
ACTIVE VIBRATION CONTROL OF SMART 

MULTISCALE COMPOSITE BEAMS, PLATES, 

AND SHELLS 

 

 

Ph.D. Thesis 
 

 

 

 

by 

 

MADHUR GUPTA 

(Roll No. 1901103005) 

 

 

 

 

 
 

 

 

 

DEPARTMENT OF MECHANICAL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 
NOVEMBER 2022 

 



 

  

 



ACTIVE VIBRATION CONTROL OF SMART 

MULTISCALE COMPOSITE BEAMS, PLATES 

AND SHELLS 

 
 

A THESIS 

 

Submitted in partial fulfillment of the  

requirements for the award of the degree 

of 

DOCTOR OF PHILOSOPHY 
 

 

 

by 

MADHUR GUPTA 

(Roll No. 1901103005) 

 

 

 

 
 

 

 

DEPARTMENT OF MECHANICAL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 
NOVEMBER 2022 

 

 



 



 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 

CANDIDATE’S DECLARATION 

 I hereby certify that the work which is being presented in the thesis entitled ACTIVE VIBRATION 

CONTROL OF SMART MULTISCALE COMPOSITE BEAMS, PLATES AND SHELLS in the 

partial fulfillment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY and 

submitted in the DEPARTMENT OF MECHNIACL ENGINEERING, Indian Institute of Technology 

Indore, is an authentic record of my own work carried out during the time period from June 2019 to 

November 2022 under the supervision of Dr. Shailesh I. Kundalwal, Associate Professor, and Indian 

Institute of Technology, Indore and Dr. Nagesh D. Patil, Assistant Professor, and Indian Institute of 

Technology Bhilai. 

 The matter presented in this thesis has not been submitted by me for the award of any other degree of 

this or any other institute.        

    

 

           11 November 2022 

                                                                         Signature of the student with date 

(MADHUR GUPTA) 

---------------------------------------------------------------------------------------------------------------------------- 

 This is to certify that the above statement made by the candidate is correct to the best of my/our 

knowledge. 

 

Nov 18, 2022                                                                             Nov 18, 2022                                                                              

Signature of Thesis Supervisor #1 with date                       Signature of Thesis Supervisor #2 with date 

  (Dr. Shailesh Ishwarlal Kundalwal)                                      (Dr. Nagesh Devidas Patil) 

 

----------------------------------------------------------------------------------------------------------------------------------- 

Madhur Gupta has successfully given his/her Ph.D. Oral Examination held on November 10, 2022.                                       

Nov 18, 2022                                                                           Nov 18, 2022 

Signature of Thesis Supervisor #1 with date                      Signature of Thesis Supervisor #2 with date 

  (Dr. Shailesh Ishwarlal Kundalwal)                                      (Dr. Nagesh Devidas Patil) 

----------------------------------------------------------------------------------------------------------------------------------- 



  



Acknowledgements 
 

 

It is a great pleasure for me to acknowledge all the people who have helped and 

supported me to complete this thesis. First and foremost, I express my deep and heartfelt 

gratitude to my supervisors, Dr. Shailesh Ishwarlal Kundalwal and Dr. Nagesh 

Devidas Patil. I have had the privilege of being associated with them throughout this 

entire period of doctoral studies. I have been fortunate to have Dr. Shailesh Ishwarlal 

Kundalwal as my supervisor, who cared so much about my work, and who always 

responded to my questions and queries so promptly. He has always inspired me with his 

hardworking and passionate approach toward research and his urge to achieve high-

quality work. I have also received continuous academic support, inspiration, and 

encouragement from my co-supervisor, Dr. Nagesh Devidas Patil. Their support not 

only enriched me academically but also nourished my inner self and changed my 

perspective and attitude a lot. Through this association with them, I have been able to 

acquire, develop and sharpen the skills and the scientific methodologies which are 

invaluable for good independent research. Their immense knowledge, guidance, 

observations, and comments helped me a lot to establish the overall direction of the 

research and to move forward with the investigation in depth. For all this, I will remain 

indebted and grateful to them for my entire life.  

I gratefully extend my gratitude towards my PSPC members Prof. Bhupesh 

Kumar Lad, Department of Mechanical Engineering, Dr. Srimanta Pakhira, 

Department of Physics, Indian Institute of Technology Indore, for their valuable 

suggestions and comments to improve my work. I am grateful to the Head, DPGC 

Convener, all the faculty members, and staff of the Department of Mechanical 

Engineering, IIT Indore for providing an encouraging environment to carry out research 

effectively.  

I would like to acknowledge Prof. Suhas S. Joshi, Director, IIT Indore for 

providing a conducive environment for research and opportunity to explore my research 

capabilities at IIT Indore. I am also thankful to The Dean of Academic Affairs, The 

Dean of Research and Development, and The Dean of Student Affairs, IIT Indore. 

I am lucky to have good friends who have been constantly encouraging, 

motivating, and cheering me in all situations. I extend my thanks to Mr. Mayank 

Shukla, Mrs. Kayla Breann Dockery, Mrs. Mahima Sonakiya Dubey, Ms. Namrta 

Patidar, Mr. Rahul Prajapati and each and every one of my friends. There have been 

so many of you – it is impossible to name all of you. 

  

 



I am indebted to my seniors, lab mates and colleague researchers especially Dr. 

Kishore Shingare, Mr. Subhash Nevhal, Mr. Nitin Luhadiya, Mr. Rajnish Prakesh 

Modanwal, Mr. Saurabh Mishra, Mr. Anas Ullah Khan, Ms. Nilima Sinha and Mr. 

Vaibhav Nemane for their cooperation and stay so as to make my Ph.D. journey joyful 

and with whom I have spent so much time discussing both technical and non-technical 

stuff. 

This acknowledgment would not be complete without mentioning the pain 

staking efforts and patience of my family. No words are adequate to express my 

indebtedness to my father Mr. Mahesh Kumar Gupta and my mother Mrs. Mrinalini 

Gupta for their support, blessings, and good wishes. Thank you to my sweet younger 

sister, Ms. Meha Gupta, for always being there for me and for always cheering me up. 

I owe this thesis to my grandparents, my parents, my sister and other family members 

who always stood by me and provided strength in pursuing this work. This achievement 

of my life would not be possible without their support and cooperation throughout this 

study. Finally, I am thankful to all who directly or indirectly contributed, helped and 

supported me. 

Lastly, I express my hearty thanks to those whom I might have missed to 

mention by name, who helped directly or indirectly and cooperated me a lot in 

completion of this Ph.D. research work. 

-Madhur Gupta 

Indian Institute of Technology Indore  

Date:    November 10, 2022



 

 

 

 

 

 

Dedicated To 

 

 

My Beloved Family 

 

Mother, Father and Sister for their love, care, and blessings 

  



 

  



i 

 

SYNOPSIS 

1 Introduction 

The laminated composite materials have been extensively used in almost all engineering 

applications such as space structures, robotic manipulators, aerospace structures due to 

their remarkable mechanical properties, light-weight, and high performance. These 

multilayered structures consist of relatively thin layers of different material compositions 

which may influence the different degrees of axial compliance. As a result, the axial 

displacement of anisotropic structures varies nonlinearly along the thickness of the 

structure. In a general layer-wise formulation, the axial displacement field could be 

modeled as a piecewise continuous function, that is, a collection of linear functions 

defined for each layer of the thin structure. The responses of the laminated composite 

structures have been accurately studied by many researchers by the use of different 

theories like the first-order shear deformation theory (FSDT) and higher-order shear 

deformation theory (HSDT), and mixed variational theories (Reddy and Phan, 1985; 

Narita et al., 1993; Eisenberger et al., 1995). The low values of transverse to in-plane 

modulus result in higher transverse shear resulting in the zig-zag effect, which needs to 

be accounted for. The zig-zag effect considerations lead to many advantages like the 

degrees of freedom (DOF) becoming layer independent resulting in the use of fewer 

numbers of variables and hence reduction in the overall computation time. In addition, 

the zig-zag function vanishes at the top and bottom surfaces of the plate, thus the full 

shear-stress continuity across the depth of the multilayered plate is not required. To 

overcome these drawbacks the early efforts of Di Sciuva (1985) and Murakami (1986) 

employed zig-zag-like displacement fields that satisfy a priori the transverse shear stress 

and displacement continuity conditions at the layer interfaces while keeping the number 

of kinematic variables independent of the number of layers.  

The low damping nature of the laminated composite structures poses a threat of 

vibration-induced failures and hence to address this issue a concept called laminated 

smart structure has been developed. These types of structures usually comprise a 

laminated substrate member (either beam, plate, or shell) embedded with smartness 
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adding material like the piezoelectric material. When this smart material is supplied with 

a control voltage, the enhancement in damping of the entire structure is observed which 

makes the overall structure safe during operation (Bailey and Ubbard, 1985; Ray et al., 

1993). The fiber form of piezoelectric material reinforced in the conventional epoxy form 

a new material class called the piezoelectric composite (PZC) and piezoelectric fiber-

reinforced composite (PFRC). 1‒3 PZC material, which is commercially available is a 

type of PFRC that has profound use in investigating the damping characteristics of 

structures. To enhance their performance, it is observed that when this material is used in 

unison with the viscoelastic material, the host structures exhibit the active (voltage ≠ 0) 

and passive (voltage = 0) behavior. The unison of such materials resulted in a new 

concept material system developed by Baz called the active constraining layer damping 

(ACLD) (Baz and Ro, 1995b). Ray and Pradhan (2006) studied the active damping 

performance of the smart piezoelectric structures integrated with the ACLD treatment, 

observing that a 1‒3 PZC layer effectively attenuates the vibrations of composite 

structures. Kundalwal and Ray (2016) developed a finite element (FE) model to 

investigate the damping behavior of a smart fuzzy fiber-reinforced composite (FFRC) 

integrated with ACLD treatment layer constraining 1‒3 PZC material employing FSDT. 

Carbon nanotubes (CNTs) have attracted the great attention of researchers to 

predict their thermo-mechanical properties since their discovery in 1991 by Iijima (1991). 

Treacy et al. (1996) experimentally found that the CNT possesses extraordinarily high 

Young’s modulus in the range of tera-pascal (TPa) range which led to the 

theoretical/numerical investigations of unique thermo-mechanical and other properties of 

different types of CNTs (Shen and Li, 2004; Gupta et al., 2010). Owing to their 

extraordinary thermo-mechanical and physical properties, nanoscale CNTs can be 

utilized as nano-fillers in the conventional composite to modify its overall behavior. Such 

multiscale composite can be termed as hybrid composite comprised of primary 

microscale fibers and secondary nanoscale CNTs embedded in the matrix. In recent 

advances, the research activities in the field of composites have shown that the CNT-

based hybrid composite can be fabricated easily in view of matured fabrication 

techniques and commercially available cheaper CNTs.  On this basis, some attempts 

were made to investigate the dynamic/damping performance of CNT-based hybrid 
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composite structures. Deepak et al. (2012) investigated the free vibrations and wave 

propagation of the CNT reinforced polymer composite rotating beam and observed that 

incorporation of CNTs in the polymer matrix improves the performance of the composite 

beam. Kundalwal and Ray (2016) studied the active damping characteristics of fuzzy-

fiber reinforced composite (FFRC) plates attached with ACLD patches. They found that 

the waviness of the CNTs significantly influences the damping performance and natural 

frequency of the FFRC plate. Kumar et al. (2017) investigated the non-linear vibrations 

of the sandwich shell with facing composted of FFRC using a FE model based on the 

Golla-Hughes–McTavish (GHM) method. Sciuva and Sorrenti (2019) developed a FE 

model using a refined zig-zag theory to investigate the static and dynamic analysis of 

FG-CNTR sandwich plates. Mallek et al. (2021) carried out a non-linear dynamic 

analysis of piezo-laminated functionally graded carbon nanotube-reinforced (FG-CNTR) 

composite shell using an improved FSDT. 

From the reviewed literature, it can be observed that the dynamic analysis and 

active control of CNT-based hybrid carbon fiber reinforced composite structures have 

been reported in some of the studies. To the best of current authors’ knowledge, the 

dynamic analysis and active control of CNT-based hybrid carbon fiber reinforced 

composites structures (beams, plates, and shells) based on the refined FSDT by 

incorporating the Murakami Zig-Zag theory is not yet explored. A laminated composite 

structure is an important building block element and hence, the present research is 

directed to study the active damping performance of laminated multiscale hybrid fiber-

reinforced composites (HFRC) structures such as beam, plate, and shell. For this, the 

damping performance of smart laminated HFRC substrate structures is investigated via 

the FE approach using piece-wise modified FSDT incorporating zig-zag function. The 

multiscale substrate structure is embedded with ACLD treatment patches at the top 

surface. A closed-loop model to supply control voltage to the ACLD treatment patch is 

also presented based on simple velocity feedback control law. The comparison of the 

frequency response of the laminated HFRC with base composite plates is analyzed 

considering three cases: symmetric and anti-symmetric cross-ply, and anti-symmetric 

angle-ply. 
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2 Summary of the Present Work 

This Section summarizes the research work carried out for the Thesis. The problem 

statements and the salient results of the problems are presented below.  

2.1 Micromechanical Analysis of a Multiscale Hybrid Fiber Reinforced 

Composite 

In this section, the effective elastic properties of the multiscale HFRC lamina are 

estimated by using the two- and three-phase micromechanical model based on the MOM 

and MT approach. A novel HFRC is composed of CNTs embedded in the matrix phase 

of a conventional epoxy/carbon fiber reinforced composite by considering the rectangular 

representative volume elements (RVEs) incorporated with cylindrical fibers. In this 

micromechanical analysis, we restricted ourselves to a single RVE. Figure 1(a) 

represents the schematic of HFRC lamina reinforced with carbon fiber in 1-axis and 

epoxy matrix mixed with CNT to improve damping and material properties of the matrix. 

The axial and transverse cross-sections of the HFRC RVE are illustrated in Fig. 1(b), 

respectively. The analytical model based on the MOM and MT approach for predicting 

the effective elastic properties of HFRC is now briefly discussed here, and the two-phase 

analytical models and analytical model for predicting the influence of waviness on the 

effective elastic properties of HFRC are not presented here for the sake of brevity and 

are presented in the Thesis. 

2.1.1 Three-Phase MOM Approach 

The problem coordinate and principal material coordinate systems are represented by 1-

2-3 and x-y-z, respectively. For the three-phase composite material which is also known 

as a hybrid composite material, the constitutive relation for the individual phases of 

HFRC can be expressed as: 

{𝝈𝒓} =  [𝑪𝒓]{𝜺𝒓}; 𝒓 =  𝑪𝑭, 𝑪𝑵𝑻 𝒂𝒏𝒅 𝑬𝒙𝒚    (1) 

where the superscripts CF, CNT, and Exy denote carbon fiber, CNT nanofiller, and 

epoxy matrix, respectively. To satisfy no slippage condition between all individual 

phases, the assumption of iso-field and ROM can be expressed as: 
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Figure 1. (a) Schematic of RVE of HFRC; (b) axial and transverse cross-sections of 

three-phase RVE. 
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and in case of ROM condition: 
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where vCNT denotes the volume fraction of the CNT.  

Finally, the effective elastic properties of HFRC can be expressed as: 

[𝑪] = [𝑪𝟏][𝑽𝟓]
−𝟏 + [𝑪𝟕][𝑽𝟔]

−𝟏    (4) 

2.1.2 Three-Phase MT Approach 

The effective elastic properties of such multiscale HFRC can be determined using the 

three-phase MT model, as follows: 

[𝑪] = [𝒗𝒎[𝑪
𝒎][𝑰] + 𝒗𝒇[𝑪

𝒇][𝑨𝒇] + 𝒗𝒊[𝑪
𝒊][𝑨𝒊]] [𝒗𝒎[𝑰] + 𝒗𝒇[𝑨𝒇] + 𝒗𝒊[𝑨𝒊]]

−𝟏

          (5) 

in which 𝒗𝒎, 𝒗𝒊 and 𝒗𝒇 denote the volume fractions of the epoxy matrix, CNT nanofiller, 

and carbon fiber, respectively. The terms [𝑨𝑪𝑭] and [𝑨𝑪𝑵𝑻] appearing in Eq. (5) represent 

the concentration factors, as follows: 

[𝑨𝒇] = [[𝑰] + [𝑺𝒇]{([𝑪
𝒎])−𝟏([𝑪𝒇] − [𝑪𝒎])}]

−𝟏

 

[𝑨𝒊] = [[𝑰] + [𝑺𝒊]{([𝑪
𝒎])−𝟏([𝑪𝒊] − [𝑪𝒎])}]

−𝟏

                              (6) 

where [𝑺𝒇] and [𝑺𝒊] are the Esheby tensors for the CF and CNT phases, respectively 

(Qiu and Weng, 1990); and [𝑰] is an identity matrix. For the sake of simplicity, the CNT 

is assumed as an equivalent solid cylinder fiber (Kundalwal, 2017).  

Figure 2 demonstrates the comparison of the values of effective longitudinal and 

transverse elastic constants (C11
 

 and C33
 

) against the carbon fiber volume fraction (𝒗𝑪𝑭) 

of the HFRC incorporating 0.1 volume fraction of CNT (𝒗𝑪𝑵𝑻). It can be observed from 

Figs. 2(a–b) that due to the incorporation of CNTs, the effective elastic properties of the 
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HFRC lamina show substantial improvement as compared to the base composite. It can 

also be observed that both MOM and MT models show good agreement. Figure 2(c) 

illustrates the variation of longitudinal elastic coefficient C11
 

 of different cases: HFRC 

with straight (n = 0) and wavy CNTs in 1‒2 and 1‒3 planes. It can be observed that the 

C11
 

 linearly varies with 𝒗𝑪𝑭 because the carbon fibers are oriented along the x-axis of 

HFRC. This is attributed to the iso-strain condition imposed on constituents and, thus, 

the strain induced in the x-direction of HFRC composite is equal to that of matrix and 

fibers. Figure 2(c) also depicts that the magnitude of C11
 

 for wavy CNT case is lower 

compared to the straight CNT case. This is attributed to the fact the load-bearing capacity 

of the CNT reduces due to waviness.  

 

Figure 2. Variation of the effective longitudinal elastic constant (𝑪𝟏𝟏
 ) and transverse 

elastic constant (C33
 ) with respect to the volume fraction of carbon fiber. 
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Figure 2(d) demonstrates the variation of transverse elastic coefficient C33
 

 for 

different cases, which demonstrates the substantial improvement in the value of 𝑪𝟑𝟑
𝑴𝑺𝑪 

when CNT waves are coplanar with the 1‒3 plane. This is due to the fact that the 

transformed value of 𝑪𝟑𝟑
𝑴𝑺𝑪 improves with the amplitude of CNT waves coplanar with the 

1‒3 plane. Next, the obtained effective properties of HFRC are used for studying the 

active damping characteristics of the smart beam, plate, and shell with multiscale HFRC 

as a host structure. 

2.2 Active Vibration Damping of Smart Multiscale Hybrid Fiber 

Reinforced Composite Beams Using 1‒3 Piezoelectric Composites 

 

Figure 3. Variation of (a) amplitude of deflection, (b) control voltage, (c) piezoelectric 

coefficient, and (d) 1‒3 PZC of 0°/90°/0° multiscale HFRC substrate beam with 

frequency response. 
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In this study, an attempt has been made to investigate the active damping 

performance of multiscale HFRC substrate beam constraining the layer of an ACLD 

treatment using an in-house FE model based on FSDT. The ACLD treatment layer is 

installed at the top surface of the host structure covering its 3/5 surface area from the 

fixed end. The effect of in-plane and transverse-plane actuation of the integrated ACLD 

treatment layer on the damping characteristics of the novel smart cantilever HFRC beam 

is considered. The parameters affecting the damping characteristics of the HFRC 

substrate beam such as the volume fraction of both CNTs and carbon fiber, and the 

aspect ratio are also studied. Figure 3(a-b) demonstrates the vibrational amplitudes and 

control voltage of the base composite and HFRC. It can be observed that the HFRC 

shows better damping performance and required less control voltage compared to the 

base composite. 

Figure 3(c) illustrates that the piezoelectric coefficient significantly influences the 

control authority of the ACLD patches. It can be concluded that the constraining layer of 

ACLD is mainly responsible for the attenuation of vertical shear deformation. This also 

means that the out-of-plane actuation has a much higher contribution in vibration 

attenuation than the in-plane actuation of the laminated smart beam. Whereas it can be 

observed from Fig. 3(d) that the performance of tailor-made 1‒3 PZC shows better 

transverse vibration attenuation compared to the conventional monolithic piezoelectric 

material. 

2.3 Active Vibration Damping of a Simply Supported Smart Multiscale 

Hybrid Fiber Reinforced Composite Plates Using 1‒3 Piezoelectric 

Composites 

A FE model is developed based on the FSDT considering the zig-zag theory which acts 

as a natural extension to FSDT to investigate the active damping performance of the 

laminated multiscale HFRC substrate with two ACLD treatment layers attached at the 

top surface host structure. The multiscale HFRC plate is subjected to the simply-

supported (SS) boundary conditions. Figure 4(a-b) demonstrates the active damping 

performance of SS symmetric cross-ply base composite and HFRC square plates and the 

required control voltage to achieve the corresponding vibration attenuation.  
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Figure 4. Variation of the amplitude of deflection and control voltage vs frequency 

response of SS laminated HFRC plates: (a, b) 0°/90°/0°, (c) 0°/90°/0°/90°, and (d) 

−45/45°/−45°/45°. 

It can be observed from Fig. 4(a) that the multiscale HFRC shows higher vibration 

attenuation compared to the base composite for all the values of gain (𝒌𝒅 =

500 and 800) . To achieve the following vibration attenuation the required control 

voltage is shown in Fig. 4(b). Here, we can observe that the maximum required control 

voltage is ~37 𝑽, which is in the practical range and could be easily achievable. Similar 

to Fig 4(a), the variation of frequency response with the amplitudes of vibration for anti-

symmetric cross-ply and anti-symmetric angle-play is shown in Fig. 4(c-d), respectively. 

These figures display that both anti-symmetric cross-ply and anti-symmetric angle-ply 

laminated HFRC plate shows better damping characteristics due to the incorporation of 

CNTs in terms of attenuation of amplitudes and enhancement in the first mode natural 

frequencies. 
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2.4 Active Vibration Damping of a Clamped-Clamped Smart Multiscale 

Hybrid Fiber Reinforced Composite Plates Using 1‒3 Piezoelectric 

Composites 

Based on a piece-wise continuum FSDT incorporating the zig-zag function the FE model 

is developed to investigate the effect of CNT waviness on the damping performance of 

the laminated multiscale HFRC smart plate. In addition, the effect of piezoelectric fiber 

orientation of 1‒3 PZC on the control authority of the ACLD treatment layer is also 

examined. For this, the MOM model is derived to evaluate the effective elastic properties 

of 1‒3 PZC for various fiber orientations. For the sake of brevity, the FE and MOM 

models are not shown here. It can be seen from Fig. 5(a) that the symmetric cross-ply 

laminated HFRC plate with CNT waves coplanar with the 1‒3 plane significantly 

attenuates the amplitudes of vibration compared to the other cases of laminated plates 

(with or without CNTs). This is attributed to the enhanced transverse stiffness of the 

multiscale HFRC substrate due to the waviness of CNT in the 1‒3 plane. Thus, the 

energy dissipation capability of the multiscale HFRC plate is high, and it significantly 

attenuates the transverse vibrations. Further analysis is carried out for anti-symmetric 

cross-ply plates, and Fig 5(b) shows that the multiscale HFRC plates with CNT waves 

coplanar with the 1‒3 plane have better vibration attenuating capability compared to the 

other cases. 
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Figure 5. Frequency response of (a) 0°/90°/0°, (b) 0°/90°/0°/90° and effect of piezo-

fiber orientation (𝜳) in the xz- and yz-planes on the frequency response of (c–d) 0°/90°/

0° HFRC plates when 𝒌𝒅 = 600. 

2.5 Active Vibration Damping of a Clamped-Free Smart Multiscale 

Hybrid Fiber Reinforced Composite Shells Using 1‒3 Piezoelectric 

Composites 

In this study, a FE model is developed based on the sinusoidal shear deformation theory 

accounting for the Murakami zig-zag function to investigate the influence of CNT 

waviness on the damping performance of the laminated multiscale HFRC smart shell. 

The proposed theory is the modified form of FSDT which considers a sinus function to 

avoid the shear locking phenomenon. Whereas the Murakami zig-zag function accounts 

for the higher transverse shear resulting in the zig-zag effects. The zig-zag function also 

vanishes at the top and bottom surfaces of the structure, and thus, the full shear-stress 
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continuity across the depth of the multilayered plate is not required.  

 

Figure 6. Variation of the amplitude of deflection with the frequency response of 

laminated HFRC smart shell (a, b) 0°/90°/0°, (c) 0°/90°/0°/90°, and (d) −45/45°/

−45°/45°. 

Figure 6(a) illustrates the comparison of amplitudes of the defection of symmetric 

cross-ply base composite and multiscale HFRC smart shells for the passive (uncontrolled, 

𝒌𝒅 = 0) and active damping. It can be observed that the active damping significantly 

attenuates the amplitudes of vibration with multiscale HFRC shell showing better 

performance. Figure 6(b) demonstrates the influence of CNT waviness of the damping 

characteristics of the symmetric cross-ply multiscale HFRC shell. The figure depicts that 

CNT waviness shows significant effects on the damping performance of multiscale 

HFRC shell and the maximum attenuation is observed when the CNT waviness is 

coplanar with 1‒3 plane. This is attributed to the fact that the transverse stiffness 
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coefficient is enhanced substantially when CNT waviness is coplanar with 1‒3 plane. 

Similar results are observed in the case of anti-symmetric cross-ply and anti-symmetric 

angle-ply. Among all the cases symmetric cross-ply multiscale HFRC shell with CNT 

waviness coplanar with 1‒3 plane shows better results than the anti-symmetric cross-ply 

and anti-symmetric angle-ply. The effect of piezoelectric fiber orientation in xz and yz 

direction of 1‒3 PZC is also studied but for the sake of brevity, the results are not here 

and are presented in the Thesis. 
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Abstract 
 

Owing to their unique structure, carbon nanotubes (CNTs) exhibit unprecedented 

physical and mechanical properties, CNTs emerged as promising reinforcement with 

potential benefits in the engineering applications such as nano/micro-electromechanical 

systems NEMS/MEMS, and structural health monitoring (SHM) systems. An overview 

of the literature revealed that CNTs can be incorporated to improve the structural 

damping of composite structures as CNT reinforcement improves the strength and 

stiffness of the composite structures. With the advancement in nanotechnology, 

nanofibers like CNTs can be utilized along with conventional fibers for the development 

of advanced hybrid composite materials. Such composites are known as multiscale 

composites that are reinforced with nanoscale materials along with macroscale fibers. 

These multiscale composites have potential applications in almost every field due to their 

remarkable features like extraordinary mechanical properties, uniformity, flexibility, and 

stability of the fibers. In this context, we proposed a CNT-based hybrid fiber-reinforced 

composite (HFRC) material. The HFRC is composed of CNT nanofillers and carbon 

fibers uniformly distributed along the longitudinal direction in the polymer matrix phase. 

The effective elastic properties of multiscale HFRC are required prior and therefore, 

these properties were evaluated as the literature does not provide the same. For this, 

analytical micromechanical models are developed for predicting the effective elastic 

properties of HFRC which can be utilized for the active damping analysis of laminated 

HFRC smart structures. The objective of the present work is to develop a finite element 

(FE) model to investigate the active vibrational damping of multiscale HFRC smart 

structures such as beams, plates, and shells by utilizing the layerwise shear deformation 

theory considering the zig-zag (ZZ) effects. 

In this dissertation, two- and three-phase micromechanical models based on the 

mechanics of materials (MOM) and Mori-Tanaka (MT) approaches are developed to 

predict the effective elastic properties of the base composite (without CNTs) and the 

HFRC with straight and wavy CNTs. The distinctive feature of novel HFRC is that the 
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wavy/straight CNTs are distributed uniformly in the matrix phase of hybrid carbon fiber-

reinforced composites, and the waviness of CNTs is considered to be coplanar with two 

mutually orthogonal planes. The predictions by both the models are found to be in good 

agreement and we observed that due to the incorporation of CNTs the effective elastic 

properties of HFRC lamina show significant enhancement compared to base composite. 

The effects of waviness of CNTs on the effective elastic properties of the HFRC is also 

investigated when the wavy CNTs are coplanar with either of the two mutually 

orthogonal planes. It is found that the transverse effective elastic properties of HFRC 

containing wavy CNTs are significantly improved while the longitudinal elastic 

properties of the HFRC are decreased compared to that of the composite with and 

without the straight CNTs. It is also revealed that increasing the CNT waves results in 

drastic improvement in the transverse effective elastic properties of HFRC. 

Finally, laminated multiscale HFRC beams, plates, and shells are considered for 

the analysis of the active constrained layer damping (ACLD) of vibrational amplitudes of 

deformation. The constraining layer of the ACLD treatment is considered to be 

composed of the vertically/obliquely reinforced 1‒3 piezoelectric composite (PZC) 

material. Based on the layerwise displacement theories and incorporating the ZZ effects, 

three-dimensional (3D) electro-mechanical FE models of the overall beams, plates, and 

shells integrated with the patches of the ACLD treatment have been developed. A closed-

loop model to supply control voltage to the ACLD treatment patch based on simple 

velocity feedback control law to activate the ACLD treatment patches is also presented. 

Frequency response function (FRF) curves are derived to determine the level of the 

amplitude of the uncontrolled response. The analyses reveal that the ACLD treatment in 

which the constraining layer is made of the obliquely reinforced 1-3 PZC maximizes the 

damping characteristics of the laminated HFRC smart plates while the constraining layer 

composed of the vertically reinforced 1‒3 PZC maximizes the controllability of the 

ACLD treatment for causing active vibrational damping of the doubly curved laminated 

HFRC smart shells. The investigation also reveals that for the laminated HFRC beams, 

plates, and shells with straight or wavy CNTs, the performance of the ACLD treatment 

increases as compared to that without CNTs. More importantly, it is found that the 

performance of the ACLD treatment is better in the case of controlling the vibrational 
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amplitudes of the HFRC plates and shells with wavy CNTs than that in the case of 

controlling the same with straight CNTs. Thus, it is suggested that the wavy CNTs can 

be properly exploited to gain structural benefits from the exceptional properties of CNTs 

and develop high-performance smart structures superior to the existing ones. 

Keywords: Carbon nanotubes; Multiscale composite; ACLD patches; Smart structures; 

Finite element model; Active damping; 1-3 piezoelectric composite; Vertically/obliquely 

piezoelectric fibers. 
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Introduction and Literature Review 
 

In this Chapter a brief introduction to the carbon nanotube (CNT) and the concept of 

estimations of CNT properties and CNT-reinforced composite materials, multiscale 

composites, smart structures, active constrained layered damping (ACLD) treatment, 

piezoelectric composites (PZCs) along with the review of literature have been discussed. 

Based on the review of literature, the scope for this dissertation has been identified and 

the objectives of the Thesis have been outlined. The organization of the Chapters has 

been delineated at the end of this Chapter. 

                                                                                                                             

1.1 Carbon Nanotubes (CNTs) 

The research on the synthesis of molecular carbon structure by an arc-discharge method 

for evaporation of carbon led to the discovery of an extremely thin needle-like graphitic 

carbon molecule knows as carbon nanotubes or CNTs in short (Iijima, 1991). 

While examining under an electron microscope at the level of atomic resolution, 

Iijima (1991) observed that such needle-like carbon materials are seamless coaxial tubes 

made of carbon atom sheets. The thickness of the carbon atom sheet is less than a 

nanometer while the separation between the walls of the tubes is found to be 0.34 nm. 

The outer diameter of such needle-like material is in the range of few nanometers. Iijima 

(1991) named such needle-like carbon materials as multi-walled carbon nanotube 

(MWCNT).  

Within a couple of years, Iijima and Ichihashi (1993) discovered the synthesis of 

single-walled carbon nanotube (SWCNT). The other manufacturing processes such as 

laser ablation, chemical vapor deposition (CVD) and plasma enhanced CVD (PECVD) 

are being employed to synthesize the CNTs in large scale (Pan et al., 1999; Bower et al., 
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2001; Thostenson et al., 2002; Zhu et al., 2003; Ci et al., 2005; Chen et al., 2006; 

Agnihotri et al., 2011).   

The length of a carbon nanotube produced by common production methods is 

often not reported but is typically much larger than its diameter. Thus, for many 

purposes, end effects are neglected, and the length of carbon nanotubes is assumed 

infinite. 

Carbon nanotubes can exhibit remarkable electrical conductivity (Mintmire et al., 

1992; Tans et al., 1997), while others are semiconductors (Hamada et al., 1992; Wildöer 

et al., 1998). They also have exceptional tensile strength (Yu et al., 2000) and thermal 

conductivity (Kim et al., 2001; Sadri et al., 2014) because of their nanostructure and 

strength of the bonds between carbon atoms. In addition, they can be chemically 

modified (Karousis et al., 2010). These properties are expected to be valuable in many 

areas of technology, such as electronics, optics, composite materials (replacing or 

complementing carbon fibers), nanotechnology, and other applications of materials 

science. 

Rolling up a hexagonal lattice along different directions to form different 

infinitely long single-wall carbon nanotubes shows that all of these tubes not only have 

helical but also translational symmetry along the tube axis and many also have nontrivial 

rotational symmetry about this axis. In addition, most are chiral, meaning the tube and its 

mirror image cannot be superimposed. This construction also allows single-wall carbon 

nanotubes to be labeled by a pair of integers (Hamada et al., 1992). 

1.1.1 Structure of CNT 

A CNT is a cylindrical molecule composed of hexagonal array of carbon atoms. The 

constructional feature of the CNT structure corresponds to a hexagon pattern that repeats 

itself periodically in space. As a result of the periodicity, each carbon atom is bonded to 

three neighboring carbon atoms. The resulting structure is mainly due to the process of 

sp2 hybridization forming three in-plane 𝝈 bonds with an out-of-plane 𝝅 bond. The in-

plane 𝝈 bond is a strong covalent bond that plays an important role in the impressive 

mechanical properties of CNTs. This 𝝈 bond is 0.14 nm long and 420 kcal/mol strong in 

sp2 orbital. On the other hand, an out-of-plane 𝝅 bond is relatively weak and contributes 

to the interactions between the layers in MWCNTs and in between SWCNTs in 
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SWCNT bundles while making CNTs more thermally and electrically conductive.  

A CNT can be viewed as a hollow seamless cylinder formed by rolling a 

graphene sheet. A widely used approach to identify the types of SWCNT is due to the 

rolling direction of the rolled graphene sheet. The key geometric parameter associated 

with this process is the roll-up or the chiral vector 𝑪𝒉, which can be expressed as the 

linear combination of the lattice bases (𝒂𝟏 and 𝒂𝟐). Mathematically, the tube chirality can 

be defined in terms of the roll-up vector as follows:  

𝑪𝒉 = 𝒎𝒂𝟏 + 𝒏𝒂𝟐                                                          (1.1) 

where the integers (m, n) are the number of steps along the zig-zig carbon bonds of the 

hexagonal lattice and  𝒂1 and  𝒂2 are unit basis vectors as shown in Fig. 1.1. The roll-up 

vector determines the direction of rolling a graphene sheet such that a lattice point (m, n) 

which is the terminus of the vector 𝑪𝒉  is superimposed with the origin (0, 0) of the 

vector. Therefore, the diameter of a CNT can be expressed as 

𝒅𝒏 =
𝒂√𝒎𝟐 + 𝒎𝒏 + 𝒏𝟐

𝝅
                                                 (1.2) 

where 𝒂 = 1.42 × √3 × 10−10 m  corresponds to the lattice constant in the graphene 

sheet. Note that the distance between two covalently bonded carbon atoms (C-C 

distance) is 1.42 × 10−10 m for sp2-hybridized carbon. 

 

Figure 1.1: Schematic diagram of a hexagonal graphene sheet 
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The angle 𝜽 between the chiral vector and the lattice base vector 𝒂1is called as the 

chiral angle and is given by 

𝜽 = 𝒂𝒓𝒄𝒕𝒂𝒏 (
√3𝒏

2𝒎 + 𝒏
 )                                                 (1.3) 

The zig-zag axis of the graphene sheet corresponds to 𝜽 = 0o and if the rolling 

chiral vector is along this axis, a zig-zag (m, 0) CNT is generated. On the other hand, the 

armchair axis of the sheet is specified by 𝜽 = 30o and if this is the direction of the rolling 

chiral vector, an armchair (m, m) CNT is formed. The SWCNT generated for other 

values of 𝜽 (i.e., 0 < 𝜽 < 30o) is referred as the chiral CNT. Figure 1.2 illustrates the 

schematic representations of these three types of CNTs. The chirality of the CNTs has 

significant implications on the material properties. In particular, the CNT chirality 

significantly affects the  electronic  properties of CNTs. Graphite is  considered to be a 

semi-metal but it has been reported that CNTs can be either metallic or semi-conducting 

depending on the CNT chirality (Dresselhaus et al., 1996). 

 

 

Figure 1.2: Molecular models of SWCNTs (Courtesy by (Terrones, 2003)) 

1.1.2 Properties of CNT 

Researchers probably thought that CNTs may be useful as nanoscale fibers for 

developing novel nanocomposites and this conjecture motivated them to accurately 
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predict the properties of CNTs. Hence, since the discovery of CNTs, researchers have 

been carrying out extensive research to estimate the physical properties (mechanical, 

thermal and electrical properties) of CNTs as reviewed in the following Sections. 

1.1.2.1 Mechanical Properties of CNT 

The in-plane 𝝈 bond is the strongest in nature and thus a CNT that is structured with all 𝝈 

bonds is considered as the ultimate fiber with the strength in its axial direction. Both 

experimental measurements and theoretical calculations agree that a CNT is as stiff as or 

stiffer than diamond with the highest Young’s modulus and tensile strength. In general, 

various types of CNTs are stronger than graphite. This is mainly because of the fact that 

the axial component of the 𝝈 bond is greatly increased when the graphite sheet is rolled 

over to form a seamless cylindrical structure of a CNT. The practical application of 

CNTs requires the study of their elastic response, inelastic behavior and buckling, yield 

strength and fracture. A great number of experimental studies have been carried out to 

estimate the mechanical properties of CNTs. Experimental methods for measuring the 

mechanical properties of CNTs are mainly based on transmission electron microscopy 

(TEM) and atomic force microscopy (AFM). 

 For example, based on the experimental analysis, Treacy et al. (1996) found the 

extraordinarily high Young’s modulus of CNTs ranging in tera-pascal (TPa). They 

computed the Young’s modulus of CNTs by measuring the amplitude of their intrinsic 

thermal vibrations in the TEM.   

A similar experimental study on SWCNT was performed by Krishnan et al.   

(1998) and reported an average Young’s modulus of 1.3 − 0.4/+0.6 TPa by measuring 

amplitudes of 27 SWCNTs. Using the same form of structural model, Poncharal et al. 

(1999) measured the resonance frequency of MWCNTs by driving the resonance with a 

counter electrode and radio frequency excitation. They obtained the Young’s modulus of 

MWCNT with radius smaller than 12 nm as ~1 TPa. A similar type of experiment has 

also been carried out by Dikin et al. (2003) inside a scanning electron microscope 

(SEM). The elastic response of a CNT to deformation is also very remarkable. Most hard 

materials fail with a strain of 1% or less due to propagation of dislocations and defects. 

Both theory and experiment show that CNTs can sustain up to 15% tensile strain before 

fracture (Lu and Han, 1998). 
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Tombler et al. (2000) reported the Young’s modulus of 1.2 TPa for SWCNT by 

3-point bending using AFM. The first experimental value of the shear moduli of 

SWCNT bundle with CNT diameters of about 1.4 nm was reported by Salvetat et al. 

(1999). They obtained the value of shear modulus in the range of 0.7–6.5 GPa.  

In addition to experimental endeavors, theoretical evaluations of the mechanical 

properties of CNTs have also been extensively carried out. The computational 

approaches can be classified into two categories, namely, the ‘bottom up’ approach 

(Yakobson et al., 1996; Lu, 1997), based on quantum/molecular mechanics including the 

classical molecular dynamics and the ab initio methods, and the ‘top down’ approach 

(Ru, 2000; Odegard et al., 2002) based on continuum mechanics.  

Generally, ab initio methods give more accurate results than molecular dynamics, 

but it is computationally expensive and only effective for small systems containing a few 

hundreds of carbon atoms. Molecular dynamics can be used in a larger systems, but it is 

still limited to simulating up to millions of atoms on a too-short time scale (less than 

10−6 − 10−9 s), since the frequency of molecular thermal vibration is so high (Klein and 

Shinoda, 2008). Continuum mechanics modeling (top down approach), in contrast, is 

practical for the analysis of CNTs for large-scale systems. 

Equivalent-continuum modeling (ECM) approach is one of the major 

developments of continuum method. It has been regarded as a very efficient method, 

especially for nanostructures with large scale. Molecular mechanics method in 

conjunction with the finite element (FE) method is the essence of the ECM approach. 

Over the past years, many ECM models were presented in the open literature.  

The ECM approaches mainly involve continuum shell modeling, continuum truss 

modeling and continuum beam modeling. For example, Yakobson et al. (1996) fitted the 

results from the molecular dynamics simulations to the continuum shell model. The 

Young’s modulus can also be estimated by evaluating the energy in the CNT system. 

Based on the relation that the strain energy of the CNT is proportional to 1/R2 (where R 

is the radius of the CNT), Robertson et al. (1992) and Gao et al. (1998) reported the 

values of the Young’s modulus of SWCNTs ranging from 640.30 GPa to 673.49 GPa by 

computing the second derivative of the potential energy. Lu (1997) estimated the elastic 

properties of CNTs and nanoropes using an empirical force constant relation and 

estimated the Young’s modulus and the shear modulus of SWCNT as 1 TPa and 0.5 
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TPa, respectively. By employing different potential models, Li and Chou (2003) linked 

structural and molecular mechanics approaches to compute the elastic properties of 

CNTs and found that the Young’s moduli of armchair and zig-zag CNTs lie between 

0.995 TPa and 1.033 TPa, showing good agreement with known graphene Young’s 

modulus. Shen and Li (2004) reported that CNTs can be modeled as transversely 

isotropic materials with the axis of transverse isotropy coincident with the centroidal axis 

of the CNT and developed variational models to determine the values of the five elastic 

constants of CNTs. They reported the values of the axial Young’s modulus, the 

transverse Young’s modulus, the bulk modulus, the axial shear modulus and the 

transverse shear modulus of the armchair (5, 5) CNT as 2080 GPa, 421 GPa, 536 GPa, 

791 GPa and 132 GPa, respectively. Also, Shen and Li (2005) studied five independent 

effective elastic moduli of a transversely isotropic MWCNT. They reported the values of 

the axial Young’s modulus, the bulk modulus, the axial shear modulus and the transverse 

shear modulus of the MWCNT as 1580 GPa, 298 GPa, 493 GPa and 10.57 GPa, 

respectively.  

Xiao et al. (2005) developed an analytical model based on the molecular 

structural mechanics approach for estimating the mechanical properties of CNTs. Liu et 

al. (2005) studied the bulk properties of SWCNT bundles by employing hybrid 

atomic/continuum model and predicted the values of the axial Young’s modulus, the 

transverse Young’s modulus, the bulk modulus, the axial shear modulus and the 

transverse shear modulus of the transversely isotropic SWCNT bundles as 621.9 GPa, 

2.7 GPa, 40 GPa, 1.22 GPa and 0.68 GPa, respectively. Their predictions agree well 

with the experimental observations.  

Three-dimensional FE models for armchair, zig-zag and chiral SWCNTs have 

been derived by Tserpes and Papanikos (2005) to investigate the effects of the CNT wall 

thickness, the CNT diameter and the chirality on the elastic moduli of SWCNTs. They 

varied the diameter of armchair (8, 8) CNT between 0.066–0.34 nm and obtained 

Young’s modulus in the range of 5.296–1.028 TPa. Batra and Sears (2007) proposed that 

the axis of transverse isotropy of a CNT is a radial line rather than the centroidal axis of 

the CNT and found that the Young’s modulus in the radial direction equals about ¼ of 

that in the axial direction.  

Al-Ostaz et al. (2008) performed molecular dynamics simulations to estimate the 



Chapter 1 
 

8 
 

elastic properties of SWCNTs under various types of loading conditions. Results 

obtained from various types of loading applied to SWCNT reveal that SWCNTs are 

transversely isotropic and the values of the elastic constants of SWCNT under various 

loadings are same. 

Batra and Gupta (2008) determined the wall thickness and the material moduli of 

a CNT based on the frequencies of axial, torsional, and radial breathing modes. An 

atomistic-based continuum model has been developed by Cheng et al. (2009) for the 

estimation of the mechanical properties of SWCNTs.  

1.2 CNT-Reinforced Composites 

The review of literature presented in Section 1.1 theoretically and experimentally 

confirms that CNTs possess exceptionally high mechanical properties such as stiffness 

and strength. The quest for utilizing such exceptional mechanical properties of CNTs and 

their high aspect ratio and low density led to the opening of an emerging area of research 

on the development of CNT-reinforced nanocomposites. It was observed that the 

performance of the composite materials enhances significantly by adding a small number 

of CNTs. For example, Thostenson and Chou (2003) have estimated the elastic moduli of 

CNT-reinforced composite through micromechanical analysis considering CNTs as 

continuous fiber reinforcements. Using the approach of continuum mechanics, Odegard 

et al. (2003) predicted the effective elastic moduli of CNT-reinforced composite using 

ECM method. In their study, the CNT, the local polymer near the CNT, and the 

CNT/polymer interface have been modeled as an effective continuum fiber. Liu and 

Chen (2003) have determined the effective mechanical properties of CNT-based 

composites by employing the continuum mechanics approach and the FE method. In 

their study, 33% enhancement in the axial stiffness of the composite was observed with 

the addition of long CNTs in a polymer matrix at a volume fraction of 3.6%.  

Gao and Li (2005) derived a shear lag model of discontinuous CNT-reinforced 

polymer composites by considering the CNT as an equivalent solid fiber. It is accepted 

by many researchers that CNT-reinforced composites can be considered as fiber-

reinforced composites so that their elastic properties can be predicted by using the 

available micromechanics methods (Valavala and Odegard, 2005).  

Seidel and Lagoudas (2006) estimated the effective elastic properties of CNT-
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reinforced composites employing the self-consistent and the Mori-Tanaka methods. Song 

and Youn (2006) numerically estimated the effective elastic properties of CNT-

reinforced polymer based composites by using the homogenization technique. The 

control volume finite element method is adopted in their study to implement the 

homogenization method with the assumption that the CNT/epoxy nanocomposites have 

geometrical periodicity with respect to a microscopic scale. 

Ashrafi and Hubert (2006) carried out FE analysis to predict the elastic properties 

of CNT arrays and their composites. Zhang and He (2008) theoretically investigated the 

viscoelastic behavior of CNT-reinforced composites by developing a three-phase shear 

lag model. Jiang et al. (2009) determined the maximum volume fraction of CNTs in the 

CNT-reinforced composite and investigated its effect on the effective elastic properties 

of the composite using molecular dynamics simulations. Esteva and Spanos (2009) 

studied the effect of weakened interfaces between CNTs and polymer matrix on the 

effective properties of CNT-reinforced polymer matrix composite. They reported that the 

imperfect bonding does not affect the effective longitudinal Young’s modulus of the 

CNT-reinforced polymer matrix composite and marginally affects the transverse 

properties of the composite for high volume fraction (> 0.8) of CNTs.  

Meguid et al. (2010) developed a model of an atomistic-based representative 

volume element (RVE) which consists of the CNT, the surrounding epoxy matrix, and 

the interface between CNT and epoxy to estimate the effective properties of CNT-

reinforced epoxies. Their results reveal that CNT length, volume fraction, orientation and 

aspect ratio of the representative CNT fiber have significant effects on the effective 

properties of the CNT-reinforced composites.   

Tsai et al. (2010) characterized the elastic properties of CNT-reinforced polymer 

nanocomposites considering an effective interphase between a CNT and the polymer 

matrix.Wernik and Meguid (2011) presented a nonlinear atomistic-based continuum 

model for predicting the effective mechanical properties of CNT-reinforced polymer 

composite. Ayatollahi et al. (2011) presented a multiscale analysis for investigating the 

mechanical behavior of CNT-reinforced composite under tensile, bending, and torsional 

loading conditions.  

Using the ball milling technique, Esawi et al. (2010) showed the enhancement of 

tensile strength by 50% and stiffness by 23% due to the addition of 5 wt.% of CNT in the 
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aluminum matrix. Through an experimental investigation such as open-hole tension, 

shear beam test, and flatwise tension tests, Tarfaoui et al. (2016) found a significant 

control in crack propagation by adding CNT up to 2% volume fraction in the polymer 

matrix, which improved the overall thermo-elastic properties of the composites. Similar 

results were observed by Park et al. (2003) and they observed the highest Young’s 

modulus and mechanical properties at 2% volume fraction of CNT in the epoxy matrix.  

From the above literature, researchers observed that CNTs tend to agglomerate 

when reinforced with matrix phase and hence weaken the junction, which in result limits 

the use of CNTs as a nanofiller in the composite materials up to a certain wt.%. Further 

research was carried out to increase the wt.% of CNT in the matrix phase by developing 

the new techniques (Wernik and Meguid, 2010; Meguid, Wernik and Al Jahwari, 2013; 

Peddavarapu and Jayendra Bharathi, 2018).  

