 2T 2 + F)

qNϵ3k,t
, (B.11)

where ⪆ is used to denote “approximately greater than or equal to”. Using the

above in (B.6), we get

t ⪆ max

{
8κ2F 2c2r2λ3k(log 4F 2T 2 + F)

qNϵ3k,t
,
8κ2F 2c2r2(1− λk)3(log 4F 2T 2 + F)

qNϵ3k,t

}
.

By rearranging and summing over t, the error can be written as follows

ϵk,t ⪅
1
3
√
t

max

{
Θλk,Θ(1− λk)

}
,

where Θ = 3

√
8κ2F 2c2r2(log 4F 2T 2+F)

qN
. Using this in the place of ϵk,t in the above

theorem, and summing over t, we get with a probability of at least 1 − 1
T

, the

following holds for BS k

Regk,T ⪅ max

{
Θλk,Θ(1− λk)

}
1

3
√
T

T∑
t=1

1 + 2T (1− λk)V12,

104

APPENDIX B. PROOFS FOR CHAPTER 4

where V12 := sup(u,v)∈Cc,r

∣∣uT (P2 −P1)v
∣∣ and Θ = 3

√
8κ2F 2c2r2(log 4F 2T 2+F)

qN
. This

completes the approximate analysis.

B.4.1 Regret Analysis for Multiple SBS: Heuristics

The analysis here is again very similar to the analysis of single BS case. From

Theorem 4.3.2, it follows that for any ϵk,t > 0, we have Pr {Regk(t) ≤ ϵk,t} ≥ 1− δ,

where ϵk,t > 0 and ϵk = 1
T

∑T
t=1 ϵk,t. By choosing δ = 1

T 2 , assuming ϵk,t < 1, using

the approximation e−x ≈ 1 − x for small x, and |Nϵ| ⪅ 1/ϵF , we have log 2F 2T 2

ϵFk,t
≤

(log 2F 2T 2+F)
ϵk,t

. Using this in Theorem 4.3.2, we get Pr {Regk(t) ≤ ϵk,t} ≥ 1 − 1
T 2

provided

τ

(
ϵ1

λ
(k)
1

,
δ

M

)
⪆

8κ2F 2c2r2λ3k(log 4F 2T 2 + F)

qNϵ3k,t
, (B.12)

where ⪆ is used to denote “approximately greater than or equal to”. Using the

above in (B.3), we get

t ⪆
Θ3

ϵ3k,t
max

{
(λ

(k)
1)3, (λ

(k)
2)3, . . . , (λ

(k)
M)3

}
,

where, Θ = 3

√
8κ2F 2c2r2(logF 2T 2+F)

qN
. From the above, it is clear that the wait-

ing time t scales as the square of F, c and r, and is inversely proportional to

the error ϵ3k,t. By rearranging and summing over t, the error can be written as

ϵk,t ⪅ 1
3√t max

{
Θλ

(k)
1 , . . . ,Θλ

(k)
M

}
. Using this in the place of ϵk,t in the above theo-

rem, and summing over t, we get with a probability of at least 1− 1
T

the following

result on the regret for BS k holds

Regk,T ⪅
ΘM2

3
√
T

max

{
λ
(k)
1 , . . . , λ

(k)
M

}
T∑
t=1

1 +M2T
{

(1− λ(k)1)D1 − . . . ,−λ(k)M DM
}

Remark: Note that the value of regret depends on the values of λ
(k)
1 , . . . , λ

(k)
M and the

term Dk. The first term scales as T 2/3 while the second term scales with T linearly.

This can be balanced by using λ1 = 1 − 1√
T

and λk = 1
(M−1)

√
T

, which results in

O(
√
T) scaling of regret. Similar to the single SBS case, the choice λk = 1

(M−1)
√
T

reveals that as time progresses, i.e., as the BS k collects more samples, the weights

allocated to the neighboring BS should go down to zero, as expected. Otherwise,

105

B.5. DERIVATION OF (4.3.4)

one can optimize the above regret with respect to λk’s, and find the optimal choice.

sec

B.5 Derivation of (4.3.4)

Proof: Similar to the proof of Theorem 4.3.1, from [144], it follows that at time t,

the performance gap of the proposed algorithm with respect to the optimal is given

by

u∗Pkv
∗ − uTt Pkvt ≤ 2 sup

(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣ .

Summing the above over all t, we get

Tu∗Pkv
∗ −

∑
t

uTt Pkvt≤2
∑
t

sup
(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣ .

For a given ϵ, the above implies that

Pr

{
Tu∗Pkv

∗ −
∑
t

uTt Pkvt ≥
ϵ

2

}
≤Pr

{∑
t

sup
(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣ ≥ ϵ

2

}

=Pr

{∑
t

Yt ≥
ϵ

2
−
∑
t

E

[
sup

(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣]},

(B.13)

where Yt = sup(u,v)∈Nϵ

∣∣∣u∆̂P
(t)
v
∣∣∣−E

[
sup(u,v)∈Nϵ

∣∣∣u∆̂P
(t)
v
∣∣∣] is a martingale differ-

ence, i.e., E{Yt} = 0, and Nϵ is the covering set of Cc,r as in Definition I. By Azuma’s

inequality, we have

Pr

{∑
t

Yt >
ϵ

2

}
≤ exp

{
−ϵ2

2(4rc)2

}
. (B.14)

106

APPENDIX B. PROOFS FOR CHAPTER 4

The above follows due to the fact that |Yt| ≤ 4rc, which is explained below:

Yt ≤ sup
(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣+ E

[
sup

(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣]

≤ sup
(u,v)∈Nϵ

∣∣uTPv∣∣+ sup
(u,v)∈Nϵ

∣∣∣uT P̂ (t)v
∣∣∣+ E

[
sup

(u,v)∈Nϵ

∣∣uTPv∣∣]
+E
[

sup
(u,v)∈Nϵ

∣∣∣uT P̂ (t)v
∣∣∣]

≤ 4rc, (B.15)

which follows from |Yt| ≤ 4rc and sup(u,v)∈Cc,r

∣∣uTPv∣∣ ≤ rc. Thus it follows from

(B.14), Pr

{∑
t Yt >

ϵ
2

}
≤ δ if ϵ ≥ 32r2c2T log(1/δ). Using this definition of |Yt|, it

follows that with a probability of at most δ, we have

∑
t

sup
(u,v)∈Nϵ

∣∣∣u∆̂P
(t)
v
∣∣∣ ≥ 2

∑
t

E
[

sup
(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣]+

√
128r2c2T log(1/δ).

Choosing ϵ = 32r2c2T log(1/δ) in (B.13), the following bound for regret is satisfied

with a probability of at least 1− δ:

u∗Pkv
∗ − 1

T

T∑
t=1

uTt Pkvt <
2

T

∑
t

E
[

sup
(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣]+

√
128r2c2 log(1/δ)

T
.

