Homotopy Perturbation Method To Solve Non-
Linear Differential Equations

M.Sc. Thesis

By
Rahul Kumar

DISCIPLINE OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY INDORE

MAY 2018






Homotopy Perturbation Method To Solve Non-
Linear Differential Equations

A THESIS

Submitted in partial fulfillment of the
requirements for the award of the degree
of
Master of Science

by
Rahul Kumar

DISCIPLINE OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY INDORE

MAY 2018






Acknowledgements

It is an honour for me to express my deep sense of respect atiduge to my
supervisors Dr. Santanu Manna and Dr. Sk. Safique Ahmadijgdlirse of Mathematics,
Indian Institute of Technology Indore for their support amaellent guidance throughout
in my M. Sc. project. Their valuable guidance, untiring gfp timely suggestions
and enthusiasm to always learn and explore different sifieatreas, their patience and
persistence to truth in research have been an excellent geafor me, both in research
and life. I will never forget their supporting nature and tfaeilities provided during my
project.

Also, | extend my thanks to Dr. Vijay Kumar Sohani, Assisaofessor, Discipline
of Mathematics IIT Indore, for his help and active co-opematduring my stint in 11T
Indore. My sincere thanks also go to my PSPC members Dr. Kuajar Shukla, Dr.
Shanmugam Dhinakaran and Dr. Aquil Khan (DPGC Convener)iidore for a series
of insightful comments and constructive ideas at diffes¢ages of my project.

| deeply acknowledge Indian Institute of Technology Indtoe providing me all the
necessary facilities during the course of my project wor&stly and most importantly,
I would also like to express my deepest gratitude to my pargint Pramod Kumar and

Smt. Machala Devi who showered their blessings and loveugirout in my life.

Date: (Rahul Kumar)






Synopsis

The thesis contains a survey of the perturbation method [éyfeh, 1981] and
generalization of the perturbation method for the solutainlinear and Nonlinear
differential equations. The generalization of perturbatnethod has been first introduced
by Ji-Huan He (1999) calletHomotopy Perturbation Method (HPMAccording to
Cheniguel and Reghioua (2013), Biazar and Eslami (2011ghele et al. (2017), etc.,
HPM is one of the new and excellent methods for solving thelinear differential
equation. It is well known that the perturbation theory isdhon an assumption of an
equation (in the form of power series) with a small parametguerfect choice of small
parameter leads to the excellent result. However, if thecehaf the small parameter is not
suitable then the solution is going to be a bad asset. In sagés¢cthe HPM can find the
accurate approximate solution of the differential equatibhis method does not depend
on the small parameter in the assumed equation. The HPM imhination of homotopy
and perturbation method which provides an advantageoustevaptain an analytical
or approximate solution of the differential equatio@hapter 1, contains the literature
survey of perturbation, homotopy and generalized homofmgyurbation method. In
Chapter 2, we have discussed the basic theory of perturbation metmbdsapplication
from the books of Nayfeh (1981) and Liao (1995). Teapter 3, started with the basic
idea of homotopy [cf. Ji-Huan He, 1999] and extended to theysbf the HPM [He, 2005,
2006; Hemeda, 2012]. In this chapter, we have discusseddidvBurgers Nonlinear
problem and nonhomogeneous Advection Nonlinear problengtise HPM. InChapter
4, we survey the literature of the generalization of the hapyptperturbation method
(GHPM) from the article of Hector, (2014). The last Chaptentains the conclusions
and future plan.

Keywords: Homotopy, Homotopy perturbation method, Linear, Nonhoemapus,
Nonlinear, ODEs, PDEs, Perturbation method, Power sef@mlogy.
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Chapter 1
Introduction

The homotopy perturbation method (HPM) is an efficient anggréul technique to
find the approximate solutions of nonlinear ordinary andiglkdifferential equations
which describe different fields of Science and Engineeringhis project report, we plan
to focus on the survey of perturbation method, homotopyupeation method and the
generalization of homotopy perturbation method to solwedr and nonlinear differential

equation.

The differential equations can model many physical andrexeging problems with
the specified initial/lboundary conditions. However, sames it is difficult to obtain
closed-form solutions for them. In most of the cases, onfyraximate solutions can be
expected either in analytical form or numerical form. Theyation method is one of
the well-known methods for solving nonlinear problems wtiedlly. But perturbation
methods have some limitations, all perturbation methodsire the presence of a small
parameter in the linear or nonlinear equation and appraersalution of the equation
containing this parameter is expressed as series exparisitine small parameter. The
homotopy perturbation technique does not depend upon danameter in the equation.
This method is a combination of homotopy and perturbatiahneues, provides a
convenient way to obtain an analytic or approximate soiuiica wide variety of problems

arising in the different field.

Ji-Huan He in 1999 first introduced the Homotopy perturbatiechnique. In



his paper, Ji-Huan studied few problems with or without $rpakameters with the
homotopy perturbation technique and concluded that th@gs®d method does not
require small parameters in the equations, so the limitatas the traditional perturbation
methods can be eliminated. He (2006) also studied the hgygterturbation method
in a very effective, simple, and convenient way to solve m@ar boundary value
problems. After He’'s work in 1999, many researchers usedtmeotopy perturbation
method to approximate the solutions of differential equagi and integral equations.
Biazar et al. (2009) discussed the application of the hopyotmerturbation method
to Zakharov-Kuznetsov equations. Later on, a new homot@piudation method for

solving systems of partial differential equations wasddtrced by Biazar and Eslami
(2011). Recently, many researchers like, Cheniguel andtigeg (2013), Hector (2014),
Mechee et al. (2017), etc. studied the homotopy perturbati@thod for solving

some initial boundary value problems. The solution of deldferential equations via

a homotopy perturbation method was also discussed by SlaicebDehghan (2008).

