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ABSTRACT

KEYWORDS: Analytic functions, univalent functions, convex functions, starlike func-

tions, hypergeometric functions, area maxima, and length maxima

This thesis contains a survey of basic properties of univalent functions in the analytic

function theory. Mostly we focuses on the class of univalent functions in the unit disk in

which each of them has a Taylor’s series expansion with a specific normalized form. This

class of functions is preserved under certain elementary transformations. The well-known

Bieberbach theorem, the growth theorem, the distortion theorem, the Koebe 1/4-theorem,

area theorems are presented in this thesis. The classical subclasses of univalent functions,

namely, the class of convex and starlike functions are also studied including their charac-

terizations. As a part of applications of above and other related properties considered in

this thesis, we compute areas of image domains of the unit disk and its subdisks under

functions of some special types looking into the fact that the image domains are bounded.

These are also examined through several examples of functions and their graphs. Finally,

in the line of area of regions, we expect that a number of problems can be studied to max-

imize length of image of unit circle over the class of univalent functions. A few analysis

on the latter part are covered in the concluding chapter.
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CHAPTER 1

INTRODUCTION

We focus on the family of univalent functions in the unit disk. A univalent function

does not take the same value more than once for two distinct points in the unit disk.

The choice unit disk as a domain in this context comes from Riemann Mapping Theorem,

which gives us an one-one analytic function from a simply connected proper subdomain

of C onto the unit disk. Thus, whatever properties of univalent functions in the unit disk

easily transformed into the properties of simply connected domains.

If f is analytic and univalent in the unit disk, then f has a Taylor’s series expansion

of the form

f(z) = a0 + a1z + a2z
2 + · · · ,

where an’s are Taylor’s coefficients. If f is univalent then f(z) − a0 is also univalent. If

a1 6= 0, then (f(z)− a0)/a1 is also univalent. By [9, Theorems 11.2-11.3, pp. 383] we see

that a1 = f ′(0) 6= 0. Thus, to convert into normalized form, we can consider functions of

the form

f(z)− f(0)

f ′(0)

to study its univalency. We denote this class of functions by S. Therefore, we consider such

type of normalized analytic and univalent functions in this context. Univalent function

theory is a part of geometric function theory. It started in the beginning of twentieth

century. In 1907 Koebe proved that range of each functions in the class S, contains a disk

|w| < ρ, where ρ > 0 is an absolute constant. After few year Bieberbach gave the value

of ρ as 1/4. One of the well known theorems, Bieberbach Theorem gives a bound for the

coefficient of z2 of the family S, i.e. |a2| ≤ 2. and this inequality can be converted into

equality for the function k(z) = z(1−zeiθ)−2, θ is real, which is also a member of the class

S. In 1916, he conjectured that for every f ∈ S, |an| ≤ n for every n. This conjecture

is known as Bieberbach Conjecture. Finally in 1985, de Branges proved this conjecture.

In the meanwhile, the proof of Bieberbach’s theorem was investigated by a number of

authors by introducing some subclasses of the class of univalent functions. Therefore,



the study of several subclasses of the class S is highlighted in the literature. Bieberbach

Theorem have many applications. One of them is Koebe one-quarter Theorem.

In Chapter 2, we consider univalent functions which are the member of the class S

and these functions bears some special properties. In formal, we can say that this class

preserves some elementary transformations. Also, we discuss Area Theorem which gives us

the area of image of the unit disk under f in S. This area theorem provides many results

related to univalent functions. We survey some elegant application of Area Theorem and

then we end this chapter with Growth and Distortion Theorem that sharply estimates the

lower and upper bounds of absolute value of the functions in S and their derivatives. We

shall use these theorems in the proof of some of the results discussed in the subsequent

chapters.

In Chapter 3, we move down into the subclasses of the class S. We survey the

characterizations of these subclasses, namely, convex functions and starlike functions. We

also state a theorem known as Alexander’s Theorem that gives a beautiful relation between

these two functions and then we gently move into Chapter 4, which is all about area of

image domains of the unit disk under some special type of functions that is constructed

using the functions from that class and subclasses, which is an elegant application of

above surveyed facts and properties. The maximum area attained by k(z) = z(1 − z)−2

which is unbounded in unit disk so that we choose some special type of function from the

class S and its subclasses whose image domain is bounded and we discuss some examples

with graphs related to areas of these special type of functions.

Finally, we get into Chapter 5 in which we survey the length problems for functions

in S. It is expected that a number of problems can be studied to maximize length of

image of unit circle under the class of univalent functions and its subclasses.
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CHAPTER 2

UNIVALENT FUNCTIONS

In this chapter we consider the class of normalized analytic and univalent functions

defined in the unit disk, and some of the elementary properties which say that this class is

preserved under certain elementary transformations. Some important well-known results

are also presented which are useful to main objective of this thesis.

A function f is said to be univalent in a domain D ⊂ C if it never take the same value

twice i.e if z1 6= z2, then f(z1) 6= f(z2) for z1 and z2 in D. Note that a univalent function

need not be analytic in a domain. For instance, the function f(z) = z/(1 − 3z + z2) is

univalent in the unit disk D := {z : |z| < 1}, but it is not analytic there as there is a pole

at z = (3−
√

5)/2. Indeed, we have

f(z1) = f(z2) ⇐⇒ (z1 − z2)(1− z1z2) = 0 ⇐⇒ z1 = z2.

An analytic function f locally univalent at z0 is equivalent to the condition f ′(z0) 6= 0.

2.1. The class S

This section, primarily concerned with the class S consisting of functions f analytic

and univalent in the unit disk D normalized by the conditions f(0) = 0 and f ′(0) = 1,

i.e.,

S := {f : f is analytic and univalent with f(0) = 0 and f ′(0) = 1}.

Each f ∈ S has Taylor’s series expansion of the form

(2.1) f(z) = z + a2z
2 + a3z

3 + · · · , |z| < 1.

An analytic univalent function in a domains can be treated as conformal because of its

angle preserving property. Indeed, this is an application of Rouché’s Theorem (see [9, p.

384]).



Example 2.1. Consider f(z) = z for z ∈ D. It is clear that f is analytic in the unit disk.

If f(z1) = f(z2) for z1, z2 ∈ D, then z1 = z2. Therefore f is univalent in D. Also f(0) = 0

and f ′(0) = 1. Hence f ∈ S.

Example 2.2. Let f(z) = z/(1 − z) so that f be analytic in D and if f(z1) = f(z2) for

z1, z2 ∈ D, then
z1

1− z1
=

z2
1− z2

⇐⇒ z1 = z2.

Therefore, f is univalent in the unit disk. Also f(0) = 0 and f ′(z) = 1/(1 − z)2 which

gives f ′(0) = 1. Hence f ∈ S.

Example 2.3. Let f(z) = z/(1− z2) so that f be analytic in D. Now,

z1
1− z21

=
z2

1− z22
⇐⇒ (z1 − z2)(1 + z1z2) = 0 ⇐⇒ z1 = z2

for z1, z2 ∈ D, since z1z2 6= −1. Therefore f is univalent in D. Also f(0) = 0 and

f ′(0) = 1. Hence f ∈ S.

Example 2.4. Consider the Koebe function k(z) =
z

(1− z)2
. Since the Koebe function

can be written as

k(z) =
1

4

(
1 + z

1− z

)2

− 1

4
,

it can easily be seen that it maps the unit disk onto C \ (−∞,−1/4]. It is easy to check

from the relations

z1
(1− z1)2

=
z2

(1− z2)2
⇐⇒ (z1 − z2)(1− z1z2) = 0,

k(0) = 0 and k′(0) = 1 that k ∈ S.

Note that the sum of two functions in the class S need not be in S. For example,

consider two functions of S:

f(z) =
z

1− z
and g(z) =

z

1 + iz
.

Now

h(z) = f(z) + g(z) =
z

1− z
+

z

1 + iz

and

h′(z) =
1

(1− z)2
+

1

(1 + iz)2
.

At z0= (1 + i)/2, h′(z0) = 0. This shows that h is not locally univalent at z0 and hence

not univalent.

4



2.2. Elementary transformations

The class S, preserved under some elementary transformations, see [3, pp. 27–28].

That helps to construct examples of functions belonging to the class S.

(i) Conjugation. If f ∈ S and g(z) = f(z̄), then g ∈ S.

Proof. Suppose f ∈ S and consider the function h : D → D defined as g(z) = z̄ which

is univalent and analytic in D. Set g(z) = f(z̄) = (h ◦ f ◦ h)(z). Clearly, g is univalent

and analytic, since composition of two univalent functions is univalent (same for analytic

function). Also g(0) = 0 and g′(0) = 1. Hence g ∈ S.

(ii) Rotation. If f ∈ S and g(z) = e−iθf(eiθz), then g ∈ S.