Now, it remains to bound the first term on the right hand side above. For a given

ψt > 0 (to be chosen later), using total expectation rule, we get

∑
t

E
[

sup
(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣]≤∑

t

E
[

sup
(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣ , sup

(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣ > ψt

]
×Pr

{
sup

(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣ > ψt

}
+
∑
t

ψt

≤
∑
t

rcmax
kl

pkl Pr

{
sup

(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣ > ψt

}
+
∑
t

ψt,

where the first inequality above follows by using the bound sup(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣ ≤

107

B.5. DERIVATION OF (4.3.4)

ψt. Since sup(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣ > sup(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣, we get

∑
t

E
[

sup
(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣] ≤ rc|Nϵ|max

kl
pkl
∑
t

Pr

{
sup

(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣ > ψt

}
+
∑
t

ψt. (B.16)

Now, consider

∑
t

Pr

{
sup

(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣ > ψt

}
(a)

≤
∑
t

Pr

{ |Nϵ|∑
i,j=1

uTi ∆̂P
(t)
vj > ψt

}

≤
∑
t

Pr

{ |Nϵ|∑
i,j=1

|Nϵ|∑
l=1

uij∆̂P
(t)T

j vl > ψt

}
≤

∑
t

Pr

{
es

∑|Nϵ|
i,j=1 u

T
ijXj > esψt

}
(b)

≤
∑
t

e−sψtE[es
∑|Nϵ|

i,j=1 u
T
ijXj] (B.17)

where Xj :=
∑|Nϵ|

l=1 vl∆̂P
(t)

lj . In the above, (a) follows from the covering argument,

and (b) follows from the Chernoff bound. From [145], using the optimal proxy

variance, we get the following bound

∑
t

Pr

{
sup

(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣ > ψt

}
≤
∑
t

exp

−sψt + s2
|Nϵ|∑
i,j,l=1

∥uil∥2∥vj∥2σ2
j

2

(B.18)

where an upper bound on σl (see [145]) is given by σj ≤ 1

4(
∑

i α
(t)
ij +1)

and α
(t)
ij =∑t−1

q=1 d
(q)
i v

(q−1)
j . Optimizing the exponent in (B.18), the optimal s∗ = ψt∑|Nϵ|

i,j,l=1 ∥uil∥2∥v∥
2
F σ

2
j

.

Further, ∥uil∥2 ≤ ∥uil∥ ≤ c and ∥v∥2F ≤ r|Nϵ|2. Using these bounds, and the bound

on σl above, (B.18) can be written as follows

∑
t

Pr

{
sup

(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣ > ψt

}
≤
∑
t

exp

{
− 8ψ2

t

cr |Nϵ|2 σ̄2(t)

}
, (B.19)

108

APPENDIX B. PROOFS FOR CHAPTER 4

where σ̄2(t) :=

[∑
j

1(∑
i α

(t)
ij +1

)2

]
. Substituting the above in (B.16) results in

∑
t

E
[

sup
(u,v)∈Nϵ

∣∣∣uT ∆̂P
(t)
v
∣∣∣] ≤ rcmax

ij
pij|Nϵ|

∑
t

exp

{
−8ψ2

t

cr |Nϵ|2 σ̄2(t)

}
+
∑
t

ψt.

Thus, using the above, the regret can be written as

RegT ≤ 2rcmax
ij

pij|Nϵ|
∑
t

exp

{
−8ψ2

t

cr |Nϵ|2 σ̄2(t)

}
+ 2

∑
t

ψt +
√

128r2c2T log(1/δ).

This completes the proof.

B.6 Derivation of (4.4.1)

Proof: The analysis is done only for the first SBS as the analysis for the second

SBS is similar. As in (B.1), since Pr

{
(u∗k,t)

TPkv
∗
k,t ≥ sup(u,v)∈Cc,r u

T Q̂
(t)
k v − ϵ

}
≤

Pr
{

2 sup(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣ > ϵ

}
, it is sufficient to consider the following

sup
(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣= sup

(u,v)∈Cc,r

∣∣∣∣∣uT (P1 − Q̂
(t)
1)v

∣∣∣∣∣
= sup
(u,v)∈Cc,r

∣∣∣∣∣λ1uT ∆̂P
(t)

1 v + (1− λ1)uT ∆̂P
(t)

2 v + (1− λ1)uT (P1 −P2)v

∣∣∣∣∣
≤ λ1V1 + (1− λ1)V2 + (1− λ1)V12,

where V1 := sup(u,v)∈Cc,r

∣∣∣uT ∆̂P1

(t)
v
∣∣∣, V2 := sup(u,v)∈Cc,r

∣∣∣uT ∆̂P2

(t)
v
∣∣∣, and

V12 := sup(u,v)∈Cc,r

∣∣uT (P2 −P1)v
∣∣. Here, ∆̂P

(t)
:= P1 − Q̂(t)

1 , ∆̂Pk
(t)

:= Pk − P̂
(t)

k ,

k = 1, 2. Using the union bound, we get the following

Pr{λ1V1 + (1− λ1)V2 > ϵ1} ≤ Pr

{
V1 >

ϵ1
λ1

}
+ Pr

{
V2 >

ϵ1
(1− λ1)

}
,

where ϵ1 := ϵ/2 − (1 − λ1)V12.Using results from Theorem 4.3.2 to each of the

above term with ϵ replaced by ϵ1/λ1 and ϵ1
(1−λ1) with δ replaced by δ/2, we get

the following bound on the regret: the regret Regk,T < ϵ, i.e., Pr

{
(u∗k,t)

TPkv
∗
k,t ≥

109

B.7. DERIVATION OF (4.4.2)

sup(u,v)∈Cc,r u
T Q̂

(t)
k v − ϵk

}
> 1− δ provided

t ≥ max

{
τ

(
ϵk
λk
,
δ

2

)
, τ

(
ϵk

(1− λk)
,
δ

2

)}
,

where

τ(ϵ, δ) :=
1

q
(
1− exp{− Nϵ2

8κ2F 2c2r2
}
) log

2|Nϵ|F 2

δ
.

Further, ϵk := ϵ/2− (1−λk) sup(u,v)∈Cc,r

∣∣uT (P2 −P1)v
∣∣. This completes the proof.

B.7 Derivation of (4.4.2)

Similar to the proof provided of Theorem 4.1, the analysis is done only for the first

SBS using Bayesian estimate.

Tu∗P1v
∗ −

∑
t

uTt Q̂
(t)
k vt ≤ λ1U1 + (1− λ1)U2 + (1− λ1)U12,

where U1 :=
∑

t sup(u,v)∈Cc,r

∣∣∣uT ∆̂P1

(t)
v
∣∣∣, U2 :=

∑
t sup(u,v)∈Cc,r

∣∣∣uT ∆̂P2

(t)
v
∣∣∣, and

U12 :=
∑

t sup(u,v)∈Cc,r

∣∣uT (P1 −P2)v
∣∣. Here, ∆̂Pk

(t)
:= Pk − P̂

(t)

k , k = 1, 2. Con-

sider the following

Pr{Tu∗P1v
∗ −

∑
t

uTt Q̂
(t)
1 vt ≥ ϵ} ≤ Pr{λ1U1 + (1− λ1)U2 + (1− λ1)U12 ≥ ϵ}

≤ Pr

{
U1 >

ϵ1
λ1

}
+ Pr

{
U2 >

ϵ1
(1− λ1)

}
,

where ϵ1 := ϵ/2 − (1 − λ1)U12. Using results from Theorem 4.3.3 to each of the

above term with ϵ replaced by 2ϵ1/λ1 and 2ϵ1
(1−λ1) and δ replaced by δ/2, we get the

following bound on regret:

Regk,T ≤ max

{
Rk

(
2ϵk
λk
,
δ

2

)
, Rk

(
2ϵk

(1− λk)
,
δ

2

)}
,

where

Rk(ϵ, δ) := 2rcmax
ijk

pijk|Nϵ|
∑
t

exp

{
−8ψ2

t

cr |Nϵ|2 σ̄2
k(t)

}
+2
∑
t

ψt+
√

128r2c2T log(1/δ),

110

APPENDIX B. PROOFS FOR CHAPTER 4

and σ̄2
k(t) :=

[∑F
j=1

1(∑
i α

(t)
ijk+1

)2

]
, α

(t)
ijk =

∑t−1
q=1 d

(q)
ik v

(q−1)
jk , and

ϵk := ϵ/2− (1− λk)
∑

t sup(u,v)∈Cc,r

∣∣uT (P1 −P2)v
∣∣. This completes the proof.