Definition 1.0.1 (Topology): A topology on a seK is a collectiont of subset oiX

having the following properties:

1. pandX areinT.
2. The union of the element of any sub-collection &fin 7.

3. The intersection of the element of any finite sub-cobeatif 7 is in T.

A setX for which a topologyr has been specified is called a topological spaceX I§
a topological space with topology, we say that a subsetV ¥fis anopen sebf X if V
belong to the collectiom. Using this terminology, one can say that a topological space
a setX together with a collection of subset ¥f called open setsuch thatp and X are

both open, and such that arbitrary union and finite intergatof open sets are open.

Definition 1.0.2 (Continuity of a function): Let X andY be topological spaces. A
function f: X — Y is said to becontinuousif for each open subset V of, the set

f~1(V) is an open subset .



Definition 1.0.3 (Homotopy): Let X and Y be two topological spaces and ¢ are

continuous functions frond to Y. If there exists a continuous function, say,
S Xx1[0,1] —Y

such that¥(x,0) = f(x) and .(x,1) = g(x) for every xe X, then we say that f is

homotopic to g and” is called a homotopy between f and g.

Example 1.0.1 If we consider two real valued functionseg 7rx) and8x?(x— 1) defined

on the interval0, 1], then.” : [0,1] x [0,1] — R given by
7 (%, p) = (1— p) cog 1T X) + p[8x*(1—X)], (1.0.1)
will be a homotopy betweerog 7x) and8x?(x— 1).

LetC[a, b] be a set of all continuous real valued functions defined omtieeval [a,b].

For given continuous functionk g € C|[a, b], we consider a homotopy
< [ab x[0,1] — R
betweenf andg, defined by
Jxp)=1-p) fX)+pox), xelab, pel01] (1.0.2)
wherep is called the homotopy parameter.
Note: We can construct several different homotopy between twtimoous functions
f,g € C[a,b]. For example, for every pair of positive integérsm), the mapping
Znm:[a b x[0,1]] — R

given by
Zam(%,p) = (1-p") £(x)+p" g(x)

will be a homotopy betweeh andg.
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Chapter 2

Perturbation Method

The perturbation method is a classical method which has bsed over a century
to obtain approximate analytical solutions of a mathenaaficoblem by exploiting the
presence of a small parameter. It is the study of the effdctenall disturbances. If the
effects are small, the perturbations or disturbances adetgabe regular perturbation,
otherwise, they are singular perturbation. The technicageldeen successfully applied
to the differential equations, integro-differential ejaas, and algebraic equations.
One major question may arises in this method that “what isatiheantage to use the
perturbation method, as the numerical method also giveappeoximation solution ?”
To answer this question, we can say [cf. Simmonds and Mar86]18at perturbation
methods produce analytic approximations that often retreakssential dependence of
the exact solution on the parameters in a more satisfactagythan does a numerical

solution.

In this chapter, we discuss the singular perturbation ghaad regular perturbation
theory. We refer the book of Nayfeh (1981) for details. If vés@ame a problenfi(x) =0
and suppose the problem is perturbed by a paranetgthen we have problerff (x, ) =
0). The solution of these type of perturbed problem are compiexsense that they are
dependent on parameter. Perturbation theory gives us dpmate solution in the form

of power series. In this theory the solution of perturbedofem f(x,&£) = 0 has been



considered as

X=X+ X1+ EXo+ -+, (2.0.1)

wherexg is the solution for un-perturbed problem axdx,, ... are higher order terms.
Thee has been taken in such way that we can neglect higher ordes tdihe above series
(2.0.1) is called perturbed solution series. The pertimhairoblem can be classified into

two categories, namely regular perturbation and singdaupbation.
Theorem 2.0.1 (The Fundamental Theorem of Perturbation Thery): If
X0+ X1 + X2+ X383+ -+ X"+ O (e 1) = 0, (2.0.2)
for & sufficiently small and if the coefficientg x1, %o, - - - are independent of, then
Xo=Xg=Xo=---=X5=0.

Definition 2.0.4 (Big '()’)(Order of Convergence): Suppose (x) and gx) are two

functions defined on some subset of the real numbers, then

if and only if there exist constants N and K such thigix)| < K|g(x)| for all x > N.

Intuitively, this means that(k) does not grow faster than(x).

2.1 Regular and Singular Perturbation

The solution of perturbed problem is callgaérturbed solutionand the solution of
unperturbed problem is called axact solution If every solution of the perturbed
problem f(x, &) = 0 converges to some solution of the unperturbed probi¢x = 0

as ¢ — 0, then such perturbation problem is called the regularupeation problem,

otherwise singular perturbation problem.

Theorem 2.1.1 (cf. Shivamoggi, 2003)Consider an implicit equation

f(x,€) =0.



