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Abstract

Multi-label classification is a generalization of traditional classification techniques

where classes are not mutually independent and multiple classes are assigned to each

instance. Multi-label classification is applied in various domains such as image classifi-

cation, functional annotation of protein sequences, and text categorization. The main

objective of this thesis is to propose multi-label classifiers using non-iterative learning

and deep learning approaches. We propose non-iterative multi-label classifiers with

an adaptive threshold to consider the correlation among labels. The non-iterative

approaches provide a fast and accurate solution for multi-label classification. We pro-

pose non-iterative randomization-based neural networks for multi-label classification.

These multi-label neural networks are named as Multi-label Broad Learning System

(ML-BLS), Multi-label Fuzzy Broad Learning System (ML-FBLS), Multi-label Ran-

dom Vector Functional Link Network (ML-RVFL), and Multi-label Kernelized Ran-

dom Vector Functional Link Network (ML-KRVFL). The output weights of these

neural networks are computed using pseudoinverse. At the output layer, multi-label

classification is performed by using an adaptive threshold function. The computation

of output weights using pseudoinverse retains the faster computation power of these

algorithms compared to iterative learning algorithms. The adaptive threshold func-

tion used in the proposed approach can consider the correlation among the output

labels and the whole dataset for threshold computation. Five multi-label evaluation

metrics, hamming loss, ranking loss, one error, coverage, and average precision, eval-

uate the proposed multi-label neural networks on 12 benchmark datasets of various

domains such as text, image, and genomics. The ML-KRVFL provides the overall best

Friedman rankings on five evaluation metrics, followed by ML-RVFL, ML-FBLS, and

ML-BLS, respectively. Based on the experimentation results, the proposed ML-BLS,

ML-FBLS, ML-RVFL, and ML-KRVFL perform better than other relevant multi-label

approaches in this mentioned order. The non-iterative approaches use the inverse to

compute the parameters of algorithms, and it is cumbersome to compute the inverse

for large data. Hence, we have proposed deep learning-based multi-label classifiers
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for image and sequential data. The deep learning approaches are capable of process-

ing a large amount of raw data such as images and primary protein sequences. In

the deep network of GCN, nodes of GCN become similar, and it becomes difficult

to differentiate them. This scenario is known as over-smoothing. We propose the

Graph Convolution Network based multi-label classifier MLGCNpairnorm for the im-

age domain, which incorporates a normalization-based technique pairnorm to tackle

the over-smoothing problem. Further, we have extended this approach for zero-shot

learning in the image domain named as ML−ZSLPGCN , which is able to classify the

images corresponding to unseen labels. The proposed deep learning-based approaches

in the image domain are evaluated on MS-COCO, VOC-PASCAL, and NUS-WIDE

data based on average precision, recall, and F1 score.

The MLGCNpairnorm and ML − ZSLPGCN are unable to classify the sequen-

tial data; hence we have proposed a deep learning method for the sequential domain

based on heuristic rules to classify the proteins into their functional classes using a

convolution neural network. It is able to handle the data imbalance problem. The

protein sequences belong to the functional classes based on the structure of their se-

quences and the label distribution of this data is imbalanced. The greatest challenge

with multi-label classification is to handle the data imbalance, which appears due to

variance in frequencies of the labels in the data. This data imbalance is dealt with

weight modulation in the loss function to influence the learning process. The anno-

tation task of protein sequences into corresponding functional classes is multi-label in

nature. This proposed approach works on the primary structure of protein sequences

which considers the relationship between motifs and amino acids. The sequential data

in this work is taken from the SwissProt subset of the UniProt database for the experi-

ments. The proposed approach also takes into account the amino acid locations in the

protein sequence. The proposed approach considers the affinity information between

amino acids and motifs. Along with achieving high performance in the classification

of protein sequences, we propose a heuristic approach to improve the precision and

recall of the individual functional classes.

In this thesis, all the proposed non-iterative and deep learning multi-label classifi-
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cation approaches are applicable to various domains such as image, medical imaging,

and bioinformatics.

Keywords: Multi-label classification, Random Vector Functional Link Network,

Broad Learning System, Deep Learning, Non-iterative learning, Graph Convolution

Network, Over-smoothing, Data imbalance.
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Chapter 1

Introduction

In traditional supervised learning, each real-world object is denoted by a single

instance, and it is associated with a single label[1, 2]. One fundamental assumption

in traditional supervised learning is that one input instance belongs to only one label.

Traditional supervised learning is successful in many tasks, but in the real world, there

are many supervised tasks that do not fit in the assumption of traditional supervised

learning as real-world objects are associated with multiple labels simultaneously [3, 2].

For example, a newspaper article can be associated with the labels of history and crime

at the same time, or a single image can contain the label of the sky, birds, and trees

[3]. In the music domain, a piece of music may belong to mozart, austria, and classical

simultaneously. To consider the association of multiple labels with one instance, one

direct solution is to assign a set of proper labels to the input instance. Following this

consideration, the paradigm of multi-label classification emerges [4].

Multi-label classifier classifies an input instance that is associated with more than

one output label simultaneously. A multi-label classifier finds a set of appropriate

labels for an input data instance. Multi-label classification is considered as a gener-

alization of multi-class or binary classification [2]. In multi-label classification, the

number of associated labels is not known prior, so the label space grows exponentially.

For example, a label space with 20 labels grows to more than one million(i.e., 220).

To tackle this large label space, it is essential to consider the correlation among labels

[4, 1].
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Figure 1.1: Illustration of Multi-label Classification

The earliar research of multi-label classification was mainly focused on text catego-

rization [5, 6, 7] but in the present time it has been widely applied to the various prob-

lem of bioinformatics [3, 8, 9], automatic annotation of multimedia content [10, 11, 12],

rule mining [13, 14], web mining [15, 16], and tag recommandation [17, 18].An example

of multi-label classification is illustrated in Figure 1.1 as it contains more than one

label, such as window, sky, tree, and grass. Due to the non-prior information about as-

sociated labels and the association of multiple labels with a single instance, multi-label

classification is considered harder than traditional multi-class classification. The fol-

lowing examples provide a simple understanding of multi-label classification in various

domains.

(i) Image recognition: There are multiple objects available in a single image.

The task to identify the multiple objects in an image is known as multi-label

classification in image recognition[19, 20].

(ii) Music Classification: Music has various types of categories based on moods

and interests, such as sad, happy, romantic, and patriotic. A single piece of

music can belong to multiple classes, so this classification fits in the multi-label

2



classification [21].

(iii) Text categorization: In the case of a newspaper article, a single text can fit

into the economics and politics topics simultaneously. Multi-label classification

in the text-domain is considered to find the simultaneous topics for the given

text [5, 6].

(iv) Functional Genomics Categorization: Genome sequences are created by

proteins, and these proteins are created by various amino acids. Alphabetic

characters denote the essential amino acids for better representation. The prop-

erties of the genome are characterized by these amino acids, and each amino

acid is responsible for various characteristics of the genome, such as color, age,

and strength. So genome classification is considered as multi-label classification

[22, 23].

1.1 Background

As discussed an instance in the multi-label classification is associated with more

than one class/label [24, 2]. Due to this, multi-label classification is considered a gen-

eralization of multi-class classification. In literature, a backpropagation based multi-

label classifier (BP-MLL) [3] is considered the first neural network based classifier.

This is an iterative classifier, and it changes the loss function of the traditional back-

propagation operation. Rank-SVM is another multi-label classifier that is iterative in

nature and it is based on the Support Vector Machine(SVM) [8]. These approaches

have a larger training procedure due to their iterative nature. Due to a large number

of labels, it becomes difficult to converge these algorithms [24]. The training proce-

dure of iterative algorithms is reduced by developing the non-iterative algorithms for

multi-class and multi-label classification.

The multi-label classification algorithms are categorized into two categories [2].

The first category is known as Problem transformation, and the second is known as

Algorithm adaptation. This categorization of multi-label classification is demonstrated
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Multi-label
Classification

Figure 1.2: Categorization of multi-label algorithms

in Figure 1.2. The categories of problem transformation and algorithm adaptation are

defined as follows:

(i) Problem transformation: This category of algorithms tackles multi-label

learning problems by transforming them into other well-established learning sce-

narios. The key philosophy of problem transformation methods is to fit data to

the algorithm.

(ii) Algorithm adaptation: This category of algorithms tackle multi-label learn-

ing problems by adapting popular learning techniques to deal with multi-label

data directly. The key philosophy of algorithm adaptation methods is to fit the

algorithm to data.

The problem transformation methods are complex to converge and algorithm adapta-

tion approaches make changes in the traditional algorithms to adapt these algorithms

for multi-label classification. In recent times the multi-label adaptation of backprop-

agation algorithm, support vector machine, and k nearest neighbor are adapted for

multi-label as BP-MLL [3], RankSVM [8], and Multi-label k nearest neighbor (ML-

KNN) [25] respectively. We have proposed multi-label classifiers based on non-iterative

and deep learning approaches, which come under the algorithm adaptation category.

The non-iterative algorithms focus on fast and accurate solutions to classification prob-
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lems. The existing non-iterative algorithms such as Extreme Learning Machine(ELM)

[26], Random Vector Functional Link Network(RVFL) [27, 28], Broad Learning Sys-

tem (BLS) [29] and Hierarchical Broad Learning System(HBLS) [30] are able to pro-

vide a fast and optimal solution for the traditional classification problems. However,

the scope of these approaches is limited to binary classification and multi-class clas-

sification. Hence we propose the multi-label adaptation of traditional non-iterative

approaches RVFL [27] and BLS [29]. The non-iterative classifiers use the matrix in-

verse to compute the parameters of the algorithms. The computation of parameters

using the inverse becomes cumbersome for large data. The non-iterative algorithms

take the data in the form of preprocessed features and these approaches are unable

to process a large amount of raw data. To overcome these limitations, we have also

proposed multi-label classifiers using deep learning. The deep learning approaches

are capable of working with a large amount of raw data; for example, the Imagenet

database is trained on the size of approximately 150 gigabytes of images. In the deep

learning based approaches, we present the multi-label classifiers for the image domain

and sequential domain [31, 32]. The motivation behind this thesis work is described

in the next section.

1.2 Motivation

As discussed earlier, research in recent times has shown that iterative learning

based approaches such as BP-MLL[3] and RankSVM [8] have performed very well

in multi-label classification. However, iterative approaches are computationally ex-

pensive; hence there is a need to develop non-iterative approaches for multi-label

classification [33]. In recent years, few researchers have developed the non-iterative

learning model for multi-label classification such as ML-ELM [33] and ML-KELM [24].

In these approaches, there is scope for improvement in performance on the basis of

various evaluation measures such as hamming loss, ranking loss, and one error. It is

difficult for a single algorithm to perform optimum on multiple evaluation measures[3].

The RVFL and BLS are the non-iterative Single Layer Feedforward Neural networks
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(SLFN), which use the random initialization of weight and bias of the network and

compute the output layer weights using the pseudoinverse. The RVFL and BLS are

non-iterative algorithms and proposed for traditional multi-class classification. We

have proposed the multi-label adaptation of RVFL and BLS approaches. Further,

both iterative and non-iterative approaches for multi-label classification need prepro-

cessed features, and these algorithms are not able to perform well enough for a large

number of labels[34]. In the case of a large number of labels, at the output layer of it-

erative and non-iterative classifiers, the difference among labels becomes insignificant.

The non-iterative algorithms use matrix operation pseudoinverse or ridge regression

to compute the parameters, so these approaches become difficult to use for a large

amount of data. To overcome these issues, we have proposed deep learning based

multi-label classifiers that are able to perform multi-label classification on a large

amount of raw data, which is available in huge amounts. In the case of a large no. of

labels, the difference among labels becomes obscured and capturing the dependency

between labels also becomes difficult for deep learning approaches.

To resolve the problem of dealing with a large number of labels, Graph Convolution

Network (GCN) has been used to represent the labels as a feature vector [35]. These

feature vectors contain the semantic properties of labels and are known as semantic

embeddings or label embeddings. A large number of labels can be represented as

nodes in GCN; hence GCN is able to provide scalability to the multi-label classifier

in terms of the number of labels. The nodes in the GCN become similar after the

convolution operation if more than two hidden layers are present in GCN. It means

GCN is not able to differentiate the labels in case of more than two hidden layers

[36, 37]. This scenario is known as the over-smoothing problem in GCN. We have

incorporated a normalization scheme pairnorm to tackle the over-smoothing problem

in GCN for multi-label classification [38] in image domain. Further, we have extended

this GCN based multi-label classifier to consider zero-shot learning where instances

of some labels are not available during training. To classify the sequential data, deep

learning approaches have been explored in multi-label classification. We have enhanced

the performance of the deep learning based classifier [39] using a heuristic approach
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for sequential data consisting of the primary protein sequences. Overall this thesis

addresses various issues of existing non-iterative and deep learning based algorithms

for multi-label classification.

1.3 Objectives

In this thesis, we aim to achieve the following objectives:

(i) To develop non-iterative multi-label classifiers using a broad learning system.

(ii) To develop a method based on a random vector functional link network, which

can perform multi-label classification with better performance based on evalua-

tion metrics such as coverage and average precision.

(iii) To develop the deep learning based multi-label classifier which can classify a

large amount of raw image data with a large number of associated labels.

(iv) To enable the zero-shot learning for a large amount of raw image data where

instances of some labels are not present during training for classification.

(v) To provide a multi-label classifier for the sequential data which is suitable for

the classification of bioinformatics related multi-label classification problems.

1.4 Thesis Contributions

The notable contribution of the research work in multi-label classification is to

propose the algorithms which are capable of considering the label dependencies. The

other contributions consider reducing the training time and improving the evaluation

metrics. A brief overview of our research contributions is provided below, which are

further detailed in the form of the chapters.

Contribution I:

The state-of-the-art multi-label algorithms heavily depend on the datasets and do-

main of the data. Existing iterative multi-label classifiers take a considerable huge
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time for convergence during training. In order to overcome this problem, in this the-

sis, we explore the non-iterative multi-label classifiers, which are fast and accurate

for multi-label classification. We have proposed randomized non-iterative Multi-label

Broad Learning System (ML-BLS) and Multi-label Fuzzy Broad Learning System

(ML-FBLS), which are based on broad learning system [29]. ML-FBLS is the neuro-

fuzzy architecture in which the mapped features of a broad learning system are re-

placed by fuzzy subsystems. In these approaches at the output layer, multi-label

classification is performed by using an adaptive threshold function. The computation

of output weights using pseudoinverse retains the faster computation power of these

algorithms compared to iterative learning algorithms. The adaptive threshold func-

tion used in the proposed approach can consider the correlation among the output

labels and the whole dataset for threshold computation. Five multi-label evaluation

metrics evaluate the proposed multi-label neural networks on 12 benchmark datasets

of various domains such as text, image, and genomics.

Contribution II:

The broad learning system based multi-label classifiers have scope to improve

the coverage and average precision performance measures. We propose another non-

iterative approach Random Vector Functional Link (RVFL) network based simple and

effective multi-label classifiers by adding an adaptive threshold at the output layer.

The estimation of neurons in hidden layers is needed in RVFL. The kernelized based

approaches can be used with RVFL based approach for the multi-label classification,

which resolves the estimation of neurons in the hidden layer in the RVFL. We pro-

pose two approaches; the first is based on an adaptation of RVFL for multi-label

classification ML-RVFL, and another is its kernelized version for multi-label classifi-

cation ML-KRVFL, which are the most efficient non-iterative classifiers proposed in

this thesis. In the comparative analysis of the proposed four non-iterative multi-label

classifiers, the ML-KRVFL provides the overall best Friedman rankings on five eval-

uation metrics, followed by ML-RVFL, ML-FBLS, and ML-BLS, respectively. Based

on the experimentation results, the proposed ML-KRVFL, ML-RVFL, ML-FBLS, and

ML-BLS perform better than other relevant multi-label approaches.

8



Contribution III:

The performance of the multi-label classifiers and training procedure depends on

the number of labels available in the dataset. In the case of a large number of labels,

it becomes cumbersome to provide the solution of multi-label classification for non-

iterative approaches. The non-iterative approaches depend on inverse computation,

and for large-size datasets, it becomes difficult to compute the inverse of the data

matrix. The importance of the graph convolution network in multi-label classifica-

tion has grown in recent years due to its label embedding representation capabilities.

The graph convolution network is able to capture the label dependencies using the

correlation between labels. However, the graph convolution network suffers from an

over-smoothing problem when the layers are increased in the network. Over-smoothing

makes the nodes indistinguishable in the deep graph convolution network. We have

proposed a normalization technique to tackle the over-smoothing problem in the graph

convolution network for multi-label classification. The proposed approach is an effi-

cient multi-label object classifier based on a graph convolution neural network that

tackles the over-smoothing problem. The proposed approach normalizes the output

of the graph such that the total pairwise squared distance between nodes remains the

same after performing the convolution operation. The proposed approach outperforms

the existing state-of-the-art approaches based on the results obtained from the exper-

iments performed on MS-COCO and VOC2007 datasets. The experimentation results

show that pairnorm mitigates the effect of over-smoothing in the case of using a deep

graph convolution network.

Contribution IV:

In the multi-label classifier based on GCN, there is a possibility that for some

labels, instances are not available during training. This case is known as Zero-shot

learning (ZSL) [40]. Zero-shot learning transfers the knowledge from the seen labels

available during training to the unseen labels [40]. To consider the ZSL for multi-label

classification, we have included an attention mechanism and label-aware module in the

MLGCNpairnorm. The proposed approach ML− ZSLPGCN uses the label features

obtained from the images during training for seen labels and semantic embedding for
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the unseen labels. The ML− ZSLPGCN first creates the features corresponding to

the images, and the label-aware module creates the feature vector of the labels corre-

sponding to the seen labels using the attention region embedding. A graph convolution

network takes the feature vector of seen labels during training and semantic word em-

bedding for the unseen labels as input and learns the classifier. The proposed approach

uses a pairnorm-based normalization scheme to tackle the over-smoothing problem in

the graph convolution network. The experimental results on the NUSWIDE and MS-

COCO datasets show that the proposed approach provides significant performance in

terms of precision, recall, and F1 score in comparison to state-of-the-art approaches.

Contribution V:

The sequential data contains the sequence of characters, and deep learning ap-

proaches need to be developed for the classification of sequential data. In this thesis,

we develop a heuristic based deep learning classifier which is able to optimize the

performance of the sequential data. The heuristic approach is inspired by harmonic

heuristics [41], which is easy to implement with deep learning techniques. The se-

quential data used in the thesis is in the form of amino acid sequences of the UniProt

dataset. Along with achieving high performance in the classification of protein se-

quences, we propose a heuristic approach to improve the precision and recall of the

individual functional classes. The proposed heuristic approach improves the perfor-

mance and handles the data imbalance problem. The heuristic approach is inspired

by harmonic heuristics [41], which is easy to implement with deep learning techniques.

The proposed approach is compared with other competitive approaches, and our ap-

proach provides better performance metrics in terms of precision, recall, AUC, and

subset accuracy. The greatest challenge with multi-label classification is to handle the

data imbalance, which appears due to variance in frequencies of the labels in the data.

This data imbalance is dealt with weight modulation in the loss function to influence

the learning process.
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1.5 Organization of The Thesis

This thesis is organized into eight chapters. A summary of each chapter is provided

below:

Chapter 1 (Introduction)

This chapter introduces multi-label classification and discusses its application in

various domains. Further in this chapter, we have described the background study of

multi-label classification, motivation of the thesis, and contribution of this thesis.

Chapter 2 (Literature Survey and Research Methodology)

This chapter describes the detailed literature survey of multi-label classification,

non-iterative learning, and deep learning. It also provides a summary of various itera-

tive, non-iterative, and deep learning approaches related to multi-label classification.

This chapter also presents the details of performance measures, datasets, and statis-

tical tests used for experimentation throughout the thesis.

Chapter 3 (Broad Learning based Multi-Label Classification)

Broad learning based multi-label classifiers are presented in this chapter. Fuzzy

broad learning based multi-label classifier is also discussed later in this chapter, which

enhances the performance of the Broad Learning based multi-label classifier. These

classifiers are faster than iterative approaches due to their non-iterative nature.

Chapter 4 (Random Vector Functional Link Neural Network based Multi-

Label Classification)

This chapter provides the details of the Random Vector Functional Link Neural

Network based multi-label classifier. We have also proposed the kernelized version of

the multi-label Random Vector Functional Link Neural Network. These classifiers are

non-iterative in nature and enhance the performance of broad learning based classifiers

with simple architecture.

Chapter 5 (Graph Convolution Network based Multi-Label Classification)

The approaches mentioned in chapters 3 and 4 have various limitations, such as

these approaches are non-iterative in nature, so inverse computation of matrix is

needed to compute the parameters of the network. For the large datasets and fea-

11



ture spaces, it is difficult to compute the inverse for parameters computation. The

non-iterative approaches take the input data as feature vectors, and these approaches

have limited scope for the large raw data samples. The Deep Learning based ap-

proaches are useful to process large size raw data. In this chapter, GCN based deep

learning approach is used for multi-label classification in the image domain, which is

able to classify the raw images. This chapter also proposes the pairnorm technique to

tackle the over-smoothing problem in GCN for multi-label classification.

Chapter 6 (Zero-Shot Learning for Multi-Label Classification using Graph

Convolution Network)

This chapter describes the zero-shot learning for multi-label classification using

GCN. The GCN based approach mentioned in chapter 5 has the limitation that it

could not classify the labels whose instances are not available during training. Zero-

shot learning makes it possible, so an extension of the chapter 5 for zero-shot learning

is described in this chapter.

Chapter 7 (Heuristic based Deep Learning Multi-Label Classifier for Se-

quential Protein Data)

The non-iterative approaches mentioned in chapters 3 and 4 have limitations that

they are unable to classify the large-scale raw data, and the deep learning based multi-

label classification approaches mentioned in chapters 5 and 6 have limitations that can

not be applied to the sequential raw data such as protein sequences. The properties

of protein sequences are multi-label in nature because one sequence of the protein is

responsible for multiple functionalities of protein. This is also known as functional an-

notation of protein sequences [42, 43]. In this chapter, we describe one deep learning

based heuristic approach related to the bioinformatics domain, which annotates the

protein sequences.

Chapter 8 (Conclusions and Future Work)

This chapter describes the conclusion and contribution of the approaches presented

in this thesis. The possible future directions are also discussed in this chapter. The

complete flow of work is illustrated in Figure 1.3 on the next page.
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Figure 1.3: Flow diagram of thesis work
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Chapter 2

Literature Survey and Research

Methodology

This chapter provides the literature review of multi-label classification and identi-

fies the research gap in the literature. In this chapter, we divide the literature review

into nine sections. The mathematical definition of multi-label classification is dis-

cussed in section 2.1. Section 2.2 discusses the literature of traditional multi-label

algorithms followed by the discussion of non-iterative algorithms in section 2.3. Sec-

tion 2.4 provides the details of the literature review related to multi-label classification

in the image domain using deep learning algorithms. Section 2.5 provides the details

of the literature review related to zero-shot learning in multi-label classification in the

image domain. In section 2.6, the literature review of sequential data for multi-label

classification is discussed, followed by the discussion of multi-label datasets and eval-

uation metrics used for multi-label classification in section 2.7 and 2.8 respectively.

The details of the statistical tests used in this thesis are discussed in section 2.9.