1.3 CNT‒Reinforced Hybrid Composites or Multiscale Composites 

Traditional fiber-reinforced composites have excellent in-plane properties but have poor 

out-of-plane properties. The failure of traditional composites may occur due to the fiber 

bending and the fiber breaking because of the lack of support by the matrix. The bonding 

between the reinforcement and the matrix is thus a crucial parameter for controlling the 

load transfer between the composite constituents. The hybridization of the conventional 

fibers with CNTs is a new way of improving the load transfer capabilities of 

conventional composites, such hybrid composites are termed ‘multiscale composites’. 

Most recently, the multiscale composite with nanoscale CNTs and microscale 

conventional fibers have captivated a great interest in the development of lightweight, 

low density, and high-performance composite structures (Thostenson et al., 2002; Kim et 

al., 2009). To some extent, these multiscale composites can solve the problem of 

agglomeration. Some studies on the multiscale composite reveal that incorporating CNTs 

along with conventional fibers show excellent thermo-mechanical properties (Mathur et 

al., 2008). Enormous efforts have been made to improve the matrix-dominant properties 

by incorporating the CNTs in the bulk matrix. High-energy sonication, calendaring, and 

ultrasonic duel mixing (Gojny et al., 2005; Iwahori et al., 2005) are widely used 

techniques for dispersing CNTs in the matrix phase. Later, the CNT-based matrix 
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solution can be used to fabricate multiscale composite in which primary reinforcements 

are microscale fibers. Liu et al. (2006) investigated the damping performance of CNT-

based polymer composites by considering the interfacial slip effect using an analytical 

model. They observed that Young’s modulus and loss factor of the hybrid composite was 

influenced by the interfacial slip effect. Grimmer and Dharan (2008) studied the fatigue 

analysis of glass fiber-reinforced CNT/polymer composites, noticing that the poor fatigue 

performance of glass-fiber composites was improved by the addition of CNTs in the 

matrix phase. The electron microscopy showed that the high density of CNTs prevented 

larger cracks in the matrix that were attributed to the enhanced fatigue strength. 

By using the novel shear pressing method, several researchers reported that the 

high-volume fraction CNT-based hybrid composites are possible when the conventional 

micro-fibers were used. Bradford et al. (2010) confirmed 27% volume fraction of the 

long aligned CNTs (in order of mm) in the composite materials with suitable microfibers. 

Huang et al. (2012) reported 20% MWCNTs along with 20% graphene nanoplatelet in 

an epoxy matrix hybrid composite through a well-designed fabrication method. The 

damping of the hybrid composite structures with graphitic structures by design (GSD)-

grown CNTs improved by 56%. Ultra-high wt. percent of MWCNT (68 wt.%) was 

reported by Mecklenburg et al. (2015) in the epoxy-based composite using the novel hot-

press infiltration manufacturing process through a semi-permeable membrane with long 

aligned MWCNTs (in order of mm) grown using CVD process.  

Tehrani et al. (2013) analyzed the damping performance of hybrid CNT-based 

composite structures with CNTs grown over the carbon fibers using GSD. Kundalwal 

and Ray (2013) developed micromechanical models based on mechanics of material 

(MOM) and Mori-Tanaka (MT) approach to investigate the influence of CNT waviness 

on effective elastic properties of fuzzy-fiber reinforced composites (FFRC). The 

advanced fiber augmented with CNTs on its circumferential surface is known as fuzzy 

fiber. They observed that the axial effective elastic properties of the FFRC containing 

wavy CNTs can be improved over those of the FFRC with straight CNTs. Kundalwal et 

al. (2014) investigated the stress transfer characteristics of a novel hybrid hierarchical 

nanocomposite in which the regularly staggered short fuzzy fibers are interlaced in the 

polymer matrix. Their study revealed that the existence of the non-negligible shear 

https://www.sciencedirect.com/topics/engineering/infiltration
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tractions along the length of the RVE of the staggered FFRC plays a significant role in 

the stress transfer characteristics. They also observed that the reductions in the maximum 

values of the axial stress in the carbon fiber and the interfacial shear stress along its 

length become more pronounced in the presence of the externally applied radial loads on 

the RVE. 

Ma et al. (2015) evaluated the electromechanical properties of a multiscale 

CNT/fiber/polymer composite using the micromechanical model, finding considerable 

enhancement in the electrical conductivity of the composite by incorporating 2% volume 

fraction of CNTs. Gholami et al. (2018) investigated the nonlinear dynamics of hybrid 

CNT-reinforced composite plates using a FE model based on Mindlin plate theory and 

the von Kármán hypotheses. Hasanzadeh et al. (2019) evaluated the piezo-mechanical 

properties of CNT/polymer hybrid composites using a three-phase micromechanical 

model. They observed a significant enhancement in the electrical as well as mechanical 

properties by adding CNTs.  

Recently, Ebrahimi along with his coauthors (Ebrahimi and Dabbagh, 2020, 2021; 

Ebrahimi et al. 2021) studied the multiscale nanocomposites utilizing the potential 

benefits of CNTs. Their findings show that the static and dynamic response of multiscale 

composites improved due to the reinforcement of CNTs nanofillers. Ebrahami and 

Dabbagh (2020) investigate the vibrational behavior of agglomerated multiscale 

nanocomposite shells using the well-known first-order shear deformation theory (FSDT) 

employing the principle of virtual work to obtain the Euler-Lagrange equations. 

Ebrahami and Dabbagh (2021) studied the stability of multiscale nanocomposite plates 

considering the buckling problem. For this, they used an energy-based Hamiltonian 

approach and derived the equation of motion using classical plates theories. Also, 

Ebrahami et al. (2021) studied the effects of CNT waviness of the vibrational behavior of 

multiscale nanocomposite plates employing the higher-order shear deformation theory 

(HSDT) of plates. Their findings indicate that the vibration suppression in the 

nanocomposite structures can be delayed by considering the higher characteristic 

relaxation time of the polymer. 
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1.4 Smart Structures 

Lightweight flexible structures have attained the growing demand for the design of space 

structures, robotic manipulators and aerospace structures. The multilayer composites 

possess low structural damping, thus, the large dynamic excitation may lead to large 

deformation and geometric failure. Accordingly, ‘smart structures’ (Crawley et al., 1988) 

are developed to address this issue and are schematically illustrated in Fig. 1.3. The smart 

structures have the capabilities of self-monitoring and self-controlling. These capabilities 

were achieved by exploiting the direct and converse effects of piezoelectric material 

installed or mounted at the surface of the host structure. The damping characteristics of 

the overall structure improve when the electric potential is applied to the smart structures 

known as active control damping, making the structure safe against vibrational-induced 

failures. 

 

Figure 1.3: Schematic representation of the smart structure 

The passive material part of a smart structure is the load-bearing part i.e. the host 

structure and the active material parts of the same are the layers/patches of piezoelectric 

materials which perform the operations of sensing and actuation. Piezoelectric materials 

can easily be integrated with the load-bearing structures by surface bonding or 
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embedding into them and do not significantly alter the passive stiffness characteristics of 

the host structures. The load-bearing part or passive part of the smart structure is 

generally called as a substrate which can be a beam, plate, or shell. A great deal of 

research on smart structures has already been reported on the exact solutions (Batra et al., 

1996; Ray, 1998), analytical solutions (Tzou and Cadre, 1989; Dimitriadis et al., 1991), 

FE analysis (Ha et al., 1992; Robbins and Reddy, 1996) and active control analysis (Baz 

and Poh, 1990; Tzou and Gadre, 1990; Baz et al., 1992; Ray, 1998, 2003; Balamurugan 

and Narayanan, 2001b). The concept of smart structures has also been implemented for 

the active control of vibrating structures. Sze and Yao (2000) developed numerous FE 

models for the vibration control of smart structures with segmented piezoelectric sensing 

and actuating patches. Furthermore, this concept has been used for structural health 

monitoring as a nondestructive evaluation technique (Lin and Chang, 2002; Mook et al., 

2003; Sastry et al., 2004). Later, using the Kalman filter identification (OKID) 

technique, Dong et al. (2006) studied the active vibration control of smart structures, 

numerically and experimentally..  

Ray and Pradhan (2006) investigated the piezoelectric smart composite beams 

using first-order shear deformation theory. Bendary et al. (2010) developed a FE beam 

model using isoperimetric Hermit cubic shape functions and the Lagrange interpolation 

functions to analyze the smart beams with distributed piezoelectric actuators. Kucuk et al. 

(2011) studied the active vibration control of Euler-Bernoulli beam with piezoelectric 

actuators bonded on the top and the bottom faces of the beam. 

Wang et al. (2001) investigated the vibration control of smart plates by 

developing a FE model based on FSDT. They analyzed the effect of the stretching–

bending coupling of the piezoelectric sensor/actuator pairs on the system stability of 

smart composite plates. Robaldo et al. (2006) developed a unified formulation for the 

finite element analysis of adaptive plates integrated with piezoelectric layers using the 

principle of virtual displacement approach. Qiu et al. (2007) presented the theoretical and 

experimental analysis for optimal placement and active vibration control for piezoelectric 

smart flexible cantilever plates. They observed that free vibrations can be effectively 

suppressed by changing the location of the piezoelectric patches. Larbi et al. (2012) 

carried out finite element analysis of smart composite plate coupled with acoustic fluid. 
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1.5 Active Constrained Layer Damping 

The main drawback of the existing monolithic piezoelectric materials is that the 

magnitudes of their piezoelectric coefficients are very small. Thus, the distributed 

actuators made of monolithic piezoelectric materials possess very low control authority 

and require large control voltage for achieving appreciable results. Further investigation 

on the efficient use of these monolithic piezoelectric materials for active control of 

flexible structures led to the development of ACLD treatment (Azvine et al., 1995; Baz 

and Ro, 1995a). The ACLD treatment consists of a layer of viscoelastic material 

constrained between the host structure and an active constraining layer made of 

piezoelectric material. When the host structure undergoes vibrations, the active 

constraining layer not only restrains the constrained soft viscoelastic layer to undergo 

transverse shear deformations but also controls its transverse shear deformations to cause 

improved damping characteristics of the overall structure over the passive damping. If the 

constraining layer is not subjected to the applied voltage, the treatment turns out to be the 

conventional passive constrained layer damping (PCLD) treatment. Thus, the ACLD 

treatment provides the attributes of both active and passive damping (Baz and Ro, 1996; 

Baz, 1997; Shin, 1997; Varadan et al., 1997; Ro and Baz, 2002). Further, optimization of 

energy dissipation characteristics of beams, plates, and shells integrated with the ACLD 

treatment has been studied by many researchers.  

For example, Huang et al. (1996) studied the vibration suppurating in the smart 

beams by the means of ACLD treatment patches. They observed that the active 

constrained layer damping treatment provides better vibration suppression than passive 

damping treatments, and it even out-performs pure active control for low-gain 

applications. Baz (1997) developed a variational mathematical model using Hamilton’s 

principle to describe the dynamics of beams fully-treated with ACLD treatments. Their 

outcomes demonstrated the high damping characteristics of the boundary controller, 

particularly over broad frequency bands. Trindade et al. (2000) studied the frequency 

response function (FRF) of smart beam integrated with ACLD treatment patches by 

developing and comparing two FE models so-called Golla-Hughes-McTavish (GHM) 

and Anelastic Displacement Fields (ADF) models.  

Baz and Ro (2001) developed a FE model for the vibration control of rotating 

beams with the ACLD treatment layer. The ACLD treatment consisted of a viscoelastic 
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damping layer which was sandwiched between two piezoelectric layers. Lim et al. (2002) 

developed a three-dimensional FE closed-loop model to predict the effects of active-

passive damping on a vibrating structure. The GHM method was employed to capture the 

viscoelastic material behavior in a time-domain analysis. Sun and Tong (2003) presented 

a model for a smart beam with a partially debonded ACLD, and the effects of the 

debonding of the ACLD patch on both passive and hybrid control are investigated. Ray 

and Reddy (2004a) derived a finite element model to investigate the dynamics of the 

composite beams integrated with a patch of ACLD treatment and a patch of piezoelectric 

film acting as a distributed sensor with and without the presence of delamination at 

different locations. They observed that the ACLD treatment improves the active damping 

characteristics of the beams, even in the presence of delamination, and that the responses 

of the beams are sensitive to the variation of the location of delamination. Making use of 

Hamilton’s principle, Fung and Yau (2004) developed a FE model to investigate the 

vibration behavior and control of a clamped–free rotating flexible cantilever arm with 

fully covered.  

Ray and Pradhan (2006) investigated the performance of 1‒3 PZC smart beams 

embedded with ACLD patches using the FE model based on FSDT. Li et al. (2008) 

proposed an analytical model for the active vibration control of the smart beams with 

ACLD treatments. Vasques and  Dias Rodrigues (2008) performed a numerical analysis 

of feedback, adaptive feedforward, and hybrid (combined feedback/feedforward) control 

systems on the active control of vibrations of beams with ACLD treatments. Sarangi and 

Ray (2010) studied the geometrically nonlinear vibrations of laminated composite beams 

installed with ACLD patches. Kumar (2012) studied the active vibration control of 

beams by combining precompressed layer damping and ACLD treatment. For this 𝑯∞ 

loop shaping controller was designed and implemented experimentally on a smart 

flexible beam. Li et al. (2017) investigated the dynamics of a rotating flexible beam with 

fully covered ACLD treatment by using the method of assumed modes to describe the 

deformations of the three sub-layer beams. Sahoo and Ray (2018) derived a FE model for 

the analysis of smart damping of laminated composite beams embedded with ACLD 

treatment patches using the meshfree method. 

Baz and Ro (1996) analyzed the bending vibration control of flat plates using 

patches of ACLD treatments. Each ACLD patch consisted of a visco-elastic damping 
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layer which was sandwiched between two piezoelectric layers. The first layer was 

directly bonded to the plate to sense its vibration and the second layer acted as an actuator 

to actively control the shear deformation of the viscoelastic damping layer according to 

the plate response. Varadan et al. (1996) presented a closed-loop FE model of 

active/passive damping in structural vibration control using ACLD treatment. 

Optimization of energy dissipation characteristics of plates integrated with the ACLD 

treatment has been studied by Ray and Baz (1997). Azzouz and Ro  (2002) studied the 

control of sound radiation of the ACLD plate/cavity system using the structural intensity 

approach. They determined the optimum placement of ACLD patches by the structural 

intensity of ACLD treated plates. Ray and Batra (2007b) investigated the active damping 

of functionally graded plates with 1‒3 PZC being the constraining layer of ACLD 

treatment. They observed that the controlling ability of ACLD improves significantly 

because of the 1‒3 PZC layer. Lui et al. (2007) studied the dynamic characteristics and 

vibration control of a rotating cantilever plate installed with the ACLD treatment layer. 

Using the second kind of Lagrange formulation they derived a FE model based on 

Kirchhoff's classical laminated theory. Providakis et al. (2007) developed a FE model of 

electromechanical impedance for the analysis of smart damping of composite plates with 

ACLD treatments. Ray et al. (2009) theoretically and experimentally investigated the 

active structural–acoustic control of a thin plate using a vertically reinforced 1‒3 PZC as 

constraining layer of ACLD treatment patches. 

Kattamani and Ray (2014) studied the smart damping of geometrically nonlinear 

vibrations of large amplitudes of magneto-electro-elastic plates integrated with ACLD 

treatment patches using the GHM method in the time domain. Sarangi and Basa (2014) 

developed a three-dimensional (3D) FE model based on Von Kármán type nonlinear 

strain–displacement relations and FSDT individually for each layer of the sandwich plate 

integrated with ACLD treatments. Dutta and Ray (2016) presented a 3D fractional 

derivative model of smart constrained layer damping treatment for composite plates 

integrated with ACLD patches. Kundalwal and Ray (2016) investigated the effects of 

CNTs waviness on the active damping performance of FFRC composite plates 

integrated with two ACLD treatment patches at the top surface of the host structure using 

FSDT. They observed that the CNT waviness significantly influences the damping 

characteristics of the FFRC smart plate with maximum vibration attenuation observed 
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when CNT waviness was coplanar with 1‒3 plane. Vinayas (2020) studied the interphase 

effect on the controlled frequency response of three-phase smart magneto-electro-elastic 

plates embedded with ACLD treatments. Khan and Kumar (2021b) studied the vibration 

control of laminated plates by the ACLD treatment using the FE model based on FSDT, 

incorporating Murakami’s zig-zag function (MZZF) while deriving the displacement 

fields. 

Using the adaptive least mean square (LMS) algorithm, Poh et al. (1996) 

performed an experimental investigation for the adaptive control of sound radiation from 

a panel into an acoustic cavity using the ACLD layer. Baz and Chen (2000) derived a FE 

model utilizing Hamilton’s principle to control the axisymmetric vibrations of cylindrical 

shells integrated with the ACLD treatment layer. Baz (2000) developed a spectral finite-

element model (SFEM) to describe the propagation of longitudinal waves in rods treated 

with ACLD treatments. The model was formulated in the frequency domain using 

dynamic shape functions that capture the exact displacement distributions of the different 

ACLD layers. Ray et al. (2001) performed an experimental investigation to determine the 

effectiveness of the ACLD treatments in enhancing the damping characteristics of thin 

cylindrical shells. Ray and Reddy (2004b) derived a FE model based on classical shell 

theory for the optimal control of thin circular cylindrical laminated composite shells 

using ACLD treatment. Ray and Batra (2008) studied the effect of piezoelectric fiber 

orientation on the control authority of the ACLD treatment layer of functionally graded 

smart shells using a FE model. Yuan et al. (Yuan et al., 2010) presented a semi-

analytical method using the integrated first-order differential equation and the 

circumferential dominant modal control of circular cylindrical shells with ACLD 

treatment. Utilizing the modal strain energy method, Kumar and Singh (Kumar and 

Singh, 2012) performed an experimental investigation for the vibration control of curved 

panels treated with optimally placed PCLD/ACLD patches. Saranji and Ray (Sarangi 

and Ray, 2013) derived a FE model based on the GHM method for the smart control of 

nonlinear vibrations of doubly curved functionally graded laminated composite shells 

under a thermal environment using 1–3 PZC. Ni et al. (2013) developed a semi-

analytical method using the integrated first-order differential matrix equation of a shell of 

revolution partially treated with ring ACLD blocks for dynamics analysis of shells of 

revolution. Kundalwal and Meguid (2015) developed a FE model based on FSDT to 
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investigate the effect of carbon nanotube waviness on active damping of laminated hybrid 

FFRC composite shells installed with the two ACLD treatment patches. Kumar et al. 

(2017) derived a FE model based on the GHM approach for the control of nonlinear 

large-amplitude vibrations of doubly curved sandwich shells composed of FFRC facings 

integrated with ACLD treatment patches. Sahoo and Ray (2019a) developed a mesh-free 

FE model based on FSDT to investigate the active control of doubly curved laminated 

composite shells using elliptical ACLD treatment. Accounting for the inherent zig-zag 

(ZZ) effects developed in the laminated composite structures Khan and Kumar (2021a) 

derived the FE model employing the FSDT incorporating the MZZF for the active 

vibration control of smart laminated shell embedded with the ACLD treatment patches. 

1.6 Piezoelectric Composite 

It is known that brittle fibers are efficiently exploited to form polymer matrix composites 

with improved properties suitable for structural applications. Probably, this motivated the 

researchers to develop the PZCs with brittle piezoceramic fibers. PZCs are usually 

composed of an epoxy matrix reinforced with fibers of monolithic piezoceramic materials 

such as PZT, PZT5H, etc. They provide a wide range of effective material properties not 

offered by the existing monolithic piezoelectric materials and are characterized by good 

conformability and strength. Being a composite material, the PZCs have the ability to 

cause orthotropic actuation.  

Various micromechanics models were proposed to predict the effective properties 

of these PZCs from the properties of their constituents. For example, Chan and Unsworth 

(1989) derived a simple micromechanics model for the analysis of piezoelectric 

ceramic/polymer 1‒3 composites. Smith and Auld (1991) predicted the effective 

properties of vertically reinforced 1‒3 PZC materials using the strength of material 

approach of micromechanics. These materials have improved mechanical performance 

and electro-mechanical coupling, and are useful for studying the thickness mode 

oscillations of structures. 

Mallik and Ray (2003) proposed the concept of a new horizontally reinforced 1‒3 

PZC material and predicted the effective mechanical and piezoelectric properties of these 

composites. The constructional feature of the lamina made of the vertically/obliquely 

reinforced 1‒3 PZC (Smith and Auld, 1991; Ray and Pradhan, 2007) is schematically 
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illustrated in Fig. 1.4. As shown in Fig. 1.4 (a), the piezoelectric fibers are uniformly 

distributed and vertically aligned across the thickness of the lamina. Figure 1.4 (b) shows 

that the piezoelectric fibers are coplanar with the vertical xz-plane while the fibers are 

oriented at an angle (𝜳) with the transverse direction and Fig. 1.4 (c) represents the same 

when the fibers are coplanar with the vertical yz -plane. The top and the bottom surfaces 

of the lamina are coated with surface electrodes and the fibers are poled along their 

length with their ends being in contact with the surface electrodes. In case of the 

vertically reinforced 1‒3 PZC, the orientation angle (𝜳) is zero while it is nonzero for 

the obliquely reinforced 1‒3 PZC. 

 

Figure 1.4. Schematic representation of 1‒3 PZC lamina with (a) vertically aligned 

piezo-fibers, (b) piezo-fibers coplanar in the xz‒plane, and (c) piezo-fibers coplanar in the 

yz‒plane. 

Extensive research has been carried out to demonstrate the performance of these 

PZC materials as the materials of the distributed actuators or constraining layer of the 

ACLD treatment for active control of linear deformations and vibrations of laminated 
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structures (Ray and Mallik, 2005; Ray and Reddy, 2005; Ray and Pradhan, 2006, 2007; 

Ray and Balaji, 2007; Kumar and Singh, 2009; Gupta et al., 2022a). Balamurugan and 

Narayanan (2001a) investigated the active vibration control of smart shells using a shear-

flexible nine-noded shell element derived from the field consistency approach. Ray and 

Pradhan (2006) investigated the vibrations response of laminated composite beams using 

FSDT. Ray and Pradhan (2010) investigated the use of vertically/obliquely reinforced 

1‒3 PZCs for active damping of linear vibrations of thin laminated composite cylindrical 

shells.  Kundalwal et al. (2013) developed a 3D FE model to investigate the frequency 

response of multilayered composite shells integrated with ACLD patches constraining 

layer of 1‒3 PZC. Kattimani (2017) studied the layer-wise shear deformation theory 

using 1‒3 PZC for active damping of the magneto-electro-elastic (MEE) smart 

composite plates. Vinyas (2019) studied the effect of the ACLD treatment layer on the 

frequency response of the skew magneto-electro-elastic (SMEE) plate, observing that the 

skew angle significantly influences the frequency response of the SMEE smart plate. 

Making use of FSDT, Sahoo and Ray (2019a) investigated the smart doubly curved 

laminated shell integrated with rectangular and elliptical ACLD patches. 

1.7 Scope and Objectives of the Dissertation 

The review of literature reveals that the exceptionally attractive properties of CNTs can 

be exploited to develop two-phase CNT-reinforced polymer matrix composites and three-

phase hybrid CNT-reinforced composites, where CNTs are used as fiber reinforcements. 

For structural applications, the manufacturing of two-phase unidirectional continuous 

CNT-reinforced composites on a large scale has to encounter some challenging 

difficulties. Typical among these are the agglomeration of CNTs, the misalignment, and 

the difficulty in manufacturing long CNTs. In case of three-phase hybrid CNT-reinforced 

composite or multiscale composites, CNTs are used as nanofillers in combination with 

the conventional micro-fibers. It seems that using the CNTs as nanofiller along with the 

advanced fibers for achieving uniform distribution of CNTs throughout a composite is 

practically more feasible and advantageous in comparison to the manufacturing of long 

CNTs and the dispersion of long CNTs in the polymer matrix (Bradford et al., 2010), as 

it provides a mean to tailor the multifunctional properties of the existing advanced fiber-

reinforced composites. The literature, reviewed in Section 1.3, authenticate that the 
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multiscale composites with nanoscale CNTs and microscale carbon fibers result in the 

enhancement of the mechanical, thermal, and electrical properties of existing fiber-

reinforced composites. Such multiscale composites are termed hybrid fiber-reinforced 

composites (HFRC). The current status of progress in research on CNT-reinforced 

composites brings to light that the three-phase hybrid CNT-reinforced composite can be 

the promising candidate material for achieving structural benefits from the exceptionally 

attractive properties of CNTs.  

The lightweight and high-performance smart structures with a high stiffness-to-

weight ratio are the need of the hour. This can be achieved by making the substrate of the 

smart structure very thin conventional laminated composite structures to meet the above 

criteria of higher strength and stiffness-to-weight ratios. Such laminated composites are 

also termed as multilayered structures. These multilayered structures consist of relatively 

thin layers of different material compositions which may influence the different degrees 

of axial compliance. As a result, the axial displacement of anisotropic structures varies 

nonlinearly along the thickness of the structure, which causes discontinuous derivatives 

between the interface of two individual layers. This change in slope between two adjacent 

layers is known as the ZZ effect. The low values of transverse to in-plane modulus result 

in higher transverse shear resulting in the ZZ effect, which needs to be accounted for. 

Also, the multilayer composites possess low structural damping, thus, the large dynamic 

excitation may lead to large deformation and geometric failure. Accordingly, ‘smart 

structures’ are developed to address this issue. The smart structures have the capabilities 

of self-monitoring and self-controlling. These capabilities were achieved by exploiting 

the direct and converse effects of piezoelectric material installed or mounted at the 

surface of the host structure in combination with the viscoelastic layer. Such, 

combination of the viscoelastic material and piezoelectric material is known as the 

ACLD treatment layer. The ACLD treatment over the last decade has been accredited as 

a very effective means for achieving the active vibration control of multilayered 

structures. The damping characteristics of the overall structure improve when the electric 

potential is applied to the smart structures known as active control damping, making the 

structure safe against vibrational-induced failures (Sun et al., 2001; Ray, 2003). The 

literature review on piezoelectric materials indicates that 1‒3 PZC materials provide a 

wide range of material properties which monolithic piezoelectric materials cannot. Hence 
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in order to attain the efficient damping characteristics of the host structures, 

commercially available PZC materials like vertically/obliquely reinforced 1‒3 PZCs 

may be used as the materials of the constraining layer of the ACLD treatment. The 

review of the literature presented in Sections 1.5 and 1.6 indicates that the ACLD of 

large amplitude vibrations of conventional laminated composite structures has been 

studied in detail. However, the research on the ACLD of vibrations of laminated 

multiscale HFRC beams, plates, shells using the vertically/obliquely reinforced 1‒3 PZC 

incorporating the ZZ effects is still not available in the open literature. The dynamic 

characteristics of the multiscale HFRC beams, plates and shells undergoing ACLD are 

different from that of the conventional thin composite beams, plates and shells and also it 

is not known yet whether the vertical actuation by the 1‒3 PZC constraining layer of the 

ACLD treatment can cause the active control of the vibrations of multiscale structures 

with straight and wavy CNTs. This lack of knowledge provides ample scope for further 

research. 

Considering the above-mentioned aspects into account, the main objective of the 

present research is directed to investigate the performance of the novel laminated 

multiscale HFRC substrate structure installed with the vertically/obliquely reinforced 

1‒3 PZCs as the candidate materials of the constraining layer of the ACLD treatment for 

controlling the vibrations of the laminated structures like beams, plates, and shells. To 

fulfill the objective the following theoretical analyzes have been carried out:  

➢ To predict the effective elastic properties of the unidirectional continuous HFRC 

utilizing the micromechanical model. (Gupta et al., 2021) 

➢ To investigate the effect of CNTs waviness on the effective elastic properties of the 

continuous HFRC. (Gupta et al., 2022b) 

➢ To develop a FE model to investigate the performance of laminated multiscale 

HFRC smart beam. (Gupta et al., 2021) 

➢ To investigate the damping performance of laminated multiscale HFRC smart plate 

using a FE method. (Gupta et al., 2022c) 

➢ To investigate the effect of piezoelectric fiber orientation of 1‒3 PZC and CNTs 

waviness on the damping performance of the multiscale HFRC smart plate. (Gupta et 

al., 2022b) 
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➢ To investigate the damping performance of laminated multiscale HFRC smart shell 

using a FE method based on the sinusoidal shear deformation (Sinus) theory 

incorporating the MZZF (Gupta et al., 2022d). 

 

1.8 Contributions from the Present Thesis 

The following contributions in the field of smart structures with advanced CNT-

reinforced hybrid composites have been made towards the preparation of the dissertation: 

1. A novel unidirectional continuous multiscale HFRC has been analyzed in which the 

reinforcement materials (CNT nanofiller and carbon fibers) are uniformly aligned 

along the longitudinal direction. Analytical micromechanics models have been 

developed to estimate all the effective elastic properties of this novel multiscale 

HFRC lamina.  

2. The effect of the CNTs waviness on the effective elastic properties of the multiscale 

HFRC has been investigated when the wavy CNTs are coplanar with either of the 

two mutually orthogonal planes.  

3. FE models are developed to study the ACLD of vibrations of smart multiscale HFRC 

beams, plates, and shells. The constraining layer of the ACLD treatment is 

considered to be composed of vertically/obliquely reinforced 1‒3 PZC materials.  

4. The FSDT and Sinus theories are implemented accounting for the inherent effects of 

ZZ to model the constrained viscoelastic layer of the ACLD treatment for the active 

vibration control of the smart HFRC beams, plates, and shells. 

5. To exploit the transverse attenuation by the active constraining 1‒3 PZC layer of the 

ACLD treatment, transverse normal deformations in all the layers of the overall 

HFRC structures are considered. Emphasis has been placed on investigating the 

effects of variation of the piezoelectric fiber orientation angle on the performance of 

the patches of the ACLD treatment. 

6. Investigation of the effect of waviness of CNTs on the performance of the ACLD 

patches for ACLD of vibrations of HFRC beams, plates, and shells is an important 

contribution. Such investigation confirms that the wavy CNTs can also be exploited 

to develop a high-performance multiscale HFRC structure. 
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7. Also, the FRF of the laminated multiscale HFRC beams, plates, and shells have been 

computed which could serve as future reference results for other researchers. 

1.9 Organization of the Thesis 

The remaining part of the Thesis is organized as follows: 

➢ Chapter 2 deals with the micromechanical analyses of the multiscale HFRC and 1‒3 

PZC for estimating the effective elastic coefficients of the HFRC with or without 

considering the waviness of CNTs and effective piezo-elastic coefficients of 1‒3 

PZC. In this context, various micromechanical models are derived based on the 

MOM approach and the MT approach. 

➢ Chapter 3 is concerned with the active damping of a cantilever type smart laminated 

multiscale HFRC beam integrated with the ACLD treatment layer utilizing a FE 

model based on FSDT. 

➢ In Chapter 4, damping characteristics of multiscale HFRC smart plate subjected to 

simply-supported boundary conditions is investigated using a FE model accounting 

for the ZZ effects. 

➢ Chapter 5 is devoted to study the effect of CNTs waviness and piezo-fiber orientation 

on active damping of multiscale HFRC smart plate subjected to clamped-clamped 

boundary conditions. The HFRC plate is integrated with two ACLD treatment 

patches at its top surface.  

➢ In Chapter 6, a FE model is presented based on the Sinus theory incorporating the 

MZZF to investigate the damping performance of the multiscale HFRC substrate 

shell embedded with two ACLD treatment patches at the upper circumference of the 

cylindrical shell.  



 



 

 

Chapter 2 
 

Micromechanical Analysis of a 

Multiscale Hybrid Fiber Reinforced 

Composite 
 

This Chapter presents the micromechanical modeling of the unidirectionally multiscale 

hybrid fiber reinforced composite (HFRC) (Gupta et al., 2021, 2022b). Two-phase and 

three-phase micromechanical models based on the mechanics of materials (MOM) 

approach and the Mori-Tanaka (MT) method are derived to estimate the effective elastic 

coefficients of base composite and multiscale HFRC. The effective elastic properties of 

the HFRC are estimated by considering the straight and wavy CNTs. Also, effect of CNT 

waviness on the effective elastic coefficients of HFRC is studied when the wavy CNTs 

are coplanar with either of the two mutually orthogonal planes. Effects of the carbon 

fiber volume fractions on the effective elastic properties of the HFRC are also 

investigated.    

                                                                                                                             

2.1 Introduction 

In this Chapter, the two- and three-phase analytical micromechanics models based on the 

MOM approach and the MT method derived to study the effect of CNT reinforcement 

on the effective elastic properties of proposed multiscale HFRC. The distinctive feature 

of novel multiscale HFRC is that the wavy/straight CNTs are distributed uniformly in 

the matrix phase of HFRC along the fiber direction i.e., x‒axis, and the waviness of 

CNTs is considered to be coplanar with two mutually orthogonal planes. 

It has been experimentally observed that CNTs are curved cylindrical tubes with a 

relatively high aspect ratio (Shaffer and Windle, 1999; Qian et al., 2000; Vigolo et al., 

2000; Ning et al., 2003; Chen et al., 2011; Tsai et al., 2011). It is hypothesized that their 
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affinity to become curved is due to their high aspect ratio and the associated low bending 

stiffness. Fisher et al. (2002) first determined the effective modulus of CNT-reinforced 

composite incorporating curvature of the CNTs. They predicted that the CNT curvature 

significantly reduces the effective modulus of the CNT-reinforced composite by using a 

combined finite element and micromechanics approach. In their study, the waviness of a 

CNT was described by a sinusoidal shape. Berhan et al. (2004) studied the effect of the 

waviness of CNTs on the mechanical properties of nanotube sheets by using a 

micromechanics approach. Shi et al. (2004) analyzed the influence of the CNT waviness 

and agglomeration on the elastic properties of CNT-reinforced composites by employing 

a micromechanics model. Anumandla and Gibson (2006) estimated the elastic modulus 

of CNT-reinforced composites incorporating CNT curvature by deriving a closed-form 

micromechanics model. In their study, the closed-form analytical micromechanics model 

is seen to provide reasonable estimates of the effective elastic properties when compared 

with the experimental results and the predictions by the FE models. The effect of the 

CNT curvature on the polymer matrix nanocomposite stiffness has been investigated by 

Pantano and Cappello (2008). They concluded that in the presence of weak bonding, the 

enhancement of nanocomposite stiffness can be achieved through the bending energy of 

CNTs rather than through the axial stiffness of CNTs. Li and Chou (2009) studied the 

failure of CNT/polymer matrix composites by using the micromechanics model and 

conducting FE simulations. Their results indicate that the CNT waviness tends to reduce 

the elastic modulus and the tensile strength but enhances the ultimate strain of the 

nanocomposite. Shao et al. (2009) derived an analytical model to investigate the 

influence of the waviness of CNTs on the elastic moduli and found that the waviness 

significantly reduces the stiffening effect of CNTs. Shady and Gowayed (2010) 

investigated the effect of CNT curvature on the elastic properties of the nanocomposites 

utilizing the modified fiber model and the MT method. Their results indicate that for a 

low weight fraction of CNTs the effect of curvature is small and as the weight fraction of 

CNTs increases, the effect of CNT curvature becomes critical.  Tsai et al. (2011) studied 

the effects of CNT waviness and its distribution on the effective nanocomposite stiffness. 

In their study, elastic moduli were over estimated when the CNT aspect or the CNT 

waviness followed a symmetric distribution.  
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Hence, in this Chapter (Gupta et al., 2021, 2022b), two analytical micromechanics 

models have been presented for estimating the effective elastic properties of the base 

composite and novel multiscale HFRC. In addition, the effect of CNT waviness on the 

effective elastic properties of multiscale HFRC is investigated.  

2.2 Effective Elastic Properties of HFRC Utilizing MOM Approach 

In this Section, the effective elastic properties of the HFRC composite were estimated by 

using the two- and three-phase micromechanical model based on the MOM approach. A 

novel HFRC was composed of CNT, carbon fiber, and epoxy matrix by considering the 

rectangular RVEs incorporated with cylindrical fibers. In this micromechanical analysis, 

we restricted ourselves to a single RVE. Figure 1(a) represents the schematic of HFRC 

lamina reinforced with carbon fiber in x-axis and epoxy matrix mixed with CNT to 

improve damping and material properties of the matrix. The axial and transverse cross-

sections of base composite and HFRC RVE is illustrated in Fig. 1(b and c), respectively.  

The principal material coordinate (x-y-z) or problem coordinate (1-2-3) system 

was followed for deriving the MOM model as both coordinate systems exactly matched 

with each other. The stresses and strains developed in the HFRC were illustrated based 

on this coordinate system, where 1-axis is known as the fiber axis while the other two 

axes (i.e., 2- and 3-axis) are known as the matrix axis. According to Hooke’s law, the 

constitutive relation for the individual phases of HFRC can be expressed as follows, 

{𝝈𝒓} =  [𝑪𝒓]{𝜺𝒓};  𝒓 =  𝑪𝑭 𝐚𝐧𝐝 𝑬𝒙𝒚                                             (2.1) 

{𝝈𝒓} =

{
 
 

 
 
𝝈𝟏
𝝈𝟐
𝝈𝟑
𝝈𝟐𝟑
𝝈𝟏𝟑
𝝈𝟏𝟐}

 
 

 
 

,      {𝜺𝒓} =

{
 
 

 
 
𝜺𝟏
𝜺𝟐
𝜺𝟑
𝜺𝟐𝟑
𝜺𝟏𝟑
𝜺𝟏𝟐}
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Figure 2.1. (a) Schematic diagram of HFRC lamina; axial and transverse cross-sections 

of HFRC RVE considering: (b) two-phase and (c) three-phase. 
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[𝑪𝒓] =

[
 
 
 
 
 
𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 0 0 0
𝑪𝟏𝟐 𝑪𝟐𝟐 𝑪𝟐𝟑 0 0 0
𝑪𝟏𝟑 𝑪𝟐𝟑 𝑪𝟑𝟑 0 0 0
0 0 0 𝑪𝟒𝟒 0 0
0 0 0 0 𝑪𝟓𝟓 0
0 0 0 0 0 𝑪𝟔𝟔]

 
 
 
 
 

                                         (2.2) 

where the stress-strain vector and stiffness matrix are represented by {𝝈}, {𝜺} and [𝑪] for 

rth phase, respectively. The superscript CF and Exy denote carbon fiber and epoxy 

matrix, respectively, while no superscript is used for composite lamina. In Eq. (2.2), 𝝈𝟏, 

𝝈𝟐 and 𝝈𝟑 represent the normal stresses; 𝜺𝟏, 𝜺𝟐 and 𝜺𝟑 represent the normal strains in the 

respective 1, 2, and 3‒directions; 𝝈𝟏𝟐, 𝝈𝟏𝟑 and 𝝈𝟐𝟑 represent shear stresses; 𝜺𝟏𝟐, 𝜺𝟏𝟑 and 

𝜺𝟐𝟑 represent shear strains and 𝑪𝒊𝒋 indicates the elastic stiffness coefficients. Using iso-

field (iso-stress and iso-strain) and rules-of-mixture (ROM) conditions (Smith and Auld, 

1991; Benveniste and Dvorak, 1992; Ray, 2006), the assumptions are  mentioned below: 

• The analysis is linearly elastic. 

• The composite is homogeneous throughout. 

• Fibers and nanofillers are aligned in 1-axis i.e. axial direction. 

• Fibers and nanofillers are parallel and continuous. 

• Fiber, nanofiller, and matrix are equally long. 

• No slippage between fiber, nanofiller, and matrix. 

 

2.2.1 Two-Phase MOM Approach 

The two-phase MOM model developed by earlier researcher Kundalwal and Ray (2011) 

is implemented in the present work to evaluate the elastic properties. The model 

determines the transversely isotropic effective elastic properties of a base composite 

constituting two phases such as carbon fiber and epoxy matrix. To satisfy no slippage 

condition between fiber and matrix, the assumption of iso-field and ROM can be 

expressed as follows, 
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In the case of iso-field condition: 

{
  
 

  
 
𝜺𝟏𝟏
𝑪𝑭

𝝈𝟐𝟐
𝑪𝑭

𝝈𝟑𝟑
𝑪𝑭

𝝈𝟐𝟑
𝑪𝑭

𝝈𝟏𝟑
𝑪𝑭

𝝈𝟏𝟐
𝑪𝑭}
  
 

  
 

=

{
 
 
 

 
 
 𝜺𝟏𝟏

𝑬𝒙𝒚

𝝈𝟐𝟐
𝑬𝒙𝒚

𝝈𝟑𝟑
𝑬𝒙𝒚

𝝈𝟐𝟑
𝑬𝒙𝒚

𝝈𝟏𝟑
𝑬𝒙𝒚

𝝈𝟏𝟐
𝑬𝒙𝒚
}
 
 
 

 
 
 

=

{
 
 

 
 
𝜺𝟏𝟏
𝝈𝟐𝟐
𝝈𝟑𝟑
𝝈𝟐𝟑
𝝈𝟏𝟑
𝝈𝟏𝟐}

 
 

 
 

     (2.3) 

and in case of ROM condition: 

   𝒗𝑪𝑭

{
  
 

  
 
𝝈𝟏𝟏
𝑪𝑭

𝜺𝟐𝟐
𝑪𝑭

𝜺𝟑𝟑
𝑪𝑭

𝜺𝟐𝟑
𝑪𝑭

𝜺𝟏𝟑
𝑪𝑭

𝜺𝟏𝟐
𝑪𝑭}
  
 

  
 

+ 𝒗𝑬𝒙𝒚

{
 
 
 

 
 
 𝝈𝟏𝟏

𝑬𝒙𝒚

𝜺𝟐𝟐
𝑬𝒙𝒚

𝜺𝟑𝟑
𝑬𝒙𝒚

𝜺𝟐𝟑
𝑬𝒙𝒚

𝜺𝟏𝟑
𝑬𝒙𝒚

𝜺𝟏𝟐
𝑬𝒙𝒚

}
 
 
 

 
 
 

=

{
 
 

 
 
𝝈𝟏𝟏
𝜺𝟐𝟐
𝜺𝟑𝟑
𝜺𝟐𝟑
𝜺𝟏𝟑
𝜺𝟏𝟐}

 
 

 
 

       (2.4) 

where 𝒗𝑪𝑭 and 𝒗𝑬𝒙𝒚 denote the volume fraction of carbon fiber and epoxy matrix and 

𝒗𝑬𝒙𝒚 = 1 − 𝒗𝑪𝑭. By using the Eqs. (2.1), (2.3)-(2.4), the stress and strain vector in the 

base composite can be written with respect to their constituent phases can be written as: 

{𝝈} =  [𝑪𝟏]{𝜺
𝑪𝑭} + [𝑪𝟐]{𝜺

𝑬𝒙𝒚}    (2.5) 

{𝜺} =  [𝑽𝟏]{𝜺
𝑪𝑭} + [𝑽𝟐]{𝜺

𝑬𝒙𝒚}    (2.6) 

The relation between stresses and strains in Eqs. (2.1) and (2.3) of fiber and 

matrix is given by:  

[𝑪𝟑]{𝜺
𝑪𝑭} − [𝑪𝟒]{𝜺

𝑬𝒙𝒚} = 0     (2.7) 

The matrices used in Eqs. (2.5)-(2.7) are expressed as: 
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[𝑪𝟏] = 𝒗𝑪𝑭

[
 
 
 
 
 
𝑪𝟏𝟏
𝑪𝑭 𝑪𝟏𝟐

𝑪𝑭 𝑪𝟏𝟑
𝑪𝑭 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

, 

[𝑪𝟐] =

[
 
 
 
 
 
 
 
 𝒗𝑬𝒙𝒚𝑪𝟏𝟏

𝑬𝒙𝒚
𝒗𝑬𝒙𝒚𝑪𝟏𝟐

𝑬𝒙𝒚
𝒗𝑬𝒙𝒚𝑪𝟏𝟑

𝑬𝒙𝒚
0 0 0

𝑪𝟏𝟐
𝑬𝒙𝒚

𝑪𝟐𝟐
𝑬𝒙𝒚

𝑪𝟐𝟑
𝑬𝒙𝒚

0 0 0

𝑪𝟏𝟑
𝑬𝒙𝒚

𝑪𝟐𝟑
𝑬𝒙𝒚

𝑪𝟑𝟑
𝑬𝒙𝒚

0 0 0

0 0 0 𝑪𝟒𝟒
𝑬𝒙𝒚

0 0

0 0 0 0 𝑪𝟓𝟓
𝑬𝒙𝒚

0

0 0 0 0 0 𝑪𝟔𝟔
𝑬𝒙𝒚
]
 
 
 
 
 
 
 
 

,           

[𝑪𝟑] =

[
 
 
 
 
 
 
1 0 0 0 0 0
𝑪𝟏𝟐
𝑪𝑭 𝑪𝟐𝟐

𝑪𝑭 𝑪𝟐𝟑
𝑪𝑭 0 0 0

𝑪𝟏𝟑
𝑪𝑭 𝑪𝟐𝟑

𝑪𝑭 𝑪𝟑𝟑
𝑪𝑭 0 0 0

0 0 0 𝑪𝟒𝟒
𝑪𝑭 0 0

0 0 0 0 𝑪𝟓𝟓
𝑪𝑭 0

0 0 0 0 0 𝑪𝟔𝟔
𝑪𝑭]
 
 
 
 
 
 

,             

[𝑪𝟒] =

[
 
 
 
 
 
 
 
1 0 0 0 0 0

𝑪𝟏𝟐
𝑬𝒙𝒚

𝑪𝟐𝟐
𝑬𝒙𝒚

𝑪𝟐𝟑
𝑬𝒙𝒚

0 0 0

𝑪𝟏𝟑
𝑬𝒙𝒚

𝑪𝟐𝟑
𝑬𝒙𝒚

𝑪𝟑𝟑
𝑬𝒙𝒚

0 0 0

0 0 0 𝑪𝟒𝟒
𝑬𝒙𝒚

0 0

0 0 0 0 𝑪𝟓𝟓
𝑬𝒙𝒚

0

0 0 0 0 0 𝑪𝟔𝟔
𝑬𝒙𝒚
]
 
 
 
 
 
 
 

, 

[𝑽𝟏] =

[
 
 
 
 
 
0 0 0 0 0 0
0 𝒗𝑪𝑭 0 0 0 0
0 0 𝒗𝑪𝑭 0 0 0
0 0 0 𝒗𝑪𝑭 0 0
0 0 0 0 𝒗𝑪𝑭 0
0 0 0 0 0 𝒗𝑪𝑭]

 
 
 
 
 

,               

[𝑽𝟐] =

[
 
 
 
 
 
 
0 0 0 0 0 0
0 𝒗𝑬𝒙𝒚 0 0 0 0

0 0 𝒗𝑬𝒙𝒚 0 0 0

0 0 0 𝒗𝑬𝒙𝒚 0 0

0 0 0 0 𝒗𝑬𝒙𝒚 0

0 0 0 0 0 𝒗𝑬𝒙𝒚]
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Substituting the Eqs. (2.6) and (2.7) in Eq. (2.5), the subsequent constitutive 

equation for the two-phase composite is obtained as: 

{𝝈} =  [𝑪]{𝜺}       (2.8) 

Finally, the effective elastic properties of the two-phase MOM model can be 

expressed as: 

[𝑪] = [𝑪𝟏][𝑽𝟑]
−𝟏 + [𝑪𝟐][𝑽𝟒]

−𝟏    (2.9) 

[𝑽𝟑] = [𝑽𝟏] + [𝑽𝟐][𝑪𝟒]
−𝟏[𝑪𝟑] and [𝑽𝟒] = [𝑽𝟐] + [𝑽𝟏][𝑪𝟑]

−𝟏[𝑪𝟒]  (2.10) 

2.2.2 Three-Phase MOM Approach 

To enhance the optimal performance of a composite there should be an interaction 

between fiber and matrix. This could be done by surface treating the fiber or matrix or 

both before using them. The surface treatment of fiber is the most commonly used 

technique called sizing. Such treatment on the matrix to improve its adhesive property 

due to the addition of nanofillers is promising and received a lot of attention from the 

researchers (Yu et al., 2014; Rathi and Kundalwal, 2020). In this study, we are treating 

the epoxy matrix before impregnating carbon fiber into it, as shown in Fig. 1(c). For the 

three-phase composite material which is also known as a hybrid composite material, the 

constitutive relation for the individual phases of HFRC can be expressed as: 

{𝝈𝒓} =  [𝑪𝒓]{𝜺𝒓};  𝒓 =  𝑪𝑭, 𝑪𝑵𝑻 and 𝑬𝒙𝒚   (2.11) 

where the superscripts CF, CNT, and Exy denote carbon fiber, CNT nanofiller, and 

epoxy matrix, respectively. To satisfy no slippage condition between all individual 

phases, the assumption of iso-field and ROM can be expressed as: 
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In the case of iso-field condition: 

{
  
 

  
 
𝜺𝟏𝟏
𝑪𝑭

𝝈𝟐𝟐
𝑪𝑭

𝝈𝟑𝟑
𝑪𝑭

𝝈𝟐𝟑
𝑪𝑭

𝝈𝟏𝟑
𝑪𝑭

𝝈𝟏𝟐
𝑪𝑭}
  
 

  
 

=

{
  
 

  
 
𝜺𝟏𝟏
𝑪𝑵𝑻

𝝈𝟐𝟐
𝑪𝑵𝑻

𝝈𝟑𝟑
𝑪𝑵𝑻

𝝈𝟐𝟑
𝑪𝑵𝑻

𝝈𝟏𝟑
𝑪𝑵𝑻

𝝈𝟏𝟐
𝑪𝑵𝑻}

  
 

  
 

=

{
 
 
 

 
 
 𝜺𝟏𝟏

𝑬𝒙𝒚

𝝈𝟐𝟐
𝑬𝒙𝒚

𝝈𝟑𝟑
𝑬𝒙𝒚

𝝈𝟐𝟑
𝑬𝒙𝒚

𝝈𝟏𝟑
𝑬𝒙𝒚

𝝈𝟏𝟐
𝑬𝒙𝒚
}
 
 
 