If there exists x= Xg such that
f(X0,€) =0

and if fx(xo, €) is an invertible linear map, then there exists a unique soludf the given

eqguation in the neighbourhood ef= 0 given by
x=g(€).
Example 2.1.1 (Regular Perturbation) Consider the algebraic equation
V+2y+e=0 e<<1. (2.1.1)

This equation has two roots given by

yi=—1—-v1-—-¢
yo=—-14++v1-¢.
Expandingy/1— € as a Taylor series
1 15
\/1—821—58—58 — (2.1.2)

we obtain

1 1
:—2 — & —82 e
Y1 toetgéet

1 £ 1 2
Y2 = 5 3 .
Let us assume that the solution of the equafidi.l)is of the form
X(£) = Xo+ EX1 + X282 + -+ Xn €+ O (™). (2.1.3)
Substituting equatio(R.1.3)into the equatiorf2.1.1) we obtain

2
[Xo+sx1+X282+---+Xn£”+Q(£”+1)} +2[xo+sx1+x2£2+---+xng”
+Q(e”+1)} Ye=0, (2.1.4)

from which

X3+ € 2xox1 + €2 (X%—I—ZXon)—i—O(eS)} —I—2[X0—|—€X1—|—X282+O(83)} +£=0. (2.1.5)



Rearranging the above equation, we obtain
(X3 +2%0) + £(2Xox1 + 2x1 + 1) + £2(32 4 2Xo%2 + 2%2) + O (£%) = 0. (2.1.6)

Equating the coefficients of like power&fo zero, we obtain a system of equations

3

X%+ 2Xo =0

2XoX1+2x14+1 =0
0TS 2.1.7)

X2 +2XoX2 + 2% =0

Y
7

which is to be solved recursively.
Thus,
=0 or Xxp=-2

For xo = 0, we obtain

X1 = ! X = !
1= 2’ 2 = g’
which gives the second root of the given equatii.1)
_ 1 1
Yo = > 3 .
For xo = —2, we obtain
X1 = ! X = !
1= 2’ 2 = g’

which gives the first root of the given equati@l.1)

1 1
— 24+ ZEe+Z€+---.
Y1 +2 +8 +

Example 2.1.2 (Regular Perturbation) Let us consider a differential equation with the

initial condition
d?y dy dy
halit 4 2 i1= — s
dx2 JrdejL 0, ¥(0)=0, dx

Assume that the solution of the equat{@r.8)is of the form

(0) =1. (2.1.8)

Y(X) = Yo(X) + &y1(X) + £2y2(x) + O(€3). (2.1.9)

Substituting equatio(R.1.9)in (2.1.8) we have
d2

@(yo(xweyl(x)+szyz(x>+©(s3)>+£%((yo(x)+sy1(x>+82yz(x)+O(e3>)+1: 0



d?yo d’y;  dyg o/d%yn  dy 3
= 2t e(Ge ) FE (Ge ) O =0,

Now, equating the coefficient of like powerspive get

a
=3

i1 =0 y(0)=0 %0=1
Crrdo —0, y(0)=0, %(0)=0 (2.1.10)
e idn —0, y0=0, %20=0
By solving the system of equatigi2sl.10) we have
Yo(X) =X— X—ZZ
i) =-%5+% (2.1.11)
V20 =~ %5

By putting equation(2.1.11) in equation (2.1.9) the approximate solution of the
differential equatiorn(2.1.8)is

G —x% X3 X3 X 3
09 =3 +e( ) <G~ 2a) +OEN,
which is known as perturbation solution.

Theorem 2.1.2 (cf. Simmonds and Mann, 1986)f we consider a polynomial

P:(X) = (1+bge+coe?+---)

+ A (1+bre+cr2+--)xX

+ AnE™(14bpe4cne2+--- )X, (2.1.12)
where theaj’s are rational numbers, theils, ¢’s, --- are constants, Aare non-zero
e-factors and each of the factofis+ bye +---, k=0,1,---n is assumed to be regular,

that is, to have an expansion of the fof2n1.3) then each root of the polynomigd.1.12)
is of the form
x(€) = g"w(e), w(0)#0, n>0, (2.1.13)

where, We) is a continuous function af, which is sufficiently small.



10

Example 2.1.3 (Singular Perturbation) Consider the algebraic equation
YV +2y+1=0, e<<Ll (2.1.14)

In the limite — 0, the degree of the equation drops from 2 to 1. So this problemata
be treated adequately by a regular perturbation expansidms is a singular perturbation
problem.

Roots of the equatiof2.1.14)are given by

-1+vV1-¢
Yi=—,""
-1-y1-c¢
Yo=—"T—"
€
Expandingy/1— € as a Taylor series
1
V1= _1—55—552— , (2.1.15)
we obtain
1 1“3
Y1i=-— > 8
2+1+1
Y2 = 5T3

Let us assume that the solution of the equafi.14)is of the form,
X(€) = Xo+ EX1 + X282 + - - + X"+ O (e D). (2.1.16)

Suppose thaty? is small compared wity + 1 in the given equatio2.1.14)
On substituting the equatig2.1.16)into equation(2.1.14) we obtain

2
e[xo+ex1+xz£2+~-~+xn£”+Q(£”+l)] +2[xo+ex1+x252+-~-+xne”
+Q(e”+1)] +1=0, (2.1.17)

from which

£ [x% + € 2X0X1 + Q(sz)} + Z[Xo +&xq + O(ez)] +1=0. (2.1.18)

Rearranging the above equation, we obtain

(2%04 1) + (& +2x1) + O(£?) = 0. (2.1.19)
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Equating the coefficients of like powerfo zero, we obtain a system of equations

2+1 =0
XR42x =0 (2.1.20)

bl

which is to be solved recursively.
Thus,

1 1

= . X1 = ——
Xo 2’ 1 g’

which gives the first root of the given equati@l.14)

Now, in order to find the second root,ywe may write

ey’ +2y+1=¢e(y—y1)(y—Y)
= ey? — £(y1+Y2)y+ EV1Yo,
from which
1
gy1yo=1or y, ~ 2

so that, for the rooty, gy? is small compared witRy+ 1, in the limit ase — 0, so the
previous regular perturbation expansion does not set ugritfie dominant balance for
y», and therefore not suited for recovering.yn order to obtain y, we use the theorem
(2.1.2) as,

so that the given equatiq2.1.14)becomes
WP +2wW+€ = 0. (2.1.21)

It is observed that to find the second root of the given equdfdl.14) we can convert
the singular problem to the regular problem by changing theable from y to w. The

roots of the equatio2.1.21)can be found using a regular perturbation expansion

w(e) = b+ £by + bpe? + O (€%). (2.1.22)
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Substituting equatio(R.1.22)into equation(2.1.21) we obtain
(b3 + 2bo) + £(2bgby + 2by 4+ 1) + O(e3) = 0. (2.1.23)
Equating the coefficients of like power&fo zero, we obtain a system of equations
b3 + 2bg =0
2bgb1 +2b1+1 =0 (2.1.24)

)

which is to be solved recursively.