Proof. Suppose f ∈ S. Consider the function h : D → D and j : D → D defined

as h(z) = eiθz and j(z) = e−iθz which are univalent and analytic in D. Set g(z) =

e−iθf(eiθz) = (j ◦ f ◦ h)(z). Clearly g is univalent and analytic, since composition of two

univalent functions is univalent (same for analytic function). Therefore

g′(z) = e−iθeiθf ′(eiθz) = f ′(eiθz)

so that g(0) = f(0) = 0 and g′(0) = f ′(0) = 1. Hence g ∈ S.

(iii) Dilation. If f ∈ S, 0 < r < 1, and g(z) = r−1f(rz), then g ∈ S.

Proof. Suppose f ∈ S. Consider the function h, j : D → D defined as h(z) = rz and

j(z) = z/r which are univalent and analytic. Let g(z) = r−1f(rz) = (j ◦ f ◦ h)(z), which

is univalent and analytic, since composition of two univalent functions is univalent (same

for analytic function). Therefore g′(z) = f ′(rz) so that g(0) = 0 and g′(0) = f ′(0) = 1.

Hence g ∈ S.

(iv) Disk Automorphism. If f ∈ S and

g(z) =

f

(
z + z0
1 + z̄0z

)
− f(z0)

(1− |z0|2)f ′(z0)
,

for any |z0| < 1, then g ∈ S.
5



Proof. Suppose that f ∈ S and let h(z) = (z + z0)/(1 + z̄0z) be the Möbious transfor-

mation which maps the unit disk D conformally onto itself with h(0) = z0. Now set

g(z) =
f(h(z))− f(z0)

(1− |z0|2)f ′(z0)
,

which is univalent and analytic in D with g(0) = 0 and

g′(z) =
h′(z)f ′(h(z))

(1− |z0|2)f ′(z0)
=

f ′(h(z))

(1− z̄0z)2f ′(z0)

so that g′(0) = 1. Hence g ∈ S.

(v) Range Transformation. If f ∈ S, φ : f(D)→ C is analytic and univalent on f(D)

and

g(z) =
(φ ◦ f)(z)− φ(0)

φ′(0)
,

then g ∈ S.

Proof. Suppose that f ∈ S and let φ(z) : f(D) → C be analytic and univalent in f(D).

Now set

g(z) =
(φ ◦ f)(z)− φ(0)

φ′(0)
,

so that g is clearly univalent and analytic in D. Furthermore,

g′(z) =
f ′(z)φ(f(z))

φ′(0)
,

g(0) = 0 and g′(0) = 1. Thus g ∈ S.

(vi) Omitted value Transformation. If f ∈ S with f(z) 6= w and

g(z) =
wf(z)

w − f(z)
,

then g ∈ S.

Proof. Suppose that f ∈ S and f(z) 6= w, let

g(z) =
wf(z)

w − f(z)
.

Now take h(z) = wξ/(w− ξ). It is clear that h(z) is univalent and analytic, if w 6= ξ. Now

set g(z) = (hof)(z), which is univalent and analytic in D. Therefore

g′(z) =
w2f ′(z)

(w − f(z))2
,

since w 6= f(z) with g(0) = 0 and g′(0) = 1. Thus g ∈ S.

6



Theorem 2.5. If f is analytic on D with 0 /∈ f(D), then there exists an analytic function

h on D with h2 = f.

Proof. For any other w ∈ D, let

g(w) = g(0) +

∫ w

0

f ′(z)

f(z)
dz,

with eg(0) = f(0). By fundamental theorem of calculus, it can be written as

g′(z) =
f ′(z)

f(z)
.

Now f(z) 6= 0 for z ∈ D, so that g is analytic on D. We can see that

(fe−g)′(w) = f ′(w)e−g(w) − g′(w)e−g(w)f(w) = e−g(w)(f ′(w)− g′(w)f(w)) = 0.

Therefore, f(w) = eg(w). Let h(z) = eg(z)/2, so that h is analytic on D with h2(z) = f(z)

for every z ∈ D.

Theorem 2.6. If f ∈ S, then there exist an odd function h ∈ S such that h(z) =
√
f(z2)

for every z ∈ D.

Proof. If f ∈ S, then

f(z) = z + a2z
2 + a3z

3 + · · · .

Rearranging this
f(z)

z
= 1 + a2z + a3z

2 + · · · ,

so f(z)/z is non zero and analytic on D. By Theorem 2.5, there exist an analytic function

F on D with F 2(z) = f(z)/z. Let us define h(z) = zF (z2). It is clear that h is odd

function with

h2(z) = z2F 2(z2) =
z2f(z2)

z2
= f(z2),

also h(0) = 0 and h′(0) = F (0) = 1. Let z1, z2 ∈ D, to show univalency we are assuming

that h(z1) = h(z2) i.e., f(z21) = f(z22) so that z1 = z2 or z1 = −z2, since f is univalent.

If z1 = z2, then there is nothing to show. If z1 = −z2, then h(z1) = −h(−z1) = −h(z2),

since h is odd. This leads to a contradiction. Hence h ∈ S.

(vii) Square root Transformation. If f ∈ S and g(z) =
√
f(z2), then g ∈ S. Here,

the branch is chosen so that √
f(z2) = exp

(1

2
Log f(z2)

)
7



with a principal value of the logarithmic function.

Proof. Suppose that f ∈ S and g(z) =
√
f(z2). Now expanding

g(z) =
√
f(z2) = (z2 + a2z

4 + a3z
6 + · · · )

1
2

= z(1 + a2z
2 + a3z

4 + · · · )
1
2

= z + b3z
3 + b5z

4 + · · · ,

which is an odd function. By Theorem 2.6, g is univalent and analytic on D with g(0) = 0

and g′(0) = 1. Hence g ∈ S.

2.3. Area Theorems

In this section we consider two versions of the area theorem, one of the versions gives

the area of image of unit disk under a function f ∈ S in terms of the coefficients an in the

Taylor expansion of f . By using the area theorem, there are many geometric properties

of the class S proved in the literature. For instance, the Koebe one-quarter theorem

says that the ranges of class S contain a disk {w : |w| < 1/4}. Bieberbach’s Theorem

for second coefficient of the class S says that |a2| ≤ 2. One of the famous conjectures

i.e. Bieberbach conjecture states that |an| ≤ n for all n ≥ 2 which was settled in 1985

by de Branges. Second version of area theorem provides the area problem for functions

belonging to a class of meromorphic functions having a simple pole at ∞ with residue 1.

Detailed information on the above problems is presented below.

First we are proving area theorem for analytic function, reader can refer [4].

Theorem 2.7. Suppose that

f(z) =
∞∑
n=0

anz
n

is analytic in a closed disk Er : |z| ≤ r. If A(r) is area of f(Er), then

A(r) = π
∞∑
n=0

n|an|2r2n.

Proof. We know from calculus that

(2.2) A(r) =

∫ ∫
f(Er)

du dv =

∫ ∫
Er

∣∣∣∂(u, v)

∂(x, y)

∣∣∣dx dy,
8



where z = x+ iy and w = u+ iv. Now

∂(u, v)

∂(x, y)
=

∣∣∣∣∣∣ux uy

vx vy

∣∣∣∣∣∣ .
Since f is analytic, the partial derivative are continuous and satisfying the Cauchy-

Riemann equations. Therefore

∂(u, v)

∂(x, y)
=

∣∣∣∣∣∣ux −vxvx ux

∣∣∣∣∣∣ = u2x + v2x = |f ′(z)|2.

From equation (2.2), we have

A(r) =

∫ ∫
|z|≤r
|f ′(z)|2dxdy.

Changing to polar coordinate, we get

A(r) =

∫ r

0

∫ 2π

0

|f ′(ρeiθ)|2ρdθdρ.

Now

f ′(ρeiθ) = a1 + 2aρe
iθ + 3a+ 3ρ3e2iθ + · · · =

∞∑
n=1

nan(ρeiθ)n−1.

Therefore,

A(r) =

∫ r

0

∫ 2π

0

|f ′(ρeiθ)|2ρdθdρ

=

∫ r

0

ρdρ

∫ 2π

0

f ′(ρeiθ)f ′(ρeiθ)dθ

=

∫ r

0

ρdρ

∫ 2π

0

(
∞∑
n=1

nan(ρeiθ)n−1

)(
∞∑
m=1

mam(ρeiθ)m−1

)

=

∫ r

0

2π
∞∑
n=1

n2|an|2ρ2n−2ρdρ

= π
∞∑
n=1

n|an|2r2n,

since the product are of the form ei(m−n)θ,m 6= n, are integrate to zero over range 0 to

2π. This complete the proof.

Definition (Laurent series). If f(z) is analytic in the annulus enclosed by the concen-

tric circles C1 and C2 centred at z = z0 and of radii r1 and r2 respectively and r2 < r1,

9



then

f(z) =
∞∑
n=1

an(z − z0)n +
∞∑
n=0

bn(z − z0)−n,

where

an =
1

2πi

∫
C1

f(ζ)

(ζ − z0)n+1
dζ

and

bn =
1

2πi

∫
C2

f(ζ)

(ζ − z0)−n+1
dζ.