B.8 Derivation of (4.4.3)

Proof: The proof for multiple SBSs is a generalization of two SBSs and the analysis

is done only for the first SBS, the rest of the SBSs are similar.

sup
(u,v)∈Cc,r

∣∣∣uT ∆̂P
(t)
v
∣∣∣ = sup

(u,v)∈Cc,r

∣∣∣uT (P1 − λ(k)1 P̂
(t)

1 , . . .− λ
(k)
M P̂

(t)

M)v
∣∣∣

= sup
(u,v)∈Cc,r

|λ(k)1 uT (P1 − P̂
(t)

1)v + λ
(k)
2 uT (P2 − P̂

(t)

2)v, . . .

+λ
(k)
M uT (PM − P̂

(t)

M)v + (1− λ(k)1){ sup
(u,v)∈Cc,r

∣∣uTP1v
∣∣}, . . . ,

−λ(k)M { sup
(u,v)∈Cc,r

∣∣uTPMv
∣∣}

≤λ(k)1 V1 + λ
(k)
2 V2+, . . . ,+λ

(k)
M VM + (1− λ(k)1)D1 − λ(k)2 DM−, . . . ,

−λ(k)M DM ,

where Vl := sup(u,v)∈Cc,r

∣∣∣uT ∆̂Pl
(t)
v
∣∣∣, l = 1, 2, . . . ,M , D1 := sup(u,v)∈Cc,r

∣∣uTP1v
∣∣,

D2 := sup(u,v)∈Cc,r

∣∣uTP2v
∣∣, . . ., DM := sup(u,v)∈Cc,r

∣∣uTPMv
∣∣. Here, ∆̂Pk

(t)
:=

P1 − Q̂
(t)

1 , ∆̂Pk
(t)

:= Pk − P̂
(t)

k , k = 1, 2, . . . ,M . Thus we can write the following:

Pr{λ(k)1 V1 + . . . ,+λ
(k)
M VM > ϵ

′} ≤
M∑
l=1

Pr

{
Vl >

ϵl

λ
(k)
l

}
,

where ϵ
′

:= ϵ/M − (1 − λ
(k)
1)D1 + λ

(k)
2 D2+, . . . ,+λ

(k)
M DM , and ϵk := ϵ/M2 − (1 −

λ
(k)
1)D1 + λ

(k)
2 D2+, . . . ,+λ

(k)
M DM , ∀ k = 1, 2, . . . ,M . Using results from Theorem

4.3.2 to each of the above term with ϵ replaced by ϵ
′

and ϵk and δ replaced by δ/M

we get the following bound on regret, i.e., Regk,T is less than ϵ

{
i.e. (u∗o,t)

TP1v
∗
o,t ≥

sup(u,v)∈Cc,r u
TP1v − ϵ

}
provided

t ≥ max

{
τ

(
ϵ1

λ
(k)
1

,
δ

M

)
, τ

(
ϵ2

λ
(k)
2

,
δ

M

)
, . . . , τ

(
ϵM

λ
(k)
M

,
δ

M

)}
,

111

B.9. DERIVATION OF (4.4.4)

τ(ϵ, δ) :=
1

q
(
1− exp{− Nϵ2

8κ2F 2c2r2
}
) log

2NϵF 2

δ
,

where, ϵk := ϵ/M2 − (1− λ(k)1)D1 + λ
(k)
2 D2+, . . . ,+λ

(k)
M DM , and

Dk := sup(u,v)∈Cc,r

∣∣uTPkv∣∣ ∀ k = 1, 2, . . . ,M . This completes the proof.

B.9 Derivation of (4.4.4)

Proof: The proof for multiple SBSs is a generalization of two SBSs and the analysis

is done only for the first SBS for Bayesian estimate, the rest of the SBSs are similar.

First consider the following

Tu∗P1v
∗ −

∑
t

uTt P1vt ≤
M∑
j=1

λ
(k)
j Wj + (1− λ(k)1)I1 −

M∑
j=2

λ
(k)
j Ij,

whereWj :=
∑

t sup(u,v)∈Cc,r

∣∣∣uT ∆̂Pj
(t)
v
∣∣∣, Ij :=

∑
t sup(u,v)∈Cc,r

∣∣uTPjv
∣∣, j = 1, 2, . . . ,M .

Here, ∆̂Pk
(t)

:= Pk − P̂
(t)

k , k = 1, 2, . . . ,M . Thus we can write the following:

Pr{λ(k)1 W1, ..,+λ
(k)
M WM ≥ ϵ

′} ≤
M∑
l=1

Pr

{
Wl >

ϵl

λ
(k)
l

}
,

where ϵ
′

:= ϵ/M − (1 − λ
(k)
1)I1 +

∑M
l=2 λ

(k)
l Ik, and ϵk := ϵ/M2 − (1 − λ

(k)
1)I1 +∑M

l=2 λ
(k)
l Ik, for all k = {1, 2, . . . ,M}. Using results from Theorem 4.3.3 to each

of the above term with ϵ replaced by ϵ
′

and ϵk and δ replaced by δ/M , we get the

following bound on the regret for BS k:

Regk,T ≤ max

{
Rk

(
ϵ1

λ
(k)
1

,
δ

M

)
, Rk

(
ϵ2

λ
(k)
2

,
δ

M

)
, . . . , Rk

(
ϵM

λ
(k)
M

,
δ

M

)}
,

where,

Rk(ϵ, δ) := 2rcmax
ijk

pijk|Nϵ|
∑
t

exp

{
−8ψ2

t

cr |Nϵ|2 σ̄2
k(t)

}
+2
∑
t

ψt+
√

128r2c2T log(1/δ),

and α
(t)
ijk =

∑t−1
q=1 d

(q)
ik v

(q−1)
jk , σ̄2

k(t) :=

[∑F
j=1

1(∑
i α

(t)
ijk+1

)2

]
, ϵk := ϵ/M2−(1−λ(k)1)I1+

λ
(k)
2 I2+, . . . ,+λ

(k)
M IM , Ii := sup(u,v)∈Cc,r

∣∣uTPkv∣∣ ∀ k = 1, 2, . . . ,M . This completes

the proof.

112

Appendix C

Proofs for Chapter 5

C.1 Derivation of (5.4.1)

Proof: Let us first consider the discounted reward for finite horizon ω-subsidy prob-

lem. Let ν1(π) = R(π) and ν0(π) = ω represent the immediate reward corresponding

to active and idle states respectively. The N -stage finite horizon reward function is

given as below:

ṼN(π[0]) = max
a[t],t=0,...,N−1

E
[N∑
t=0

βtνa[t](π[t])|π[0]
]

Let V̂ω,t(π) be the reward at time t with belief value π[t] = π. Therefore, ṼN(π[0]) =

V̂ω,0(π[0]) and the final stage value function V̂ω,N−1(π[N − 1]) is given by

V̂ω,N−1(π[N − 1]) = max
a[N−1]

{νa[N−1](π[N − 1])}

= max{ω,R(π[N − 1])}

Thus, V̂ω,N−1(π) is convex with π, since it is the maximum of a constant and a

convex function. Thus, the Bellman equation for any time 0 ≤ t ≤ N − 1 can be

written as

V̂ω,t(π[t]) = max{V̂ 0
ω,t(π[t]), V̂ 1

ω,t(π[t])}.