Thus,
bo=-2, b= >
Note that the other root fordo= 0, has to be discarded as(®) # 0. Thus, we have

1

w(e) = —2+ 56+ O(€),
from which, we get for the second root,
2 1

Y2 = —E+§+O(5)~

*kkkk



Chapter 3

Homotopy Perturbation Method

The homotopy perturbation method was first proposed by JnHde, (1999) for
obtaining the approximate analytical solutions of lineard anonlinear differential
equation. The essential idea of this method is to introdubheraotopy parameter, say
p, which takes values from 0 to 1 (cf. Shakeri and Dehghan, ROG®nerally, when
p = 0, the system of equations reduces to an allogeneic singpfdien, which normally
allows getting a quite simple solution. But whens slowly increased to 1, the system
goes through a sequence of deformations and the solutiogafdr of which is near to,
that at the earlier stage of deformation. Eventually at1, the system takes the original
form of the equation and the final stage of deformation gihesdesired solution. One
of the excellent features of the homotopy perturbation wekik that usually, some few
perturbation terms are sufficient for obtaining a reasonatturate solution. This method

has been employed to solve a large variety of linear and meatiproblems.

3.1 Basic of Homotopy

In Chapter 1, we have discussed the homotopy between twaoons functions and in

the following example, we discuss the homotopy of equatetwben two equations.

Example 3.1.1 Consider a family of algebraic equations,

&(p): (1+3p)X%+y?/(1+3p)=1, pel0,1], (3.1.1)
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where pe [0,1] is the homotopy parameter. In the literature homotopy patamnis
defined in the case of homotopy between two functions as svatbmotopy of equation
between two equations.

If p =0in equation(3.1.1) then we have

S0 X +y =1,

where y= ++1/1 — x2 are the solutions of th&y. Putting p= 1 in equation(3.1.1) we get
the ellipse equation
E1:bC+Y/A=1,

whose solutions are 3 +£2v/1—4x2. The solutions y are depending on x as well as

p €[0,1], and we can rewrite the expressi¢d.1.1)in the form

. Y (%p)
£<p>-<1+3p>x2+(1 Tap L Ppelol, (3.1.2)

which is called a homotopy of equation betweégrand &y and is denoted by

é’(p) 18 ~ 8.

If y(x,p) is a nonnegative solution of the equati(®1.2) then—y(x, p) is also a

solution of the equatio(B8.1.2) Therefore, we can say thapy p) is a homotopy between

V1-%2102v1—4x% and—y(x, p) is a homotopy betweeny/1—x? to —2v/1 — 4x2.

Definition 3.1.1 (Zeroth Order Deformation [Liao, 1995]): Let & be an initial
equation whose solutionyis known. Given an equation denotedfyywhich has at least
one solution u. If one can construct a homotopy of equa#iop) : &o ~ &1 such that,
as the homotopy parametergp|0, 1] increases fron® to 1, &(p) deforms continuously
from the the initial equatio®y to the the original equatio?, while its solution varies
continuously from the known solutiog af &y to the unknown solution u @, then this

kind of homotopy of equations is called the zeroth-ordeoeétion equation.

Definition 3.1.2 (Mth-order Homotopy Approximation [Liao, 1995]): If the solution

of the zeroth-order deformation equatiéiip) : &5 ~ &1 exists and is a real analytic about
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p € [0,1], then the homotopy-series solution of the original equafipnan be written as

+o0
u(z,t) = up(zt) +nzlun(z,t).

And the Mth-order homotopy-approximation @¢ku) is
+M
u(zt) =~ Up(zt) + H Un(zt),
n=1

where z t are the independent variables.

3.2 Analysis of the Homotopy Perturbation Method
Let us consider the nonlinear differential equation
Alu)—f(x)=0, xe€Q, (3.2.1)
with the boundary condition
B(u, =

-0, rer, (3.2.2)

whereA is a general differential operator aBds a boundary operator. Boundary of the
domainQ isT and f(x) is a known real analytic function. The operafocan be divided

into nonlinearN) and linear(L) parts. From equation (3.2.1) we get
L(u)+N(u) — f(x) =0. (3.2.3)
By the basic of homotopy, we construct a homotopy functiazhghat
U:Qx[0,1] — R,
which satisfies
< (1,p) = (1= p)[L(K) —L(uo)] + P[A(H) — F ()] =0, pe0,1], xeQ (3.2.4)

or

7 (U, p) = L(u) —L(uo) + pL(Uo) + p[N(u) — f(x)] =0, (3.2.5)
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whereug is an initial approximation of equation (3.2.1), which séés the boundary

condition. Therefore equation (3.2.4) represents
& (K,0) = L(u) —L(u) =0 (3.2.6)
S (4,1) =A(u) — f(x) =0. (3.2.7)
Let us assume that the solution of equation (3.2.4) can iéewras a power series pf
M= o+ Puy+ P2+ PPz + -+, (3.2.8)

settingp = 1 in equation (3.2.8), we have

u=Ilimp=po+ps+H2+Hz+---. (3.2.9)
pl

The power series (3.2.8) is convergent for the most casegevey the convergent rate
depends upon the nonlinear operator_et us apply the concept of HPM to solve some

nonlinear differential equations.