In particular, for center at origin

f(z) =
∞∑
n=1

anz
n +

∞∑
n=0

bnz
−n,

Rearranging this series, we can write

1

a1

(
f(z)−

∞∑
n=2

anz
n

)
= z +

∞∑
n=0

bn
a1
z−n.

Now we rewrite of this form

g(z) = z +
∞∑
n=0

cnz
−n, cn ∈ C,

let us denotes Σ, by the set of such functions. If g ∈ Σ then g maps ∆ := {z ∈ C : |z| > 1}

onto complement of a compact connected set E and g(z) is analytic and univalent in the

domain ∆ exterior to D, except for a simple pole at infinity with residue 1. Consider the

subclass Σ′ of functions g ∈ Σ for which g(z) 6= 0 in ∆ i.e 0 ∈ E. The functions belongs

to Σ′ by adjustment of constant term. If f ∈ S and g is defined by inversion,

g(z) = (f(z−1))−1 = z − a2 + (a22 − a3)z−1 + · · · , |z| > 1,

then g belongs to Σ′. This transformation is called inversion. It establishes a one-one

correspondence between S and Σ. We denote by Σ, the subclass of all functions g ∈ Σ

whose omitted set E has two dimensional Lebesgue measure zero.

Theorem 2.8. (Area Theorem). If g ∈ Σ, then

(2.3)
∞∑
n=1

n|bn|2 ≤ 1,

with equality if and only if g ∈ Σ̄.

10



Proof. Let E be the set omitted by g. For r > 1, let Cr be the image under g of the circle

|z| = r. Since g is univalent, Cr is a simple closed curve which encloses a domain Er ⊃ E.

By Green’s theorem, for w = g(z)

Area(Er) =
1

2i

∫
Cr

w̄dw

=
1

2i

∫
|z|=r

g(z)g′(z)dz

=
1

2i

∫
|z|=r

(
z̄ +

∞∑
n=0

bn(z)−n

)(
1−

∞∑
m=1

mbmz
−m−1

)
dz

=
1

2i

∫ 2π

0

(
re−iθ +

∞∑
n=0

bnr
−neinθ

)(
1−

∞∑
m=1

mbmr
−m−1e−i(m+1)θ

)
ireiθdθ

=
1

2

∫ 2π

0

(
re−iθ +

∞∑
n=0

bnr
−neinθ

)(
reiθ −

∞∑
m=1

mbmr
−me−imθ

)
dθ

=
1

2

∫ 2π

0

(
r2 −

∞∑
n=1

n|bn|2r−2n
)
dθ

= π

(
r2 −

∞∑
n=1

n|bn|2r−2n
)
.

Area is non-negative so that

π

(
r2 −

∞∑
n=1

n|bn|2r−2n
)
≥ 0

that implies r2 ≥
∑∞

n=1 n|bn|2r−2n. Now letting r → 1, we obtain

Area(E) = lim
r→1

Area(Er) = π

(
1−

∞∑
n=1

n|bn|2
)
.

This implies
∞∑
n=1

n|bn|2 ≤ 1,

since Area(E) ≥ 0. Equality holds iff Area(E) = 0 i.e.,
∑∞

n=0 n|bn|2 = 1.

Corollary 2.9. If g ∈ Σ, then |b1| ≤ 1, with equality if and only if g has the form

g(z) = z + b0 + b1z
−1, where |b1| = 1.

Proof. We know from (2.3) that n|bn|2 ≤
∑
n|bn|2 ≤ 1. Now for n = 1, |b1| ≤ 1. If

g(z) = z + b0 + b1z
−1, then |b1| = 1.

11



Conversely, if |b1| = 1 and g ∈ Σ then to prove g(z) = z + b0 + b1z
−1, take b1 = eiθ.

Now by Theorem 2.8, we obtain
∞∑
n=1

n|bn|2 ≤ 1

i.e. |b1|2 + 2|b2|2 + 3|b3|2 + · · · ≤ 1. Putting the value of b1, we obtain

1 + 2|b2|2 + 3|b3|2 + · · · ≤ 1.

That implies b2 = 0, b3 = 0, b3 = 0 and so on. Hence g(z) = z + b0 + b1z
−1.

Corollary 2.9 is most important to prove Bieberbach’s theorem which estimates the

second coefficient of function in the class S. This theorem gives the basic result for

Biererbach conjecture.

Theorem 2.10. (Bieberbach’s Theorem). If f ∈ S and it is of the form (2.1), then

|a2| ≤ 2 with equality if and only if f is a rotation of the Koebe function.

Proof. Let f ∈ S. The class S preserved square root transformation so that for f(z) =

z + a2z
2 + a3z

3 + · · · , g(z) = (f(z2))1/2 ∈ S. Now applying inversion transformation to

g, we obtain (g(1/z))−1 ∈ Σ i.e. f((1/z2))−1/2 ∈ Σ. But

f((1/z2))−1/2 = z − a2
2
z−1 +

(
3a22
8
− a33

2

)
z−3 + · · · .

From Corollary 2.9, it is clear that
∣∣∣−a2

2

∣∣∣ =
∣∣∣a2

2

∣∣∣ ≤ 1 that implies |a2| ≤ 2.

One of the applications of Bieberbach’s theorem is covering theorem which introduce

by Koebe called Koebe one-quarter theorem. Each function f ∈ S satisfies the condition

f(0) = 0 so that range of f contains some disk center at origin. Koebe first introduce

the ranges of all class S functions contains a common disk {w : |w| < ρ}, where ρ is

an absolutely constant. The Koebe function k(z) = z/(1 − z)2 shows that ρ ≤ 1/4.

Bieberbach later proved that ρ may be taken 1/4.

Theorem 2.11. (Koebe one-quarter Theorem). The range of every function of class

S contains the disk {w : |w| < 1/4}.

Proof. If a function f ∈ S omits the value of w ∈ C i.e f(z) 6= w i.e w /∈ f(D), then

g(z) =
wf(z)

w − f(z)
= b0 + b1z + b2z

2 + · · · ,

12



is well defined, analytic and univalent in D. Equivalently, g(z)(w− f(z)) = wf(z). It can

be written as

(b0 + b1z + b2z
2 + · · · )(w − (z + a2z

2 + a3z
3 + · · · )) = w(z + a2z

2 + a3z
3 + · · · ).

Taking Cauchy product and comparing coefficients of zn, we obtain

b0 = 0

wb1 = w

wb2 − b1 = wa2

wb3 − b1a2 − b2 = wa2, . . .

Therefore, b1 = 1, b2 =
1

w
(wa2 + 1) = a2 +

1

w
and so on. Thus

g(z) = z + (a2 +
1

w
)z2 + · · · .

From Bieberbach’s theorem (Theorem 2.10), |a2 + 1
w
| ≤ 2, since g ∈ S and also |a2| ≤ 2,

since g ∈ S. Therefore ∣∣∣∣ 1

w

∣∣∣∣− |a2| ≤ ∣∣∣∣ 1

w
+ a2

∣∣∣∣ ≤ 2.

Simplifying this, we obtain | 1
w
| ≤ 4 i.e. |w| ≥ 1

4
. Thus every omitted value must lie outside

the disk |w| < 1
4
.

If

∣∣∣∣ 1

w

∣∣∣∣ = 4, we can write∣∣∣∣ 1

w

∣∣∣∣− |a2| ≤ 2 i.e.

∣∣∣∣ 1

w

∣∣∣∣ ≤ 2 + |a2| ≤ 4.

That implies |a2| = 2. Hence f is some rotation of the Koebe function.

2.4. Growth and Distortion Theorems

This section provides the sharp upper and lower bounds for |f ′(z)| for all f ∈ S,

which is important consequence of the Koebe distortion theorem. Distortion theorem is

one of the applications of Bieberbach’s theorem |a2| ≤ 2. By using distortion theorem,

growth theorem is proved, which provides the sharp upper and lower bounds of |f(z)| for

all f ∈ S. To prove the distortion theorem, we use the following theorem.

13



Theorem 2.12. For each f ∈ S,∣∣∣∣zf ′′(z)

f ′(z)
− 2r2

1− r2

∣∣∣∣ ≤ 4r

1− r2
, |z| = r < 1.

This equality holds for a rotation of the Koebe function in D.

Proof. Given f ∈ S and fix ζ ∈ D, by disk of automorphism we can write

F (z) =

f

(
z + ζ

1 + ζz

)
− f(ζ)

(1− |ζ|2)f ′(ζ)
.

Now take w = (z + ζ)/(1 + ζz) and the Taylor series expansion of f at w = ζ given by

f(w) = f(ζ) + (w − ζ)f ′(ζ) +
(w − ζ)2

2 !
f ′′(ζ) + · · · .

Putting the value of w in the above equation, we rewrite this as

f(w) = f(ζ) +

(
z + ζ

1 + ζz
− ζ
)
f ′(ζ) +

(
z + ζ

1 + ζz
− ζ
)2

2 !
f ′′(ζ) + · · · .

By simple calculation, we get

f(w) = f(ζ) + z

(
1− |ζ|2

1 + ζz

)
f ′(ζ) +

z2

2

(1− |ζ|2)2

(1 + ζz)2
f ′′(ζ) + · · · .