113

C.2. DERIVATION OF (5.4.2)

where

V̂ 0
ω,t(π[t])=ω + βV̂ 0

ω,t+1(Q(π)),

V̂ 1
ω,t(π[t])=R(π) + β(πV̂ω,t+1(p) + (1− πV̂ω,t+1(r)))

Since, ṼN(π) = Vω,0(π), ṼN(π) is a convex function of π. The infinite horizon reward

is the limit of the finite horizon reward for the discounted problem with bounded

reward per slot, we have, Vω(π) = limN←∞ Vω,N(π). Hence Vω(π) is a convex function

in π. This completes the proof.

C.2 Derivation of (5.4.2)

Proof: From the Bellman equation 5.10, let V 1
ω (π) be the reward corresponding to

the cache decision and V 0
ω (π) be the reward corresponding to the idle decision, i.e.,

V 1
ω (π) = R(π) + β(πVω(p) + (1− π)Vω(r)),

V 0
ω (π) = ω + βVω(Q(π))

Case (i): If ω > 1 and since R(π) < 1, thus it will be always optimal to remain idle.

Thus, the threshold can be set to 1.

Case (ii); If ω ≤ δ, then we have,

V 0
ω (π) = ω + βVω(Q(π))

= ω + βVω(πp+ (1− π)r)

≤ R(π) + β(πVω(p) + (1− π)Vω(r))

= V 1
ω (π),

where the inequality is due to δ ≤ R(π) and Jensen’s inequality which comes from

the convexity of Vω(π). Hence, the optimal decision is to stay active. Thus, we can

set the threshold to κ, for some κ < 0.

114

APPENDIX C. PROOFS FOR CHAPTER 5

Case (iii): If δ ≤ ω ≤ 1, then we have,

V 0
ω (π) = ω + βVω(r) > δ + βVω(r) = V 1

ω (0)

V 0
ω (π) = ω + βVω(p) > 1 + βVω(r) = V 1

ω (1)

Thus, there exists a threshold π∗(ω) such that a = 1, whenever π > π∗(ω). This

completes the proof.

C.3 Derivation of (5.4.3)

Proof: First, the structural properties are established when the user stays idle. It

is assumed that the user has initial belief value as π[0] and stays idle at all times.

Then the belief value at tth slot is given by π[t] = Qt(πi[0]), where Qt is the tth

iteration of the function Q, and is given by:

Qt(π) =
r − (p− r)t(r − (1 + r − p)π)

1 + r − p

Assuming, π[0] as the steady state distribution of the two-state channel, i.e.

π0 =
r

1 + r − p

It is obvious that π0 = limt→inf Q
t(π). The structural properties of Qt(π) are as

follows:

(i) For positively correlated channel (i.e., p > r), π[t] converges to steady state

π0 monotonically. For negatively correlated channel (i.e., p ≤ r), π[t] converges to

steady state π0 with oscillation and a monotonically converging envelope.

(ii) min{p, r} ≤ Qt(πi[0]) ≤ max{p, r} ∀ t = 1, 2, . . . and πi[0] ∈ [0, 1].

Proof (i) Since we have 0 < p − r ≤ 1 for positively correlated channel and

−1 ≤ p− r ≤ 0 for negatively correlated channel, it is clear from the expression of

(C.3) that π[t] converges to steady state π0 monotonically and approaches steady

state π0 with oscillation and a monotonically converging envelope.

115

C.3. DERIVATION OF (5.4.3)

(ii) We need to prove min{p, r} ≤ Q[π] ≤ max{p, r}, for all π.

Q[π] =
r − (p− r)(r − (1 + r − p)π)

1 + r − p

For positively correlated channel, since p− r > 0

Q[π] ≥ r − (p− r)r
1 + r − p

= r.

Q[π] ≤ r − (p− r)(r − (1 + r − p))
1 + r − p

= p.

For negatively correlated channel, since p− r < 0

Q[π] ≤ r − (p− r)r
1 + r − p

= r.

Q[π] ≥ r − (p− r)(r − (1 + r − p))
1 + r − p

= p.

Thus proving the structural properties of Qt(πi[0]). Recall that π∗ is defined as the

threshold in Proposition 2. Let L(π, π∗) be the time needed for the belief value of a

user to exceed π∗ from below, starting from initial value π, i.e.

L(π, π∗) = min
t
{Qt(π) > π∗}

L(π, π∗) can be calculated as follows:

� Positive correlation (p > r)

L(π, π∗) =


0, if π > π∗ ,

logp−r
r−(1+r−p)π∗

r−(1+r−p)π + 1, if π ≤ π∗ < π,

inf, if π ≤ π∗ and π∗ ≥ π0

� Negative correlation (p ≤ r)

L(π, π∗) =


0, if π > π∗ ,

1, if π ≤ π∗ < π and Q(π) > π,

inf, if π ≤ π∗ and Q(π) ≤ π∗.

116

APPENDIX C. PROOFS FOR CHAPTER 5

Next, the value functions Vω(p) and Vω(r) based on the value of π∗(ω) is derived as

follows: (1) Positive correlation (p > r)

� When π∗(ω) ≥ p, the belief value p is in the idle set. If π[0] = p, the system

stays idle. Hence the reward function is expressed as

Vω(p) = ω + βω + β2ω + . . . =
ω

1− β
.

� When π∗(ω) < p, the belief value p is then in the active set. Hence from the

Bellman equation, we have

Vω(p) = R(p) + β(pVω(p) + (1− p)Vω(r))

where, R(.) is the immediate reward function.

Vω(p) =
R(p) + β(1− p)Vω(r)

1− βp

� When π∗(ω) < r, the value r is in active set, thus the belief value stays in the

active set. Therefore,

Vω(r) =
inf∑
t=0

βtR(Qt(r)) =
inf∑
t=0

βR(
r − (p− r)t+1r

1 + r − p
).

� When π∗(ω) ≥ π0, since π0 ≥ r, the belief value r is in idle set. Hence,

Vω(r) = ω + βω + β2ω + . . . =
ω

1− β
.

� When r < π∗(ω) < π0, the belief value r is in the idle set and the channel is

positively correlated. Therefore,

Vω(r) =
1− βL(r,π∗(ω))

1− β
ω + βL(r,π

∗(ω))V 1
ω (QL(r,π∗(ω))(r)).

where V 1
ω (QL(r,π∗(ω))(r)) = R(QL(r,π∗(ω))(r)) + β(QL(r,π∗(ω))(r)Vω(p) + (1 −

QL(r,π∗(ω))(r))Vω(r))

This completes the proof.

117

References

[1] G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wireless caching:

technical misconceptions and business barriers,” IEEE Communications Mag-

azine, vol. 54, no. 8, pp. 16–22, 2016.

[2] Cisco, “Cisco annual internet report (2018-2023),” 2020.

[3] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews,

“User association for load balancing in heterogeneous cellular networks,” IEEE

Transactions on Wireless Communications, vol. 12, no. 6, pp. 2706–2716, 2013.

[4] K. Poularakis et al., “Exploiting Caching and Multicast for 5G Wireless Net-

works,” IEEE Transactions on Wireless Communications, vol. 15, pp. 2995 –

3007, 2016.

[5] Q. Ye, M. Al-Shalash, C. Caramanis, and J. G. Andrews, “On/off macrocells

and load balancing in heterogeneous cellular networks,” in 2013 IEEE Global

Communications Conference (GLOBECOM), 2013, pp. 3814–3819.

[6] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five

disruptive technology directions for 5G,” IEEE Communications Magazine,

vol. 52, no. 2, pp. 74–80, 2014.

[7] E. Bastug, M. Bennis, and M. Debbah, “Cache-enabled small cell networks:

Modeling and tradeoffs,” IEEE Communications Magazine, vol. 52, no. 8, pp.

82–89, 2014.

[8] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,

N. Viljoen, M. Miller, and N. Rao, “Are we ready for SDN? implementation

119

REFERENCES

challenges for software-defined networks,” IEEE Communications Magazine,

vol. 51, no. 7, pp. 36–43, 2013.