 
 
 

=

{
 
 

 
 
𝜺𝟏𝟏
𝝈𝟐𝟐
𝝈𝟑𝟑
𝝈𝟐𝟑
𝝈𝟏𝟑
𝝈𝟏𝟐}

 
 

 
 

   (2.12) 

 

and in case of ROM condition: 

  𝒗𝑪𝑭

{
  
 

  
 
𝝈𝟏𝟏
𝑪𝑭

𝜺𝟐𝟐
𝑪𝑭

𝜺𝟑𝟑
𝑪𝑭

𝜺𝟐𝟑
𝑪𝑭

𝜺𝟏𝟑
𝑪𝑭

𝜺𝟏𝟐
𝑪𝑭}
  
 

  
 

+ 𝒗𝑪𝑵𝑻

{
  
 

  
 
𝝈𝟏𝟏
𝑪𝑵𝑻

𝜺𝟐𝟐
𝑪𝑵𝑻

𝜺𝟑𝟑
𝑪𝑵𝑻

𝜺𝟐𝟑
𝑪𝑵𝑻

𝜺𝟏𝟑
𝑪𝑵𝑻

𝜺𝟏𝟐
𝑪𝑵𝑻}

  
 

  
 

+ 𝒗𝑬𝒙𝒚

{
 
 
 

 
 
 𝝈𝟏𝟏

𝑬𝒙𝒚

𝜺𝟐𝟐
𝑬𝒙𝒚

𝜺𝟑𝟑
𝑬𝒙𝒚

𝜺𝟐𝟑
𝑬𝒙𝒚

𝜺𝟏𝟑
𝑬𝒙𝒚

𝜺𝟏𝟐
𝑬𝒙𝒚

}
 
 
 

 
 
 

=

{
 
 

 
 
𝝈𝟏𝟏
𝜺𝟐𝟐
𝜺𝟑𝟑
𝜺𝟐𝟑
𝜺𝟏𝟑
𝜺𝟏𝟐}

 
 

 
 

   (2.13) 

where 𝒗𝑪𝑵𝑻 denotes the volume fraction of the CNT. The stress and strain vector on the 

carbon fiber and its neighboring phases of HFRC can be written with respect to their 

constituent phases as follows: 

{𝝈} = [𝑪𝟏]{𝜺
𝑪𝑭} + [𝑪𝟐]{𝜺

𝑪𝑵𝑻} + [𝑪𝟑]{𝜺
𝑬𝒙𝒚}                            (2.14) 

{𝜺} = [𝑽𝟏]{𝜺
𝑪𝑭} + [𝑽𝟐]{𝜺

𝑪𝑵𝑻} + [𝑽𝟑]{𝜺
𝑬𝒙𝒚}                            (2.15) 

 [𝑪𝟒]{𝜺
𝑪𝑭} − [𝑪𝟓]{𝜺

𝑪𝑵𝑻} = 0                                                    (2.16) 

 [𝑪𝟓]{𝜺
𝑪𝑵𝑻} − [𝑪𝟔]{𝜺

𝑬𝒙𝒚} = 0                                                   (2.17) 

The following matrices are used in Eqs. (2.14)-(2.17), 

[𝑪𝟏] =

[
 
 
 
 
 
 
𝒗𝑪𝑭𝑪𝟏𝟏

𝑪𝑭 𝒗𝑪𝑭𝑪𝟏𝟐
𝑪𝑭 𝒗𝑪𝑭𝑪𝟏𝟑

𝑪𝑭 0 0 0

𝑪𝟏𝟐
𝑪𝑭 𝑪𝟐𝟐

𝑪𝑭 𝑪𝟐𝟑
𝑪𝑭 0 0 0

𝑪𝟏𝟑
𝑪𝑭 𝑪𝟐𝟑

𝑪𝑭 𝑪𝟑𝟑
𝑪𝑭 0 0 0

0 0 0 𝑪𝟒𝟒
𝑪𝑭 0 0

0 0 0 0 𝑪𝟓𝟓
𝑪𝑭 0

0 0 0 0 0 𝑪𝟔𝟔
𝑪𝑭]
 
 
 
 
 
 

, 
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[𝑪𝟐] = 𝒗𝑪𝑵𝑻

[
 
 
 
 
 
𝑪𝟏𝟏
𝑪𝑵𝑻 𝑪𝟏𝟐

𝑪𝑵𝑻 𝑪𝟏𝟑
𝑪𝑵𝑻 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

,                 

[𝑪𝟑] = 𝒗𝑬𝒙𝒚

[
 
 
 
 
 𝑪𝟏𝟏

𝑬𝒙𝒚
𝑪𝟏𝟐
𝑬𝒙𝒚

𝑪𝟏𝟑
𝑬𝒙𝒚

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

,                   

[𝑪𝟒] =

[
 
 
 
 
 
 
1 0 0 0 0 0
𝑪𝟏𝟐
𝑪𝑭 𝑪𝟐𝟐

𝑪𝑭 𝑪𝟐𝟑
𝑪𝑭 0 0 0

𝑪𝟏𝟑
𝑪𝑭 𝑪𝟐𝟑

𝑪𝑭 𝑪𝟑𝟑
𝑪𝑭 0 0 0

0 0 0 𝑪𝟒𝟒
𝑪𝑭 0 0

0 0 0 0 𝑪𝟓𝟓
𝑪𝑭 0

0 0 0 0 0 𝑪𝟔𝟔
𝑪𝑭]
 
 
 
 
 
 

,                

[𝑪𝟓] =

[
 
 
 
 
 
 
1 0 0 0 0 0

𝑪𝟏𝟐
𝑪𝑵𝑻 𝑪𝟐𝟐

𝑪𝑵𝑻 𝑪𝟐𝟑
𝑪𝑵𝑻 0 0 0

𝑪𝟏𝟑
𝑪𝑵𝑻 𝑪𝟐𝟑

𝑪𝑵𝑻 𝑪𝟑𝟑
𝑪𝑵𝑻 0 0 0

0 0 0 𝑪𝟒𝟒
𝑪𝑵𝑻 0 0

0 0 0 0 𝑪𝟓𝟓
𝑪𝑵𝑻 0

0 0 0 0 0 𝑪𝟔𝟔
𝑪𝑵𝑻]

 
 
 
 
 
 

, 

[𝑪𝟔] =

[
 
 
 
 
 
 
 
1 0 0 0 0 0

𝑪𝟏𝟐
𝑬𝒙𝒚

𝑪𝟐𝟐
𝑬𝒙𝒚

𝑪𝟐𝟑
𝑬𝒙𝒚

0 0 0

𝑪𝟏𝟑
𝑬𝒙𝒚

𝑪𝟐𝟑
𝑬𝒙𝒚

𝑪𝟑𝟑
𝑬𝒙𝒚

0 0 0

0 0 0 𝑪𝟒𝟒
𝑬𝒙𝒚

0 0

0 0 0 0 𝑪𝟓𝟓
𝑬𝒙𝒚

0

0 0 0 0 0 𝑪𝟔𝟔
𝑬𝒙𝒚
]
 
 
 
 
 
 
 

,    

[𝑽𝟏] =

[
 
 
 
 
 
0 0 0 0 0 0
0 𝒗𝑪𝑭 0 0 0 0
0 0 𝒗𝑪𝑭 0 0 0
0 0 0 𝒗𝑪𝑭 0 0
0 0 0 0 𝒗𝑪𝑭 0
0 0 0 0 0 𝒗𝑪𝑭]

 
 
 
 
 

,                    
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[𝑽𝟐] =

[
 
 
 
 
 
0 0 0 0 0 0
0 𝒗𝑪𝑵𝑻 0 0 0 0
0 0 𝒗𝑪𝑵𝑻 0 0 0
0 0 0 𝒗𝑪𝑵𝑻 0 0
0 0 0 0 𝒗𝑪𝑵𝑻 0
0 0 0 0 0 𝒗𝑪𝑵𝑻]

 
 
 
 
 

, and 

[𝑽𝟑] =

[
 
 
 
 
 
 
0 0 0 0 0 0
0 𝒗𝑬𝒙𝒚 0 0 0 0

0 0 𝒗𝑬𝒙𝒚 0 0 0

0 0 0 𝒗𝑬𝒙𝒚 0 0

0 0 0 0 𝒗𝑬𝒙𝒚 0

0 0 0 0 0 𝒗𝑬𝒙𝒚]
 
 
 
 
 
 

            (2.18) 

Using Eqs. (2.15)-(2.17), the local strain vectors can be expressed in terms of the 

composite strain and subsequently, using them in Eq. (2.14), the following effective 

elastic coefficient matrix of the composite can be obtained. 

Finally, the effective elastic properties of HFRC can be expressed as: 

[𝑪] = [𝑪𝟏][𝑽𝟓]
−𝟏 + [𝑪𝟕][𝑽𝟔]

−𝟏                         (2.19) 

where 

[𝑪𝟕] = [𝑪𝟑] + [𝑪𝟐][𝑪𝟓]
−𝟏[𝑪𝟔],                     

[𝑽𝟒] = [𝑽𝟑] + [𝑽𝟐][𝑪𝟓]
−𝟏[𝑪𝟔],                  

[𝑽𝟓] = [𝑽𝟏] + [𝑽𝟒][𝑪𝟔]
−𝟏[𝑪𝟒],       and 

 [𝑽𝟔] = [𝑽𝟒] + [𝑽𝟏][𝑪𝟒]
−𝟏[𝑪𝟔]                                              (2.20) 

2.3 Effective Elastic Properties of HFRC Using MT Approach 

In this Section, we derived two- and three-phase micromechanical models based on the 

MT method to evaluate the effective elastic properties of base composite and HFRC. A 

novel HFRC comprises carbon fibers and epoxy matrix incorporated with CNTs. The 

RVEs of HFRC considering cylindrical carbon fiber and CNTs are shown in Fig. 2.2. 

For the present investigation, we restricted ourselves to a single RVE. Figure 2.2(a) 

shows the schematic of HFRC reinforced with carbon fiber along the x-axis and epoxy 

matrix mixed with CNTs to improve damping and material properties of the resulting 
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HFRC. The longitudinal and transverse cross-sections of base composite and HFRC 

RVEs are illustrated in Fig. 2.2(b) and 2.2(c), respectively.  

2.3.1 Two-Phase MT Approach 

The MT model is an efficient micromechanical model that accounts for the Eshelby 

tensor for interaction between fibers and matrix. Therefore, in this study, the MT model 

is used to predict the effective elastic properties of the base composite and HFRC. 

According to Benveniste (1987), the effective elastic properties of two-phase composite 

using MT model can be predicted as follows: 

[𝑪] = [𝑪𝒎] + 𝒗𝒇([𝑪
𝒇] − [𝑪𝒎])[𝑨𝟏]                                      (2.21) 

in which the subscripts m and f are used for the matrix and carbon fiber phases, 

respectively. The concentration factor [𝑨𝟏] is given by: 

[𝑨𝟏] = [�̃�𝟏] [𝒗𝒎[𝑰] + 𝒗𝒇[�̃�𝟏]]
−𝟏

             and 

[�̃�𝟏] = [[𝑰] + [𝑺]([𝑪𝒎])−𝟏([𝑪𝒇] − [𝑪𝒎])]
−𝟏

                                 (2.22) 

in which 𝒗𝒎 , and 𝒗𝒇  denote the volume fractions of epoxy matrix and carbon fiber, 

respectively. In Eq. (2.22), [𝑺]  represents the Eshelby tensor and for the cylindrical 

carbon fiber, the Eshelby tensor is given by: 

[𝑺] =

[
 
 
 
 
 
𝑺𝟏𝟏 𝑺𝟏𝟐 𝑺𝟏𝟑 0 0 0
𝑺𝟐𝟏 𝑺𝟐𝟐 𝑺𝟐𝟑 0 0 0
𝑺𝟑𝟏 𝑺𝟑𝟐 𝑺𝟑𝟑 0 0 0
0 0 0 𝑺𝟒𝟒 0 0
0 0 0 0 𝑺𝟓𝟓 0
0 0 0 0 0 𝑺𝟔𝟔]

 
 
 
 
 

 

where 

𝑺𝟏𝟏 = 0, 𝑺𝟐𝟐 = 𝑺𝟑𝟑 =
5 − 4𝒗𝒎

8(1 − 𝒗𝒎)
  , 𝑺𝟐𝟏 = 𝑺𝟑𝟏 =

𝒗𝒎

2(1 − 𝒗𝒎)
  , 

𝑺𝟐𝟑 = 𝑺𝟑𝟐 =
4𝒗𝒎 − 1

8(1 − 𝒗𝒎)
, 𝑺𝟏𝟐 = 𝑺𝟏𝟑 = 0, 𝑺𝟓𝟓 = 𝑺𝟔𝟔 =

1

4
, 



Micromechanical Analysis of a multiscale HFRC 

 

39 

 

and  𝑺𝟒𝟒 =
3 − 4𝒗𝒎

8(1 − 𝒗𝒎)
 

where 𝒗𝒎 denote the Poisson’s ratio of the polymer matrix. 
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Figure 2.2. (a) Schematic of RVEs of base composite/HFRC with wavy CNTs; axial 

and transverse cross-sections of (b) two-phase and (c) three-phase RVEs. 

2.3.2 Three-Phase MT Approach 

In the present study, a multiscale HFRC is also considered, which comprises three 

phases: microscale carbon fibers, nanoscale CNTs, and epoxy matrix. The schematic 

representation of multiscale composite with CNTs is shown in Fig. 2.2(a) and the cross-

section of the same is shown in Fig. 2.2(c). The effective elastic properties of such 

multiscale HFRC can be determined using the three-phase MT model, as follows, 

[𝑪] = [𝒗𝒎[𝑪
𝒎][𝑰] + 𝒗𝒇[𝑪

𝒇][𝑨𝒇] + 𝒗𝒊[𝑪
𝒊][𝑨𝒊]] [𝒗𝒎[𝑰] + 𝒗𝒇[𝑨𝒇] + 𝒗𝒊[𝑨𝒊]]

−𝟏

       (2.23) 

where 𝒗𝒊 is the volume fractions of CNT nanofiller and [𝑨𝒇] and [𝑨𝒊] appearing in Eq. 

(2.23) represent the concentration factors, as follows, 

[𝑨𝒇] = [[𝑰] + [𝑺𝒇]{([𝑪
𝒎])−𝟏([𝑪𝒇] − [𝑪𝒎])}]

−𝟏

 

[𝑨𝒊] = [[𝑰] + [𝑺𝒊]{([𝑪
𝒎])−𝟏([𝑪𝒊] − [𝑪𝒎])}]

−𝟏

                          (2.24) 

where [𝑺𝒇] and [𝑺𝒊] are the Esheby tensors for the CF and CNT phases, respectively; and 

[𝑰] is an identity matrix. For the sake of simplicity, the CNT is assumed as an equivalent 

solid cylinder fiber (Kundalwal, 2018). Thus, the Eshelby tensor for the cylindrical 

inclusion of carbon fiber and CNT in the polymer matrix can be explicitly written as (Qiu 

and Weng, 1990): 

[Sf] =

[
 
 
 
 
 
 
 
 𝑺𝟏𝟏
𝒇

𝑺𝟏𝟐
𝒇

𝑺𝟏𝟑
𝒇

0 0 0

𝑺𝟐𝟏
𝒇

𝑺𝟐𝟐
𝒇

𝑺𝟐𝟑
𝒇

0 0 0

𝑺𝟑𝟏
𝒇

𝑺𝟑𝟐
𝒇

𝑺𝟑𝟑
𝒇

0 0 0

0 0 0 𝑺𝟒𝟒
𝒇

0 0

0 0 0 0 𝑺𝟓𝟓
𝒇

0

0 0 0 0 0 𝑺𝟔𝟔
𝒇
]
 
 
 
 
 
 
 
 

          and 
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[𝑺𝒊] =

[
 
 
 
 
 
 
𝑺𝟏𝟏
𝒊 𝑺𝟏𝟐

𝒊 𝑺𝟏𝟑
𝒊 0 0 0

𝑺𝟐𝟏
𝒊 𝑺𝟐𝟐

𝒊 𝑺𝟐𝟑
𝒊 0 0 0

𝑺𝟑𝟏
𝒊 𝑺𝟑𝟐

𝒊 𝑺𝟑𝟑
𝒊 0 0 0

0 0 0 𝑺𝟒𝟒
𝒊 0 0

0 0 0 0 𝑺𝟓𝟓
𝒊 0

0 0 0 0 0 𝑺𝟔𝟔
𝒊 ]
 
 
 
 
 
 

                                      (2.25) 

where  

𝑺𝟏𝟏
𝒇
= 0, 𝑺𝟐𝟐

𝒇
= 𝑺𝟑𝟑

𝒇
=

5 − 4𝒗𝒎

8(1 − 𝒗𝒎)
, 𝑺𝟐𝟏

𝒇
= 𝑺𝟑𝟏

𝒇
=

𝒗𝒎

2(1 − 𝒗𝒎)
, 

𝑺𝟐𝟑
𝒇
= 𝑺𝟑𝟐

𝒇
=

4𝒗𝒊 − 1

8(1 − 𝒗𝒊)
, 𝑺𝟏𝟐

𝒇
= 𝑺𝟏𝟑

𝒇
= 0, 𝑺𝟓𝟓

𝒇
= 𝑺𝟔𝟔

𝒇
=
1

4
, 

and   𝑺𝟒𝟒
𝒇
=

3 − 4𝒗𝒎

8(1 − 𝒗𝒎)
 

𝑺𝟏𝟏
𝒊 = 0, 𝑺𝟐𝟐

𝒊 = 𝑺𝟑𝟑
𝒊 =

5 − 4𝒗𝒎

8(1 − 𝒗𝒎)
, 𝑺𝟐𝟏

𝒊 = 𝑺𝟑𝟏
𝒊 =

𝒗𝒎

2(1 − 𝒗𝒎)
, 

𝑺𝟐𝟑
𝒊 = 𝑺𝟑𝟐

𝒊 =
4𝒗𝒎 − 1

8(1 − 𝒗𝒎)
, 𝑺𝟏𝟐

𝒊 = 𝑺𝟏𝟑
𝒊 = 0, 𝑺𝟓𝟓

𝒊 = 𝑺𝟔𝟔
𝒊 =

1

4
, 

and   𝑺𝟒𝟒
𝒊 =

3 − 4𝒗𝒎

8(1 − 𝒗𝒎)
 

2.4 HFRC with Wavy CNTs  

The schematic representation of wavy CNT embedded in the epoxy matrix is illustrated 

in Fig. 2.3. Since the carbon fiber and CNT are oriented along the x-axis, Fig. 2.3(a-b) 

shows the transmission electron microscopes (TEM) image of wavy CNT which depicts 

the sinusoidal waviness of CNT. Thus, in the current work, we modeled the wavy CNT 

as a sinusoidal solid CNT nanofiller. Figure 2.3(c) represents the RVE of epoxy matrix 

incorporated with wavy CNT nanofillers. The wavy CNTs are considered to be coplanar 

with 1‒2 or 1‒3 plane, attributing to the constructional feature of HFRC. The RVE is 

distributed into infinitesimally thin slices of thickness 𝒅𝒙 . Then, the homogenized 

effective elastic properties of the HFRC can be predicted by averaging the effective 
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elastic properties of these slices over the length 𝑳𝑹𝑽𝑬,  and such wavy CNT can be 

categorized as: 

𝒚 = 𝑨𝐬𝐢𝐧(𝝎𝒙) or 

    𝒛 = 𝑨𝐬𝐢𝐧(𝝎𝒙);   𝝎 =
𝒏𝝅

𝑳𝑹𝑽𝑬
                                           (2.26) 

 

 

Figure 2.3. (a) TEM image of wavy CNT (Rathi et al., 2021), (b) TEM image of a 

periodic array of wavy CNTs (Xu et al., 2012), and (c) RVE of epoxy matrix 

incorporated with wavy CNT coplanar with 1‒2 or 1‒3 plane. 

in which the wavy CNT waviness is coplanar with 1‒2 or 1‒3 plane. In Eq. (2.26), ‘A’ 

represents the amplitude of CNT wave, 𝑳𝑹𝑽𝑬 is the linear distance between the two ends 
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of CNT, and n denotes the number of waves of the CNT, such that, when 𝒏 = 0, we can 

have straight CNT. The running length of the CNT can be given by: 

𝑳𝒏𝒓 = ∫ √1 + 𝑨𝟐𝝎𝟐𝐜𝐨𝐬𝟐(𝝎𝒙)𝒅𝒙

𝐿𝑛

0

                                  (2.27) 

The angle 𝝓 shown in Fig. 2.3(b) is given by: 

𝐭𝐚𝐧𝝓 =
𝒅𝒛

𝒅𝒙
= 𝑨𝝎𝐜𝐨𝐬(𝝎𝒚)                                                       (2.27) 

in which the waviness of CNT is coplanar with 1‒2 or 1‒3 plane. It should be noted that, 

for a particular value of 𝝎, the value of 𝝓 varies with the amplitude of the CNT wave. 

The effective elastic coefficients of multiscale HFRC (𝑪𝒊𝒋
𝑴𝑺𝑪) incorporated with 

wavy CNT having an angle 𝝓  with the longitudinal axis can be determined by 

considering the suitable transformation. Thus, when the CNT waviness is coplanar with 

1‒2 plane, the 𝑪𝒊𝒋
𝑴𝑺𝑪 at any point in the HFRC lamina can be expressed as: 

[𝑪𝑴𝑺𝑪] = [𝑻𝟏]
−𝑻[𝑪][𝑻𝟏]

−𝟏                                                     (2.28) 

where  

[𝑻𝟏] =

[
 
 
 
 
 
𝒌𝟐 𝒍𝟐 0 0 0 𝒌𝒍
𝒍𝟐 𝒌𝟐 0 0 0 −𝒌𝒍
0 0 1 0 0 0
0 0 0 𝒌 −𝑙 0
0 0 0 𝑙 𝒌 0

−2𝒌𝒍 2𝒌𝒍 0 0 0 𝒌𝟐 − 𝒍𝟐]
 
 
 
 
 

 

with  

𝒌 = 𝐜𝐨𝐬𝝓 = [1 + {𝒏𝝅𝑨/𝑳𝑹𝑽𝑬𝒄𝒐𝒔(𝒏𝝅𝒙/𝑳𝑹𝑽𝑬)}
𝟐]−𝟏 𝟐⁄     and 

𝒍 = 𝒏𝝅𝑨/𝑳𝑹𝑽𝑬𝒄𝒐𝒔(𝒏𝝅𝒙/𝑳𝑹𝑽𝑬)[1 + {𝒏𝝅𝑨/𝑳𝑹𝑽𝑬𝒄𝒐𝒔(𝒏𝝅𝒙/𝑳𝑹𝑽𝑬)}
𝟐]−𝟏 𝟐⁄          

The following relation can be obtained by solving Eq (2.28): 

𝑪𝟏𝟏
𝑴𝑺𝑪 = 𝑪𝟏𝟏𝒌

𝟒 + 𝑪𝟐𝟐𝒍
𝟒 + 2(𝑪𝟏𝟐 + 2𝑪𝟔𝟔)𝒌

𝟐𝒍𝟐,                   
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𝑪𝟏𝟐
𝑴𝑺𝑪 = (𝑪𝟏𝟏 + 𝑪𝟐𝟐 − 4𝑪𝟔𝟔)𝒌

𝟐𝒍𝟐 + 𝑪𝟏𝟐(𝒌
𝟒 + 𝒍𝟒), 𝑪𝟏𝟑

𝑴𝑺𝑪 = 𝑪𝟏𝟑𝒌
𝟐 + 𝑪𝟐𝟑𝒍

𝟐, 

𝑪𝟐𝟐
𝑴𝑺𝑪 = 𝑪𝟏𝟏𝒍

𝟒 + 𝑪𝟐𝟐𝒌
𝟒 + 2(𝑪𝟏𝟐 + 2𝑪𝟔𝟔)𝒌

𝟐𝒍𝟐, 𝑪𝟐𝟑
𝑴𝑺𝑪 = 𝑪𝟏𝟑𝒍

𝟐 + 𝑪𝟐𝟑𝒌
𝟐,        

𝑪𝟑𝟑
𝑴𝑺𝑪 = 𝑪𝟑𝟑, 𝑪𝟒𝟒

𝑴𝑺𝑪 = 𝑪𝟒𝟒𝒌
𝟐 + 𝑪𝟓𝟓𝒍

𝟐, 𝑪𝟓𝟓
𝑴𝑺𝑪 = 𝑪𝟒𝟒𝒍

𝟐 + 𝑪𝟓𝟓𝒌
𝟐,                    and 

𝑪𝟔𝟔
𝑴𝑺𝑪 = (𝑪𝟏𝟏 + 𝑪𝟐𝟐 − 2𝑪𝟏𝟐 − 2𝑪𝟔𝟔)𝒌

𝟐𝒍𝟐 + 𝑪𝟔𝟔(𝒌
𝟒 + 𝒍𝟒)                                   (2.29) 

Similarly, when the CNT waviness is coplanar with 1‒3 plane, the 𝑪𝒊𝒋
𝑴𝑺𝑪 at any 

point in the HFRC lamina can be expressed using the following transformations: 

[𝑪𝑴𝑺𝑪] = [𝑻𝟐]
−𝑻[𝑪][𝑻𝟐]

−𝟏                                                   (2.30) 

where  

[𝑻𝟐] =

[
 
 
 
 
 
𝒌𝟐 0 𝒍𝟐 0 𝒌𝒍 0
0 1 0 0 0 0
𝒍𝟐 0 𝒌𝟐 0 −𝒌𝒍 0
0 0 0 𝒌 0 −𝒍

−2𝒌𝒍 0 2𝒌𝒍 0 𝒌𝟐 − 𝒍𝟐 0
0 0 0 𝒍 0 𝒌 ]

 
 
 
 
 

 

The following relation can be obtained by solving Eq. (2.30): 

𝑪𝟏𝟏
𝑴𝑺𝑪 = 𝑪𝟏𝟏𝒌

𝟒 + 𝑪𝟑𝟑𝒍
𝟒 + 2(𝑪𝟏𝟑 + 2𝑪𝟓𝟓)𝒌

𝟐𝒍𝟐, 𝑪𝟏𝟐
𝑴𝑺𝑪 = 𝑪𝟏𝟐𝒌

𝟐 + 𝑪𝟐𝟑𝒍
𝟐, 

𝑪𝟏𝟑
𝑴𝑺𝑪 = (𝑪𝟏𝟏 + 𝑪𝟑𝟑 − 4𝑪𝟓𝟓)𝒌

𝟐𝒍𝟐 + 𝑪𝟏𝟑(𝒌
𝟒 + 𝒍𝟒), 𝑪𝟐𝟐

𝑴𝑺𝑪 = 𝑪𝟐𝟐,              

𝑪𝟐𝟑
𝑴𝑺𝑪 = 𝑪𝟏𝟐𝒍

𝟐 + 𝑪𝟐𝟑𝒌
𝟐, 𝑪𝟑𝟑

𝑴𝑺𝑪 = 𝑪𝟏𝟏𝒍
𝟒 + 𝑪𝟑𝟑𝒌

𝟒 + 2(𝑪𝟏𝟑 + 2𝑪𝟓𝟓)𝒌
𝟐𝒍𝟐, 

𝑪𝟒𝟒
𝑴𝑺𝑪 = 𝑪𝟒𝟒𝒌

𝟐 + 𝑪𝟔𝟔𝒍
𝟐, 𝑪𝟔𝟔

𝑴𝑺𝑪 = 𝑪𝟒𝟒𝒍
𝟐 + 𝑪𝟔𝟔𝒌

𝟐,                                           and 

𝑪𝟓𝟓
𝑴𝑺𝑪 = (𝑪𝟏𝟏 + 𝑪𝟑𝟑 − 2𝑪𝟏𝟑 − 2𝑪𝟓𝟓)𝒌

𝟐𝒍𝟐 + 𝑪𝟓𝟓(𝒌
𝟒 + 𝒍𝟒)                                (2.31) 

Since the value of 𝝓 varies along the length of the wavy CNT, the effective 

elastic coefficients (𝑪𝒊𝒋
𝑴𝑺𝑪) also varies with the length of CNT waviness. The average 

effective elastic coefficient matrix [�̅�𝒊𝒋
𝑴𝑺𝑪] of such multiscale HFRC can be obtained by 
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averaging the transformed elastic coefficients (𝑪𝒊𝒋
𝑴𝑺𝑪) over the linear distance between 

the CNT ends, using the following relation: 

[�̅�𝒊𝒋
𝑴𝑺𝑪] =

1

𝑳𝑹𝑽𝑬
∫ [𝑪𝒊𝒋

𝑴𝑺𝑪]𝒅𝒙

𝑳𝒏

𝟎

                                                   (2.32) 

2.5  Results and Discussion 

In this section, the numerical outcomes are presented for the effective elastic properties of 

HFRC determined using the two- and three-phase analytical MOM and MT models as 

presented in previous Sections 2.2 and 2.3, respectively. We also evaluated the effects of 

CNTs waviness on the effective elastic properties of HFRC, considering the CNT waves 

are coplanar with two mutually orthogonal planes.  

2.5.1 Effective Elastic Properties of HFRC 

To determine the effective elastic properties of the base composite (without CNTs) and 

the HFRC, epoxy and carbon fiber are used as the matrix and fiber material, respectively. 

While we mixed an adequate amount of CNT with epoxy to improve the mechanical and 

damping property of the composite and its structures, such three-phase composites result 

in HFRC. The mechanical properties of the epoxy, carbon fiber, and CNT nanofiller are 

enlisted in Table 2.1. The epoxy used in the present work is the Epoxy phenol novolac 

resin Araldite LY5052and amine-based hardener Aradur 5052CH at a weight ratio of 

100:38. 

For the development of lightweight and high-performance composite, the 𝒗𝑪𝑵𝑻 in 

the epoxy matrix can vary practically up to 27% when used with different conventional 

fibers via one of the novel fabrication methods such as shear pressing (Bradford et al., 

2010; Huang et al., 2012; Bradbury et al., 2014). The 𝒗𝑪𝑭 in the composite can varies 

from 0.2 to 0.7. Unless otherwise mentioned, CNT (5, 5) is used to evaluate the 

mechanical properties of the multiscale HFRC using the MOM and MT models, and the 

estimated results are shown in Figs. 2.4–2.9. In the current study, we estimated the results 

for 0 and 10% of 𝒗𝑪𝑵𝑻 in the multiscale HFRC. It should be noted that to predict the 

mechanical properties of the base composite, the two-phase MOM and MT model is 
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used for which 𝒗𝑪𝑵𝑻 = 0 and for the multiscale HFRC, three-phase MOM and MT 

models is used when CNT (𝒗𝑪𝑵𝑻 = 10 %) is added to the composite.  

Table 2.1. Properties of the nanofiller, fiber, and matrix. 

Material Ref. 𝑪𝟏𝟏 

(GPa) 

𝑪𝟏𝟐 

(GPa) 

𝑪𝟏𝟑 

(GPa) 

𝑪𝟐𝟑 

(GPa) 

𝑪𝟑𝟑 

(GPa) 

𝑪𝟒𝟒 

(GPa) 

𝝆  

(𝐤𝐠 𝐦𝟑⁄ ) 

CNT 

(5,5) 

(Ray and 

Batra, 2009) 

668 404 184 184 2153 791 1400 

CNT 

(10,10) 

(Ray and 

Batra, 2007a) 

288 254 87.8 87.8 1088 442 1400 

CNT 

(10,0) 

(Kundalwal 

and Ray, 

2011) 

709.9 172.4 240 240 1513.1 1120 1400 

CNT 

(14,0) 

(Kundalwal 

and Ray, 

2011) 

557.5 137.5 187.7 187.7 1082.8 779.2 1400 

Carbon 

Fiber 

(Kundalwal 

and Ray, 

2011) 

236.4 10.6 10.6 10.7 24.8 7 1700 

Epoxy (Ray and 

Batra, 2007a) 

5.3 3.1 3.1 3.1 5.3 0.64 1250 

 

Figure 2.4 shows the comparison of the effective longitudinal elastic constant 

(𝑪𝟏𝟏) with respect to 𝒗𝑪𝑭 of multiscale HFRC and base composite. We obtained almost a 

linear curve as 𝑪𝟏𝟏 varies with 𝒗𝑪𝑭, this is mainly because the iso-strain condition was 

considered with the axis of symmetry for the prediction of effective longitudinal elastic 

constant (𝑪𝟏𝟏), a similar trend was obtained by Kundalwal and Ray (2011). As the value 

of 𝒗𝑪𝑵𝑻 increases from 0 to 10% a significant improvement in the elastic constant 𝑪𝟏𝟏 of 

the HFRC can be observed due to the incorporation of CNT nanofiller in the pure matrix 

as shown in Fig. 2.4. It is also be observed that for base composite the results predicted 

from both the models almost coincide with each other. Whereas for HFRC, the MT 

approach   underestimates   the    outcomes    as    compared   with   the   MOM 

approach. This   is   attributed   to  the   consideration  of different  modeling assumptions  
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Figure 2.4. Comparison of 𝑪𝟏𝟏 with respect to 𝒗𝑪𝑭 for HFRC and base composite. 

 

Figure 2.5. Comparison of 𝑪𝟑𝟑 with respect to 𝒗𝑪𝑭 for HFRC and base composite. 

 

for deriving the two models. MOM model considers ROM approach while MT model 

considers the Eshelby tensor for the interaction of the fiber and matrix phase. Thus, for 
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three-phase or HFRC, the MT approach takes the interaction of carbon fiber/matrix 

phase and interaction of CNT nanofillers/matrix phase into consideration. Hence, for the 

three-phase composite, we observed some discrepancies between the two models. 

Although, outcomes of both the models show good agreement, hence validating the 

assumptions made for the development of both MOM and MT models. 

Next, the comparison of the effective transverse elastic constant (𝑪𝟑𝟑) with 𝒗𝑪𝑭 of 

the HFRC and base composite are illustrated in Fig. 2.5. For the variation of CNT from 

0 to 10%, at the lower value of 𝒗𝑪𝑭  less improvement in 𝑪𝟑𝟑 is observed. Whereas 

comparatively high enhancement may be seen in 𝑪𝟑𝟑  as the value of 𝒗𝑪𝑭  increases. 

Similar results were observed for 𝑪𝟐𝟐, however, for the sake of brevity, the results are not 

present here. Since the material is considered as transversely isotropic along the 

longitudinal direction, therefore, due to the constructional feature of both HFRC and 

base composite the two results (𝑪𝟑𝟑) and (𝑪𝟐𝟐) are similar. In this case, the MOM model 

slightly underestimates the values of 𝑪𝟑𝟑 as compared to the MT approach. From Figs. 

2.4 and 2.5, it may be observed that for the given 𝒗𝑪𝑭 the values of 𝑪𝟏𝟏 is much higher as 

compared to the values of 𝑪𝟑𝟑  in magnitude. This is because these transverse elastic 

constants 𝑪𝟑𝟑 are matrix-dependent. Since the CNTs and carbon fibers are aligned in the 

longitudinal axis the longitudinal stiffness of the HFRC lamina is improved. Similarly, 

the effective elastic constant (𝑪𝟏𝟐) and (𝑪𝟏𝟑) are computed using similar predictions as 

shown in Figs. 2.6 and 2.7. Here also we observed that the MT model overestimates the 

values of 𝑪𝟏𝟐 and 𝑪𝟏𝟑 as compared to the MOM model. 

Figure 2.8 illustrates the comparison of the effective elastic constant (𝑪𝟐𝟑) with 

respect to 𝒗𝑪𝑭 . For the lower value of 𝒗𝑪𝑭, there is a slight increment in the results 

obtained for the HFRC as compared to the base composite. Whereas for the higher value 

of 𝒗𝑪𝑭, a significant enhancement may be observed. The trend of results for 𝑪𝟐𝟑 and 𝑪𝟏𝟑 

are found to be almost similar. Although for predicting the 𝑪𝟐𝟑 the normal strain (𝜺𝟑𝟑) 

and normal stress (𝝈𝟐𝟐 ) are under the extension-extension coupling as the loading 

condition was considered along the longitudinal direction. Figure 2.9 depicts the 

comparison of the effective shear elastic constant (𝑪𝟒𝟒) with 𝒗𝑪𝑭 of the HFRC and base 

composite. It may be noted that the 𝑪𝟒𝟒 follow the same trend as 𝑪𝟑𝟑 and 𝑪𝟐𝟑, mainly, 

due to the dependency of 𝑪𝟒𝟒 on the values of effective elastic constants 𝑪𝟑𝟑 and 𝑪𝟐𝟑. It 

may be noted that the earlier researcher (Pettermann and Suresh, 2000) reported similar 
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outcomes for predicting effective elastic constant (𝑪𝟒𝟒). In their study, they found that the 

longitudinal shear modulus 𝑪𝟒𝟒 of the laminated composite computed with the analytical 

model can be changed considerably compared to the experimental values. 

 

Figure 2.6. Comparison of 𝑪𝟏𝟐 with respect to 𝒗𝑪𝑭 for HFRC and base composite. 

 

Figure 2.7. Comparison of 𝑪𝟏𝟑 with respect to 𝒗𝑪𝑭 for HFRC and base composite. 
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Figure 2.8. Comparison of 𝑪𝟐𝟑 with respect to 𝒗𝑪𝑭 for HFRC and base composite. 

 

Figure 2.9. Comparison of 𝑪𝟒𝟒 with respect to 𝒗𝑪𝑭 for HFRC and base composite. 
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From Figs. 2.4–2.9, it may be concluded that the effective axial, transverse, and 

shear elastic properties of the HFRC are improved by incorporation of CNTs into the 

epoxy matrix, due to the high elastic properties of CNTs and the non-bonded interaction 

formed between CNTs and the epoxy phase. We also observed that for most of the part 

MOM model overestimates the value of effective elastic properties when compared with 

the MT approach. Although, the outcomes of both MOM and MT approaches are found 

to be in excellent agreement. Thus in the next section, we will discuss the effects of 

CNTs waviness of the effective elastic properties of multiscale HFRC using the MT 

approach. 

2.5.2 Effective Elastic Properties of HFRC with Wavy CNTs 

Unless otherwise mentioned, CNT (5, 5) is used for predicting the elastic properties of 

multiscale HFRC with straight and wavy CNTs. The 𝒗𝑪𝑵𝑻  of uniformly distributed 

straight CNT in the HFRC is taken as 0.1. The maximum amplitude of the CNT (5, 5) is 

considered as 𝑨 = 100 𝒅𝒏, with a diameter of CNT 𝒅𝒏 = 0.78 𝐧𝐦, and waviness factor 

(𝑨/𝑳𝑹𝑽𝑬) = 0.17. The amplitude variation of CNT waviness in the 1‒2 and 1‒3 planes 

is estimated by considering the constant value of wave frequency, 𝝎 = 5𝝅/𝑳𝑹𝑽𝑬. The 

estimated effective elastic properties of HFRC with straight or wavy CNTs are 

demonstrated in Figs. 2.10 to 2.15. 

Figure 2.10 illustrates the variation of longitudinal elastic coefficient 𝑪𝟏𝟏
𝑴𝑺𝑪  of 

different cases: HFRC with straight (n = 0) and wavy CNTs in 1‒2 and 1‒3 planes. We 

observed that the 𝑪𝟏𝟏
𝑴𝑺𝑪 linearly varies with 𝒗𝑪𝑭 because the carbon fibers are oriented 

along the x‒axis of HFRC. This is attributed to the iso-strain condition imposed on 

constituents. Thus the strain induced in the x‒direction of HFRC composite is equal to 

that of matrix and fibers. Figure 2.10 also depicts that the magnitude of 𝑪𝟏𝟏
𝑴𝑺𝑪 for wavy 

CNT case is lower compared to the straight CNT case. This is attributed to the fact the 

load-bearing capacity of the CNT reduces due to waviness.  



Chapter 2 

52 

 

 

Figure 2.10. Variation of effective elastic coefficient 𝑪𝟏𝟏
𝑴𝑺𝑪 with 𝒗𝑪𝑭 of HFRC. 

Figure 2.11 demonstrates the variation of transverse elastic coefficient 𝑪𝟑𝟑
𝑴𝑺𝑪 for 

different cases, which demonstrates the substantial improvement in the value of 𝑪𝟑𝟑
𝑴𝑺𝑪 

when CNT waves are coplanar with the 1‒3 plane. This is because the transformed value 

of 𝑪𝟑𝟑
𝑴𝑺𝑪   improves with the amplitude of CNT waves coplanar with the 1‒3 plane. 

Likewise, the values of 𝑪𝟐𝟐
𝑴𝑺𝑪 improve when the CNT waves are coplanar with 1‒2 plane 

(see Eq. 2.29). Note that the values of 𝑪𝟐𝟐
𝑴𝑺𝑪 are identical to those of 𝑪𝟑𝟑

𝑴𝑺𝑪 and for the 

sake of brevity, the results of 𝑪𝟐𝟐
𝑴𝑺𝑪  are not presented here. Similar behavior is also 

observed by Yanase et al. (2013) and Alian et al. (2016).  

Figures 2.12‒2.13 demonstrate the effect of CNT waviness on the effective elastic 

coefficients 𝑪𝟏𝟐
𝑴𝑺𝑪 and 𝑪𝟏𝟑

𝑴𝑺𝑪. It can be observed that, when the CNT waves are coplanar 

with 1‒2 plane, the values of 𝑪𝟏𝟐
𝑴𝑺𝑪  are significantly enhanced.Whereas the values of 

𝑪𝟏𝟐
𝑴𝑺𝑪 remain similar to the value of straight CNT case when the CNT waves are coplanar 

to 1‒3 plane. We observed a similar trend for 𝑪𝟏𝟑
𝑴𝑺𝑪  as well, because the HFRC 

demonstrated transversely isotropic behavior. The variation of values of 𝑪𝟐𝟑
𝑴𝑺𝑪 with the 

𝒗𝑪𝑭  of HFRC is shown in Fig. 2.14.  It can be noted that the effect of CNT  waviness is 
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not pronounced when the CNT waves are coplanar with 1‒2 and 1‒3 planes. It can be 

observed from the transformation relations (Eqs. 2.29 and 2.31) that the waviness of 

CNT has a major impact on 𝑪𝟏𝟐
𝑴𝑺𝑪 and 𝑪𝟏𝟑

𝑴𝑺𝑪 but on the 𝑪𝟐𝟑
𝑴𝑺𝑪. 

 

Figure 2.11. Variation of effective elastic coefficient 𝑪𝟑𝟑
𝑴𝑺𝑪 with 𝒗𝑪𝑭 of HFRC. 

 

Figure 2.12. Variation of effective elastic coefficient 𝑪𝟏𝟐
𝑴𝑺𝑪 with 𝒗𝑪𝑭 of HFRC. 
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Figure 2.13. Variation of effective elastic coefficient 𝑪𝟏𝟑
𝑴𝑺𝑪 with 𝒗𝑪𝑭 of HFRC. 

 

Figure 2.14. Variation of effective elastic coefficient 𝑪𝟐𝟑
𝑴𝑺𝑪 with 𝒗𝑪𝑭 of HFRC. 
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Figure 2.15 illustrates the variation of 𝑪𝟓𝟓
𝑴𝑺𝑪 with the 𝒗𝑪𝑭 of HFRC, and we can 

observe a significant improvement in the values of 𝑪𝟓𝟓
𝑴𝑺𝑪 when the waviness of CNT is 

coplanar with 1‒3 plane. Similar behavior is observed for the value 𝑪𝟔𝟔
𝑴𝑺𝑪, which depends 

on the effective elastic coefficients 𝑪𝟐𝟐
𝑴𝑺𝑪 and 𝑪𝟏𝟐

𝑴𝑺𝑪. However, the results of 𝑪𝟔𝟔
𝑴𝑺𝑪 are not 

shown here for the sake of brevity. 

 

Figure 2.15. Variation of effective elastic coefficient 𝑪𝟓𝟓
𝑴𝑺𝑪 with 𝒗𝑪𝑭 of HFRC. 

Figure 2.16 demonstrates the effect of CNT wave frequency (𝝎 = 𝒏𝝅 𝑳𝑹𝑽𝑬⁄ ) on 

the effective elastic coefficient 𝑪𝟏𝟏
𝑴𝑺𝑪  when the CNT waves are coplanar with two 

mutually orthogonal planes (i.e., 1‒2 and 1‒3 planes). The value of multiplying factor 

ranges from 𝒏 = 0 to 20 . It can be observed from Fig. 2.16 that the value of 𝑪𝟏𝟏
𝑴𝑺𝑪 

reduces drastically for the value of 𝒏 ≤ 15. However, the effect of CNT wave frequency 

on the 𝑪𝟏𝟏
𝑴𝑺𝑪 reduces and it approaches a stable value when 𝒏 > 15. Figure 2.17 shows 

the effect of CNT wave frequency on the effective elastic coefficient 𝑪𝟑𝟑
𝑴𝑺𝑪,  which 

demonstrates the significant improvement in the value of 𝑪𝟑𝟑
𝑴𝑺𝑪 when the CNT waves are 

coplanar with 1‒3 plane. However, the improvement in the value 𝑪𝟑𝟑
𝑴𝑺𝑪 is insignificant 

when CNT waves are coplanar with 1‒2 planes. 
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Figure 2.16. Variation of effective elastic coefficient 𝑪𝟏𝟏
𝑴𝑺𝑪 of HFRC with respect to 

multiplying factor ‘n’ (𝝎 =  𝒏𝝅 𝑳𝑹𝑽𝑬⁄ ;  𝒏 = 0 to 20) 

 

Figure 2.17. Variation of effective elastic coefficient 𝑪𝟑𝟑
𝑴𝑺𝑪 of HFRC with respect to 

multiplying factor ‘n’ (𝝎 =  𝒏𝝅 𝑳𝑹𝑽𝑬⁄ ;  𝒏 = 0 to 20) 
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Figure 2.18. Variation of effective elastic coefficient 𝑪𝟏𝟑
𝑴𝑺𝑪 of HFRC with respect to 

multiplying factor ‘n’ (𝝎 =  𝒏𝝅 𝑳𝑹𝑽𝑬⁄ ;  𝒏 = 0 to 20) 

 

Figure 2.19. Variation of effective elastic coefficient 𝑪𝟓𝟓
𝑴𝑺𝑪 of HFRC with respect to 

multiplying factor ‘n’ (𝝎 =  𝒏𝝅 𝑳𝑹𝑽𝑬⁄ ;  𝒏 = 0 𝑡𝑜 20) 
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The influence of CNT waviness on the effective elastic coefficient 𝑪𝟏𝟑
𝑴𝑺𝑪  is 

presented in Fig. 2.18. The figure shows that the value of 𝑪𝟏𝟑
𝑴𝑺𝑪 increases with the CNT 

wave frequency. The maximum value is observed at n = 8.5 when the CNT waves are 

coplanar with 1‒3 plane. Figure 2.19 illustrates the influence of CNT waviness on the 

effective elastic coefficient 𝑪𝟓𝟓
𝑴𝑺𝑪. The figure reveals a trend similar to 𝑪𝟏𝟑

𝑴𝑺𝑪 due to the 

dependency of 𝑪𝟓𝟓
𝑴𝑺𝑪 on the values 𝑪𝟑𝟑

𝑴𝑺𝑪 and 𝑪𝟏𝟑
𝑴𝑺𝑪. For the sake of brevity, the results of 

𝑪𝟏𝟐
𝑴𝑺𝑪 and 𝑪𝟔𝟔

𝑴𝑺𝑪 are not presented here, although we have  observed that the values of 

𝑪𝟏𝟐
𝑴𝑺𝑪  and 𝑪𝟔𝟔

𝑴𝑺𝑪  are analogous with 𝑪𝟏𝟑
𝑴𝑺𝑪  and 𝑪𝟓𝟓

𝑴𝑺𝑪,  showing substantial increments 

when the CNT waves are coplanar with 1‒2 plane. It may be concluded from Figs. 2.10 

to 2.19 that the effective elastic properties of multiscale HFRC are influenced by the 

CNT’s waviness. The axial elastic coefficients decrease, and transverse elastic 

coefficients increase due to the CNT waviness. Also, based on our findings we can 

conclude that if CNTs of different wave amplitude are present in the microstructure then 

the rate of increment and decrement in the transverse and longitudinal coefficients, 

respectively, will be a function of the average of the CNT wave amplitudes present in the 

structure. Thus, the inherent issue of wavy CNTs can be utilized carefully to tailor the 

elastic properties of multiscale composites, which is why it is interesting to study the 

effect of wavy CNT on the damping performance of multiscale HFRC smart structures 

discussed in the next Chapters.  

2.6 Summary 

Micromechanical analysis of a multiscale HFRC composed of armchair CNTs, carbon 

fibers, and polyimide matrix has been carried out. The carbon fiber and CNT nanofillers 

reinforcements are horizontally aligned and uniformly distributed in the matrix phase of 

HFRC. Two analytical models based on the two- and three-phase micromechanics 

paradigms such as the MOM approach and the MT method are derived to predict the 

effective elastic properties of a lamina made of base composites (without CNTs) and 

HFRC, respectively. In addition, an analytical model is derived to study the effects of 

CNT waviness on the effective elastic properties of the HFRC. We observed that the 

outcomes of both MOM and MT models are in good agreement with the MOM model 

slightly overpredicting the values, compared to the MT model. Due to the incorporation 

of CNTs in the matrix phase, the material properties of HFRC lamina show substantial 
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improvement. Next, we investigated the influence of the waviness of CNTs on the 

effective elastic properties of the HFRC by considering the wavy CNTs to be coplanar 

with either of the two mutually orthogonal planes using the MT approach. When the 

wavy CNTs are coplanar with the 1–2 or 1–3 plane then the transverse effective elastic 

properties of the HFRC are significantly improved over their values with the straight 

CNTs for the higher values of the wave frequencies and the amplitudes of the CNTs. 