Now

F (z) =
f(w)− f(ζ)

(1− |ζ|2)f ′(ζ)

=
1

(1− |ζ|2)f ′(ζ)

(
f(ζ) + z

(
1− |ζ|2

1 + ζz

)
f ′(ζ) +

z2

2

(1− |ζ|2)2

(1 + ζz)2
f ′′(ζ) + · · · − f(ζ)

)
= z(1 + ζz)−1 +

z2

2
(1− |ζ|2)(1 + ζz)−2

f ′′(ζ)

f ′(ζ)
+ · · ·

= z(1− ζz + (ζz)2 + · · · ) +
z2

2
(1− |ζ|2)(1− 2ζz + 3(ζz)2 − · · · )f

′′(ζ)

f ′(ζ)
+ · · ·

= z + z2
(

(1− |ζ|2)
2

f ′′(ζ)

f ′(ζ)
− ζ
)

+ · · · .

Since F (z) ∈ S, by Bieberbach’s theorem (Theorem 2.10), we obtain∣∣∣∣(1− |ζ|2)2

f ′′(ζ)

f ′(ζ)
− ζ
∣∣∣∣ ≤ 2,

multiplying by 2|ζ|/(1− |ζ|2) both sides, we obtain∣∣∣∣|ζ|f ′′(ζ)

f ′(ζ)
− 2|ζ|2

1− |ζ|2

∣∣∣∣ ≤ 4|ζ|
1− |ζ|2

.
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Now replacing ζ by z, above inequality can be written as∣∣∣∣z f ′′(z)

f ′(z)
− 2|z|2

1− |z|2

∣∣∣∣ ≤ 4|z|
1− |z|2

.

Now the Koebe function k(z) =
z

(1− z)2
gives k′(z) =

1 + z

(1− z)3
and hence

k′′(z)

k′(z)
=

2(2 + z)

1− z2
.

Therefore ∣∣∣∣zk′′(z)

k′(z)
− 2|z|2

1− |z|2

∣∣∣∣ =

∣∣∣∣2(2 + z)z

1− z2
− 2z2

1− z2

∣∣∣∣ =

∣∣∣∣ 4z

1− z2

∣∣∣∣ .
This complete the proof.

Theorem 2.13. (Distortion Theorem). For each f ∈ S,

1− r
(1 + r)3

≤ |f ′(z)| ≤ 1 + r

(1− r)3
, |z| = r < 1.

For each z ∈ D, equality holds if and only if f is a rotation of the Koebe function.

Proof. From Theorem 2.12, we can write

−4r

1− r2
≤ Re

(
zf ′′(z)

f ′(z)
− 2r2

1− r2

)
≤ 4r

1− r2
,

since |α| ≤ c implies that −c ≤ Re(α) ≤ c. It can be written as

−4r

1− r2
+

2r2

1− r2
≤ Re

(
zf ′′(z)

f ′(z)

)
≤ 4r

1− r2
+

2r2

1− r2

or

(2.4)
2r(r − 2)

1− r2
≤ Re

(
zf ′′(z)

f ′(z)

)
≤ 2r(r + 2)

1− r2
.

Since f ′(z) 6= 0 and f ′(0) = 1, we can choose a single valued branch of log f ′(z) which

vanishes at origin i.e. log f ′(0) = 0. Now

r
∂

∂r
Re (log f ′(z)) = r

∂

∂r
Re (log |f ′(z)|+ i arg f ′(z)) = r

∂

∂r
log |f ′(z)|

and

r
∂

∂r
log(f ′(z)) = r

∂

∂z
log f ′(z)

∂z

∂r
= r

f ′′(z)

f ′(z)
eiθ = z

f ′′(z)

f ′(z)
, z = reiθ.

It is obvious that

Re

(
r
∂

∂r
log(f ′(z))

)
= Re

(
z
f ′′(z)

f ′(z)

)
.
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But

Re

(
r
∂

∂r
log(f ′(z))

)
= Re

(
r
∂

∂r
(log |f ′(z)|+ i arg f ′(z))

)
= r

∂

∂r
log |f ′(z)|.

Therefore

(2.5) Re

(
z
f ′′(z)

f ′(z)

)
= r

∂

∂r
log |f ′(z)|.

Now from (2.4), it is clear that

2r(r − 2)

1− r2
≤ r

∂

∂r
log |f ′(z)| ≤ 2r(r + 2)

1− r2
.

This can be written as

(2.6)
2(r − 2)

1− r2
≤ ∂

∂r
log |f ′(z)| ≤ 2(r + 2)

1− r2
.

Now fix θ and integrate (2.6) with respect to r from 0 to R, we obtain

(2.7)

∫ R

0

2(r − 2)

1− r2
dr ≤

∫ R

0

∂

∂r
log |f ′(z)|dr ≤

∫ R

0

2(r + 2)

1− r2
dr.

Now ∫ R

0

2(r − 2)

1− r2
dr = 2

∫ R

0

(
r − 1

1− r2
− 1

1− r2

)
dr

= −2

∫ R

0

1

1 + r
dr − 2

∫ R

0

1

1− r2
dr

=

[
−2 log(1 + r)− log

(
1 + r

1− r

)]R
0

= log

(
1−R

(1 +R)3

)
.

Similarly, ∫ R

0

2(r + 2)

1− r2
dr = log

(
1 +R

(1−R)3

)
.

Hence from (2.7), we obtain

log

(
1−R

(1 +R)3

)
≤ log |f ′(Reiθ)| ≤ log

(
1 +R

(1−R)3

)
.

For 0 ≤ r ≤ R,

log

(
1− r

(1 + r)3

)
≤ log |f ′(z)| ≤ log

(
1 + r

(1− r)3

)
.

For the Koebe function k(z) = z/(1 − z)2, equality holds for z ∈ D. Because k′(z) =

(1 + z)/(1− z)3 and for z = r,

k′(z) =
1 + r

(1− r)3
.
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Also for z = −r,

k′(z) =
1− r

(1 + r)3
.

Hence

1− r
(1 + r)3

= |k′(z)| = 1 + r

(1− r)3
.

Conversely, if equality holds, we need to show f is a rotation of the Koebe function. Now

1− r
(1 + r)3

= |k′(z)| = 1 + r

(1− r)3
.

From the proof of the distortion theorem, above equality is equivalent to

2(r − 2)

1− r2
=

∂

∂r
log |(f ′(z))| = 2(r + 2)

1− r2
, 0 ≤ r ≤ R.

But from (2.5), we clearly see that

∂

∂r
log |(f ′(z))| = 1

r
Re

(
z
f ′′(z)

f ′(z)

)
,

this is equivalent to

∂

∂r
log |(f ′(reiθ)| = Re

(
eiθ
f ′′(z)

f ′(z)

)
.

In particular,

−4 = Re

(
eiθ
f ′′(0)

f ′(0)

)
= 4

i.e. Re

(
eiθ
f ′′(0)

f ′(0)

)
= ±4.

Therefore,

Re

(
eiθ
(

2a2 + 6a3z
2 + · · ·

1 + 2a2 + · · ·

))
= ±4,

so that |eiθ(2a2)| = 4 i.e. |a2| = 2.

Hence by Bieberbach’s theorem f must be a rotation of the Koebe function. This

completes the proof.

Theorem 2.14. (Growth Theorem). For each f ∈ S,

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
, |z| = r < 1.

For each z ∈ D, equality holds if and only if f is a rotation of the Koebe function.
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Proof. For each f ∈ S, fix z = reiθ with 0 < r < 1. It is clear that

f(z) =

∫ r

0

f ′(ρeiθ)eiθdρ,

since f(0) = 0.

Now by the distortion theorem

(2.8) |f(z)| ≤
∫ r

0

|f ′(ρeiθ)|dρ ≤
∫ r

0

1 + ρ

(1− ρ)3
dρ.

But ∫ r

0

1 + ρ

(1− ρ)3
dρ =

∫ r

0

1 + ρ− 1 + 1

(1− ρ)3
dρ =

∫ r

0

(
− 1− ρ

(1− ρ)3
+

2

(1− ρ)3

)
dρ.

By simple integration over 0 to r, we obtain∫ r

0

1 + ρ

(1− ρ)3
dρ =

r

(1− r)2
.

From (2.8), we get

|f(z)| ≤ r

(1− r)2
.

Now for 0 < r < 1, r/(1 + r)2 < 1/4. So the inequality holds if |f(z)| ≥ 1/4. If

|f(z)| < 1/4, then the radial segment from 0 to f(z) lies entirely in the range of f by the

Koebe one-quarter theorem.

Since f is univalent, the preimage C of the segment [0, f(z)] is an arc inside {z : |z| ≤

r} and f(z) =
∫
C
f ′(ζ)dζ. But f ′(ζ)dζ has constant signum along C, so by the distortion

theorem

|f(z)| =
∫
C

|f ′(ζ)||dζ| ≥
∫ r

0

1− ρ
(1 + ρ)3

dρ.