2.1 Multi-Label Classification

As discussed earlier, multi-label classification is generalization of traditional multi-

class classification and more than one labels are associated with an input instance. To

define multi-label classification, let the domain of the input instance be denoted by

X ∈ RN×M and the output label space is represented by Y = 1, 2, ..., Q. Here Q is the
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Table 2.1: Multi-label classification definition example

X label y1 label y2 label y3 label y4
x1 1 1 1 0
x2 1 0 0 1
x3 1 0 1 0
x4 0 1 1 0

Table 2.2: Binary Relevance for multi-label classification

X label y1
x1 1
x2 1
x3 1
x4 0

X label y2
x1 1
x2 0
x3 0
x4 1

X label y3
x1 1
x2 0
x3 1
x4 1

X label y1
x1 0
x2 1
x3 0
x4 0

total number of classes or labels in the label set. In the given training samples denoted

by T = (x1, y1), (x2, y2), ..., (xN , yN) which consist the pair of instances xi ∈ X and its

corresponding label yi ⊆ Y , multi-label classifier provides some optimized evaluation

metric based on the output h : X → 2Y . Multi-label classifier provides the outputs as

a function which provides real values denoted by f : X × Y → R . These real values

can be easily transformed to the ranking function rankf (., .). This ranking function

is further used to separate the set of associated labels from the non-associated labels

related to a particular instance. The association of output labels using a multi-label

classifier can also be computed by a threshold function t(.). In literature, this threshold

function is usually a fixed value or constant function [2, 24]. So, in conclusion, the

multi-label classifier provides more than one corresponding output label for an unseen

instance. The illustrative example of multi-label classification is shown in Table 2.1,

where four instances {x1, x2, x3, x4} ∈ X have the corresponding labels entires as

1 in {y1, y2, y3, y4} ∈ Y labels. These notations are used throughout the thesis to

denote the instances and labels. After the discussion of basic concepts of multi-label

classification, we have discussed the traditional multi-label classification approaches

in the next section.
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Table 2.3: Classifier chain for multi-label classification

X label y1
x1 1
x2 1
x3 1
x4 0

X label y1 label y2
x1 1 1
x2 1 0
x3 1 0
x4 0 1

X label y1 label y2 label y3
x1 1 1 1
x2 1 0 0
x3 1 0 1
x4 0 1 1

X label y1 label y2 label y3 label y4
x1 1 1 1 0
x2 1 0 0 1
x3 1 0 1 0
x4 0 1 1 0

Table 2.4: Label Powerset approach for multi-label classification

X Label set
x1 1
x2 2
x3 3
x4 4

2.2 Traditional Approaches for Multi-Label Clas-

sification

As discussed in chapter 1, problem transformation and algorithm adaptation are

two categories of multi-label classification. Binary relevance [44], classifier chain[45],

and label powerset [46, 47] are examples of some algorithms that come under the

problem transformation category. BP-MLL[3], Rank-SVM[8], and ML-KNN [25]are

the example of some algorithms that come under the algorithm adaptation category.

In the binary relevance algorithm, independent multi-label classifiers are trained for

each label. The results of these independent classifiers are combined after the training

procedure in the binary relevance algorithm. Because the binary relevance consid-

ers the independence among labels, the correlation among labels is missing in this

algorithm.

The binary relevance is shown in Table 2.2 where the corresponding labels of

each instance are independent. The classifier chain is another multi-label algorithm

that passes the label information between the classifiers using chains. These chains

are created by passing the previous classifier as an input to the next classifier. The
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performance of the classifier chain is dependent on the order of classifiers that are

provided as chains to another classifier during training. In Table 2.3 the classifier

chain algorithm is shown where the previous output is provided as an input to find

the next label of a particular instance. The inputs are shown in green color, and chains

in the classifier chain incorporate label correlation. In the label power set, the sets

of associated labels for each input instance are created to denote the associated label

set as a single label. Then the multi-label problem is solved as a multi-class problem

using the label power set approach. Table 2.4 represents the label powerset which

represents the label set as a single label. The label sets shown in Table 2.1 are shown

as a particular label in Table 2.4. The construction of the label set is a time-consuming

process, and it increases the complexity of the label power set algorithm.

In recent times [3, 24, 48], the main focus is carried on the algorithm adaptation

based algorithms in which the multi-class algorithms are being adapted for multi-label

classification. In the algorithm adaptation approaches, Boostexter [6] is a famous ap-

proach to solve multi-label learning, which assigns and maintains a set of weights over

training instances and their corresponding output labels [6]. A Bayesian approach uses

a mixture of probabilistic models to generate each document. This mixture of weight

and distribution of words in each mixture component is learned using the Expectation-

Maximization(EM) algorithm [49]. BP-MLL[3], Rank-SVM [8], and ML-KNN [25] are

neural network, SVM, and k-nearest neighbour based multi-label algorithms respec-

tively which considers the label correlation among labels. The main limitation of these

algorithms is the long training procedure that exists in both problem transformation

and algorithm adaptation based algorithms. The problem of a longer training proce-

dure is resolved by using non-iterative algorithms, which are introduced in the next

section.
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2.3 Non-iterative Learning for Multi-Label Classi-

fication

Non-iterative approaches are useful to reduce the training time of the algorithms

with the optimum solution. For the non-iterative algorithms, the concepts of flat

networks [50] using multiple mixed activations were proposed in 1989 by Pao et al.

These flat networks use the non-iterative procedure to train the network parameters

for regression or classification tasks. The classification abilities of flat networks have

been the main research interest in recent times, and these are being investigated in the

present [51]. An efficient and fast non-iterative neural network to compute the learn-

able parameters of the neural network using pseudoinverse is known as Random Vector

Functional Link Network (RVFL). Sunganthan et al. [28] performed various experi-

ments to confirm the importance and good performance of non-iterative algorithms. A

deep version of RVFL, based on stacked autoencoders, introduces the denoising crite-

rion and recovers clean inputs from their corrupted version [52]. A sparse pre-trained

version of RVFL known as SP-RVFL has proposed to use a sparse autoencoder with

a regularizer using the L1 norm for unsupervised learning. The SP-RVFL handles

the issue with random parameters using the valuable information provided with the

input data [53]. The nonlinear expansion of the input vector into a set of orthogonal

functions has its advantages over the performance of the other classifiers based on

neural networks. The Orthogonal Polynomial Expanded Random Vector Functional

Link Neural Network (OPE-RVFLNN) utilizes advantages from the expansion of the

input vector and random determination of the input weights [54]. Extreme Learning

Machine(ELM) [26] is similar to RVFL[27] and the main difference between ELM and

RVFL is that ELM does not have direct links between inputs and output layer and

bias is also not present in ELM. As shown in Figure 2.1, the RVFL takes the input

samples in the form of the matrix X and feed to the input layer H1. The enhancement

nodes are created with the randomly initialized weight Wh and H1. The output layer

is denoted using Y , and in the RVFL, the output weights W are computed using the

pseudoinverse. The direct connections denote the original features of input data, and
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Figure 2.1: Random Vector Functional Link Neural Network

these direct links play an important role in the performance of the neural network and

improve the performance of the classifier [55, 56]. The performance of randomization-

based approaches has been improved by applying different combinations of RVFL

networks in recent times [52]. The features are reused in the form of direct connec-

tions in RVFL based structures. Few non-iterative approaches are explored in the

multi-label classification, and a lot of scopes are there to explore these approaches in

the multi-label classification. The adaptive version of ELM for multi-label classifica-

tion is known as ML-ELM [57], and it is able to classify streamed multi-label data.

Another multi-label classifier ML-KELM based on the kernelized ELM (KELM), was

proposed to provide stability to the ELM-based multi-label approaches[24]. In litera-

ture the KELM is identical to the Kernel Ridge Regression(KRR) [58]. In this thesis,

we have mentioned the multi-label adaptation of KELM as ML-KRR/ML-KELM.

BP-MLL, ML-ELM, and ML-KRR/ML-KELM are neural network based ap-

proaches to solve multi-label learning problems. Broad Learning System(BLS) is

another neural network that is based on the RVFL [29]. The neural network based clas-

sifiers work in a manner that the internal information related to execution is hidden in

it. After the training, neural networks work like a black box that is unable to explain
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how the data is approximated. Fuzzy-rules-based approaches are used to solve this

interpretability-related issue, which imposes the rules for the execution. Interpretable

rules can be imposed on algorithms such as fuzzy rules for better understanding[59].

The parameters of fuzzy rules are learned using iterative procedures. The neuro-fuzzy

hybrid systems are capable of adapting the fuzzy rules for the training data and find-

ing suitable fuzzy rules without human intervention [60]. The neuro-fuzzy models are

universal approximators of functions, and this is one advantage of a hybrid model

based on neuro-fuzzy models [61]. Because of these advantages, neuro-fuzzy models

have been used in diverse fields of research such as classification [61, 62, 63], regres-

sion [64, 65] and time series prediction [66, 67]. RVFL has been used to solve fuzzy

nonlinear regression (FNR) problems using both inputs and outputs as trapezoidal

fuzzy numbers [68]. The fuzzy broad learning system (FBLS) is a neuro-fuzzy model

for multi-class classification [69]. This comprises the advantages of both the neural

network and fuzzy system. Both BLS and FBLS are non-iterative in nature, and both

are able to solve traditional multi-class problems. The non-iterative algorithms are

faster due to the use of pseudoinverse; hence the output layer weights are computed

using the pseudoinverse in the BLS. Thus, the discussion of pseudoinverse is given in

the next section.

2.3.1 Pseudoinverse and Ridge Regression

Pseudoinverse is considered a generalized inverse, and it can be considered a suit-

able approach to computing the output layer weights of neural networks. Orthog-

onalization method, orthogonal projection method, and Singular Value Decomposi-

tion(SVD) are some approaches that are used to compute the pseudoinverse [70, 71].

The output weights in the neural network are aimed to reach minimum error, but

these weights may not be reached to this due to the ill condition problems. Let H

denotes the concatenation of input layer and enhancement node layer which is denoted

by mathematical expression

H = [H1|H2] (2.1)
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where H1 and H2 are input layer and enhancement node layer as shown in Figure 2.1.

Following mathematical expression denotes the alternative to solve the pseudoinverse

arg min
W

: ‖HW − Y ‖σ1v + λ‖W ‖σ2u (2.2)

where u, v, σ1 > 0 and σ2 > 0 denote the norm regularization. Above optimization

problem can be converted to a convex problem by taking u = v = σ1 = σ2 = 2. This

solution is an approximation of Moore–Penrose generalized inverse. λ denotes the

constraints on W and the value λ = 0 denotes the solution of original pseudoinverse.

W = (HTH + λI)−1HTY (2.3)

The above formulation is used to compute the output layer weights in the neural

network. In neural networks, the number of neurons in the hidden layer is one of

the hyperparameters. The kernelized neural network helps to avoid the estimation

of hidden layer neurons. Hence in this thesis, we have used the kernel function with

RVFL for multi-label classification. The kernel trick is explained in the next section.

2.3.2 The Kernel Trick

Kernel tricks are the core of kernel learning-based methods. It is simply based

on the inner product of samples into some new feature space φ(x). It is defined as

follows [72]:

Definition: We say that k(x, y) is a kernel function if and only if there is a

feature map such that for all x and y,

k(x, y) = φ(x).φ(y)

Here, a kernel function generates a matrix, which is called a kernel or gram matrix.

The kernel or gram matrix is a matrix of similarities of pairs of samples. This matrix

needs to be symmetric and positive semi-definite. Any function can be treated as a

kernel function if it satisfies Mercer condition [72]. Mercer Theorem can be defined as

follows:
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Mercer Theorem: A symmetric function k(x, y) can be expressed as an inner

product k(x, y) = φ(x).φ(y) for some Φ if and only if k(x, y) is positive semidefi-

nite. The Figure 2.2 provides the visualization of data using kernel function in lower

Figure 2.2: Visualization of data in lower and higher dimensions

and higher dimensions. It is not always possible to separate the two classes from each

other in the lower dimensional space using a hyperplane. Hence, data is projected into

the higher dimensional space so that a hyperplane can easily separate them, and this

projection can not be orthogonal.

The non-iterative algorithms use the preprocessed features of the datasets as in-

put. These approaches are unable to process a large amount of raw data because the

matrix inverse is used to compute the parameters of the algorithms. The deep learning

approaches are able to process a large amount of data and extract the features; hence

the discussion of deep learning algorithms for multi-label classification is mentioned

in the next section.

2.4 Deep Learning approaches for Multi-Label

Classification

The non-iterative approaches use the closed-form solutions such as pseudoinverse

and ridge-regression for the computation of the parameters. The pseudoinverse uses

23



the inverse of a matrix in the computation of matrices, so non-iterative solutions are

difficult to use for large-size multi-label datasets of various domains such as image and

text sequence. In the image domain, deep learning is being used for the classification

of raw image data. The performance of single-label classification in the image domain

has been greatly improved using the deep convolution neural networks (CNNs) [31, 32].

Further multi-label classification for the image domain is useful in the field of human

attributes, medical diagnosis, and retail checkout recognition[73, 74, 75]. In recent

times, rapid progress has been achieved in the development of large image datasets.

These datasets are manually labeled, such as PASCAL VOC [76] and MSCOCO [77].

These datasets are available to explore the research using a deep convolution network

[78]. For the computer vision-based tasks, a deep-learning based convolution neural

network (CNN) can be trained with the softmax function at the output layer[79].

The softmax function at output layer based approaches also considers the multi-label

classification as a different single-label classification problem, which uses the ranking

loss or cross-entropy loss for the classification [34]. All of these approaches are limited

in their scalability as the number of classes or labels grows continuously. In the

case of multi-label classification, as the number of classes increases, the distinction

between classes becomes unclear. These models are unable to scale their ability for

the growing number of labels or classes. The labels are dependent on each other

in various manners, such as correlation, prior knowledge related to neighbor nodes,

and geometric information of graphs. Among these dependencies, correlation is the

key dependency for multi-label classification. The approaches discussed above fail to

consider the correlations among labels.

The Recurrent Neural Network (RNN) and probabilistic graph model (PGM) based

approaches are proposed to consider the label correlations [80, 81]. PGM approach

again suffers from the scalability issue because of the high complexity. RNN predicts

the labels in a sequential manner, which is based on some predefined order. Attention

mechanism based models implicitly consider the correlations between the regions of an

image [82]. The regions of images behave like local correlation, and global correlation

requires knowledge beyond a single image. A graph convolution neural network (GCN)
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Figure 2.3: Label representation in GCN in the forward pass

based classifier is proposed to resolve the scalability and correlation issues [83, 84]. In

the GCN, the nodes represent the feature vectors as embeddings, and edges represent

the connection among the nodes. In general, this connection is represented by an

adjacency matrix. The insertion of the adjacency matrix in the forward pass equation

enables the model to learn the feature representations based on node connectivity. In

multi-label classification, these connections are represented by a correlation matrix in

place of an adjacency matrix. The resulting GCN can be seen as the first-order ap-

proximation of Spectral Graph Convolution in the form of a message-passing network

where the information is propagated along the neighboring nodes within the graph.

In this case, GCN nodes consider the neighbors and take the value of neighbors and

the average embeddings. Figure 2.3 shows that the values of the embedding become

similar if the deep GCN is used and the over-smoothing problem occurs due to similar

embedding.

Contrary to GCN, in traditional algorithms, the classes or labels are represented by

one-hot encoding vectors. But in GCN, the classes or labels are represented as feature

vectors. The classes are represented as the feature vectors and these feature vectors

contain the characteristics of classes. These feature vectors are created manually or by

using the pre-trained vectors. Pretrained vectors are available for label representation,

such as Glove [85], FastText [86], GoogleNews[87]. These feature vectors are also
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known as label embedding. Using the benefits of label embedding, the nodes can be

represented as the nodes of graphs. Each label has its own embedding as a feature

vector. For example, as shown in Figure 2.3, nodes represent the feature vectors of

labels, and each node is denoted by the average of features of its neighbors. This

representation of nodes is used to train the Graph Convolution Network. The details

of the Graph Convolution Network are presented in the next section.

2.4.1 Graph Convolution Network (GCN)

Graph Convolution Network is used in semi-supervised learning, which uses the

propagation of information from one node to another in a connected graph[35]. In

multi-label classification, the labels can be represented as nodes of a graph. These

nodes represent the feature vector of individual labels, which is usually the semantic

embedding of a particular label. To incorporate zero-shot learning, we use semantic

embedding for unseen labels. For the seen labels during training, we use the feature

vectors generated by the label-aware module. These semantic vectors and feature

vectors are provided as input to the GCN. The GCN is beneficial because the param-

Cricketer Stumps

Stumps Cricketer

.8

.4

Figure 2.4: correlation between labels

eters of embedding to the generated classifier are shared among labels. This provides

advantages for those labels which have weak semantics or have fewer instances. The

correlation dependency can also be easily captured by the graph structure by cre-

ating the dependency matrix. The graph convolution neural network works on the

information flow among nodes. These nodes are correlated as per the properties of

the multi-label classification. It is important to consider the correlation among labels

effectively.
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We use a graph-based structure to capture the correlation dependency among the

labels. In the graph, each label is denoted as a node and represents the word em-

beddings. We propose a GCN-based model which directly maps these embeddings

to the image features for the classification, and these mapping parameters are shared

across all the classes. The main idea of GCN is to provide feature description Al and

correlation matrix S as an input to the function f(., .) and learn it for the graph G.

The correlation matrix S is used to represent the correlation among nodes. In the

GCN, usually, this correlation matrix is predefined based on the adjacency properties

of nodes in a graph. The nodes in the GCN graphs represent the labels for multi-

label classification. So as per the need for multi-label classification, the correlation

matrix S is derived based on the co-occurrence of labels in the dataset. The matrix

S represents the semantic embedding among the labels. This matrix is named a co-

occurrence matrix because it represents the correlation relationship between labels.

If the labels i and j cooccurs together then the probability P (j|i) is not necessarily

equals to the probability P (i|j). This can be understand from the Figure 2.4 that

P (cricketer|stumps) = .4 and P (stumps|cricketer) = .8 are different. These correla-

tion behaviors are captured by the matrix S. Let label i occurs ni times in training set

and co-occurrence of two labels i and j is represented by nij. Using this information,

the correlation among label i and j can be denoted by nij

ni
. This computation provides

the following matrix, which contains the conditional probabilities

Pi =
nij

ni
, (2.4)

The cooccurance measure may be very rare if two labels are not correlated. The

cooccurance of labels may be different between test set and training set. So using the

value nij

ni
as cooccurance becomes difficult to generalize. To alleviate these problems,

the binary correlation matrix S can be defined as follows

Sij =

0, if nij

ni
< τ

1, if nij

ni
≥ τ

(2.5)
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where Sij represents the binary representation of the correlation and τ denotes the

threshold to filter the noisy edges. Every layer in GCN can be written by a non-linear

function as

Al+1 = f(Al, S). (2.6)

The function f(., .) after applying the convolution operation is denoted by

Al+1 = h(ŜAlWl) (2.7)

where W l denotes the learnable transformation matrix, Ŝ is the normalized version of

matrix S, and h(.) represents the nonlinear operation. When the number of layers is

increased in the GCN, then the nodes are unable to discriminate among themselves

and represent the same values. This scenario is known as an over-smoothing problem.

The detail of the over-smoothing problem is described in the next section.

2.4.2 Over-smoothing problem in GCN

The graph convolution neural network based classifiers suffer from the over-

smoothing problem [83, 84]. The GCN suffers from the over-smoothing problem when

deep structures are used in GCN, as the over-smoothing problem occurs in GCN when

the number of layers is increased to create the deep GCN structure. The features of

nodes become indistinguishable due to this problem. In other words, for the visual

data, over-smoothing refers that the features of labels become similar after applying

the convolution operation in the graph. The convolution operators are analogous to

laplacian smoothing. When the convolution operation is applied many times to the

functions, then the functions converge to similar values. The same scenario happens

when the layers are increased in the GCN then the features of nodes converge to similar

values due to the convolution operations. This behavior is known as over-smoothing.

Over-smoothing makes it difficult to make the GCN deep and decreases the perfor-

mance of the deep classifier if it is not tackled in the initial phase of network design.

In this thesis, we propose a normalization scheme in a multi-label classifier that tack-
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les the over-smoothing and reduces the effect of over-smoothing in deep GCN. There

is a possibility that instances of some labels are not available during the training of

the algorithms. In this case, the transfer of knowledge from the labels corresponding

to the available instance is required to the labels corresponding to the unavailable

instances. In the case of multi-label classification, we have used zero-shot learning for

this knowledge transfer. The details of Zero-shot Learning in multi-label classification

are given in the next section.

2.5 Zero-Shot Learning (ZSL) in Multi-Label Clas-

sification

For the image domain, deep architectures based on Convolution Neural Network

(CNN) have been proposed to assign multiple labels for an image [88, 76, 89, 90].

These approaches are based on the assumption that training data is completely labeled,

and during the testing time, all the labels are already present training time as well.

In this case, the scope of the transfer of knowledge from seen labels is limited to

unseen labels [91]. In real-time scenarios, there is a possibility that instances of some

labels are not available or instances are available only for testing or after the training

completion. The labels corresponding to these scenarios are known as unseen labels.

For these cases, transfer learning is introduced, which transfers the knowledge learned

from massive trained data to other data to learn the new classes [92]. Zero-Shot

Learning(ZSL) is one learning approach that is used to transfer knowledge from seen

to unseen data[92].

ZSL is able to predict those labels whose associated instances are not available

during training [92, 91]. For the semantic information, the labels should be in the

form of feature vectors that contain the properties of labels. Using the semantic

information of labels, the transfer of learning is possible from seen to unseen labels.

Using these properties, the instances corresponding to the unseen labels can get the

knowledge from the seen labels [92, 93]. The main assumption of ZSL is that labels
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should be a numeric vector based on a huge text corpus or a high-dimensional binary

vector based on a manually defined object ontology. In this case, each class or label

should be embedded in a semantic space[94, 95]. The relationship between seen and

unseen labels is established using this semantic label space. Multi-class classification

has been focused on using ZSL, and the scope in multi-label classification has been

limited[40].

The multi-label classification is explored in various domains with the consideration

of label correlation [2, 96]. The scope of ZSL is studied and investigated in multi-label

classification [92]. Multi-label classifiers classify the data using missing labels and noisy

labels with the help of Sylvester Equation (SMSE)[97]. Some other approaches use

the leveraged information from unlabeled and labeled data for multi-label classification

[98, 99]. All of these approaches do not consider the emerging new labels and assume

that the labels of test data are also present in training data [100, 92].

In the image and vision-related works, the ZSL also has taken attention [101,

102, 103, 104, 105]. Multi-label zero-shot learning assigns more than one label to

an input instance where some classes/labels are not available during training. Co-

Occurrence Statistics for Zero-Shot Classification (COSTA) uses the co-occurrence

statistics and estimates the unseen labels using a weighted combination of seen classes

[106]. Transductive multi-label zero-shot learning uses all possible combinations of

labels and treats it as ZSL problem solution[107].

ZSL uses the information from the attributes of labels to recognize the new classes

or labels. Pairwise rank loss is used to project the visual features on a common

embedding space with the help of a bi-linear function [101]. In this way, most of the

ZSL is used as a classifier with the visual projection on label space. Some other ZSL-

based classifiers use the optimization of compatibility between different perspectives,

such as embedding space and a regularization term [108, 103]. All these ZSL-based

approaches are explored in multi-class classification and assign only a single label

to the input data instance. Zero-shot learning for Multi-label predictors (ZS-MLP)

extends the multi-class classifier by considering each label as an independent label. In

this case, the complexity of the classifier increases [107]. Due to not considering the
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dependency of labels, the performance of ZS-MLP becomes poor with respect to each

label set of data.

In the image domain, due to the various combinations of label spaces and mapping

between image features and label space, ZSL multi-label spaces have two major issues

[106, 109]. The first issue is the limitation of capturing the local features in the image,

and the second is ignoring the global label dependencies.

In order to resolve these issues, Ou et al. have proposed the Graph Convolution

Network (GCN) based ZSL multi-label classifier in which the labels are represented as

the nodes of the graph. This approach contains two modules [40]. The first one is the

image module which captures the features of images, and the second is the label GCN

which considers the semantic representation of label spaces. The semantic representa-

tion of labels is obtained by the pre-trained vectors such as Glove[85] and GoogleNews

[87]. GCN is useful to tackle the above issues because global label dependencies are

handled using the node representation of the label in a graph. Local features are

handled in the image domain using the attention module, and this is combined with

GCN for ZSL in multi-label classification.

2.6 Multi-Label Classification for Sequential Data

As discussed in chapter 1, multi-label classification is applied in various domains

such as genomics, image, and text. The genomics domain contains the sequential data

of raw protein sequences. The sequential data contains the sequence of characters

that describes the particular characteristics of the data. Natural language processing,

bioinformatics, and genomics use sequential data for particular tasks in respective

domains. The non-iterative approaches and deep learning based approaches discussed

in section 2.3, 2.4 respectively are unable to process a large amount of raw sequential

data. Functional classification using structural information of protein sequences is

an important research problem [22, 23]. The problem of functional annotation of

protein sequences refers to classifying the protein sequence into various functional

categories based on the available structural information. The structural organization
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of proteins is done based on the four different levels: primary, secondary, tertiary,

and quaternary structure. The sequence of amino acids in the polypeptide chain

is referred to as the primary structure of protein [110]. The secondary structure

represents the highly regular local sub-structures on the polypeptide backbone chain.

There are two main types of secondary substructure classification categories. The first

category is known as the α-helix, and the second category is known as the β-a strand

or β-sheets. Tertiary structure refers to the three-dimensional geometry of the folded

substructures. Quaternary structure is the three-dimensional structure consisting of

the aggregation of two or more individual polypeptide chains (subunits) that operate

as a single functional unit. Hence, the complexity of the protein structure increases

from the primary structure to the quaternary structure. The primary structure level is

considered as a basic structure, and the quaternary is the most complex structure. The

annotation of proteins with their amino acid sequence as the input and the functional

classes as outputs is a multi-label classification problem [43]. Here, the protein can be

classified into multiple functional classes at once. It means more than one functional

class can be associated or assigned to the protein sequence. A protein sequence can

be involved in multiple functionalities; hence it can be classified into multiple classes

at once [111]. The multi-label classification of protein sequences and their structural

representation is presented in the next subsections.