However, due to the waviness, the CNTs are flexible in the longitudinal direction and, 

hence, the load-transfer capacity of CNTs in the longitudinal direction degrades 

drastically as compared to the straight CNTs. Thus, we observed the reduction in the 

longitudinal effective elastic coefficient of HFRC due to the CNT waves. The present 

study reveals that the wavy CNTs can be properly used to construct nanocomposites with 

superior elastic properties. The results presented here may also be used for comparing the 

experimental estimations. 

 



 



 

 

Chapter 3 
 

Active Vibration Damping of Smart 

Multiscale Hybrid Fiber Reinforced 

Composite Beams Using 1‒3 

Piezoelectric Composites 
 

This Chapter (Gupta et al., 2021) describes the active vibration damping of multiscale 

laminated hybrid fiber-reinforced composite (HFRC) substrate beams, using 1‒3 

piezoelectric composite (PZC) as the material of the constraining layer of active 

constrained layer damping (ACLD) treatment. Based on a layerwise first order shear 

deformation theory (FSDT), a finite element (FE) model is developed for the smart 

laminated HFRC beam integrated with the ACLD treatment patch. The effect of in-plane 

and transverse-plane actuation of the integrated ACLD treatment layer on the damping 

characteristics of the smart cantilever HFRC beam is investigated. The parameters 

affecting the damping characteristics of the HFRC substrate beam such as the volume 

fraction of both carbon nanotubes (CNTs) and carbon fiber, and the aspect ratio are also 

studied. 

                                                                                                                             

3.1  Introduction 

The analytical micromechanics models based on the MOM approach and the MT method 

derived in the previous Chapter reveal that the HFRC being studied here is characterized 

by significantly improved effective longitudinal and transverse elastic properties. In this 

chapter, a FE model is developed to investigate the performance of the patches of the 

ACLD treatment for causing the active control of vibrations of laminated multiscale 

HFRC smart beams. The constraining layer of the ACLD treatment is considered to be 
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made of the vertically reinforced 1‒3 PZC material; while the constrained layer is made 

of a viscoelastic material. The substrate HFRC beam is composed of multiscale 

reinforcements of nanoscale CNT nanofillers and macroscale carbon fibers. The 

multiscale reinforcements are considered to be uniformly distributed along the 

longitudinal direction of HFRC lamina. Also, for the present analysis, the CNTs are 

considered to be straight. The displacement field equations for the multiscale HFRC 

beams integrated with the ACLD patch at its top surface have been considered according 

to a layer wise FSDT. Based on the displacement field equations FE model is derived 

using the FSDT incorporating the inherent zig-zag effects. For the active vibration 

control of the laminated HFRC smart beam, a closed-loop model is also presented based 

on the simple velocity feedback control law. The performance of the patches for 

controlling the vibrations of the multiscale HFRC smart beam has been thoroughly 

investigated. The numerical results indicate that the ACLD patches significantly improve 

the damping characteristics of the multiscale HFRC smart beam for suppressing their 

geometrical vibrations. To bring more clarity, the quantitative relative performance of 

HFRC is also presented and the results are compared with the base composite beam. 

3.2  Finite Element Modelling of a Smart Beam 

The FE model is derived to investigate the performance of the novel laminated HFRC 

smart beam attached with ACLD treatment constraining layer of 1‒3 PZC material at the 

upper surface of the beam, comprising 𝑵 numbers of HFRC lamina as shown in Fig 3.1. 

All the layers of the HFRC beam are assumed transversely isotropic, uniformly 

homogeneous, and linearly elastic. The ACLD layer is composed of viscoelastic material. 

The volume of the HFRC substrate beam is determined using a simple relation: 

𝑳 × 𝒃 × 𝒉, where 𝑳, b, and h denote the respective length, width, and height of the beam. 

While 𝑳𝒂 denotes the length of ACLD treatment constraining layer of piezo material; 𝒉𝒗 

and 𝒉𝒑 denote the respective thickness of ACLD and the 1‒3 PZC layer. The reference 

plane of the laminated HFRC smart beam is considered as the mid-plane of the substrate 

beam. The global coordinate system is defined in such a way that its origin is situated on 

the reference plane. The smart beam is subjected to cantilevered boundary conditions 

(𝒙 = 0, and L). Here, the FSDT is used for modelling the axial displacement in each 
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layer of an overall beam which can be considered as a thin beam. According to the 

FSDTs, Fig. 3.2 illustrates the kinematics of deformation of the laminated HFRC smart 

beam in the axial direction. Here, the generalized translational displacement at any point 

on the reference plane (𝒛 =  0)  is denoted by 𝒖𝟎 . 𝜽𝒙, 𝝓𝒙  and 𝜸𝒙  represent the 

generalized rotations of the normals to the mid planes of the HFRC substrate beam, the 

ACLD, and the 1‒3 PZC, respectively, in the 𝒙𝒛 plane. In Fig 3.2, the coordinate (𝒛) in 

the thickness direction of the upper and lower surface of any (𝒌𝒕𝒉) layer of the overall 

composite beam is given by 𝒉𝒌+1  and 𝒉𝒌  (𝒌 =  1, 2, 3, . . . , 𝑵 +  2) , respectively. 

According to the FSDT, the axial displacement 𝒖 at any point of the beam in the x-

direction can be written as: 

𝒖(𝒙, 𝒛, 𝒕) = 𝒖𝟎(𝒙, 𝒕) + (𝒛 − 〈𝒛 − 𝒉 2⁄ 〉)𝜽𝒙(𝒙, 𝒕) + (〈𝒛 − 𝒉 2⁄ 〉 − 〈𝒛 − 𝒉𝑵+2〉)𝝓𝒙(𝒙, 𝒕) +

                       〈𝒛 − 𝒉𝑵+2〉𝜸𝒙(𝒙, 𝒕)     (3.1) 

 

Figure 3.1. Laminated HFRC smart beam attached with viscoelastic and 1‒3 PZC layer. 
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Figure 3.2. Kinematics of axial deformation of HFRC smart beam. 

where the function within brackets 〈 〉 denote suitable singularity function also termed as 

zig-zag function. In a general layer-wise formulation of a beam theory, for the modeling 

of axial deformation, the zig-zag beam theory is used as shown in Eq. (3.1). The axial 

displacement field could be modeled as a piecewise continuous function that is a 

collection of linear functions defined for each layer. This theory consists of three such 

piecewise continuous expressions that account for the displacements in the HFRC 

substrate beam, ACLD layer, and the 1‒3 PZC layer, respectively. The proposed zigzag 

function vanishes at the top and bottom surfaces of the beam and does not require full 

shear-stress continuity across the thickness laminated beam. Also, this theory appears as a 

natural extension to the FSDT for laminated-composite beams. We considered the 

transverse normal strain in the model. The transverse actuation is used to control the 

transverse amplitudes of deflection. Due to the consideration of thin beam analysis, the 

variation of the transverse displacement (𝒘) in the thickness direction at any point of the 

HFRC base beam, ACLD, and constraining layer are considered to be affine across the 

thickness direction. Hence, in the case of the overall beam, the transverse displacement 

can be expressed as: 

𝒘(𝒙, 𝒛, 𝒕) = 𝒘𝟎(𝒙, 𝒕) + (𝒛 − 〈𝒛 − 𝒉 2⁄ 〉)𝜽𝒛(𝒙, 𝒕) + (〈𝒛 − 𝒉 2⁄ 〉 − 〈𝒛 − 𝒉𝑵+2〉)𝝓𝒛(𝒙, 𝒕) 

+〈𝒛 − 𝒉𝑵+2〉𝜸𝒛(𝒙, 𝒕)                                                 (3.2) 
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where 𝒘𝟎  denotes the transverse displacement; 𝜽𝒛, 𝝓𝒛  and 𝜸𝒛  denote the generalized 

displacements signifying the gradients corresponding to z-direction of HFRC base beam, 

ACLD, and the constraining layer, respectively. 

To simplify the mathematical formulation, the generalized displacement variables 

divided into two vectors are written as: 

                                                            {𝒅𝒕} = [𝒖𝟎 𝒘𝟎]𝑻   and    

{𝒅𝒓} = [𝜽𝒙 𝜽𝒛 𝝓𝒙 𝝓𝒛 𝜸𝒙 𝜸𝒛]
𝑻   (3.3) 

The normal strains (𝝐𝒙
𝒌 and 𝝐𝒛

𝒌) represent the state of strain at any layer of the 

laminated HFRC smart beam with respect to the x– and z–axis, respectively, and 𝝐𝒙𝒛
𝒌  is 

the transverse shear strain.  

Using Eqs. (3.1) and (3.2) the state of strain can be obtained by considering plane 

strain condition and the relations of linear strain displacement: 

                                              {𝝐𝒃
𝒌} = {𝝐𝒃𝒕} + [𝒁𝟏]{𝝐𝒃𝒓}, 

               𝝐𝒙𝒛
𝒌 = 𝝐𝒔𝒕 + [𝒁𝟒]{𝝐𝒔𝒓},  𝒌 = 1,2,3, . . . , 𝑵 

      {𝝐𝒃
𝒌} = {𝝐𝒃𝒕} + [𝒁𝟐]{𝝐𝒃𝒓},        (3.4) 

                                               𝝐𝒙𝒛
𝒌 = 𝝐𝒔𝒕 + [𝒁𝟓]{𝝐𝒔𝒓},   𝒌 = 𝑵 + 1 

                                              {𝝐𝒃
𝒌} = {𝝐𝒃𝒕} + [𝒁𝟑]{𝝐𝒃𝒓}, 

                                              𝝐𝒙𝒛
𝒌 = 𝝐𝒔𝒕 + [𝒁𝟔]{𝝐𝒔𝒓},    𝒌 = 𝑵 + 2 

In which {𝝐𝒃
𝒌} is the strain vector, {𝝐𝒃𝒕}, {𝝐𝒃𝒓}, {𝝐𝒔𝒕}, and {𝝐𝒔𝒓} are the generalized 

strains and  [𝒁𝟏], [𝒁𝟐], [𝒁𝟑], [𝒁𝟒], [𝒁𝟓] and [𝒁𝟔] are the transformation matrices that are 

written as:   

{𝝐𝒃
𝒌} = [{𝝐𝒙

𝒌} {𝝐𝒛
𝒌}]

𝑻
, {𝝐𝒃𝒕} = [

𝜹𝒖𝟎

𝜹𝒙
0]

𝑻

, 

{𝝐𝒃𝒓} = [
𝜹𝜽𝒙

𝜹𝒙

𝜹𝝓𝒙

𝜹𝒙

𝜹𝜸𝒙

𝜹𝒙
𝜽𝒛 𝝓𝒛 𝜸𝒛]

𝑻

, 
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𝝐𝒔𝒕 =
𝜹𝒘𝟎

𝜹𝒙
, {𝝐𝒔𝒓} = [𝜽𝒛 𝝓𝒛 𝜸𝒛

𝜹𝜽𝒙

𝜹𝒙

𝜹𝝓𝒙

𝜹𝒙

𝜹𝜸𝒙

𝜹𝒙
]
𝑻

,           (3.5) 

[𝒁𝟏] = [
𝒛 0 0 0 0 0
0 0 0 1 0 0

], 

[𝒁𝟐] = [
𝒉/2 (𝒛 − 𝒉/2) 0 0 0 0
0 0 0 0 1 0

], 

[𝒁𝟑] = [
𝒉/2 𝒉𝒗 (𝒛 − 𝒉𝑵+𝟐) 0 0 0
0 0 0 0 0 1

], 

[𝒁𝟒] = [1 0 0 𝒛 0 0], 

[𝒁𝟓] = [0 1 0 𝒉/2 (𝒛 − 𝒉/2) 0], 

[𝒁𝟔] = [0 0 1 𝒉/2 𝒉𝒗 (𝒛 − 𝒉𝑵+𝟐)] 

For the transversely isotropic layers of the base beam, the constitutive relations 

are obtained as: 

{𝝈𝒃
𝒌} = [𝑪𝒃

𝒌]{𝝐𝒃
𝒌}  and 

𝝈𝒙𝒛
𝒌 = �̅�𝟓𝟓

𝒌 𝝐𝒙𝒛
𝒌 ;  (𝒌 = 1, 2, 3, . . . , 𝑵)           (3.6) 

where 

{𝝈𝒃
𝒌} = [𝝈𝒙

𝒌 𝝈𝒛
𝒌]𝑻, [𝑪𝒃

𝒌] = [
�̅�𝟏𝟏

𝒌 �̅�𝟏𝟑
𝒌

�̅�𝟏𝟑
𝒌 �̅�𝟑𝟑

𝒌
] 

and the transformed elastic stiffness constants corresponding to the reference coordinate 

system are �̅�𝒊𝒋
𝒌  (𝒊, 𝒋 =  1, 3 and 5). It is assumed that the viscoelastic layer is isotropic 

and linearly viscoelastic. Eq. (3.6) represented constitutive relation of the viscoelastic 

layer (𝒌 =  𝑵 +  1) obtained by using the approach of dynamic modulus, with �̅�𝒊𝒋
𝑵+𝟏 

(𝒊, 𝒋 =  1, 3 and 5)  being the complex elastic constants (Chantalakhana and Stanway, 

2001; Jeung and Shen, 2001). For the piezo layer, the constitutive relations can be 

obtained as: 

 



 Active Vibration Damping of Smart Multiscale HFRC Beams Using 1‒3 PZC  

 

67 

 

{𝝈𝒃
𝒌} = [𝑪𝒃

𝒌]{𝝐𝒃
𝒌} − {𝒆}𝑬𝒛, 

𝑫𝒛 = {𝒆}𝑻{𝝐𝒃
𝒌} + 𝜺𝟑𝟑𝑬𝒌  and  (3.7) 

𝝈𝒙𝒛
𝒌 = �̅�𝟓𝟓

𝒌 𝝐𝒙𝒛
𝒌 ;  𝒌 = 𝑵 + 2 

where {𝒆} indicates the 1‒3 PZC constant matrix and 𝑬𝒛 indicates the applied electric 

field and these terms can be given by: 

{𝒆} = [𝒆𝟑𝟏 𝒆𝟑𝟑]𝑻 and  𝑬𝒛 = −𝑽 𝒉𝒑⁄    (3.8) 

where 𝑽 denotes a voltage difference applied over the thickness of 1‒3 PZC layer.  

𝑻𝒑  and 𝑻𝒌  indicate the total potential and the kinetic energy of the overall beam and 

calculated as (Ro and Baz, 2002): 

𝑻𝒑 =
𝟏

2
∑ ∫ ({𝝐𝒌}

𝑻
{𝝈𝒌} + 𝝐𝒙𝒛

𝒌 𝝈𝒙𝒛
𝒌 )𝒅𝜴 −

𝟏

2

 

𝜴

𝑵+𝟐

𝒌=𝟏

∫𝑫𝒛𝑬𝒛𝒅𝜴
 

𝜴

− ∫�̅�𝒘𝒅𝑨
 

𝑨

         (3.9) 

and 

𝑻𝒌 =
𝟏

2
∑ ∫ 𝝆𝒌{�̇�𝒕}

𝑻
{�̇�𝒕}𝒅𝜴

 

𝜴

𝑵+𝟐

𝒌=1

                                            (3.10) 

in which mass density of any 𝒌th layer is denoted by 𝝆𝒌; �̅� denotes the surface traction 

applied externally over a surface area 𝑨 and volume 𝜴. While evaluating the kinetic 

energy, the rotary inertia was ignored as the beam is considered to be a thin beam. The 

discretization of the overall beam is carried out by using three noded isoparametric bar 

elements. 

Making use of Eq. (3.3), the generalized displacement vectors with respect to 𝒊th 

(𝒊 =  1, 2, 3) node of the element are expressed as: 

                                                           {𝒅𝒕𝒊} = [𝒖𝟎𝒊 𝒘𝟎𝒊]𝑻  and 

{𝒅𝒓𝒊} = [𝜽𝒙𝒊 𝜽𝒛𝒊 𝝓𝒙𝒊 𝝓𝒛𝒊 𝜸𝒙𝒊 𝜸𝒛𝒊]
𝑻   (3.11) 
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Therefore, the generalized displacement vectors at any point within the element 

are expressed as: 

{𝒅𝒕} = [𝑵𝒕]{𝒅𝒕
𝒆} and {𝒅𝒓} = [𝑵𝒓]{𝒅𝒓

𝒆}  (3.12) 

where 

{𝒅𝒕
𝒆} = [{𝒅𝒕𝟏

𝒆 }𝑻 {𝒅𝒕𝟐
𝒆 }𝑻 {𝒅𝒕𝟑

𝒆 }𝑻]𝑻, {𝒅𝒓
𝒆} = [{𝒅𝒓𝟏

𝒆 }𝑻 {𝒅𝒓𝟐
𝒆 }𝑻 {𝒅𝒓𝟑

𝒆 }𝑻]𝑻,   

[𝑵𝒕] = [𝑵𝒕𝟏 𝑵𝒕𝟐 𝑵𝒕𝟑]
𝑻, [𝑵𝒓] = [𝑵𝒓𝟏 𝑵𝒓𝟐 𝑵𝒓𝟑]

𝑻, 

𝑵𝒕𝒊 = 𝒏𝒊𝑰𝒕 and  𝑵𝒓𝒊 = 𝒏𝒊𝑰𝒓 

with 𝑰𝒕  and 𝑰𝒓  are respective 2 ×  2  and 6 ×  6  unit matrices, and 𝒏𝒊  is the shape 

function of natural coordinates with respect to 𝒊 th node. Employing Eqs. (3.3), (3.5), 

(3.11), and (3.12), the generalized strain vectors at any point within the element that can 

be written as: 

{𝝐𝒃𝒕} = [𝑩𝒕𝒃]{𝒅𝒕
𝒆},  {𝝐𝒃𝒓} = [𝑩𝒓𝒃]{𝒅𝒓

𝒆}, 

𝝐𝒔𝒕 = [𝑩𝒕𝒔]{𝒅𝒕
𝒆}, and  [𝝐𝒔𝒓] = [𝑩𝒓𝒔]{𝒅𝒓

𝒆}        (3.13) 

where [𝑩𝒕𝒃], [𝑩𝒓𝒃], [𝑩𝒕𝒔], and [𝑩𝒓𝒔] denote the nodal strain–displacement matrices that 

can be written as: 

[𝑩𝒕𝒃] = [𝑩𝒕𝒃𝟏 𝑩𝒕𝒃𝟐 𝑩𝒕𝒃𝟑], 

[𝑩𝒓𝒃] = [𝑩𝒓𝒃𝟏 𝑩𝒓𝒃𝟐 𝑩𝒓𝒃𝟑], 

[𝑩𝒕𝒔] = [𝑩𝒕𝒔𝟏 𝑩𝒕𝒔𝟐 𝑩𝒕𝒔𝟑],                                            and 

                                       [𝑩𝒓𝒔] = [𝑩𝒓𝒔𝟏 𝑩𝒓𝒔𝟐 𝑩𝒓𝒔𝟑]            (3.14) 

The submatrices appeared in Eq. (3.14) can be obtained as: 

𝑩𝒕𝒃𝒊 = [
𝜹𝒏𝒊

𝜹𝒙
0

0 0
], 𝑩𝒕𝒔𝒊 = [0

𝜹𝒏𝒊

𝜹𝒙
], 
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𝑩𝒓𝒃𝒊 =

[
 
 
 
 
 
 
 
𝜹𝒏𝒊

𝜹𝒙
0 0 0 0 0

0 0
𝜹𝒏𝒊

𝜹𝒙
0 0 0

0 0 0 0
𝜹𝒏𝒊

𝜹𝒙
0

0 𝒏𝒊 0 0 0 0
0 0 0 𝒏𝒊 0 0
0 0 0 0 0 𝒏𝒊]

 
 
 
 
 
 
 

 , 𝑩𝒓𝒔𝒊 =

[
 
 
 
 
 
 
 
𝒏𝒊 0 0 0 0 0
0 0 𝒏𝒊 0 0 0
0 0 0 0 𝒏𝒊 0

0
𝜹𝒏𝒊

𝜹𝒙
0 0 0 0

0 0 0
𝜹𝒏𝒊

𝜹𝒙
0 0

0 0 0 0 0
𝜹𝒏𝒊

𝜹𝒙 ]
 
 
 
 
 
 
 

      (3.15) 

Finally, by making use of Eqs. (3.12) and (3.13) into Eqs. (3.9) and (3.10), the 

total potential energy (𝑻𝒑
𝒆)  and the kinetic energy (𝑻𝒌

𝒆) of a typical length of element 

(𝑳𝒆) improved via ACLD treatment, and can be written as follows: 

𝑻𝒑
𝒆 =

1

2
𝒃[{𝒅𝒕

𝒆}𝑻[𝑲𝒕𝒕
𝒆 ]{𝒅𝒕

𝒆} + {𝒅𝒕
𝒆}𝑻[𝑲𝒕𝒓

𝒆 ]{𝒅𝒓
𝒆} + {𝒅𝒓

𝒆}𝑻[𝑲𝒕𝒓
𝒆 ]{𝒅𝒕

𝒆} + {𝒅𝒓
𝒆}𝑻[𝑲𝒓𝒓

𝒆 ]{𝒅𝒓
𝒆}

− 2{𝒅𝒕
𝒆}𝑻{𝑭𝒕𝒑

𝒆 }𝑽 − 2 {𝒅𝒓
𝒆}𝑻 {𝑭𝒓𝒑

𝒆 } 𝑽 − 2 {𝒅𝒕
𝒆}𝑻{𝑭𝒆}𝑽 − 𝜺𝟑𝟑𝑽

𝟐/𝒉𝒑]  (3.16) 

and 

𝐓𝐤
𝐞 =

1

2
𝐛∫ �̅�{�̇�𝐭

𝐞}
𝐓
[𝐍]𝐓[𝐍]

𝐋𝐞

𝟎

{�̇�𝐭
𝐞}𝐝𝐱                                      (3.17) 

In Eqs. (3.16) and (3.17), the elemental stiffness matrices [𝑲𝒕𝒕
𝒆 ], [𝑲𝒕𝒓

𝒆 ], [𝑲𝒓𝒓
𝒆 ], 

elemental electrostatic coupling vector {𝑭𝒕𝒑
𝒆 }, {𝑭𝒓𝒑

𝒆 }, elemental load vector {𝑭𝒆} and the 

mass parameter (�̅�) can be obtained as follows: 

[𝑲𝒕𝒕
𝒆 ] = ∫ ([𝑩𝒕𝒃]

𝑻[𝑫𝒕𝒃][𝑩𝒕𝒃] + [𝑩𝒕𝒔]
𝑻[𝑫𝒕𝒔][𝑩𝒕𝒔])𝒅𝒙

𝑳𝒆

𝟎

, 

[𝑲𝒕𝒓
𝒆 ] = ∫ ([𝑩𝒕𝒃]

𝑻[𝑫𝒕𝒓𝒃][𝑩𝒓𝒃] + [𝑩𝒕𝒔]
𝑻[𝑫𝒕𝒓𝒔][𝑩𝒓𝒔])𝒅𝒙

𝑳𝒆

𝟎

, 

[𝑲𝒓𝒓
𝒆 ] = ∫ ([𝑩𝒓𝒃]

𝑻[𝑫𝒓𝒓𝒃][𝑩𝒓𝒃] + [𝑩𝒓𝒔]
𝑻[𝑫𝒓𝒓𝒔][𝑩𝒓𝒔])𝒅𝒙

𝑳𝒆

𝟎

, 

{𝑭𝒕𝒑
𝒆 } = ∫ [𝑩𝒕]

𝑻{𝑫𝒕𝒑}𝒅𝒙
𝑳𝒆

𝟎

;   {𝑭𝒓𝒑
𝒆 } = ∫ [𝑩𝒓]

𝑻{𝑫𝒓𝒑}𝒅𝒙
𝑳𝒆

𝟎

;   {𝑭𝒆}

= ∫ �̅�[𝑵𝒕]
𝑻[0 1]𝑻𝒅𝒙

𝑳𝒆

𝟎

, 
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�̅� = ∑ 𝝆𝒌(𝒉𝒌+1 − 𝒉𝒌)

𝑵+2

𝒌=1

                                               (3.18) 

The various rigidity matrices are denoted by [𝑫𝒕𝒃], [𝑫𝒕𝒓𝒃], [𝑫𝒓𝒓𝒃], [𝑫𝒕𝒔], [𝑫𝒕𝒓𝒔], 

[𝑫𝒓𝒓𝒔]. The rigidity vectors for electroelastic coupling ({𝑫𝒕𝒑}, {𝑫𝒓𝒑}) appeared in Eq. 

(3.18) are expressed as follows: 

[𝑫𝒕𝒃] = ∑ ∫ [�̅�𝒃
𝒌]𝒅𝒛

𝒉𝒌+1

𝒉𝒌

𝑵+2

𝒌=1

 

[𝑫𝒕𝒓𝒃] = ∑ ∫ [𝑪𝒃
𝒌][𝒁𝟏]𝒅𝒛

𝒉𝒌+1

𝒉𝒌

+ ∫ [�̅�𝒃
𝑵+1][𝒁𝟐]𝒅𝒛 +

𝒉𝑵+2

𝒉𝑵+1

𝑵

𝒌=1

∫ [�̅�𝒃
𝑵+2][𝒁𝟑]𝒅𝒛

𝒉𝑵+3

𝒉𝑵+𝟐

 

[𝑫𝒓𝒓𝒃] = ∑ ∫ [𝒁𝟏]
𝑻[𝑪𝒃

𝒌][𝒁𝟏]𝒅𝒛 + ∫ [𝒁𝟐]
𝑻[�̅�𝒃

𝑵+1][𝒁𝟐]𝒅𝒛
𝒉𝒌+𝟐

𝒉𝑵+𝟏

𝒉𝒌+1

𝒉𝒌

𝑵

𝒌=1

 

+∫ [𝒁𝟑]
𝑻[�̅�𝒃

𝑵+2][𝒁𝟐]𝒅𝒛
𝒉𝒌+3

𝒉𝑵+2

 

{𝑫𝒕𝒑} = ∫ −{𝒆}/𝒉𝒑𝒅𝒛
𝒉𝒌+3

𝒉𝑵+𝟐

, 

{𝑫𝒓𝒑} = ∫ −[𝒁𝟑]
𝑻{𝒆}/𝒉𝒑𝒅𝒛

𝒉𝒌+3

𝒉𝑵+2

                                                (3.19) 

Applying the principle of virtual work (Ro and Baz, 2002), the open loop 

equation of motion for the coupled beam can be expressed as: 

[𝑴𝒆]{�̈�𝒕
𝒆} + [𝑲𝒕𝒕

𝒆 ]{𝒅𝒕
𝒆} + [𝑲𝒕𝒓

𝒆 ]{𝒅𝒓
𝒆} = {𝑭𝒕𝒑

𝒆 }𝑽 + {𝑭𝒆}  (3.20) 

[𝑲𝒓𝒕
𝒆 ]{𝒅𝒕

𝒆} + [𝑲𝒓𝒓
𝒆 ]{𝒅𝒓

𝒆} = {𝑭𝒓𝒑
𝒆 }𝑽    (3.21) 

It should be noted that as the viscoelastic layer has a complex elastic stiffness 

matrix. The element improved with the ACLD treatment also has a complex stiffness 

matrix. Thus, for the element improved without the treatment of ACLD, the electroelastic 

coupling matrices are null vectors and elemental stiffness matrices are real. Since the 
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stiffness matrices are combined in two separate parts, namely, bending and transverse 

shear deformation. Hence, to avoid the condition of shear locking for a thin beam, one 

can use the reduced order integration rule (2 × 2). By combining the elemental Eqs., the 

open loop global Eq. of motion can be expressed as: 

[𝑴]{�̈�} + [𝑲𝒕𝒕]{𝑿} + [𝑲𝒕𝒓]{𝑿𝒓} = {𝑭𝒕𝒑}𝑽 + {𝑭}   (3.22) 

and 

[𝑲𝒓𝒕]{𝑿} + [𝑲𝒓𝒓]{𝑿𝒓} = {𝑭𝒓𝒑}𝑽    (3.23) 

where the global mass matrix is denoted by [𝑴] ; the global stiffness matrices are 

represented by [𝑲𝒕𝒕] , [𝑲𝒕𝒓],  and [𝑲𝒓𝒓] ; the global electroelastic coupling vectors are 

denoted by {𝑭𝒕𝒑}  and {𝑭𝒓𝒑} ; the global nodal generalized displacement vectors are 

denoted by {𝑿} and {𝑿𝒓}; and the global nodal force vector is presented by {𝑭}. After the 

application of boundary conditions, the global equation of motion in terms of global 

nodal translational degrees of freedom (DOF) {𝑿} is obtained by reducing the global 

generalized DOF {𝑿𝒓}, and can be written as follows: 

[𝑴]{�̈�} + [𝑲]{𝑿} = ({𝑭𝒕𝒑} − [𝑲𝒕𝒓][𝑲𝒓𝒓]
−𝟏{𝑭𝒓𝒑})𝑽 + {𝑭}  (3.24) 

where the global stiffness matrix [𝑲] can be formulated as: 

[𝑲] = [𝑲𝒕𝒕] − [𝑲𝒕𝒓][𝑲𝒓𝒓]
−𝟏[𝑲𝒓𝒕] 

When voltage difference is not supplied to the 1‒3 PZC then Eq. (2.24) can be 

used to show the uncontrolled (passive) constrained layer damping of the HFRC 

substrate beam. 

3.2.1 Closed Loop Model 

A close loop model is presented to calculate the required control voltage for active 

damping proportional to the velocity at the free end of the beam. Hence, the control 

voltage applied across the active layer is given by: 

𝑽 = −𝒌𝒅�̇�(𝑳𝒂, 0) = −𝒌𝒅[𝑼]{�̇�}    (3.25) 
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where the required control gain is represented by 𝒌𝒅 and row vector [𝑼] is denoting the 

sensor location. 

Making use of Eq. (3.25) into Eq. (3.24), the closed loop characteristics of smart 

HFRC beam system can be obtained using Eq. of motion: 

[𝑴]{�̈�} + [𝑪𝒅]{�̇�} + [𝑲]{𝑿} = {𝑭}    (3.26) 

where [𝑪𝒅] denotes the matrix of active damping and can be expressed as: 

[𝑪𝒅] = 𝒌𝒅({𝑭𝒕𝒑} − [𝑲𝒕𝒓][𝑲𝒓𝒓]
−𝟏{𝑭𝒓𝒑})[𝑼]                                 (3.27) 

3.3   Results and Discussion 

In this section, the numerical outcomes are presented for the active control of a laminated 

smart beam using the FE model derived in Section 3.2. We also present the quantitative 

analysis of HFRC substrate beam for the various 𝒗𝑪𝑭 and aspect ratio (L/h) of the beam. 

3.3.1 Active Damping of HFRC Smart Cantilever Beam 

To study the performance of the laminated HFRC as a damping material for a smart 

structure, numerical outcomes are estimated employing the FE model developed in 

earlier Section 3.2. For the active damping, the frequency responses of the smart 

cantilever composite beam are calculated. For this, Eq. (3.18) is formulated with the 

time-harmonic point load of 2 N subjected at the tip of the free end to investigate 

amplitude and frequency response analysis. The further analysis has been carried out by 

considering the carbon fiber volume fraction as 40% in base composite and HFRC 

substrate. For 1‒3 PZC the fiber volume fraction is taken as 60%. The material properties 

of the PZC, base composite and HFRC are tabulated in Table 3.1 and Table 3.2, 

respectively. 

The length of the transversely isotropic HFRC substrate beam is taken as 0.5 m. 

Whereas the thickness of each layer of the HFRC substrate, piezoelectric layer, and 

viscous layer are considered as 0.005 m, 0.001 m, and 0.0002 m, respectively. 
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Table 3.1. Properties of the piezoelectric material (Ray and Pradhan, 2006). 

Material 𝑪𝟏𝟏 (GPa) 𝑪𝟏𝟑 (GPa) 𝑪𝟑𝟑 (GPa) 𝑪𝟒𝟒 (GPa) 
𝒆𝟑𝟏 

(𝑪 𝒎−𝟐) 

𝒆𝟑𝟑 

(𝑪 𝒎−𝟐) 

𝝆 

(𝒌𝒈 𝒎𝟑⁄ ) 

1‒3 PZC  9.293 6.182 35.444 1.536 -0.19 18.41 5090 

PZT-5H 151 96 124 23 -5.1 27 7750 

 

The length and thickness of each layer of transversely isotropic HFRC substrate 

beam are taken as 0.5 m and 0.005 m, respectively. The viscous layer and piezoelectric 

layer are having a thickness of 0.0002 m and 0.001 m, respectively, and the length of 

ACLD patch is covering 3/5th of the beam. The properties of the viscoelastic constraining 

layer such as density, Poisson’s ratio, and complex shear modulus are considered as 1140 

𝒌𝒈/𝒎𝟑, 0.3 and 20(1 + 𝒊) 𝑴𝑵 𝒎−𝟐, respectively (Ro and Baz, 2002; Ray and Pradhan, 

2006; Ray and Kundalwal, 2014). 

Table 3.2. Effective elastic properties of HFRC lamina. 

Eff. elastic 

constant 

Two-phase (𝒗𝑪𝑵𝑻 =

𝟎%) 

Three-phase (𝒗𝑪𝑵𝑻 =

𝟓%) 

Three-phase (𝒗𝑪𝑵𝑻 =

𝟏𝟎%) 

𝒗𝑪𝑭

= 𝟒𝟎% 

𝒗𝑪𝑭

= 𝟔𝟎% 

𝒗𝑪𝑭

= 𝟒𝟎% 

𝒗𝑪𝑭

= 𝟔𝟎% 

𝒗𝑪𝑭

= 𝟒𝟎% 

𝒗𝑪𝑭

= 𝟔𝟎% 

𝑪𝟏𝟏 (GPa) 96.6451 142.5567 125.5864 171.5618 154.537 200.5939 

𝑪𝟏𝟐 (GPa) 4.1219 5.0647 4.2920 5.3836 4.4906 5.7748 

𝑪𝟏𝟑 (GPa) 4.1219 5.0647 4.2719 5.3559 4.4469 5.7124 

𝑪𝟐𝟑 (GPa) 4.3856 5.521 4.7174 6.0547 5.1033 6.7013 

𝑪𝟑𝟑 (GPa) 7.7068 9.9779 8.3094 11.0133 9.0142 12.2889 

𝑪𝟒𝟒 (GPa) 1.0054 1.407 1.091 1.5806 1.1926 1.8031 

To verify the validation of the FE model derived in Section 3.2 for active 

damping of laminated HFRC substrate beam integrated with ACLD treatment 

constraining layer of 1‒3 PZC, we compare the frequency response with existing models 

for the identical beam adopting the similar boundary conditions. These results are 

tabulated in Table 3.3 for symmetric cross-ply (0°/90°/0°) and anti-symmetric angle-

ply (−45°/45°/−45°/45°) substrate. Table 3.3 shows a good agreement between the 
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present FE model and the existing literature. The convergence study of laminated HFRC 

beam integrated with ACLD treatment is presented in Table 3.4. Considering the 

convergence study, the frequency response analysis of laminated beam is done by 

meshing the beam into 20 elements. 

Table 3.3. Frequency response ACLD integrated beam. 

Beams Source 1st 

mode 

2nd 

mode 

3rd 

mode 

0°/90°/0° 

Present FEM  34 204 561 

Ray and Pradhan (Ray and Pradhan, 

2006) 

33 207 568 

Ray and Malik (Ray and Mallik, 2003) 35 210 572 

−45°/45°/−45°/

45° 

Present FEM 20.3 114.8 312.6 

Ray and Pradhan (Ray and Pradhan, 

2006) 

18.3 113.5 314.6 

Ray and Malik (Ray and Mallik, 2003) 19.2 115.6 316.7 

Al substrate beam 
Present FEM 84 266 518 

Experimental (Vasques, 2006) 92 258.5 502 

 

Figure 3.3 illustrates the uncontrolled variation of amplitude 𝒘(𝑳, 0) with the 

frequency response of 0°/90°/0° HFRC smart beam for different percentage of CNT 

(5, 5) (𝒗𝑪𝑵𝑻 = 0 and 10 %). The figure illustrates that the laminated HFRC attenuates 

the amplitude of deflection of cantilever beam at free end significantly for the small value 

of 𝒗𝑪𝑵𝑻 . Thus, a slight enhancement in the damping characteristic of the system is 

observed for the passive damping (uncontrolled or gain = 0). For designing a smart 

structure, the fundamental frequency (i.e., the first mode of natural frequency) is an 

important parameter to be considered. The amplitude of fundamental frequency decreases 

from 3.49 × 10−4 𝒎 to 3.46 × 10−4 𝒎  (see Table 3.5) due to the incorporation of 

CNTs (𝒗𝑪𝑵𝑻 = 10 %). It may be observed from passive damping that slight attenuation 

in the amplitudes of deflection is achieved with laminated HFRC beam. It will be very 

interesting to see the active performance of laminated HFRC beam and hence, the further 

analysis of the laminated HFRC beam for active damping (gain ≠  0)  and control 

voltage are shown in Figs. 3.4 and 3.5. 
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Table 3.4: Convergence study of HFRC beam integrated with ACLD treatment. 

Beams Elements Frequency (Hz) 

1st mode 2nd mode 3rd mode 

0°/90°/0 

5 32 169 454 

10 33 171 471 

15 33 172 475 

20 33 172 475 

25 33 172 475 

0°/90°/0°/90° 

5 23 120 324 

10 24 122 337 

15 24 123 339 

20 24 123 340 

25 24 123 340 

−45°/45°/−45°/45° 

5 18 97 263 

10 19 99 273 

15 19 99 275 

20 19 99 275 

25 19 99 275 

 

 

Figure 3.3. Variation of uncontrolled amplitude of deflection with respect to frequency 

response of 0°/90°/0° HFRC substrate beam. 
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Table 3.5. Amplitudes and fundamental natural frequencies of HFRC substrate smart 

beam corresponding to ply type. 

Ply Gain 

𝒗𝑪𝑵𝑻 = 𝟎 𝒗𝑪𝑵𝑻 = 𝟏𝟎 

Amplitude 

(m) 

Frequency 

(𝟏𝐬𝐭 mode) 

(Hz) 

Amplitude 

(m) 

Frequency 

(𝟏𝐬𝐭 mode) 

(Hz) 

(0°/90°/0°) 

Uncontrolled  3.49 × 10−4 26 3.46 × 10−4 33 

2000 2.11 × 10−4 26 1.92 × 10−4 33 

3000 1.77 × 10−4 26 1.57 × 10−4 33 

(0°/90°/0°/90°) 

Uncontrolled  3.55 × 10−4 19 3.51 × 10−4 24 

2000 2.28 × 10−4 19 2.09 × 10−4 24 

3000 1.95 × 10−4 19 1.76 × 10−4 24 

(−45°/45°/−45°

/45°) 

Uncontrolled  3.52 × 10−4 16 3.48 × 10−4 19 

2000 2.59 × 10−4 16 2.40 × 10−4 19 

3000 2.30 × 10−4 16 2.11 × 10−4 19 

The frequency v/s amplitude of deflection 𝒘(𝑳, 0) of 0°/90°/0° HFRC and base 

composite substrate beam is shown in Fig. 3.4. This figure depicts both uncontrolled 

(passive damping or gain = 0) and controlled (active damping or gain ≠ 0) gain. It may be 

seen that for the given gain the HFRC substrate attenuates the amplitude of deflection 

significantly as compared to the base composite. Table 3.5 summarizes the values of the 

maximum amplitude corresponding to the fundamental natural frequency for the 1st 

mode. From Table 3.5 and Fig. 3.4, it may be observed that the reduction in amplitude of 

the HFRC substrate beam is ~10 %  and ~12 %  corresponding to the value of gain 

(𝒌𝒅) = 2000 and 3000. Due to the incorporation of CNTs both stiffness and density of 

the HFRC substrate enhanced. The higher stiffness and mass of the HFRC substrate 

beam reduces the amplitudes of deflection. Hence, due to the improved stiffness of the 

HFRC substrate higher damping is achieved in case of overall ACLD/HFRC substrate 

beam as compared to the base composite beam. This reveals that the addition of CNTs 

enhances the damping characteristic of the HFRC substrate beam for controlled or active 

damping. 
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Figure 3.4. Variation of amplitude of deflection with frequency response of 0°/90°/0° 

HFRC substrate beam. 

Figure 3.5 illustrates the voltage required to control the different modes of the 

amplitude of the deflection of the cantilever HFRC substrate beam at the free end. It may 

be seen from Fig. 3.5 that for the HFRC substrate beam the maximum control voltage for 

the value of gain (𝒌𝒅) = 2000  is 71.33 𝑽  which is ~15 %  less as compared to the 

voltage required for base composite. The difference in control voltage required for the 

HFRC and base composite substrate beam is considerably high. In practice, such a less 

value of control voltage can be easily arranged. 

Figure 3.6 illustrates the damping performance of smart structure for the value of 

gain = 2000, with and without considering the piezoelectric constant 𝒆𝟑𝟏 and 𝒆𝟑𝟑. From 

Fig. 3.6, it may be seen that when the value of the piezoelectric constant 𝒆𝟑𝟏 ≠ 0 and 

𝒆𝟑𝟑 = 0, much higher amplitudes of deflections are observed when compared to the case 

of 𝒆𝟑𝟏 = 0 and 𝒆𝟑𝟑 ≠ 0. From this, it may be concluded that the constraining layer of 

ACLD is mainly responsible for the attenuation of vertical shear deformation. This also 

means that the out-of-plane actuation has a much higher contribution in vibration 

attenuation than in-plane actuation of the laminated smart beam. In both cases of 𝒆𝟑𝟑 = 0 
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and 𝒆𝟑𝟑 ≠ 0, the smart beam with the HFRC substrate due to incorporation of CNTs 

(𝒗𝑪𝑵𝑻 = 10 %) shows better damping behavior. 

 

Figure 3.5. Variation of control voltage of 0°/90°/0° HFRC substrate beam with 

frequency. 

 

Figure 3.6. Effect of piezoelectric constant (𝒆𝟑𝟑) on the amplitude of deflection 0°/90°/

0° HFRC substrate beam with value of 𝒌𝒅 = 2000. 
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Figure 3.7 illustrates the performance of 1‒3 PZC over PZT‒5H on the 

uncontrolled amplitude 𝒘(𝑳, 0)  vs frequency response of 0°/90°/0°  HFRC substrate 

beam. The figure shows that the 1‒3 PZC attenuates the vibration of beam better than 

PZT‒5H and the enhancement in the damping characteristics is ~17 %. It is to be noted 

that the density of 1‒3 PZC is very less compared to PZT‒5H, as 1‒3 PZC is a tailor-

made PZC material. Thus, 1‒3 PZC is a suitable candidate for the development of 

lightweight and high-performance MEMS smart structures. 

  

Figure 3.7. Comparison of 1‒3 PZC with PZT‒5H on the uncontrolled amplitude of 

deflection of the  0°/90°/0° HFRC smart beam. 

To investigate the performance of anti-symmetric cross-ply (0°/90°/0°/90°) 

HFRC substrate beam, the frequency response for both passive and active control are 

demonstrated in Fig. 3.8 with respect to the amplitude of deflection of cantilever smart 

beam at free end 𝒘(𝑳, 0). It is noticed that the first mode shows much higher peaks 

compared to the other modes of natural frequency which is highly controlled for the 

0°/90°/0°/90° HFRC substrate beam over the passive damping (gain = 0). The overall 

smart HFRC substrate beam shows the improved damping characteristic and the modes 

of natural frequency shifted slightly towards the higher side of the frequency as compared 
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to the base composite substrate beam, this difference increases for the higher modes of 

natural frequency. To determine the performance of anti-symmetric angle-ply (−45°/

45°/−45°/45°)  HFRC substrate beam, the frequency response with respect to the 

amplitude of deflection of cantilever smart beam at the free end 𝒘(𝑳, 0) are shown in Fig. 

3.9. It may be observed that for the given gain the HFRC substrate beam attenuates the 

amplitude of deflection significantly as compared to base composite substrate beam. For 

the gain of 2000, the second mode of natural frequency showing higher peaks; however, 

for the effective control of higher mode, one can change the value of gain. It is clear from 

Fig. 3.9 that by changing the value of gain from 2000 to 3000 the higher modes are 

controlled significantly.  

 

Figure 3.8. Variation of amplitude of deflection with respect to frequency response of 

0°/90°/0°/90° HFRC substrate beam. 

Figures 3.10 and 3.11 illustrate the voltage required to control the different modes 

of the amplitude of deflection of cantilever 0°/90°/0°/90° and HFRC substrate beam 

−45°/45°/−45°/45°  at the free end. The estimated value for the maximum control 

voltage required for 0°/90°/0°/90° base composite beam is 87.71 𝑽 and for the HFRC 

beam is 69.95 𝑽 . The difference between the two values is ~20% , which shows 

substantial improvement. Similarly, from Fig. 18, the estimated value for the maximum 

control voltage required for −45°/45°/−45°/45° base composite beam is 182.2 𝑽 and 



 Active Vibration Damping of Smart Multiscale HFRC Beams Using 1‒3 PZC  

 

81 

 

for the HFRC beam is 128.4 𝑽. The difference between the two values is ~30 %. It is 

noticed that the control voltage required for −45°/45°/−45°/45° ply is significantly 

high, this due to the higher amplitude of deflection observed in Fig. 3.9. 

 

Figure 3.9. Variation of amplitude of deflection with respect to frequency response of 

−45°/45°/−45°/45° HFRC substrate beam. 

 

Figure 3.10. Variation of the control voltage of 0°/90°/0°/90° HFRC substrate beam 

with frequency. 
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Figure 3.11. Variation of the control voltage of −45°/45°/−45°/45° HFRC substrate 

beam with frequency. 

3.3.2 Parametric Analysis of 0°/90°/0° HFRC Substrate Beam 

Figure 3.12 illustrates the effect of change in the effective length of the constraining layer 

on the frequency response with respect to the amplitude of deflection of symmetric cross-

ply HFRC beam (𝒌𝒅 = 2000 ). The figure shows that the laminated HFRC beam 

attenuates the amplitude of deflection significantly as the effective length of the PZC 

patch (𝑳𝒂)  increased from 60 %  to 80 %  of the beam length (𝑳) .When the value of 

effective length changes from 𝑳𝒂 =  0.6𝑳  to 𝑳𝒂 =  0.8𝑳,  the maximum value of the 

amplitude of the first mode for base composite decreases from 2.1 × 10−4 m to 1.24 ×

 10−4 m, respectively. Whereas for HFRC the amplitude decreases from 1.9 × 10−4 m 

to 1.13 × 10−4  m. This indicates that for  𝑳𝒂 =  0.8𝑳 the damping characteristics of 

smart beam enhance approximately around 40% for both base composite and HFRC 

beam. Whereas, for the second mode when the value of effective length changes from 

𝑳𝒂 =  0.6𝑳  to 𝑳𝒂 =  0.8𝑳 , the improvement in the damping characteristic for base 

composite is ~70 % and for the HFRC beam is ~60 %. Although the percentage 

reduction for the second mode in the case of HFRC beam is slightly less compared to the 



 Active Vibration Damping of Smart Multiscale HFRC Beams Using 1‒3 PZC  

 

83 

 

base composite beam, the laminated HFRC beam overall shows better damping 

characteristics. From this, we can conclude that the damping characteristic of the system 

can be improved by increasing the effective length of piezoelectric composite material. 

 

Figure 3.12. Effect of the effective length of 1‒3 PZC patch on the amplitude of 

deflection of 0°/90°/0° HFRC substrate beam (𝒌𝒅 = 2000). 

The effect of the thickness of PZC patch on the frequency response for the 

amplitude of the deflection of the smart beam is demonstrated in Fig. 3.13. Here, it can be 

noted that the HFRC substrate beam shows improved damping characteristics as 

compared to the base composite beam. By increasing the thickness of PZC layer the 

amplitudes of 1st mode attenuates approximately by ~5% for both HFRC and base 

composite beam; hence the damping characteristics improves significantly. Although for 

the second mode, it may be seen from Fig. 3.13 that by increasing the effective thickness 

of PZC layer results in the higher amplitudes, also a significant change in the natural 

frequency of the beam. For base composite substrate beam, the frequency shifted from 

139 to 130 Hz; for the HFRC substrate beam, frequency shifted from 171 to 158 Hz 

when thickness changed from 0.001 to 0.002 m, respectively. Figure 3.14 demonstrates 

the effect of force on the frequency response for the amplitude of the deflection of the 

cantilever HFRC smart beam at the free end.  
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Figure 3.13. Effect of effective thickness of 1‒3 PZC patch on the amplitude of 

deflection of 0°/90°/0° HFRC smart beam (𝒌𝒅 = 2000). 

 

Figure 3.14. Effect of force on the amplitude of deflection of 0°/90°/0°  HFRC 

substrate beam (𝒌𝒅 = 2000). 
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Many times, these structures are subjected to variable loading conditions, thus it is 

important to understand the effect of force on the frequency response for the amplitude of 

deflection while designing the smart structure as a sensor and actuator. Figure 3.14 

illustrates higher amplitude (twice as compared to the amplitude when force F = 2 N) as 

the magnitude of force increases from 2 to 4 N and shows the substantial reduction of the 

amplitude of deflection with consideration of CNTs (𝒗𝑪𝑵𝑻 = 10 %). In actual practice, 

this variation might not be twice, but it can be concluded that the increase in the 

magnitude of force will result in higher amplitudes. 