But ∫ r

0

1− ρ
(1 + ρ)3

dρ =
r

(1 + r)2
.

Therefore

|f(z)| ≥ r

(1 + r)2
.

Hence we obtain

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
, |z| = r < 1.

Now if equality holds, we can write

r

(1 + r)2
= |f(z)| = r

(1− r)2
, |z| = r < 1.

18



Taking derivative with respect to r both sides, we obtain

1− r
(1 + r)3

= |f ′(z)| = 1 + r

(1− r)3
.

Hence from the distortion theorem f(z) is a rotation of the Koebe function.

Corollary 2.15. If f ∈ S and z ∈ D, then

1− |z|
1 + |z|

≤
∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

.

Proof. Suppose f ∈ S, we obtained from F by a disk automorphism for a fix ζ ∈ D

F (z) =

f

(
z + ζ

1 + ζz

)
− f(ζ)

(1− |ζ|2)f ′(ζ)
.

By the growth theorem, we can write

(2.9)
|ζ|

(1 + |ζ|)2
≤ |F (−ζ)| ≤ |ζ|

(1− |ζ|)2
,

but

F (−ζ) =
f(0)− f(ζ)

(1− |ζ|2)f ′(ζ)
=

−f(ζ)

(1− |ζ|2)f ′(ζ)
.

Therefore, from (2.9) we have

|ζ|
(1 + |ζ|)2

≤
∣∣∣∣ −f(ζ)

(1− |ζ|2)f ′(ζ)

∣∣∣∣ ≤ |ζ|
(1− |ζ|)2

.

Now replacing ζ by z, we obtain

|z|
(1 + |z|)2

≤
∣∣∣∣ −f(z)

(1− |z|2)f ′(z)

∣∣∣∣ ≤ |z|
(1− |z|)2

,

it can be written as
(1 + |z|)2

1− |z|2
≥
∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ ≥ (1− |z|)2

1− |z|2
.

Rearranging above inequalities, we get the required inequality.
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CHAPTER 3

CONVEX AND STARLIKE FUNCTIONS

3.1. Introduction

In this section we discuss certain subclass of S. A set E ⊂ C is said to be starlike with

respect to a point w0 ∈ E if the linear segment joining w0 to every other point w ∈ E lies

entirely in E. The set E is said to be convex if it is starlike with respect to each of its

points i.e., if the linear segment joining any two points of E lies entirely in E. A function

maps the unit disk conformally into a convex domain is called convex function. A function

maps the unit disk conformally onto a domain starlike with respect to the origin is called

starlike function. The subclass of S consisting of convex functions is denoted by C, and

S∗ denotes the class of starlike functions. In notationally

S∗ := {f : f ∈ S, f is a starlike function}

and

C := {f : f ∈ S, f is a convex function}.

The inclusion relations C ⊂ S∗ ⊂ S are proper. Note that the Koebe function is starlike

but not convex.

We define the class P by the set of all functions φ which are analytic and having

positive real part in D, with φ(0) = 1 i.e.

P := {φ : φ analytic in D, φ(0) = 1,Re(φ(z)) > 0}.

We now discuss some important relations among the classes C, S∗ and P .

3.2. Characterization of starlike functions

In this section, we discuss an analytic characterization of starlike functions. This

helps us to check whether a given function is starlike in the unit disk or not.



Theorem 3.1. Let f be analytic in D, with f(0) = 0 and f ′(0) = 1. Then f ∈ S∗ if and

only if zf ′(z)/f(z) ∈ P .

Proof. Let f ∈ S∗. We claim that f is starlike in each subdisk i.e. each subdisk |z| < ρ

maps onto a starlike domain. It is equivalent to saying g(z) = f(ρz) is starlike in D. In

other words, we must show that for each t (0 < t < 1) and for each z ∈ D, tg(z) is in the

range of g. Consider

w(z) = f−1(tf(z)).

Then w : D → D and w(0) = 0, w is holomorphic. By using an application of Schwarz

lemma we obtain |w(z)| ≤ |z|.

Suppose w0 ∈ f(|z| < ρ), then there exists z0 such that f(z0) = w0 that implies that

|z0| = |f−1(w0)| < ρ and also

|f−1(tf(z0))| = |f−1(tw0)| = |w(z0)| ≤ |z0| < ρ.

This is also written as tw0 ∈ f(|z| < ρ).

The function f maps each circle |z| = ρ < 1 onto a curve Cρ that bounds starlike

domain and f is conformal. That implies

∂

∂θ
arg(f(reiθ)) ≥ 0,

as z moves around in positive direction. Now

∂

∂θ
arg(f(reiθ)) = Im

(
∂

∂θ
log(f(reiθ)

)
= Im

if ′(z)z

f(z)
= Re

(
zf ′(z)

f(z)

)
≥ 0

and also zf ′(z)/f(z) = 1 at z = 0.

Hence by the maximum modulus principle for harmonic functions,

zf ′(z)

f(z)
∈ P.

Conversely, suppose f is analytic in D, with f(0) = 0, f ′(0) = 1 and zf ′(z)/f(z) ∈ P .

Now f(0) = 0, f ′(0) = 1 i.e. f has a simple zero at origin.

If f(c) = 0 (c 6= 0), zf ′(z)/f(z) is analytic for all z ∈ D. But cf ′(c)/f(c) has a pole

at z = c, a contradiction. Therefore f has no other zero elsewhere in the disk.

Given Re(zf ′(z)/f(z)) ≥ 0, that implies that for each ρ < 1,
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∂

∂θ
arg(f(reiθ)) ≥ 0, 0 ≤ θ ≤ 2π.

Thus as z moves around the circle |z| = ρ in the counter-clockwise direction, the point

f(z) moves a closed curve Cρ with increasing argument.

But f has exactly one zero inside the circle |z| = ρ, by argument principle Cρ surrounds

the origin exactly once. Now Cρ has no self-intersections, since Cρ winds about the origin

only once with increasing argument. Thus Cρ is a simple closed curve which bounds a

starlike domain Dρ, and f assumes each value w ∈ Dρ exactly once in the disk |z| < ρ.

Since this is true for every ρ < 1, it follows that f is univalent and starlike in D. Hence

this concludes the proof.

3.3. Characterization of convex functions

In this section, we discuss an analytic characterization of convex functions similar to

that of the class of starlike functions. This helps us to check whether a given function is

convex in the unit disk or not.

Theorem 3.2. Let f be analytic in D with f(0) = 0 and f ′(0) = 1. Then f ∈ C iff

1 + zf ′′/f ′ ∈ P.

Proof. Suppose f ∈ C. We claim that f must map each subdisk |z| < r onto a convex

domain. Choose z1, z2 ∈ Dr, (|z1| ≤ |z2| < r). Let w1 = f(z1) and w2 = f(z2). Now let

w0 = tw1 + (1− t)w2, 0 < t < 1.

But f is convex, that implies there is a unique z0 ∈ D such that f(z0) = w0. It is enough

to show that |z0| < r. Let

g(z) = tf

(
z1z

z2

)
+ (1− t)f(z)

is analytic in D with g(0) = 0 and g(z2) = w0.

Now tf (z1z/z2) ∈ Range of f and (1− t)f(z) ∈ Range of f . Therefore

g(z) = tf

(
z1z

z2

)
+ (1− t)f(z) ∈ Range of f.

Now h(z) = f−1(g(z)) is well defined and h(0) = f−1(g(0)) = f−1(0) = 0 with |h(z)| ≤ 1.

Then from Schwarz lemma we obtain |h(z)| ≤ |z|.
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Therefore

|z0| = |h(z2)| ≤ |z2| < r.

Hence each circle |z| = r < 1 maps onto the circle Cr which bounds a convex domain.

Since f is convex in this subdisk. That implies that the argument of tangent to Cr is

nondecreasing as the curve is moving in the positive direction. This can be written as

∂

∂θ

(
arg

(
∂

∂θ
f(reiθ)

))
≥ 0, 0 ≤ θ ≤ 2π.

Now

∂

∂θ

(
arg

(
∂

∂θ
f(reiθ)

))
≥ 0

or,
∂

∂θ

(
arg

(
f ′(reiθ)reiθi

))
≥ 0

or, Im

(
∂

∂θ
log(ireiθf ′(reiθ))

)
≥ 0

or, Im i

(
ireiθf ′(reiθ) + ir2e2iθf ′′(reiθ)

ireiθf ′(reiθ)

)
≥ 0

or, Im i

(
1 +

reiθf ′′(reiθ)

f ′(reiθ)

)
≥ 0

or, Im i

(
1 +

zf ′′(z)

f ′(z)

)
≥ 0

or, Re

(
1 +

zf ′′(z)

f ′(z)

)
≥ 0, |z| = r.

Thus by the maximum modulus principle for harmonic functions,

1 +
zf ′′(z)

f ′(z)
∈ P.

Conversely, suppose f is a analytic function with f(0) = 0 and f ′(0) = 1. Also 1 +

zf ′′(z)/f ′(z) ∈ P.