2.6.1 Related Work for Multi-Label Classification of Protein

Sequences

The problem of functional annotation of proteins elevates with a deficiency in the

amount of structural information available about the protein [22, 23]. It is possible

to find specific distinguishing characteristics of the protein that dictate its main func-

tionalities using the knowledge of protein structures having tertiary and quaternary

properties. Whereas only the knowledge of the primary structure of the proteins makes

it more challenging to make a correct functional annotation to the macro-molecules.

It is similar to predicting the annotation by knowing only the high dimensional rep-
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resentation or length of amino acid sequences.

Sequence alignment-based similarity search is one method to annotate protein se-

quence, which searches the similarity between protein structure and its properly cho-

sen annotated database [43]. Many algorithms, such as the exact Smith-Waterman

algorithm[112], BLAST[113], or hidden Markov-model based search [114], can be used

for sequence alignment. Once the most similar sequence to the input sequence is found

in the database, its functional annotation is assigned to the input sequence. One of

the significant problems with this approach is that protein sequences have varying

relevance in similarity based on the extent of how conservative their sub-sequences

are. Likewise, the 3-dimensional protein structure is more rationed during the evo-

lution when contrasted with the primary structure. As a result, two sequences could

have the same three-dimensional geometry and the same functionalities but have dif-

ferent primary structures. Due to this reason, this approach loses the momentum for

classification[115]. This drawback makes the need for more sophisticated methods to

perform classification than the conventional sequence alignment search.

The primary structure of protein sequence is denoted by the sequence of letters,

and each of these letters represents twenty essential amino acids. Hence the pro-

tein sequence is considered equivalent to the document where amino acids are com-

parable to the word in a sentence. Hence the protein sequences can be considered

as sequential data where machine learning, natural language processing (NLP), and

deep learning algorithms are useful to learn the hidden patterns of these sequences

[116, 117, 118, 119]. A very fast-growing field of research in protein classification is the

use of Artificial Neural Networks (ANN). The ANNs are frequently used in the image,

sound processing, and classification problems [120, 121, 122]. Specifying an appropri-

ate activation function, proper architecture, and suitable loss function help in better

training performance. Parameters such as weights are updated through backward

propagation mechanisms, some of which are Stochastic Gradient Descent(SGD)[123],

RMSprop, or Adam[124]. The functional annotation of protein sequences can be done

computationally because of their availability in a vast amount. Machine learning and

deep learning are suitable for classifying the protein sequence due to the huge avail-
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ability of sequential data. The information related to the protein sequence is discussed

in the next section.

2.6.2 Primary Protein Sequence Structural Representation

Proteins are functional molecules, and the information of proteins is contained in

genes. The primary structure of the protein is sequential and made of twenty essential

amino acids. The study of genes is known as the genome. Genome data contains

Gene Ontology classes and the sequence of constituent amino acids which form

the given protein. The amino acid sequence is obtained from DNA using transcription

and translation mechanisms by the cell. The naturally occurring proteins generally

contain 20 essential amino acids. These are represented by one letter as shown in

Table 2.5.

Table 2.5: Essential Amino Acids

Amino Acid 1-Letter code
Alanine A
Cysteine C
Aspartic Acid D
Glutamic Acid E
Phenylalanine F
Glycine G
Histidine H
Isoleucine I
Lysine K
Leucine L
Methionine M
Asparagine N
Proline P
Glutamine Q
Arginine R
Serine S
Threonine T
Valine V
Tryptophan W
Tyrosine Y

As shown in Table 2.5, alanine amino acid is denoted by the letter ’A,’ and glycine
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(a) Alanine structure (b) Glycine structure

Figure 2.5: Structure of Alanine and Glycine amino acid

amino acid is represented by the letter ’G.’ The chemical structure representation of

these amino acids is shown in figure 2.5.

The structure and functions of the protein depend on the 20 amino acids and their

properties. These properties of amino acids are mentioned below.

• Charge

• Hydrophobicity

• Polarity

• Aromaticity

• Presence of Hydroxyl

• Presence of Sulphur

The amino acids can be encoded mathematically into a one-hot vector of length 20.

The purpose of using one-hot encoding is to retain the individuality of each represen-

tation. The presence of 6 properties can be represented by a 6 length vector where one

denotes that the property is present, whereas 0 denotes that the property is absent.

Therefore, for every constituent amino acid in its sequence, we have a 26 length vector.

If the input sequence has length L, the input to the model is a matrix of size 26× L.

An input sequence can belong to multiple classes, so the annotation task of functional

classes for protein sequence is a multi-label classification.
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2.7 Datasets for Multi-Label Classification

The multi-label datasets cover a wide range of research domains such as music,

text, image, and genomics. In this thesis, we use benchmark multi-label datasets for

experimentation purposes. The deep learning approaches require the data in large

amounts so that these can extract useful features from it. The categorization of multi-

label datasets is shown in Figure 2.6.

Multi-label Datasets

Image Datasets Sequential Dataset

Small size datasets
for multi-label
classification

Large size multi-label 
datasets suitable for

deep learning

Yeast dataset

Emotions dataset

Scene dataset

Corel5k dataset

Enron dataset

Medical dataset

Bibtex dataset

Rcv1 dataset

MS-COCO Dataset

NUS-WIDE Dataset

VOC 2007 Dataset

UniProt Dataset

Figure 2.6: Multi-label dataset categorization

2.7.1 Multi-Label Datasets for Non-Iterative Algorithms

The non-iterative approaches use the multi-label datasets which are already in

preprocessed form. The details of these benchmark datasets is given as follows.

(i) Emotions dataset: This is also known as a small music dataset. The emotion

dataset classifies the music into amazed-surprised, happy-pleased, relaxing-calm,

quiet-still, sad-lonely, and angry-aggressive moods. This is based on the Tellegen-

Watson-Clark model of mood. [125]
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Table 2.6: Multi-label data-set description

Data Attributes Examples Labels
emotions 72 593 6
yeast 103 2417 14
scene 294 2407 6
corel5k 499 5000 374
enron 1001 1702 53
medical 1449 978 45
bibtex 1836 7395 159
rcv1v2s1 47236 6000 101
rcv1v2s2 47236 6000 101
rcv1v2s3 47229 6000 101
rcv1v2s4 47235 6000 101
rcv1v2s5 47236 6000 101

(ii) Yeast dataset: Yeast dataset denotes the 14 possible functional classes as an

output for each genome sequence represented by its instances. The yeast dataset

is the genome-related dataset, and the ranking loss is in focus for optimizing for

yeast-related work because of the objective of the genome data properties [3, 8]

(iii) Scene dataset: Each image in this dataset contains the visual numeric features

in Luminance space. The scene dataset categorizes the images into six labels

such as field, beach, fall foliage, sunset, field, urban, and mountain. [10]

(iv) Corel5k dataset: This is a benchmark dataset for annotation methods and im-

age classification. Corel5k dataset contains five thousand images of Corel images.

Corel5k is an image domain dataset that contains samples from a museum, web

archive images, and newspaper images. The medical dataset contains the text

corpus related to a substantial proportion of pediatric radiology activity.[126]

(v) Enron dataset: This dataset is generated from the email collections, and it is

a subset of the enron email Corpus. These emails are categorized into 53 classes

such as legal advice, humor, and strategy.[127]

(vi) Medical dataset: This dataset contains the data of clinical reports, which are

labeled with 45 disease codes. This dataset was provided by Computational

Medicine Centers. [128]

(vii) Bibtex dataset: This dataset is available from the ECML/PKDD 2008 dis-

covery challenge. The bibtex dataset is annotated with the tags provided by
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BibSonomy users. It has entries of BibSonomy social bookmark. [129]

(viii) Rcv1 dataset: These datasets are famous for text classification algorithms.

Reuters has five subsets named as rcv1v2-s1,rcv1v2-s2,rcv1v2-s3,rcv1v2-s4, and

rcv1v2-s5. Each subset contains 6000 articles with 101 topics. The features of

articles are selected based on the methods mentioned in [130]. The summarized

overview of the multi-label dataset is given in Table 2.6.

2.7.2 Multi-Label Datasets for Deep Learning Algorithms

In this section, we discuss the datasets related to deep learning, which contain a

large number of instances. The details of MS-COCO, NUS-WIDE, VOC 2007, and

UniProt datasets are given below.

(i) MS-COCO dataset: Microsoft-Common Objects in Context (MS-COCO)

dataset is a widely used dataset for image classification tasks. This dataset

contains the visual scenes. This dataset has been used for multi-label classifi-

cation in recent times. There are 82,081 images present in the training set and

40,504 in the validation set. There are 80 classes in the MS-COCO dataset and

an average of 2.9 objects per label. There are no specific labels available for

multi-label learning for the test set, so multi-label approaches use the validation

test for testing purposes [77]. Sample images of the MS-COCO dataset are shown

in Figure 2.7.

Figure 2.7: Sample images of MS-COCO dataset

(ii) NUS-WIDE dataset: The NUS-WIDE dataset is widely used in the multi-

label image recognition task, which contains 269,648 images and 5,018 tags from

Flickr. These images are further manually annotated by 81 concepts, with 2.4
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Figure 2.8: Sample images of NUS-WIDE dataset

concept labels per image on average. Following its official settings, we use 161,789

images for training and 107,859 images for the test set. This dataset provides

four different size images: large size, middle size, small size, and original size

[131]. In this thesis work, we use a small size for our experimental purpose.

Sample images of the NUS-WIDE dataset are shown in Figure 2.8.

(iii) UniProt dataset: The UniProt dataset is accessible from the

http://uniprot.org webpage, and its SwissProt subset contains more than

five lacks sequences having Gene Ontology IDs. In this thesis work, the

SwissProt subset of the UniProt database[132] is used after being acquired from

http://uniprot.org as starting point (using the query”goa:(*) AND reviewed:

yes”) at the date of download on 5 August 2019. The raw data acquired from

UniProt is shown in Table 2.7.

Table 2.7: Raw data acquired from UniProt

Sequence Samples 535119
Label Samples 535119
Max Sequence Length 35213
Min Sequence Length 2
Max Label Length 258
Min Label Length 1
Total Labels 2970815
Total Unique Labels 28234
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Figure 2.9: Sample images from VOC 2007 dataset

Clearly, the amount of data is large enough to become a challenge for any kind

of deep neural network.

(iv) VOC 2007 dataset: The PASCAL VOC 2007 dataset is the collection of con-

sumer photographs taken from the photo-sharing website Flickr. This dataset

is well used for multi-label classification tasks. There are 9963 images from the

20 classes in the VOC dataset [76]. These classes cover person, animal, vehicle,

and indoor-related images. Sample images of the VOC 2007 dataset are shown

in Figure 2.9.

2.8 Performance Evaluation Metrics

Multi-label classification is considered the generalized version of the multi-class

classification. The metrics used to evaluate the performance of multi-label classifi-

cation are different from the multi-class classification. These evaluation metrics are

discussed in this section. In this thesis, we categorized the evaluation metrics into two

categories. In the first category, evaluation metrics related to non-iterative algorithms

are discussed, and in the second category, evaluation metrics related to deep learning

algorithms are discussed.
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2.8.1 Evaluation Metrics for Non-Iterative Multi-Label Algo-

rithms

In this thesis work, hamming loss, ranking loss, one error, coverage, and, average

precision metrics are used for the performance evaluation of non-iterative approaches.

For a given test set {(x1, Y1), (x2, Y2), ..., (xN ′ , YN ′ )} having unseen instances these

metrics are evaluated. Let xi denotes the ith instance and Yi denotes the label set of

the ith instance. For the total number of N
′
samples of test set the details of evaluation

metrics are mentioned as follows.

(i) Hamming Loss: Misclassification of instance labels is evaluated using hamming

loss. This misclassification can be represented by XOR logic and denoted by the

following equation.

hamming loss =
1

N ′

N
′∑

i=1

1

Q
|h(xi)4Yi|, (2.8)

where Q is the total number of possible class labels and4 stands for the symmet-

ric difference between predicted and target labels. The small value of hamming

loss is considered better than the large value.

(ii) Ranking Loss: The average fraction of label pairs, arranged in reverse order,

is evaluated by the Ranking Loss.

ranking loss =
1

N ′

N
′∑

i=1

1

|Yi||Yi|

|{(y1, y2)|f(xi, y1) ≤ f(xi, y2), (y1, y2) ∈ Yi × Ȳi}|

(2.9)

The Ȳ denotes the complementary set of Y in label space Y . The mathematical

expression of ranking loss evaluates the average fraction of label pairs that are

reversely ordered for an input instance. The performance is perfect when the

ranking loss is zero. The smaller value of ranking loss denotes better performance.

(iii) One error: One error evaluates the missing of the top-ranked label associated
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with the input instance. One error can be described as follows:

one-error =
1

N ′

N
′∑

i=1

[[
argmaxy∈Yf(xi, y)

]
/∈ Yi

]
(2.10)

The small value of one error is considered better than the large value.

(iv) Coverage: This metric evaluates the measure to reach all the labels associated

with the input instance. It can be related to the precision value at the perfect

recall.

coverage =
1

N ′

N
′∑

i=1

maxy∈Yirankf (xi, y)− 1. (2.11)

As discussed in Section 2.1 rankf is derived from the real-valued function f(., .),

which maps the outputs of f(xi, y) for any y ∈ Y to {1, 2, ..., Q} such that if

f(xi, y1) > f(xi, y2) then rankf (xi, y1) < rankf (xi, y2). The smaller value of

coverage denotes better performance.

(v) Average Precision: This evaluation metric measures the mean fraction of

output labels, which are ranked higher than a particularly associated output

label y ∈ Y .

average precision =

1
N ′
∑N

′

i=1
1
|Yi|
∑

y∈Yi
|{y′ |rankf (xi,y

′
)≤rankf (xi,y),y

′∈Yi}|
rankf (xi,y)

(2.12)

The large value of average precision is considered better than the small value.

2.8.2 Evaluation Metrics For Deep Learning based Multi-

Label Algorithms

The complete details of evaluation metrics used for deep learning based algorithms

is given in this section. The confusion matric is shown in Table 2.8.

In Table 2.8 the TP values are the correctly predicted positive values, and TN

values are the correctly predicted negative values. The FP values are the wrong

predicted positive values, and FN values are the wrong predicted negative values.
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Table 2.8: Multi-label data-set description

Predicted
Total population = Positive + Negative

Positive Negative
Positive True Positive (TP) False Negative(FN)Ground

Truth Negative False Positive (FP) True Negative (TN)

(i) Accuracy: Accuracy is the most intuitive performance measure, and it is simply

a ratio of correctly predicted observations to the total observations. Accuracy

is a good measure, but it is only preferred in those cases when datasets are

symmetric where values of false positives and false negatives are almost the same.

The following mathematical expression denotes the formulation of accuracy

Accuracy =
TP + TN

TP + FP + FN + TN
(2.13)

(ii) Precision:Precision is the ratio of correctly predicted positive observations to

the total predicted positive observations. Following mathematical expression

denotes the formulation of precision.

Precision =
TP

TP + FP
(2.14)

(iii) Recall:Recall is the ratio of correctly predicted positive observations to the

all observations in actual class. Following mathematical expression denotes the

formulation of recall.

Recall =
TP

TP + FN
(2.15)

(iv) F1 score: F1 Score is the weighted average of Precision and Recall. Therefore,

this score takes both false positives and false negatives into account. The F1

score is usually more useful than accuracy, especially for the case when class dis-

tribution is uneven. Following mathematical expression denotes the formulation

of F1 Score.

F1 score =
2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(2.16)

In this thesis, we have used the hamming loss, ranking loss, one error, coverage,

43



and average precision evaluation metrics to evaluate the non-iterative approaches. The

precision, recall, and F1 score are used to evaluate the deep learning based multi-label

algorithms in the image domain. The sequential data domain multi-label algorithms

are evaluated based on precision, recall, and subset accuracy. These evaluation met-

rics are used for a fair comparison with existing state-of-the-art approaches in the

respective domains.

2.9 Statistical Tests

Statistical tests provide information about the significance of performance results

when the proposed approach is compared to the existing approaches. We use the

following test and studies to test the performance of the proposed approaches.

2.9.1 Wilicoxon Signed Ranksum Test

Wilcoxon test is a non-parametric test to compare the data. It is preferred when

the data pair is non-normally distributed. In the thesis, we use this test to find

the significance of the performance of the algorithm for particular evaluation metrics

[133],[134].

2.9.2 Ablation Study

The ablation study is useful for analyzing the effect of a specific component of the

algorithm. In this thesis, we use the ablation study to see the effect of the number of

layers in GCN. The impact of layers in GCN is analyzed by using the ablation study.

The effect of pairnorm is shown by the ablation study for the proposed GCN based

multi-label classifiers.
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Chapter 3

Broad Learning based Multi-Label

Classification

In this chapter, we have proposed multi-label classifiers based on Broad Learn-

ing System. The Broad Learning System (BLS) is a non-iterative approach to solve

multi-class problems. We have adapted BLS to solve multi-label problems and named

it a Multi-Label Broad Learning System (ML-BLS). The ML-BLS is a non-iterative

multi-label classifier that contains less number of parameter and hyperparameter in

comparison to the iterative algorithms, which contains gradient descent to optimize

the loss function. The ML-BLS is a neural network architecture. The neural networks

based approaches have the shortcoming that these algorithms work like the black box

because these approaches lack the ability to explain the results and neural networks

based approaches have the inability to reveal enough information about the system

it approximates. The fuzzy system possesses better interpretability of results. By

considering the benefit of fuzzy systems for interpretability, we have also proposed a

neuro-fuzzy approach named a multi-label fuzzy broad learning system (ML-FBLS)

which improves the performance of ML-BLS. These non-iterative multi-label classifiers

use the pseudoinverse to compute the parameters of the classifiers. These ML-BLS and

ML-FBLS algorithms reduce the training time along with optimization of the evalua-

tion measures of multi-label classification. The details of the proposed algorithms are

discussed in further sections.
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3.1 Introduction

The neural network based architectures are widely applied to solve various kinds

of classification and regression problems. The neural networks have the universal

approximation capability to solve the research problems. Traditional neural networks

use gradient-descent algorithms for the optimization of network parameters. Data

dimensions also increase nowadays with the size of data. The algorithm can find it

difficult to sustain its accessibility due to the direct feeding of high dimensional raw

data [29]. To resolve this issue, feature extraction and dimension reduction are used,

which help the network to sustain its accessibility. Recently a neural network named

the BLS [29, 135] has been proposed, which is based on non-iterative learning for the

optimization of the parameters. BLS is able to handle the high volume data without

the need for deep learning architecture [29, 136]. The basic idea of BLS is to use

the non-iterative procedure to find the parameters of the neural network and map the

input data to features. BLS takes the mapped features as input to the neural network.

The broad learning system has been used in different areas of research in recent times.

The facial expression recognition task has been done by the BLS to provide robust real-

time performance [137]. The BLS is capable of universally approximating the functions

because of its neural network structure. As discussed earlier, The neural network based

algorithms are unable to interpretrate the results and unable to explain the reasons

of its performance. Fuzzy rules and fuzzy systems are able to better interpretrate the

results. Hence neuro fuzzy hybrid approaches provides the benefits of both neural

network and fuzzy system based algorithms[69].

BLS is used to create a hybrid classification system with a fuzzy subsystem model

to take the benefits of both neural networks and fuzzy subsystems [69, 136]. The BLS

is useful to solve various problems of different domains because of its fast learning

capability and ability to handle large-scale data. BLS provides a learning solution to

classify the multi-class classification problem. BLS is not able to separate the labels

of those input samples which have multi-label properties. To make the BLS classify

the multi-label data, we propose two BLS based multi-label classifiers named ML-BLS
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Figure 3.1: Broad Learning System

and ML-FBLS in this chapter. We have discussed the details of ML-BLS in the next

section.

3.2 Multi-Label Classifier based on Broad Learn-

ing System: ML-BLS

The ML-BLS is an algorithm adaptation based adaptation of BLS for multi-label

classification. In BLS, initially, inputs are mapped to construct a set of mapped

features. Then enhancement nodes are created with the help of mapped features.

Suppose input data is presented by X and it is projected to become the mapped feature

Zi, using Φi(XWei + βei), where Zi, is ith mapped feature, Wei represents the random

weights with proper dimensions. Set of first i concatenated groups of mapped features

represented as Zi ≡ [Z1, ..., Zi], in broad learning system. Similarly, Hj, denotes jth

group of enhancement nodes calculated using, ξj(Z
nWhj + βhj) and set of the first j

concatenated groups of enhancement nodes are represented as Hj ≡ [H1, ..., Hj], in

broad learning system. Let, input data denoted by X, contains N samples and each

of these samples has M dimensions. The raw output of BLS is denoted as Y ∈ RN×Q.

For n feature mappings, we can represent each mapping in the mathematical equation

as :

Zi = Φ(XWei + βei), i = 1, ..., n. (3.1)
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Figure 3.2: Multi-Label Broad Learning System Neural Network

where Weiand βei are generated randomly.

The set of all the feature nodes are denoted as Zi ≡ [Z1, ..., Zi], the mth group of

enhancement nodes is denoted as

Hm ≡ ξ(ZnWhm + βhm) (3.2)

The nonlinear functions are used to model the target variables (class, labels, or

scores) that vary non-linearly with their explanatory variables. Nonlinear means that

the output cannot be reproduced from a linear combination of the inputs. The neural

networks without nonlinear functions behave just like single-layer perceptron because

summing these layers would give you just another linear function. The ξ and φ denote

the nonlinear functions in the broad learning system.

Hence, the following equation represents the broad learning system.

Y = [Z1, ..., Zn|ξ(ZnWh1 + βh1), ..., ξ(Z
nWhm + βhm)]W

= [Z1, ..., Zn|H1, ..., Hm]W

= [Zn|Hm]W

(3.3)

where W = [Zn|Hm]+Y denotes the connecting weights of the broad learning system.

Pseudoinverse using ridge regression is used to compute W ∈ R(m+n)×Q. We can
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represent the raw output of BLS as follows

f(x) = [Zn|Hm]W (3.4)

The above output is provided to compute the threshold computation to create ML-

BLS for multi-label classification which is discussed in section 3.4.

3.3 Multi-Label Classifier based on Fuzzy Broad

Learning System: ML-FBLS

In this section, we present the fuzzy system based broad learning system for

multi-label classification. The fuzzy broad learning system (FBLS) is a novel neuro-

fuzzy algorithm for multi-class classification and regression problems [69]. It creates

groups of different fuzzy subsystems to process the input data. The values produced

by fuzzy-subsystems are used for nonlinear transformations using the enhancement

layer. The enhancement nodes in the enhancement layer are created by the out-

put of each fuzzy subsystem. This preserves the input characteristic by the nonlin-

ear transformation. The output of the enhancement layer and defuzzification out-

puts of all fuzzy subsystems are concatenated and provided to the output layer as

an input, as shown in Figure 3.3. Let there are n fuzzy subsystems, m enhance-

ment groups in the FBLS. The input data matrix of size N ×M is represented as

X = (x1, x2, ..., xN)T ∈ RN×M where xs=(xs1, xs2, ..., xsM), s = 1, 2, ..., N . The fuzzy

rules in the fuzzy subsystem can be denoted by

If xs1 is Aik1 and xs2 is Aik2... and xsM is AikM

then zisk = f ik(xs1, xs2, ..., xsM), k = 1, 2..., Ki

where Ki is the fuzzy rule in the ith fuzzy subsystem.

There are two main types of fuzzy systems named as Mamdani fuzzy system [138]

and the Takagi-Sugeno (TS) fuzzy system [139]. TS fuzzy system is suitable for FBLS

because every fuzzy rule in TS fuzzy system can be represented as the function of the

input, and its subsystems can be used as nodes in a fuzzy broad learning system.
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Let the fuzzy subsystem using the TS fuzzy system is denoted by

zisk = f ik(xs1, xs2, ..., xsM) = ΣM
t=1α

i
kixst (3.5)

where αiki represents the coefficient. The gaussian membership function corresponding

to fuzzy set Aikt with center cikt and width σikt is defined as

µikt(x) = e
−
(
x−cikt
σi
kt

)2

(3.6)

The τ isk denotes the fire strength of the kth fuzzy rule in the ith fuzzy subsystem which

is denoted as below

τ isk =
M∏
t=1

µikt (xst) (3.7)

The following equation represents the weighted fire strength ωisk related to kth fuzzy

rule in ith fuzzy subsystem

ωisk =
τ isk

ΣKi
k=1τ

i
sk

(3.8)

where τ isk is fire strength.