3.3.3 Quantitative Relative Performance of HFRC Substrate Beam 

In this section, we present the quantitative analysis of HFRC substrate beam for the 

various 𝒗𝑪𝑭 and aspect ratio (L/h) of the beam. The quantitative analysis is important for 

selecting, the optimum range of fiber in the composite material and the aspect ratio of the 

structure to achieve the maximum efficiency of the overall structure.  

To demonstrate the enhancement in the damping characteristic of the HFRC 

laminated substrate beam, a damping characteristic enhancement factor (DCEF) is 

defined. This enhancement factor DCEF shows the reduction in amplitudes of deflection 

in terms of percentage of the HFRC substrate beam as compared to the base composite 

beam and hence, DCEF can be given by: 

𝑫𝑪𝑬𝑭 =  
𝑨𝟎 − 𝑨𝑪𝑵𝑻

𝑨𝟎
%                                                  (3.28) 

where 𝑨𝟎  is the amplitude of deflection of base composite beam and 𝑨𝑪𝑵𝑻  is the 

amplitude of deflection of the HFRC beam. 

Figures 3.15‒3.17 illustrate the DCEF of various ply for the first mode of 

amplitudes of deflection at 𝒗𝑪𝑵𝑻 = 5 and 10%. The results were obtained at the value of 

gain (𝒌𝒅) = 2000 and it may be seen from the figure that a similar trend like Fig 3.15 was 

observed as the 𝒗𝑪𝑭 increases the DCEF decreases. This is mainly because the carbon 

fiber and CNTs are aligned in the 1‒direction and thus 𝑪𝟏𝟏 of the composite has a major 

impact on the attenuation of vibrational amplitudes. It may also be observed from Figs. 

3.15‒3.17 that the significant enhancement in the damping characteristics can be 
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achieved by incorporating 5% and 10% 𝒗𝑪𝑵𝑻 in the base composite. In Figs. 3.15 and 

3.16, at 𝒗𝑪𝑭 = 0.2, the maximum value of DCEF in the case of symmetric and anti-

symmetric cross-ply for 𝒗𝑪𝑵𝑻 =  5% and 10%  was around ~8% and 13%, respectively. 

Similarly, at 𝒗𝑪𝑭 = 0.2, for anti-symmetric angle-ply (see Fig. 3.17), the maximum value 

of the DCEF is also observed, which is approx. ~6% and ~10%  for 𝒗𝑪𝑵𝑻 =

 5% and 10%, respectively. This value of DCEF decreases as 𝒗𝑪𝑭 increases from 0.2 to 

0.8 as shown in Figs. 3.15‒3.17. From these results, we can conclude that the HFRC 

substrate beam is very much effective at lower 𝒗𝑪𝑭. Also, it is noticed that the attenuation 

in amplitudes of vibration obtained at higher 𝒗𝑪𝑭  of the base composite could be 

achievable with the HFRC at a much lower 𝒗𝑪𝑭 by considering a certain volume fraction 

of CNTs. 

 

Figure 3.15. Variation of DCEF of 0°/90°/0° for the 1st mode of the amplitude of 

deflection at a gain (𝒌𝒅) of 2000 and 𝒗𝑪𝑵𝑻 = 5 and 10% with 𝒗𝑪𝑭. 
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Figure 3.16. Variation of DCEF of  0°/90°/90°/0° for the 1st mode of the amplitude of 

deflection at a gain (𝒌𝒅) of 2000 and 𝒗𝑪𝑵𝑻 = 5 and 10% with 𝒗𝑪𝑭. 

 

Figure 3.17. Variation of DCEF of −45°/45°/−45°/45° for the 1st mode of the 

amplitude of deflection at a gain (𝒌𝒅) of 2000 and 𝒗𝑪𝑵𝑻 = 5 and 10% with 𝒗𝑪𝑭. 
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The structural parameters such as mass, aspect ratio (length, width, and 

thickness), and stiffness affect the natural frequency and vibrational amplitudes of the 

system. The effect of length to thickness ratio (L/h) on DCEF of the HFRC laminated 

beam for the 1st mode of amplitudes of vibration is demonstrated in Figs. 3.18 to 3.20. It 

may be seen from Fig. that the DCEF enhanced as the aspect ratio decreases and it is 

maximum at the L/h = 20. It was observed that as the aspect ratio of the substrate 

decreases, the amplitudes of vibration attenuate, and the frequency of the overall system 

improves. This is due to the inherent property of CNTs. CNTs have excellent strength to 

weight ratio, thus the stiffness of the HFRC substrate enhanced significantly, therefore 

the damping performance of the laminated HFRC improved as compared to the base 

composite. 

 

Figure 3.18. Variation of DCEF with respect to the aspect ratio of the substrate beam for 

various ply type 0°/90°/0° at a gain (𝒌𝒅) of 2000 and 𝒗𝑪𝑵𝑻 = 5 and 10%. 
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Figure 3.19. Variation of DCEF with respect to the aspect ratio of the substrate beam for 

various ply type 0°/90°/90°/0°  at a gain (𝒌𝒅) of 2000 and 𝒗𝑪𝑵𝑻 = 5 and 10%.

 

Figure 3.20. Variation of DCEF with respect to the aspect ratio of the substrate beam for 

various ply type  −45°/45°/−45°/45° at a gain (𝒌𝒅) of 2000 and 𝒗𝑪𝑵𝑻 = 5 and 10% a 
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Figure 3.21. Variation of DCEF with respect to the aspect ratio of the substrate beam for 

various ply type at a gain (𝒌𝒅) of 2000, 𝒗𝑪𝑵𝑻 = 5 and 10%, and aspect ratio (L/h) = 100 

by keeping the overall fiber volume fraction same for base composite and HFRC. 

The effect of length to thickness ratio (L/h) on DCEF of the HFRC laminated 

beam for the 1st mode of amplitudes of vibration by keeping the overall volume fraction 

of base composite and HFRC the same is demonstrated in Figs. 3.21 for the various ply 

types. The fiber volume fraction in the base composite is taken as 40%, while in HFRC, 

the total fiber volume fraction (i.e. 𝒗𝑪𝑵𝑻 + 𝒗𝑪𝑭) is taken as 40%. The results show that 

due to the consideration of CNTs the overall structural damping characteristics of HFRC 

significantly improved for all the ply types, and the best results are observed for the anti-

symmetric cross-ply. 

The results demonstrated in Figs. 3.3 to 3.21 clearly show the significant 

enhancement in the damping characteristics of the novel smart HFRC laminated 

cantilever beam with consideration of CNTs. The quantitative relative performance of 

HFRC and base composite can be presented by defining a factor: DCEF for the change 

in damping characteristics, which are shown as a bar chart in Figs. 3.15 to 3.20. Based on 

these results one can determine the required response of smart structures by varying 

different parameters such as length and thickness of piezoelectric patch, applied force, 
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angle of composite ply, aspect ratio of the composite beam, and the volume fraction of 

fiber and nanofillers. 

3.4   Summary 

The damping characteristics of the HFRC laminated smart cantilever beam is performed. 

The effect of CNTs on the damping characteristic of the laminated HFRC smart beam is 

analyzed. A FE model is developed to study the active damping of symmetric and anti-

symmetric cross-ply, and anti-symmetric angle-ply HFRC smart composite beam 

attached with ACLD patch treatment. From the present investigation following main 

conclusions are carried out: 

1. The damping characteristics of the novel HFRC laminated beam considering the 

𝒗𝑪𝑵𝑻 = 10% for both symmetric and anti-symmetric cross-ply is improved when 

compared to the base composite with 𝒗𝑪𝑵𝑻 = 0%. This is mainly because of the 

high stiffness and density offered by CNTs, which improves the overall damping 

performance of the laminated HFRC smart beam. This implies that the HFRC is a 

suitable candidate for developing a high-performance composite structure. 

2. It may be concluded from the control voltage results that considerably low voltage is 

required to control the amplitude of HFRC smart beam as compared to the base 

composite beam. 

3. Among the various ply, the performance of (0°/90°/0°) symmetric cross-ply is 

better considering both the passive and active damping. 

4. The contribution of vertical actuation of ACLD treatment constraining the layer of 

1‒3 PZC material in the vibration damping is significantly higher as compared to 

in-plane actuation. 

5. The performance of tailor made 1‒3 PZC is better as compared to PZT‒5H, 

making 1‒3 PZC a suitable candidate for the development of the efficient smart 

structure. 

6. It may be concluded from the parametric analysis that the effective length of 1‒3 

PZC layer is a more sensitive parameter as compared to the effective thickness of 

1‒3 PZC layer. Because comparatively high enhancement in the damping 
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characteristic of HFRC is observed for the change in the effective length of 1‒3 

PZC layer. 

7. In the quantitative relative performance, we defined a factor DCEF to analyse the 

enhanced performance of the laminated HFRC smart beam at various parameters. 

Based on these factors, it is observed that the same performance can be achieved 

with the HFRC substrate beam with an adequate amount of CNTs at a much lower 

range of 𝒗𝑪𝑭,  which was obtained at the higher range of 𝒗𝑪𝑭  in case of base 

composite substrate beam.  

8. From the quantitative analysis, optimum performance of the laminated HFRC smart 

beam is observed at a range of 0.2 to 0.5 𝒗𝑪𝑭. 



 

 

 

Chapter 4 
 

Active Vibration Damping of a Simply 

Supported Smart Multiscale Hybrid 

Fiber Reinforced Composite Plates Using 

1‒3 Piezoelectric Composites 
 

This Chapter (Gupta et al., 2022c) presents the finite element (FE) model using the first-

order shear deformation theory (FSDT) to investigate the damping performance of 

laminated hybrid fiber-reinforced composite (HFRC) smart plates via the active 

constrained layer damping (ACLD) treatment. A unique feature of the HFRC is that the 

nanoscale carbon nanotubes (CNTs) are embedded in the matrix phase of carbon fiber 

composite to improve the overall properties, especially the damping characteristics of the 

resulting HFRC. The constraining layer of the ACLD treatment is considered to be made 

of vertically reinforced 1–3 piezoelectric composite (PZC) material. The system consists 

of a laminated HFRC plate integrated with the two patches of ACLD treatment and the 

numerical results are computed for three cases: symmetric and anti-symmetric cross-ply, 

and anti-symmetric angle-ply. The effect of in-plane and transverse actuation of 1‒3 PZC 

on the damping characteristics of the overall plate is also studied. 

                                                                                                                             

4.1  Introduction 

A laminated composite plate is an important structural element and hence, the present 

research is directed to study the damping performance of simply supported (SS) 

laminated HFRC plates. The present work considers the uniform dispersion of aligned 

CNTs in the matrix phase of HFRC to achieve the full potential of CNTs. The damping 

performance of smart laminated HFRC plates is investigated via the finite element 

approach using modified FSDT. The smart plate is composed of HFRC substrate and 
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ACLD treatment layer with a constrained layer of viscoelastic material and a 

constraining layer of 1‒3 PZC. Two such ACLD treatment layers are installed at the top 

surface of the substrate HFRC. The ACLD layers are responsible for the active damping 

when voltage is supplied. In the absence of voltage, the same ACLD treatment layer act 

as passive damping. In this context, a closed-loop model is developed to supply control 

voltage to the ACLD treatment patch based on simple velocity feedback control law. We 

present the comparison of the frequency response of the laminated HFRC with base 

composite plates considering three cases: symmetric and anti-symmetric cross-ply, and 

anti-symmetric angle-ply. The effect of the aspect ratio of the laminated HFRC plates on 

the fundamental frequency and amplitudes of deformation is also studied. 

4.2 Theoretical FE Formulation 

This section deals with the development of the FE model to investigate the ACLD of the 

laminated HFRC plates including 𝑵 number of laminae. Figure 4.1 shows the schematic 

of the HFRC substrate plate with ACLD and 1‒3 PZC patches attached to its upper 

surface. The piezo fibers in the 1–3 PZC are oriented along the 𝒛-axis. The thickness of 

piezo and viscoelastic (VE) layers of the ACLD treatment is shown by 𝒉𝒑  and 𝒉𝒗 , 

respectively. We consider the reference plane as the mid-plane of the HFRC substrate 

plate. The coordinate system (x, y, z) on this reference plane is chosen such that 𝒙 = 0, 𝒂 

and 𝒚 = 0 , 𝒃  which represent the boundary conditions or dimensions of the HFRC 

substrate plate. The thickness of upper and lower surfaces of any (kth) layer of the 

complete plate system is denoted by  𝒉𝒌+𝟏 and 𝒉𝒌 (𝒌 = 1, 2, 3, … ,𝑵 + 2). 

4.2.1 Displacement Fields 

According to the FSDT, the kinematics of axial deformations of the overall plate is 

demonstrated in Fig. 4.2(a) in which 𝜽𝒙, 𝝓𝒙, and 𝜸𝒙  indicate the corresponding 

generalized rotations of the normal to the mid-plane of the HFRC substrate plate, VE, 

and 1–3 PZC layer in the 𝒙𝒛  plane. While 𝜽𝒚, 𝝓𝒚, and 𝜸𝒚  denote the generalized 

rotations of the HFRC substrate plate, VE, and 1–3 PZC layer in the 𝒚𝒛  plane, 

respectively. Terms 𝒖𝟎 and 𝒗𝟎 represent the generalized translational displacements of a 

reference point (x, y) on the mid-plane (𝒛 = 0) of the HFRC substrate plate along the x- 
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and y- axes, respectively. Variables u and v denote the axial displacements at any point in 

the overall plate attached with the ACLD patches, which are obtained by using FSDT 

(Ray and Pradhan, 2006), such as: 

      𝐮(𝒙, 𝒚, 𝒛, 𝒕) = 𝒖𝟎(𝒙, 𝒚, 𝒕) + (𝒛 − 〈𝒛 − 𝒉 2⁄ 〉)𝜽𝒙(𝒙, 𝒚, 𝒕)

+ (〈𝒛 − 𝒉 2⁄ 〉 − 〈𝒛 − 𝒉𝑵+𝟐〉)𝝓𝒙(𝒙, 𝒚, 𝒕) + 〈𝒛 − 𝒉𝑵+𝟐〉𝜸𝒙(𝒙, 𝒚, 𝒕)       (4.1) 

      𝒗(𝒙, 𝒚, 𝒛, 𝒕) = 𝒗𝟎(𝒙, 𝒚, 𝒕) + (𝒛 − 〈𝒛 − 𝒉 2⁄ 〉)𝜽𝒚(𝒙, 𝒚, 𝒕)

+ (〈𝒛 − 𝒉 2⁄ 〉 − 〈𝒛 − 𝒉𝑵+𝟐〉)𝝓𝒚(𝒙, 𝒚, 𝒕) + 〈𝒛 − 𝒉𝑵+𝟐〉𝜸𝒚(𝒙, 𝒚, 𝒕)       (4.2) 

 

Figure 4.1. Schematic of laminated HFRC substrate plate integrated with the ACLD 

treatment and 1‒3 PZC patches. 

In Eqs. (4.1) and (4.2), the terms in the bracket 〈 〉 denote the singularity function 

known as zig-zag function. The multilayered structures like plates consist of relatively 

thin layers of different material compositions which may influence the different degrees 

of axial compliance. As a result, the axial displacement of anisotropic structures varies 

nonlinearly along the thickness of the plate. In a general layer-wise formulation of a plate 

theory, the axial displacement field could be modeled as a piecewise continuous function, 

that is, a collection of linear functions defined for each layer of thin plate. Such a function 

is referred as a “zig-zag” function. The theories based on the zig-zag function are known 
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as zig-zag theory. The zig-zag theory appears like a natural extension to FSDT. Thus, in 

the present study, the layer-wise zig-zag function is added with the axial displacement 

field of FSDT. The proposed zig-zag function vanishes at the top and bottom surfaces of 

the plate and the full shear-stress continuity across the depth of the multilayered plate is 

not required. The idea behind such zig-zag formulation is to add a piecewise linear 

continuous function in such a way that the equilibrium of transverse shear stresses is 

satisfied in the laminate thickness. In the case of thin structures, the normal strain in the 

transverse direction is generally assumed as insignificant. However, the transverse 

actuation of 1–3 PZC, constraining layer of ACLD patches may influence the flexural 

vibration of the plate. Thus, the transverse normal strains must be considered for 

modeling smart plates. The radial displacement (w) is considered to be linearly varying 

along the thickness of the substrate composite plate, the VE layer, and the piezo layer. 

Hence, the transverse displacement (𝒘) of the overall plate at any point in the reference 

plane is considered as: 

     𝒘(𝒙, 𝒚, 𝒛, 𝒕) = 𝒘𝟎(𝒙, 𝒚, 𝒕) + (𝒛 − 〈𝒛 − 𝒉 2⁄ 〉)𝜽𝒛(𝒙, 𝒚, 𝒕)

+ (〈𝒛 − 𝒉 2⁄ 〉 − 〈𝒛 − 𝒉𝑵+𝟐〉)𝝓𝒛(𝒙, 𝒚, 𝒕) + 〈𝒛 − 𝒉𝑵+𝟐〉𝜸𝒛(𝒙, 𝒚, 𝒕)        (4.3) 

where, 𝜽𝒛, 𝝓𝒛 and 𝜸𝒛  represent the corresponding generalized rotations indicating the 

gradients of the transverse displacement with the z-direction of the substrate composite 

plates, VE layer and 1–3 PZC layer. 

For the sake of simplicity, the generalized displacement of a system under 

consideration can be further split into two parts, translational displacements {𝒅𝒕} and 

rotational displacements {𝒅𝒓}, and can be written as: 

{𝒅𝒕} = [𝒖𝟎 𝒗𝟎 𝒘𝟎]𝑻,  

{𝒅𝒓} = [𝜽𝒙 𝜽𝒚 𝜽𝒛 𝝓𝒙 𝝓𝒚 𝝓𝒛 𝜸𝒙 𝜸𝒚 𝜸𝒛]𝑻                   (4.4) 
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Figure 4.2. (a) Kinematics of deformation of a smart laminated HFRC plate, and (b) 

element topology and nodal degrees of freedom. 
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4.2.2 Strain-Displacement Relations 

The selective integration rule can be applied to overcome the shear locking issue. At any 

point in the HFRC plate system, the state of strains can be assembled in two strain 

vectors, that is, in-plane {𝝐𝒃} and out-of-plane {𝝐𝒔} shear strains, which can be expressed 

as: 

{𝝐𝒃} = [𝝐𝒙 𝝐𝒚 𝝐𝒙𝒚 𝝐𝒛]𝑻;  

{𝝐𝒔} = [𝝐𝒙𝒛 𝝐𝒚𝒛]𝑻                                                               (4.5) 

where, 𝝐𝒙, 𝝐𝒚 and 𝝐𝒛 denote the normal strains in corresponding directions; 𝝐𝒙𝒚 denotes 

the in-plane shear strain while 𝝐𝒙𝒛 and 𝝐𝒚𝒛 denote the out-of-plane shear strains. 

Using the linear strain-displacement relations, the displacement field Eqs. (4.1)-

(4.3) and strain field Eq. (4.5), the vectors {𝝐𝒃}𝒑, {𝝐𝒃}𝒗 and {𝝐𝒃}𝒄 can be obtained which 

indicate the in-plane normal strain at any point in the 1–3 PZC, VE layer, and HFRC 

substrate plate, respectively, and are represented as: 

{𝝐𝒃}𝒑 = {𝝐𝒃𝒕} + [𝒁𝟑]{𝝐𝒃𝒓} ; 

{𝝐𝒃}𝒗 = {𝝐𝒃𝒕} + [𝒁𝟐]{𝝐𝒃𝒓} ; 

{𝝐𝒃}𝒄 = {𝝐𝒃𝒕} + [𝒁𝟏]{𝝐𝒃𝒓}                                                 (4.6) 

where the vectors {𝝐𝒔}𝒑, {𝝐𝒔}𝒗, and {𝝐𝒔}𝒄 represent the state of out-of-plane shear strains 

at any point in the 1–3 PZC, VE layer, and HFRC substrate plate, respectively, and are 

given by: 

{𝝐𝒔}𝒑 = {𝝐𝒔𝒕} + [𝒁𝟔]{𝝐𝒔𝒓}; 

{𝝐𝒔}𝒗 = {𝝐𝒔𝒕} + [𝒁𝟓]{𝝐𝒔𝒓}; 

{𝝐𝒔}𝒄 = {𝝐𝒔𝒕} + [𝒁𝟒]{𝝐𝒔𝒓}                                                  (4.7) 

The matrices appeared in Eqs. (4.6) and (4.7) are as follows: 
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[𝒁𝟏] = [[�̅�𝟏] �̃� �̃�],  

[𝒁𝟐] = [(𝒉 2⁄ )𝑰 [�̅�𝟐] �̃�],  

[𝒁𝟑] = [(𝒉 2⁄ )𝑰 𝒉𝒗𝑰 [�̅�𝟑]], 

[𝒁𝟒] = [𝑰 �̅� �̅� 𝒛𝑰 �̅� �̅�], 

 [𝒁𝟓] = [�̅� 𝑰 �̅� (𝒉 2⁄ )𝑰 (𝒛 − 𝒉 2⁄ )𝑰 �̅�], 

[𝒁𝟔] = [𝒐 �̅� 𝑰 (𝒉 2⁄ )𝑰 𝒉𝒗𝑰 (𝒛 − 𝒉𝑵+𝟐)�̅�] 

in which 

[�̅�𝟏] = [

𝒛 0 0 0
0 𝒛 0 0
0 0 𝒛 0
0 0 0 1

],   [�̅�𝟐] = [

(𝒛 − 𝒉 2⁄ ) 0 0 0
0 (𝒛 − 𝒉 2⁄ ) 0 0
0 0 (𝒛 − 𝒉 2⁄ ) 0
0 0 0 1

], 

[�̅�𝟑] = [

(𝒛 − 𝒉𝑵+𝟐) 0 0 0

0 (𝒛 − 𝒉𝑵+𝟐) 0 0

0 0 (𝒛 − 𝒉𝑵+𝟐) 0
0 0 0 1

] , [𝑰] = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

], 

[𝑰] = [
1 0
0 1

] , [�̅�] = [
0 0
0 0

] , [�̃�] = [
�̅� �̅�
�̅� �̅�

], 

 

The generalized strain vectors can be expressed as, 

{𝝐𝒃𝒕} = [
𝝏𝒖𝟎

𝝏𝒙

𝝏𝒗𝟎

𝝏𝒚

𝝏𝒖𝟎

𝝏𝒚
+

𝝏𝒗𝟎

𝝏𝒙
0]

𝑻

, 

{𝝐𝒔𝒕} = [
𝝏𝒘𝟎

𝝏𝒙

𝝏𝒘𝟎

𝝏𝒚
]
𝑻

                                                                  (4.8) 

{𝝐𝒃𝒓} = [
𝛛𝜽𝒙

𝛛𝒙

𝛛𝜽𝒚

𝛛𝒚

𝛛𝜽𝒙

𝛛𝒚
+

𝛛𝜽𝒚

𝛛𝒙
𝜽𝒛

𝛛𝝓𝒙

𝛛𝒙

𝛛𝝓𝒚

𝛛𝒚

𝛛𝝓𝒙

𝛛𝒚
+

𝛛𝝓𝒚

𝛛𝒙
𝝓𝒛

𝛛𝜸𝒙

𝛛𝒙

𝛛𝜸𝒚

𝛛𝒚

𝛛𝜸𝒙

𝛛𝒚
+

𝛛𝜸𝒚

𝛛𝒙
𝜸𝒛]

𝑻
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{𝝐𝒔𝒓} = [𝜽𝒙 𝜽𝒚 𝝓𝒙 𝝓𝒚 𝜸𝒙 𝜸𝒚

𝝏𝜽𝒛

𝝏𝒙

𝝏𝜽𝒛

𝝏𝒚

𝝏𝝓𝒛

𝝏𝒙

𝝏𝝓𝒛

𝝏𝒚

𝝏𝜸𝒛

𝝏𝒙

𝝏𝜸𝒛

𝝏𝒚
]
𝑻

     (4.9) 

4.2.3 Constitutive Relations 

For the overall continuum plate at any point, the state of stresses are defined by {𝝈𝒃} and 

{𝝈𝒔}, and are given by: 

{𝝈𝒃} = [𝝈𝒙 𝝈𝒚 𝝈𝒙𝒚 𝝈𝒛]𝑻;        {𝝈𝒔} = [𝝈𝒙𝒛 𝝈𝒚𝒛]𝑻                        (4.10) 

where 𝝈𝒙, 𝝈𝒚 and 𝝈𝒛 present the normal stresses, and 𝝈𝒙𝒚 represents the in-plane shear 

stress while 𝝈𝒙𝒛 and 𝝈𝒚𝒛 represent the out-of-plane shear stresses. 

In case of any orthotropic layered material of the substrate composite plate, the 

constitutive relations can be written as follows: 

{𝝈𝒔
𝒌} = [𝑪𝒔

𝒌]{𝝐𝒃
𝒌};     {𝝈𝒃

𝒌} = [𝑪𝒃
𝒌]{𝝐𝒃

𝒌}, (𝒌 = 1, 2, 3, … ,𝑵)      (4.11)   

in which 

[𝑪𝒃
𝒌] =

[
 
 
 
 
�̅�𝟏𝟏

𝒌 �̅�𝟏𝟐
𝒌 �̅�𝟏𝟔

𝒌 �̅�𝟏𝟑
𝒌

�̅�𝟏𝟐
𝒌 �̅�𝟐𝟐

𝒌 �̅�𝟐𝟔
𝒌 �̅�𝟐𝟑

𝒌

�̅�𝟏𝟔
𝒌 �̅�𝟐𝟔

𝒌 �̅�𝟔𝟔
𝒌 �̅�𝟑𝟔

𝒌

�̅�𝟏𝟑
𝒌 �̅�𝟐𝟑

𝒌 �̅�𝟑𝟔
𝒌 �̅�𝟑𝟑

𝒌 ]
 
 
 
 

,       [𝑪𝒔
𝒌] = [

�̅�𝟓𝟓
𝒌 �̅�𝟒𝟓

𝒌

�̅�𝟒𝟓
𝒌 �̅�𝟒𝟒

𝒌
] 

where, �̅�𝒊𝒋
𝒌  represents the transformed elastic stiffness constants corresponding to the 

reference coordinate system. The electric field is applied to the constraining 1–3 PZC 

layer in the z-axis and accordingly, the constitutive relationship for the stresses and 

strains considering the piezoelectric effect can be written as (Ray and Pradhan, 2006). 

{𝝈𝒃
𝒌} = [𝑪𝒃

𝒌]{𝝐𝒃
𝒌} + [𝑪𝒃𝒔

𝒌 ]{𝝐𝒔
𝒌} − {𝒆𝒃}𝑬𝒛 

{𝝈𝒔
𝒌} = [𝑪𝒃𝒔

𝒌 ]{𝝐𝒃
𝒌} + [𝑪𝒔

𝒌]{𝝐𝒔
𝒌} − {𝒆𝒃}𝑬𝒛                                 (4.12) 

                                  𝑫𝒛 = {𝒆𝒃}
𝑻{𝝐𝒃

𝒌} + {𝒆𝒔}
𝑻{𝝐𝒔

𝒌} + �̅�𝟑𝟑𝑬𝒛;               𝒌 = 𝑵 + 2 

where 𝑬𝒛 is the electric field in the z-direction, 𝑫𝒛 is the electric displacement, and �̅�𝟑𝟑 

represents the dielectric coefficient. Eq. (4.12) shows the coupled relation of out-of-plane 
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shear strains and in-plane strains due to the orientation of piezo fiber in the 𝒙𝒛 or 𝒚𝒛 

plane of the 1–3 PZC layer. The respective coupling elastic stiffness constants matrices 

[𝑪𝒃𝒔
𝑵+𝟐] can be expressed as follows (Ray and Baz, 1997; Ray and Pradhan, 2006): 

[𝑪𝒃𝒔
𝑵+𝟐] = [

�̅�𝟏𝟓
𝑵+𝟐 �̅�𝟐𝟓

𝑵+𝟐 0 �̅�𝟑𝟓
𝑵+𝟐

0 0 �̅�𝟒𝟔
𝑵+𝟐 0

]

𝑻

                or 

[𝑪𝒃𝒔
𝑵+𝟐] = [

0 0 �̅�𝟓𝟔
𝑵+𝟐 0

�̅�𝟏𝟒
𝑵+𝟐 �̅�𝟐𝟒

𝑵+𝟐 0 �̅�𝟑𝟒
𝑵+𝟐

]

𝑻

                                         (4.13) 

It can be observed that the elastic coupling matrix that appeared in Eq. (4.13) 

becomes a null matrix due to the fact that the piezo fibers are coplanar either with the 

vertical yz plane or xz plane as a general case. The piezo coefficients appeared in Eq. 

(4.12) are given as (Ray and Baz, 1997): 

{𝒆𝒃} = [�̅�𝟑𝟏 �̅�𝟑𝟐 �̅�𝟑𝟔 �̅�𝟑𝟑]
𝑻;        {𝒆𝒔} = [�̅�𝟑𝟓 �̅�𝟑𝟒]

𝑻                      (4.14) 

The VE material is modeled based on the dynamic modulus method and it is 

considered isotropic and linear. Here, E and G denote Young’s and shear moduli of the 

VE layer which can be expressed as (Shen, 1996): 

𝑬 = 2𝑮(1 + 𝝂);       𝑮 = 𝑮′(1 + 𝒊𝜼)                                    (4.15) 

in which 𝑮′ , 𝝂, and 𝜼 represent the storage modulus, Poisson’s ratio, and loss factor, 

respectively. Making use of Eq. (4.15), the elastic stiffness constants of the VE material 

can be estimated and the subsequent elastic stiffness constants matrix [𝑪𝒊𝒋
𝑵+𝟏] becomes a 

complex matrix (Shen, 1996; Ray and Baz, 1997). 

4.2.4 FE Formulation 

The governing equation of the overall HFRC plate/ACLD system is derived using the 

principle of virtual work, as follows (Jeung and Shen, 2001): 

∑ ∫ ({𝝐𝒃
𝒌}

𝑻
{𝝈𝒃

𝒌} + {𝝐𝒔
𝒌}

𝑻
{𝝈𝒔

𝒌})
 

𝜴

𝑵+𝟐

𝒌=𝟏

𝒅𝜴 − ∫𝑫𝒛𝑬𝒛𝒅𝜴
 

𝜴

− ∫{𝒅𝒕}
𝑻𝝆𝒌{�̈�𝒕}𝒅𝜴

 

𝜴
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−∫𝜹{𝒅𝒕}
𝑻{𝒇}𝒅𝑨

 

𝑨

= 0                                                  (4.16) 

where, 𝝆𝒌  represents the mass density of the 𝒌𝒕𝒉  layer,  𝜴  denotes the volume of the 

respective layer, and {𝒇} represents the external surface traction applied over a surface 

area (𝑨). 

The discretization of the overall plate was carried out using “8 noded 

isoparametric QUAD elements”. The element topology and nodal degrees of freedom of 

such elements are shown in Fig. 4.2(b). Using Eq. (4.4), the generalized displacement 

vectors related to the 𝒊𝒕𝒉 node of the element (𝒊 = 1, 2, 3, … ,8) is given by: 

{𝒅𝒕𝒊} = [𝒖𝟎𝒊 𝒗𝟎𝒊 𝒘𝟎𝒊]𝑻 

{𝒅𝒓𝒊} = [𝜽𝒙𝒊 𝜽𝒚𝒊 𝜽𝒛𝒊 𝝓𝒙𝒊 𝝓𝒚𝒊 𝝓𝒛𝒊 𝜸𝒙𝒊 𝜸𝒚𝒊 𝜸𝒛𝒊]𝑻                      (4.17) 

Therefore, the displacement vectors {𝒅𝒕} and {𝒅𝒓} are re-expressed in the form of 

the nodal generalized displacement vectors {𝒅𝒕
𝒆} and {𝒅𝒓

𝒆}, as follows: 

{𝒅𝒕} = [𝑵𝒕]{𝒅𝒕
𝒆};         {𝒅𝒓} = [𝑵𝒓]{𝒅𝒓

𝒆}                                         (4.18) 

where, 

[𝑵𝒕] = [𝑵𝒕𝟏 𝑵𝒕𝟐 … 𝑵𝒕𝟖]
𝑻, 

[𝑵𝒓] = [𝑵𝒓𝟏 𝑵𝒓𝟐 … 𝑵𝒓𝟖]
𝑻,        𝑵𝒕𝒊 = 𝒏𝒊𝑰𝒕, 

𝑵𝒓𝒊 = 𝒏𝒊𝑰𝒓{𝒅𝒕
𝒆} = [{𝒅𝒕𝟏

𝒆 }𝑻 {𝒅𝒕𝟐
𝒆 }𝑻 … {𝒅𝒕𝟖

𝒆 }𝑻]𝑻,                   (4.19) 

{𝒅𝒓
𝒆} = [{𝒅𝒓𝟏

𝒆 }𝑻 {𝒅𝒓𝟐
𝒆 }𝑻 … {𝒅𝒓𝟖

𝒆 }𝑻]𝑻               

in which 𝑰𝒓  and 𝑰𝒕  denote (9 × 9)  and (3 × 3)  identity matrices, respectively, and 𝒏𝒊 

represents the shape function of the natural coordinates related to the 𝒊𝒕𝒉 node. Using 

Eqs. (4.6)-(4.8) and (4.18), the strain vectors can be written in the form of nodal 

generalized displacement vectors at any point within the element, as follows: 

{𝝐𝒃}𝒄 = [𝑩𝒕𝒃]{𝒅𝒕
𝒆} + [𝒁𝟏]{𝑩𝒓𝒃}{𝒅𝒓

𝒆}, 

{𝝐𝒃}𝒗 = [𝑩𝒕𝒃]{𝒅𝒕
𝒆} + [𝒁𝟐]{𝑩𝒓𝒃}{𝒅𝒓

𝒆}, 
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{𝝐𝒃}𝒑 = [𝑩𝒕𝒃]{𝒅𝒕
𝒆} + [𝒁𝟑]{𝑩𝒓𝒃}{𝒅𝒓

𝒆},                                   (4.20) 

{𝝐𝒔}𝒄 = [𝑩𝒕𝒔]{𝒅𝒕
𝒆} + [𝒁𝟒]{𝑩𝒓𝒔}{𝒅𝒓

𝒆}, 

{𝝐𝒔}𝒗 = [𝑩𝒕𝒔]{𝒅𝒕
𝒆} + [𝒁𝟓]{𝑩𝒓𝒔}{𝒅𝒓

𝒆}, 

{𝝐𝒔}𝒑 = [𝑩𝒕𝒔]{𝒅𝒕
𝒆} + [𝒁𝟔]{𝑩𝒓𝒔}{𝒅𝒓

𝒆} 

whereas [𝑩𝒕𝒃] , [𝑩𝒓𝒃] , [𝑩𝒕𝒔]  and [𝑩𝒓𝒔]  denote the nodal strain-displacement matrices 

which can be written as: 

[𝑩𝒕𝒃] = [𝑩𝒕𝒃𝟏 𝑩𝒕𝒃𝟐 … 𝑩𝒕𝒃𝟖]
𝑻, 

[𝑩𝒓𝒃] = [𝑩𝒓𝒃𝟏 𝑩𝒓𝒃𝟐 … 𝑩𝒓𝒃𝟖]
𝑻, 

[𝑩𝒕𝒔] = [𝑩𝒕𝒔𝟏 𝑩𝒕𝒔𝟐 … 𝑩𝒕𝒔𝟖]
𝑻,                                      (4.21) 

[𝑩𝒓𝒔] = [𝑩𝒓𝒔𝟏 𝑩𝒓𝒔𝟐 … 𝑩𝒓𝒔𝟖]
𝑻 

The sub-matrices 𝑩𝒕𝒃𝒊, 𝑩𝒕𝒔𝒊, 𝑩𝒓𝒃𝒊 and 𝑩𝒓𝒔𝒊 (𝒊 = 1, 2, 3, … ,8)  are as follows:  

𝑩𝒕𝒃𝒊 =

[
 
 
 
 
 
 
 
𝝏𝒏𝒊

𝝏𝒙
0 0

0
𝝏𝒏𝒊

𝝏𝒚
0

𝝏𝒏𝒊

𝝏𝒚

𝝏𝒏𝒊

𝝏𝒙
0

0 0 0]
 
 
 
 
 
 
 

,    𝑩𝒕𝒔𝒊 =

[
 
 
 0 0

𝝏𝒏𝒊

𝝏𝒙

0 0
𝝏𝒏𝒊

𝝏𝒚 ]
 
 
 

, 

𝑩𝒓𝒃𝒊 = [

�̅�𝒓𝒃𝒊 �̆� �̆�

�̆� �̅�𝒓𝒃𝒊 �̆�

�̆� �̆� �̅�𝒓𝒃𝒊

],   �̅�𝒓𝒃𝒊 =

[
 
 
 
 
 
 
 
𝝏𝒏𝒊

𝝏𝒙
0 0

0
𝝏𝒏𝒊

𝝏𝒚
0

𝝏𝒏𝒊

𝝏𝒚

𝝏𝒏𝒊

𝝏𝒙
0

0 0 1]
 
 
 
 
 
 
 

, 
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𝑩𝒓𝒔𝒊 =

[
 
 
 
 
 
 

�̆� 𝒐 �̂�
�̂� �̆� �̂�
�̂� 𝒐 �̆�

�̅�𝒓𝒔𝒊 𝒐 �̂�

�̂� �̅�𝒓𝒔𝒊 �̂�

�̂� 𝒐 �̅�𝒓𝒔𝒊]
 
 
 
 
 
 

, �̅�𝒓𝒔𝒊 =

[
 
 
 0 0

𝝏𝒏𝒊

𝝏𝒙

0 0
𝝏𝒏𝒊

𝝏𝒚 ]
 
 
 

, 

�̆� = [

0 0 0
0 0 0
0 0 0
0 0 0

],   �̂� = [
0 0 0
0 0 0

]  and   �̆� = [
1 0 0
0 1 0

] 

Considering a thin piezoelectric actuator sheet with constant thickness, the applied 

electric field can be taken as 𝑬𝒛 = −𝑽 𝒉𝒑⁄ , with 𝑽  is the voltage applied along the 

thickness of 1–3 PZC layer (Baz and Ro, 1995b). By making use of Eqs. (4.13) and 

(4.20) into Eq. (4.16) the open-loop equations of motion of an element attached with the 

ACLD treatment are obtained as follows:  

[𝑴𝒆]{�̈�𝒕
𝒆} + [𝑲𝒕𝒕

𝒆 ]{𝒅𝒕
𝒆} + [𝑲𝒕𝒓

𝒆 ]{𝒅𝒓
𝒆} = [𝑭𝒕𝒑

𝒆 ]𝑽 + {𝑭𝒆}                               (4.22) 

[𝑲𝒓𝒕
𝒆 ]{𝒅𝒕

𝒆} + [𝑲𝒓𝒓
𝒆 ]{𝒅𝒓

𝒆} = [𝑭𝒓𝒑
𝒆 ]𝑽                                              (4.23) 

where the elemental mass matrix is denoted by [𝑴𝒆]; the elemental stiffness matrices are 

denoted by [𝑲𝒕𝒕
𝒆 ], [𝑲𝒕𝒓

𝒆 ], [𝑲𝒓𝒕
𝒆 ], and [𝑲𝒓𝒓

𝒆 ]; the elemental load vector is denoted by {𝑭𝒆}; 

the elemental electroelastic coupling vectors are denoted by {𝑭𝒕𝒑
𝒆 }, {𝑭𝒓𝒑

𝒆 }; and [𝑴𝒆] is the 

mass parameter which can be obtained as follows: 

[𝑴𝒆] = ∫ ∫ �̅�[𝑵𝒕]
𝑻[𝑵𝒕]𝒅𝒙 𝒅𝒚

𝒃𝒆

𝟎

𝒂𝒆

𝟎

,                              

[𝑲𝒕𝒕
𝒆 ] = [𝑲𝒕𝒃

𝒆 ] + [𝑲𝒕𝒔
𝒆 ] + [𝑲𝒕𝒃𝒔

𝒆 ]𝒑𝒃 + [𝑲𝒕𝒃𝒔
𝒆 ]𝒑𝒔,             

[𝑲𝒕𝒓
𝒆 ] = [𝑲𝒕𝒓𝒃

𝒆 ] + [𝑲𝒕𝒓𝒔
𝒆 ] +

1

2
([𝑲𝒕𝒓𝒃𝒔

𝒆 ]𝒑𝒃 + [𝑲𝒓𝒕𝒃𝒔
𝒆 ]𝒑𝒃

𝑻 + [𝑲𝒕𝒓𝒃𝒔
𝒆 ]𝒑𝒔 + [𝑲𝒓𝒕𝒃𝒔

𝒆 ]𝒑𝒔
𝑻 ), 

[𝑲𝒓𝒕
𝒆 ] = [𝑲𝒕𝒓

𝒆 ]𝑻, 

         [𝑲𝒓𝒓
𝒆 ] = [𝑲𝒓𝒓𝒃

𝒆 ] + [𝑲𝒓𝒓𝒔
𝒆 ] + [𝑲𝒓𝒕

𝒆 ] + [𝑲𝒓𝒓𝒃𝒔
𝒆 ]𝒑𝒃 + [𝑲𝒓𝒓𝒃𝒔

𝒆 ]𝒑𝒔, 
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{𝑭𝒕𝒑
𝒆 } = {𝑭𝒕𝒑

𝒆 }
𝒑

+ {𝑭𝒕𝒔
𝒆 }𝒑,    {𝑭𝒓𝒑

𝒆 } = {𝑭𝒓𝒃
𝒆 }𝒑 + {𝑭𝒓𝒔

𝒆 }𝒑, 

{𝑭𝒆} = ∫ ∫ [𝑵𝒕]
𝑻

𝒃𝒆

𝟎

{𝒇}𝒅𝒙 𝒅𝒚
𝒂𝒆

𝟎

                                                           (4.24) 

�̅� = ∑ 𝝆𝒌

𝑵+𝟐

𝒌=𝟏

(𝒉𝒌+𝟏 − 𝒉𝒌)                                          

where, �̅� is the mass parameter, and 𝒂𝒆 and 𝒃𝒆 are the length and circumferential width 

of the corresponding element. 

The electroelastic coupling vectors and elemental stiffness matrices appeared in 

Eq. (4.24) are follows: 

[𝑲𝒕𝒃
𝒆 ] = ∫ [𝑩𝒕𝒃]

𝑻([𝑫𝒕𝒃] + [𝑫𝒕𝒃]𝒗 + [𝑫𝒕𝒃]𝒑)
 

𝑨

[𝑩𝒕𝒃]𝒅𝒙 𝒅𝒚, 

[𝑲𝒕𝒔
𝒆 ] = ∫ [𝑩𝒕𝒔]

𝑻([𝑫𝒕𝒔] + [𝑫𝒕𝒔]𝒗 + [𝑫𝒕𝒔]𝒑)
 

𝑨

[𝑩𝒕𝒔]𝒅𝒙 𝒅𝒚, 

[𝑲𝒕𝒃𝒔
𝒆 ]𝒑𝒃 = ∫[𝑩𝒕𝒃]

𝑻[𝑫𝒕𝒃𝒔]𝒑[𝑩𝒕𝒔]
 

𝑨

𝒅𝒙 𝒅𝒚, 

[𝑲𝒕𝒃𝒔
𝒆 ]𝒑𝒔 = ∫[𝑩𝒕𝒔]

𝑻[𝑫𝒕𝒃𝒔]𝒑[𝑩𝒕𝒃]
 

𝑨

𝒅𝒙 𝒅𝒚, 

[𝑲𝒕𝒓𝒃
𝒆 ] = ∫ [𝑩𝒕𝒓𝒃]

𝑻([𝑫𝒕𝒓𝒃] + [𝑫𝒕𝒓𝒃]𝒗 + [𝑫𝒕𝒓𝒃]𝒑)
 

𝑨

[𝑩𝒓𝒃]𝒅𝒙 𝒅𝒚, 

[𝑲𝒕𝒓𝒃𝒔
𝒆 ]𝒑𝒃 = ∫[𝑩𝒕𝒃]

𝑻[𝑫𝒕𝒓𝒃𝒔]𝒑[𝑩𝒓𝒔]
 

𝑨

𝒅𝒙 𝒅𝒚, 

    [𝑲𝒓𝒕𝒃𝒔
𝒆 ]𝒑𝒃 = ∫[𝑩𝒓𝒃]

𝑻[𝑫𝒓𝒕𝒃𝒔]𝒑[𝑩𝒕𝒔]
 

𝑨

𝒅𝒙 𝒅𝒚, 

[𝑲𝒕𝒓𝒃𝒔
𝒆 ]𝒑𝒔 = ∫[𝑩𝒕𝒔]

𝑻[𝑫𝒓𝒕𝒃𝒔]𝒑
𝑻[𝑩𝒓𝒃]

 

𝑨

𝒅𝒙 𝒅𝒚, 
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        [𝑲𝒓𝒕𝒃𝒔
𝒆 ]𝒑𝒔 = ∫[𝑩𝒓𝒔]

𝑻[𝑫𝒕𝒓𝒃𝒔]𝒑
𝑻[𝑩𝒕𝒃]

 

𝑨

𝒅𝒙 𝒅𝒚, 

[𝑲𝒕𝒓𝒔
𝒆 ] = ∫ [𝑩𝒕𝒔]

𝑻([𝑫𝒕𝒓𝒔] + [𝑫𝒕𝒓𝒔]𝒗 + [𝑫𝒕𝒓𝒔]𝒑)
 

𝑨

[𝑩𝒓𝒔]𝒅𝒙 𝒅𝒚, 

[𝑲𝒓𝒓𝒃
𝒆 ] = ∫ [𝑩𝒓𝒃]

𝑻([𝑫𝒓𝒓𝒃] + [𝑫𝒓𝒓𝒃]𝒗 + [𝑫𝒓𝒓𝒃]𝒑)
 

𝑨

[𝑩𝒓𝒃]𝒅𝒙 𝒅𝒚, 

[𝑲𝒓𝒓𝒔
𝒆 ] = ∫ [𝑩𝒓𝒔]

𝑻([𝑫𝒓𝒓𝒔] + [𝑫𝒓𝒓𝒔]𝒗 + [𝑫𝒓𝒓𝒔]𝒑)
 

𝑨

[𝑩𝒓𝒔]𝒅𝒙 𝒅𝒚, 

[𝑲𝒓𝒓𝒃𝒔
𝒆 ]𝒑𝒃 = ∫[𝑩𝒓𝒃]

𝑻[𝑫𝒓𝒓𝒃𝒔]𝒑[𝑩𝒓𝒔]
 

𝑨

𝒅𝒙 𝒅𝒚, 

[𝑲𝒓𝒓𝒃𝒔
𝒆 ]𝒑𝒔 = ∫[𝑩𝒓𝒔]

𝑻[𝑫𝒓𝒓𝒃𝒔]𝒑
𝑻[𝑩𝒓𝒃]

 

𝑨

𝒅𝒙 𝒅𝒚, 

[𝑭𝒕𝒃
𝒆 ]𝒑 = ∫[𝑩𝒕𝒃]

𝑻{𝑫𝒕𝒃}𝒑

 

𝑨

𝒅𝒙 𝒅𝒚, 

[𝑭𝒓𝒃
𝒆 ]𝒑 = ∫[𝑩𝒓𝒃]

𝑻{𝑫𝒓𝒃}𝒑

 

𝑨

𝒅𝒙 𝒅𝒚, 

[𝑭𝒕𝒔
𝒆 ]𝒑 = ∫[𝑩𝒕𝒔]

𝑻{𝑫𝒕𝒔}𝒑

 

𝑨

𝒅𝒙 𝒅𝒚, 

[𝑭𝒓𝒔
𝒆 ]𝒑 = ∫[𝑩𝒓𝒔]

𝑻{𝑫𝒓𝒔}𝒑

 

𝑨

𝒅𝒙 𝒅𝒚 

The vectors and rigidity matrices that appeared in the elemental matrices can be 

written as follows: 
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[𝑫𝒕𝒃] = ∑ ∫ [�̅�𝒃
𝒌]𝒅𝒛

𝒉𝒌+𝟏

𝒉𝒌

𝑵

𝒌=𝟏

, [𝑫𝒕𝒓𝒃] = ∑ ∫ [�̅�𝒃
𝒌][𝒁𝟏]𝒅𝒛

𝒉𝒌+𝟏

𝒉𝒌

𝑵

𝒌=𝟏

,

[𝑫𝒓𝒓𝒃] = ∑ ∫ [𝒁𝟏]
𝑻[�̅�𝒃

𝒌][𝒁𝟏]𝒅𝒛,
𝒉𝒌+𝟏

𝒉𝒌

𝑵

𝒌=𝟏

 

[𝑫𝒕𝒔] = ∑ ∫ [�̅�𝒔
𝒌]𝒅𝒛

𝒉𝒌+𝟏

𝒉𝒌

𝑵

𝒌=𝟏

, [𝑫𝒕𝒓𝒔] = ∑ ∫ [�̅�𝒃
𝒌][𝒁𝟒]𝒅𝒛

𝒉𝒌+𝟏

𝒉𝒌

𝑵

𝒌=𝟏

,

[𝑫𝒓𝒓𝒔] = ∑ ∫ [𝒁𝟒]
𝑻[�̅�𝒔

𝒌][𝒁𝟒]𝒅𝒛,
𝒉𝒌+𝟏

𝒉𝒌

𝑵

𝒌=𝟏

 

[𝑫𝒕𝒃]𝒗 = 𝒉𝒗[�̅�𝒃
𝑵+𝟏],    [𝑫𝒕𝒓𝒃]𝒗 = ∫ [�̅�𝒃

𝑵+𝟏][𝒁𝟐]𝒅𝒛
𝒉𝑵+𝟐

𝒉𝑵+𝟏

, 

[𝑫𝒓𝒓𝒃]𝒗 = ∫ [𝒁𝟐]
𝑻[�̅�𝒃

𝑵+𝟏][𝒁𝟐]𝒅𝒛
𝒉𝑵+𝟐

𝒉𝑵+𝟏

,    [𝑫𝒕𝒔]𝒗 = 𝒉𝒗[�̅�𝒃
𝑵+𝟏], 

[𝑫𝒕𝒓𝒔]𝒗 = ∫ [�̅�𝒔
𝑵+𝟏][𝒁𝟓]𝒅𝒛

𝒉𝑵+𝟐

𝒉𝑵+𝟏

, [𝑫𝒓𝒓𝒃]𝒗 = ∫ [𝒁𝟓]
𝑻[�̅�𝒃

𝑵+𝟏][𝒁𝟓]𝒅𝒛
𝒉𝑵+𝟐

𝒉𝑵+𝟏

,    

[𝑫𝒕𝒃]𝒑 = 𝒉𝒑[�̅�𝒃
𝑵+𝟐], 

[𝑫𝒕𝒓𝒃]𝒑 = ∫ [�̅�𝒃
𝑵+𝟐][𝒁𝟑]𝒅𝒛

𝒉𝑵+𝟑

𝒉𝑵+𝟐

,   [𝑫𝒓𝒓𝒃]𝒑 = ∫ [𝒁𝟑]
𝑻[�̅�𝒃

𝑵+𝟐][𝒁𝟑]𝒅𝒛
𝒉𝑵+𝟑

𝒉𝑵+𝟐

, 

   [𝑫𝒕𝒔]𝒑 = 𝒉𝒑[�̅�𝒔
𝑵+𝟐], 

[𝑫𝒕𝒓𝒔]𝒑 = ∫ [�̅�𝒔
𝑵+𝟐][𝒁𝟔]𝒅𝒛

𝒉𝑵+𝟑

𝒉𝑵+𝟐

,    [𝑫𝒓𝒓𝒔]𝒑 = ∫ [𝒁𝟔]
𝑻[�̅�𝒔

𝑵+𝟐][𝒁𝟔]𝒅𝒛
𝒉𝑵+𝟑

𝒉𝑵+𝟐

,  

[𝑫𝒕𝒃𝒔]𝒑 = ∫ [�̅�𝒃𝒔
𝑵+𝟐]𝒅𝒛

𝒉𝑵+𝟑

𝒉𝑵+𝟐

,          [𝑫𝒕𝒓𝒃𝒔]𝒑 = ∫ [�̅�𝒃𝒔
𝑵+𝟐][𝒁𝟔]𝒅𝒛

𝒉𝑵+𝟑

𝒉𝑵+𝟐

,  
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 [𝑫𝒓𝒕𝒃𝒔]𝒑 = ∫ [𝒁𝟑]
𝑻[�̅�𝒃𝒔

𝑵+𝟐]𝒅𝒛
𝒉𝑵+𝟑

𝒉𝑵+𝟐

,         [𝑫𝒓𝒓𝒃𝒔]𝒑 = ∫ [𝒁𝟑]
𝑻[�̅�𝒃𝒔

𝑵+𝟐][𝒁𝟔]𝒅𝒛
𝒉𝑵+𝟑

𝒉𝑵+𝟐

, 

{𝑫𝒕𝒃}𝒑 = ∫ −{�̅�𝒃}/𝒉𝒑𝒅𝒛
𝒉𝑵+𝟑

𝒉𝑵+𝟐

,       {𝑫𝒓𝒃}𝒑 = ∫ −[𝒁𝟑]
𝑻{�̅�𝒃}/𝒉𝒑𝒅𝒛

𝒉𝑵+𝟑

𝒉𝑵+𝟐

, 

{𝑫𝒕𝒔}𝒑 = ∫ −{�̅�𝒔}/𝒉𝒑𝒅𝒛
𝒉𝑵+𝟑

𝒉𝑵+𝟐

,          {𝑫𝒓𝒔}𝒑 = ∫ −[𝒁𝟔]
𝑻{�̅�𝒔}/𝒉𝒑𝒅𝒛

𝒉𝑵+𝟑

𝒉𝑵+𝟐

 

For the estimation of the open-loop global equation of motion, the rotary inertia of 

FE elements can be ignored since the HFRC substrate plate is thin. Finally, the open-

loop global equation of motion of the overall plate/ACLD system can be obtained by 

assembling the elemental equations of motion, as follows: 

[𝑴]{�̈�} + [𝑲𝒕𝒕]{𝑿} + [𝑲𝒕𝒓]{𝑿𝒓} = ∑{𝑭𝒕𝒑
𝒋

}𝑽𝒋

𝒒

𝒋=𝟏

+ {𝑭}                               (4.25) 

[𝑲𝒓𝒕]{𝑿} + [𝑲𝒓𝒓]{𝑿𝒓} = ∑{𝑭𝒓𝒑
𝒋

}𝑽𝒋

𝒒

𝒋=𝟏

                                            (4.26) 

in which [𝑴] represents the global mass matrix; [𝑲𝒕𝒕], [𝑲𝒕𝒓], [𝑲𝒓𝒕] and [𝑲𝒓𝒓] represent 

the global stiffness matrices;  {𝑿𝒓} and {𝑿} denote the global nodal rotational and 

translational degrees of freedom (DOF); {𝑭} represents the global nodal force vector; 

{𝑭𝒕𝒑} and {𝑭𝒓𝒑} denote global electro-elastic coupling matrices with respect to 𝒋𝒕𝒉 patch; 

and 𝒒 and 𝑽𝒋 denote the number of patches and the voltage supplied to these patches, 

respectively. 