Now

Re

(
1 +

zf ′′(z)

f ′(z)

)
≥ 0.

That is

∂

∂θ

(
arg

(
∂

∂θ
f(reiθ)

))
≥ 0.
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This show that the slope of the tangent to the curve Cr increases monotonically. But

as a point makes a complete circuit of Cr, the argument of tangent vector has a net change∫ 2π

0

∂

∂θ

(
arg

(
∂

∂θ
f(reiθ)

))
dθ =

∫ 2π

0

Re

(
1 +

zf ′′(z)

f ′(z)

)
dθ

= Re

[∫
|z|=r

(
1 +

zf ′′(z)

f ′(z)

)
dz

iz

]
= 2π, z = reiθ.

This shows that Cr is a simple curve bounding a convex domain. Thus for arbitrary r < 1

implies that f is univalent with convex range.

Now we discuss an important relationship between convex functions and starlike func-

tions. This was first introduce by Alexander in 1915. This helps us to construct a starlike

function if a convex function is given, and vice versa.

Theorem 3.3. (Alexander’s Theorem). Let f be analytic in D with f(0) = 0 and

f ′(0) = 1. Then f ∈ C iff zf ′ ∈ S∗.

Proof. Consider g(z) = zf ′(z). Taking logarithmic derivative, we obtain

zg′(z)

g(z)
= 1 +

zf ′′(z)

f ′(z)
.

Let f ∈ C. Then from Theorem 3.2, we have

Re

(
1 +

zf ′′(z)

f ′(z)

)
≥ 0,

which is equivalent to

Re

(
zg′(z)

g(z)

)
≥ 0.

Thus g ∈ S∗ i.e. zf ′(z) ∈ S∗.

Conversely, let g(z) = zf ′(z) ∈ S∗. Then from Theorem 3.1, we have

Re

(
zg′(z)

g(z)

)
≥ 0

or

Re

(
1 +

zf ′′(z)

f ′(z)

)
≥ 0.

That implies f ∈ C. This completes the proof.
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CHAPTER 4

AREA PROBLEMS

For any analytic function g in D, we denote 4(r, g) by the area of the image of the

disk |z| < r under g. In integral form, we can write

4(r, g) =

∫ ∫
|z|<r
|g′(z)|2dx dy, 0 < r < 1,

where z = x+ i y. We say that the function g is Dirichlet finite if 4(1, g) <∞.

Let f ∈ S and set a new function

Ff (z) =
f(z)

z
= 1 + a2z + a3z

2 + · · · .

From area theorem, we obtain

4(r, Ff ) = π
∞∑
n=1

n|an+1|2r2n.

Also by de Brange’s theorem, we have |an| ≤ n (n ≥ 2) for f ∈ S. Therefore

4(r, Ff ) ≤ π
∞∑
n=1

n(n+ 1)2r2n.

Now Fk = k(z)/z = 1 + 2z + 3z2 + · · · . From area theorem, we obtain

4(r, Fk) = π
∞∑
n=1

n|an|2r2n = π
∞∑
n=1

n(n+ 1)2r2n.

Therefore 4(r, Ff ) ≤ 4(r, Fk). Hence

max
f∈S
4(r, Ff ) = 4(r, Fk).

Yamashita in [11] proved that the area 4(r, 1/Ff ) of Ff (Dr) is bounded for f ∈ S,

with the help of the area theorem (Theorem 2.8).

Theorem 4.1. [11] We have max
f∈S
4(r, 1/Ff ) = 2πr2(r2 + 2) for 0 < r < 1. For each

r, 0 < r ≤ 1, the maximum is attained only by k′θs.



Proof. For f ∈ S, we know that (f(1/z))−1 ∈ Σ and we can write it as

(f(1/z))−1 = z − a2 + (a22 − a3)z−1 + · · · = z − a2 +
∞∑
n=1

bnz
−n, |z| > 1.

From Theorem 2.8, we have

(4.1)
∞∑
n=1

n|bn|2 ≤ 1.

Now
1

Ff (z)
=

z

f(z)
= 1− a2z + (a22 − a3)z2 + · · · = 1− a2z +

∞∑
n=1

bnz
n+1

and from Theorem 2.7, we have

π−14 (r, 1/Ff ) = |a2|2 +
∞∑
n=1

(n+ 1)|bn|2r2r+2

= |a2|2r2 + 2r4
∞∑
n=1

1

2
(n+ 1)|bn|2r2n−2

Since f ∈ S that implies |a2| ≤ 2, it follows that

π−14 (r, 1/Ff ) ≤ 4r2 + 2r4
∞∑
n=1

n|bn|2.

From (4.1), we get

π−14 (r, 1/Ff ) ≤ 2r2(r2 + 2).

Therefore,

max
f∈S
4(r, 1/Ff ) ≤ 2πr2(r2 + 2).

Next to find 4(r, 1/Fk), where k is the Koebe function.

Now
1

Fk
=

z

k(z)
= 1− 2z + z2.

Then

4(r, 1/Fk) = π(1 · (−2)2r2 + 2 · 1 · r4) = π(4r2 + 2r2) = 2πr2(2 + r2).

If maximum is attained by any function f1(z), then

π−14 (r, f1) = 2r2(2 + r2) = 4r2 + 2r4.

But

π−14 (r, 1/Ff1) = |a2|2r2 + · · · .
28



Now compare the coefficient of r2, we obtain |a2|2 = 4 i.e. |a2| = 2. Hence f1 = k. The

maximum is attained only by a rotation of the Koebe function.

Now Ff is analytic and convex function for each f ∈ C. We find area of image domains

under Ff functions. For 0 < r ≤ 1,

4(r, Ff ) =

∫ ∫
|z|<r
|F ′f (z)|dxdy = π

∞∑
n=1

n|an+1|2r2n.

Since Ff is convex function, |an| ≤ 1,

4(r, Ff ) ≤ π

∞∑
n=1

nr2n

= π(r2 + 2r4 + 3r6 + · · · )

= πr2(1 + 2r2 + 3r4 + · · · )

= πr2(1 + 2(r2) + 3(r2)2 + · · · )

≤ πr2(1 + 2r + 32 · · · )

= πr(r + 2r2 + 3r3 + · · · )

= πr · r

(1− r)2
=

πr2

(1− r)2
,

where first inequality holds since r < 1 that implies r2 < r. Therefore

max
f∈C

∆(r, Ff ) =
πr2

(1− r)2
, 0 < r < 1.

The maximum is attained only by a rotation of J(z) = z/(1− z), z ∈ D.

In [11], Yamashita conjectured the following:

Theorem 4.2 (Yamashita’s Conjecture). We have

max
f∈C

∆(r, 1/Ff ) = πr2, 0 < r < 1,

where maximum is attained by a rotation of J(z) = z/(1− z), z ∈ D.

This conjecture has been proved in [6]. Proof of this is also included in this chapter

in the latter part, as it involves ideas of the order of starlikeness. Before this, we first

investigate the conjecture by constructing some examples.
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Figure 4.1. Graph of image of the unit disk under f(z) = z/(1− z2)

Example 4.3. Consider the function

f(z) =
z

1− z2
.

It has been proved in Chapter 2 that f ∈ S. From Figure 4.1 it is clear that f is unbounded

in D. Now

z

f(z)
= 1− z2.

Now

4(r, z/f(z)) = π

∞∑
n=1

n|an|2r2n = π(1 · 0 · r2 + 2 · 1 · r4) = 2πr4.

This shows that area of image of D under z/f(z) is bounded for all r, 0 ≤ r < 1. Clearly,

4(r, z/f(z)) = 2πr4 < 2πr2(2 + r2) = 4(r, z/k(z)).
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Figure 4.2. Graph of image of the unit disk under z/f(z) = 1− z2

Example 4.4. Let f(z) = z/(1− z) and f ′(z) = 1/(1− z)2. Now the disk automorphism

g of f is given by

g(z) =

f

(
z + α

1 + ᾱz

)
− f(α)

(1− |α|2)f ′(α)
, z ∈ D,

where |α| < 1. That implies

g(z) =

z + α

1 + ᾱz

1− z + α

1 + ᾱz

− α

1− α

(1− |α|2) 1

(1− α)2

.

Simplifying this, we obtain

g(z) =
z

1−
(

1 + ᾱ

1− α

)
z

.

Now

z

g(z)
= 1−

(
1 + ᾱ

1− α

)
z.
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Figure 4.3. Graph of image of the unit disk under z/g(z) = 1− ((1 + ᾱ)(1− α)) z

Therefore, area is

4(r, z/g(z)) = π

∣∣∣∣1 + ᾱ

1− α

∣∣∣∣2 r2 = πr2.

This shows that 4(r, z/g(z)) is bounded for all r, 0 ≤ r < 1. Clearly,

4(r, z/g(z)) = πr2 < 2πr2(2 + r2) = 4(r, z/k(z)).

In particular for α = 0.5, we see from Figure 4.3, that 4(r, z/g(z)) is bounded.

Note. It is observed that area of image domain of Dr under z/f(z) and under z/g(z) are

the same.