The sth training example xs is passed to ith fuzzy subsystem. The output vector

Zsi, generated by the ith fuzzy subsystem for sth training sample xs is denoted as

Zsi = (ωis1z
i
s1, ω

i
s2z

i
s2, ..., ω

i
sKi
zisKi) (3.9)

For all training samples X, the output of ith fuzzy subsystem can be denoted as

Zi = (Z1i, Z2i, ..., ZNi)
T ∈ RN×Ki , i = 1, 2, ..., n (3.10)

The intermediate outputs generated by the fuzzy subsystems are used to create the

enhancement node groups, and the intermediate output matrix of n fuzzy subsystems

is denoted by follows:

Zn = (Z1, Z2, ..., Zn) ∈ RN×(K1+K2+...+Kn) (3.11)
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Figure 3.3: Multi-Label Fuzzy broad learning system

Then Zn is used to create the enhancement nodes for nonlinear transformation. The

output of enhancement node groups can be denoted by

Hm = (H1, H2, ..., Hm) ∈ RN×(L1+L2+...+Lm) (3.12)

where Lj denotes the neurons in the jth enhancement node group, Hj = ξj(Z
nWhj +

βhj) ∈ RN×Lj is the output of jth enhancement group, Whj , and βhj are the weight

and bias randomly generated from the range of [0, 1] and j has the values between 1 to

m. The input for output layer Y is the defuzzification output generated by each fuzzy

subsystem concatenated with Hm. The output of output layer Y has Q labels, and

then each fuzzy subsystem should be represented as multioutput. Hence the output

of ith fuzzy subsystem is represented as a vector for input sample xs as follows:

Fsi = (ΣKi
k=1ω

i
sk(Σ

M
t=1δ

i
k1α

i
ktxst), ...,Σ

Ki
k=1ω

i
sk(Σ

M
t=1δ

i
kQα

i
ktxst))

= ΣM
t=1α

i
ktxst(ω

i
s1, ..., ω

i
sKi

)


δi11 · · · δi1Q
...

. . .
...

δiKi1 · · · δiKiQ

 (3.13)

where δikqα
i
kt(q = 1, 2, ..., Q) representes the initial cofficient parameter αikt and δikQ is

introduced to make the matrix form of the consequent part of each fuzzy rule. The

output for all training instances produced by ith fuzzy subsystem is represented as
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follows:

Fi = (F1i, F2i, ..., FNi)
T , DΩiδi ∈ RN×Q (3.14)

where D = diagΣM
t=1α

i
ktx1t, ...,Σ

M
t=1α

i
ktxNt, and

Ωi =


ωi11 · · · ωi1Ki
...

. . .
...

ωiN1 · · · ωiNKi

 and δi =


δi11 · · · δi1Q
...

. . .
...

δiKi1 · · · δiKiQ

 .

Aggregate output of n fuzzy subsystems of the output layer Y is denoted as:

F n = Σn
i=1Fi = Σn

i=1DΩiδi = D
(

Ω1 · · · Ωn

)
δ1

...

δn


, DΩ∆ ∈ RN×Q

(3.15)

where Ω = (Ω1, ...,Ωn) ∈ RN×(K1+K2+,...,+Kn) is the matrix which denotes the fire

strength ωisk and ∆ = ((δ1)T , ..., (δn)T )T ∈ R(K1+K2+,...,Kn)×Q

Output F n of all the fuzzy subsystem together with Hm is sent to the output layer

Y of Fuzzy BLS. The weight matrix connecting the enhancement layer to the output

layer Y is denoted as We ∈ R(L1+L2+,...,+Lm)×Q, while the weights connecting the fuzzy

subsystems to top layer are all set to be 1. Therefore, the final output of FBLS is

represented as follows:

Ŷ = F n +HmWe

= DΩ∆ +HmWe

= (DΩ, Hm)

∆

We

 (3.16)

where We denotes the weights connecting the Y and enhancement layer. F n represents

the output of all fuzzy subsystem.

The Eq.(3.16) can be further written as follows in the proper form of linear equa-

tion:

Ŷ , (DΩ, Hm)W (3.17)

where W is the parameter matrix of a fuzzy BLS consisting of ∆ and We.
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Now FBLS can be written in the mathematical form as follows:

Y = (DΩ, Hm)W (3.18)

the parameter W of above equation can be computed using pseudoinverse as repre-

sented follows:

W = (DΩ, Hm)+Y (3.19)

where (DΩ, Hm)+ = ((DΩ, Hm)T (DΩ, Hm))−1(DΩ, Hm)T

Above Eq.(3.19) represents the computation of output layer weights using the

pseudoinverse. Using the pseudoinverse is a noniterative technique that makes the

training faster than the iterative procedures. The raw outputs at layer Y can be

represented as follows

f(x) = Ŷ = (DΩ, Hm)W (3.20)

The values of f(x) are provided to the threshold function to create ML-FBLS

which is discussed in the next section.

3.4 Adaptative Thredhold for Multi-Label Classi-

fication

In this section, we provide the details of the multi-label adaptation of the proposed

randomized non-iterative algorithms ML-BLS and ML-FBLS. These approaches use

the fast learning advantage of non-iterative algorithms. All of these approaches can

be considered algorithm adaptation approaches. For all the proposed multi-label clas-

sifiers, the output layer Y represents the numerical raw outputs f(x) corresponding

to the particular class or label. We have used these numerical outputs as an input

in the calculation of the threshold. A threshold function is needed to map these nu-

merical values into the associated set of labels. Usually fixed threshold, zero constant

function based threshold are used as threshold function for multi-label classification

[25, 57]. There are multiple thresholding methods that have also been proposed, such
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as probability-based threshold, the margin between irrelevant and relevant labels based

on constant threshold [8, 57, 25].

As ML-BLS and ML-FBLS are neural networks, these networks provide the numer-

ical values on the output layer Y . These numerical values are used for the ranking of

labels. Taking into consideration of ranking of labels, we adapt the threshold function

[8] with ML-BLS and ML-FBLS for learning the multi-label problems. This threshold

function finds the boundary between irrelevant and relevant labels. This boundary

is related to the whole training set, so there is a need to use the threshold function,

which should be dynamic, and adaptive to the whole data set. The threshold function

is expressed as a linear function as follows:

t(x) = wT .c(x) + b, (3.21)

where c(x) = (c1(x), c2(x), ..., cQ(x)) is a Q-dimensional vector. The c(x) represents

the output vector of f(x) after processing it using activation function. This threshold

function is linear due to the requirement of a few parameters by a linear function and

its simple implementation.For each training instance (xi, yi) (1 ≤ i ≤ N), and output

vector at c(xi) = (ci1, c
i
2, ..., c

i
Q) and the target values are set as

t(xi) = argmint(|k|k ∈ Yi, cik ≤ t|+ |l|l ∈ Yi, cil ≥ t|) (3.22)

The matrix equation φ.w
′

= t can be used to learn the parameter of Eq.(3.21). The

dimension of matrix φ are N × (Q+ 1), dimension of vector w
′

and t are (Q+ 1) and

N respectively. The t is a N dimensional vector corresponding to training set. To

obtain the optimal parameter w and b of Eq.(3.21), the least square method is used

on the basis of solving t as mentioned below.

minw,b

N∑
i=1

((wT .c(xi)) + b− t(xi))2 (3.23)

The distance between (wT .c(xi))+b and txi is minimized by Eq.(3.23). The actual raw

outputs are used for the ranking of labels. The threshold function creates the threshold
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using this adaptive threshold. In this threshold function, the minimum value of t is

computed, which minimize the RHS of Eq. 3.22. The Eq. 3.23 is used to compute the

value of parameters w and b of Eq. 3.21. This equation minimizes the squared sum

of the distances between wt.c(xi) and t(xi) in the training set.

After the training we have w and b for the threshold function mentioned in

Eq.(3.21) for training set. At the testing time, unseen instance x is fed to the trained

ML-BLS, and ML-FBLS networks and the output vector c(x) is computed at the

output layer by using following mathematical expression.

Final labels corresponds to Y =

1, ck(xi) ≥ t(k)

−1, ck(xi) < t(k)

(3.24)

where, i = 1, ..., N
′

and k = 1, ..., Q. The complete algorithms for multi-label classifi-

cation using ML-BLS, and ML-FBLS are described in Algorithms 1, 2 respectively.

3.5 Experimentation and Results

In this section, the experimental results related to proposed ML-BLS and ML-

FBLS are discussed to verify the effectiveness of these proposed multi-label non-

iterative approaches. Multi-label classification experimentation is carried out on 12

benchmarks multi-label datasets1 2, which are described in Table 2.6. Comparative

results based on evaluation metrics are shown in Table 3.2 to Table 3.13. All the

experiments related to the comparison of multi-label classification are performed on

MATLAB 2017a. Five-fold cross-validation is carried out on all 12 multi-label datasets.

For each dataset, we have used five-fold cross-validation. In each fold, 1 set is used for

testing, and the rest four sets are used as the training set. For this purpose, we have

generated the indexing of instances for each multi-label dataset for each fold. The

indexing for each fold is the same for all the compared approaches. Using the five-fold

cross-validation, 80% of total data is used as training data and 20% for tests for all

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2http://mulan.sourceforge.net/datasets-mlc.html
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Algorithm 1: Multi-Label Broad Learning System

Input : Training samples (X, Y ) ∈ R(N×(M+Q))

Output: A ML-BLS with output weight W , threshold parameters w and b

1 for i=1;i<=n do
2 Generate Wei ,βei randomly;
3 Calculate Zi = Φ(XWei + βei);

4 end
5 Create a set for the group of feature nodes Zn = [Z1, ..., Zn] using Eq.(3.1);

6 for j=1;i<=m do
7 Generate Whj ,βhj randomly;
8 Calculate Hj = ξ(ZnWhj + βhj)

9 end
10 Create a set for the group of enhancement nodes using Eq.(3.2).

Hm = [H1, ..., Hm];
11 Concatenate the mapped feature and enhancement nodes denoted as [Zn|Hm]
12 Calculate the weight matrix W using W = [Zn|Hm]+Y ;
13 Using weight matrix W , Compute raw values f(x) at output layer Y for input

sample x
14 Compute threshold function parameters wT and b using Eq.(3.22) and

Eq.(3.23) as follows. minw,b
∑n

i=1((w
T .c(xi)) + b− txi)2.

15 Calculate outputs c(x) and threshold for each test data instance according to
Eq.(3.22) and Eq.(3.23)

16 Compare c(x) with a threshold value and obtain multi-label identification
final outputs according to Eq.(3.24)

the datasets.

The root means square error (RMSE) is minimized between the actual labels and

predicted labels, and the grid search is used for hyperparameter and parameter tuning.

The adaptive threshold is used to find out the final labels for multi-label classification.

The five metrics are evaluated after computing the hyperparameters, parameters, and

weights. The same tuning procedure is applied to compare the multi-label approaches

for 12 datasets. The performance of ML-BLS, and ML-FBLS is compared with al-

gorithm adaptation based multi-label classification algorithms RankSVM, ML-ELM,

BP-MLL, and ML-KRR/ML-KELM [8, 3, 57, 24].
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Algorithm 2: Multi-Label Fuzzy Broad Learning System

Input : Training samples (X, Y ) ∈ R(N×(M+Q)), enhancement nodes Lj,
numbers of fuzzy rules Ki, fuzzy subsystems n, and enhancement
node groups m

Output: A ML-FBLS with output weight W , threshold parameters w and b

1 Initialization of αikt in f ik function by uniform distribution in the range of [0, 1]
2 for i=1;i<=n do
3 Obtain clustering centers ki for training data X using k-means algorithm
4 Use Ki clustering centers to initialize centers of membership function
5 for s=1;s<=N do
6 compute Zsi using Eq.(3.9)
7 compute Fsi using Eq.(3.13)

8 end
9 Compute Zi using Eq.(3.10)

10 Compute Fi using Eq.(3.14);

11 end
12 Compute Zn using Eq.(3.11)
13 Compute Hm using Eq.(3.12);
14 Compute F n using Eq.(3.15)
15 Compute W using Eq.(3.19);
16 Using weight matrix W , Compute raw values f(x) at output layer Y for input

sample x
17 Compute threshold function parameters w and b using Eq.(3.22)and Eq.(3.23)

as follows. minw,b
∑n

i=1((w
T .c(xi)) + b− txi)2.

18 Calculate outputs c(x) and threshold for each test data instance according to
Eq.(3.22) and Eq.(3.23)

19 Compare c(x) with a threshold value and obtain multi-label identification
final outputs according to Eq.(3.24)

3.5.1 Experimental Setup

The experimental results provided by the RankSVM approach are based on the

details mentioned in [8]. For the RankSVM approach, the regularization parameter

is chosen as 1, the tolerance level for the regularization parameter is chosen as 10−5.

The number of iterations is chosen 50 for the RankSVM. The regularization param-

eter 20 is used for emotions, yeast, and scene datasets. For corel5k, enron, medical,

bibtex, rcv1v2s1, rcv1v2s2, rcv1v2s3, rcv1v2s4, and rcv1v2s5 datasets regularization

parameter 21 is used. In the implementation details of RankSVM, the regularization

parameter is mentioned as the cost parameter. The training procedure of RankSVM
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is slow, and in the experimentation, it heavily depends on the number of instances of

data and the output number of labels also. For the BP-MLL approach, the number

of nodes in the hidden layers is chosen as 20% of the number of input features. The

learning rate is chosen with the value of 0.05. The number of epochs is selected as 100

for the emotions, yeast, scene, enron, and medical dataset. The number of epochs is

50 for corel5k, bibtex, rcv1v2s1, rcv1v2s2, rcv1v2s3, rcv1v2s4, and rcv1v2s5 datasets,

as this is mentioned as the default value in the experimental settings of BP-MLL.

For the ML-ELM approach, the number of nodes in the hidden layer is 60, 100,

85, and 250 for emotions, yeast, scene, corel5k datasets for the ML-ELM approach.

For the datasets, enron, medical, bibtex, rcv1v2s1, rcv1v2s2, rcv1v2s3, rcv1v2s4, and

rcv1v2s5, the number of nodes in the hidden layer used 120 for the ML-ELM approach.

ML-ELM approach is based on the details mentioned in [57] for multi-label classifi-

cation using the basic ELM. For ML-KRR/ML-KELM, the kernel parameter 2−2 and

cost parameter 20 are used for emotions, yeast, and scene datasets. For corel5k, enron,

medical, bibtex, rcv1v2s1, rcv1v2s2, rcv1v2s3, rcv1v2s4, and rcv1v2s5 datasets kernel

parameter 2−2 and cost parameter 21 are used. The cost parameter C for ML-ELM

and ML-KRR/ML-KELM is considered as the inverse of the regularization parameter

λ mentioned in the RVFL literature.

Table 3.1: Optimal parameter settings for multi-label classifiers

BP-MLL[3] ML-ELM[57]
ML-KRR/
ML-KELM [24]

ML-BLS ML-FBLS

Hidden layer
nodes

Hidden layer
nodes

C= 1
λ

σ C= 1
λ

Nf Nm Ne Nr Nt Ne

Bibtex 367 120 0.5 2−2 21 51 47 44 10 3 2
Corel5k 100 250 0.5 2−2 21 10 14 55 1 12 19
Emotions 15 60 0.5 2−2 20 51 10 13 88 5 102
Enron 200 120 0.5 2−2 20 36 26 28 67 3 19
Scene 59 85 0.5 2−2 20 25 18 37 23 97 79
Yeast 21 100 0.5 2−2 20 10 10 35 89 39 93
Medical 290 120 0.5 2−2 21 24 7 58 23 97 79
rcv1v2-s1 9448 120 1 2−2 21 64 66 63 44 33 35
rcv1v2-s2 9448 120 1 2−2 21 39 55 35 39 7 35
rcv1v2-s3 9448 120 1 2−2 21 59 6 16 41 26 35
rcv1v2-s4 9448 120 1 2−2 21 29 35 53 50 9 21
rcv1v2-s5 9448 120 1 2−2 21 34 13 33 40 35 33

The ML-FBLS mapping is similar to the functional mapping used in [54, 68]. The
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ML-BLS is the adaptation of BLS for multi-label classification. The hyperparameters

of ML-BLS consist of the numbers of feature nodes Nf , mapping groups Nm, and

enhancement nodes Ne and these are mentioned in Table 3.1. The hyperparameters of

numbers of rules Nr in each fuzzy subsystem, Numbers of fuzzy subsystems Nt, and

the number of enhancement nodes Ne for ML-FBLS are mentioned in Table 3.1. We

perform grid search for the hyperparameters of ML-FBLS Nr, Nt, and Ne in the range

of [1, 100], [1, 100], and [1, 100] respectively. For ML-BLS the range of hyperparameters

Nf , Nm, and Ne is set in the range of [1, 100],[1, 100], and [1, 150] respectively. The

optimized parameters for the compared approaches are mentioned in Table 3.1. The

activation function used for ML-BLS and ML-FBLS are sigmoid and tanh respectively

which are referred from the BLS based papers.

3.5.2 Results and Performance Evaluation

In this section, we provide the experimental results performed on the twelve multi-

label datasets from various domains as mentioned in 2.6. The optimum performance is

highlighted in bold for each evaluation metric in table 3.2 to 3.13. further, the average

performance on twelve datasets for five evaluation metrics is described in table 3.14.

Table 3.2: Comparison results performed on corel5k dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0109±0.0001 0.147±0.0034 0.776±0.0184 0.323±0.0056 0.209±0.0085
ML-ELM[57] 0.0104±0.0001 0.561±0.0154 0.377±0.0081 0.875±0.0138 0.254±0.0134
BP-MLL[3] 0.0095±0 0.273±0.0109 0.931±0.0129 0.263±0.0053 0.24±0.0086
ML-KRR/
ML-KELM [24]

0.0094±0.0001 0.482±0.0062 0.924±0.0176 0.328±0.0056 0.036±0.0012

ML-BLS 0.0102±0.0001 0.3226±0.009 0.8744±0.0157 0.5145±0.0123 0.177±0.0036
ML-FBLS 0.01±0.0005 0.1392±0.0056 0.7526±0.0307 0.5844±0.0236 0.25±0.0018

As shown in Table 3.2 for the corel5k dataset, the optimum hamming loss is pro-

vided by ML-KRR, the optimum ranking loss is provided by ML-FBLS, optimum

one error is provided by ML-ELM, optimum coverage is provided by BP-MLL, and

optimum average precision is provided by ML-ELM.
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Table 3.3: Comparison results performed on emotions dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.3297±0.017 0.4151±0.0244 0.5548±0.0598 3.1279±0.2145 0.572±0.0245
ML-ELM[57] 0.3607±0.038 0.9736±0.0042 0.5124±0.0208 0.4667±0.1826 0.0992±0.0454
BP-MLL[3] 0.3213±0.0144 0.4723±0.0247 0.6667±0.2887 0.5494±0.0236 0.5583±0.0187
ML-KRR/
ML-KELM [24]

0.6793±0.0095 0.3483±0.0165 0.5333±0.2173 0.4213±0.0246 0.4735±0.0268

ML-BLS 0.2234±0.0219 0.1822±0.0319 0.2432±0.0223 0.8187±0.061 0.4756±0.0472
ML-FBLS 0.2031±0.0144 0.2938±0.0186 0.2232±0.0235 0.9452±0.0213 0.5211±0.0321

As shown in Table 3.3 for the emotions dataset, ML-FBLS provides the optimum

hamming loss, one error. ML-BLS provides the optimum ranking loss, ML-KRR

provides optimum coverage, and RankSVM provides optimum average precision.

Table 3.4: Comparison results performed on enron dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0655±0.002 0.1189±0.002 0.4636±0.0246 0.2915±0.0091 0.5131±0.0105
ML-ELM[57] 0.0519±0.0011 0.6655±0.0277 0.3071±0.2959 0.6949±0.0689 0.6107±0.0177
BP-MLL[3] 0.0525±0.0016 0.2675±0.0301 0.6906±0.0286 0.207±0.0089 0.7013±0.0092
ML-KRR/
ML-KELM[24]

0.0619±0.0021 0.3572±0.026 0.6226±0.04 0.3955±0.0051 0.208±0.011

ML-BLS 0.0796±0.0019 0.2844±0.0189 0.6613±0.0641 0.6498±0.0217 0.1624±0.0214
ML-FBLS 0.0502±0.0016 0.0997±0.007 0.2532±0.0275 0.731±0.0344 0.1745±0.0216

As shown in Table 3.4 for the enron dataset, ML-FBLS provides optimum hamming

loss, ranking loss, one error. BP-ML provides optimum coverage and average precision.

Table 3.5: Comparison results performed on medical dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0378±0.0011 0.1418±0.0083 0.728±0.0304 0.1619±0.0125 0.3987±0.0256
ML-ELM[57] 0.0135±0.0011 0.1667±0.0424 0.1082±0.0445 0.412±0.025 0.7299±0.0328
BP-MLL [3] 0.0192±0.0011 0.1213±0.037 0.7067±0.0575 0.0456±0.016 0.7621±0.0198
ML-KRR/
ML-KELM[24]

0.208±0.4047 0.2549±0.0179 0.6667±0.0272 0.0576±0.0173 0.3638±0.0507

ML-BLS 0.0161±0.0007 0.091±0.0336 0.3282±0.0967 0.1199±0.0439 0.4082±0.0731
ML-FBLS 0.0136±0.0017 0.0321±0.0114 0.0209±0.0307 0.3229±0.0923 0.4233±0.0575

As shown in Table 3.5 for the medical dataset, ML-ELM provides optimum ham-

ming loss. ML-BLS provides optimum ranking loss coverage. ML-FBLS provides

optimum one error. BP-MLL provides optimum average precision.

60



Table 3.6: Comparison results performed on scene dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.2718±0.0082 0.4844±0.0282 0.7786±0.0234 0.4807±0.096 0.4396±0.0173
ML-ELM[57] 0.1545±0.0741 0.4509±0.0948 0.2667±0.117 0.7605±0.3028 0.1645±0.2676
BP-MLL [3] 0.2839±0.0067 0.3159±0.0411 0.6±0.1491 0.3628±0.0124 0.4526±0.0074
ML-KRR/
ML-KELM[24]

0.767±0.0465 0.1675±0.0138 0.0667±0.0913 0.0889±0.0094 0.6733±0.0278

ML-BLS 0.0918±0.006 0.0818±0.0062 0.2134±0.0147 0.0674±0.0313 0.8136±0.0134
ML-FBLS 0.0813±0.0039 0.0754±0.0077 0.2064±0.0147 0.7433±0.0923 0.8374±0.0155

As shown in Table 3.6 for the scene dataset, ML-FBLS provides optimum hamming

loss, ranking loss, and average precision. BP-MLL provides optimum one error. ML-

BLS provides optimum coverage.

Table 3.7: Comparison results performed on yeast dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.2318±0.004 0.2113±0.0146 0.2486±6.7812 0.2097±0.19 0.703±0.0165
ML-ELM[57] 0.2121±0.0034 0.964±0.01 0.3277±0.0083 0.3429±0.1849 0.6676±0.0134
BP-MLL [3] 0.2078±0.0117 0.3315±0.0153 0.3571±0.1129 0.4596±0.0105 0.7523±0.02
ML-KRR/
ML-KELM[24]

0.1941±0.0092 0.2941±0.025 0.1857±0.0639 0.4328±0.006 0.5208±0.0214

ML-BLS 0.201±0.0073 0.3093±0.0083 0.2243±0.1129 0.9454±0.0204 0.4804±0.0132
ML-FBLS 0.1987±0.0089 0.167±0.0082 0.2201±0.0195 0.9532±0.0181 0.4941±0.0106

As shown in Table 3.7 for the yeast dataset, ML-KRR provides optimum ham-

ming loss, one error. ML-FBLS provides optimum ranking loss. RankSVM provides

optimum coverage. BP-MLL provides optimum average precision.

Table 3.8: Comparison results performed on bibtex dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM [8] 0.0196±0.0002 0.329±0.0061 0.859±0.0035 0.774±0.0203 0.139±0.0013
ML-ELM[57] 0.0148±0.0003 0.6687±0.0194 0.1847±0.0041 0.6289±0.0213 0.3685±0.015
BP-MLL [3] 0.0162±0.0003 0.0696±0.0039 0.5384±0.0313 0.0985±0.0038 0.548±0.0091
ML-KRR/
ML-KELM [24]

0.0151±0.0001 0.4187±0.0099 0.6038±0.0118 0.3516±0.0075 0.1145±0.0064

ML-BLS 0.0231±0.0005 0.1902±0.004 0.3836±0.0544 0.5205±0.0188 0.4023±0.0079
ML-FBLS 0.021±0.0109 0.1755±0.0112 0.6878±0.0246 0.8532±0.0241 0.417±0.0074

As shown in Table 3.8, for the bibtex dataset, ML-ELM provides optimum ham-

ming loss. BP-MLL provides optimum ranking loss, coverage, and average precision.