4.3 Closed-Loop Model 

In the active control strategy, a simple velocity feedback control law can be used to 

activate the ACLD patches. Accordingly, the control voltage applied across the active 

layer is given by (Beheshti-Aval and Lezgy-Nazargah, 2010): 

𝑽𝒋 = −𝒌𝒅
𝒋
�̇� = −𝒌𝒅

𝒋
[𝑼𝒕

𝒋
]{�̇�} − 𝒌𝒅

𝒋 (𝒉 𝟐⁄ )[𝑼𝒓
𝒋
]{�̇�𝒓}                                 (4.27) 
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in which 𝒌𝒅
𝒋
 represents the control gain for the 𝒋𝒕𝒉 patch, [𝑼𝒕

𝒋
] and [𝑼𝒓

𝒋
] denote the unit 

vectors to express the transverse velocity of the point with respect to the differentiation of 

the global nodal generalized displacements. The final equation of motion evaluating the 

closed-loop dynamics of the HFRC plates/ACLD system is obtained by substituting Eq. 

(4.27) into Eqs. (4.25) and (4.26), as follows: 

[𝑴]{�̈�} + [𝑲𝒕𝒕]{𝑿} + [𝑲𝒕𝒓]{𝑿𝒓} + ∑𝒌𝒅
𝒋

𝒒

𝒋=𝟏

{𝑭𝒕𝒑
𝒋

}{𝑼𝒕
𝒋
}{�̇�} 

+∑𝒌𝒅
𝒋

𝒒

𝒋=𝟏

(𝒉 2⁄ ){𝑭𝒕𝒑
𝒋

}{𝑼𝒓
𝒋
}{�̇�𝒓} = {𝑭}                                     (4.28) 

and 

[𝑲𝒓𝒕]{𝑿} + [𝑲𝒓𝒓]{𝑿𝒓} + ∑𝒌𝒅
𝒋

𝒒

𝒋=𝟏

{𝑭𝒓𝒑
𝒋

}{𝑼𝒕
𝒋
}{�̇�} + ∑𝒌𝒅

𝒋

𝒒

𝒋=𝟏

(𝒉 2⁄ ){𝑭𝒓𝒑
𝒋

}{𝑼𝒓
𝒋
}{�̇�𝒓} = 0       (4.29) 

4.4 Results and Discussions 

First, we verified our results with the available results in the literature to validate the 

above developed FE model herein. Second, we discussed the results for the laminated 

symmetric cross-ply (0°/90°/0°)  and anti-symmetric cross-ply (0°/90°/0°/90°)   as 

well as anti-symmetric angle-ply (−45/45°/−45°/45°) HFRC plates attached with two 

patches of 1‒3 PZC. For the analysis of the vibrational characteristics of the laminated 

HFRC substrate plates, the volume fraction of the carbon fiber and CNT was taken as 

0.4 and 0.1, respectively. The results of the laminated HFRC plates are compared with 

the laminated base composite plates (without CNTs) (i.e., 𝒗𝑪𝑭 = 0.4 and 𝒗𝑪𝑵𝑻 = 0). 

Finally, we demonstrated the enhancement of the damping characteristics of laminated 

HFRC square plates through a quantitative relative analysis. The effective elastic 

properties of base composite and HFRC were estimated using the two-phase and three-

phase micromechanical models based on the MOM approach, respectively. Table 4.1 

summarizes the effective elastic properties of the base composite and HFRC (Gupta et 

al., 2021). 
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Table 4.1. Effective elastic properties of base composite and HFRC. 

Effective elastic 

constant 

Two-phase (𝒗𝑪𝑵𝑻 =

𝟎%) 

Three-phase (𝒗𝑪𝑵𝑻 =

𝟓%) 

Three-phase (𝒗𝑪𝑵𝑻 =

𝟏𝟎%) 

𝒗𝑪𝑭

= 𝟒𝟎% 

𝒗𝑪𝑭

= 𝟔𝟎% 

𝒗𝑪𝑭

= 𝟒𝟎% 

𝒗𝑪𝑭

= 𝟔𝟎% 

𝒗𝑪𝑭

= 𝟒𝟎% 

𝒗𝑪𝑭

= 𝟔𝟎% 

𝑪𝟏𝟏 (GPa) 96.6451 142.5567 125.5864 171.5618 154.537 200.5939 

𝑪𝟏𝟐 (GPa) 4.1219 5.0647 4.2920 5.3836 4.4906 5.7748 

𝑪𝟏𝟑 (GPa) 4.1219 5.0647 4.2719 5.3559 4.4469 5.7124 

𝑪𝟐𝟑 (GPa) 4.3856 5.521 4.7174 6.0547 5.1033 6.7013 

𝑪𝟑𝟑 (GPa) 7.7068 9.9779 8.3094 11.0133 9.0142 12.2889 

𝑪𝟒𝟒 (GPa) 1.0054 1.407 1.091 1.5806 1.1926 1.8031 

𝑪𝟔𝟔 (GPa) 1.0488 1.5408 1.1423 1.7515 1.2541 2.0289 

Table 4.2. Properties of piezoelectric material (Ray and Pradhan, 2006). 

Material 
𝑪𝟏𝟏 

(GPa) 

𝑪𝟏𝟑 

(GPa) 

𝑪𝟑𝟑 

(GPa) 

𝑪𝟒𝟒 

(GPa) 

𝑪𝟔𝟔 

(GPa) 

𝒆𝟑𝟏 

(𝑪 𝒎−𝟐) 

𝒆𝟑𝟑 

(𝑪 𝒎−𝟐) 

𝝆 

(𝒌𝒈 𝒎𝟑⁄ ) 

1‒3 PZC  9.293 6.182 35.444 1.584 1.536 –0.19 18.41 5090 

PZT‒5 121 75.2 111 21.1 21.1 –5.4 15.8 7750 

PZT‒7A 148 74.2 131 25.4 25.4 –2.1 9.5 7750 

PZT‒5H 151 96 124 23 23 –5.1 27 7750 

The present work is focused on the influence of CNTs on the damping 

performance of the laminated HFRC plates. It can be seen from Table 4.1 that the 

effective elastic properties of the HFRC improved due to the incorporation of CNTs. 

Unless otherwise mentioned, the 𝒗𝑪𝑭 is taken as 0.4 by varying the CNT volume fraction 

from 0 and 0.1 for the present analysis. The effective properties of 1‒3 PZC considering 

PZT fiber volume fraction (𝒗𝑭) as 0.6 are shown in Table 4.2. For the HFRC square 

substrate plate, the thickness was taken as 0.003 m, while the aspect ratio (a/h) was taken 

as 100. The thickness of VE and piezo layers was taken as 51  𝝁𝒎  and 250 𝝁𝒎 , 

respectively. The properties of the viscoelastic constraining layer such as density, 

Poisson’s ratio, and complex shear modulus were considered as 1140 𝒌𝒈/𝒎𝟑, 0.49, and 

20(1 + 𝒊) 𝑴𝑵 𝒎−𝟐, respectively (Chantalakhana and Stanway, 2001; Ray and Pradhan, 

2006).  
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To verify the FE model developed in Section 4.2, the fundamental natural 

frequencies of the SS laminated substrate plates attached with negligible thickness and 

inactivated ACLD treatment patches are verified with available analytical results (Reddy, 

2003) for the similar layered composite plates without ACLD treatment. A non-

dimensional frequency parameter 𝝀 was used for validation, which is given by: 

𝝀 = �̅�(𝒂𝟐 𝒉⁄ )√𝝆 𝑬𝑻⁄                                                             (4.30) 

where the natural frequency of the overall plate is given by �̅�, and density and transverse 

Young’s modulus of the laminated substrate are denoted by 𝝆 and 𝑬𝑻 , respectively. 

Table 4.3 presents the comparison of the present FE model with the available results 

(Reddy, 2003). The comparison shows good agreement which validates the FE model 

developed herein. 

Table 4.3. Non-dimensional frequencies (𝝀) of laminated substrate plates. 

Substrate laminates Source 
𝝀 

a/h = 10 a/h = 100 

0°/90°/0° Present FE model 12.197 15.182 

Analytical (Reddy, 2003) 12.223 15.185 

0°/90°/0°/90° Present FE model 8.887 9.682 

Analytical (Reddy, 2003) 8.90 9.687 

−45°/45°/−45°/45° Present FE model 10.833 13.625 

Analytical (Reddy, 2003) 10.895 13.629 

Next, the damping performance of the laminated HFRC plate integrated with two 

ACLD patches is investigated considering the CNT volume fraction as 0.1. To compute 

the frequency response, Eqs. (4.28) and (4.29) are formulated with the harmonic 

excitation of 1 N force applied at a point (𝒂/2, 𝒃/4, 𝒉/2). For the first ACLD treatment 

patch, the applied control voltage is negatively proportional to the velocity of a point 

(𝒂/2, 𝒃/4, 𝒉/2), whereas, for the second ACLD treatment patch, the control voltage 

applied is negatively proportional to the velocity of a point (𝐚/2, 3𝐛/4, 𝐡/2). Table 4.4 

summarizes the values of the maximum amplitude corresponding to the fundamental 

natural frequency of the first mode of HFRC plates. It can be observed from Table 4.4 
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that the active damping is effectively attenuated the vibrational amplitudes of composite 

plates compared to the passive damping (uncontrolled case).   

Table 4.4. Amplitudes and fundamental natural frequencies of base composite and 

HFRC substrate smart plates. 

Ply Gain 

Base composite HFRC 

Amplitude 

(𝟏𝟎−𝟒) (m) 

Frequency 

(𝟏𝐬𝐭 mode) 

(Hz) 

Amplitude 

(𝟏𝟎−𝟒) (m) 

Frequency 

(𝟏𝐬𝐭 mode) 

(Hz) 

(0°/90°/0°) 

Uncontrolled  1.22 133 1.20 162 

500 0.688 133 0.622 162 

800 0.554 133 0485 162 

(0°/90°/0°/90°) 

Uncontrolled  1.21 125 1.19 151 

500 0.686 125 0.624 151 

800 0.545 125 0.483 151 

(−45°/45°/−45°

/45°) 

Uncontrolled  1.19 165 1.16 202 

500 0.604 165 0.538 202 

800 0.466 165 0.405 202 

 

The variation of the amplitude of deflection vs frequency response of the SS 

laminated HFRC plate with active damping is shown in Fig. 4.3 for the symmetric cross-

ply (0°/90°/0°) case. It can be seen that the laminated HFRC plates (incorporated with 

CNTs) attenuate the transverse vibrational amplitudes significantly over those of the base 

composite plates (without CNTs). For the first mode, laminated HFRC plate attenuates 

the amplitude of vibration ~11 %  and ~13 % corresponding to the value of gain (𝒌𝒅) 

500 and 800, respectively, compared to the base composite case. The required maximum 

control voltage is around 31.46 V and 39.25 V for the value of gain (𝒌𝒅) 500 and 800, 

respectively, to achieve the attenuation of the amplitude of vibration ~11 %  and ~13 %  

of the laminated HFRC plate. The respective maximum control voltage is 28.97 V and 

37.08 V for the base composite plates as shown in  Fig. 4.4. This finding is consistent 

with an experimental investigation of smart plate by (Baz and Ro, 1996). They observed 

that the required control voltage is around 28.68 V to achieve 76% of amplitude 

attenuation of the plate. It may be observed from Fig. 4.3 and Fig. 4.4 that the laminated 
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HFRC plate shows better damping characteristics due to the incorporation of CNTs in 

terms of attenuation of amplitudes and enhancement in the first few natural frequencies.  

 

Figure 4.3 Variation of amplitude of deflection with the frequency response of SS 

0°/90°/0° laminated square composite plates. 

 

Figure 4.4 Variation of control voltage with the frequency response of SS 0°/90°/0° 

laminated square composite plates. 
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Figure 4.5 Variation of amplitude of deflection with the frequency response of SS 

0°/90°/0°/90° laminated square composite plates. 

 

Figure 4.6 Variation of control voltage with the frequency response of SS 0°/90°/0°/

90° laminated square composite plates. 
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Figure 4.7 Variation of amplitude of deflection with the frequency response of SS 

−45/45°/−45°/45° laminated square composite plates. 

 

Figure 4.8 Variation of control voltage with the frequency response of SS −45/45°/

−45°/45° laminated square composite plates. 

The frequency response of SS laminated smart composite square plates with 

respect to the amplitude of deflection 𝒘 (𝒂 2⁄ , 𝒃 4⁄ , 𝒉 2⁄ ) is demonstrated in Fig. 4.5 for 

the anti-symmetric cross-ply (0°/90°/0°/90°) case. This figure displays that the anti-

symmetric cross-ply laminated HFRC plate shows better damping characteristics due to 
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the incorporation of CNTs in terms of attenuation of amplitudes and enhancement in the 

first few natural frequencies. For the first mode of natural frequency, the reduction in the 

vibrational amplitudes of the laminated HFRC square plate is ~9 % and ~11% 

corresponding to the value of gain (𝒌𝒅) 500 and 800, respectively, compared to the 

reference composite. Figure 4.6 illustrates the required control voltage to attenuate 

vibration amplitudes of the SS anti-symmetric cross-ply laminated base composite and 

HFRC plates. This figure displays that the laminated HFRC square plate requires the 

maximum voltage to control the vibration amplitudes, which is 29.41 V and 36.48 V with 

the gain (𝒌𝒅) of 500 and 800, respectively. Figure 4.7 demonstrates the variation of 

vibrational amplitudes with natural frequency for the SS laminated anti-symmetric angle-

ply square composite plates. The figure shows that the laminated HFRC square plate 

shows better damping performance compared to the laminated base composite plate for 

the same value of gain. The percentage of amplitude reduction for the laminated anti-

symmetric angle-ply HFRC plate with respect to the base composite plate is 

~11 % and ~13 %  for the value of gain (𝒌𝒅)  of 500 and 800, respectively. The 

maximum control voltage required to achieve respective percentage amplitude reduction 

is 33.98 V and 40.91 V, as shown in Fig. 4.8.  

Figure 4.9 illustrates the effect piezoelectric constants 𝒆𝟑𝟏 and  𝒆𝟑𝟑  of the 1–3 

PZC reinforced with vertically aligned piezoelectric fibers responsible for the in-plane 

and transverse plane actuations, respectively, for enhancing the overall damping behavior 

of the smart laminated symmetric cross-ply HFRC square plate. The results are 

computed considering the gain value of 500 while one of the piezoelectric coefficients 

(𝒆𝟑𝟏or 𝒆𝟑𝟑) was set to zero. An electric field is applied to the constraining layer of 1‒3 

PZC to induce the out-of-plane actuation when 𝒆𝟑𝟏 = 0 and 𝒆𝟑𝟑 ≠ 0, whereas the case 

𝒆𝟑𝟑 = 0 and 𝒆𝟑𝟏 ≠ 0 causes the in-plane actuation in the 1‒3 PZC patches. It is noted 

that both the piezoelectric constants contribute towards actuation in unison and improves 

the damping performance of laminated HFRC square plate. However, the attenuation 

capability of out-of-plane actuation (due to 𝒆𝟑𝟑 ) is much higher than the in-plane 

actuation (due to 𝒆𝟑𝟏) and the value of 𝒆𝟑𝟑 significantly influences the active vibrational 

performance of the smart laminated HFRC square plate. Figure 4.10 demonstrates the 

effect of 𝒗𝑪𝑭 on the damping characteristics of the SS laminated symmetric cross-ply 

HFRC square plate. As expected, it can be seen from Fig. 4.10 that the vibrational 
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amplitudes of plates attenuated as the vCF  increases from 40% to 60%. The damping 

characteristics of the laminated symmetric cross-ply HFRC square plate is enhanced by 

~9 % and ~11%   when the value of gain (𝒌𝒅)  is 500 and 800, respectively. The 

corresponding maximum required control voltage is 32.7 V and 40 V to achieve such 

attenuation, as shown in Fig. 4.11. 

 

Figure 4.9. Effect of piezoelectric constants on the amplitude of deflection of laminated 

symmetric cross-ply HFRC square plate for 𝒌𝒅 = 500 and 𝒗𝑪𝑭 = 10%. 

 

Figure 4.10. Effect of 𝒗𝑪𝑭 on the amplitude of deflection of laminated symmetric cross-

ply HFRC square plate. 
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Figure 4.11. Effect 𝒗𝑪𝑭 on the variation of the control voltage with respect to the 

frequency response of SS laminated symmetric cross-ply HFRC square plate. 

Figures 4.12-4.14 demonstrate the variation of non-dimensional fundamental 

natural frequencies (𝝀)  of the laminated plate with the aspect ratio by varying the 

thickness of the plate and keeping the in-plane dimensions of the substrate plate constant. 

Here, we computed the results for the base composite and HFRC with 𝒗𝑪𝑵𝑻 =

5% and 10 % . As expected, the non-dimensional fundamental natural frequencies 

increase with increasing the 𝒗𝑪𝑵𝑻. For the symmetric cross-ply case (Fig. 4.12), it can be 

observed that the value of 𝝀 of laminated square plates increases as the aspect ratio 

increases from 20 to 60 and them remain almost constant in the range of 60 to 100. The 

maximum value of 𝝀  is found when 𝒂 𝒉⁄ = 80 , which is 14.95, 14.21, and 13.19 

corresponding to the value of 𝒗𝑪𝑵𝑻 = 10, 5 and 0 %. Similar results were obtained for the 

anti-symmetric cross-ply (0°/90°/0°/90° ) and anti-symmetric angle-ply (−45/45°/

−45°/45°) cases and the same are presented in the supplementary file for the sake of 

brevity in Figs. 4.13 and 4.14. For the anti-symmetric cross-ply case, the maximum value 

of 𝝀 is 13.9, 13.25, and 12.24, whereas the maximum value of 𝝀 is 18.66, 17.68, and 

16.33 for the anti-symmetric angle-ply corresponding to the value of 𝒗𝑪𝑵𝑻 = 10, 5 and 0 

%. 
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Figure 4.12. Variation of non-dimensional frequency parameter (𝝀) with aspect ratio of 

the laminated square plate by varying the thickness and keeping in-plane dimensions of 

plate constant for the symmetric cross-ply plates (𝒌𝒅 = 500). 

 

Figure 4.13. Variation of non-dimensional frequency parameter (𝝀) with aspect ratio of 

the laminated square plate by varying the thickness and keeping in-plane dimensions of 

plate constant for the anti-symmetric cross-ply plates (𝒌𝒅 = 500). 
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Figure 4.14. Variation of non-dimensional frequency parameter (𝝀) with aspect ratio of 

the laminated square plate by varying the thickness and keeping in-plane dimensions of 

plate constant for the anti-symmetric angle-ply plates (𝒌𝒅 = 500). 

Figure 4.15 demonstrates the variation of non-dimensional fundamental natural 

frequencies of the laminated square plate with respect to the aspect ratio by varying the 

in-plane dimensions of plate and keeping the thickness of the substrate plate constant. It 

can be noted that the value of 𝝀 improves as the 𝒗𝑪𝑵𝑻 increases. The maximum value of 

𝝀 for the symmetric cross-ply case is 14.94, 14.20, and 13.18 corresponding to the value 

of 𝒗𝑪𝑵𝑻 = 10, 5, and 0 %. Likewise, the maximum value of 𝝀 is 13.87, 13.22, and 12.32 

for the anti-symmetric cross-ply case, whereas the values are 18.64, 17.66, and 16.30 for 

the anti-symmetric angle-ply case corresponding to 𝒗𝑪𝑵𝑻 = 10, 5 and 0 %. The results of 

anti-symmetric cross-ply and anti-symmetric angle-ply cases are presented in the 

supplementary file in Figs. 4.16 and 4.17. 



Active Vibration Damping of a SS Smart Multiscale HFRC Plates Using 1‒3 PZC 

 

121 

 

 

Figure 4.15. Variation of non-dimensional frequency parameter (𝝀) with aspect ratio of 

the laminated square plate by varying the in-plane dimensions and keeping thickness of 

plate constant for the symmetric cross-ply plates (𝒌𝒅 = 500). 

 

Figure 4.16. Variation of non-dimensional frequency parameter (𝝀) with aspect ratio of 

the laminated square plate by varying the in-plane dimensions and keeping thickness of 

plate constant for the anti-symmetric cross-ply plates (𝒌𝒅 = 500). 
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Figure 4.17. Variation of non-dimensional frequency parameter (𝝀) with aspect ratio of 

the laminated square plate by varying the in-plane dimensions and keeping thickness of 

plate constant for the anti-symmetric angle-ply plates (𝒌𝒅 = 500). 

Furthermore, we performed the quantitative relative analysis to demonstrate the 

enhancement of the damping characteristics of laminated HFRC square plates. For this, 

we defined a damping characteristics enhancement factor (DCEF) which indicates the 

reduction of the amplitudes of deflection of laminated HFRC plate compared to the base 

composite substrate plate, as follows:  

𝑫𝑪𝑬𝑭 =  
𝑨𝟎 − 𝑨𝑪𝑵𝑻

𝑨𝟎
 %                                                         (4.31) 

where, 𝑨𝟎  is the amplitude of deflection of base composite plate, and 𝑨𝑪𝑵𝑻  is the 

amplitude of deflection of HFRC plate.  

Figures 4.18-4.20 demonstrates the effect of thickness variation (𝒉 = 𝒂 𝑿⁄ , 𝑿 =

20 to 100) on the DCEF of the laminated HFRC plates for the first mode of amplitudes 

of deflection. A higher Young’s modulus and excellent strength to weight ratio of CNTs 

improves the stiffness of HFRC significantly. This results in the enhancement in the 

damping performance of the HFRC plates compared to the base composite plates. It can 
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be observed that the amplitudes of deflections are attenuated substantially by 

incorporating the CNTs and hence, improving the overall performance of the system. It 

can also be noted that the value of DCEF increases as the aspect ratio of the plate 

decreases. For the symmetric cross-ply case, maximum value of DCEF is approximately 

~8.6% and ~16 % when the value of 𝒗𝑪𝑵𝑻 is 5% and 10 %, respectively, as shown in 

Fig. 4.18. The results for the other two cases (anti-symmetric cross-ply and anti-

symmetric angle-ply) are explicitly shown in the supplementary file in Figs. 4.19 and 

4.20. In case of anti-symmetric cross-ply case, the maximum value of DCEF is 

~8.5% and ~14.8 %, and it is ~9.1% and ~15.7% for the anti-symmetric angle-ply 

case when the value of 𝒗𝑪𝑵𝑻 is 5% and 10 %, respectively. 

 

Figure 4.18. Variation of DCEF with aspect ratio of the laminated symmetric cross-ply 

square plate by varying the thickness and keeping in-plane dimensions constant (𝒌𝒅 = 

500). 
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Figure 4.19. Variation of DCEF with aspect ratio of the laminated anti-symmetric cross-

ply square plate by varying the thickness and keeping in-plane dimensions constant (𝒌𝒅 = 

500). 

 

Figure 4.20. Variation of DCEF with aspect ratio of the laminated anti-symmetric angle-

ply square plate by varying the thickness and keeping in-plane dimensions constant (𝒌𝒅 = 

500). 
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The variation of DCEF with respect to the aspect ratio of substrate plates by 

varying in-plane dimensions and keeping thickness constant is shown in Fig. 4.21. Again, 

it can be observed that the DCEF increases as the aspect ratio of plate decreases. The 

maximum value of DCEF is observed in the range of 𝒂 𝒉⁄ = 30 to 50. The maximum 

value of DCEF of the symmetric cross-ply case is ~9.4% and ~15.7 % when the value 

of 𝒗𝑪𝑵𝑻 is 5% and 10 %, respectively, as shown in Fig. 4.21. The maximum value of 

DCEF is ~8.5% and  ~14.8 %  for the anti-symmetric cross-ply case and it is 

~9.1% and  ~15.7  % for the anti-symmetric angle-ply case when the value of 

𝒗𝑪𝑵𝑻 is  5% and  10 % , respectively. These results are explicitly presented in the 

supplementary file in Figs. 4.22 and 4.23 for the sake of brevity. It can be observed from 

Figs. 4.18 to 4.23 that the addition of CNTs in the matrix material improves the 

performance of the HFRC substrate plates significantly. 

 

Figure 4.21. Variation of DCEF with aspect ratio of the laminated symmetric cross-ply 

square plate by varying the in-plane dimensions and keeping thickness constant (𝒌𝒅 = 

500). 
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Figure 4.22. Variation of DCEF with aspect ratio of the laminated anti-symmetric cross-

ply square plate by varying the in-plane dimensions and keeping thickness constant (𝒌𝒅 = 

500). 

 

Figure 4.23. Variation of DCEF with aspect ratio of the laminated anti-symmetric angle-

ply square plate by varying the in-plane dimensions and keeping thickness constant (𝒌𝒅 = 

500). 
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The effect of aspect ratio (a/h) on DCEF of the HFRC laminated beam for the 1st 

mode of amplitudes of vibration by keeping the overall volume fraction of base 

composite and HFRC the same is demonstrated in Figs. 4.24 for the various ply types. 

The fiber volume fraction in the base composite is taken as 40%, while in HFRC, the 

total fiber volume fraction (i.e., 𝒗𝑪𝑵𝑻 + 𝒗𝑪𝑭) is taken as 40%. The results show that due 

to the consideration of CNTs the overall structural damping characteristics of HFRC 

plate significantly improved for all the ply types, and the best results are observed for the 

anti-symmetric angle-ply. 

 

Figure 4.24. Variation of DCEF with respect to the aspect ratio of the substrate plate for 

various ply type at a gain (𝒌𝒅) of 500, 𝒗𝑪𝑵𝑻 = 5 and 10%, and aspect ratio (a/h) = 100 

by keeping the overall fiber volume fraction same for base composite and HFRC. 

4.5 Summary 

In the present work, we studied the damping performance of simply supported laminated 

CNT-based carbon fiber reinforced composite plates using the FE approach. The CNTs 

are embedded in the matrix phase of carbon fiber composite to improve overall 

properties, especially the damping properties of the resulting HFRC. First, the effective 

elastic properties of the base composite and HFRC are estimated using the mechanics of 
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material approach. Second, the damping performance of smart laminated simply 

supported HFRC plates is investigated via the FE approach using modified FSDT. The 

numerical results are shown for the three cases: symmetric and anti-symmetric cross-ply, 

and anti-symmetric angle-ply. The following main conclusions are drawn from this study.  

• The damping characteristics of the HFRC plate is significantly improved over the 

passive damping, that is, about 50 % improvement in the damping characteristics is 

observed for the small value of control voltage. The out-of-plane piezoelectric 

coefficient (𝒆𝟑𝟑)  of the 1‒3 PZC significantly influences the active damping of 

laminated composite plates. 

• In general, the performance of the laminated HFRC square plate is significantly 

enhanced over that of the laminated base composite plate due to the incorporation of 

CNTs. The anti-symmetric angle-ply case provides better damping than that of 

symmetric/anti-symmetric cross-ply cases. Analysis of the HFRC plate showed that 

its vibration amplitudes can be attenuated from ~8 to ~16 %  by adding a small 

amount CNTs. 

• For the variation of thickness of plate, the non-dimensional fundamental natural 

frequencies parameter (𝝀) remains almost constant for the higher aspect ratio (a/h) of 

plate. Whereas it increases as the aspect ratio increases for the variation of in-plane 

dimensions of the plate.  

• Analysis of HFRC shows that the damping characteristics enhancement factor varies 

with the aspect ratio of the plate. Based on the quantitative analysis, the thickness and 

in-plane dimensions of HFRC plates can be selected appropriately to achieve 

optimum performance.  

Thus, from the present investigation, it can be concluded that the CNTs as a 

modifier in the conventional composite have the potential to improve the damping and 

vibrational characteristics of the resulting composite structures. 



 

 

Chapter 5 
 

Active Vibration Damping of a Clamped-

Clamped Smart Multiscale Hybrid Fiber 

Reinforced Composite Plates Using 1‒3 

Piezoelectric Composites 
 

This Chapter (Gupta et al., 2022b) presents the finite element (FE) model using the first-

order shear deformation theory (FSDT) to investigate the damping performance of 

laminated hybrid fiber-reinforced composite (HFRC) smart plates subjected to clamped-

clamped (CC) boundary condition via the active constrained layer damping (ACLD) 

treatment. A unique feature of the HFRC is that the nanoscale carbon nanotubes (CNTs) 

which are either straight or wavy are embedded in the matrix phase of carbon fiber 

composite to improve the overall properties, especially the damping characteristics of the 

resulting HFRC. The constraining layer of the ACLD treatment is considered to be made 

of vertically/obliquely reinforced 1–3 piezoelectric composite (PZC) material. The system 

consists of a laminated HFRC plate integrated with the two patches of ACLD treatment. 

The research carried out in this chapter brings to light that even the wavy CNTs and 

orientation of piezoelectric fibers can be properly utilized for attaining structural benefits 

from the exceptional elastic properties of CNTs. 

                                                                                                                             

5.1  Introduction 

The analyses carried out in chapters 3 and 4 revealed that the active patches of the ACLD 

treatment significantly improve the active damping characteristics of laminated HFRC 

beams and plates for controlling their linear vibrations over the passive counterpart. In the 

present chapter a similar study has been carried out on the active vibration damping of the 

HFRC plates subjected to CC boundary condition. The HFRC is a novel composite where 
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the CNTs which are either straight or wavy are uniformly distributed along with carbon 

fiber reinforcements in matrix phase. The plane of waviness of the CNTs is coplanar with 

two mutually orthogonal planes i.e., 1‒2 plane and 1‒3 plane. The constraining layer of the 

ACLD treatment is composed of the vertically/obliquely reinforced 1‒3 PZCs while the 

constrained viscoelastic layer has been sandwiched between the HFRC substrate and the 

PZC layer. Based on the FSDT a three-dimensional FE model of smart HFRC plates 

integrated with ACLD patches has been developed to investigate the performance of these 

patches for controlling the vibrations of these plates. This study reveals that the 

performance of the ACLD patches for controlling the vibrations of the CC laminated 

HFRC plates is better when the CNT waviness is coplanar with 1‒3 plane. Emphasis has 

been placed on investigating the effect of the variation of piezoelectric fiber orientation 

angle on the performance of the ACLD treatment. The base composite and HFRC 

substrate with straight and wavy CNTs are considered for presenting the numerical results. 

Also, the effect of variation of the piezoelectric fiber orientation angle in the 1–3 PZC 

constraining layer on the control authority of the ACLD patches has been investigated. The 

evaluated results suggest that even the wavy CNTs can be properly utilized for attaining 

structural benefits from the exceptional elastic properties of CNTs. 

5.2 Effective Piezoelectric Properties of a Vertically/Obliquely 

Reinforced 1-3 PZC 

5.2.1 Mechanics of Materials (MOM) Approach 

In this section, we developed a simple micromechanical model based on the MOM 

approach to predict the electromechanical properties of 1‒3 PZC. Figure 5.1(a) illustrates 

the schematics of representative volume element (RVE) of 1‒3 PZC lamina with fibers 

aligned vertically in 3‒direction, and Fig. 5.1(b) shows the cross-section of the lamina. The 

piezoelectric constants play an important role in the control authority of the 1‒3 PZC 

actuator, which can actively control the vibrations induced in the smart structures. 
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Figure 5.1.  (a) Schematic representation of 1‒3 PZC lamina and (b) cross-sections of 

RVE of 1‒3 PZC. 

 

Figure 5.2. Schematic representation of 1‒3 PZC lamina with piezo-fibers coplanar in 

the (a) xz‒ plane and (b) yz‒plane. 
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Considering the principal material coordinate system (x-y-z) or problem coordinate 

system (1-2-3), the constitutive relations for the 1‒3 PZC are given by:  

{𝝈𝒇} = [𝑪𝒇]{𝜺𝒇} − {𝒆𝒇}𝑬𝟑, 

{𝝈𝒎} = [𝑪𝒎]{𝜺𝒎}                                                               (5.1) 

{𝝈𝒓} =

{
  
 

  
 
𝝈𝟏
𝒓

𝝈𝟐
𝒓

𝝈𝟑
𝒓

𝝈𝟐𝟑
𝒓

𝝈𝟏𝟑
𝒓

𝝈𝟏𝟐
𝒓 }
  
 

  
 

,      {𝝐𝒓} =

{
  
 

  
 
𝜺𝟏
𝒓

𝜺𝟐
𝒓

𝜺𝟑
𝒓

𝜺𝟐𝟑
𝒓

𝜺𝟏𝟑
𝒓

𝜺𝟏𝟐
𝒓 }
  
 

  
 

,                                  (5.2) 

[𝑪𝒓] =

[
 
 
 
 
 
 
𝑪𝟏𝟏
𝒓 𝑪𝟏𝟐

𝒓 𝑪𝟏𝟑
𝒓 𝟎 𝟎 𝟎

𝑪𝟏𝟐
𝒓 𝑪𝟐𝟐

𝒓 𝑪𝟐𝟑
𝒓 𝟎 𝟎 𝟎

𝑪𝟏𝟑
𝒓 𝑪𝟐𝟑

𝒓 𝑪𝟑𝟑
𝒓 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝑪𝟒𝟒
𝒓 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝑪𝟓𝟓
𝒓 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝑪𝟔𝟔
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,      {𝒆𝒇} =

{
  
 

  
 𝒆𝟑𝟏

𝒇

𝒆𝟑𝟐
𝒇

𝒆𝟑𝟑
𝒇

𝟎
𝟎
𝟎 }
  
 

  
 

, 𝒓 =  𝒎 𝒂𝒏𝒅 𝒇 

Here, the notations m and f denote the epoxy matrix and PZT-5H phases, 

respectively; 𝝈𝟏
𝒓 , 𝝈𝟐

𝒓 , and 𝝈𝟑
𝒓  represent the normal stresses along 1, 2, and 3 directions, 

respectively; 𝜺𝟏
𝒓 , 𝜺𝟐

𝒓 , and 𝜺𝟑
𝒓  denote the corresponding normal strains; shear stresses are 

given by 𝝈𝟏𝟐
𝒓 , 𝝈𝟏𝟑

𝒓 , and 𝝈𝟐𝟑
𝒓 ;  𝜺𝟏𝟐

𝒓 , 𝜺𝟏𝟑
𝒓 , and 𝜺𝟐𝟑

𝒓  are the shear strains; 𝑪𝒊𝒋
𝒓  (𝒊, 𝒋 =  1,2 and 6) 

are the elastic coefficients of rth phase; 𝒆𝟑𝟏
𝒇

, 𝒆𝟑𝟏
𝒇

, and 𝒆𝟑𝟑
𝒇

 represent the piezoelectric 

coefficients and 𝑬𝟑 is the applied electric field in the 3‒direction. 

Assuming the condition of the perfect bonding between fiber and matrix phases, 

the iso-field conditions, and the rules of mixture (ROM) relation, we can write the 

following relation: 
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                                                (5.3) 
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{
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                                           (5.4) 

where 𝒗𝒇 and 𝒗𝒎 represent the volume fractions of PZT fiber and matrix, respectively. 

Taking Eqs. (5.1)-(5.4) into account, the field vectors of the homogenized composite can 

be given in terms of stress and strain vectors of the composite, as follows: 

{𝝈 } = [𝑪𝟏]{𝜺
𝒇} + [𝑪𝟐]{𝜺

𝒎} − {𝒆𝟏}𝑬𝟑, 

[𝑪𝟑]{𝜺
𝒎} − [𝑪𝟒]{𝜺

𝒎} = {𝒆𝟐}𝑬𝟑, 

{𝜺 } = [𝑽𝟏]{𝜺
𝒇} + [𝑽𝟐]{𝜺

𝒎}                                            (5.5) 

The matrices appeared in Eqs. (5.5) are as follows: 

[𝑪𝟏] =

[
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[𝑪𝟐] =
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[𝑪𝟒] =
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[𝑽𝟏] =  

[
 
 
 
 
 
 
𝒗𝒈 0 0 0 0 0

0 𝒗𝒈 0 0 0 0

0 0 1 0 0 0
0 0 0 𝒗𝒈 0 0

0 0 0 0 𝒗𝒈 0

0 0 0 0 0 𝒗𝒈]
 
 
 
 
 
 

, and [𝑽𝟐] =

[
 
 
 
 
 
𝒗𝒎 0 0 0 0 0
0 𝒗𝒎 0 0 0 0
0 0 0 0 0 0
0 0 0 𝒗𝒎 0 0
0 0 0 0 𝒗𝒎 0
0 0 0 0 0 𝒗𝒎]

 
 
 
 
 

 

Substituting Eq. (5.3) into Eq. (5.5), constitutive relation for 1‒3 PZC can be given 

by: 

{𝝈 } = [𝑪 ]{𝜺 } − {𝒆 }𝑬𝟑                                                    (5.6) 
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in which [𝑪 ]  and {𝒆 }  are the respective effective elastic matrix and piezoelectric 

coefficient vector, respectively. The expansion of matrix appeared in Eq. (5.6) can be given 

by: 

 [𝑪 ] = [𝑪𝟏][𝑽𝟑]
−𝟏 + [𝑪𝟐][𝑽𝟒]

−𝟏 , 

[𝑽𝟑] = [𝑽𝟏] + [𝑽𝟐][𝑪𝟒]
−𝟏[𝑪𝟑] ,   

    [𝑽𝟒] = [𝑽𝟐] + [𝑽𝟏][𝑪𝟑]
−𝟏[𝑪𝟒]    

{𝒆 } = {𝒆𝟏} + [𝑪𝟏][𝑽𝟑]
−𝟏[𝑽𝟐][𝑪𝟒]

−𝟏{𝒆𝟐} − [𝑪𝟐][𝑽𝟒]
−𝟏[𝑽𝟏][𝑪𝟑]

−𝟏{𝒆𝟐}      (5.7) 

The effective dielectric constant ∈𝟑𝟑  of 1‒3 PZC can be obtained using the 

following relation. 

∈𝟑𝟑 =  𝒗𝒇 ∈𝟑𝟑
𝒇
+ 𝒗𝒎 ∈𝟑𝟑

𝒎+ 𝒆𝟑𝟏
𝒇
𝒗𝒇𝒗𝒎 (𝒗𝒎𝑪𝟏𝟏

𝒇
+ 𝒗𝒇𝑪𝟏𝟏

𝒎 )⁄                     (5.8) 

The constructional feature of the vertically aligned 1‒3 PZC can be such that the 

piezoelectric fibers are coplanar with the vertical xz‒ or yz‒plane, making an angle 𝜳 with 

z‒axis. Based on the law of transformation, the constitutive relations for such 1‒3 PZC can 

be given by: 

{𝝈 } = [�̂� ]{𝜺 } − {�̂� }𝑬𝟑                                                         (5.9) 

where [�̂� ]  and {�̂� }  are the respective effective stiffness and piezoelectric constant 

matrices; {�̂� } is the dielectric constant matrix obtained after applying the transformation 

law and is given by: 

[�̂� ] = [𝑻]𝑇[𝑪][𝑻] ,     {�̂� } =  [𝑻]𝑇{𝒆}[𝑹]     and 

{�̂� } =   [𝑹]−𝟏{𝜺}[𝑹]                                                   (5.10) 

In above equation (Eq. 5.10), [T] and [R] are the transformation matrices, when the 

fibers are placed in the xz‒plane, which are given by:  
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[𝑻]−1 =  

[
 
 
 
 
 
𝒎𝟐 0 𝒏𝟐 0 −𝒎𝒏 0
0 1 0 0 0 0
𝒏𝟐 0 𝒎𝟐 0 𝒎𝒏 0
0 0 0 𝒎 0 𝒏

𝟐𝒎𝒏 0 −𝟐𝒎𝒏 0 𝒎𝟐 − 𝒏𝟐 0
0 0 0 −𝒏 0 𝒎]

 
 
 
 
 

, 

[𝑹] = [
𝒎 0 𝒏
0 1 0
−𝒏 0 𝒎

]                                              (5.11) 

whereas when the fibers are placed in the yz‒plane, the transformation matrices are given 

by:  

[𝑻]−1 =  

[
 
 
 
 
 
1 0 0 0 0 0
0 𝒎𝟐 𝒏𝟐 −𝒎𝒏 0 0
0 𝒏𝟐 𝒎𝟐 𝒎𝒏 0 0
0 𝟐𝒎𝒏 −𝟐𝒎𝒏 𝒎𝟐 − 𝒏𝟐 0 0
0 0 0 0 𝒎 −𝒏
0 0 0 0 𝒏 𝒎 ]

 
 
 
 
 

 

[𝑹] = [
1 0 0
0 𝒎 𝒏
0 −𝒏 𝒎

]                                                (5.12) 

where 𝒎 = 𝒄𝒐𝒔𝜽  and 𝒏 = 𝒔𝒊𝒏𝜽. 

Utilizing effective electromechanical properties of 1‒3 PZC, we will discuss the 

FE model in the damping analysis of HFRC plates in the next section. 

5.3 Theoretical FE Formulation 

To investigate the performance of CC laminated HFRC plates integrated with ACLD 

patches, the boundary condition of the laminated smart plate is changed to CC. This section 

presents the FE model similar to the one presented in Chapter 4. Figure 5.3(a-b) shows the 

vibrating elements and arrangement of ACLD patches on the tail of an aircraft. Figure 

5.3(c) depicts a systematic representation of square HFRC laminae with two rectangular 

patches of ACLD at the top surface to achieve the active damping. The thickness of HFRC 

substrate is h, and it includes N numbers of lamina of equal thickness. The ACLD 

treatment patch is composed of a constrained viscoelastic layer and a constraining layer of 
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1‒3 PZC with vertically/obliquely aligned fibers of thickness 𝒉𝒗  and 𝒉𝒑 , respectively. 

Considering the cartesian coordinate system (x-y-z), the mid-plane of the substrate is taken 

as a reference, such that:  𝒙 = 0 , 𝒂  and 𝒚 = 0 , 𝒃,  representing the dimensions of the 

substrate composite plate. The 1‒3 PZC layer consists of fibers oriented 

vertically/obliquely (Fig. 5.1a) or coplanar with vertical xz‒ and yz‒plane (Fig. 5.2a-b), 

making an angle 𝜳  with the z‒axis. The layer numbers N+1 and N+2 represent the 

viscoelastic layer and the 1–3 PZC layer, respectively. 

 

Figure 5.3. (a) Vibrating members of an aircraft, (b) arrangement of multi-patches of 

ACLD on the tail of an aircraft, (c) schematic of layered HFRC substrate plate attached 

with ACLD treatment constraining layer of 1‒3 PZC patches, (d) 8-noded mesh model 

of HFRC smart plate, and (e) piezo-fiber orientations in different planes. 
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5.3.1 Displacement Fields 

The notations representing the lateral dimensions of the laminated HFRC smart plate 

integrated with the ACLD patches are like those mentioned in Chapter 4. The kinematics 

of deformations of the overall substrate HFRC plate/ACLD system are displayed in Fig. 

5.4. The axial displacement fields satisfying the continuity conditions between the adjacent 

layers of the smart HFRC plate are similar to the Eqs. (4.1)‒(4.3).  As presented in the 

previous analysis, the generalized displacement variables are separated into the 

translational {𝒅𝒕}  and the rotational {𝒅𝒓} variables which are represented by Eq. (4.4). 

While the state of strains and the state of stresses at any point in the HFRC plate are 

described by Eqs. (4.5)‒(4.6) and (4.11), respectively. The generalized strain vectors {𝝐𝒃𝒕}, 

{𝝐𝒔𝒕}, {𝝐𝒃𝒓} and {𝝐𝒔𝒓} are also defined in the same manner as given by Eqs. (4.8)–(4.9). 

Also, for the overall laminated HFRC smart plate, the various matrices [𝒁𝟏], [𝒁𝟐], [𝒁𝟑], 

[𝒁𝟒], [𝒁𝟓] and [𝒁𝟔] appearing in Eqs. (4.6) and (4.7) are identical to those presented in 

Chapter 4. 

 

Figure 5.4. Kinematics of deformation of the plate. 
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5.3.2 Constitutive Relations 

The constitutive relations for the laminated HFRC substrate plate are given by Eq. (4.11). 