[9] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based ap-

proach to caching in heterogenous small cell networks,” IEEE Transactions

on Communications, vol. 64, no. 4, pp. 1674–1686, Apr. 2016.

[10] S. Krishnendu, B. N. Bharath, and V. Bhatia, “Joint edge content cache place-

ment and recommendation: Bayesian approach,” in 2021 IEEE 93rd Vehicular

Technology Conference (VTC2021-Spring), 2021, pp. 1–5.

[11] S. Krishnendu, B. N. Bharath, N. Garg, V. Bhatia, and T. Ratnarajah,

“Learning to cache: Federated caching in a cellular network with correlated

demands,” IEEE Transactions on Communications, pp. 1–1, 2021.

[12] B. Chen and C. Yang, “Caching policy for cache-enabled D2D communications

by learning user preference,” IEEE Transactions on Communications, vol. 66,

no. 12, pp. 6586–6601, 2018.

[13] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire,

“Femtocaching: Wireless content delivery through distributed caching

helpers,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp. 8402–

8413, 2013.

[14] J. Song, M. Sheng, T. Q. S. Quek, C. Xu, and X. Wang, “Learning-based

content caching and sharing for wireless networks,” IEEE Transactions on

Communications, vol. 65, no. 10, pp. 4309–4324, 2017.

[15] B. N. Bharath, K. G. Nagananda, D. Gündüz, and H. V. Poor, “Caching

with time-varying popularity profiles: A learning-theoretic perspective,” IEEE

Transactions on Communications, vol. 66, no. 9, pp. 3837 – 3847, May 2018.

[16] J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed, “Femto-

cells: Past, present, and future,” IEEE Journal on Selected Areas in Commu-

nications, vol. 30, no. 3, pp. 497–508, 2012.

[17]

120

REFERENCES

[18] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions

on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[19] E. Baştuğ, M. Bennis, and M. Debbah, “A transfer learning approach for

cache-enabled wireless networks,” in 2015 13th International Symposium

on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks

(WiOpt), 2015, pp. 161–166.

[20] K. Hamidouche, W. Saad, and M. Debbah, “Many-to-many matching games

for proactive social-caching in wireless small cell networks,” in 2014 12th In-

ternational Symposium on Modeling and Optimization in Mobile, Ad Hoc, and

Wireless Networks (WiOpt), 2014, pp. 569–574.

[21] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[22] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,”

IEEE Transactions on Information Theory, vol. 63, no. 2, pp. 1146–1158, 2017.

[23] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. Diggavi, “Hierarchi-

cal coded caching,” in 2014 IEEE International Symposium on Information

Theory, 2014, pp. 2142–2146.

[24] J. Hachem, N. Karamchandani, and S. Diggavi, “Content caching and delivery

over heterogeneous wireless networks,” in 2015 IEEE Conference on Computer

Communications (INFOCOM), 2015, pp. 756–764.

[25] S. Wang, W. Li, X. Tian, and H. Liu, “Fundamental limits of heterogenous

cache,” ArXiv, vol. abs/1504.01123, 2015.

[26] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,”

in Proc. IEEE International Conference on Communications, Jun. 2014, pp.

1878–1883.

[27] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi, “Hier-

archical coded caching,” IEEE Transactions on Information Theory, vol. 62,

no. 6, pp. 3212–3229, 2016.

121

REFERENCES

[28] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server coded

caching,” IEEE Transactions on Information Theory, vol. 62, no. 12, pp. 7253–

7271, 2016.

[29] Z. Chen, “Fundamental limits of caching: Improved bounds for small buffer

users,” CoRR, vol. abs/1407.1935, 2014.

[30] U. Niesen and M. A. Maddah-Ali, “Coded caching for delay-sensitive content,”

in 2015 IEEE International Conference on Communications (ICC), 2015, pp.

5559–5564.

[31] A. Sengupta, R. Tandon, and T. C. Clancy, “Fundamental limits of caching

with secure delivery,” IEEE Transactions on Information Forensics and Secu-

rity, vol. 10, no. 2, pp. 355–370, 2015.

[32] N. Golrezaei, A. G. Dimakis, and A. F. Molisch, “Wireless device-to-device

communication with distributed caching,” in Proc. IEEE Int. Symp. Inf. The-

ory, Jul. 2012, pp. 2781–2785.

[33] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Transac-

tions on Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[34] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of caching

and coded multicasting with random demands,” IEEE Transactions on Infor-

mation Theory, vol. 63, no. 6, pp. 3923–3949, 2017.

[35] J. Pääkkönen, C. Hollanti, and O. Tirkkonen, “Device-to-device data storage

for mobile cellular systems,” in 2013 IEEE Globecom Workshops (GC Wk-

shps), 2013, pp. 671–676.

[36] C. Hollanti, D. Karpuk, A. Barreal, and H.-f. F. Lu, “Space-time storage codes

for wireless distributed storage systems,” in 2014 4th International Conference

on Wireless Communications, Vehicular Technology, Information Theory and

Aerospace and Electronic Systems (VITAE), 2014, pp. 1–5.

[37] P. Ostovari, A. Khreishah, and J. Wu, “Cache content placement using tri-

angular network coding,” in 2013 IEEE Wireless Communications and Net-

working Conference (WCNC), 2013, pp. 1375–1380.

122

REFERENCES

[38] W. Huang, S. Wang, L. Ding, F. Yang, and W. Zhang, “The performance anal-

ysis of coded cache in wireless fading channel,” CoRR, vol. abs/1504.01452,

2015.

[39] C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching: Se-

quential coding for computing,” IEEE Transactions on Information Theory,

vol. 62, no. 11, pp. 6393–6406, 2016.

[40] A. Liu and V. K. N. Lau, “Cache-enabled opportunistic cooperative MIMO for

video streaming in wireless systems,” IEEE Transactions on Signal Processing,

vol. 62, no. 2, pp. 390–402, 2014.

[41] A. Liu and V. Lau, “Cache-induced opportunistic MIMO cooperation: A new

paradigm for future wireless content access networks,” in 2014 IEEE Interna-

tional Symposium on Information Theory, 2014, pp. 46–50.

[42] A. Liu and V. K. N. Lau, “Exploiting base station caching in MIMO cellular

networks: Opportunistic cooperation for video streaming,” IEEE Transactions

on Signal Processing, vol. 63, no. 1, pp. 57–69, 2015.

[43] X. Peng, J.-C. Shen, J. Zhang, and K. B. Letaief, “Joint data assignment and

beamforming for backhaul limited caching networks,” in 2014 IEEE 25th An-

nual International Symposium on Personal, Indoor, and Mobile Radio Com-

munication (PIMRC), 2014, pp. 1370–1374.

[44] M. Deghel, E. Baştuğ, M. Assaad, and M. Debbah, “On the benefits of

edge caching for MIMO interference alignment,” in 2015 IEEE 16th Interna-

tional Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), 2015, pp. 655–659.

[45] K. Poularakis and L. Tassiulas, “Exploiting user mobility for wireless con-

tent delivery,” in 2013 IEEE International Symposium on Information Theory,

2013, pp. 1017–1021.

[46] V. A. Siris, X. Vasilakos, and G. C. Polyzos, “Efficient proactive caching for

supporting seamless mobility,” in Proceeding of IEEE International Sympo-

123

REFERENCES

sium on a World of Wireless, Mobile and Multimedia Networks 2014, 2014,

pp. 1–6.

[47] G. Alfano, M. Garetto, and E. Leonardi, “Content-centric wireless networks

with limited buffers: When mobility hurts,” IEEE/ACM Transactions on Net-

working, vol. 24, no. 1, pp. 299–311, 2016.