ML-ELM provides optimum one error.
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Table 3.9: Comparison results performed on rcv1v2s1 dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0383±0.0024 0.1669±0.003 0.7697±0.0125 0.3137±0.0036 0.2509±0.0043
ML-ELM[57] 0.03±0.0007 0.1815±0.0055 0.5834±0.0536 0.6364±0.0207 0.3566±0.0222
BP-MLL[3] 0.0285±0.0003 0.6204±0.0317 0.7347±0.0308 0.565±0.0485 0.12±0.0159
ML-KRR/
ML-KELM [24]

0.0278±0.0004 0.3246±0.0109 0.8257±0.034 0.2165±0.0046 0.3889±0.0055

ML-BLS 0.0281±0.0004 0.0875±0.0081 0.4593±0.0777 0.4809±0.0323 0.4024±0.0125
ML-FBLS 0.0276±0.0006 0.0445±0.0027 0.4235±0.0071 0.544±0.0296 0.4925±0.0104

As shown in Table 3.9, for the rcv1v2s1, which is the first subset of the rcv1v2

dataset, ML-FBLS provides optimum hamming loss, ranking loss, one error, and av-

erage precision. ML-KELM provides optimum coverage.

Table 3.10: Comparison results performed on rcv1v2s2 dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0365±0.0002 0.1652±0.003 0.7715±0.0109 0.3037±0.0587 0.2783±0.0156
ML-ELM[57] 0.0264±0.0004 0.1795±0.0165 0.5781±0.0377 0.6431±0.0217 0.4058±0.0069
BP-MLL[3] 0.0261±0.0002 0.6323±0.0278 0.7188±0.0772 0.0772±0.0273 0.0273±0.0146
ML-KRR/
ML-KELM[24]

0.0255±0.0003 0.4083±0.0102 0.802±0.049 0.1955±0.0097 0.4372±0.007

ML-BLS 0.0262±0.0006 0.097±0.0122 0.5354±0.0437 0.5299±0.0374 0.3714±0.0201
ML-FBLS 0.0254±0.0009 0.0754±0.0025 0.4567±0.0129 0.5735±0.0344 0.4524±0.0109

As shown in Table 3.10, for the rcv1v2s2, which is the second subset of the rcv1v2

dataset, ML-FBLS provides optimum hamming loss, ranking loss, one error, and av-

erage precision. ML-KELM provides optimum coverage. BP-MLL provides optimum

coverage.

Table 3.11: Comparison results performed on rcv1v2s3 dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0355±0.0025 0.1645±0.0049 0.7622±0.0103 0.304±0.0088 0.3077±0.0069
ML-ELM[57] 0.0259±0.0002 0.1753±0.0086 0.5809±0.0474 0.6224±0.0194 0.4147±0.0082
BP-MLL[3] 0.0259±0.0004 0.6246±0.0075 0.7267±0.0228 0.5392±0.0242 0.0893±0.0095
ML-KRR/
ML-KELM[24]

0.0254±0.0004 0.4251±0.0066 0.8178±0.0228 0.1983±0.0078 0.4398±0.0137

ML-BLS 0.0258±0.0007 0.0661±0.0099 0.5418±0.0568 0.3635±0.0334 0.3898±0.0181
ML-FBLS 0.0242±0.0007 0.0485±0.0019 0.4245±0.0121 0.6189±0.0205 0.4452±0.0154

As shown in Table 3.11, for the rcv1v2s3, which is the third subset of the rcv1v2

dataset, ML-FBLS provides optimum hamming loss, ranking loss, one error, and av-

erage precision. ML-KELM provides optimum coverage. ML-KRR provides optimum

coverage.
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Table 3.12: Comparison results performed on rcv1v2s4 dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0295±0.0005 0.141±0.0033 0.746±0.0144 0.2689±0.0044 0.3516±0.009
ML-ELM[57] 0.0236±0.0004 0.1827±0.0123 0.5679±0.0611 0.5941±0.023 0.4752±0.0137
BP-MLL[3] 0.0246±0.0003 0.5784±0.0254 0.804±0.053 0.5167±0.0588 0.0865±0.0187
ML-KRR/
ML-KELM[24]

0.0238±0.0003 0.4251±0.011 0.7663±0.0435 0.1701±0.0048 0.4996±0.009

ML-BLS 0.0295±0.0317 0.1657±0.11 0.5215±0.4528 0.3703±0.6085 0.4136±0.1575
ML-FBLS 0.0217±0.0013 0.11±0.0045 0.4528±0.0121 0.6085±0.028 0.4575±0.0096

As shown in Table 3.12, for the rcv1v2s4, which is the fourth subset of the rcv1v2

dataset, ML-FBLS provides optimum hamming loss, ranking loss, and one error. ML-

KRR provides optimum coverage and average precision.

Table 3.13: Comparison results performed on rcv1v2s5 dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0361±0.0004 0.1574±0.0024 0.7528±0.0109 0.2993±0.0041 0.3113±0.0167
ML-ELM[57] 0.0259±0.0005 0.1853±0.0085 0.59±0.0526 0.6331±0.0237 0.4416±0.01
BP-MLL[3] 0.0262±0.0002 0.5892±0.0232 0.7941±0.0608 0.511±0.0202 0.1045±0.0125
ML-KRR/
ML-KELM[24]

0.0258±0.0003 0.4169±0.0059 0.8376±0.0325 0.185±0.0039 0.4567±0.0115

ML-BLS 0.0241±0.0008 0.0606±0.0053 0.4691±0.0452 0.3538±0.0175 0.4094±0.0084
ML-FBLS 0.0237±0.0006 0.0462±0.0023 0.4227±0.0116 0.4434±0.026 0.4643±0.024

As shown in Table 3.13, for the rcv1v2s5, which is the fifth subset of the rcv1v2

dataset, ML-FBLS provides optimum hamming loss, ranking loss, one error, and av-

erage precision. ML-KELM provides optimum coverage. ML-KRR provides optimum

coverage and average precision.

Table 3.14: Average of performance measures on multi-label datasets

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.09525±0.00321 0.2202±0.0086 0.6842±0.5833 0.571525±0.0523 0.3728±0.0130
ML-ELM[57] 0.0791±0.010 0.4462±0.0221 0.4153±0.0625 0.6091±0.0756 0.4156±0.0388
BP-MLL[3] 0.0868±0.0031 0.408±0.0232 0.6890±0.0771 0.3495±0.021 0.3701±0.0136
ML-KRR/
ML-KELM[24]

0.1719±0.0394 0.3602±0.0133 0.6376±0.0542 0.2534±0.0088 0.3843±0.016

ML-BLS 0.0649±0.0060 0.1615±0.02145 0.4546±0.088 0.4778±0.0782 0.4088±0.0330
ML-FBLS 0.0583±0.0038 0.1089±0.0069 0.3787±0.01891 0.6601±0.0370 0.4524±0.0180

It is difficult for a single algorithm to perform better than all other algorithms

for five evaluation measures, so the average of the five evaluation measure on twelve

datasets is shown in Table 3.14. ML-FBLS provides optimum hamming loss, ranking
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loss, one error, and average precision on an average of five evaluation measures. ML-

KRR provides optimum coverage. Further, we perform the Wilcoxon signed-rank test

to test the significance of performance of proposed approaches ML-BLS and ML-FBLS,

which are discussed in the next section.

3.6 Statistical Analysis

In this section, we discuss the statistical analysis of the results using the Wilcoxon

signed-rank test provided by the experimentation results. Wilcoxon signed-rank test

is used to verify the significance of performance between each pair of compared multi-

label approaches. Wilcoxon signed-rank test considers the difference between the

evaluation measures provided by the pair of classification approaches[133].

Table 3.15: Statistics of p-values obtained from Wilcoxon’s signed rank test for ham-
ming loss

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-BLS ML-FBLS

ML-BLS 0.00222 0.03318 0.5552 0.93624 – 0.00222
ML-FBLS 0.00374 0.0232 0.1878 0.9894 0.00222 –

Table 3.16: Statistics of p-values obtained from Wilcoxon’s signed rank test for ranking
loss

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-BLS ML-FBLS

ML-BLS 0.30772 0.00222 0.0232 0.00288 – 0.01878
ML-FBLS 0.00222 0.00222 0.00374 0.00222 0.01878 –

Table 3.17: Statistics of p-values obtained from Wilcoxon’s signed rank test for one
error

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-BLS ML-FBLS

ML-BLS 0.00758 0.93624 0.00222 0.01208 – 0.0232
ML-FBLS 0.00222 0.20766 0.00374 0.0096 0.0232 –
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Table 3.18: Statistics of p-values obtained from Wilcoxon’s signed rank test for cov-
erage

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-BLS ML-FBLS

ML-BLS 0.00222 0.13622 0.18352 0.00288 – 0.00222
ML-FBLS 0.034 0.93624 0.0048 0.0222 0.00222 –

Table 3.19: Statistics of p-values obtained from Wilcoxon’s signed rank test for average
precision

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-BLS ML-FBLS

ML-BLS 0.38978 0.477 0.5823 0.93624 – 0.00222
ML-FBLS 0.18352 0.5287 0.30772 0.0601 0.00222 –

Tables 3.15, 3.16, 3.17, 3.18, and 3.19 denote the p-value obtained by conducting

Wilcoxon signed-rank test on the basis of significance level 0.05 for five evaluation

measures. The Wilcoxon signed-rank test is performed between each pair of com-

pared approaches RankSVM, ML-ELM, BP-MLL, ML-KRR/ML-KELM, ML-BLS,

and ML-FBLS based on the evaluation measures hamming loss, ranking loss, one er-

ror, coverage, and average precision. The terms −− in tables 3.15, 3.16, 3.17, 3.18, and

3.19 denote that there is no self comparison is possible based on the Wilcoxon signed-

rank test. The ML-FBLS provides better performance in comparison to ML-BLS in

the majority of the evaluation measures. The Wilcoxon signed-rank test performed

based on evaluation measures indicates that BLS based multi-label approaches provide

significant results. BLS based multi-label classifiers are better than other approaches,

and ML-FBLS provide better significant results in comparison to other compared ap-

proaches.

3.7 Analysis of Computational Complexity

There are two main steps in the ML-FBLS procedure during training. The

first step is to compute the parameters and hyperparameters of the neuro-fuzzy

step, and the second is to compute the parameters of the threshold function. In

the first step there are the several fuzzy subsystems which are generated with
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O
(
N
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i=1Ki

∑m
j=1 Lj

)
and the fuzzy rules in each fuzzy subsystem are computed

with O (NM
∑n

i=1K
2
i ) and the enhancement nodes computation complexity is com-

puted as O
(∑n

i=1Ki +
∑m

j=1 Lj

)3
. The threshold step can be computed with

O (N2Q). The complete complexity can be shown as follows.

O

N n∑
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Ki

m∑
j=1

Lj +NM

n∑
i=1

K2
i +

(
n∑
i=1

Ki +
m∑
j=1

Lj

)3

+N2Q

 . (3.25)

3.8 Summary

In this chapter, we have proposed two multi-label classification approaches referred

to as ML-BLS and ML-FBLS. The ML-BLS is designed by enhancing the traditional

BLS algorithm by adding an adaptive threshold function at the output layer. This

adapting threshold function considers the data instances for finding the threshold to

separate the relevant and irrelevant labels for a particular instance. To provide better

interpretability to ML-BLS, we have also proposed the hybrid neuro-fuzzy enhance-

ment named as ML-FBLS by incorporating fuzzy rules in ML-BLS. The ML-BLS and

ML-FBLS are non-iterative approaches that use pseudoinverse to compute the param-

eters. The performance of ML-BLS and ML-FBLS is verified with the experimental

evaluations performed on twelve benchmark datasets of various domains. The pro-

posed algorithms lead to better results in comparison to state-of-the-art multi-label

algorithms in terms of hamming loss, ranking loss, and one error evaluation metrics.

The proposed approaches, ML-BLS and ML-FBLS, have the limitation that these ap-

proaches are unable to provide optimum coverage and average precision evaluation

measure for the majority of the datasets. This limitation is tackled in the next chap-

ter by proposing simple and effective Random Vector Functional Link Network based

multi-label classifiers.
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Chapter 4

Random Vector Functional Link Neural

Network based Multi-Label Classification

In this chapter, we have proposed two algorithm adaptation multi-label classifiers

based on Random Vector Functional Link Neural Network (RVFL) named ML-RVFL

and ML-KRVFL. These multi-label neural networks, ML-RVFL and ML-KRVFL are

Single Layer Feedforward Neural Networks (SLFN). The ML-RVFL is a simple non-

iterative neural network in comparison to ML-BLS and ML-FBLS. The ML-RVFL

classifier improves the overall performance of ML-BLS and ML-FBLS in terms of

five evaluation measures. The ML-RVFL needs information of the number of neu-

rons in the enhancement layer. This information is not needed if we contain the

kernelized RVFL for multi-label classification. To avoid the estimation of neurons

in the hidden layer, we have proposed the ML-KRVFL, which is based on the ker-

nel function. The ML-RVFL and ML-KRVFL use the adaptive threshold method to

compute the threshold during training which makes these approaches to consider the

multi-label data. The experimental results are analyzed using the Friedman ranking

and Wilcoxon signed-rank tests. The proposed multi-label classifiers ML-RVFL and

ML-KRVFL outperform other state-of-the-art multi-label classifiers in terms of five

evaluation metrics. The introduction of multi-label classification using non-iterative

approaches is discussed in the next section.
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4.1 Introduction

The SLFN is designed using an input layer, a hidden layer, and an output

layer. The parameters of SLFN are initialized randomly and updated using the

back-propagation algorithm. The convergence of back-propagation based SLFN is

time-consuming, so the non-iterative procedure based SLFN has been proposed to

provide a fast training procedure with efficient performance[26]. In recent years var-

ious non-iterative approaches have been proposed for multi-label classification, such

as ML-ELM [57] and ML-KELM/ML-KRR[24]. These classifiers are fast and efficient

neural networks for multi-label classification. These approaches lack direct connec-

tions between the input layer and output layer. The direct connections are useful to

provide information of the input features in the neural networks. The multi-label clas-

sifiers ML-BLS and ML-FBLS contain the direct links between the input and output

layer. The ML-BLS converts the inputs to the mapped features and then creates the

enhancement nodes with the help of mapped features. The ML-FBLS replaces the

mapped features with fuzzy systems to get better interpretability of the results. The

RVFL [27] is another non-iterative single-layer neural network that connects the inputs

to the output layer using direct links and is similar to ELM. The RVFL is illustrated

in Figure 2.1. The RVFL is able to solve the traditional multi-class classification. We

have proposed the adaptation of RVFL and kernelized RVFL for multi-label classifi-

cation, which provides the optimum evaluation metrics. The details and formulation

of the proposed ML-RVFL and ML-KRVFL are discussed in the next sections.

4.2 Multi-Label Classifier based on Random Vec-

tor Functional Link Neural Network: ML-

RVFL

In this section, we have discussed the proposed ML-RVFL and its mathematical

formulation. The proposed ML-RVFL is a single-layer feedforward neural network
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that uses pseudoinverse to compute the parameters of the classifier. In ML-RVFL, the

weights and bias of the hidden layer are initialized randomly within a suitable range.

Only the output weights of the output layer are computed using pseudoinverse. The

(Inputs)

Output  Layer

Enhancement
Nodes

Input Layer

Theshold Calculation based 
on the raw values 

Final output labels

Figure 4.1: Multi-label Random Vector Functional Link Neural Network

RVFL has universal approximation capability because of its neural network based

architecture. Hence it can be directly applied to multiple problems. As shown in

Figure 4.1 the input layer H1 consists the original input features X ∈ RN×M . The

input layer is transformed into a nonlinear transformation using enhancement layer

H2. Input H1 and enhancement layer H2 can be concatenated as follows

H = [H1|H2] (4.1)

Further the RVFL can be denoted by the following mathematical expression

HW = Y (4.2)
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The size of matrix H1 is N ×M , and the size of H2 is N × L, where the N is the

number of instances in training data, M denotes the size of the feature vector of the

input instance, and L is the number of neurons in hidden or enhancement layer. Hence

The size of matrix H = [H1|H2] is N×(M+L). The output weights can be computed

using the analytical or normal solution as follows

W = H+Y (4.3)

The RVFL can be represented as an optimization problem using following mathemat-

ical expression

arg min
W

: ‖HW − Y ‖σ1v + λ‖W ‖σ2u (4.4)

where σ1 > 0, σ2 > 0, u > 0, and v > 0 is a kind of norm regularization and λ is

regularization constant. Above expression becomes a l2 convex optimization by taking

σ1 = σ2 = u = v = 2. The primal space solution for W is defined as below

W = (HTH + λI)−1HTY (4.5)

We can transform the above primal space solution into the dual space solution as

follows:

HT (HHT + λI)−1 = (HTH + λI)−1HT (4.6)

(HTH + λI)−1(HTH + λI)HT (HHT + λI)−1Y

= (HTH + λI)−1HT (HHT + λI)(HHT + λI)−1Y
(4.7)

HT (HHT + λI)−1Y = (HTH + λI)−1HTY (4.8)

HT (HHT + λI)−1Y = W (4.9)

so dual space solution is defined as the following mathematical expression

W = HT (HHT + λI)−1Y (4.10)
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Depending on the number of training samples or total feature dimensions (i.e., input

features plus the total number of hidden neurons), dual or primal solution can be

used to reduce the complexity of the matrix inversion [28]. The primal and dual space

solution [28] of the above problem can be used according to the following equations:

W =

(HTH + λI)−1HTY, primal space

HT (HHT + λI)−1Y, dual space

(4.11)

where primal space solution refers to N < (M + L) and dual space solution refers to

N > (M +L). Using the RVFL network from Eq.(4.3) and Eq.(4.11), the raw output

at the layer Y of RVFL can be written as:

f(x) = HW (4.12)

The solution of primal and dual space can be used to compute the f(x) as mentioned

in [28]. By substituting the value of W from Eq.(4.11) to Eq.(4.12), f(x) can be

written in dual space as

f(x) = H
(
HTH + λI

)−1
HTY. (4.13)

The result computed by the Eq.(4.13) is provided to compute the threshold compu-

tation to create ML-RVFL for multi-label classification, which is discussed in section

3.4. In the next section, we have proposed the kernelized version of ML-RVFL.

4.3 Multi-Label Kernelized Random Vector Func-

tional Link Network: ML-KRVFL

The structure of RVFL, its fast learning, and its generalization capability are useful

in various applications. Kernel based RVFL is developed to avoid the selection of

hidden mapping and the number of hidden neurons in RVFL. By substituting the value
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of H from Eq.(4.1) in Eq.(4.13), the output f(x) of ML-KRVFL can be represented

as follows:

f(x) = [h1|h2]
[
H1

H2

]T (
[H1|H2]

[
H1

H2

]T
+ λI

)−1
Y (4.14)

where h1 denotes the ith instance of input matrix X and h2 denoted mapped feature

map of the ith instance of input matrix X. The Eq. (4.14) can be rewritten as follows:

f(x) = (
[
h1H1T

]
+
[
h2H2T

]
)
([
H1H1T

]
+
[
H2H2T

]
+ λI

)−1
Y (4.15)

The kernel matrix for the Eq.(4.15) can be defined as follows:

Ω = H1H1Tand
[
h1H1T

]
= K(xi, xl) (4.16)

Ω̃ = H2H2Tand
[
h2H2T

]
= K̃(xi, xl) (4.17)

where l ∈ 1, ..., L. The output of KRVFL can be computed as following mathematical

expression:

f(x) =



k(xi, x1)

.

.

.

k(xi, xL)


+



k̃(xi, x1)

.

.

.

k̃(xi, xL)


(

Ω + Ω̃ + λI
)−1

Y (4.18)

K is a linear kernel and K̃ is the radial basis function exp
−||x−xi||

2

2σ2 used in experimen-

tation. The σ is known as kernel parameter . The result computed by the Eq.(4.18) is

provided to compute the threshold computation to create ML-KRVFL for multi-label

classification which is discussed in section 3.4. The ML-RVFL and ML-KRVFL are

described in Algorithm 3 and 4 respectively.
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Algorithm 3: Multi-label Random Vector Functional Link Network

Input : Training samples (X, Y ) ∈ R(N×(M+Q))

Output: A ML-RVFL with output weight W , threshold parameters w and b

1 Initialize hidden layer neuron number L, activation function , regularization
parameter λ

2 Pre-process: target values of training set are converted to bipolar
representation (-1 and 1);

3 Assign input weight Wh and bias for hidden layer H2 randomly
4 Compute matrix H using concatenation of H1 and H2
5 Compute output weights W using Eq.(4.11);
6 Using weight matrix W , Compute raw values f(x) at output layer Y for input

sample x
7 Compute threshold function parameters w and b using Eq.(3.22) and

Eq.(3.23) as follows. minw,b
∑n

i=1((w
T .c(xi)) + b− txi)2.

8 Calculate outputs c(x) and threshold for each test data instance according to
Eq.(3.22) and Eq.(3.23)

9 Compare c(x) with a threshold value and obtain multi-label identification
final outputs according to Eq.(3.24).

Algorithm 4: Multi-label Kernel Random Vector Functional Link Network

Input : Training samples (X, Y ) ∈ R(N×(M+Q))

Output: A ML-KRVFL with output weight W , threshold parameters w and b

1 Initialize kernel parameters σ and regularization cost parameter λ
2 Pre-process: Conversion of output label values of training set to bipolar

values 1 or -1;
3 Compute kernel matrix Ω and Ω̃
4 Using weight matrix W , compute raw values f(x) at output layer Y for input

sample x using Eq.(4.18)
5 Compute threshold function parameters w and b using Eq.(3.22) and

Eq.(3.23) as minw,b
∑n

i=1((w
T .c(xi)) + b− txi)2.

6 Calculate outputs c(x) and threshold for each test data instance according to
Eq.(3.22) and Eq.(3.23)

7 Compare c(x) with a threshold value and obtain multi-label identification
final outputs according to Eq.(3.24)

4.4 Experimentation and Results

In this section, the results of experiments are discussed to verify the effective-

ness of the proposed multi-label non-iterative approaches ML-RVFL and ML-KRVFL.

Multi-label classification experimentation is carried out on 12 benchmarks multi-label
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Table 4.1: Optimal parameter settings for multi-label classifiers

BP-MLL[3] ML-ELM[57]
ML-KRR/
ML-KELM [24]

ML-RVFL ML-KRVFL ML-BLS ML-FBLS

Hidden layer
nodes

Hidden layer
nodes

C= 1
λ

σ C= 1
λ

optimal
hidden nodes

λ σ λ Nf Nm Ne Nr Nt Ne

Bibtex 367 120 0.5 2−2 21 100 0.7 2−2 1 51 47 44 10 3 2
Corel5k 100 250 0.5 2−2 21 250 0.5 2−1 0.8 10 14 55 1 12 19
Emotions 15 60 0.5 2−2 20 60 0.5 2−1 0.8 51 10 13 88 5 102
Enron 200 120 0.5 2−2 20 150 0.7 2−2 0.8 36 26 28 67 3 19
Scene 59 85 0.5 2−2 20 85 0.7 2−1 1 25 18 37 23 97 79
Yeast 21 100 0.5 2−2 20 80 0.5 2−2 0.8 10 10 35 89 39 93
Medical 290 120 0.5 2−2 21 200 0.5 2−2 0.8 24 7 58 23 97 79
rcv1v2-s1 9448 120 1 2−2 21 100 0.9 2−2 1 64 66 63 44 33 35
rcv1v2-s2 9448 120 1 2−2 21 100 0.9 2−2 1 39 55 35 39 7 35
rcv1v2-s3 9448 120 1 2−2 21 100 0.9 2−2 1 59 6 16 41 26 35
rcv1v2-s4 9448 120 1 2−2 21 100 0.9 2−2 1 29 35 53 50 9 21
rcv1v2-s5 9448 120 1 2−2 21 100 0.9 2−2 1 34 13 33 40 35 33

datasets1 2, which are described in Table 2.6. Comparative results based on evalua-

tion metrics are shown in Table 4.2 to Table 4.13. All the experiments related to the

comparison of multi-label classification are performed on MATLAB 2017a. Five-fold

cross-validation is carried out on all 12 multi-label datasets. For each dataset, we have

used five-fold cross-validation. In each fold, 1 set is used for testing, and the rest four

sets are used as the training set. For this purpose, we have generated the indexing

of instances for each multi-label dataset for each fold. The indexing for each fold is

the same for all the compared approaches. Using this five-fold cross-validation, 80%

of the total data is used as training data and 20% for tests for all the datasets. We

compute the hamming loss, one error, ranking loss, coverage, and average precision

to compute the effectiveness of proposed ML-RVFL and ML-KRVFL approaches. We

use the same experimental setup, parameter settings, and state-of-the-art approaches

for comparison purposes which are discussed in Chapter 3.