Example 3.2.1 Consider a nonlinear differential equation
dy
a(+y2:o, x>0, xeQ, y0) =1, (3.2.10)

with an exact solutioraﬁx). We will find the approximate solution by using the homotopy
perturbation method.

We can construct the following homotopy: Y2 x [0,1] — R between the constant
function1 (which is initial approximation y = 1) and Y(x,1) (which is the solution of

the above differential equation), which satisfies

aY dyo oy o\
(1—D)(&—a>+p(&+Y>_o, pe 0,1, xeQ. (3.2.11)

Suppose the solution of equati($2.10)is of the form

Y=Yo+pYi+pNot---. (3.2.12)

Substituting equatio(B.2.12)into equation(3.2.11) we get
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0 .d¥ _ dy
p- dx — dx
pt i1 % ,v2_0 v (0)=0 (3.2.13)

P 921 2vY; =0, Y2(0)=0.

For simplicity we always sel¥= yo = 1. Accordingly we haveY= —x, and ¥ = x?,

thus the second order of approximation of equati@:2.10)can be written as

Vo=Yo+Yi+ Yo =1—x+X. (3.2.14)

3.3 Application of the Homotopy Perturbation Method

For some special partial differential equations like, $owil Burger’s problem, Advection
problem, etc., sometimes it is difficult to get the solution dnalytical method, due
to the presence of high nonlinearity in the equation. In stceetes HPM will help to

get the approximate solution easily. We explain this th@osome well known examples.

Example 3.3.1 (Inviscid Burger’s Equation) Let us consider the Inviscid Burger's

equation
ow  ow
ot ox

and a given the exact solution of the equat{8r8.1)is w(x,t) = % Our aim is to find

=0, w(x,0)=x+2, (3.3.1)

the approximate solution by using the homotopy perturlati@thod.
Applying the homotopy perturbation method (seg(8f2.5) in the equation(3.3.1) we
obtain

ow owp ow  Jdwg

where w(x,t) = w(x,0) = x4+ 2 is an initial approximation.

Now, we assume that the solution of the prob{8t8.1)is of the form

W =Wo+ pWq + p°Wa + - - - . (3.3.3)
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Substituting equatio(B.3.3)into the equatior{3.3.2)and equating the coefficient of like

power of p we get the set of differential equations

0

[

N

Y
Y
Y
p3

Solving the above equations, we get

Therefore the approximate solution of equat{(Br8.1)becomes

W(X,t)

. OWog _ OWo _ )
Toot ot =0
. M _ 0Wo 0Wo
20— — (o 1 o)
. 0W2 _ ( 0W1 dWo)
' 0W3 — (3W2 (3W1 +W 0Wo>
V
Wy = —(x+2)t

Wy = (Xx+2)t?

wy = —(x+2)t3

Wo +

(X42) — (X4 2)t + (x4 2)t?

W1 +W2 +W3 -+,

— (x+2)t3+

(3.3.4)

(3.3.5)

(3.3.6)

The absolute error between the exact solution and appréximaolution has been

shown using graphical representation. Higher accuracybeaobtained by introducing

some more components of the approximate solution. Fig@reé&picts the approximate

solution whereas Figure 3.1 depicts the exact solution.
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(X+2)/(t+1).

Figure 3.1: Graph of exact solutiov(xt)

<10%

(X+2) — (X+ 2t + (x+2)t2+ - --

Figure 3.2: Graph of approximate solutieux,t)
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Example 3.3.2 (Advection Problem) We consider the nonhomogeneous Advection

problem

and given solution is(x,t)

ov ov
X

EJFV(?_X =X, V(x,0)=2,

(3.3.7)

= 2 secht) + x tanh(t) Applying the homotopy perturbation

method (see c{3.2.5) in the equatior(3.3.7) we obtain

ov 0vo ov

WOy x— 20,

ot ot Pl Ve T A
We assume that the solution of the problgn3.7) takes the form

V=Vo+ pvi+ pPVa .

(3.3.8)

(3.3.9)

Substituting equatio(B.3.9)into the equatior{3.3.8)and equating the coefficient of like

power of p, we obtain the set of differential equations

T, T T T
w N P O

=N

L ovo
T oot

dVo_
=0
dVo +X— (3V0

_:_( (3V1+V (9Vo>

_:_( 0V2 _|_V1(9V1 —|—V dVo)

L us
T oot

:_( 0V3+V15V2+V25V1+V 0V0>

Solving the above equations, we obtain

vi =Xt
Vo = —t2
t3
V3 — —X§
5:4
V4 — 1—2t . )

Therefore, the approximate solution of the equaf®.3.7)is

V(X,t)

Vo+Vi+Vo+Va+Va+--
2+xt—t2—xt3+132t4+

2—t°+ 152t4+x<t—§> +...
2(1—%+%t4 )-i—x(t—%t?’—l—..

(3.3.10)

(3.3.11)

) (3.3.12)
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Figure 3.4 depicts the approximate solution whereas Fig&eepicts the exact solution.

200 -
150
Vv 100 4

50

0}
15

Figure 3.3: Graph of exact solutimix, t) = 2 seclit) 4+ x tanh(t).

% 10°
2.