The constraining 1‒3 PZC layer is also considered to be subjected to the electric field along 

the direction only. Hence, the constitutive relations for the constraining vertically/obliquely 

reinforced 1-3 PZC layer of the ACLD treatment (Ray and Pradhan, 2007) used here are 

also expressed by Eqs. (4.12). The constrained layer of the ACLD treatment is made of an 

isotropic linear viscoelastic material and the stress vector for this layer is also represented 

by Eq. (4.15). Since the state of stress and the state of strains are considered in the same 

manner as in the case of the laminated composite plate studied in Chapter 4, the statement 

of virtual work principle for this smart laminated HFRC plate is also expressed by Eq. 

(4.16). 

5.3.3 FE Formulation 

The smart sandwich plate has been discretized by using the eight noded isoparametric 

serendipity quadrilateral elements as shown in Fig. 4.2(b). As a result, description of the 

generalized displacement variables at any point in the element in terms of the nodal 

generalized displacement degrees of freedom can be expressed by Eq. (4.18). Also, the 

expressions for the generalized strain vectors at any point within the element can be 

expressed in terms of the nodal generalized displacements degrees of freedoms by using 

Eq. (4.20). Considering a thin piezoelectric actuator sheet with constant thickness, the 

applied electric field can be taken as 𝑬𝒛 = −𝑽 𝒉𝒑⁄ , with 𝑽 is the voltage applied along the 

thickness of 1–3 PZC layer (Baz and Ro, 1995b). The open-loop equations of motion of 

an element attached with the ACLD treatment are given by Eqs. (4.22) and (4.23). For the 

estimation of the open-loop global equation of motion, the rotary inertia of FE elements 

can be ignored since the HFRC substrate plate is thin. Finally, the open-loop global 

equation of motion of the overall plate/ACLD system can be obtained by assembling the 

elemental equations of motion, as follows: 

[𝑴]{�̈�} + [𝑲𝒕𝒕]{𝑿} + [𝑲𝒕𝒓]{𝑿𝒓} =∑{𝑭𝒕𝒑
𝒋
}𝑽𝒋

𝒒

𝒋=𝟏

+ {𝑭}                               (5.13) 
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[𝑲𝒓𝒕]{𝑿} + [𝑲𝒓𝒓]{𝑿𝒓} =∑{𝑭𝒓𝒑
𝒋
}𝑽𝒋

𝒒

𝒋=𝟏

                                            (5.14) 

in which [𝑴] represents the global mass matrix; [𝑲𝒕𝒕], [𝑲𝒕𝒓], [𝑲𝒓𝒕] and [𝑲𝒓𝒓] represent 

the global stiffness matrices;  {𝑿𝒓} and {𝑿} denote the global nodal rotational and 

translational degrees of freedom (DOF);  {𝑭} represents the global nodal force vector; 

{𝑭𝒕𝒑} and {𝑭𝒓𝒑} denote global electro-elastic coupling matrices with respect to 𝒋𝒕𝒉 patch; 

and 𝒒 and 𝑽𝒋  denote the number of patches and the voltage supplied to these patches, 

respectively. 

5.4 Closed-Loop Model 

In the active control strategy, a simple velocity feedback control law can be used to activate 

the ACLD patches. Accordingly, the control voltage applied across the active layer is given 

by (Beheshti-Aval and Lezgy-Nazargah, 2010): 

𝑽𝒋 = −𝒌𝒅
𝒋
�̇� = −𝒌𝒅

𝒋
[𝑼𝒕

𝒋
]{�̇�} − 𝒌𝒅

𝒋 (𝒉 𝟐⁄ )[𝑼𝒓
𝒋
]{�̇�𝒓}                                 (5.15) 

in which 𝒌𝒅
𝒋

 represents the control gain for the 𝒋𝒕𝒉 patch, [𝑼𝒕
𝒋
] and [𝑼𝒓

𝒋
] denote the unit 

vectors to express the transverse velocity of the point with respect to the differentiation of 

the global nodal generalized displacements. The final equation of motion evaluating the 

closed-loop dynamics of the HFRC plates/ACLD system is obtained by substituting Eq. 

(4.15) into Eqs. (4.13) and (4.14), as follows: 

[𝑴]{�̈�} + [𝑲𝒕𝒕]{𝑿} + [𝑲𝒕𝒓]{𝑿𝒓} +∑𝒌𝒅
𝒋

𝒒

𝒋=𝟏

{𝑭𝒕𝒑
𝒋
}{𝑼𝒕

𝒋
}{�̇�} 

+∑𝒌𝒅
𝒋

𝒒

𝒋=𝟏

(𝒉 𝟐⁄ ){𝑭𝒕𝒑
𝒋
}{𝑼𝒓

𝒋
}{�̇�𝒓} = {𝑭}                                     (5.16) 

and 

[𝑲𝒓𝒕]{𝑿} + [𝑲𝒓𝒓]{𝑿𝒓} +∑𝒌𝒅
𝒋

𝒒

𝒋=𝟏

{𝑭𝒓𝒑
𝒋
}{𝑼𝒕

𝒋
}{�̇�} + 
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∑𝒌𝒅
𝒋

𝒒

𝒋=𝟏

(𝒉 2⁄ ){𝑭𝒓𝒑
𝒋
}{𝑼𝒓

𝒋
}{�̇�𝒓} = 0                                             (5.17) 

5.5 Results and Discussion 

In this section, we present the numerical results evaluated using the layer-wise FSDT to 

study the performance of multiscale HFRC smart plates. Here, we considered symmetric 

(0°/90°/0°), anti-symmetric cross-ply (0°/90°/0°/90°), and anti-symmetric angle-ply 

(−45°/45°/−45°/45°)  laminated HFRC substrate plates integrated with two ACLD 

patches. To study the damping performance of HFRC plates, the volume fractions (unless 

specified) of carbon fiber, straight CNTs, and wavy CNTs are taken as 0.3, 0.1, and 0.1243, 

respectively. The results of laminated base composite plates are compared with the HFRC 

plates by keeping the constant carbon fiber volume fraction (i.e., 𝒗𝑪𝑭 = 0.3). The CNT 

waves are considered coplanar with the 1‒2 and 1‒3 planes. The geometrical dimensions 

of base/multiscale HFRC substrates are taken as follows: thickness (h) = 0.003 m and 

aspect ratio (a/h) = 100. The material properties of base composite and HFRC plates with 

𝒗𝑪𝑭 = 0.3 are summarized in Table 5.1. The thickness of 1‒3 PZC composed of PZT 

5H/epoxy composite is taken as 𝒉𝒑 = 250 𝝁𝒎 and material properties of PZC with 60% 

fiber (PZT-5H) and 40% matrix volume fractions are summarized in Table 5.2. 

Table 5.1. Effective elastic properties of the base composite and HFRC with 𝒗𝑪𝑭 = 0.3. 

Elastic 

constant 

𝑪𝟏𝟏 

(GPa) 

𝑪𝟏𝟐 

(GPa) 

𝑪𝟏𝟑 

(GPa) 

𝑪𝟐𝟐 

(GPa) 

𝑪𝟑𝟑 

(GPa) 

𝑪𝟒𝟒 

(GPa) 

𝑪𝟓𝟓 

(GPa) 

𝝆  

(𝒌𝒈 𝒎𝟑⁄ ) 

Base 

composite 

(𝒗𝑪𝑵𝑻 = 0) 

75.75 3.92 3.92 7.32 7.32 1.63 1.34 1385 

HFRC 

(𝒗𝑪𝑵𝑻 = 0.1) 

119.87 4.69 4.38 8.67 8.67 1.98 1.81 1400 

HFRC (1‒2 

plane, 𝒗𝑪𝑵𝑻 =

0.1243) 

70.01 26.87 4.64 25.58 9.05 10.40 2.14 1403.645 
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HFRC (1‒3 

plane, 𝒗𝑪𝑵𝑻 =

0.1243) 

70.01 4.91 26.61 9.07 25.42 1.93 24.41 1403.645 

 

Table 5.2. Material properties of PZC. 

Material 
𝑪𝟏𝟏 

(GPa) 

𝑪𝟏𝟑 

(GPa) 

𝑪𝟑𝟑 

(GPa) 

𝑪𝟒𝟒 

(GPa) 

𝒆𝟑𝟏 

(𝑪 𝒎−𝟐) 

𝒆𝟑𝟑 

(𝑪 𝒎−𝟐) 

𝝆 

(𝒌𝒈 𝒎𝟑⁄ ) 

1-3 PZC  9.293 6.182 35.444 1.536 –0.19 18.41 5090 

PZT-5H (Ray 

and Pradhan, 

2007) 

151 96 124 23 –5.1 27 7750 

Epoxy (Ray and 

Pradhan, 2007) 

5.3 3.1 5.3 0.9 - - 1100 

The viscoelastic layer material was chosen as ISD112 with thickness (𝒉𝒗), density, 

Poisson’s ratio, and complex shear modulus as 51  𝝁𝒎 , 1140 𝒌𝒈/𝒎𝟑 , 0.49, and 

20(1 + 𝐢) 𝑴𝑵 𝒎−𝟐 , respectively (Chantalakhana and Stanway, 2001). To verify the 

accuracy of the FE model derived in Section 5.3, the natural frequencies for the first mode 

of substrate plates integrated with ACLD treatment are compared with the results presented 

by Sahoo and Ray (2019b) for the identical composite plates. Table 5.3 shows a good 

agreement with the available results (Sahoo and Ray, 2019b), which validates the FE 

model in the current work. 

Table 5.3. Natural frequencies (𝝎) of laminated substrate plates integrated with ACLD 

treatment patches. 

Substrate laminates 1st mode 

Present Source (Sahoo 

and Ray, 

2019b) 
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0°/90°/0° 338 340 

0°/90°/0°/90° 337 339 

−45°/45°/−45°/45° 316 317 

The effect of CNT waves on the laminated HFRC plates in attenuating the 

amplitudes of vibration is investigated and compared with the base composite plates in 

terms of frequency response functions (FRFs). In this context, Eqs. (5.16) and (5.17) were 

utilized with time-harmonic point force of 1 N subjected at a junction (𝒂/2, 𝒃/4, 𝒉/2) to 

excite the fundamental mode of vibration of the plates. Figure 5.5 demonstrates the effect 

of CNT waviness on the FRF of CC 0°/90°/0° ply HFRC plate. It can be seen that the 

laminated HFRC plate with CNT waves coplanar with 1‒3 plane significantly attenuates 

the amplitudes of vibration compared to the other cases of laminated plates (with or without 

CNTs). This is attributed to the enhanced transverse stiffness of the multiscale HFRC 

substrate due to the waviness of CNT in the 1‒3 plane. Thus, the energy dissipation 

capability of the multiscale HFRC plate is high, and it significantly attenuates the 

transverse vibrations. For the multiscale HFRC plate with wavy CNTs coplanar with 1‒3 

plane, the amplitudes are suppressed by ~93% and ~77 % corresponding to the value of 

gain 𝒌𝒅 = 600 as compared to the amplitudes of base composite and HFRC with straight 

CNTs. Further analysis is carried out for 0°/90°/0°/90° and −45°/45°/−45°/45° ply 

plates. Figs. 5.6 and 5.7 show that the HFRC plates with CNT waves coplanar with the 1‒

3 plane have better vibration attenuating capability compared to the other cases. However, 

Fig. 5.7 shows that −45°/45°/−45°/45° ply plates have lower amplitudes of deflection 

when CNT waviness is coplanar with 1‒2 plane. This is attributed to the fact that for 

−45°/45°/−45°/45°, ply plate the carbon fiber and CNTs are oriented in the 1‒direction. 

Therefore, −45°/45°/−45°/45° ply HFRC plate shows enhanced stiffness and natural 

frequencies when CNT waviness is coplanar with 1‒2 plane compared to other composite 

plates. Figures. 5.5‒5.7 implies that the three cases of plies of HFRC plate show higher 

vibration attenuation capability for the first mode due to the incorporation of wavy CNTs 

compared to base composite plates. It is clear that the HFRC plates with CNT waves 

coplanar in the mutually orthogonal planes have better damping characteristics due to the 

higher transverse stiffness offered by the HFRC. Therefore, only HFRC plates are 
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considered in the next section to study the effect of orientation of piezo-fiber on the plates’ 

damping performance. 

 

Figure 5.5. Frequency response of symmetric cross-ply HFRC and base composite 

plates when 𝒌𝒅 = 600. 
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Figure 5.6. Frequency response of anti-symmetric cross-ply HFRC and base composite 

plates when 𝒌𝒅 = 600. 

 

Figure 5.7. Frequency response of anti-symmetric angle-ply HFRC and base composite 

plates when 𝒌𝒅 = 600. 

We further explored the effect of piezo-fiber orientation angle (𝜳) on the damping 

performance of multiscale HFRC plates. In this context, the value of 𝜳 was chosen such 

that it varies from 0 to 45° in two mutually orthogonal vertical xz- and yz-planes. However, 

for the sake of simplicity, the FRF corresponding to the values of 𝜳 = 0, 15, 30, and 45° 

is presented to demonstrate the effectiveness of ACLD treatment. Figures 5.8‒5.13 

illustrate the effect of piezo-fiber angle in the xz- and yz-planes on the frequency response 

of various ply configurations of laminated HFRC plates. Unless otherwise mentioned, the 

value of 𝒌𝒅 was taken as 600 to investigate the active performance of multiscale HFRC 

plates for the various piezo-fiber orientation angles. Figures 5.8 and 5.9 illustrates the 

active performance of CC 0°/90°/0° HFRC plate when the CNT waves are coplanar with 

the 1‒3 plane. It can be observed that the piezo-fiber orientation angle affects the damping 

behavior of laminated HFRC plates. The control authority of ACLD patches is maximum: 

(i) at 𝜳 = 30° when piezo-fibers are coplanar with the xz-plane and (ii) at 𝜳 = 15° when 
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the piezo-fibers are coplanar with the yz-plane. Note that the higher attenuation was 

achieved when the piezo-fibers were coplanar with the yz-plane, which was attributed to 

the configuration of ACLD treatment patches. Along the x-axis, the patches are in a 

parallel configuration, whereas the patches are in a series combination along the y-

direction. Thus, we can obtain a combined effect of both configurations when the piezo-

fibers are coplanar with the yz-plane. Similar results are obtained for 0°/90°/0°/90° and 

−45°/45°/−45°/45°  HFRC plates, as shown in Figs 5.10-5.13. For 0°/90°/0°/90° 

HFRC plate, the results are evaluated when the CNT waviness is coplanar with the 1‒3 

plane. Whereas, in the case of −45°/45°/−45°/45° HFRC plate, the results are evaluated 

when the CNT waviness is coplanar with the 1‒2 plane. Figures 5.10‒5.13 show that the 

maximum attenuation of vibration of plates is achieved when the piezo-fibers are oriented 

at 𝜳 = 30°. 

 

Figure 5.8. Effect of piezo-fiber orientation (𝜳) in the xz-plane on the frequency 

response of symmetric cross-ply HFRC plates when 𝒌𝒅 = 600. 
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Figure 5.9. Effect of piezo-fiber orientation (𝜳) in the yz-plane on the frequency 

response of symmetric cross-ply HFRC plates when 𝒌𝒅 = 600. 

 

Figure 5.10. Effect of piezo-fiber orientation (𝜳) in the xz-plane on the frequency 

response of anti-symmetric cross-ply HFRC plates when 𝒌𝒅 = 600. 
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Figure 5.11. Effect of piezo-fiber orientation (𝜳) in the yz-plane on the frequency 

response of anti-symmetric cross-ply HFRC plates when 𝒌𝒅 = 600. 

 

Figure 5.12. Effect of piezo-fiber orientation (𝜳) in the xz-plane on the frequency 

response of anti-symmetric angle-ply HFRC plates when 𝒌𝒅 = 600. 
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Figure 5.13. Effect of piezo-fiber orientation (𝜳) in the yz-plane on the frequency 

response of anti-symmetric angle-ply HFRC plates when 𝒌𝒅 = 600. 

Next, the effect of 1‒3 PZC layer thickness on the controlling ability of ACLD 

treatment is investigated. The thickness of 1‒3 PZC layer varied from 150 𝝁𝒎 to 450 𝝁𝒎 

under the constant gain, 𝒌𝒅 = 600. The outcomes are illustrated in Figs 5.14 and 5.15, 

which shows that a better performance can be achieved with a thinner 1‒3 PZC layer for 

0°/90°/0°  HFRC plate. This is attributed to the fact that the electric field intensity 

increases for the constant voltage difference when the thickness of 1‒3 PZC decreases. 

Similar results are obtained for 0°/90°/0°/90° and −45°/45°/−45°/45° plies HFRC 

plates, but they are not presented here for the sake of brevity. 
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Figure 5.14. Effect of 1‒3 PZC layer thickness on the FRF of symmetric cross-ply 

HFRC plates when piezo-fibers are coplanar with the xz-plane. 

 

Figure 5.15. Effect of 1‒3 PZC layer thickness on the FRF of symmetric cross-ply 

HFRC plates when piezo-fibers are coplanar with the yz-plane. 
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4. Summary 

In this article, we studied the effects of CNT waviness on the dynamic response of a 

laminated HFRC smart plate integrated with two ACLD patches at the upper surface of 

the HFRC substrate plate. The integrated ACLD patches are composed of a viscoelastic 

layer and a tailor-made constraining 1‒3 PZC layer. Based on the layer-wise FSDT, we 

derived a FE model to investigate the active damping performance of laminated HFRC 

plates subjected to CC boundary conditions. A simple closed-loop model is used to 

introduce active damping. The performance of multiscale HFRC with wavy CNT is 

compared with the base composite. We observed that, due to the enhanced transverse 

effective elastic coefficient, the ability of HFRC plates to attenuate the transverse 

vibrations is significantly improved. We also investigated the effect of the piezo-fiber 

alignment angle on the effectiveness of ACLD patches and found that oblique 1‒3 PZC 

have a maximum control authority. Our investigation reveals that the maximum damping 

is achieved when the piezo-fibers are coplanar with yz-plane (𝜳𝒚𝒛), due to the combination 

of ACLD patches in y-direction. In the parametric analysis, we observed that the 1‒3 PZC 

is more sensitive for the thinner layer. This is because the electric field intensity increases 

for the constant voltage difference as the thickness of the 1‒3 PZC layer decreases. Based 

on the following observation, we can conclude that the wavy CNTs can be utilized in 

conventional composite structures to improve their damping characteristics. Such 

multiscale composites can be used in the vibrating members of an aircraft, submarine, and 

missiles along with the combination of ACLD patches to actively control the mechanical 

vibrations. Such smart composites can reduce fatigue and improve the life of the system. 

 



 



 

 

Chapter 6 
 

Active Vibration Damping of a Clamped-

Free Smart Multiscale Hybrid Fiber 

Reinforced Composite Shells Using 1‒3 

Piezoelectric Composites 
 

This chapter (Gupta et al., 2022d) deals with the linear vibrations of doubly curved 

laminated hybrid fiber reinforced composite (HFRC) shells integrated with active 

constrained layer damping (ACLD) treatment installed at the upper circumference of the 

substrate shell. HFRC is a novel composite where the carbon nanotubes (CNTs) which 

are either straight or wavy are uniformly distributed along with carbon fiber 

reinforcements. A three-dimensional finite element (FE) model of doubly curved smart 

HFRC shells integrated with ACLD patches has been developed to investigate the 

performance of these patches for controlling the vibrations of these shells. The FE model 

is based on the sinusoidal shear deformation theory incorporating the Murakami’s zig-

zag function (SinusZZ theory), to encounter the inherent zig-zag effects. Emphasis has 

also been placed on investigating the effect of piezoelectric fiber orientation angle on the 

frequency response of HFRC shells. Also, the research carried out in this chapter brings 

to light that even the wavy CNTs can be properly utilized for attaining structural benefits 

from the exceptional elastic properties of CNTs. 

                                                                                                                             

6.1 Introduction 

The laminated composite structures are the fundamental building blocks extensively used 

in almost all engineering applications due to their remarkable mechanical properties, 

lightweight, and high performance. These multilayered structures consist of relatively 

thin layers of different material compositions that may influence the different degrees of 
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axial compliance. As a result, the axial displacement of anisotropic structures varies 

nonlinearly along the thickness of the structure, which causes discontinuous derivatives 

between the interface of two individual layers. This change in slope between two adjacent 

layers is known as the zig-zag (ZZ) effect. The low values of the transverse to in-plane 

modulus led to a higher transverse shear, resulting in the ZZ effect that must be 

accounted for. The shear response of laminated composite structures has been considered 

accurately by theories like the first-order shear deformation theory (FSDT), the higher-

order shear deformation theory (HSDT), and mixed variational theories (Reddy and 

Phan, 1985; Narita, et al., 1993; Eisenberger, et al., 1995; Norouzzadeh, et al., 2021). 

However, these theories do not account for the ZZ effects. Hence, efforts have been 

made in this framework to refine these theories by considering the ZZ effects to study the 

behavior of laminated structures more accurately. The resulting theories are often termed 

zig-zag theories (ZZTs). There are three common ZZTs, namely, the Lekhnitskii 

multilayered theory, the Ambartsumian multilayered theory, and the Reissner 

multilayered theory (RMT); with the RMT being the most natural and powerful method 

to study laminated structures (Carrera, 2003). Based on the RMT, Di Sciuva (1985) and 

Murakami (1986) made early efforts to employ ZZ-like displacement fields that satisfy a 

priori transverse shear stress and displacement continuity conditions at the layer 

interfaces while keeping the number of kinematic variables independent of the number of 

layers. In addition, the ZZ function vanishes at the top and bottom surfaces of the plate, 

and the full shear-stress continuity across the depth of the multilayered plate is not 

required. Carrera (2004) effectively employed Murakami’s zig-zag function (MZZF) in 

studying the behavior of laminated shells both statically and dynamically. Using a novel 

piecewise linear ZZ function, Tessler et al. (2009) presented a refined theory for 

laminated composite and sandwich beams based on the kinematics of the Timoshenko 

beam theory derived from the virtual work principle. Sedira et al. (2012) employed 

MZZF and investigated the static response of laminated composite plates by developing 

a FE model using the FSDT. Most recently, Khan and Suresh (2021a) investigated the 

active control response of the smart shell embedded with ACLD patches using the 

FSDT, employing MZZF to account for the ZZ effects. Their findings reveal that the 

modified FSDT shows higher vibration suppression due to the incorporation of ZZ 

effects. 
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The literature review suggests the importance of the ZZ effects. The existing 

well-known FSDT effectively considers the shear response of laminated composites. 

However, it fails to account for the inherent ZZ effects. Additionally, the FSDT 

considers the linear distribution of transverse shear stress that does not satisfy the 

condition of zero shear stress at the top and bottom surface of the laminated structures. 

Thus, an attempt has been made in the present work to develop a FE model based on the 

SinusZZ theory, which is a combination of the sinusoidal shear deformation (Sinus) 

theory and MZZF accounting for the inherent ZZ effects induced in laminated structures. 

The proposed SinusZZ theory overcomes these drawbacks of the FSDT, thus improving 

the accuracy of the outcomes. The existing literature also lacks to provide the dynamic 

analysis of multiscale hybrid composites. This work focuses on the investigation of active 

damping response of the multiscale HFRC smart shells using the FE model based on the 

SinusZZ theory. To the best of the present authors’ knowledge, there does not exist a 

single study in the literature that investigates the active damping response of the 

laminated multiscale HFRC smart shell using the SinusZZ theory. This is the motivation 

behind the present work, which aims to develop an advanced laminated multiscale smart 

shell capable of actively suppressing mechanically induced vibrations. The multiscale 

HFRC shell is composed of nanoscale CNT nanofillers and microscale carbon fibers 

used as reinforcement materials. In the matrix phase, the reinforcement materials are 

considered to be uniformly distributed along the x-axis. Our outcomes reveal that the 

multiscale HFRC possesses better damping characteristics due to the incorporation of 

CNTs. We also investigated the effects of CNT waviness and piezo-fiber orientation on 

the damping characteristics of laminated multiscale HFRC shell and the control authority 

of ACLD treatment patches, respectively. Our observation suggests that CNT waviness 

and piezo-fiber orientation greatly influence both the damping characteristics of 

laminated multiscale HFRC shell and the control authority of ACLD treatment patches, 

respectively. Additionally, the frequency response of the laminated multiscale HFRC 

shell is compared with the base composite for symmetric/anti-symmetric cross-ply and 

anti-symmetric angle-ply. 
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6.2 Mathematical Modeling 

Figure 6.1 demonstrates the lamination scheme and displacement field configuration for 

various theories. It can be seen that the displacement and rotation variables are not layer-

independent in the thickness direction in case of classical laminate theory (CLT) and 

FSDT. Thus, MZZF can be introduced to obtain the discontinuous slopes corresponding 

to the layer interface. Moreover, the SinusZZ theory considers the sinusoidal distribution 

of the displacement field for the individual layer of the laminate along its thickness 

direction. Thus, shear lag correction factor is not required. This also ensures that better 

accuracy can be achieved with the implementation of the SinusZZ theory. 

 

Figure 6.1. Scheme of the expansions involved in the displacement field. 

Figure 6.2 illustrates the schematics representation and the cross-sections of the 

laminated multiscale HFRC shell with two ACLD treatment patches installed at its top 

circumferential surface. The laminated multiscale HFRC shell comprises N numbers of 

the unidirectional lamina of equal thickness that are assumed to be perfectly bonded. The 

cantilever multiscale HFRC shell has a length, thickness, and radius of a, h, and R, 

respectively. The ACLD treatment layer is composed of a viscoelastic layer and a 

constraining layer of 1–3 piezoelectric composite (PZC), having a thickness of 𝒉𝒗 and 

𝒉𝒑, respectively. The 1–3 PZC is a tailored-made smart material with piezoelectric fibers 
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oriented vertically or obliquely in the xz-plane and the yz-plane, making an angle 𝜳 with 

the z-axis, as shown in Fig. 6.3. The reference plane of the overall HFRC/ACLD shell 

system is considered to be the mid-plane of the substrate HFRC shell, such that the 

origin of the coordinate system (x, y, z) is located on the mid-plane of the substrate 

HFRC shell, with x = 0 and x = a representing the boundaries of the cantilever multiscale 

HFRC shell. The thickness coordinates (z) of the top and bottom surfaces of any (kth) 

layer of the overall multiscale HFRC shell are given by 𝒛𝒌+𝟏 and 𝒛𝒌(𝒌 = 1,2,3, . . . , 𝑵 +

𝟐), respectively, while 𝒉𝒌 is the thickness of the kth layer. According to Murakami’s ZZ 

theory, the MZZF M(z) is the function of the individual layer corresponding to the mid-

plane. It is represented by a non-denationalized layer coordinate, 𝜻𝒌 , which can be 

expressed as (Carrera, 2004):  

𝑴(𝒛) = (−𝟏)𝒌𝜻𝒌, 𝜻𝒌 =
𝟐

𝒉𝒌
(𝒛 −

𝟏

𝟐
(𝒛𝒌 + 𝒛𝒌+𝟏))                             (6.1) 

where M(z) is a piece-wise linear function of the layer coordinates 𝒛𝒌. The M(z) has a 

unit amplitude (±) for the kth layer with 𝜻𝒌 limiting −1 ≤ 𝜻𝒌 ≤ 1. The slope of 𝑴′(𝒛) 

assumes the opposite sign between two adjacent layers. 

In this article, we present the SinusZZ theory, which is the Sinus theory 

incorporating the MZZF. The sinusoidal function S(z) is given by (Thai and Kim, 2013): 

𝑺(𝒛) =
𝝅

𝒉
𝒔𝒊𝒏 (

𝝅𝒛

𝒉
)                                                           (6.2) 

where the slope of 𝑺′(𝒛) = 𝒄𝒐𝒔 (
𝝅𝒛

𝒉
) . The SinusZZ theory includes the sinusoidal 

function and MZZF in the displacement field equations in the x-direction and the y-

direction, respectively. While the displacement field equation in the z-direction is of a 

higher order in the thickness coordinate. The advantages of the sinusoidal functions over 

polynomial functions are that they are simple and accurate. Also, it guarantees zero 

transverse shear stress conditions at the top and bottom surfaces of the shell. 

A mixed piecewise displacement field theory is considered for the overall 

HFRC/ACLD shell system investigation. The kinematics of axial deformations 
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accounting for the SinusZZ is demonstrated in Fig. 6.4 (a). 𝒖𝟎 and 𝒗𝟎 are the generalized 

axial displacements of a point (x, y) on the reference plane (𝒛 = 0) of the substrate 

HFRC shell along the x-axis and y-axis, respectively. 𝜽𝒙 and 𝜽𝒚  are the generalized 

rotations of the normals to the middle planes of the overall HFRC shell. 𝝓𝒙, 𝝓𝒚  and 

𝜸𝒙, 𝜸𝒚 are the unknown displacement variables associated with the sinusoidal functions 

and MZZF in the x-direction and the y-direction, respectively. With the help of the 

kinematic of deformations presented in Fig. 6.4 (a), the axial displacement at any point in 

the overall HFRC/ACLD shell system can be expressed as (Neves et al., 2017): 

𝒖(𝒙, 𝒚, 𝒛, 𝒕) = 𝒖𝟎(𝒙, 𝒚, 𝒕) + 𝒁(𝒛)𝜽𝒙(𝒙, 𝒚, 𝒕) + 𝑺(𝒛)𝝓𝒙(𝒙, 𝒚, 𝒕) + 𝑴(𝒛)𝜸𝒙(𝒙, 𝒚, 𝒕)    (6.3) 

𝒗(𝒙, 𝒚, 𝒛, 𝒕) = 𝒗𝟎(𝒙, 𝒚, 𝒕) + 𝒁(𝒛)𝜽𝒚(𝒙, 𝒚, 𝒕) + 𝑺(𝒛)𝝓𝒚(𝒙, 𝒚, 𝒕) + 𝑴(𝒛)𝜸𝒚(𝒙, 𝒚, 𝒕)    (6.4) 

where 𝒁(𝒛) = (𝒛𝒄 + 𝒛𝒗 + 𝒛𝒑), 

       𝒛𝒄 = 𝒛, 𝒛𝒗 = 𝒛𝒑 = 0 for k = N+1, 

𝒛𝒄 =
𝒉

2
, 𝒛𝒗 = (𝒛 −

𝒉

𝟐
) , 𝒛𝒑 = 0 

for k = N+2, 

𝒛𝒄 =
𝒉

2
, 𝒛𝒗 = 𝒉𝒗, 𝒛𝒑 = (𝒛 −

𝒉

2
− 𝒉𝒗) 

for k = N+3 

The transverse actuation of the constraining layer of ACLD patches may 

influence the flexural vibration of the plate. Thus, for the modeling of active damping of 

smart plates, the transverse normal strain must be considered. To avoid Poisson’s locking 

phenomenon, one can consider the higher-order transverse displacement field to achieve 

a parabolic distribution of the transverse shear stress, which can be expressed as:  

𝒘(𝒙, 𝒚, 𝒛, 𝒕) = 𝒘𝟎(𝒙, 𝒚, 𝒕) + 𝒛𝜽𝒛(𝒙, 𝒚, 𝒕) + 𝒛
𝟐𝝓𝒛(𝒙, 𝒚, 𝒕)                   (6.5) 

where 𝒘𝟎 is the transverse displacement at any point on the reference plane (𝒛 = 0) of 

the substrate HFRC shell; 𝜽𝒛 and 𝝓𝒛 are the generalized rotations with the mid-plane of 

the HFRC shell; z and 𝒛𝟐 are the first and second-order gradient, respectively, of the 



Active Vibration Damping of a clamped-free Smart Multiscale HFRC shells Using 
1‒3 PZC 

 

159 

 

transverse displacement of the overall HFRC/ACLD shell system with respect to the 

thickness of the z-coordinate. 

 

 

Figure 6.2. (a) Schematic of layered HFRC substrate shell attached with ACLD 

treatment constraining layer of 1‒3 PZC patches, (b) individual phases of laminated 

HFRC smart shell. 

For the sake of simplicity, the generalized displacement variables are categorized 

as translational {𝒅𝒕} and rotational {𝒅𝒓} component vectors: 

{𝒅𝒕} = [𝒖𝟎   𝒗𝟎  𝒘𝟎]
𝑻, {𝒅𝒓} = [𝜽𝒙  𝜽𝒚  𝜽𝒛  ф𝒙  ф𝒚  ф𝒛  𝜸𝒙  𝜸𝒚 ]

𝑻
              (6.6) 

 The strain vector {𝝐} representing the state of strain at any point in the overall 

HFRC shell system can be classified into the in-plane shear strain {𝝐𝒃} and transverse 

shear strain {𝝐𝒔} vectors: 

{𝝐𝒃} = [𝝐𝒙   𝝐𝒚  𝝐𝒙𝒚  𝝐𝒛]
𝑻
,   {𝝐𝒔} = [𝝐𝒙𝒛   𝝐𝒚𝒛]

𝑻
                              (6.7) 
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where 𝝐𝒙, 𝝐𝒚, and 𝝐𝒛 are the normal strains along the x, y, and z-directions, respectively; 

𝝐𝒙𝒚 is the in-plane shear strain; 𝝐𝒙𝒛 and 𝝐𝒚𝒛 are the transverse shear strains. Using Eqs. 

(6.3)‒(6.5) and (6.7), the vectors {𝝐𝒃}𝒄, {𝝐𝒃}𝒗,  and {𝝐𝒃}𝒑  define the in-plane and 

transverse normal strains, whereas the vectors {𝝐𝒔}𝒄 , {𝝐𝒔}𝒗 , and {𝝐𝒔}𝒑  define the 

transverse shear strains for the substrate HFRC shell, the viscoelastic layer, and the 1‒3 

PZC layer, respectively, as follows: 

 

Figure 6.3. Schematic representation of 1–3 PZC lamina with (a) vertically aligned 

piezo-fibers, (b) piezo-fibers coplanar in the xz-plane, and (c) piezo-fibers coplanar in the 

yz-plane. 
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Figure 6.4. (a) Kinematics of deformation of the shell, (b) element topology and nodal 

degrees of freedom. 
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{𝝐𝒃}𝒄 = {𝝐𝒃𝒕} + [𝒁𝟏]{𝝐𝒃𝒓} 

{𝝐𝒃}𝒗 = {𝝐𝒃𝒕} + [𝒁𝟐]{𝝐𝒃𝒓} 

{𝝐𝒃}𝒑 = {𝝐𝒃𝒕} + [𝒁𝟑]{𝝐𝒃𝒓} 

{𝝐𝒔}𝒄 = {𝝐𝒔𝒕} + [𝒁𝟒]{𝝐𝒔𝒓} 

{𝝐𝒔}𝒗 = {𝝐𝒔𝒕} + [𝒁𝟓]{𝝐𝒔𝒓} 

 {𝝐𝒔}𝒑 = {𝝐𝒔𝒕} + [𝒁𝟔]{𝝐𝒔𝒓}                                                 (6.8) 

where [𝒁𝒊], (i = 1, 2, …, 6) are the generalized translational matrix appearing in Eq. (6.8) 

and are given by: 

[𝒁𝟏]𝒌=𝟏 𝒕𝒐 𝑵 = [

𝒛 0 0 0 𝑺𝒛𝟏 0 0 0 𝑴𝒛𝟏 0 0

0 𝒛 0 𝒛 𝑹⁄ 0 𝑺𝒛𝟏 0 𝒛𝟐 𝑹⁄ 0 𝑴𝒛𝟏 0
0 0 𝒛 0 0 0 𝑺𝒛𝟏 0 0 0 𝑴𝒛𝟏

0 0 0 1 0 0 0 2𝒛 0 0 0

] 

[𝒁𝟐]𝒌=𝑵+𝟏 = [

𝒛 − 𝒉𝑵+𝟏 0 0 0 𝑺𝒛𝟐 0 0 0 𝑴𝒛𝟐 0 0

0 𝒛 − 𝒉𝑵+𝟏 0 𝒛 𝑹⁄ 0 𝑺𝒛𝟐 0 𝒛𝟐 𝑹⁄ 0 𝑴𝒛𝟐 0
0 0 𝒛 − 𝒉𝑵+𝟏 0 0 0 𝑺𝒛𝟐 0 0 0 𝑴𝒛𝟐

0 0 0 1 0 0 0 2𝒛 0 0 0

] 

[𝒁𝟑]𝒌=𝑵+𝟐 = [

𝒛 − 𝒉𝑵+𝟐 0 0 0 𝑺𝒛𝟑 0 0 0 𝑴𝒛𝟑 0 0

0 𝒛 − 𝒉𝑵+𝟐 0 𝒛 𝑹⁄ 0 𝑺𝒛𝟑 0 𝒛𝟐 𝑹⁄ 0 𝑴𝒛𝟑 0
0 0 𝒛 − 𝒉𝑵+𝟐 0 0 0 𝑺𝒛𝟑 0 0 0 𝑴𝒛𝟑

0 0 0 1 0 0 0 2𝒛 0 0 0

] 

[𝒁𝟒]𝒌=𝟏 𝒕𝒐 𝑵 = [
1 0 𝑺𝒛𝟏

′ 0 𝑴𝒛𝟏
′ 0 𝒛 0 𝒛𝟐 0

0 1 − 𝒛 𝑹⁄ 0 𝑺𝒛𝟏∗ 0 𝑴𝒛𝟏∗ 0 𝒛 0 𝒛𝟐
] 

[𝒁𝟓]𝒌=𝑵+𝟏 = [
1 0 𝑺𝒛𝟐

′ 0 𝑴𝒛𝟐
′ 0 𝒛 0 𝒛𝟐 0

0 1 − (𝒛 − 𝒉𝑵+𝟏) 𝑹⁄ 0 𝑺𝒛𝟐∗ 0 𝑴𝒛𝟐∗ 0 𝒛 0 𝒛𝟐
] 

[𝒁𝟔]𝒌=𝑵+𝟐 = [
1 0 𝑺𝒛𝟑

′ 0 𝑴𝒛𝟑
′ 0 𝒛 0 𝒛𝟐 0

0 1 − (𝒛 − 𝒉𝑵+𝟐) 𝑹⁄ 0 𝑺𝒛𝟑∗ 0 𝑴𝒛𝟑∗ 0 𝒛 0 𝒛𝟐
] 

where 

𝑺𝒛𝟏 (𝒌=𝟏 𝒕𝒐 𝑵) = 𝑺𝒛𝟐 (𝒌=𝑵+𝟏)  = 𝑺𝒛𝟑 (𝒌=𝑵+𝟐)  =  
𝝅

𝒉
𝒔𝒊𝒏 (

𝝅𝒛𝒌
𝒉
) , 
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𝑺𝒛𝟏 (𝒌=𝟏 𝒕𝒐 𝑵)
′ = 𝑺𝒛𝟐 (𝒌= 𝑵+𝟏)

′  = 𝑺𝒛𝟏 (𝒌=𝑵+𝟐)
′  = 𝒄𝒐𝒔 (

𝝅𝒛𝒌
𝒉
) , 

𝑴𝒛𝟏 (𝒌=𝟏 𝒕𝒐 𝑵) = 𝑴𝒛𝟐 (𝒌=𝑵+𝟏)  = 𝑴𝒛𝟑 (𝒌=𝑵+𝟐)  =  (−1)
𝒌 𝜻𝒌, 

𝑴𝒛𝟏 (𝒌=𝟏 𝒕𝒐 𝑵)
′ = 𝑴𝒛𝟐 (𝒌= 𝑵+𝟏)

′  = 𝑴𝒛𝟏 (𝒌=𝑵+𝟐)
′  = (−1)𝒌  

2

𝒉𝒌
 , 

𝑺𝒛𝟏∗ (𝒌=𝟏 𝒕𝒐 𝑵) = 𝑺𝒛𝟑∗ (𝒌=𝑵+𝟏) = 𝑺𝒛𝟑∗ (𝒌=𝑵+𝟐) = 𝑺𝒛𝒊 (𝒌)
′ −

𝑺𝒛𝒊 (𝒌)

𝑹
, 

𝑴𝒛𝟏∗ (𝒌=𝟏 𝒕𝒐 𝑵) = 𝑴𝒛𝟑∗ (𝒌=𝑵+𝟏) = 𝑴𝒛𝟑∗ (𝒌=𝑵+𝟐) = 𝑴𝒛𝒊 (𝒌)
′ −

𝑴𝒛𝒊 (𝒌)

𝑹
 

(𝒊 = 1, 2, 3 and 𝒌 = 1 𝑡𝑜 𝑵,𝑵 + 𝟏,𝑵 + 𝟐) 

The generalized strain vectors {𝝐𝒃𝒕}, {𝝐𝒔𝒕}, {𝝐𝒃𝒓}, and {𝝐𝒔𝒓} are given by: 

{𝝐𝒃𝒕} = 𝜵𝟏{𝒅𝒕}, {𝝐𝒔𝒕} = 𝜵𝟐{𝒅𝒕}, {𝝐𝒃𝒓} = 𝜵𝟑{𝒅𝒓},      {𝝐𝒔𝒓} = 𝜵𝟒{𝒅𝒓}       (6.9) 

where, 

𝜵𝟏 =

[
 
 
 
 
 
 
 
𝝏

𝝏𝒙
0 0

0
𝝏

𝝏𝒚

1

𝑹
𝝏

𝝏𝒚

𝝏

𝝏𝒙
0

0 0 0]
 
 
 
 
 
 
 

, 𝜵𝟐 = 

[
 
 
 0 0

𝝏

𝝏𝒙

0
−1

𝑹

𝝏

𝝏𝒚]
 
 
 

,   

𝜵𝟑 = [
�̂� �̂� �̌�
�̂� �̂� �̌�

�̿� �̿� �̌�

] , 𝜵𝟒 =

[
 
 
 
 
�̂� �̃� �̅�
�̃� �̂� �̅�
�̃� �̃� �̌�
�̅� �̃� �̅�
�̃� �̅� �̅�]

 
 
 
 

, 

�̂� =

[
 
 
 
 
 
 
 
𝝏

𝝏𝒙
0 0

0
𝝏

𝝏𝒚
0

𝝏

𝝏𝒚

𝝏

𝝏𝒙
0

0 0 1]
 
 
 
 
 
 
 

, �̌� =

[
 
 
 
 
 
 
𝝏

𝝏𝒙
0

0
𝝏

𝝏𝒚
𝝏

𝝏𝒚

𝝏

𝝏𝒙]
 
 
 
 
 
 

,   
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�̅� =

[
 
 
 0 0

𝝏

𝝏𝒙

0 0
𝝏

𝝏𝒚]
 
 
 

, �̂� = [�̃�
�̃�
] , �̌� = [�̅�

�̅�
],  

�̿� = [
0 0 0
0 0 0
0 0 0

] , �̃� = [
0 0 0
0 0 0

], 

�̅� = [
0 0
0 0

] , �̂� = [
1 0 0
0 1 0

] , �̌� = [
1 0
0 1

] 

Corresponding to the state of strains, the state of stresses in the overall HFRC 

shell are categorized into the state of the in-plane and out-of-plane stresses {𝝈𝒃} and the 

state of transverse shear stresses {𝝈𝒔} as follows: 

{𝝈𝒃} = [𝝈𝒙  𝝈𝒚  𝝈𝒙𝒚  𝝈𝒛]
𝑇
,   {𝝈𝒔} = [𝝈𝒙𝒛  𝝈𝒚𝒛]

𝑇
                           (6.10) 

where 𝝈𝒙, 𝝈𝒚, and 𝝈𝒛 are the normal stresses along the x, y, and z directions, respectively; 

𝝈𝒙𝒚 is the in-plane shear stress; 𝝈𝒙𝒛 and 𝝈𝒚𝒛 are the transverse shear stresses. 

The constitutive relations for any kth layer of the substrate HFRC shell are given 

by: 

{𝝈𝒃
𝒌} = [�̅�𝒃

𝒌]{𝝐𝒃
𝒌},    {𝝈𝒔

𝒌} = [�̅�𝒔
𝒌]{𝝐𝒔

𝒌}; (𝒌 =  1,2,3, . . . , 𝑵)                   (6.11) 

where, 

[�̅�𝒃
𝒌] =

[
 
 
 
 
𝑪𝟏𝟏
𝒌 𝑪𝟏𝟐

𝒌 𝑪𝟏𝟔
𝒌 𝑪𝟏𝟑

𝒌

𝑪𝟏𝟐
𝒌 𝑪𝟐𝟐

𝒌 𝑪𝟐𝟔
𝒌 𝑪𝟐𝟑

𝒌

𝑪𝟏𝟔
𝒌 𝑪𝟐𝟔

𝒌 𝑪𝟔𝟔
𝒌 𝑪𝟑𝟔

𝒌

𝑪𝟏𝟑
𝒌 𝑪𝟐𝟑

𝒌 𝑪𝟑𝟔
𝒌 𝑪𝟑𝟑

𝒌 ]
 
 
 
 

, [�̅�𝒔
𝒌] = [

𝑪𝟓𝟓
𝒌 𝑪𝟓𝟒

𝒌

𝑪𝟒𝟓
𝒌 𝑪𝟒𝟒

𝒌
] 

𝑪𝒊𝒋
𝒌 (𝒊, 𝒋 = 1,2, … 6)  are the transformed elastic coefficients of the laminated 

multiscale HFRC shell.  

The viscoelastic material of the constrained ACLD layer is assumed to be linearly 

viscoelastic and isotropic. It is modeled using the complex modulus approach. The 
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constitutive relations for the viscoelastic material are similar to Eq. (6.11) with k = N+1, 

while the complex shear modulus (G) and Young’s modulus (E) of the viscoelastic 

material are given by (Baz and Ro, 1995c; Shen, 1996): 

𝑮 = 𝑮′(1 + 𝒊𝜼), 𝑬 = 2𝑮(1 + 𝝊)                                    (6.12) 

The constraining 1–3 PZC layer of the ACLD treatment is subjected to the 

applied electric field (𝑬𝒛) along its thickness direction. Accordingly, the constitutive 

relations for the material of the PZC layer can be expressed as (Ray and Pradhan, 2007): 

{𝝈𝒃
𝒌} = [𝑪𝒃

𝒌
] {𝝐𝒃

𝒌} + [𝑪𝒃𝒔
𝒌
] {𝝐𝒔

𝒌} − {𝒆𝒃}𝑬𝒛;      𝒌 = 𝑵 + 𝟐 

{𝝈𝒔
𝒌} = [𝑪𝒃𝒔

𝒌
]
𝑇

{𝝐𝒃
𝒌} + [𝑪𝒔

𝒌
] {𝝐𝒔

𝒌} − {𝒆𝒔}𝑬𝒛 

 𝑫𝒛 = {�̅�𝒃}
𝑇{𝝐𝒃

𝒌} + {�̅�𝒔}
𝑇{𝝐𝒔

𝒌} + �̅�𝟑𝟑𝑬𝒛                                    (6.13) 

in which 𝑫𝒛 is the applied electric displacement along the thickness direction, and 𝜺𝟑𝟑 is 

the transformed dielectric constant. [𝑪𝒃
𝒌
] and [𝑪𝒔

𝒌
] are the transformed elastic coefficient 

matrices, similar to those in Eq. (6.11) with k = N + 2. For the 1–3 PZC layer, the 

transverse shear strains are coupled with the in-plane strains because of the orientation of 

the piezoelectric fibers with respect to the vertical xz-plane and yz-plane. The 

corresponding coupling matrix [𝑪𝒃𝒔
𝑵+𝟐] is given by: 

[𝑪𝒃𝒔
𝑵+𝟐] = [

𝑪𝟏𝟓
𝑵+𝟐

𝑪𝟐𝟓
𝑵+𝟐

0 𝑪𝟑𝟓
𝑵+𝟐

0 0 𝑪𝟒𝟔
𝑵+𝟐

0
]

𝑻

 

[𝑪𝒃𝒔
𝑵+𝟐] = [

0 0 �̅�𝟓𝟔
𝑵+𝟐 0

�̅�𝟏𝟒
𝑵+𝟐 �̅�𝟐𝟒

𝑵+𝟐 0 �̅�𝟑𝟒
𝑵+𝟐
]

𝑻

                              (6.14) 

 For the orientation of piezoelectric fiber 𝜳 = 0, the matrices shown in Eq. (6.14) 

will have zero entities. The transformed piezoelectric constant vectors {𝒆𝒃}  and {𝒆𝒔} 

appearing in Eq. (6.13) are as follows: 
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{𝝈𝒃} = [𝝈𝒙  𝝈𝒚  𝝈𝒙𝒚  𝝈𝒛]
𝑇
, {𝝈𝒔} = [𝝈𝒙𝒛  𝝈𝒚𝒛]

𝑇
                        (6.15) 

The principle of virtual work is employed to derive the governing equations of the 

overall HFRC shell/ACLD system, which can be expressed as (Jeung and Shen, 2001): 

∑∫ (𝜹{𝝐𝒃
𝒌}
𝑻
{𝝈𝒃
𝒌} + 𝜹{𝝐𝒔

𝒌}
𝑻
{𝝈𝒔
𝒌} − 𝜹𝑬𝒛�̅�𝟑𝟑𝑬𝒛 − 𝜹{𝒅𝒕}

𝑻𝝆𝒌{�̈�𝒕})
 

𝜴

𝑵+𝟐

𝒌=𝟏

𝒅𝜴 

−∫𝜹{𝒅𝒕}
𝑻{𝒇}𝒅𝑨 = 0

 

𝑨

                                                       (6.16) 

in which 𝝆𝒌 and 𝜴 are the mass density of the 𝒌𝒕𝒉 layer, and {𝒇} is the externally applied 

load over the outer surface area (A) of the HFRC shell. 