4.4.1 Experimental Setup

The parameters range and optimal parameters of the compared approaches are

the same as discussed in Chapter 3. We also compare the performance of ML-RVFL

and ML-KRVFL with the approaches ML-BLS and ML-FBLS, which are proposed

in chapter 3. For the ML-RVFL, the regularization parameter λ is searched between

0.1 and 1 with the interval of 0.2. The activation function used in ML-RVFL and

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2http://mulan.sourceforge.net/datasets-mlc.html
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ML-KELM is sigmoid, and for BP-MLL, the activation function used is tanh, as it

is mentioned in[3]. For the ML-KRVFL approach, kernel parameter σ is taken as

2x where x = [−8,−6, . . . , 0]. The regularization parameter λ for the ML-KRVFL

is searched between 0.1 to 1. The regularization parameter λ for the ML-RVFL is

searched by fixing the hidden nodes of ML-RVFL by keeping near the values provided

by the ML-ELM for the corresponding datasets. For the ML-KRVFL, the regulariza-

tion parameter λ is searched by fixing the kernel parameter σ of ML-KRVFL. The

values of σ for ML-KRVFL are also considered near the values of σ for ML-KRR/ML-

KELM to compare the performance of the classifiers. Table 4.1 describes the optimal

parameter settings used in the experimentation for the compared approaches and pro-

posed approaches.

4.4.2 Results and Performance Evaluation

In this section, we provide the experimental results performed on the twelve multi-

label datasets from various domains as mentioned in 2.6. The optimum performance is

highlighted in bold for each evaluation metric in table 4.2 to 4.13. Further, the average

performance on twelve datasets for five evaluation metrics is described in table 4.14.

We also include the ML-BLS and ML-FBLS approaches for comparison, which are

introduced in chapter 3.

Table 4.2: Comparison results performed on corel5k dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0109±0.0001 0.147±0.0034 0.776±0.0184 0.323±0.0056 0.209±0.0085
ML-ELM[57] 0.0104±0.0001 0.561±0.0154 0.377±0.0081 0.875±0.0138 0.254±0.0134
BP-MLL[3] 0.0095±0 0.273±0.0109 0.931±0.0129 0.263±0.0053 0.24±0.0086
ML-KRR/
ML-KELM [24]

0.0094±0.0001 0.482±0.0062 0.924±0.0176 0.328±0.0056 0.036±0.0012

ML-BLS 0.0102±0.0001 0.3226±0.009 0.8744±0.0157 0.5145±0.0123 0.177±0.0036
ML-FBLS 0.01±0.0005 0.1392±0.0056 0.7526±0.0307 0.5844±0.0236 0.25±0.0018
ML-RVFL 0.01±0 0.112±0.0029 0.484±0.0115 0.281±0.0201 0.2838±0.0067
ML-KRVFL 0.0112±0.0001 0.0909±0.009 0.3494±0.0112 0.2445±0.0099 0.3172±0.0039

Corel5k is an image domain dataset that contains samples from a museum, web

archive images, and newspaper images. As mentioned in Table 4.2, ML-KRR/ML-

KELM provides optimum hamming loss for the corel5k dataset. ML-KRVFL provides
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optimum ranking loss, one error, coverage, and average precision. The corel5k has 499

features, 374 labels, and 5000 instances.

Table 4.3: Comparison results performed on emotions dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.3297±0.017 0.4151±0.0244 0.5548±0.0598 3.1279±0.2145 0.572±0.0245
ML-ELM[57] 0.3607±0.038 0.9736±0.0042 0.5124±0.0208 0.4667±0.1826 0.0992±0.0454
BP-MLL[3] 0.3213±0.0144 0.4723±0.0247 0.6667±0.2887 0.5494±0.0236 0.5583±0.0187
ML-KRR/
ML-KELM [24]

0.6793±0.0095 0.3483±0.0165 0.5333±0.2173 0.4213±0.0246 0.4735±0.0268

ML-BLS 0.2234±0.0219 0.1822±0.0319 0.2432±0.0223 0.8187±0.061 0.4756±0.0472
ML-FBLS 0.2031±0.0144 0.2938±0.0186 0.2232±0.0235 0.9452±0.0213 0.5211±0.0321
ML-RVFL 0.2097±0.0256 0.168±0.0316 0.25±0.0319 0.3978±0.0916 0.7004±0.0504
ML-KRVFL 0.1856±0.0192 0.136±0.0292 0.2115±0.0235 0.2928±0.0338 0.7947±0.0242

The emotions dataset contains the music samples with 593 instances of 6 kinds.

This is a small dataset. Table 4.3 describes the evaluation metrics performed on

emotions dataset. The proposed approaches ML-RVFL, ML-KRVFL, ML-BLS, and

ML-FBLS provide optimum hamming loss for the emotions dataset. ML-KRVFL

provides the best hamming loss, ranking loss, one error, coverage, and average precision

for the emotions datasets.

Table 4.4: Comparison results performed on enron dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0655±0.002 0.1189±0.002 0.4636±0.0246 0.2915±0.0091 0.5131±0.0105
ML-ELM[57] 0.0519±0.0011 0.6655±0.0277 0.3071±0.2959 0.6949±0.0689 0.6107±0.0177
BP-MLL[3] 0.0525±0.0016 0.2675±0.0301 0.6906±0.0286 0.207±0.0089 0.7013±0.0092
ML-KRR/
ML-KELM[24]

0.0619±0.0021 0.3572±0.026 0.6226±0.04 0.3955±0.0051 0.208±0.011

ML-BLS 0.0796±0.0019 0.2844±0.0189 0.6613±0.0641 0.6498±0.0217 0.1624±0.0214
ML-FBLS 0.0502±0.0016 0.0997±0.007 0.2532±0.0275 0.731±0.0344 0.1745±0.0216
ML-RVFL 0.0473±0.0021 0.0831±0.0047 0.2344±0.0257 0.2069±0.027 0.4276±0.015
ML-KRVFL 0.022±0.0148 0.048±0.0105 0.2123±0.0208 0.2058±0.0236 0.4606±0.017

As mentioned in Table 4.4, ML-KRVFL provides optimum hamming loss, ranking

loss, one error, and coverage for enron dataset. BP-MLL provides optimum average

precision for the enron dataset.
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Table 4.5: Comparison results performed on medical dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM [8] 0.0378±0.0011 0.1418±0.0083 0.728±0.0304 0.1619±0.0125 0.3987±0.0256
ML-ELM[57] 0.0135±0.0011 0.1667±0.0424 0.1082±0.0445 0.412±0.025 0.7299±0.0328
BP-MLL [3] 0.0192±0.0011 0.1213±0.037 0.7067±0.0575 0.0456±0.016 0.7621±0.0198
ML-KRR/
ML-KELM[24]

0.208±0.4047 0.2549±0.0179 0.6667±0.0272 0.0576±0.0173 0.3638±0.0507

ML-BLS 0.0161±0.0007 0.091±0.0336 0.3282±0.0967 0.1199±0.0439 0.4082±0.0731
ML-FBLS 0.0136±0.0017 0.0321±0.0114 0.0209±0.0307 0.3229±0.0923 0.4233±0.0575
ML-RVFL 0.014±0.001 0.0222±0.0079 0.0129±0.0133 0.0978±0.0445 0.6977±0.596
ML-KRVFL 0.0116±0.043 0.021±0.0132 0.0118±0.0329 0.0901±0.0165 0.6677±0.026

Medical datasets contain the text corpus related to a substantial proportion of

pediatric radiology activity. Table 4.5 describes the evaluation metrics performed on

the medical dataset. ML-KRVFL provides optimum hamming loss, ranking loss, one

error, and coverage. BP-MLL provides optimum average precision for the medical

dataset.

Table 4.6: Comparison results performed on scene dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM [8] 0.2718±0.0082 0.4844±0.0282 0.7786±0.0234 0.4807±0.096 0.4396±0.0173
ML-ELM[57] 0.1545±0.0741 0.4509±0.0948 0.2667±0.117 0.7605±0.3028 0.1645±0.2676
BP-MLL [3] 0.2839±0.0067 0.3159±0.0411 0.6±0.1491 0.3628±0.0124 0.4526±0.0074
ML-KRR/
ML-KELM[24]

0.767±0.0465 0.1675±0.0138 0.0667±0.0913 0.0889±0.0094 0.6733±0.0278

ML-BLS 0.0918±0.006 0.0818±0.0062 0.2134±0.0147 0.0674±0.0313 0.8136±0.0134
ML-FBLS 0.0813±0.0039 0.0754±0.0077 0.2064±0.0147 0.7433±0.0923 0.8374±0.0155
ML-RVFL 0.0911±0.0061 0.0764±0.0089 0.2198±0.0217 0.6658±0.0372 0.8133±0.0142
ML-KRVFL 0.119±0.005 0.1187±0.0107 0.2995±0.0194 0.1146±0.01 0.8126±0.0142

Scene datasets contain 2407 multi-label images with six possible labels. Table

4.6 describes the evaluation metrics performed on scene dataset. ML-RVFL provides

optimum hamming loss, ML-BLS provides optimum coverage, and ML-KRR/ML-

KELM provides optimum one error for scene dataset. ML-FBLS provides optimum

ranking loss and average precision.

77



Table 4.7: Comparison results performed on yeast dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM [8] 0.2318±0.004 0.2113±0.0146 0.2486±6.7812 0.2097±0.19 0.703±0.0165
ML-ELM[57] 0.2121±0.0034 0.964±0.01 0.3277±0.0083 0.3429±0.1849 0.6676±0.0134
BP-MLL [3] 0.2078±0.0117 0.3315±0.0153 0.3571±0.1129 0.4596±0.0105 0.7523±0.02
ML-KRR/
ML-KELM[24]

0.1941±0.0092 0.2941±0.025 0.1857±0.0639 0.4328±0.006 0.5208±0.0214

ML-BLS 0.201±0.0073 0.3093±0.0083 0.2243±0.1129 0.9454±0.0204 0.4804±0.0132
ML-FBLS 0.1987±0.0089 0.167±0.0082 0.2201±0.0195 0.9532±0.0181 0.4941±0.0106
ML-RVFL 0.1712±0.0069 0.1545±0.0095 0.2121±0.152 0.6543±0.128 0.6801±0.0095
ML-KRVFL 0.1735±0.0091 0.1468±0.0173 0.2062±0.0267 0.5176±0.0064 0.7542±0.0111

Yeast dataset denotes the 14 possible functional classes as an output for each

genome sequence represented by its instances. Table 4.7 describes the evaluation

metrics performed on the yeast dataset. ML-RVFL provides optimum hamming loss

for yeast dataset. ML-KRVFL provides optimum ranking loss and average precision.

ML-KRR/ML-KELM provides optimum one error, and RankSVM provides optimum

coverage for yeast dataset. For the yeast dataset, The ML-KRVFL is performing the

best ranking loss, as the yeast dataset is the genome-related dataset and the ranking

loss is in focus for optimizing for yeast-related work because of the objective of the

genome data properties [3].

Table 4.8: Comparison results performed on bibtex dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM [8] 0.0196±0.0002 0.329±0.0061 0.859±0.0035 0.774±0.0203 0.139±0.0013
ML-ELM[57] 0.0148±0.0003 0.6687±0.0194 0.1847±0.0041 0.6289±0.0213 0.3685±0.015
BP-MLL [3] 0.0162±0.0003 0.0696±0.0039 0.5384±0.0313 0.0985±0.0038 0.548±0.0091
ML-KRR/
ML-KELM [24]

0.0151±0.0001 0.4187±0.0099 0.6038±0.0118 0.3516±0.0075 0.1145±0.0064

ML-BLS 0.0231±0.0005 0.1902±0.004 0.3836±0.0544 0.5205±0.0188 0.4023±0.0079
ML-FBLS 0.021±0.0109 0.1755±0.0112 0.6878±0.0246 0.8532±0.0241 0.417±0.0074
ML-RVFL 0.0132±0.0004 0.077±0.0061 0.3671±0.0112 0.5482±0.0304 0.4043±0.0104
ML-KRVFL 0.0145±0.0005 0.106±0.0083 0.3601±0.0118 0.2023±0.012 0.5744±0.0099

Table 4.8 describes the evaluation metrics performed on bibtex dataset. ML-ELM

provides optimum one error, BP-MLL provides optimum ranking loss and coverage.

ML-RVFL and ML-KRVFL provide optimum hamming loss and average precision,

respectively. Bibtex is a text dataset related to the recommender system, and the

related evaluation metric for the cases are precision, recall, and F measure mentioned

in[17]. We have used this dataset for comparison purposes and demonstrate the limi-
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tation of the proposed approach. In text-related datasets, the embedding of the labels

is an important consideration for semantic representation. This opens the scope of

the future research of non-iterative learning for the semantic consideration where the

labels can be represented as feature vectors of their properties.

Datasets rcv1v2s1, rcv1v2s2, rcv1v2s3, rcv1v2s4, and rcv1v2s5 are related to text

domain. These datasets are manually categorized from newswire stories which are

recently made available by Reuters, Ltd. Table 4.9 to Table 4.13 shows the evaluation

results for rcv1v2s1, rcv1v2s2, rcv1v2s3, rcv1v2s4, and rcv1v2s5 datssets.

Table 4.9: Comparison results performed on rcv1v2s1 dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0383±0.0024 0.1669±0.003 0.7697±0.0125 0.3137±0.0036 0.2509±0.0043
ML-ELM[57] 0.03±0.0007 0.1815±0.0055 0.5834±0.0536 0.6364±0.0207 0.3566±0.0222
BP-MLL[3] 0.0285±0.0003 0.6204±0.0317 0.7347±0.0308 0.565±0.0485 0.12±0.0159
ML-KRR/
ML-KELM [24]

0.0278±0.0004 0.3246±0.0109 0.8257±0.034 0.2165±0.0046 0.3889±0.0055

ML-BLS 0.0281±0.0004 0.0875±0.0081 0.4593±0.0777 0.4809±0.0323 0.4024±0.0125
ML-FBLS 0.0276±0.0006 0.0445±0.0027 0.4235±0.0071 0.544±0.0296 0.4925±0.0104
ML-RVFL 0.026±0.0005 0.0475±0.0033 0.3883±0.015 0.4644±0.0326 0.48±0.0154
ML-KRVFL 0.024±0.0791 0.0393±0.0031 0.3151±0.0105 0.3189±0.0143 0.517±0.0051

As described in Table 4.9, ML-KRVFL provides best hamming loss, ranking loss,

one error, and average precision. ML-KRR/ML-KELM provides optimum coverage

for rcv1v2s1 dataset.

Table 4.10: Comparison results performed on rcv1v2s2 dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM [8] 0.0365±0.0002 0.1652±0.003 0.7715±0.0109 0.3037±0.0587 0.2783±0.0156
ML-ELM[57] 0.0264±0.0004 0.1795±0.0165 0.5781±0.0377 0.6431±0.0217 0.4058±0.0069
BP-MLL[3] 0.0261±0.0002 0.6323±0.0278 0.7188±0.0772 0.0772±0.0273 0.0273±0.0146
ML-KRR/
ML-KELM[24]

0.0255±0.0003 0.4083±0.0102 0.802±0.049 0.1955±0.0097 0.4372±0.007

ML-BLS 0.0262±0.0006 0.097±0.0122 0.5354±0.0437 0.5299±0.0374 0.3714±0.0201
ML-FBLS 0.0254±0.0009 0.0754±0.0025 0.4567±0.0129 0.5735±0.0344 0.4524±0.0109
ML-RVFL 0.0226±0.0005 0.0448±0.002 0.3887±0.0144 0.4652±0.0333 0.386±0.0221
ML-KRVFL 0.0243±0.1081 0.0485±0.0133 0.3465±0.0067 0.5504±0.0114 0.4766±0.0038

As described in Table 4.10, ML-RVFL provides optimum hamming loss and rank-

ing loss. ML-KRVFL provides optimum one error and average precision. BP-MLL

provides optimum coverage for rcv1v2s2 dataset.
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Table 4.11: Comparison results performed on rcv1v2s3 dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM [8] 0.0355±0.0025 0.1645±0.0049 0.7622±0.0103 0.304±0.0088 0.3077±0.0069
ML-ELM[57] 0.0259±0.0002 0.1753±0.0086 0.5809±0.0474 0.6224±0.0194 0.4147±0.0082
BP-MLL[3] 0.0259±0.0004 0.6246±0.0075 0.7267±0.0228 0.5392±0.0242 0.0893±0.0095
ML-KRR/
ML-KELM[24]

0.0254±0.0004 0.4251±0.0066 0.8178±0.0228 0.1983±0.0078 0.4398±0.0137

ML-BLS 0.0258±0.0007 0.0661±0.0099 0.5418±0.0568 0.3635±0.0334 0.3898±0.0181
ML-FBLS 0.0242±0.0007 0.0485±0.0019 0.4245±0.0121 0.6189±0.0205 0.4452±0.0154
ML-RVFL 0.0225±0.0007 0.0377±0.0014 0.2565±0.01 0.3963±0.0336 0.439±0.0167
ML-KRVFL 0.017±0.0876 0.0209±0.0203 0.1516±0.0103 0.2551±0.0231 0.4856±0.0092

For the rcv1v2s3 dataset ML-KRVFL provides optimum results for hamming loss,

ranking loss, one error, and average precision. ML-KRR/ML-ELM provides optimum

coverage. This is shown is Table 4.11.

Table 4.12: Comparison results performed on rcv1v2s4 dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM [8] 0.0295±0.0005 0.141±0.0033 0.746±0.0144 0.2689±0.0044 0.3516±0.009
ML-ELM[57] 0.0236±0.0004 0.1827±0.0123 0.5679±0.0611 0.5941±0.023 0.4752±0.0137
BP-MLL[3] 0.0246±0.0003 0.5784±0.0254 0.804±0.053 0.5167±0.0588 0.0865±0.0187
ML-KRR/
ML-KELM[24]

0.0238±0.0003 0.4251±0.011 0.7663±0.0435 0.1701±0.0048 0.4996±0.009

ML-BLS 0.0295±0.0317 0.1657±0.11 0.5215±0.4528 0.3703±0.6085 0.4136±0.1575
ML-FBLS 0.0217±0.0013 0.11±0.0045 0.4528±0.0121 0.6085±0.028 0.4575±0.0096
ML-RVFL 0.0196±0.0003 0.0358±0.0017 0.3262±0.0084 0.1418±0.0157 0.4002±0.0189
ML-KRVFL 0.0144±0.0912 0.0396±0.0188 0.3314±0.0285 0.1385±0.0236 0.4847±0.0233

ML-KRVFL provides optimum hamming loss and coverage. ML-RVFL provides

optimum ranking loss and one error. ML-KRR/ML-KELM provides optimum average

precision. The experimental results on rcv1v2s4 dataset are mentioned in Table 4.12.

Table 4.13: Comparison results performed on rcv1v2s5 dataset

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.0361±0.0004 0.1574±0.0024 0.7528±0.0109 0.2993±0.0041 0.3113±0.0167
ML-ELM[57] 0.0259±0.0005 0.1853±0.0085 0.59±0.0526 0.6331±0.0237 0.4416±0.01
BP-MLL[3] 0.0262±0.0002 0.5892±0.0232 0.7941±0.0608 0.511±0.0202 0.1045±0.0125
ML-KRR/
ML-KELM[24]

0.0258±0.0003 0.4169±0.0059 0.8376±0.0325 0.185±0.0039 0.4567±0.0115

ML-BLS 0.0241±0.0008 0.0606±0.0053 0.4691±0.0452 0.3538±0.0175 0.4094±0.0084
ML-FBLS 0.0237±0.0006 0.0462±0.0023 0.4227±0.0116 0.4434±0.026 0.4643±0.024
ML-RVFL 0.0225±0.0007 0.0429±0.0008 0.3783±0.0113 0.2721±0.0259 0.44±0.0107
ML-KRVFL 0.0221±0.0776 0.042±0.0123 0.2166±0.0146 0.2137±0.0171 0.4763±0.0044

For the rcv1v2s5 dataset ML-KRVFL provides optimum hamming loss, one error,

ranking loss, and average precision. The optimum result for coverage is provided by

80



ML-KRR/ML-KELM for rcv1v2s5 dataset.

Table 4.14: Average of performance measures on multi-label datasets

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 0.09525±0.00321 0.2202±0.0086 0.6842±0.5833 0.571525±0.0523 0.3728±0.0130
ML-ELM[57] 0.0791±0.010 0.4462±0.0221 0.4153±0.0625 0.6091±0.0756 0.4156±0.0388
BP-MLL[3] 0.0868±0.0031 0.408±0.0232 0.6890±0.0771 0.3495±0.021 0.3701±0.0136
ML-KRR/
ML-KELM[24]

0.1719±0.0394 0.3602±0.0133 0.6376±0.0542 0.2534±0.0088 0.3843±0.016

ML-BLS 0.0649±0.0060 0.1615±0.02145 0.4546±0.088 0.4778±0.0782 0.4088±0.0330
ML-FBLS 0.0583±0.0038 0.1089±0.0069 0.3787±0.01891 0.6601±0.0370 0.4524±0.0180
ML-RVFL 0.0558±0.0037 0.0751±0.0067 0.2931±0.0272 0.3826±0.0433 0.5127±0.0655
ML-KRVFL 0.0532±0.0446 0.0714±0.0138 0.251±0.0180 0.2620±0.0168 0.5684±0.0126

It can be observed from Table 4.2 to Table 4.13 that proposed multi-label ap-

proaches are performing better, specially ML-KRVFL and ML-RVFL are better in

terms of most of the measures over all the twelve datasets. The size of datasets is

important for the computation of the parameters and hyperparameters for the algo-

rithms. At the time of calculation, the number of labels for the dataset is taken into

consideration. This consideration affects the overall time of the training procedure.

It is difficult for a single multi-label algorithm to perform better than all other algo-

rithms for all five evaluation measures. For a better comparison, the average of each

evaluation metric is taken on all datasets for algorithms used for comparison. In this

case, Table 4.14 is used for the average of all evaluation metrics on all 12 multi-label

datasets used for a fair comparison. This table is similar to Friedman’s ranking [140]

as the average is taken for evaluation metrics over the 12 multi-label datasets.

Table 4.15: Average Friedman rank for multi-label classification algorithms

Hamming Loss Ranking Loss One Error Coverage Average Precision
RankSVM[8] 7.16 5.16 6.6 4.25 5.9
ML-ELM[57] 5.33 7 4.41 6.83 4.66
BP-MLL [3] 5.5 6.33 7 3.91 5.08
ML-KRR/
ML-KELM[24]

5 6.58 6 2.58 5.25

ML-BLS 5.41 4.5 4.41 4.91 5.75
ML-FBLS 3.16 2.91 3.33 7.16 3.66
ML-RVFL 2.08 1.91 2.5 3.83 3.83
ML-KRVFL 2.08 1.58 1.66 2.5 1.83

We follow the steps mentioned in [140, 141] and compute the Friedman rank of
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each multi-label classifier based on each evaluation metric. Table 4.15 represents the

average Friedman ranking for five evaluation measures over 12 multi-label datasets.

The lower value of rank represents the higher performance in Table 4.15. As per the

values mentioned in this table, ML-KRVFL, ML-RVFL, and ML-FBLS outperform

other multi-label approaches. ML-BLS also has a better average Friedman ranking

in comparison to other compared approaches, but ML-KRVFL, ML-RVFL, and ML-

FBLS are better than all other approaches. The Friedman statistic for hamming loss,

ranking loss, one error, coverage, and average precision is computed as 42.2, 64.16,

53.19, 42.5, and 25.5, respectively. The F-distribution with 11 and 77 degrees of

freedom for hamming loss, ranking loss, one error, coverage, and average precision

is computed as 11.10, 35.57, 18.99, 11.26, and 4.79. After performing the nemenyi

post-hoc test [142] the critical difference for hamming loss, ranking loss, one error,

coverage, and average precision is 3.031 on the basis of the significance level of 0.05.