Figure 3.4: Graph of approximate solutiefx,t) = 2(1— tz—z, +..)+Hx(t— %t3+ o)
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Example 3.3.3 Let us consider a nonhomogeneous problem

ov 0% .
5t = 5, o0 v(x,0) = sinx, (3.3.13)

and for this problem, the exact solution iéxt) = sinx e +cosx (1—e!). By using

the homotopy perturbation method (see(8f2.5), equation(3.3.13)can be written as

ov  dv %y Vo
— —— =p|= - =. 3.14
ot ot~ Plae % 5t (3:3.14)
We assume that the solution of the problgni3.13)is of the form,
V=Vg+ pVi+pVo+t---. (3.3.15)

Substituting equatiof3.3.15)into equation(3.3.14)and equating the coefficient of like

power of p, we have the set of differential equations

0 .0dVv (3V0:0

P™ %t — Tt
1 .0v _ [0 _ v
P™ %t = | e TCOX— 5
2
p? % = % (3.3.16)
3 .%_02V2
P Ot T o0

Solving the above equations(8.3.16) we have

vi = (cosx— sinx)t

Vo = (cosx—sinx)tz—z! (3.3.17)
. t3
V3 = (COSX—SinX)z
Therefore, the approximate solution of the equati®:3.13)is
V(X,t) = Vo+Vvi+Vvo+---
t2 t3
= Sinx+ (cosx— sinx)t + (cosx— sinx)E + (cosx— sinx)g +---
: t2 2 3 |
= smx(1—t+§—-~->+cosx<t+5—§+m). (3.3.18)
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Example 3.3.4 (Application of HPM for Solving the System of PEs) Consider the

nonlinear system of equations with initial conditions as

] ou_dv o
d—‘t*—vﬁ—g—ﬁ—‘t’d—;’, =1-Xx+y+t
9 ov_ 9ud

a—‘t’—ua—‘;—a—‘;a—‘; =1-x—y-—t
U(X,y,O) :X+y_l
V<X7y70) = X_y+1'

(3.3.19)

Using the homotopy perturbation method (se€®2.5), in the equatior{3.3.19) we get

du au _ 0V(9U du

_t__to p|: X+ tdy ~ 0 0_|_] X+y+t}
ov v, _ ”dV du gv oV 1—

_m__ﬁto p|: _ﬁx+_dt_dy__o+ X—y— t}

Assume that the solution of the syst&n3.19)is of the form

u(x,t) = uo+ puy+ p2uz + p3va+ ptug+ - --
V() =Vo+ pvi+ P2+ pva+ plva+---.

(3.3.20)

(3.3.21)

Substituting equatio3.3.21)into equation(3.3.20)and equating the coefficient of the

like power of pwe have the set of differential equations

dUO dUO

Po ‘G~ =0

L 0u 0uO mm_m
2 . 0u _ 0uo Bul Bvl (?uo dup dvg
T Voo T3t oy T oy at

Vs

Further the coefficient of the like power of p can be written as

3

pO . 0Vp A 0

"t T ot T
1 .0v1 _ 0VO mm_m

Pk x T3t ay +1—-x—y—t
2 . 0vp Buo 0v1 Buo (9v1 dup dvo
P™ 5t +tUox + %5t oy T ot gy

Solving equation§3.3.22)and (3.3.23) we get

U =x+y-—-1
u :2t—|—§
3 2

(3.3.22)

(3.3.23)

(3.3.24)
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Similarly,

Vo =X—y+1

Vi = —
3

(3.3.25)
2
g2

+ NI

Vo =

o

Substituting the values of v's and u’s in the equafi®i3.21) as p— 1

u(x,t) = Up+Ur+Ux+Uz+Ug+---
3

t

and
V(X,t) = Vo+Vi+Vo+Va+vg+---

tS

= Xyl -2 (3.3.27)

This is the approximate solution of the system of partialedéntial equation using by
HPM.

*kkkk



Chapter 4

Generalized Homotopy Perturbation

Method

The homotopy perturbation method is based on the powerssefi¢ghe homotopy
parameter, which transforms the original nonlinear défeiral equations into a series of
linear differential equations. The concept of generalirethotopy perturbation method
is proposed by Hector in 2014. In generalized homotopy peation method instate
of using power series of homotopy parameter in homotopyupeation method, Taylor
transform of a series of trial function (see cf. (4.1.1))@amh of the homotopy parameter is
used. The generalized homotopy perturbation method tvemghe nonlinear differential
equation into a series of linear differential equation,egating high precision expression

with few algebraic term.

4.1 Basic Concept of Generalized Homotopy

Perturbation Method

In generalized homotopy method, the solution for the equaf8.2.4) in Chapter 3, can

be written as a series of trial functions in the general form

U= to+91(p1pt) + g2(2p?) + ga(uzp®) + . .. (4.1.1)
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or

M= po+01(Hp" + p2p®+ 3P+ ...), (4.1.2)

wheregi(-)(i = 1,2,...) are arbitrary trial functions angdo, ti1, Uz, Us, ... are unknown
functions to be determined by the generalized homotopy adeth

Now, equation (4.1.2) can be expanded using the Taylorfvemsand takes the form

U = o+ p hy(to, p1) + P ho(po, p, ko) + P° Ma(Ho, pa, iz, )+ . (4.1.3)

After substituting equation (4.1.3) into equation (3.2ahd equating terms having the
same order op, we obtain a set of equations, which leads to calcylgte!s, o, - - -. And
finally the approximate solution of equation (3.2.3) can bamed by takingp — 1 and

substituting the calculated valuesaf, U1, to, - - - in equation (4.1.1) as

u= ILiLnlll = Mo +01(H1) +92(H2) +093(u3) + - .. (4.1.4)

or

U:uo-i-gl([ll-i-uz-l—[lg-l—...). (4.1.5)