6.3 Finite Element Modeling 

In this section, a FE model is developed to investigate the frequency response of the 

transverse displacement at the free end of the laminated HFRC shells. The overall 

HFRC/ACLD shell system is discretized by eight-noded quadrilateral isoparametric 

shell elements (see Fig. 6.4b) with a 12 × 6  mesh grid. Following Eq. (6.7), the 

generalized displacement vectors of the concerning 𝒊𝒕𝒉 (𝑖 = 1,2, … ,8) node of an element 

can be redefined as: 

{𝒅𝒕𝒊} = [𝒖𝟎𝒊  𝒗𝟎𝒊    𝒘𝟎𝒊]
𝑻, {𝒅𝒓𝒊} = [𝜽𝒙𝒊    𝜽𝒚𝒊   𝜽𝒛𝒊  ф𝒙𝒊  ф𝒚𝒊  ф𝒛𝒊  𝜸𝒙𝒊  𝜸𝒚𝒊  𝜸𝒛𝒊]

𝑻
   (6.17) 

Thus, the generalized displacement vectors, {𝒅𝒕} and {𝒅𝒓}, at any point within the 

HFRC shell element, can be expressed in terms of the nodal generalized displacement 

vectors as follows: 

{𝒅𝒕} = [𝑵𝒕]{𝒅𝒕
𝒆}, {𝒅𝒓} = [𝑵𝒕]{𝒅𝒓

𝒆}                                   (6.18) 

in which, 

[𝑵( )] = [𝑵( )𝟏𝑵( )𝟐  .  .  .  𝑵( )𝟖]
𝑇
, 𝑵( )𝒊 = 𝒏𝒊𝑰( ) , 
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{𝒅( )
𝒆 } = [{𝒅( )𝟏

𝒆 }
𝑇
{𝒅( )𝟐
𝒆 }

𝑇
 .  .  .  {𝒅( )𝟖

𝒆 }
𝑇
]
𝑇

, ( )
𝒆𝒊𝒕𝒉𝒆𝒓
→    {

𝒕 − 𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒊𝒐𝒏𝒂𝒍
𝒓 − 𝒓𝒐𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒍      

        (6.19) 

where 𝑰𝒕  and 𝑰𝒓  are the 3 × 3  and 8 × 8  identity matrices, respectively, and 𝒏𝒊  is the 

shape function of the natural coordinates associated with the 𝒊𝒕𝒉 node. Using Eqs. (6.8) 

and (6.18), the strain vectors can be expressed in terms of the nodal generalized 

displacement vectors as:  

{𝝐𝒃}𝒄 = [𝑩𝒕𝒃]{𝒅𝒕
𝒆} + [𝒁𝟏][𝑩𝒓𝒃]{𝒅𝒓

𝒆},         {𝝐𝒔}𝒄 = [𝑩𝒕𝒔]{𝒅𝒕
𝒆} + [𝒁𝟒][𝑩𝒓𝒔]{𝒅𝒓

𝒆},                

{𝝐𝒃}𝒗 = [𝑩𝒕𝒃]{𝒅𝒕
𝒆} + [𝒁𝟐][𝑩𝒓𝒃]{𝒅𝒓

𝒆}, {𝝐𝒔}𝒗 = [𝑩𝒕𝒔]{𝒅𝒕
𝒆} + [𝒁𝟓][𝑩𝒓𝒔]{𝒅𝒓

𝒆},            

{𝝐𝒃}𝒑 = [𝑩𝒕𝒃]{𝒅𝒕
𝒆} + [𝒁𝟑][𝑩𝒓𝒃]{𝒅𝒓

𝒆}, {𝝐𝒔}𝒑 = [𝑩𝒕𝒔]{𝒅𝒕
𝒆} + [𝒁𝟔][𝑩𝒓𝒔]{𝒅𝒓

𝒆}    (6.20) 

The sub-matrices appearing in Eq. (6.20), [𝑩𝒕𝒃], [𝑩𝒓𝒃], [𝑩𝒕𝒔], and [𝑩𝒓𝒔] are given 

by: 

[𝑩𝒕( )] = [𝑩𝒕( )𝟏𝑩𝒕( )𝟐  .  .  .  𝑩𝒕( )𝟖]
𝑇
,   

[𝑩𝒓( )] = [𝑩𝒓( )𝟏𝑩𝒓( )𝟐  .  .  .  𝑩𝒓( )𝟖]
𝑇
, ( )

𝒆𝒊𝒕𝒉𝒆𝒓
→    {

𝒃 − 𝒃𝒆𝒏𝒅𝒊𝒏𝒈
𝒔 − 𝒔𝒉𝒆𝒂𝒓      

           (6.21) 

The various sub-matrices 𝑩𝒕𝒃𝒊 , 𝑩𝒕𝒔𝒊 , 𝑩𝒓𝒃𝒊  and 𝑩𝒓𝒔𝒊  appearing in Eq. (6.21) are 

given by: 

𝑩𝒕𝒃𝒊 =

[
 
 
 
 
 
 
 
𝝏𝒏𝒊
𝝏𝒙

0 0

0
𝝏𝒏𝒊
𝝏𝒚

1

𝑹
𝝏𝒏𝒊
𝝏𝒚

𝝏𝒏𝒊
𝝏𝒙

0

0 0 0]
 
 
 
 
 
 
 

, 𝑩𝒕𝒔𝒊 =

[
 
 
 0 0

𝝏𝒏𝒊
𝝏𝒙

0 −
1

𝑹

𝝏𝒏𝒊
𝝏𝒚 ]
 
 
 

,   

𝑩𝒓𝒃𝒊 = [

�̅�𝒓𝒃𝒊 �̂� �̌�

�̂� �̅�𝒓𝒃𝒊 �̌�

�̿� �̿� �̃�𝒓𝒃𝒊

] , 
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𝑩𝒓𝒔𝒊 =

[
 
 
 
 
�̂� �̃� �̅�
�̃� �̂� �̅�
�̃� �̃� �̌�
�̅�𝒓𝒔𝒊 �̃� �̅�

�̃� �̅�𝒓𝒔𝒊 �̅�]
 
 
 
 

, �̅�𝒓𝒃𝒊 =

[
 
 
 
 
 
 
 
𝝏𝒏𝒊
𝝏𝒙

0 0

0
𝝏𝒏𝒊
𝝏𝒚

0

𝝏𝒏𝒊
𝝏𝒚

𝝏𝒏𝒊
𝝏𝒙

0

0 0 1]
 
 
 
 
 
 
 

, 

 �̃�𝒓𝒃𝒊 =

[
 
 
 
 
 
 
𝝏𝒏𝒊
𝝏𝒙

0

0
𝝏𝒏𝒊
𝝏𝒚

𝝏𝒏𝒊
𝝏𝒚

𝝏𝒏𝒊
𝝏𝒙 ]
 
 
 
 
 
 

, �̅�𝒓𝒔𝒊 =

[
 
 
 0 0

𝝏𝒏𝒊
𝝏𝒙

0 0
𝝏𝒏𝒊
𝝏𝒚 ]
 
 
 

 

Substituting Eqs. (6.11), (6.13), and (6.20) into Eq. (6.16), and identifying that 

𝑬𝒛 = 𝑽 𝒉𝒑⁄ , where V is the applied voltage to the 1‒3 PZC layer across the thickness 

direction. The open-loop equations of motion of the overall HFRC/ACLD shell system 

can be written as follows: 

[𝑴𝒆]{�̈�𝒕
𝒆} + [𝑲𝒕𝒕

𝒆 ]{𝒅𝒕
𝒆} + [𝑲𝒕𝒓

𝒆 ]{𝒅𝒓
𝒆} = {𝑭𝒕𝒑

𝒆 }𝑽 + {𝑭𝒆}                     (6.22) 

[𝑲𝒓𝒕
𝒆 ]{𝒅𝒕

𝒆} + [𝑲𝒓𝒓
𝒆 ]{𝒅𝒓

𝒆} = {𝑭𝒓𝒑
𝒆 }𝑽                                      (6.23) 

where [𝑴𝒆] is the elemental mass matrix; [𝑲𝒕𝒕
𝒆 ], [𝑲𝒕𝒓

𝒆 ], [𝑲𝒓𝒕
𝒆 ], and [𝑲𝒓𝒓

𝒆 ] are the elemental 

stiffness matrices; {𝑭𝒕𝒑
𝒆 }  and {𝑭𝒓𝒑

𝒆 }  are the elemental electro-elastic coupling vectors; 

{𝑭𝒆} is the elemental load vector and {𝑭𝒆} is the elemental load vector, as appearing in 

Eqs. (6.22) and (6.23), and given by: 

[𝑴𝒆] = ∫ ∫ 𝒎[𝑵𝒕]
𝑻[𝑵𝒕]𝒅𝒙𝒅𝒚

𝒃𝒆

𝟎

𝒂𝒆

𝟎

 

[𝑲𝒕𝒕
𝒆 ] = [𝑲𝒕𝒃

𝒆 ] + [𝑲𝒕𝒔
𝒆 ] + [𝑲𝒕𝒃𝒔

𝒆 ]𝒑𝒃 + [𝑲𝒕𝒃𝒔
𝒆 ]𝒑𝒔 

[𝑲𝒕𝒓
𝒆 ] = [𝑲𝒕𝒓𝒃

𝒆 ] + [𝑲𝒕𝒓𝒔
𝒆 ] +

1

2
([𝑲𝒕𝒓𝒃𝒔

𝒆 ]𝒑𝒃+[𝑲𝒓𝒕𝒃𝒔
𝒆 ]𝒑𝒃

𝑻 + [𝑲𝒕𝒓𝒃𝒔
𝒆 ]𝒑𝒔+ [𝑲𝒓𝒕𝒃𝒔

𝒆 ]𝒑𝒔
𝑻 ), 

[𝑲𝒓𝒕
𝒆 ] = [𝑲𝒕𝒓

𝒆 ]𝑻, [𝑲𝒓𝒓
𝒆 ] = [𝑲𝒓𝒓𝒃

𝒆 ] + [𝑲𝒓𝒓𝒔
𝒆 ] + [𝑲𝒓𝒓𝒃𝒔

𝒆 ]𝒑𝒃 + [𝑲𝒓𝒓𝒃𝒔
𝒆 ]𝒑𝒔, 
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{𝑭𝒕𝒑
𝒆 } = {𝑭𝒕𝒃

𝒆 }𝒑 + {𝑭𝒕𝒔
𝒆 }𝒑, {𝑭𝒓𝒑

𝒆 } = {𝑭𝒓𝒃
𝒆 }𝒑 + {𝑭𝒓𝒔

𝒆 }𝒑, 

{𝑭𝒆} = ∫ ∫ [𝑵𝒕]
𝑻

𝒃𝒆

𝟎

{𝒇}𝒅𝒙𝒅𝒚
𝒂𝒆

𝟎

, 

  �̅� = ∑ 𝝆𝒌(𝒉𝒌+𝟏 − 𝒉𝒌)

𝑵+𝟐

𝒌=𝟏

                                            (6.24) 

where 𝒂𝒆 and 𝒃𝒆 are the length and circumferential width of the corresponding element, 

respectively, and (𝒎) is the mass parameter. The various elemental stiffness matrices and 

the electro-elastic coupling vectors appearing in Eq. (6.24) are given by: 

[𝑲𝒕𝒃
𝒆 ] = ∫[𝑩𝒕𝒃]

𝑻([𝑫𝒕𝒃]+[𝑫𝒕𝒃]𝒗 + [𝑫𝒕𝒃]𝒑)[𝑩𝒕𝒃] 𝒅𝒙 𝒅𝒚
 

𝑨

, 

[𝑲𝒕𝒔
𝒆 ] = ∫[𝑩𝒕𝒔]

𝑻([𝑫𝒕𝒔]+[𝑫𝒕𝒔]𝒗 + [𝑫𝒕𝒔]𝒑)[𝑩𝒕𝒔] 𝒅𝒙 𝒅𝒚,
 

𝑨

 

[𝑲𝒕𝒃𝒔
𝒆 ]𝒑𝒃 = ∫[𝑩𝒕𝒃]

𝑻[𝑫𝒕𝒃𝒔]𝒑[𝑩𝒕𝒔] 𝒅𝒙 𝒅𝒚
 

𝑨

,   

[𝑲𝒕𝒃𝒔
𝒆 ]𝒑𝒔 = ∫[𝑩𝒕𝒔]

𝑻[𝑫𝒕𝒃𝒔]𝒑[𝑩𝒕𝒃] 𝒅𝒙 𝒅𝒚
 

𝑨

, 

[𝑲𝒕𝒓𝒃
𝒆 ] = ∫[𝑩𝒕𝒓𝒃]

𝑻([𝑫𝒕𝒓𝒃]+[𝑫𝒕𝒓𝒃]𝒗 + [𝑫𝒕𝒓𝒃]𝒑)[𝑩𝒓𝒃] 𝒅𝒙 𝒅𝒚,
 

𝑨

 

[𝑲𝒕𝒓𝒃𝒔
𝒆 ]𝒑𝒃 = ∫[𝑩𝒕𝒃]

𝑻[𝑫𝒕𝒓𝒃𝒔]𝒑[𝑩𝒓𝒔] 𝒅𝒙 𝒅𝒚
 

𝑨

, 

  [𝑲𝒓𝒕𝒃𝒔
𝒆 ]𝒑𝒃 = ∫[𝑩𝒓𝒃]

𝑻[𝑫𝒓𝒕𝒃𝒔]𝒑[𝑩𝒕𝒔] 𝒅𝒙 𝒅𝒚
 

𝑨

, 

[𝑲𝒕𝒓𝒃𝒔
𝒆 ]𝒑𝒔 = ∫[𝑩𝒕𝒔]

𝑻[𝑫𝒓𝒕𝒃𝒔]
𝑻
𝒑
[𝑩𝒓𝒃] 𝒅𝒙 𝒅𝒚

 

𝑨

, 

  [𝑲𝒓𝒕𝒃𝒔
𝒆 ]𝒑𝒔 = ∫[𝑩𝒓𝒔]

𝑻[𝑫𝒕𝒓𝒃𝒔]
𝑻
𝒑
[𝑩𝒕𝒃] 𝒅𝒙 𝒅𝒚

 

𝑨

, 

[𝑲𝒕𝒓𝒔
𝒆 ] = ∫[𝑩𝒕𝒔]

𝑻([𝑫𝒕𝒓𝒔]+[𝑫𝒕𝒓𝒔]𝒗 + [𝑫𝒕𝒓𝒔]𝒑)[𝑩𝒓𝒔] 𝒅𝒙 𝒅𝒚,
 

𝑨
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[𝑲𝒓𝒓𝒃
𝒆 ] = ∫ [𝑩𝒓𝒃]

𝑻([𝑫𝒓𝒓𝒃]+[𝑫𝒓𝒓𝒃]𝒗 + [𝑫𝒓𝒓𝒃]𝒑)[𝑩𝒓𝒃] 𝒅𝒙 𝒅𝒚,
 

𝑨

 

[𝑲𝒓𝒓𝒔
𝒆 ] = ∫ [𝑩𝒓𝒔]

𝑻([𝑫𝒓𝒓𝒔]+[𝑫𝒓𝒓𝒔]𝒗 + [𝑫𝒓𝒓𝒔]𝒑)[𝑩𝒓𝒔] 𝒅𝒙 𝒅𝒚,
 

𝑨

 

[𝑲𝒓𝒓𝒃𝒔
𝒆 ]𝒑𝒃 = ∫[𝑩𝒓𝒃]

𝑻[𝑫𝒓𝒓𝒃𝒔]𝒑[𝑩𝒓𝒔] 𝒅𝒙 𝒅𝒚
 

𝑨

, 

  [𝑲𝒓𝒓𝒃𝒔
𝒆 ]𝒑𝒔 = ∫[𝑩𝒓𝒔]

𝑻[𝑫𝒓𝒓𝒃𝒔]𝒑
𝑻[𝑩𝒓𝒃] 𝒅𝒙 𝒅𝒚

 

𝑨

, 

{𝑭𝒕𝒃
𝒆 }𝒑 = ∫[𝑩𝒕𝒃]

𝑻{𝑫𝒕𝒃}𝒑𝒅𝒙 𝒅𝒚
 

𝑨

, {𝑭𝒓𝒃
𝒆 }𝒑 = ∫[𝑩𝒓𝒃]

𝑻{𝑫𝒓𝒃}𝒑 𝒅𝒙 𝒅𝒚
 

𝑨

, 

{𝑭𝒕𝒔
𝒆 }𝒑 = ∫[𝑩𝒕𝒔]

𝑻{𝑫𝒕𝒔}𝒑𝒅𝒙 𝒅𝒚
 

𝑨

, {𝑭𝒓𝒔
𝒆 }𝒑 = ∫[𝑩𝒓𝒔]

𝑻{𝑫𝒓𝒔}𝒑𝒅𝒙 𝒅𝒚
 

𝑨

 

Also, the various rigidity matrices originated in the above elemental matrices are 

given by: 

[𝑫𝒕𝒃] = ∑∫ [�̅�𝒃
𝒌]

𝒉𝒌+𝟏

𝒉𝒌

𝑵

𝒌=𝟏

𝒅𝒛, [𝑫𝒕𝒓𝒃] = ∑∫ [�̅�𝒃
𝒌]

𝒉𝒌+𝟏

𝒉𝒌

[𝒁𝟏]

𝑵

𝒌=𝟏

𝒅𝒛, 

[𝑫𝒓𝒓𝒃] = ∑∫ [𝒁𝟏]
𝑻[�̅�𝒃

𝒌]
𝒉𝒌+𝟏

𝒉𝒌

[𝒁𝟏]

𝑵

𝒌=𝟏

𝒅𝒛, [𝑫𝒕𝒔] = ∑∫ [�̅�𝒔
𝒌]

𝒉𝒌+𝟏

𝒉𝒌

𝑵

𝒌=𝟏

𝒅𝒛, 

[𝑫𝒕𝒓𝒔] = ∑∫ [�̅�𝒃
𝒌]

𝒉𝒌+𝟏

𝒉𝒌

[𝒁𝟒]

𝑵

𝒌=𝟏

𝒅𝒛, [𝑫𝒓𝒓𝒔] = ∑∫ [𝒁𝟒]
𝑻[�̅�𝒔

𝒌]
𝒉𝒌+𝟏

𝒉𝒌

[𝒁𝟒]

𝑵

𝒌=𝟏

𝒅𝒛, 

[𝑫𝒕𝒃]𝒗 = 𝒉𝒗[�̅�𝒃
𝑵+𝟏], [𝑫𝒕𝒓𝒃]𝒗 = ∫ [�̅�𝒃

𝑵+𝟏][𝒁𝟐]
𝒉𝑵+𝟐

𝒉𝑵+𝟏

𝒅𝒛, 

[𝑫𝒓𝒓𝒃]𝒗 = ∫ [𝒁𝟐]
𝑻[�̅�𝒃

𝑵+𝟏][𝒁𝟐]
𝒉𝑵+𝟐

𝒉𝑵+𝟏

𝒅𝒛, [𝑫𝒕𝒔]𝒗 = 𝒉𝒗[�̅�𝒔
𝑵+𝟏], 

[𝑫𝒕𝒓𝒔]𝒗 = ∫ [�̅�𝒔
𝑵+𝟏][𝒁𝟓]

𝒉𝑵+𝟐

𝒉𝑵+𝟏

𝒅𝒛, [𝑫𝒓𝒓𝒔]𝒗 = ∫ [𝒁𝟓]
𝑻[�̅�𝒔

𝑵+𝟏][𝒁𝟓]𝒅𝒛
𝒉𝑵+𝟐

𝒉𝑵+𝟏

, 

[𝑫𝒕𝒃]𝒑 = 𝒉𝒑[�̅�𝒃
𝑵+𝟐], [𝑫𝒕𝒓𝒃]𝒑 = ∫ [�̅�𝒃

𝑵+𝟐][𝒁𝟑]
𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛, 
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[𝑫𝒓𝒓𝒃]𝒑 = ∫ [𝒁𝟑]
𝑻[�̅�𝒃

𝑵+𝟐][𝒁𝟑]
𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛, [𝑫𝒕𝒔]𝒑 = 𝒉𝒑[�̅�𝒔
𝑵+𝟐], 

[𝑫𝒕𝒓𝒔]𝒑 = ∫ [�̅�𝒔
𝑵+𝟐][𝒁𝟔]

𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛, [𝑫𝒓𝒓𝒔]𝒑 = ∫ [𝒁𝟔]
𝑻[�̅�𝒔

𝑵+𝟐][𝒁𝟔]𝒅𝒛
𝒉𝑵+𝟑

𝒉𝑵+𝟐

, 

[𝑫𝒕𝒃𝒔]𝒑 = ∫ [�̅�𝒃𝒔
𝑵+𝟐]

𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛, [𝑫𝒕𝒓𝒃𝒔]𝒑 = ∫ [�̅�𝒃𝒔
𝑵+𝟐][𝒁𝟔]

𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛, 

[𝑫𝒓𝒕𝒃𝒔]𝒑 = ∫ [𝒁𝟑]
𝑻[�̅�𝒃𝒔

𝑵+𝟐]
𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛, [𝑫𝒓𝒓𝒃𝒔]𝒑 = ∫ [𝒁𝟑]
𝑻[�̅�𝒃𝒔

𝑵+𝟐][𝒁𝟔]
𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛, 

{𝑫𝒕𝒃}𝒑 = ∫ −{�̅�𝒃} 𝒉𝒑⁄
𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛, {𝑫𝒓𝒃}𝒑 = ∫ −[𝒁𝟑]
𝑻{�̅�𝒃} 𝒉𝒑⁄

𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛, 

{𝑫𝒕𝒔}𝒑 = ∫ −{�̅�𝒔} 𝒉𝒑⁄
𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛, {𝑫𝒓𝒔}𝒑 = ∫ −[𝒁𝟔]
𝑻{�̅�𝒔} 𝒉𝒑⁄

𝒉𝑵+𝟑

𝒉𝑵+𝟐

𝒅𝒛 

Finally, the open-loop global equations of motion of the HFRC/ACLD shell 

system can be obtained by assembling the elemental equations of motion, as follows: 

[𝑴]{�̈�} + [𝑲𝒕𝒕]{𝑿} + [𝑲𝒕𝒓]{𝑿𝒓} =∑{𝑭𝒕𝒑
𝒋
}𝑽𝒋 + {𝑭}

𝒒

𝒋=𝟏

,                          (6.25) 

[𝑲𝒓𝒕]{𝑿} + [𝑲𝒓𝒓]{𝑿𝒓} = ∑{𝑭𝒓𝒑
𝒋
}𝑽𝒋

𝒒

𝒋=𝟏

                                           (6.26) 

where the matrices appearing in Eqs. (6.25) and (6.26) are in the global form and are 

similar to the matrices shown in Eqs. (6.22) and (6.23). Vectors {𝑿} and {𝑿𝒓} represent 

the global nodal translational and rotational degrees of freedom, respectively, and 𝑽𝒋 is 

the applied voltage corresponding to the jth ACLD patch. 

6.4 Control Strategy 

To activate the ACLD patches, the electric potential applied to the constraining 1‒3 PZC 

layer is negatively proportional to the transverse velocity at that point of the multiscale 
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HFRC shell. Thus, the control voltage supplied to activate the ACLD patches can be 

expressed as: 

𝑽𝒋 = −𝒌𝒅
𝒋
�̇� = −𝒌𝒅

𝒋
{𝑼𝒕

𝒋
}{�̇�} − 𝒌𝒅

𝒋 (𝒉 2⁄ ){𝑼𝒓
𝒋
}{�̇�𝒓}                          (6.27) 

Substituting Eq. (6.27) into Eqs. (6.25) and (6.26), the final equations of motion 

defining the closed-loop dynamics of the overall HFRC/ACLD shell system can be 

expressed as follows: 

[𝑴]{�̈�} + [𝑲𝒕𝒕]{𝑿} + [𝑲𝒕𝒓]{𝑿𝒓} +∑𝒌𝒅
𝒋
{𝑭𝒕𝒑
𝒋
}{𝑼𝒕

𝒋
}{�̇�} +

𝒒

𝒋=𝟏

 

∑𝒌𝒅
𝒋 (𝒉 2⁄ ){𝑭𝒕𝒑

𝒋
}{𝑼𝒓

𝒋
}{�̇�𝒓}

𝒒

𝒋=𝟏

= {𝑭}                                      (6.28) 

[𝑲𝒓𝒕]{𝑿} + [𝑲𝒓𝒓]{𝑿𝒓} +∑𝒌𝒅
𝒋
{𝑭𝒓𝒑
𝒋
}{𝑼𝒕

𝒋
}{�̇�} +

𝒒

𝒋=𝟏

 

∑𝒌𝒅
𝒋 (𝒉 2⁄ ){𝑭𝒓𝒑

𝒋
}{𝑼𝒓

𝒋
}{�̇�𝒓}

𝒒

𝒋=𝟏

= 0                                         (6.29) 

6.5 Results and Discussion 

In this section, first we validate the proposed SinusZZ theory with the analytical model 

and FSDT. Next, the numerical outcomes are evaluated by using the FE model 

developed in the earlier section to investigate the performance of the laminated multiscale 

HFRC smart shell. For this, the laminated symmetric cross-ply (0 ° 90⁄ ° 0⁄ °), the anti-

symmetric cross-ply (0 ° 90⁄ ° 0⁄ ° 90⁄ °) , and the anti-symmetric angle-ply 

(−45 ° 45⁄ ° −45⁄ °/45°), thin cantilever cylindrical HFRC shells, integrated with the 

two patches of the ACLD treatment, are considered. The ACLD treatment patches are 

installed at the outer circumference of the cantilevered HFRC shell, 180° apart from 

each other, as shown in Fig. 6.2. The ACLD patches cover 2 3⁄  the length of the shell 

while it is assumed that the width of the individual patch is 1 6⁄  of the length of the outer 
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circumferential width of the shell. To study the damping performance of the HFRC 

plates, unless specified, the volume fractions of carbon fiber, straight CNTs, and wavy 

CNTs are taken as 0.3, 0.1, and 0.1243, respectively. The results of laminated base 

composite plates are compared with the HFRC plates by keeping the carbon fiber 

volume fraction constant (i.e., 𝒗𝑪𝑭 = 0.3 ). The influence of CNT waviness on the 

performance of the laminated HFRC shells is also investigated by considering the CNT 

waves coplanar with the 1–2 and 1–3 planes. Unless otherwise mentioned, CNT (5, 5) is 

used for analysis, with a diameter 𝒅𝒏 = 0.78 𝒏𝒎, maximum amplitude 𝑨 = 100𝒅𝒏, and 

waviness factor (𝑨 𝑳𝑹𝑽𝑬⁄ ) = 0.17, where 𝑳𝑹𝑽𝑬  as the linear distance between the two 

ends of the CNT. The amplitude variation of CNT waviness in the 1‒2 and 1‒3 planes is 

predicted by taking the value of wave frequency, 𝝎 = 5𝝅 𝑳𝑹𝑽𝑬⁄ . The effective elastic 

properties of the base composite and the HFRC with straight and wavy CNTs are 

summarized in Table 6.1. These properties are predicted using the two- and three-phase 

Mori-Tanaka model presented in Chapter 2. For the sake of brevity the Mori-Tanaka 

model is not presented here. It can be observed from Table 6.1 that the effective elastic 

properties of the HFRC significantly enhance in the transverse direction due to the 

waviness of the CNT. 

Table 6.1. Effective elastic properties of the base composite and the HFRC with 𝒗𝑪𝑭 =

0.3. 

Elastic constant 𝑪𝟏𝟏 

(GPa) 

𝑪𝟏𝟐 

(GPa) 

𝑪𝟏𝟑 

(GPa) 

𝑪𝟐𝟐 

(GPa) 

𝑪𝟑𝟑 

(GPa) 

𝑪𝟒𝟒 

(GPa) 

𝑪𝟓𝟓 

(GPa) 

𝝆 

(𝒌𝒈 𝒎𝟑⁄ ) 

Base composite 

(𝒗𝑪𝑵𝑻 = 0) 

75.75 3.92 3.92 7.32 7.32 1.63 1.34 1385 

HFRC (𝒗𝑪𝑵𝑻 = 0.1) 119.87 4.69 4.38 8.67 8.67 1.98 1.81 1400 

HFRC (1‒2 plane, 

𝒗𝑪𝑵𝑻 = 0.1243) 

70.01 26.87 4.64 25.58 9.05 10.40 2.14 1403.645 

HFRC (1‒3 plane, 

𝒗𝑪𝑵𝑻 = 0.1243) 

70.01 4.91 26.61 9.07 25.42 1.93 24.41 1403.645 
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The thickness of the laminated HFRC shell is considered as 𝒉 = 0.003 𝒎. The 

thickness of the 1‒3 PZC layer is taken as 𝒉𝒑 = 250 𝛍𝒎 and the viscoelastic layer is 

taken as  𝒉𝒗 = 200 µ𝒎. The length and radius of the shell from the reference plane are 

chosen to be 𝒂 = 1 𝒎  and 𝑹 = 50 × 𝒉 , respectively. The elastic and piezoelectric 

properties of 1‒3 PZC by considering 60% fiber volume fraction are given as follows 

(Ray and Pradhan, 2007): 

𝑪𝟏𝟏= 9.293 GPa, 𝑪𝟏𝟐= 6.182 GPa, 𝑪𝟏𝟑= 6.054 GPa, 𝑪𝟑𝟑= 35.44 GPa, 𝑪𝟐𝟑= 𝑪𝟏𝟑, 𝑪𝟒𝟒= 

1.58 GPa, 𝑪𝟔𝟔= 1.544 GPa, 𝑪𝟓𝟓= 𝑪𝟒𝟒 , 𝒆𝟑𝟏= −0.1902 𝑪 𝒎𝟐⁄ , 𝒆𝟑𝟐= 𝒆𝟑𝟏 , 𝒆𝟑𝟑= 18.4107 

𝑪 𝒎𝟐⁄ , 𝒆𝟐𝟒= 0.004 𝑪 𝒎𝟐⁄ , 𝒆𝟏𝟓= 𝒆𝟐𝟒 and 𝝆𝒑= 5090 𝒌𝒈 𝒎𝟑⁄ . 

The material properties of the viscoelastic layer material ISD112 are considered 

as (Chantalakhana and Stanway, 2001): 

𝝆𝒗= 1140 𝒌𝒈 𝒎𝟑⁄ , 𝝂𝒗 = 0.49, and 𝑮𝒗= 20(1 + 𝒊) 𝑴𝑵𝒎−𝟐 

6.5.1 Validation of SinusZZ Theory 

To validate the present FE model developed using the SinusZZ theory, the fundamental 

natural frequencies of the laminated shell are compared with the existing analytical and 

FE models presented in the literature. The outcome of this comparison is shown in Table 

6.2, and the results are found to be in good agreement with the existing models. A non-

dimensional frequency parameter 𝝀 was used for validation, which is given by: 

𝝀 = �̅�(𝒂𝟐 𝒉⁄ )√𝝆 𝑬𝑻⁄                                                          (6.30) 

in which 𝝎 is the natural frequency of the laminated shell; 𝝆 and 𝑬𝑻 are the density and 

the transverse Young’s modulus substrate shell, respectively. 
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Table 6.2. Non-dimensional frequencies (𝝀) of cantilever laminated substrate shells. 

Substrate laminates Source R/h  a/R 𝝀 

0𝑜 90𝑜⁄ 0𝑜⁄  Present FE model 

Analytical (Reddy, 2003) 

20 

20 

5 

5 

0.4908 

0.4899 

0𝑜 90𝑜⁄  Present FE model 

Analytical (Reddy, 2003) 

20 

20 

5 

5 

0.5598 

0.5581 

Furthermore, we compared the results of SinusZZ theory with the existing results 

of classical FSDT by considering the identical smart shell with straight CNTs for 

symmetric cross-ply and anti-symmetric angle-ply (Kundalwal and Meguid, 2015). The 

results are predicted for both active and passive damping by considering the value of gain 

𝒌𝒅 = 1000. It can be seen from Fig. 6.5 that for both the theories the frequency response 

shows excellent agreement for the first three modes obtained for symmetric cross-ply 

FFRC smart shell. It can also be observed from this figure that the amplitudes of 

vibration are significantly attenuated with the SinusZZ theory for both active and passive 

damping. This is attributed to the layer-independent sinusoidal shear distribution obtained 

along the thickness of laminated shell, due to the implementation of SinusZZ theory. 

Similar results are obtained for the anti-symmetric angle-ply as shown in Fig 6.6. 

From Figs. 6.5 and 6.6 we can conclude that the SinusZZ theory shows better 

active damping performance. Thus next, we will compare the active damping 

performance of multiscale HFRC smart shells using SinusZZ theory and FSDT. Table 

6.3 shows the amplitude of deflections corresponding to the frequency response of 

laminated symmetric cross-ply HFRF shell, which is predicted by using the present 

SinusZZ theory and the existing classical FSDT (Kundalwal and Meguid, 2015) and the 

FSDT with higher-order function (FSDT-H) for the transverse displacement along the 

thickness direction (Sahoo and Ray, 2019a). It can be seen from this table that the 

frequency response of the SinusZZ theory shows excellent agreement with classical 

FSDT   and  FSDT-H.  Also,   the  present   SinusZZ   theory  effectively  attenuates  the  
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Figure 6.5. Comparison of SinusZZ theory and FSDT for symmetric cross-ply FFRC 

smart shell with 𝒌𝒅 = 1000. 

 

Figure 6.6. Comparison of SinusZZ theory and FSDT for anti-symmetric angle-ply 

FFRC smart shell with 𝒌𝒅 = 1000. 
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amplitude of vibrations as compared to the FSDT. The results presented in Table 6.3 

verify the successful implementation of the SinusZZ theory. Hence, the established 

SinusZZ model is now being used to analyze the damping performance of the proposed 

laminated multiscale HFRC smart shell. The results are compared with the base 

composite shell. For this, Eqs. (6.28) and (6.29) are formulated, and the harmonic 

excitation of 1 N force is applied at a point (𝒂, 0, 𝒉 2⁄ ) on the top surface of the limited 

HFRC smart shell to evaluate the frequency response. 

Table 6.3. Amplitudes and fundamental natural frequencies of laminated symmetric 

cross-ply HFRC substrate shell with straight and wavy CNTs (𝒌𝒅 = 600). 

Theory Laminated smart shell Reference Amplitude 

(10−4) (m) 

Frequency (1st 

mode) (Hz) 

SinusZZ HFRC shell with straight 

CNTs 

Present FE 

model 

1.033 110 

FSDT (Kundalwal 

and Meguid, 

2015) 

1.477 110 

FSDT-H (Sahoo and 

Ray, 2019a) 

1.374 110 

SinusZZ HFRC shell with wavy 

CNTs (1‒3 plane) 

Present FE 

model 

0.917 89 

FSDT (Kundalwal 

and Meguid, 

2015) 

1.175 90 

FSDT-H (Sahoo and 

Ray, 2019a) 

1.117 90 
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6.5.2 Active Damping of Laminated HFRC Smart Cantilever Shell 

After validation and ensuring the successful implementation of SinusZZ theory, it 

is utilized for the investigation of active damping of laminated HFRC smart cantilever 

shell. In this context, Fig. 6.7 illustrates the frequency response of laminated symmetric 

cross-ply with respect to the amplitudes of deflection 𝒘(𝒂, 0, 𝒉 2⁄ ), considering both 

active and passive damping. The figure depicts that the developed SinusZZ model 

effectively attenuates the amplitudes of vibration for the active damping. The frequency 

response of laminated base composite and HFRC shell (with straight CNTs) is also 

compared in Fig. 6.7. It can be observed that for both active (𝒌𝒅 ≠ 0)  and passive 

damping (𝒌𝒅 = 0), the HFRC shell attenuates the amplitudes of vibrations significantly 

higher compared to the base composite shell. Corresponding to the value of gain 𝒌𝒅 =

600, the laminated HFRC shell attenuates the amplitudes of vibration approximately 

22% higher than the base composite shell, which is a significant improvement. This is 

attributed to the enhanced stiffness offered due to the incorporation of CNT nanofillers in 

the multiscale HFRC substrate shell. The control voltage required to achieve the 

following vibration attenuation is demonstrated in Fig. 6.8. It can be observed from this 

figure that for the laminated HFRC shell, the maximum required control voltage is 42.66 

V, which is significantly less as compared to the base composite shell corresponding to 

the value of gain 𝒌𝒅 = 600 . Similar behavior was also observed for anti-symmetric 

cross-ply and anti-symmetric angle-ply, but for the sake of brevity, the results are not 

presented here. Figs. 6.7 and 6.8 reveals that the laminated multiscale HFRC smart shell 

shows better damping performance. Next, we analyze the effect of CNT waviness on the 

damping performance of the laminated symmetric/anti-symmetric cross-ply and the anti-

symmetric angle-ply multiscale HFRC smart shells. 
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Figure 6.7. Variation of amplitude of deflection with respect to the frequency response of 

the laminated symmetric cross-ply composite shell (𝜳 = 0°,𝝎 = 0). 

 

Figure 6.8. Variation of control voltage with respect to the frequency response of the 

laminated symmetric cross-ply composite shell (𝜳 = 0°, 𝝎 = 0). 
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Figure 6.9 represents the effects of CNT waviness on the frequency response of 

the laminated smart composite shell. Unless otherwise stated, the value of gain is 

considered to be 𝒌𝒅 = 600, and the piezo-fiber orientation is taken as 𝜳 = 0°. It can be 

noted that CNT waviness significantly influences the damping characteristics of the 

laminated HFRC smart shell. The HFRC shell, with the CNT waves coplanar with the 

1‒3 plane shows maximum vibrational attenuation compared to the composites with or 

without considering CNTs. For the first mode of natural frequency, the multiscale HFRC 

shell with CNT waviness coplanar with the 1‒3 plane shows 30% and 11.5% higher 

vibrational attenuation compared to the base composite and HFRC shell with straight 

CNTs. This is attributed to the enhanced transverse stiffness of the multiscale HFRC 

substrate shells due to the incorporation of CNTs mutually orthogonal planes. Hence, 

improving the energy dissipation capability of the multiscale HFRC shell shows better 

suppression of transverse vibrations. Similar behavior is also observed for anti-symmetric 

cross-ply and anti-symmetric angle-ply, as shown in Fig. 6.10 and Fig. 6.11, respectively. 

The multiscale HFRC shell having CNT waviness coplanar with the 1‒3 plane 

suppresses amplitudes of the first mode of natural frequency by 64% and 60% higher 

than the base composite and HFRC shell with straight CNTs. Figures 6.9‒6.11 shows 

that the multiscale HFRC shell having CNT waviness coplanar with the 1‒3 plane shows 

better damping characteristics compared to other composite shells (with or without 

CNTs). Thus, further investigation has been carried out using the multiscale HFRC shell 

having CNT waviness coplanar with the 1‒3 plane. 

The control authority of the ACLD treatment patches depends on the constraining 

layer of 1‒3 PZC. The effective elastic and piezoelectric properties of 1‒3 PZC layer can 

be altered by varying the piezo fiber orientation (𝜳) in two mutually orthogonal vertical 

xz-plane and yz-plane. In this context, the value of 𝜳 is considered to vary between 0° to 

45°. For the sake of simplicity, the effectiveness of the control authority of the ACLD 

treatment patches has been investigated for the values of 𝜳 = 0°, 15°, 30°,  and 45° . 

Figure 6.12‒6.13 illustrate the effect of the piezo-fiber orientation on the control 

authority of the ACLD treatment patches for the laminated symmetric cross-ply HFRC 

smart shell incorporated with wavy CNTs. The figures depict that the piezo-fiber 

orientation significantly influences the control authority of the ACLD patches, and for 



Active Vibration Damping of a clamped-free Smart Multiscale HFRC shells Using 
1‒3 PZC 

 

181 

 

the first mode of the natural frequency, the maximum attenuation is observed at 𝜳 = 0° 

for both cases. However, for the anti-symmetric cross-ply, when the piezo-fibers are 

oriented in the vertical xz-plane, the maximum attenuation is observed at 𝜳 = 45°, as 

shown in Fig. 6.14. Whereas when the piezo-fibers are oriented in the vertical yz-plane, 

the maximum attenuation is observed at 𝜳 = 0°, as shown in Fig. 6.15. For the anti-

symmetric angle-ply, the results are similar to the anti-symmetric cross-ply as shown in 

Figs. 6.16 and 6.17. From Figs. 6.12‒6.17, it can be noted that the performance of the 

ACLD treatment patches is much better when the piezo-fibers are oriented along the xz-

plane. However, when the piezo-fibers are oriented along the yz-plane, the magnitude of 

the amplitudes of vibration are much higher. Thus, we can say that the control authority 

of the ACLD patches for this case is comparatively poor. This is attributed to the fact that 

the out-of-plane piezoelectric coefficient is maximum when the piezo-fibers are oriented 

along the xz-plane, compared to when the piezo-fibers are oriented along the yz-plane. 

 

Figure 6.9. Frequency response for transverse displacement 𝒘(𝒂, 0, 𝒉 2⁄ ) of the 

cantilever laminated symmetric cross-ply composite smart shell (𝜳 = 0°). 
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Figure 6.10. Frequency response for transverse displacement 𝒘(𝒂, 0, 𝒉 2⁄ ) of the 

cantilever laminated anti-symmetric cross-ply composite smart shell (𝜳 = 0°). 

 

Figure 6.11. Frequency response for transverse displacement 𝒘(𝒂, 0, 𝒉 2⁄ ) of the 

cantilever laminated anti-symmetric angle-ply composite smart shell (𝜳 = 0°). 
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Figure 6.12. Effect of piezo-fiber orientation (𝜳) in the xz-plane on the frequency 

response of laminated symmetric cross-ply multiscale HFRC smart shell having wavy 

CNTs. 

 

Figure 6.13. Effect of piezo-fiber orientation (𝜳) in the yz-plane on the frequency 

response of laminated symmetric cross-ply multiscale HFRC smart shell having wavy 

CNTs. 
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Figure 6.14. Effect of piezo-fiber orientation (𝜳) in the xz-plane on the frequency 

response of laminated anti-symmetric cross-ply multiscale HFRC smart shell having 

wavy CNTs. 

 

Figure 6.15. Effect of piezo-fiber orientation (𝜳) in the yz-plane on the frequency 

response of laminated anti-symmetric cross-ply multiscale HFRC smart shell having 

wavy CNTs. 
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Figure 6.16. Effect of piezo-fiber orientation (𝜳) in the xz-plane on the frequency 

response of laminated anti-symmetric angle-ply multiscale HFRC smart shell having 

wavy CNTs. 

 

Figure 6.17. Effect of piezo-fiber orientation (𝜳) in the yz-plane on the frequency 

response of laminated anti-symmetric angle-ply multiscale HFRC smart shell having 

wavy CNTs. 
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6.6 Summary 

The present work focuses on the influence of CNT waviness on the damping behavior of 

the laminated multiscale HFRC smart shell, integrated with two ACLD treatment 

patches installed at the outer circumference of the substrate HFRC shell. The ACLD 

treatment patches consist of a viscoelastic layer and a constraining layer of 1‒3 PZC, 

responsible for the active damping. The effect of piezo-fiber orientation on the control 

authority of the ACLD treatment patches is also investigated. In this context, a FE model 

is developed based on the Sinus theory incorporating the ZZ effects by considering the 

MZZF. The outcomes of the proposed model are compared with the existing models, and 

the results are found to be in good agreement. Our findings suggest that considering the 

ZZ effects alleviates the amplitudes of vibrations. Thus, neglecting the ZZ effects can 

compromise the accuracy of the FE model. Furthermore, we investigate the active 

damping response of the laminated multiscale HFRC smart shell using the SinusZZ 

theory for the symmetric/anti-symmetric cross-ply and anti-symmetric angle-ply. For 

this, a simple closed-loop feedback model is used to compare the laminated multiscale 

HFRC smart shell’s active damping performance (with straight and wavy CNTs) with 

that of the base composite smart shell. It is observed that the waviness of CNTs 

significantly influences the damping characteristics of the laminated HFRC shell. The 

maximum attenuation of vibrational amplitudes is obtained when the CNT waves are 

coplanar with the 1‒3 plane. The results further show that the control authority of the 

ACLD treatment patches is maximum for the piezo-fiber orientation angle 𝜳 = 0° and 

45°. The control authority of the ACLD treatment patches is better when the piezo-fibers 

are oriented along the xz-plane. This is due to the higher transverse piezoelectric 

coefficient (𝒆𝟑𝟑) observed when the piezo-fibers are oriented along the xz-plane. Our 

preliminary findings suggest that CNT waviness can be utilized to tailor the direction of 

elastic properties of the proposed multiscale HFRC. The proposed HFRC can be used to 

develop superior, lightweight, and high-performance composite materials. 



 
 

Chapter 7 
 

Conclusions and Future Scope  
 

In this Chapter, major conclusions drawn from the research work executed in this Thesis 

have been highlighted. Scopes for further research on these novel composites are 

suggested. 

                                                                                                                             

7.1 Major Conclusions 

This dissertation is concerned with the investigation of damping performance of 

laminated multiscale HFRC smart beams, plates and shells integrated with ACLD 

treatment patches. In this context, first, two- and three-phase micromechanical models are 

developed based on the MOM and MT approaches. The distinct constructional feature of 

HFRC is that the CNTs and carbon fibers are considered to be uniformly distributed and 

reinforced along the axial direction (x-axis) of the advanced composite. Analytical 

micromechanics models have been developed for estimating the effective elastic 

properties of base composite and HFRC. Emphasis has also been placed on investigating 

the effect of waviness of CNTs on the effective elastic properties of the HFRC. The 

plane of waviness of the CNTs is coplanar either with the 1–2 (1’–2’) plane or with the 

1–3 (1’–3’) plane while the CNTs are sinusoidally wavy and the carbon fiber is aligned 

along the 1–direction. The micromechanics models developed here are capable of 

estimating the effective elastic properties of any continuous/short fiber-reinforced 

composite in which both the fiber and the matrix are homogeneous and orthotropic. The 

predicted values of the effective properties of the multiscale HFRC presented in this 

Thesis may serve the purpose of validating the further new micromechanics model and 

experimental investigations. 

Second, the investigation is carried out for the ACLD of vibration amplitudes of 

laminated multiscale HFRC beams, plates, and shells. The constraining layer of the 
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ACLD treatment is considered to be composed of vertically/obliquely reinforced 1‒3 

PZC material. Based on the layerwise displacement theories, electro-mechanical finite 

element models of the overall HFRC/ACLD beam, plate, and shell system have been 

derived. A simple velocity feedback control law is used to introduce the active damping 

in the overall structures. In the case of HFRC smart beams, a single patch of ACLD 

treatment is used which is located at the top surface of the cantilever beam while two 

ACLD patches are mounted on the top surface of the HFRC smart plates and at the 

upper circumference of the doubly curved HFRC smart shells. The numerical results are 

shown for the three cases: symmetric and anti-symmetric cross-ply, and antisymmetric 

angle-ply. The following main conclusions are drawn from the work carried out in this 

Thesis:  

➢ The incorporation of straight CNTs significantly improves the values of the effective 

elastic constants of the multiscale HFRC over their values without CNTs. Since the 

transverse properties of the HFRC are significantly improved without the cost of the 

values of the in-plane effective elastic constants, these HFRC will have better 

strength against the transverse dynamic excitation.  

➢ The effective elastic properties of the HFRC estimated by the analytical 

micromechanics models based on the MOM approach and the MT method are in 

excellent agreement, also, these analytical micromechanical models require much less 

computational time. Hence, for predicting all effective properties of the advanced 

composite one could adopt the analytical micromechanics models.  

➢ When the sinusoidally wavy CNTs are coplanar with the 1–2 (1’–2’) and 1–3 (1’–3’) 

plane then the transverse effective elastic properties of the multiscale HFRC are 

significantly improved over their values with straight CNTs for the higher values of 

the wave frequencies and the amplitudes of the wavy CNTs. Thus the present study 

suggests that the wavy CNTs can be properly utilized to construct advanced hybrid 

composites with superior elastic properties. 

➢ The ACLD treatment significantly improves the active damping characteristics of the 

laminated multiscale HFRC smart beams, plates, and shells over the passive damping 

for suppressing their transient vibrations. 

➢ The contribution of transverse actuation by the 1‒3 PZC constraining layer is 

significantly larger than that of the in-plane actuation by the same for causing the 
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active damping of laminated multiscale HFRC smart beams, plates, and shells. 

➢ The performance of the ACLD patches for controlling the transient vibrations of 

smart laminated multiscale HFRC plates and shells is significantly influenced by the 

piezoelectric fiber orientation angle of 1‒3 PZC. 

➢ The performance of the ACLD patches for attenuating the amplitude of vibrations of 

smart laminated HFRC beams, plates, and shells significantly increases as compared 

to the base composite because of the incorporation of CNTs.  

➢ The HFRC with wavy CNTs being coplanar with the 1–3 (1’–3’) significantly 

improves the performance of the ACLD patches than the HFRC the straight CNTs. 

➢ The wavy CNTs can be properly exploited for achieving structural benefits from the 

excellent elastic properties of CNTs and high-performance smart structures can be 

developed which may be superior to the existing ones. 

 

7.2 Scope for Further Research 

Although the basic purpose of this Thesis has been fulfilled by the contributions 

presented in the preceding chapters of this dissertation, further research may still be 

pursued for the development of high-performance smart structures. Some of the further 

research works that may be undertaken in line with the present work are as follows: 

➢ Experimental characterization of the HFRC for multifunctional structures is a natural 

extension of this work. 

➢ Predictions of the effective electrical and thermal properties of the HFRC. 

➢ Derivation of the accurate micromechanics models for predicting the strength of the 

HFRC. 

➢ Smart control of geometrically nonlinear vibrations of smart laminated HFRC beams, 

plates, and shells is the natural extension of this work and provides scope for further 

work. 

➢ The experimental verification of the theoretical models developed in this Thesis is 

also a challenging task that can be taken up for further research. 

➢ More accurate theories like 3D solutions and mixed variational theories can be 

adopted for developing the FE models. 
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