Table 4.14 computes the average performance of individual approaches on twelve

datasets from various domains and sizes. Further, Wilcoxon signed-rank test is con-

ducted to verify the significance of performance between each pair of compared multi-

label approaches. Wilcoxon signed-rank test considers the difference between the eval-

uation measures provided by the pair of classification approaches[133]. Tables 4.16,

4.17, 4.18, 4.19, and 4.20 denote the p-value obtained by conducting Wilcoxon signed-

rank test on the basis of significance level 0.05 for five evaluation measures. The

Wilcoxon signed-rank test is performed between each pair of compared approaches

RankSVM, ML-ELM, BP-MLL, ML-KRR/ML-KELM, ML-RVFL, ML-KRVFL, ML-

BLS, and ML-FBLS based on the evaluation measures hamming loss, ranking loss, one

error, coverage, and average precision. The terms −− in tables 4.16, 4.17, 4.18, 4.19,

and 4.20 denote that there is no self comparison is possible based on the Wilcoxon

signed-rank test. The Wilcoxon signed-rank test performed based on evaluation mea-

sures indicates that RVFL based multi-label approaches provide significant results.

ML-RVFL and ML-KRVFL are better than other approaches, and ML-FBLS provides

better significant results in comparison to those approaches which are not based on

RVFL.
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Table 4.16: Statistics of p-values obtained from Wilcoxon’s signed rank test for ham-
ming loss

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-RVFL ML-KRVFL ML-BLS ML-FBLS

ML-RVFL 0.00222 0.00374 0.00288 0.00288 – 0.34722 0.00222 0.21498
ML-KRVFL 0.00288 0.00374 0.00328 0.0048 0.3472 – 0.0232 0.05
ML-BLS 0.00222 0.03318 0.5552 0.93624 0.00222 0.0232 – 0.00222
ML-FBLS 0.00374 0.0232 0.1878 0.9894 0.21498 0.05 0.00222 –

Table 4.17: Statistics of p-values obtained from Wilcoxon’s signed rank test for ranking
loss

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-RVFL ML-KRVFL ML-BLS ML-FBLS

ML-RVFL 0.00222 0.00222 0.00288 0.00222 – 0.38978 0.00222 0.0048
ML-KRVFL 0.00222 0.00222 0.002888 0.00222 0.38978 – 0.00374 0.01208
ML-BLS 0.30772 0.00222 0.0232 0.00288 0.00222 0.00374 – 0.01878
ML-FBLS 0.00222 0.00222 0.00374 0.00222 0.0048 0.01208 0.01878 –

Coverage is considered as the depth to cover all truth labels. From Table 2.6,

it can be seen that the datasets having the number of output, the maximum num-

ber of labels is corel5k and the minimum number of labels are 6 in emotions and

scene dataset. This measure also depends on the raw numerical values as an output

produced by the different classifiers [143]. This is ensured that depth does not af-

fect the finding of ground truth labels for the classifiers. The average hamming loss,

one error, ranking loss, and average precision for proposed multi-label approaches are

better than other competitive approaches in the majority of the evaluation metrics.

The main assumption for these non-iterative approaches is the number of labels Q,

which ranges from a minimum of 6 to 374 in the datasets. The difference among

the labels becomes numerically less with the increase in the number of labels. This

limitation exists for both iterative and non-iterative based types of solutions. In the

future, The proposed multi-label approaches ML-RVFL, ML-KRVFL, ML-BLS, and

ML-FBLS without threshold function can be mixed with semantic word embedding of

labels. This approach is a better intuition to get better performance for larger num-

bers of labels. The computation of inverse matrix used in the non-iterative learning

for parameter and hyperparameter computation can be inefficient for a large matrix.
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Table 4.18: Statistics of p-values obtained from Wilcoxon’s signed rank test for one
error

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-RVFL ML-KRVFL ML-BLS ML-FBLS

ML-RVFL 0.00222 0.0232 0.00222 0.0048 – 0.0278 0.0048 0.151
ML-KRVFL 0.00222 0.0151 0.00222 0.0048 0.0278 – 0.00596 0.00758
ML-BLS 0.00758 0.93624 0.00222 0.01208 0.0048 0.00596 – 0.0232
ML-FBLS 0.00222 0.20766 0.00374 0.0096 0.151 0.00758 0.0232 –

Table 4.19: Statistics of p-values obtained from Wilcoxon’s signed rank test for cov-
erage

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-RVFL ML-KRVFL ML-BLS ML-FBLS

ML-RVFL 0.93624 0.01208 0.69654 0.04136 – 0.0096 0.11642 0.0222
ML-KRVFL 0.09894 0.0048 0.238 1 0.0096 – 0.04136 0.00222
ML-BLS 0.00222 0.13622 0.18352 0.00288 0.11642 0.04136 – 0.00222
ML-FBLS 0.034 0.93624 0.0048 0.0022 0.00222 0.0222 0.00222 –

Table 4.20: Statistics of p-values obtained from Wilcoxon’s signed rank test for average
precision

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-RVFL ML-KRVFL ML-BLS ML-FBLS

ML-RVFL 0.00758 0.38978 0.7186 0.278 – 0.0048 0.00596 0.4777
ML-KRVFL 0.00374 0.0278 0.232 0.00288 0.0048 – 0.00288 0.00596
ML-BLS 0.38978 0.477 0.5823 0.93624 0.00596 0.00288 – 0.00222
ML-FBLS 0.18352 0.5287 0.30772 0.0601 0.477 0.00596 0.00222 –

The kernelized-based approaches open the future scope for kernelized approaches

in combination with fuzzy systems to improve all evaluation measures. The running

time for the training process is mentioned in Table 4.21.

Table 4.21: Running time in seconds for training procedure

RankSVM[8] ML-ELM[57] BP-MLL[3]
ML-KRR/
ML-KELM[24]

ML-RVFL ML-KRVFL ML-BLS ML-FBLS

emotions 1096 0.1328 1021 0.41 0.14 0.38 0.4 0.42
yeast 27720 1.6929 25200 0.49 1.5 0.42 0.45 0.47
scene 543 4.25 508 0.06 4 0.08 0.03 0.04

corel5k 5974 19.65 542 38 20 36 30 34
enron 6216 42.66 1182 90 40 74 78 84

medical 8266 62.66 1468 126 64 115 114 118
bibtex 14568 98.62 11652 145 99 132 132 138

rcv1v2s1 19440 102 18420 114 96 106 98 104
rcv1v2s2 19480 104 18480 118 98 103 100 102
rcv1v2s3 19510 102 18390 116 99 101 102 108
rcv1v2s4 19420 103 18370 117 101 101 101 105
rcv1v2s5 19520 105 18470 118 103 102 99 106

The ML-KRVFL and ML-RVFL perform better for multi-label classification with
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the limited tuning based on the five evaluation measures significantly. The perfor-

mance of ML-BLS is improved by ML-FBLS using the fuzzy rules in it. Based on

the Friedman rankings mentioned in Table 4.15 ML-KRVFL, ML-RVFL, and ML-

FBLS provide optimum Friedman rankings for hamming loss, ranking loss, and one

error measures. For the coverage, ML-KRVFL, ML-KRR/ML-KELM, and ML-RVFL

provide optimum Friedman rankings, respectively. ML-KRVFL, ML-FBLS, and ML-

RVFL provide optimum rankings respectively, as per the Friedman rankings. The

overall performance of randomized neural networks for multi-label classification is sig-

nificantly better than non-randomized-based approaches on the basis of experimental

results.

4.5 Analysis of Computational Complexity

For the ML-RVFL, the computational complexity to compute the output of the

enhancement layer is considered as O(NLM). The computational complexity of com-

putation of output weights for ML-RVFL is computed as the O(L3+L2N+LNQ). The

computational complexity of the threshold function is considered as O(N2Q). Hence

the total computational complexity of ML-RVFL can be estimated as O(NLM +L3 +

L2N + LNQ+N2Q). The number of hidden neurons is denoted as L.

The computational complexity of computing kernel matrix for ML-KRVFL for lin-

ear kernel is O(M) and for radial basis kernel function is O(N2M). The output weight

for ML-KRVFL has the computational complexity O(2N3+QN2). The threshold func-

tion has computational complexity O(N2Q). The complete complexity of ML-KRVFL

is O(M +N2M + 2N3 +QN2 +N2Q).

4.6 Summary

In this chapter, we have proposed ML-RVFL and ML-KRVFL for multi-label clas-

sification. In these approaches, we have used pseudoinverse to compute the output

weights. These approaches use an adaptive threshold function at the output layer
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to find the set of associated labels for the test instances. Based on the Wilcoxon

signed-rank test and Friedman test, the experimentation results on 12 benchmark

multi-label datasets show that RVFL based multi-label approaches ML-RVFL and

ML-KRVFL outperform the existing state-of-the-art multi-label algorithms for most

of the evaluation metrics. The ML-RVFL and ML-KRVFL use the matrix inverse

to compute the parameters of the neural network. The computation of inverse for

large matrices is complex; due to this reason, it becomes cumbersome to compute

the parameters for a large dataset for non-iterative approaches. We have proposed

two non-iterative approaches, ML-BLS and ML-FBLS, in chapter 3 and further two

non-iterative approaches, ML-RVFL and ML-KRVFL, in this chapter. All four non-

iterative multi-label approaches ML-BLS, ML-FBLS, ML-RVFL, and ML-KRVFL,

need the preprocessed features of datasets and these approaches are unable to work

with a large amount of raw data. In the next chapter, we have proposed a deep

learning based multi-label classifier that is capable of overcoming these limitations.
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Chapter 5

Graph Convolution Network based

Multi-Label Classification

In this chapter, we have proposed a multi-label classifier for the image domain using

a deep learning approach. The deep learning approaches are able to work on a large

amount of raw data, which overcomes the shortcomings of non-iterative algorithms.

We have proposed a graph convolution network based multi-label classifier for the

image domain. The objects in an image usually have dependencies when the objects

occur in an image. These dependencies are needed to consider during the multi-label

classification. The proposed classifier multi-label graph convolution neural network

with pairnorm (MLGCNpairnorm) is able to work with a large number of labels. This

approach captures the correlations among labels that provide the scalability to the

number of labels. The proposed approach designs an inter-dependent classifier having

the graph neural network with the convolution neural network. The MLGCNpairnorm

addresses the over-smoothing problem that happens in GCN. The proposed classifier

MLGCNpairnorm has two main components one is the image module, and the second

is the GCN module. The image module extracts the features of the image, and the

GCN module presents the labels as the nodes of graphs. These nodes are the seman-

tic representation of the labels, which are usually a feature representation of labels.

The proposed classifier is able to tackle the over-smoothing problem efficiently. Ex-

periments performed on two large-size image datasets (MS-COCO and VOC 2007)

show that the proposed approach alleviates the over-smoothing problem and performs

87



better than other multi-label classifiers. We use the benefits of graph data structure

to explore and capture the label correlation and dependency. We utilized the GCN

to consider the label co-occurrence and proposed an efficient end-to-end multi-label

classifier that is able to handle the over-smoothing issues. The labels in the proposed

approach are represented as nodes in the graph with their features (word embedding).

The next section provides the introduction to multi-label classification in the image

domain using GCN.

5.1 Introduction

Image recognition with multiple labels aims to find multiple objects in the given

image. In this scenario, multi-label classification is different and more challenging than

multi-class classification, where only one object is predicted in the given image [19, 20].

A simple approach for multi-label classification is to consider it as independent binary

classifiers for each label. In these approaches, the label set grows exponentially and

lacks the ability to capture semantic information of labels. Deep learning based ap-

proaches have great potential for computer-vision recognition and verification-related

tasks. These approaches use the learned features from the input instances. CNN is ex-

tended for multi-label classification using various approaches, such as images directly

fed into the CNN using the support vector machine pipeline[78]. Gong et al. [34]

compared various losses using the CNN as a feature extractor. The top-k ranking pro-

vides the improvement in the performance of the multi-label classifiers [144]. All these

mentioned approaches ignore the semantic relationship among labels. The semantic

relationship between labels is being considered by the visual semantic embeddings in

recent times [103, 145].

For the computer vision based tasks, a deep-learning based convolution neural

network (CNN) can be trained with the softmax function at the output layer [79].

The softmax function at output layer based approaches also considers the multi-label

classification as a different single-label classification problem, which uses the ranking

loss or cross-entropy loss for the classification [34]. All of these approaches are limited
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in their scalability as the number of classes or labels grows continuously. In the

case of multi-label classification, as the number of classes increases, the distinction

between classes becomes unclear. These models are unable to scale their ability for

the growing number of labels or classes. The labels are dependent on each other

in various manners, such as correlation, prior knowledge related to neighbor nodes,

and geometric information of graphs. Among these dependencies, correlation is the

key dependency for multi-label classification. The approaches discussed above fail to

consider the correlations among labels.

The semantic label space can be designed by the information obtained from the

unannotated text. This information preserves the semantic relationship among labels

while visual-semantic embeddings are learned[103]. For the multi-label classification,

RNN is utilized to consider the label dependencies among labels[146]. In this approach,

the correlation among labels is learned by creating the link of label embeddings in the

joint embedding space. A single CNN based paradigm for multi-label classification is

proposed to learn from the transformation of an image rather than a representation of

the image [145]. The CNN-based approaches are used to analyze the visual image data.

This data represents the euclidean data, and CNN can not process the non-euclidean

data (social network data), which is present in the real world in huge amounts [35].

The GCN is proposed to deal with this non-euclidean data. The GCN has two types

of construction, spectral construction and spatial construction. The CNN can be

explained in terms of spectral construction with the help of a mathematical foundation.

The CNN can be used to design localized fast convolutions on graphs[147]. The process

of convolution operators on graphs is improved by the step convolution operator and

stacking the layer.

Thomas et al. [35] proposed the GCN, and later it was confirmed by Li et al. [84]

that GCN is actually a variant of Laplacian smoothing. The GCN has the potential to

capture the contextual information between the graph generation of labels and images.

As shown in Figure 5.1, the probability of the presence of a cricketer in an image is

high if bat, ball, stumps, and helmet occur together. The left image of bat and ball

in Figure 5.1 helps to provide the semantic that if a ball is present, then the bat is
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Figure 5.1: Example of label dependencies in multi-label classification

present in an image. These types of semantics help to create the graph of labels as

the nodes and the dependencies as the edges. The edges in Figure 5.1 are mentioned

to provide the illustration for the label dependencies. The dependencies are based on

conditional probability. The dependencies are denoted by the direct graph. In this

direct graph, we demonstrate a directed graph over the object labels to denote label

dependencies in multi-label image recognition. For example, ”Label A → Label B”

means when Label A appears, Label B is likely to appear, but its reverse may not be

true.

A graph convolution neural network based classifier is proposed to resolve the scal-

ability and correlation issues [35, 148]. The graph convolution neural network based

classifiers suffer from the over-smoothing problem [83, 84]. The over-smoothing prob-

lem occurs due to the increment in the number of layers. The convolution operators

are analogous to laplacian smoothing. When the convolution operation is applied

many times to the functions, then the functions converge to similar values. The

same scenario happens when the layers are increased in the GCN then the features of

nodes converge to similar values due to the convolution operations. This behavior is

known as over-smoothing. The GCN suffers from over-smoothing problems because

the nodes in the graphs are unable to differentiate among the neighbor nodes when

the number of layers increases in the network. Over-smoothing makes it difficult to
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make the GCN deep and decreases the performance of the deep classifier if it is not

tackled in the initial phase of network design. In the next section, we present the pro-

posed MLGCNpairnorm algorithm, which provides the solution to tackle the problem

of over-smoothing in multi-label image recognition.

5.2 Multi-Label Classifier based on GCN to Tackle

Over-smoothing Problem: MLGCNpairnorm

In this section, we describe the proposed approach for multi-label classification with

a graph convolution neural network based on pairnorm MLGCNpairnorm to alleviate

the effect of over-smoothing. This approach is inspired by pairnorm, which keeps the

total pairwise squared distance among the nodes similar before and after convolution

operation [38]. The proposed approach incorporates the pairnorm to resolve the over-

smoothing issue in the multi-label image domain. Lets D = {X, Y } denoted the

training set of data where X = Rn×d denotes the training instance and Y ∈ {0, 1}n×d

denotes the labels. There can be more than one entry of 1 in Y is possible for the

input instance. Given an image, we aim at partitioning labels into two disjoint sets

according to the image-label relevance. In simple words, the proposed pairnorm based

multi-label classifier separates the relevant and irrelevant labels of an input image

using the graph convolution neural network.

We propose the multi-label classification approach to reduce the effect of over-

smoothing using pairnorm with GCN. Pairnom can be considered as the normaliza-

tion of the output of the graph convolution output. The graph convolution can be

formulated as a graph regularized least square and considered as an optimization prob-

lem. The convolution procedure measures the variation of new features for the graph

structure. Due to the convolution, the nodes with similar properties come in the same

cluster, known as smoothing. The convolution procedure cannot distinguish the nodes

from different clusters and performs the smoothing procedures on the nodes from dif-

ferent clusters. This smoothing process on distant nodes is termed as over-smoothing.
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In the proposed approach, Â represents the output of the graph convolution pro-

cess, which is the input to the pairnorm. The output of the pairnorm process is denoted

by Ȧ. This flow is shown in Figure 5.2. In simple words, pairnorm is a normalization

procedure that is applied after the convolution operation. This normalization process

is a two-step process as follows.

convolution  
operator step 1 step 2

Figure 5.2: Flow diagram of pair norm

Step 1: In the first step, we subtract the row-wise mean from each Âi as follows

Âcenteri = Âi −
1

n

n∑
i=1

Âi (5.1)

where Âcenteri denotes the centered representation of nodes and n is the total number

of nodes in the graph which denotes the labels.

Step 2: Using the step two, scaling operation on centered representation is per-

formed as follows.

Ȧi = sp
√
n.

Âcenteri

||Âcenteri ||2F
(5.2)

where Ȧi denoted the output of pairnorm and sp is the scaling parameter. We have

imposed more restrictions on node representation in the GCN and used the following

form of scaling

Ȧi = sp.
Âcenteri

||Âcenteri ||2
(5.3)

The total pairwise squared distance (TPSD) of nodes in matrix S and the output

of convolution operation Al+1 becomes different, and the steps mentioned in Eq. 6.12

and Eq. 6.14 make it the same. The aim of pairnom is to keep the total pairwise

squared distance among nodes constant before and after the convolution operation.

These operations are performed after every convolution operation in the graph. In this
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Figure 5.3: Proposed classifier with pair norm

way, the effect of over-smoothing is reduced in the GCN. In the GCN-based multi-

label inter-dependent classifier, a matrix W is learned from the label representation

using a GCN based mapping function. The GCN is used as stacking the layer l where

the output of current layer Al is processed by pairnorm, then it is provided to the

next layer Al+1 as an input. The input for the first layer is Z ∈ RC×d matrix, and

W are generated classifiers at the last layer having dimensions RC×D. The predicted

score of the classifier is obtained by applying the learned classifier to the image feature

representation can be denoted as

ŷ =Wx (5.4)

The binary cross entropy (BCE) loss function is used to train the proposed model.

The true labels are denoted by y ∈ RC and has the vaues 0 or 1 as per the association

of labels. The BCE loss is defined below

L =
C∑
c=1

yc log(σ(ŷc)) + (1− yc) log(1− σ(ŷc)) (5.5)
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Table 5.1: Parameter values of the classifier

Parameters Parameter values
Hidden layer dimensions 1024, 2048
tau 0.4
LeakyReLU slope 0.2
Momentum 0.9
Weight decay 0.0001
Initial learning rate 0.01

As shown in Figure 5.3, the proposed approach has two parts. The first one is the

image representation, and the second one is for the label’s word embedding learning

using GCN. For the first part, the image is converted to the features representation

using the Rensnet101. Any CNN model can be used to generate feature representation.

The generated features have the dimension same as the label’s dimension D. In the

second part, the embedding is learned using GCN, and C classifiers are generated. The

dot product of each class is computed, and top labels are used for the prediction. The

transformation from images to feature vectors can be done by CNN-based models. Any

CNN-based model can be used as the backbone to transform the image into a feature

vector. We use the ResNet-101 [31] as the backbone network to transform the image

to the feature vector. After the transformation, the dimension of the image feature

vector becomes equal to the dimension of the word embedding of labels. The dot

product of word embedding and feature representation is computed, and the network

is trained using BCE loss as shown in Eq. 5.5.

5.3 Experiments and Results

We discuss the experimentation settings and results reported by the proposed

approach in this section. We have evaluated the performance of the proposed method

on VOC 2007[5] and MS-COCO[20] datasets. We report the results based on the

evaluation metrics mean average precision(mAP), per class average precision (CP),

per class recall(CR), per class F1 score (CF1), and the average overall precision(OP),

overall recall(OR), and overall F1(OF1) for the performance comparison.
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The PyTorch framework is used to implement the proposed approach. We have

reported the results on the two layers, three layers, and four layers. For the proposed

ML-GCN, the results are reported to show the over-smoothing problem as the compar-

ative parameter with the increasing number of layers. The labels are represented by

the Glove [85], which is trained on the Wikipedia dataset. For those labels which have

multiple similar words in embedding, we have taken an average of all the word features

for similar words. We have taken the benefits of the mathematical properties of word

embeddings for these labels. We can represent the labels in numerical features using

embedding, so mathematical operations such as average, addition, and deletion can be

used for the labels. LeakyReLU function is used for faster convergence in the image

representation for nonlinear representation. The slope of LeakyReLU is negative for

faster convergence. The ResNet architecture pretrained on the imagenet is used for

feature extraction. Stochastic Gradient Descent (SGD) is used as an optimizer. The

parameters of the network are shown in table 5.1. We first discuss the performance of

the proposed approach on the MS-COCO dataset in section 5.3.1 and VOC 2007 in

section 5.3.2. The ablation study for the over-smoothing is discussed in section 5.3.3.

5.3.1 Results on MS-COCO dataset

Microsoft-Common Objects in Context (MS-COCO) dataset is a widely used

dataset for image classification tasks. This dataset contains the visual scenes. This

dataset has been used for multi-label classification in recent times. There are 82,081

images present in the training set and 40,504 in the validation set. There are 80 classes

in the MS-COCO dataset and an average of 2.9 objects per label. There are no specific

labels available for multi-label learning for the test set, so multi-label approaches use

the validation for testing purposes.

The experimental results for all the classes are reported in table 5.3. The mAP

is significantly improved by the proposed classifier using pairnorm. The proposed

pairnorm based MLGCNpairnorm outperforms all other classifiers for mAP CP, CR,

CF1, OP, OR, and OF1 for all classes. The results for the top 3 classes are described in

table 5.2. We compare the results with RNN-attention [82], CNN-RNN [80], ML-ZSL
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Table 5.2: The comparison results for all labels on MS-COCO dataset

Methods mAP CP CR CF1 OP OR OF1
CNN-RNN 61.2 - - - - - -

SRN 77.1 81.6 65.4 71.2 82.7 69.9 75.8
ResNET-101 77.3 80.2 66.7 72.8 83.9 70.8 76.8

Multi-Evidence - 80.4 70.2 74.9 85.2 72.5 78.4
ML-CGCN 83.0 85.1 72.0 78.0 85.8 75.4 80.3

MLGCNpairnorm 85.114 87.86 75.54 81.23 89.66 79.78 84.43

[94], Order free RNN [149], SRN [83] , Multi-evidence [150], and ML-CGCN [148].

The results show that the pairnorm scheme with ML-GCN performs better than other

approaches for the top 3 classes also. It is observed that labels that are closer to

each other become closer and distant labels remain distant from each other after

applying the normalization using pairnorm. This is the reason that the performance

of MLGCNpairnorm is significantly better than other state-of-the-art approaches.

5.3.2 Results on VOC 2007 dataset

The PASCAL VOC 2007 dataset is the collection of consumer photographs taken

from the photo-sharing website Flickr. This dataset is well used for multi-label clas-

sification tasks. There are 9963 images from the 20 classes in the VOC dataset. We

use the trainval set to train the model and the test set to test the proposed approach.

The results of CP, CR, CF1, OP, OR, and OF1 for all classes are shown in Figure 5.4.