[48] B. Perabathini, E. Baştuğ, M. Kountouris, M. Debbah, and A. Conte,

“Caching at the edge: A green perspective for 5G networks,” in 2015 IEEE

International Conference on Communication Workshop (ICCW), 2015, pp.

2830–2835.

[49] S. Zhou, J. Gong, Z. Zhou, W. Chen, and Z. Niu, “Green delivery: proactive

content caching and push with energy-harvesting-based small cells,” IEEE

Communications Magazine, vol. 53, no. 4, pp. 142–149, 2015.

[50] J. Gong, S. Zhou, Z. Zhou, and Z. Niu, “Proactive push with energy harvest-

ing based small cells in heterogeneous networks,” in 2015 IEEE International

Conference on Communications (ICC), 2015, pp. 25–30.

[51] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Joint caching and base station

activation for green heterogeneous cellular networks,” in 2015 IEEE Interna-

tional Conference on Communications (ICC), 2015, pp. 3364–3369.

[52] E. Baştuğ, M. Bennis, M. Kountouris, and M. Debbah, “Cache-enabled small

cell networks: modeling and tradeoffs,” EURASIP J. Wireless Commun. Net.,

vol. 2015:41, Feb. 2015.

[53] J. Elias and B. B laszczyszyn, “Optimal geographic caching in cellular networks

with linear content coding,” in 2017 15th International Symposium on Mod-

eling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),

2017, pp. 1–6.

[54] A. Altieri, P. Piantanida, L. R. Vega, and C. G. Galarza, “On fundamen-

tal trade-offs of device-to-device communications in large wireless networks,”

IEEE Transactions on Wireless Communications, vol. 14, no. 9, pp. 4958–

4971, 2015.

124

REFERENCES

[55] E. Altman, K. Avrachenkov, and J. Goseling, “Coding for caches in the plane,”

CoRR, 2013.

[56] M. Mitici, J. Goseling, M. de Graaf, and R. J. Boucherie, “Deployment versus

data retrieval costs for caches in the plane,” IEEE Wireless Communications

Letters, vol. 3, no. 4, pp. 385–388, 2014.

[57] P. Blasco and D. Gündüz, “Learning-based optimization of cache content in a

small cell base station,” in 2014 IEEE International Conference on Commu-

nications (ICC), 2014, pp. 1897–1903.

[58] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement learning for

adaptive caching in hierarchical content delivery networks,” IEEE Transac-

tions on Cognitive Communications and Networking, vol. 5, no. 4, pp. 1024–

1033, 2019.

[59] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire, “Femto

caching: Wireless video content delivery through distributed caching helpers,”

IEEE Transactions on Information Theory, vol. 59, no. 12, pp. 8402–8413,

Dec. 2013.

[60] A. Tatar, M. D. de Amorim, S. Fdida, and P. Antoniadis, “A survey on pre-

dicting the popularity of web content,” Journal of Internet Services and Ap-

plications, vol. 5, no. 1, pp. 1–20, Aug. 2014.

[61] J. Song, M. Sheng, T. Q. Quek, C. Xu, and X. Wang, “Learning-based content

caching and sharing for wireless networks,” IEEE Transactions on Communi-

cations, vol. 65, no. 10, pp. 4309–4324, 2017.

[62] B. Chen and C. Yang, “Caching policy for cache-enabled D2D communications

by learning user preference,” in Proc. IEEE Vechicular Technology Conerence

Spring, 2016.

[63] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, and D. Gündüz, “Wireless

content caching for small cell and D2D networks,” IEEE Journal on Selected

Areas in Communications, vol. 34, no. 5, pp. 1222– 1234, May 2016.

125

REFERENCES

[64] S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and R. Sitaraman, “Adap-

tive TTL-based caching for content delivery,” IEEE/ACM Transactions on

Networking, vol. 26, no. 3, pp. 1063–1077, 2018.

[65] N. Gast and B. Van Houdt, “Asymptotically exact TTL-approximations of the

cache replacement algorithms lru(m) and h-lru,” in 2016 28th International

Teletraffic Congress (ITC 28), vol. 01, 2016, pp. 157–165.

[66] D. Starobinski and D. Tse, “Probabilistic methods for web caching,” Perfor-

mance Evaluation, 2001.

[67] E. G. Coffman and P. J. Denning, Operating Systems Theory. Prentice-Hall

Englewood Cliffs, NJ, 1973.

[68] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the perfor-

mance analysis of caching systems,” in IEEE INFOCOM 2014 - IEEE Con-

ference on Computer Communications, 2014, pp. 2040–2048.

[69] J. Li, S. Shakkottai, J. C. Lui, and V. Subramanian, “Accurate learning or

fast mixing? dynamic adaptability of caching algorithms,” IEEE Journal on

Selected Areas in Communications, vol. 36, no. 6, pp. 1314–1330, 2018.

[70] X. Xu, M. Tao, and C. Shen, “Collaborative multi-agent multi-armed bandit

learning for small-cell caching,” IEEE Transactions on Wireless Communica-

tions, vol. 19, no. 4, pp. 2570–2585, 2020.

[71] N. Garg, M. Sellathurai, V. Bhatia, and T. Ratnarajah, “Function approxi-

mation based reinforcement learning for edge caching in massive MIMO net-

works,” IEEE Transactions on Communications, pp. 1–1, 2020.

[72] T. Zhang, S. Biswas, and T. Ratnarajah, “An analysis on wireless edge caching

in in-band full-duplex FR2-IAB networks,” IEEE Access, vol. 8, pp. 164 987–

165 002, 2020.

[73] S. Mehrizi, S. Chatterjee, S. Chatzinotas, and B. Ottersten, “Online spa-

tiotemporal popularity learning via variational bayes for cooperative caching,”

IEEE Transactions on Communications, vol. 68, no. 11, pp. 7068–7082, 2020.

126

REFERENCES

[74] S. Bommaraveni, T. X. Vu, S. Chatzinotas, and B. Ottersten, “Active content

popularity learning and caching optimization with hit ratio guarantees,” IEEE

Access, vol. 8, pp. 151 350–151 359, 2020.

[75] Z. Zhang, H. Chen, M. Hua, C. Li, Y. Huang, and L. Yang, “Double coded

caching in ultra dense networks: Caching and multicast scheduling via deep re-

inforcement learning,” IEEE Transactions on Communications, vol. 68, no. 2,

pp. 1071–1086, 2020.

[76] N. Garg, M. Sellathurai, V. Bhatia, B. N. Bharath, and T. Ratnarajah, “On-

line content popularity prediction and learning in wireless edge caching,” IEEE

Transactions on Communications, vol. 68, no. 2, pp. 1087–1100, 2020.

[77] A. Agarwal and J. C. Duchi, “The generalization ability of online algorithms

for dependent data,” IEEE Transactions on Information Theory, vol. 59, no. 1,

pp. 573–587, 2012.

[78] S. Krishnendu, B. N. Bharath, and V. Bhatia, “Cache enabled cellular net-

work: Algorithm for cache placement and guarantees,” IEEE Wireless Com-

munications Letters, vol. 8, no. 6, pp. 1550–1554, Dec 2019.

[79] R. S. Liptser and A. N. Shiryayev, Theory of martingales. Transl. from the

Russian by K. Dzjaparidze. Dordrecht etc.: Kluwer Academic Publishers,

1989.

[80] P. Ansell, K. Glazebrook, J. Niño-Mora, and M. O’Keeffe, “Whittle’s index

policy for a multi-class queueing system with convex holding costs,” Mathe-

matical Methods of Operations Research, vol. 57, no. 1, p. 21–39, 2003.