4.2 Convergence of Generalized Homotopy Perturbation

Method

The convergence of generalized homotopy method [see ctoH2014] can be discussed

by reconsidering the equation (3.2.4) as
7 (. p) = L(Uo) + P[f (x) ~N(1) — L(ug)] = 0. (4.2.1)
Applying the inverse operatdr; ! to both sides of the equation (4.2.%)e get
M = Uo+ plL ™ F(x) —L~*N(u) — o). (4.2.2)
The equation (4.1.2) can be written as

p= uo+z\gi(ui p) (4.2.3)
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or
U = Ho+ 0 (_Zi(ﬂi p‘))- (4.2.4)
Substituting equation (4.2.4) into the right hand side efequation (4.2.2)we get
H=uo+ p[Lflf(r) —(L7'N) [HO+_Zlgi(Ui pi)] - uO} (4.2.5)
or
M=o+ p|L7H(N) — (L7N) o+ (_zlmi P))] - (4.2.6)

The exact solution of equation (3.2.3) is obtained by takimg limit asp — 1 into

equation (4.2.6), we have

u = ggnl(pL‘lf(w—p(L‘lN)[qurégi(ui p‘)] +uO—puo)
= L_lf(x)_[.i(L_lN)(NO'f‘.igi(Ui))] (4.2.7)
or : :
u = yTl(lef(X)_p(L1N)[I-10+gi<§l(lli pi))] +Uo—puO)

(o]

= LY(x) - [_g(LlN)<IJO+gi (_;(uo))] (4.2.8)

|
Definition 4.2.1 (Banach Space)A Banach space is a vector spaXever the fieldR
of real numbers, or over the field of complex numbers, which is equipped with a norm
and which is complete with respect to that norm, that is, f@rg Cauchy sequensg in

X, there exists an element x ¥asuch that

lim xn = X,
n—oo

or equivalent
lim ||xn, —Xx|| =0.
n—-oo
Theorem 4.2.1 (A Fixed Point Theorem): Let V be an open set in a Banach space

X, and let G be a differentiable map from V ¥Xa Suppose that there is a closed ball

B = B(Xo,r) inV such that
(k=sudlG' ()| <1,

(i) G(x0) —Xol| <1 (1—K),
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then G has a unique fixed point in B.

Definition 4.2.2 (Sufficient Condition of Convergence [Hedar, 2014]):
Suppose thaX and Y are Banach spaces and NX — Y is a contractive nonlinear
mapping then

VXX e€X; |INX)—NX)|[| <m|x—x"]|; 0<m<1

According to Banach fixed-point theorem, N has a unique fixét p such that Nu) = u.

Assume that the sequence can be written as

n-1
Wn:N(anl>7 Wn—1:V0‘|‘ Z\gi(vi>7 n:17273747”"
i=

If we have W = vp € By (u), where B(u) = {x* € X : [|[xX* —u|| <r}, then, it can be

shown that
(I)Wh € By (u),
(i) r[lnooW” =u.
Proof (i)

By using the induction method, fonl, we have
[[Wa —ul| = [IN(Wo) — N(u)| < mljxo —ul.
Suppose that as induction hypothesis fhag 1 — u|| < m"1||xo —u]|, then
[IWh —ull = [IN(Wh-1) = N(u) || < m[Mh—1 —ul| < m"|[xo —ul].
We have
IWh = ul| = IN(Wh—1) = N()[| < m[Mh_1 —ul] < m|jwo —uf| < mi'r <r

=W, € B (u).

Proof (ii)
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We have
Wh — ul| = [IN(Wh-1) = N(u) || < m[[Wh_1 —ul| < m"||xo—ul]
= [Wh —ul| < mjxo —u]
= limm'=0, lim|W,—u|=0, m#1,
n—oo n—o0
that is,
n—o0

4.3 Generalized Newtonian Iteration Formula

Consider a nonlinear algebraic equation

where f(x) € ¥*[a,b] is a continuous real valued function. Assume that the above
eqguation has at least one solution defined in the interval. [a,

Let Xp € [a,b] be an initial guess of the unknown solutirnObviously, f (x) — f(Xo) €

¢ [a,b] can be deformed continuously f¢x) € € [a,b], i.e., they are homotopy. Thus,

we can construct such a homotopy of function

7 (%,p) = (1-p)[f(x) = f(x0)] + Pf(X), (4.3.1)
wherep € [0, 1] is the homotopy-parameter. When= 0 andp = 1, we get

L (%,0) = f(x)— f(x), L(x1)=Tf(x),

respectively.

Thus asp increases from 0 to 1(x, p) varies continuously fronf (x) — f(Xp) to

f(x).
Now, if .7 (x, p) = 0O, then the equation (4.3.1) becomes

(L-p)[f(x)—f(x)]+pf(x) =0, pel0,1],
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this is a parameter-family of algebraic equations. Thetsmiuof the above parameter
family of algebraic equations is dependent upon the honygpapametep. Replacingx

by x(p) in the above equation, we can write more precisely

(1-p[f(x(p)) — f(x0)]+pf(x(p)) =0, pel0,1]. (4.3.2)
Whenp = 0, the equation (4.3.2) takes the form
F(X(0)) — f(x0) =0

and whose solution is

X(0) = Xo.
Similarly whenp = 1, we have

fix(1)] =0,

which is exactly the same as the original algebraic equdti@h= 0 and whose solution
isx(1) = x.