Example 4.5. Let f(z) = z/(1− z)2 and φ(z) = z/(1− z), z ∈ D.

From range transformation, we know that, if f ∈ S, φ is a function which is analytic

and univalent on the range of f with φ(0) = 0 and φ′(0) = 1, then g = φ ◦ f ∈ S.

Now

g(z) = φ ◦ f(z) =

z

(1− z)2

1 +
z

(1− z)2

=
z

1− z + z2
.
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Figure 4.4. Graph of image of the unit disk under g(z) = z/(1− z + z2)

We see in Figure 4.4 that g in unbounded in D. Now

z

g(z)
= 1− z + z2.

Therefore

4(r, z/g(z)) = π
∞∑
n=0

n|an|2r2n = π(r2 + 2r4).

It is clear that area is bounded for all r, 0 ≤ r < 1. The figure is given below. Clearly,

4(r, z/g(z)) = π(r2 + 2r4) < 2πr2(2 + r2) = 4(r, z/k(z)).

Now using omitted-value transformation under functions in the class S, we discuss

the following example:

Example 4.6. Let f(z) = z/(1− z2) ∈ S and g(z) = wf/(w − f).

Here f(z) 6= i = w i.e. w is omitted by f . Now

g(z) =
if

i− f
=

iz

i(1− z2)− z
=

z

1 + iz − z2
.

It is clear from Figure 4.6 that g is unbounded in D and

z

g(z)
= 1 + iz − z2.

Therefore

4(r, z/g(z)) = π

∞∑
n=0

n|an|2r2n = π(r2 + 2r4).
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Figure 4.5. Graph of image of the unit disk under z/g(z) = 1− z + z2

It is clear that area is bounded for all r, 0 ≤ r < 1. Clearly,

4(r, z/g(z)) = π(r2 + 2r4) < 2πr2(2 + r2) = 4(r, z/k(z)).

To prove the Yamashita conjecture, we need to recall Parseval’s Identity as follows:

Theorem 4.7 (Parseval’s Identity). If f is an analytic function defined on the unit disk

with power series f(z) =
∑∞

n=1 anz
n then

∞∑
n=1

|an|2r2n =
1

2π

∫ 2π

0

|f(reiθ)|2dθ.
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Figure 4.6. Graph of image of the unit disk under g(z) = z/(1 + iz − z2).

Proof. We compute

∫ 2π

0

|f(reiθ)|2dθ =

∫ 2π

0

f(reiθ)f(reiθ)dθ

=

∫ 2π

0

∞∑
m=1

amr
meimθ

∞∑
n=1

anr
ne−inθdθ

=

∫ 2π

0

∞∑
m=1

∞∑
n=1

amanr
m+nei(m−n)θdθ

=
∞∑
m=1

∞∑
n=1

aman2πrm+n

= 2π
∞∑
n=1

|an|2r2n.

Hence it proves Parseval’s Identity.
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Figure 4.7. Graph of image of the unit disk under z/g(z) = 1 + iz − z2

Definition 4.8 (Subordination). Let f(z) and g(z) be analytic in the unit disk. Then g

is called subordinate to f if there exits an analytic function w : D → D with w(0) = 0

such that

f(w(z)) = g(z), |z| < 1.

Symbolically, it is written as g ≺ f.

If f is univalent in D, then g ≺ f is equivalent to the conditions that g(0) = f(0) and

g(D) ⊂ f(D); see [7, Lemma 2.1, p. 36]. For instance, we can easily show that

g(z) =
1

1− z
≺ 1 + z

1− z
= f(z)

for all z ∈ D. Indeed, if we use the definition, then w(z) = z/(2− z).
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Theorem 4.9 (Littlewood’s Subordination Theorem [3]). Let f and g be analytic in the

unit disk D and suppose g ≺ f . Then 0 < p <∞

Mp(r, g) ≤Mp(r, f), 0 ≤ r < 1,

where Mp(r, f) =

(
1

2π

∫ ∞
0

|f(reiθ)|pdθ
)1/p

.

Theorem 4.10 (Rogosinski’s Theorem). Let f(z) =
∑∞

n=1 anz
n and g(z) =

∑∞
n=1 bnz

n

be analytic in D, and suppose g ≺ f . Then

∞∑
n=1

|bn|2 ≤
∞∑
n=1

|an|2, n = 1, 2, . . . .

Proof. Let sn(z) =
∑n

k=1 akz
k and f(z) = sn(z)+rn(z). Also let tn(z) =

∑n
k=1 bkz

k. Then

g(z) = f(w(z)) = sn(w(z)) + rn(w(z)).

Since w(0) = 0, it follows that

sn(w(z)) = tn(z) +
∞∑
k+1

ckz
k

for some ck.Therefore by parseval’s relation, we obtain

(4.2)
1

2π

∫ 2π

0

|sn(w(reiθ))|2dθ =
n∑
k=1

|bk|2r2k +
∞∑

k=n+1

|ck|2r2k.

But sn ◦ w ≺ sn, so by Littlewood’s subordination theorem

1

2π

∫ 2π

0

|sn(w(reiθ))|2dθ ≤ 1

2π

∫ 2π

0

|sn(reiθ)|2dθ =
n∑
k=1

|ak|2r2k.

From (4.2) we obtain

n∑
k=1

|bk|2r2k +
∞∑

k=n+1

|ck|2r2k ≤
n∑
k=1

|ak|2r2k.

Also this inequality written as

n∑
k=1

|bk|2r2k ≤
n∑
k=1

|ak|2r2k.

For r → 1, it follows the theorem.
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The method of the proofs of Theorem 4.7 and Theorem 4.10 is adopted by Clunie in [2].

The same has been quoted in the proof of Lemma 4.11.

For β ∈ [0, 1), let S∗(β) denote the usual normalized class of all (univalent) starlike

functions of order β. Analytically, a function f ∈ S is said to belong to the class S∗(β) if

f satisfies the condition

Re

(
zf ′(z)

f(z)

)
> β, z ∈ D.

It is well-known that C ⊂ S∗(1/2); see [5, Theorem 2.6a, p. 57]. Also, S∗ := S∗(0) is the

usual class of starlike functions i.e., f ∈ S such that f(D) is starlike with respect to the

origin.

Recently Obradovic, Ponnusamy and Wriths [6] proved that the area ∆(r, z/f(z)) =

πr2 for convex functions f that was conjectured by Yamashita in [11]. To present its

proof, the following lemma is useful.

Lemma 4.11. Let f ∈ S∗(β) and let z/f(z) have the following expansion near z = 0,

z

f(z)
= 1 + b1z + b2z

2 + · · · .

Then the following coefficients inequality holds:

∞∑
n=1

(n− (1− β))|bn|2 ≤ 1− β.

Proof. Let g(z) = z/f(z) and f ∈ S∗(β). Since

Re

(
zf ′(z)

f(z)

)
> β, z ∈ D

and by taking logarithmic derivative, we get

zg′(z)

g(z)
= 1− zf ′(z)

f(z)
, z ∈ D,

there exits a function w : D→ D̄ analytic in the unit disk such that

zg′(z)

g(z)
= 1− 1− (1− 2β)zw(z)

1 + zw(z)
=

2(1− β)zw(z)

1 + zw(z)
, z ∈ D

equivalently g′(z) = (2(1− β)g(z)− zg′(z))w(z).
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Now expanding in series form

∞∑
k=1

kbkz
k−1 =

(
∞∑
k=1

kbkz
k − 2(1− β)(1 +

∞∑
k=1

bkz
k)

)
w(z)

=

(
∞∑
k=1

kbkz
k − 2(1− β)− 2(1− β)

∞∑
k=1

bkz
k

)
w(z)

=

(
−2(1− β) +

∞∑
k=1

(kbk − 2(1− β)bk)z
k

)
w(z).

Now rearrange this series expansion, we obtain

n∑
k=1

kbkz
k−1 +

∞∑
k=n+1

kbkz
k−1 = (−2(1− β) +

n−1∑
k=1

(kbk − 2(1− β)bk)z
k

+
∞∑
k=n

(kbk − 2(1− β)bk)z
k)w(z).

By Clunie’s method, for any n ∈ N the inequality

n−1∑
k=1

|bk|2r2k−2(k2 − (k − 2(1− β))2) + |bn|2r2n−2n2 ≤ 4(1− β)2.

For r = 1,
n−1∑
k=1

|bk|2(k2 − (k − 2(1− β))2) + |bn|2n2 ≤ 4(1− β)2.

Simplifying this we obtain

n−1∑
k=1

|bk|2(k − (1− β))4(1− β) + |bn|2n2 ≤ 4(1− β)2.

Also this inequality written as
n−1∑
k=1

|bk|2(k − (1− β))4(1− β) ≤ 4(1− β)2.

Hence we obtain the inequality

∞∑
k=1

|bk|2(k − (1− β)) ≤ 1− β as n→∞,

which completes the proof.

Remark 4.12. For β = 0, this lemma is the well known area theorem for functions f ∈ S.