[81] M.-C. Lee, A. F. Molisch, N. Sastry, and A. Raman, “Individual preference

probability modeling for video content in wireless caching networks,” IEEE

Global Communications Conference, pp. 1–7, 2017.

[82] G. Paschos, E. Baştuğ, I. Land, G. Caire, and M. Debbah, “Wireless Caching:

Technical Misconceptions and Business Barriers,” IEEE Commun. Mag.,

vol. 54, pp. 16–22, Aug 2016.

127

REFERENCES

[83] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi,

and V. Kann, Complexity and Approximation: Combinatorial Optimization

Problems and Their Approximability Properties, 1st ed. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 1999.

[84] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press,

1990.

[85] P. Raghavan and C. D. Tompson, “Randomized rounding: A tech-

nique for provably good algorithms and algorithmic proofs,” Combi-

natorica, vol. 7, no. 4, pp. 365–374, Dec 1987. [Online]. Available:

https://doi.org/10.1007/BF02579324

[86] B. Lehmann, J. Lehmann, and N. Nisan, “Combinatorial auctions with de-

creasing marginal utilities,” ACM Conference on El. Commerce, pp. 18–28,

2001.

[87] S. Bubeck, “Convex Optimization: Algorithms and Complexity,” ArXiv e-

prints, May 2014.

[88] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seed-

ing,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-

crete Algorithms. USA: Society for Industrial and Applied Mathematics, 2007,

p. 1027–1035.

[89] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv:1412.6980, 2014.

[90] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, and G. Caire, “Femto-

caching: Wireless content delivery through distributed caching helpers,” IEEE

Trans. Inf. Theory, vol. 51, no. 4, pp. 142–149, Apr 2013.

[91] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and

Zipf-like distributions: Evidence and implications,” Proc. IEEE 18th Annu.

Joint Conf. Comput. Commun. Soc., vol. 1, pp. 126–134, 1999.

[92] A. Furuskar, J. Charles, M. Frodigh, S. Jeux, M. Sayed Hassan, A. Saadani,

A. Stidwell, J. Soder, and B. Timus, “Refined statistical analysis of evolution

128

REFERENCES

approaches for wireless networks,” IEEE Transactions on Wireless Commu-

nications, vol. 14, no. 5, pp. 2700 – 2710, May 2015.

[93] K. Intharawijitr, K. Iida, and H. Koga, “Analysis of fog model considering

computing and communication latency in 5G cellular networks,” in 2016 IEEE

International Conference on Pervasive Computing and Communication Work-

shops (PerCom Workshops), 2016, pp. 1–4.

[94] M. Bennis, M. Simsek, A. Czylwik, W. Saad, S. Valentin, and M. Debbah,

“When cellular meets WiFi in wireless small cell networks,” IEEE Communi-

cations Magazine, vol. 51, no. 6, pp. 44–50, Jun. 2013.

[95] S.-F. Chou, T.-C. Chiu, Y.-J. Yu, and A.-C. Pang, “Mobile small cell deploy-

ment for next generation cellular networks,” in Proc. IEEE Global Communi-

cations Conference, Dec. 2014, pp. 4852–4857.

[96] J. Gu, W. Wang, A. Huang, H. Shan, and Z. Zhang, “Distributed cache re-

placement for caching-enable base stations in cellular networks,” in 2014 IEEE

International Conference on Communications (ICC), 2014, pp. 2648–2653.

[97] U. Niesen, D. Shah, and G. W. Wornell, “Caching in wireless networks,” IEEE

Transactions on Information Theory, vol. 58, no. 10, pp. 6524–6540, Oct. 2012.

[98] Y. Wu, S. Yao, Y. Yang, Z. Hu, and C. X. Wang, “Semigradient-based coop-

erative caching algorithm for mobile social networks,” in Proc. IEEE Global

Communications Conference, Dec. 2016, pp. 1–6.

[99] S. Krishnendu, B. N. Bharath, and V. Bhatia, “Cache enabled cellular net-

work: Algorithm for cache placement and guarantees,” IEEE Wireless Com-

munications Letters, vol. 8, no. 6, pp. 1550–1554, 2019.

[100] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” CoRR,

vol. abs/1209.5807, 2012. [Online]. Available: http://arxiv.org/abs/1209.5807

[101] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content

distribution networks,” in 2010 Proceedings IEEE International Conference on

Computer Communications, 2010, pp. 1–9.

129

REFERENCES

[102] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in wireless

D2D networks,” IEEE Transactions on Information Theory, vol. 62, no. 2, pp.

849–869, Jan. 2016.

[103] L. Zhang, M. Xiao, G. Wu, and S. Li, “Efficient scheduling and power al-

location for D2D-assisted wireless caching networks,” IEEE Transactions on

Communications, vol. 64, no. 6, pp. 2438–2452, Jun. 2016.

[104] B. Chen and C. Yang, “Caching policy for cache-enabled D2D communications

by learning user preference,” IEEE Transactions on Communications, vol. 66,

no. 12, pp. 6586–6601, 2018.

[105] F. Cheng, G. Gui, N. Zhao, Y. Chen, J. Tang, and H. Sari, “UAV-relaying-

assisted secure transmission with caching,” IEEE Transactions on Communi-

cations, vol. 67, no. 5, pp. 3140–3153, 2019.

[106] Z. Xiao, X. Dai, H. Jiang, D. Wang, H. Chen, L. Yang, and F. Zeng, “Ve-

hicular task offloading via heat-aware MEC cooperation using game-theoretic

method,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 2038–2052, 2020.

[107] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim,

“LRFU: a spectrum of policies that subsumes the least recently used and least

frequently used policies,” IEEE Transactions on Computers, vol. 50, no. 12,

pp. 1352–1361, 2001.

[108] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge AI:

Intelligentizing mobile edge computing, caching and communication by feder-

ated learning,” IEEE Network, vol. 33, no. 5, pp. 156–165, 2019.

[109] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated deep

reinforcement learning for internet of things with decentralized cooperative

edge caching,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9441–

9455, 2020.

[110] X. Wang, R. Li, C. Wang, X. Li, T. Taleb, and V. C. M. Leung, “Attention-

weighted federated deep reinforcement learning for device-to-device assisted

130

REFERENCES

heterogeneous collaborative edge caching,” IEEE Journal on Selected Areas

in Communications, vol. 39, no. 1, pp. 154–169, 2021.

[111] Z. M. Fadlullah and N. Kato, “HCP: Heterogeneous computing platform for

federated learning based collaborative content caching towards 6G networks,”

IEEE Transactions on Emerging Topics in Computing, pp. 1–1, 2020.

[112] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the IEEE,

vol. 63, no. 4, pp. 561–580, 1975.

[113] A. C. Singer and M. Feder, “Universal linear prediction by model order weight-

ing,” IEEE Transactions on Signal Processing, vol. 47, no. 10, pp. 2685–2699,

1999.

[114] S. S. Kozat, A. C. Singer, and G. C. Zeitler, “Universal piecewise linear pre-

diction via context trees,” IEEE Transactions on Signal Processing, vol. 55,

no. 7, pp. 3730–3745, 2007.

[115] A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright,

“Information-theoretic lower bounds on the oracle complexity of stochastic

convex optimization,” IEEE Transactions on Information Theory, vol. 58,

no. 5, pp. 3235–3249, 2012.

[116] P. Tarrès and Y. Yao, “Online learning as stochastic approximation of regular-

ization paths: Optimality and almost-sure convergence,” IEEE Transactions

on Information Theory, vol. 60, no. 9, pp. 5716–5735, 2014.