Therefore, as the homotopy-paramepeincreases from 0 to Ix(p) deforms from the
initial guessxg to the solutionx of the original equationf(x) = 0. So, the equation
(4.3.2) defines a homotopy of functiafp) : Xo ~ x. For simplicity the parameter family
of equations (4.3.2) is called the zeroth-order defornmaéiquation because it define a
continuous deformation from the initial guegsto the solutiorx of the original equation
f(x) =0.

Note thatx(p) is a function of the homotopy paramefeandx(p) is real analyticap =0,

so that it can be expanded into a Maclaurin series with réspéice homotopy-parameter

p, i.e.,

+oo
X(p) ~Xo+ Y %P, (4.3.3)
K=1
wherex(0) = xp is employed, and
1 d*x(p)
%= g age = ) (4.3.4)

Here the series (4.3.3) is called homotopy-Maclaurin seaied 7y [x(p)] is called the
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kth-order homotopy-derivative of(p) [Liao, 1995]. If we consideip = 1 in equation
(4.3.3) then we have
+o00
X=Xo+ Z Xk (4.3.5)
K=1
Now, differentiating the zeroth-order deformation eqo@at{4.3.2) with respect to the

homotopy-parametgs, we have

f’[x(p)]d)(;(pp) +f(x) =0. (4.3.6)
Settingp = 0 in the above equation and using the relationsi) = Xo, we get
f’(xo)d)(;—(pm +f(x) =0 (4.3.7)
and
d>o<|( s) .

More precisely, the above equation (4.3.7) can be writtdh@form

x1 f'(x0) + f(x0) =0, (4.3.8)

which is called first order deformation equation and whodetsm is

__ fxo)
f/(xo)

Similarly, differentiating the zeroth-order deformatiequation (4.3.2) twice with respect

to p and dividing both side by 2!, we have
1,002 r1dy
i f (x)(d—p) 4 (x)(iw) ~0. (4.3.9)

Again settingp = 0 and using(0) = Xp, the above equation takes the form

1., dxy2 1d%y
= <xo>(d—p) +f <xo>(§w)_o.
Using the equation (4.3.4), we have the 2nd-order defoonatguation

1
531" (x0) +%2f'(x0) = 0

and whose solution is

() f2(x0) f"(x0)

2T 2000 | 2P0P
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Using equation (4.3.8we have the 1st-order homotopy-approximation

f(x0)
f’(x0)’

and the second order homotopy-approximation

X" Xg+ X1 =Xo— (4.3.10)

f
X R Xg+ X1+ X2 = Xg — — . (4.3.11)

The equation (4.3.11) is called a Newton iteration formueiy by Sir Isaac Newton.

4.4 Application of Generalized Homotopy Perturbation

Method

Let us consider a nonlinear boundary value problem,

d?y
Rl exply) =0, y(0), y(1)=0, (4.4.1)

where n is known as Gelfand’s parameter. Apply the GHP method, dutced by
Hector (2014) to get the approximate solution of the problémorder to facilitate the
application of GHP method, we approximate the exponengiahtusing a sixth-order

Taylor expansion as,

y' + n(1+y+ %y2+ %y3+ 2—14y4) =0, y(0)=0, y1)=0. (4.4.2)

Using the equation (4.4.2), the following homotopy equadioan be constructed
(1= p)(y" +ny+n)+p(y'+n(1+y+ eilpy iy“)) =0 (4.4.3)
2 6 24 ’
and
(1-p)(y") + p(x/’ + n<1+y+ Lo Ly iy“p“)) ~0. (4.4.4)
2 6 24
The solutions for equation (4.4.3) and (4.4.4) can be obthin the form

y=Yo-+10g(1+y1p+Y2p? +ysp3+---), (4.4.5)



and the Taylor transform of equation (4.4.5) is

Y=Yo+Yip+ (Y2 —Yi/2)P*+ (Y3 — Yiy2/3+Vi(—2y2+ Y1) /3)p*+---.  (4.4.6)

Now, substituting equation (4.4.6) into equation (4.4at)d rearranging the terms of the

same order op, we get the coefficient of like power gf

PO yg+ny+n=0, yo(0)=0, yo(1)=0
pt y{+ny—ny§/2+ny3/6=0, y1(0)=0, yi(1)=0 (4.4.7)

and

P° y54+n=0, yo(0)=0, yo(1)=0
pt y/+ny =0, yi1(0)=0, yi(1)=0 (4.4.8)

Solving the above equations in (4.4.8), we get

(4.4.9)
y1 = n?x(x3 - 2x2 + 1).

Yo =—3nx(x—1), }

Substituting the values of equations (4.4.9) in equatiad.$} and takingp — 1, we

obtain the solution approximation upto the sixth order
. 6
y=limy=yo+log <l+i;yi)' (4.4.10)

*kkkk






Chapter 5

Conclusions and Future plan

5.1 Conclusions

In this project report, we have discussed the applicatidroaiotopy perturbation method
(He, 1999) and generalized homotopy perturbation methatt@t, 2014) for solving

nonlinear differential equations. We have applied the hopy perturbation method
to solve the Inviscid Burger's nonlinear problem and the hmnogeneous Advection
problem. The result of the homotopy perturbation methoegius evidence that the
solution is effective and have a high accuracy (cf. Ganji.e2809) to find the solutions

for the problems.

5.2 Future plan

e We will apply homotopy perturbation method to analyze diigbiand error

estimation of Lotka Voltera model problem in near future.

e Solving delay differential equations (cf. Shakeri and Dedng 2008) using the

method of homotopy perturbation.

e We will apply HPM and GHPM for solving higher order nonlinedifferential

equations, occur in physical problems.



e Our plan is to solve systems of 2nd order PDEs using GHPM.

e We also have a plan to solve fractional differential equetiasing HPM and
GHPM.
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