Definition 4.13. The series
∞∑
n=0

(a)n(b)n
(c)n(1)n

zn, |z| < 1
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is known as the hypergeometric series whereas the associate converging function 2F1(a, b; c; z)

is called the hypergeometric function. Here c 6= 0,−1,−2, . . . . If a or b or both 0

or negative, series terminates and (a)n denotes the Pochhammer symbol define (a)n =

a(a+ 1)(a+ 2) · · · (a+ n− 1) for n ∈ N.

The following theorem is proved in [6].

Theorem 4.14. We have

max
f∈S∗(1/2)

4(r, z/f(z)) = πr2, 0 < r ≤ 1,

where the maximum is attained by the rotations of the function j(z) = z/(1− z).

Proof. Let f ∈ S∗(1/2). Since f is analytic and f(z) 6= 0. For z 6= 0, we can write f in

the form
z

f(z)
= 1 + b1z + b2z

2 + · · · .

Now

π−14 (r, z/f(z)) =
∞∑
n=1

n|bn|2r2n

≤ r2
∞∑
n=1

n|bn|2

= r2
∞∑
n=1

((2n− 1)− (n− 1))|bn|2

= r2

(
∞∑
n=1

(2n− 1)|bn|2 −
∞∑
n=2

(n− 1)|bn|2
)
,

where the first inequality holds since r2n ≤ r2 for 0 < r ≤ 1. Since by lemma 4.11, for

β = 1/2, we obtain
∞∑
n=1

(2n− 1)|bn|2 ≤ 1.

Therefore the inequality becomes

π−14 (r, z/f(z)) ≤ r2

(
1−

∞∑
n=2

(n− 1)|bn|2
)
≤ r2.

The equality holds clearly for j(z) = z/(1−z) and for the rotation of j(z), since z/j(z) =

1− z and by area theorem π−14 (r, z/j(z)) = r2.
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We now discuss a generalization of Theorem 4.14 for functions in S∗(β), 0 ≤ β < 1

in terms of hypergeometric functions of r.

For this, we consider fβ(z) =
z

(1− z)2(1−β)
, where 0 ≤ β < 1. It is easy to see that

fβ ∈ S∗(β) is extremal for many extremal problems for full class S∗(β). We see that

z

fβ(z)
= (1− z)2(1−β) = F (1, δ; 1; z), δ = −2(1− β).

But

F (1− δ; 1; z) =
∞∑
k=1

(1)k(δ)k
(1)k

zk

k !
z ∈ D.

Now we obtain

4(r, z/fβ(z)) = π
∞∑
n=1

n

(
(δ)n
(1)n

)2

r2n.

Simplifying this, we have

4(r, z/fβ(z)) = πδ2r2
∞∑
n=0

(δ + 1)n(δ + 1)n
(1)n(2)n

r2n

= πδ2r2F (δ + 1, δ + 1 : 2 : r2)

= 4π(1− β)2r2F (2β − 1, 2β − 1 : 2 : r2) =: Aβ(r).

The above calculation leads to the following theorem, which is proved in [6].

Theorem 4.15. Let f ∈ S∗(β) for some 0 ≤ β < 1. Then we have

max
f∈S∗(β)

4(r, z/f(z)) = Aβ(r), 0 < r ≤ 1,

where the maximum is attained by the rotations of fβ(z) = z/(1− z)2(1−β).
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CHAPTER 5

CONCLUSION AND SCOPE FOR FUTURE WORK

5.1. Conclusion

In the last chapter, we discussed the problem of computing areas of image domains

of the unit disk and its sub-disks under the class of univalent functions and functions in

the convex and starlike families. It is a natural fact that computing areas of domains are

meaningful when the domains are bounded. On the other hand, for those image domains,

one can certainly ask the question of maximizing length of boundaries of such domains.

This is partially discussed in the next section with an aim to widely investigate such

problems for some subclasses of univalent functions in future.

5.2. Scope for future work

Length maxima problems

Recall that for f ∈ S, we have

4(r, 1/Ff ) ≤ 2πr2(r2 + 2).

In particular, for r = 1,

4(1, 1/Ff ) ≤ 6π.

In the line of the above discussion, we investigate the size of arc length of the boundary

curves that are nothing but images of the unit circle or subcircles inside the unit disk

under f ∈ S. If f ∈ S, then f can be written as

f(z) =
z

z/f(z)
=

z

1/Ff (z)
.

Each function is the quotient of z and 1/Ff . Each f ∈ S, maps the unit circle onto a

curve of length

L(r, f) = r

∫ 2π

0

|f ′(reiθ)|dθ, 0 < r < 1.



Now

L(r, f) = r

∫ 2π

0

|f ′(z)|dθ =

∫ 2π

0

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ |f(z)|dθ.

From Corollary 2.15, we get

L(r, f) ≤
∫ 2π

0

(
1 + r

1− r

)
|f(z)|dθ.

Therefore

L(r, f) ≤
(

1 + r

1− r

)∫ ∞
0

|f(z)|dθ ≤
(

1 + r

1− r

)
2πr

1− r
.

That is,

L(r, f) ≤ 2πr(1 + r)

(1− r)2

and

L(r, k) >
πr(1 + r)

2(1− r)2
.

Also for k ∈ S,

L(r, k) ≤ sup
f∈S

L(r, f).

Hence

(5.1)
πr(1 + r)

2(1− r)2
< L(r, k) ≤ sup

f∈S
L(r, f).

We have

k(z) =
z

(1− z)2
= z + 2z2 + 3z3 + · · · .

Therefore

(5.2) 4(r, k) = π

∞∑
n=1

n|an|2r2n = π

∞∑
n=1

n|n|2r2n = π

∞∑
n=1

n3r2n.

But k(z) =
∑∞

n=1 nz
n and hence k(r) =

∑∞
n=1 nr

n.

Now

k′(r) =
∞∑
n=1

n2rn−1 =
1 + r

(1− r)3
,

and

k′′(r) =
4 + 2r

(1− r)4
.

Now

(5.3) r(rk′(r))′ = r

(
r
∞∑
n=1

n2rn−1

)′
= r

(∑
n2rn

)′
= r

∑
n3rn−1 =

∑
n3rn.
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But

(5.4) (rk′(r))′ = rk′′(r) + k′(r) =
r2 + 4r + 1

(1− r)4
.

Therefore, from (5.3) and (5.4), we obtain

(5.5)
∑

n3rn =
r2 + 4r + 1

(1− r)4
.

Now replacing r by r2 in (5.5) and from (5.2), we obtain

4(r, k) =
π(1 + 4r2 + r4)r2

(1− r2)4
→∞ as r → 1.

For each f ∈ S, we obtain

4(r, f) = π
∑

n|an|2r2n ≤ π
∑

n3r2n = 4(r, k),

since by de Branges theorem |an| ≤ n, n ≥ 2. Therefore

max4(r, f) = 4(r, k) =
πr2(1 + 4r2 + r4)

(1− r2)4
,

the maximum is attained only by a rotation of the Koebe function.

Theorem 5.1. For each 0 < r < 1, we have

2πr(r4 + 4r2 + 1)1/2(1− r2)−2 ≤ L(r, k) ≤ sup
f∈S

L(r, f).

Proof. We have

(5.6) max4(r, f) = 4(r, k) =
πr2(1 + 4r2 + r4)

(1− r2)4

Also from isoperimetric inequality,

A ≤ L2

4π
,

where L the length of a closed curve and A the area of the planar region that it encloses.

Therefore

4(r, k) ≤ 1

4π
L2(r, k).

From (5.6), we obtain
πr2(1 + 4r2 + r4)

(1− r2)4
≤ L2(r, k)

4π
.

Simplifying above inequality and from (5.1), we obtain

(5.7)
2πr(1 + 4r2 + r4)1/2

(1− r2)2
≤ L(r, k) ≤ sup

f∈S
L(r, f).

Thus the proof is complete.
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Remark 5.2. The inequality (5.7) is better estimate than (5.1), possible only if

πr(1 + r)

2(1− r)2
<

2πr(1 + 4r2 + r4)1/2

(1− r2)2

equivalently,

1 + r

4(1− r)
<

(1 + 4r2 + r4)1/2

(1− r)2(1 + r)2

or,
1

4
<

(1 + 4r2 + r4)1/2

(1 + r)3
.

Now take g(r) =
(1 + 4r2 + r4)1/2

(1 + r)3
, compute its derivative we have

g′(r) =
(−r)4 + 2r3 − 8r2 + 4r − 3

(1 + r)6(1 + 4r2 + r4)(1/2)
.

But (−r)4 + 2r3 − 8r2 + 4r − 3 < 0, that implies g′(x) < 0. Therefore g(x) is decreasing.

So g(x) attains its infimum at r = 1. For r < 1, g(r) < g(1) i.e.,

(1 + 4r2 + r4)1/2

(1 + r)3
>

1

4
.

The problems of estimating the length of boundary of image domains are recently

studied in [10]. In near future, I plan to read this paper and investigate some new

problems in this direction.
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