[117] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “On the generalization ability

of on-line learning algorithms,” IEEE Transactions on Information Theory,

vol. 50, no. 9, pp. 2050–2057, 2004.

[118] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization,” Journal of Machine Learning Research,

vol. 12, no. 9, pp. 2121–2159, Feb. 2011.

[119] V. Kuznetsov and M. Mohri, “Time series prediction and online learning,” in

Proceedings of The 29th Conference on Learning Theory, 2016, pp. 1190–1213.

131

REFERENCES

[120] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,

“Federated optimization in heterogeneous networks,” IEEE Transactions on

Computers, 2018. [Online]. Available: http://arxiv.org/abs/1812.06127

[121] A. Cohen and T. Hazan, “Following the perturbed leader for online structured

learning,” in International Conference on Machine Learning, 2015, pp. 1034–

1423.

[122] J. Abernethy, C. Lee, A. Sinha, and A. Tewari, “Online linear optimization

via smoothing,” in Proceedings of the 27th Conference on Learning Theory,,

2014, pp. 807–823.

[123] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine

Learning. MIT press, 2018.

[124] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algo-

rithms, business value, and innovation,” ACM Transactions on Management

Information Systems, vol. 6, no. 4, pp. 1–19, 2016.

[125] Z. Zhou, S. Khemmarat, and G. L., “The impact of youtube recommenda-

tion system on video views,” in Proceedings of the 10th ACM Conference on

Internet Measurement Conference, 2010, pp. 404–410.

[126] H. Zhu, Y. Cao, X. Wei, W. Wang, T. Jiang, and S. Jin, “Caching transient

data for internet of things: A deep reinforcement learning approach,” IEEE

Internet of Things Journal, vol. 6, no. 2, pp. 2074–2083, 2019.

[127] R. Devooght and H. Bersini, “Collaborative filtering with recurrent

neural networks,” CoRR, vol. abs/1608.07400, 2016. [Online]. Available:

http://arxiv.org/abs/1608.07400

[128] W. Liu, J. Zhang, Z. Liang, L. Peng, and J. Cai, “Content popularity predic-

tion and caching for ICN: A deep learning approach with SDN,” IEEE Access,

vol. 6, pp. 5075–5089, 2018.

[129] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, “Learn to cache:

Machine learning for network edge caching in the big data era,” IEEE Wireless

Communications, vol. 25, no. 3, pp. 28–35, 2018.

132

REFERENCES

[130] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context aware proac-

tive content caching with service differentiation in wireless networks,” IEEE

Transactions on Wireless Communications, vol. 16, no. 2, pp. 1024–1036, 2017.

[131] K. Thar, N. H. Tran, T. Z. Oo, and C. S. Hong, “DeepMEC: Mobile edge

caching using deep learning,” IEEE Access, vol. 6, pp. 78 260–78 275, 2018.

[132] S. Li, J. Xu, M. van der Schaar, and W. Li, “Trend-aware video caching

through online learning,” IEEE Transactions on Multimedia, vol. 18, no. 12,

pp. 2503–2516, 2016.

[133] Y. Chen, Y. Liu, J. Zhao, and Q. Zhu, “Mobile edge cache strategy based on

neural collaborative filtering,” IEEE Access, vol. 8, pp. 18 475–18 482, 2020.

[134] Y. Jiang, M. Ma, M. Bennis, F. Zheng, and X. You, “User preference learning-

based edge caching for fog radio access network,” IEEE Transactions on Com-

munications, vol. 67, no. 2, pp. 1268–1283, 2019.

[135] S. A. Bitaghsir, A. Dadlani, M. Borhani, and A. Khonsari, “Multi-armed

bandit learning for cache content placement in vehicular social networks,”

IEEE Communications Letters, vol. 23, no. 12, pp. 2321–2324, 2019.

[136] X. Xu, M. Tao, and C. Shen, “Collaborative multi-agent multi-armed bandit

learning for small-cell caching,” IEEE Transactions on Wireless Communica-

tions, vol. 19, no. 4, pp. 2570–2585, 2020.

[137] C. Robert, “The bayesian choice: from decision-theoretic foundations to com-

putational implementation,” Springer Science and Business Media, 2007.

[138] J. Zhu, N. Chen, and E. P. Xing, “Bayesian inference with posterior regulariza-

tion and applications to infinite latent SVMs,” Journal of Machine Learning

Research, vol. 15, no. 1, pp. 1799–1847, 2014.

[139] T. Shi and J. Zhu, “Online bayesian passive-aggressive learnings,” Journal of

Machine Learning Research, vol. 18, no. 1, pp. 1084–1122, 2014.

[140] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visotsky,

T. A. Thomas, J. G. Andrews, P. Xia, H. S. Jo, H. S. Dhillon, and T. D.

133

REFERENCES

Novlan, “Heterogeneous cellular networks: From theory to practice,” IEEE

Communications Magazine, vol. 50, no. 6, pp. 54–64, 2012.

[141] S. Van de Geer, Empirical Processes in M-Estimation. Cambridge: Cam-

bridge Univ. Press, U.K., 2000.

[142] J. C. Gittins, “Bandit processes and dynamic allocation indices,” Journal of

the Royal Statistical Society. Series B (Methodological),, pp. 148– 177, 1979.

[Online]. Available: https://doi.org/10.1007/BF02579324

[143] C. Meng, G. Wang, X. Dai, S. Chen, and W. Ni, “An energy-efficient transmis-

sion strategy for cache-enabled wireless networks with non-negligible circuit

power,” IEEE Access, vol. 7, pp. 74 811–74 821, 2019.

[144] O. Bousquet, S. Boucheron, and G. Lugosi, “Introduction to statistical learn-

ing theory,” in Summer School on Machine Learning. Springer, 2003, pp.

169–207.

[145] O. Marchal and J. Arbel, “On the sub-gaussianity of the beta and dirichlet

distributions,” Electronic Communications in Probability, vol. 22, Jan 2017.

134

List of Publications

Journal Papers:

1. S. Krishnendu, B. N. Bharath and V. Bhatia, “Cache Enabled Cellular Net-
work: Algorithm for Cache Placement and Guarantees,” IEEE Wireless Com-
munications Letters, vol. 8, no. 6, pp. 1550-1554, Dec. 2019.

2. S. Krishnendu, B. N. Bharath, N. Garg, V. Bhatia and T. Ratnarajah, “Learn-
ing to Cache: Federated Caching in a Cellular Network With Correlated De-
mands,” IEEE Transactions on Communications, 2021.

3. S. Krishnendu, B. N. Bharath, V. Bhatia, J. Nebhen, M. Dobrovolny and T.
Ratnarajah, “Wireless Edge Caching and Content Popularity Prediction Using
Machine Learning,” IEEE Consumer Electronics Magazine, 2022.

4. S. Krishnendu, B. N. Bharath and V. Bhatia “Online Learning of Caching and
Recommendation Policies in a Multi-BS Cellular Networks,” 2022. [Online].
Available: https://arxiv.org/abs/2210.07747, under review.

Conference Papers:

1. S. Krishnendu, B. N. Bharath and V. Bhatia, “Joint Edge Content Cache
Placement and Recommendation: Bayesian Approach,” 2021 IEEE 93rd Ve-
hicular Technology Conference (VTC2021-Spring), 2021, pp. 1-5.

2. Sourab Mishra, Sparsh Bansal, S. Krishnendu, V. Bhatia, “KNN based Novel
Recommendation System for Mobile Edge Caching,” IEEE INDICON Con-
ference, Dec. 2021.

3. S. Krishnendu, B. N. Bharath and V. Bhatia, “Recommendation based Edge
Caching for Cellular Network Using Whittle Index,” under review.