The CP, CR, CF1, OP, OR, and OF1 are 91.63 %, 78.05 %, 84.29%, 98.03%, 96.14%,

and 97.07 % respectively for all the classes of VOC 2007 dataset. The results of CP,

CR, CF1, OP, OR, and OF1 for top 3 classes are shown in Figure 5.5. The CP, CR,

CF1, OP, OR, and OF1 are 94.62 %, 76.58 %, 84.65%, 96.07%, 94.97%, and 95.51%

respectively for top 3 classes of VOC 2007 dataset. For a fair comparison, we report

the mean average precision (mAP) of the proposed approach with CNN-RNN[80],

RLSD[151], VeryDeep[32], ResNet101[31], FeV+LV[152], HCP[146], RNN-Attention

[82], Atten-Reinforce[153], and ML-CGCN[148] . The experimental results are shown

in table 5.4 which shows that for the VOC 2007 dataset ML-GCN with pairnorm

outperforms all other approaches.
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Table 5.3: The comparison results for top 3 labels on MS-COCO dataset

Methods CP CR CF1 OP OR OF1
CNN-RNN 66.0 55.6 60.4 69.2 66.4 67.8

RNN-Attention 79.1 58.7 67.4 84.0 63.0 72.0
Order-Free RNN 71.6 54.8 62.1 74.2 62.2 67.7

ML-ZSL 74.1 64.5 69.0 - - -
SRN 85.2 58.8 67.4 87.4 62.5 72.9

ResNET-101 84.1 59.4 69.7 89.1 62.8 73.6
Multi-Evidence 84.5 62.2 70.6 89.1 64.3 74.7

ML-CGCN 89.2 64.1 74.6 90.5 66.5 76.7
MLGCNpairnorm 91.55 66.83 77.26 94.21 70.04 80.35
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Figure 5.4: Results provided by the MLGCNpairnorm approach for all classes of VOC
2007 dataset

5.3.3 Ablation Studies

The over-smoothing problem is considered in the computer vision domain when

the difference among classes becomes indistinguishable. The hidden layers in the

network find the nonlinear transformation, and in the case of graphs, it provides the

same value for all the nodes. Here nodes represent the labels. In this way, the labels

become indistinguishable. The solution to the problem related to over smoothing is

still being explored in recent times[84]. We propose a multi-label classifier based on a

graph convolution neural network with an efficient method to minimize the effect of

the over-smoothing problem. The result of increasing the layers in ML-GCN with
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Figure 5.5: Results provided by the MLGCNpairnorm approach for top 3 classes of
VOC 2007 dataset

Table 5.4: Comparison of mAP with state-of-the-art approaches on VOC 2007 dataset

Methods mAP
CNN-RNN 84.0
RLSD 88.5
VeryDeep 89.7
ResNet101 89.9
FeV+LV 90.6
HCP 90.9
RNN-Attention 91.9
Atten-Reinforce 92.0
ML-CGCN 94.0
MLGCNpairnorm 94.47

pairnorm is described in table 5.5 for MS-COCO dataset and in table 5.6 for VOC

2007 dataset. For the MS-COCO dataset, the effect of over-smoothing is minimized

by having two layers. The pairnorm is applied to the two-layer GCN, and the value

of mAP, CF1, and OF1 for all labels are 81.23%, 84.43%, 77.26%, respectively, and

for the top 3 labels, CF1 and OF1 are reported as 80.34% and 75.67% respectively.

For VOC 2007, the dataset mAP for two layers is reported as 94.47%, and for 3 and

4 networks, the reported mAP is 94.12% and 93.98%, respectively. These metrics are

decreased when the number of layers is increased in the GCN network for the training

of the classifier. It is observed that in the GCN-based approaches, the deeper networks
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Table 5.5: The effect of over-smoothing on MS-COCO dataset

All top 3
mAP CF1 OF1 CF1 OF1

2 layer 81.23 84.43 77.26 80.34 75.67
3 layer 80.00 84.12 76.98 80.12 75.67
4 layer 79.82 83.88 76.42 79.88 75.67

Table 5.6: The effect of over-smoothing on VOC 2007 datset

# Layers mAP
2 layer 94.47
3 layer 94.12
4 layer 93.98

are not always better. Even in most of the scenarios, it suffers from the over-smoothing

problem. So it’s better to choose the appropriate approaches to minimize the effect

of over-smoothing from the fewer layers itself so that the effect of over-smoothing can

be alleviated for more layers. The pairnorm based interdependent classifier is able

to alleviate over-smoothing for the two-layer network, and its performance becomes

superior to other approaches when the layers are increased.

5.4 Summary

In this chapter, we have proposed MLGCNpairnorm, which is GCN based multi-

label classifier and able to process a large amount of raw image data. The

MLGCNpairnorm is an effective inter-dependent object multi-label classifier which uses

the feature extracted from the CNN and labels in the form of semantic embeddings.

These semantic embeddings represent the features of the labels and are useful for

creating the correlation matrix to consider the dependency among the labels. The

MLGCNpairnorm incorporates the pairnorm for GCN to minimize the effect of over-

smoothing. The pairnorm is easy to implement as it works as a normalization scheme

for the output of graph layers. The GCN with pairnorm outperforms other state-

of-the-art approaches for multi-label classification. The effectiveness of a pairnorm

based multi-label classifier is shown by the experimental results performed on MS-
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COCO and VOC 2007 datasets. The proposed approach is able to limit the effect

of over-smoothing in multi-label classification. The aim of using this approach was

to maintain the inter-dependence relationship between labels to alleviate the effect of

over-smoothing. We only consider correlation as the inter-dependence relationship in

this work which can be extended to use the geometry information and prior knowledge

as an interdependence relationship among nodes. The MLGCNpairnorm have one main

assumption that all the labels have their corresponding training instances during train-

ing. Apart from this assumption, some of the labels do not have their corresponding

instances during training. The labels whose corresponding instances are available dur-

ing training are known as seen labels and those labels whose corresponding instances

are not available during training are known as unseen labels. The MLGCNpairnorm

has a limitation in that it is unable to classify the instances which are corresponding

to the unseen labels. In the next chapter, we have extended the MLGCNpairnorm to

consider this transfer of knowledge from seen labels to unseen labels using zero-shot

learning.
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Chapter 6

Zero-Shot Learning for Multi-Label

Classification using Graph Convolution

Network

In this chapter, we have proposed a GCN-based zero-shot learning multi-label clas-

sifier for the image domain. The MLGCNpairnorm approach proposed in the previous

chapter is unable to consider the unseen labels for multi-label classification. Hence

we have extended the MLGCNpairnorm to consider the unseen labels using zero-shot

learning. The proposed approach, multi-label zero-shot learning using pairnorm based

partial label graph convolution neural network (ML − ZSLPGCN), uses the label

features obtained from the images during training and semantic embeddings for the

unseen labels. The ML− ZSLPGCN first creates the features corresponding to the

images, and its label aware module creates the feature vector of the labels correspond-

ing to the seen labels. Zero-shot learning transfers the knowledge from the seen labels

available during training to the unseen labels using semantic embeddings. A graph

convolution network takes the feature vector of seen labels during training and se-

mantic word embedding for the unseen labels as input and learns the classifier for

multi-label classification. The next sections introduce the zero-shot learning in the

image domain using GCN and discuss the proposed approach ML− ZSLPGCN .
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6.1 Introduction

The deep learning algorithms for the multi-label classification using GCN are able

to classify the raw image data. In the image domain, due to the various combinations

of label spaces and mapping between image features and label space, ZSL multi-label

spaces have the limitation of capturing the local features in the image and ignoring

the global label dependencies [40]. In order to tackle these issues, Ou et al. have

proposed the GCN based ZSL multi-label classifier in which the labels are represented

as the nodes of the graph. This approach contains two modules [40]. The first one is

the image module which captures the features of images, and the second is the GCN

module which considers the semantic representation of label spaces. The semantic

representation of labels is obtained by the pre-trained vectors such as Glove[85] and

GoogleNews [87]. This GCN based approach uses a deep GCN network, and it suffers

from the problem of over-smoothing[35, 84]. Due to this problem, these approaches

are unable to differentiate the features of input data when the layers are increased in

GCN. This situation is known as over-smoothing [84]. The over-smoothing problem

occurs when the network becomes deeper in GCN.

To tackle these existing issues, we propose Multi-label zero-shot learning using

pairnorm based partial label graph convolution neural network (ML− ZSLPGCN),

which uses the label information from the images available during training and se-

mantic embedding as well for unseen labels. The GCN uses the semantics embedding

of the seen labels during training from the image, and for the unseen labels, it uses

the word embedding of unseen labels. The proposed classifier is designed by using a

simple normalizing pairnorm procedure [38] in the GCN to tackle the over-smoothing

issue. ML−ZSLPGCN can capture both class-specific features and label correlation

from raw images, and it utilizes the information of image content and word embedding

to learn an interdependent classifier. In the proposed approach, the features of labels

for training data are generated using the label aware module, and semantic embed-

ding is used for those labels which are not available during training. Both seen and

unseen labels are used for training using GCN. The proposed approach takes the ben-
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efits of seen labels from the label aware module and unseen labels from the semantic

embedding. The main contributions of this chapter are mentioned below:

(i) Label aware module and semantic embedding both are used to represent the

labels feature for seen and unseen labels, respectively, for multi-label zero-shot

learning.

(ii) The over-smoothing issue in the zero-shot multi-label learning is tackled by in-

troducing pairnorm.

6.2 Preliminaries

In this section, we present the preliminaries of multi-label zero-shot learning. Ini-

tially, the formal definition of zero-shot learning is described, followed by the discus-

sion of Attention Regional Embedding, which is an important part of the proposed

Multi-Label Zero-Shot Learning classifier.

6.2.1 Multi-Label Zero-Shot Learning

The aim of zero-shot learning multi-label classifiers is to provide good performance

on both seen and unseen labels. Lets Ds represents the training set with instances

Xs and their corresponding labels Y , where Xs ∈ Rns×d and Y ∈ {0, 1}ns×s. For the

training set Ds, each training instance is represented by d dimensional vector. The

test data Dt contains only the instances X t which are represented by d dimensional

vector. Let for the test data, instances related to both seen labels s and unseen labels

u are available so we can represent the total number of labels as q using q = u + s,

where set of unseen labels is denoted as U = {s + 1, s + 2, ..., s + u}. For Zero-

Shot learning, we assume that label embedding is available for both seen and unseen

labels. In the proposed approach, the embedding of the seen labels is created using

the label aware module, which is discussed in the next section. The embeddings of

seen and unseen labels are represented by embedding matrix H=[Hs : Hu] ∈ Rq×m

where Hs ∈ Rs×m represents the embedding matrix for seen labels and Hu ∈ Ru×m
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represents embedding matrix for unseen labels. The GCN generates correlated label

representations of each label which is known as the interdependent classifiers C. These

interdependent classifiers are used to classify the images. In the next subsection, we

have discussed the attention regional embedding, which is used to find multiple objects

automatically in the images.

6.2.2 Attention Regional Embedding

Attention Regional Embedding (ARE) captures discriminative regions without any

manual annotation [154]. There are two parts of ARE; the first one is Attention

Region Discovery(ARD), and the second is Attention Threshold(AT). ARD is used

to highlight the attention regions, and AT filters out the regions having low attentive

strength. After completing the operation of ARD and AT, the feature maps are

concatenated by exploiting the Global Max Pooling(GMP). After these operations, a

fully connected layer is used to control the dimension of the subnet and to fuse both

local and global features to form the final image representation.

The discriminative regions in an image are captured automatically using the at-

tention region embedding, which takes the features maps as an input provided by the

backbone network. Any CNN network can be considered as the backbone network

to extract the feature information from the image. The important regions in an im-

age work like a bridge between an image x and its embedding for semantic transfer.

These important regions can be captured using the attention mechanism. This at-

tention mechanism is applied after the backbone convolution operation and obtaining

the feature map Z from the convolution operation as shown in Figure 6.1. Suppose

Z ∈ Rheight×width×channels denotes the last feature map of the three-dimension tensor

generated by the backbone network. This is generated by the CNN based backbone

for image x as follows.

Z = B(x) (6.1)

where B(x) denotes the final output of backbone network.
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Figure 6.1: Attention Regional Embedding

Lets there are N no. of regions, and the attention mechanism captures the semantic

region and reduces the gap between seen and unseen images. The following expression

denotes the mask operation to create N number of two dimensions masks

Mn =MMGn(Z) (6.2)

where MMGn denotes the mask generation operation and n ∈ (1, 2, ..., N). An

element-wise product is performed between the generated mask Mn and the feature

map Z to generate the attentions convolution feature maps. For this purpose, gener-

ated masks are reshaped with the size of Z.

Γn = OReshape(Mn)⊗ Z (6.3)

where Γn denotes generated attention convolution feature maps, ⊗ represents the

element-wise product, and OReshape, reshapes the size of the input to Z. These gen-
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erated attentional convolution feature map contains redundancy, so adaptive thresh-

olding (AT) operation is performed to filter the redundant noise. The AT operation

first computes the maximum of each 2D mask map (Mn) from the N attention fea-

ture maps and generates the N dimensional maximum value vector mv ∈ RN×1. The

maximum value in mv is known as global maximum value (ATmax) of N attention

convolution feature maps. The following mathematical expression denotes the global

maximum value of N attention convolution feature maps.

ATmax = max
1≤n≤N

mv(n) (6.4)

where ATmax represents the maximum value of vector mv(n) and n denotes the index

of vector mv. Hence mv(n) denotes the maximum value of each 2D mask map (Mn)

from the N attention feature maps. To remove redundant noise, we use the threshold

bound TB which is denoted by the following expression.

TB = η × ATmax (6.5)

where η ∈ (0 ≤ η ≤ 1) is the adaptive coefficient, and TB denotes the threshold bound

which is used to generate the information-rich feature map by reducing redundancy. To

generate the information-rich feature map, the value at nth index in mv(n) is compared

with TB. If the value at nth index in mv(n) is less than TB then the corresponding

feature map Γn is set to zero. In this way, the information-rich feature map is obtained.

We use global max pooling to preserve the important features generated by ARD and

concatenate them. The final output of the attention region module is a rich feature

vector that is used in the proposed approach to generate the output layer and semantic

feature vectors of labels in the label aware module.
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Figure 6.2: Complete ML− ZSLPGCN approach using pairnorm

6.3 Proposed ZSL Multi-Label Classifier using

GCN: ML− ZSLPGCN

In this section, we discuss the proposed GCN-based zero-shot learning multi-label

classifier that contains three main modules. The first module represents the image

representation module, the second module represents the label aware module, and

the third module represents the learning module using GCN. The overall proposed

approach is shown in Figure 6.2. We describe all modules one by one in subsequent

sections.

6.3.1 Image representation module

In the image representation module, any CNN-based model can be used to learn

the representation features of the input image x. In this work, ResNet101 is used

as the backbone, which provides the feature maps of an image x to the Attention

Regional Embedding (ARE) as shown in Figure 6.1. The semantic transfer of infor-

mation between seen and unseen labels can be done using the local regions of an image

corresponding to the specific semantic information. The fully connected layer is gen-
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erated as the final image representation by concatenating the feature maps provided

by the attention mechanism. The fully connected layer should match the dimension

of the class/label. The extracted feature fv(x) is the final representation of image x,

which is generated by the Image representation module. This representation can be

represented using the following mathematical expression

fv(x) = L(G(T (R(Z)))) (6.6)

where Z = B(x), R, T , G, and L are the backbone network operation, the ARD

operation, the AT operation, the GMP operation, and the fully connected operation

respectively. fv(x) is used in the label aware module to create the feature vectors for

the seen labels, which are discussed in the next section.

6.3.2 Label-aware module

Label aware module is used to create the semantic embedding of those labels which

are available during training. This module extracts the global image representation

of an image x and converts it into a set of label-specific features. We use a fully

connected layer to implement this module for x as shown in Figure 6.2. This can be

represented as below.

ycls = ffc(fv(x); θfc), (6.7)

where fc denotes the plain classifier, which forms the fully connected layer, θfc is

the parameters of the plain classifier. Each classifier predicts the emergence of label c

in the image on the basis of extracted information.

After the above procedure, the extracted label relevant features are obtained by

using the following equation.

Zlar = F
⊙

θfc ∈ RC×D (6.8)

where Zlar denotes the relevant semantic feature vectors of seen labels and F

denotes [fv(x), ..., fv(x)], which represents C times copy of extracted features fv(x) ∈
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RD. The
⊙

symbol denotes the element-wise hadamard product. After applying the

classifier parameters θfc on F , the relevant semantic features vectors for seen labels

are generated. Hence the hadmard product between F and classifiers parameters θfc

captures the information related to the seen labels. The semantic label features Zlar

are used in GCN learning as an input for the seen labels.

6.3.3 Multi-Label Graph Convolution Network module

The Multi-Label Graph Convolution Network module uses GCN to represent the

labels. In GCN, the labels are used as feature vectors and used for training. In the

case of zero-shot learning, the feature vectors of seen labels are taken as an input which

is taken from the label aware module. For the unseen labels, the label embeddings are

provided as an input in GCN for the feature vector.

As discussed in section 2.4.1, the correlation matrix represents the cooccurance of

labels for multi-label classification. In case of ZSL we propose two separate correlation

matrices one for the seen labels and another for the transfer knowledge to unseen labels.

For the seen labels during training, the binary correlation matrix S1
ij is denoted as

S1
ij =

0, if nij

ni
< τ

1, if nij

ni
≥ τ

(6.9)

where nij

ni
and τ are the probability and threshold respectively as discussed in

section 2.4.1.

Using S1
ij matrix, it is not possible to create the co-occurrence matrix between seen

to unseen labels or unseen to unseen labels because unseen labels are not available

during training. Hence we create the second similarity matrix for the transfer from

seen to unseen labels as follows.

S2
ij =

1, if i ∈ Nv(j) or j ∈ Nv(i)

0, other

(6.10)
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where v nearest neighbors of label i are denoted by Nv(j). With the help of Eq.

6.9 and 6.10, complete correlation matrix is represented as follows

Sij =

αS1
ij + (1− α)S2

ij, if i ∈ S and j ∈ S

S2
ij, other

(6.11)

where α can be used between 0 to 1. For our experimentation we have the value of α

as 0.5 to provide the equal weightage to S1
ij and S2

ij. Further we denote Sij as S for

notation simplification.

We design the final output of each GCN node to be the classifier of the corre-

sponding label in our task. In the GCN module, the final output of each node is the

classifier of the corresponding label. We create the label semantic similarity matrix

using 300-dimensional embedding by calculating the Euclidean distance between la-

bels. In this work, GCN takes the features generated by the label aware module for

the seen labels and semantic embedding generated by the Glove embedding [85] for

the unseen labels as an input. The GCN suffers from the problem of over-smoothing,

so we incorporate the pairnorm to reduce the effect of over-smoothing. Pairnorm

can be considered as the normalization of the output of the graph convolution out-

put. The graph convolution can be formulated as a graph regularized least square

and considered as an optimization problem. The convolution procedure measures the

variation of new features for the graph structure. Due to the convolution, the nodes

with similar properties are grouped in the same cluster, known as smoothing. The

convolution procedure cannot distinguish the nodes from different clusters and per-

forms the smoothing procedures on the nodes from different clusters. This smoothing

process on distant nodes is termed over-smoothing [84].

convolution  
operator step 1 step 2

Figure 6.3: Flow diagram of pairnorm
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The GCN takes the input features for seen and unseen labels as mentioned by the

Eq. 2.6 and Eq. 2.7. In the proposed approach, Â represents the output of the graph

convolution process, which is the input to the pairnorm. The output of the pairnorm

process is denoted by Ȧ. This flow is shown in Figure 6.3. In simple words, pairnorm

is a normalization procedure that is applied after the convolution operation. This

normalization process is a two-step process as follows.

Step 1: In the first step, we subtract the row-wise mean from each Âi as follows

Âcenteri = Âi −
1

n

n∑
i=1

Âi (6.12)

where Âcenteri denotes the centered representation of nodes and n is the total number

of nodes in the graph which denotes the labels.

Step 2: Using the step two, scaling operation on centered representation is per-

formed as follows.

Ȧi = sp
√
n.

Âcenteri

||Âcenteri ||2F
(6.13)

where Ȧi denoted the output of pairnorm and sp is the scaling parameter. We have

imposed more restrictions on node representation in the GCN and used the following

form of scaling

Ȧi = sp.
Âcenteri

||Âcenteri ||2
(6.14)

The total pairwise squared distance (TPSD) of nodes in matrix S and the output

of convolution operation Al+1 becomes different, and the steps mentioned in Eq. 6.12

and Eq. 6.14 make it the same. The aim of pairnorm is to keep the total pairwise

squared distance among nodes constant before and after the convolution operation.

These operations are performed after every convolution operation in the graph. In this

way, the effect of over-smoothing is reduced in the GCN. In the GCN-based multi-

label inter-dependent classifier, a matrix W is learned from the label representation

using a GCN based mapping function. The GCN is used as stacking the layer l where

the output of current layer Al is processed by pairnorm, then it is provided to the

next layer Al+1 as an input. The input for the first layer is Z ∈ RC×d matrix, and W
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are the output generated classifiers of the last layer having dimensions RC×D. The

predicted score of the classifier is obtained by applying the learned classifier to the

image feature representation can be denoted as

ŷ =Wycls (6.15)

After the discussion of the three modules, the proposed ML − ZSLPGCN ap-

proach can be considered as a supervised model with all the seen and unseen labels.

Due to ZSL supervised learning, we use quasi-fully supervised learning loss [155] during

training which is defined as follows.

L =
1

ns

ns∑
i=1

Lp(x
s
i , yi) +

λ

nt
Lb(x

t
i) (6.16)

where λ is a parameter to provide the trade-off between two terms Lp and Lb, ns is

the number of training instances, and nt is the number of test instances. The term

Lp(x
s
i , yi) is the binary cross entropy loss defined as follows

Lp(x
s
i , yi) =

∑
c∈S

yci log(σ(ŷci )) + (1− yci )log(σ(1− ŷci )) (6.17)

where ŷci denotes the predicted output of cth label for ith instance and σ denotes the

activation function. In Eq. 6.16, Lb(x
t
i) is the balance term which is used to reduce

the bias to the seen classes on the unlabelled data. The balance term can be denoted

by the following mathematical expression.

Lb(x
t
i) = −ln

∑
c∈S(σ(ŷci ))∑

c∈S(σ(ŷci )) +
∑

c∈U(σ(ŷci ))
(6.18)

where S denotes the seen labels set, and U denotes the unseen label set. The loss

mentioned in Eq. 6.16 is optimized in the proposed ML− ZSLPGCN model during

training. The Image representation module is used to create the features, and the

label aware module creates the feature vectors for the seen labels. The GCN is used

to map the features of seen labels Zlar and semantic embedding of unseen labels
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Table 6.1: Dataset description

Dataset NUS-WIDE MS-COCO
training 1,00,000 78,081
validation 10,203 4,000
testing 20,000 40,137
classes 1,000/81 80

into the generated classifiers. The GCN maintains the inter-class relationship using

the correlation matrix. The over-smoothing problem in GCN is taken care of by

proposing pairnorm. The top associated labels are created using the dot product

between generated classifiers and the output of the image representation module.

6.4 Experiments and Results

The experimental details of the proposed approach ML−ZSLPGCN are discussed

in this section. The experiments of the proposed ML − ZSLPGCN are performed

on XUbuntu 18.04 Intel Xeon Gold server with 192 GB RAM and TITAN Xp 16

GB GPU. The two benchmark datasets, MS-COCO and NUS-WIDE, are used to test

the proposed pairnorm based model for zero-shot learning. The details of these two

datasets are mentioned in Table 6.1. The details of the datasets NUS-WIDE [131] and

MS-COCO [77] is followed from [148, 94] for the experimentation. Based on the K

highest-ranked labels for the corresponding images, the evaluation measures precision,

recall, and F1 score are computed to measure the performance of the proposed model.

For the training, labeled and unlabelled data are mixed, and randomly selected images

are used to create batches of size 32.

For the image representation, the input images are cropped to the size 448 × 448

with a random horizontal flip during training. The Resnet 101 is used to create the

2048 × 14 × 14 feature maps. The proposed architecture uses a two-layer GCN-based

classifier with the output dimension of 1024 and 2048. The Glove semantic embedding

is used for the label representation. Labels having multiple words are embedded by

averaging the features of an individual word in those labels. As the same semantic
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Table 6.2: Parameters used in the proposed approach ML− ZSLPGCN

Parameters Value
Initial learning rate 0.1
No. of Epochs 50- 200
Momentum 0.9
Weight decay 0.00001
Number of attention regions 10
AT parameter range 0.5 to 1
α 0.1 to 1

Table 6.3: Comparison results on MS-COCO dataset

P R F1
WSABIE 54 55.7 54.8
Logistics 67.3 60.1 63.5
ML-KNN 54.9 56.7 55.8
Fast0Tag 57.2 61.3 59.2
MZSL-KG 72.8 63.4 67.8
ML-GCN 82.4 69.7 75.5
MZSL-GCN 83.7 71.3 77
ML-ZSLPGCN 84.5 73.2 78.45

embedding Glove is used for both datasets, The threshold τ for both datasets is set

as 0.4 in the experimentation. The parameters of the network are mentioned in Table

6.2. The network is implemented on the Pytorch framework.

The proposed approach is compared with WSABIE [90], Fast0tag [156], Logistic

[157], ML-KNN[25], MZSL-KG [94], ML-GCN [148], ESZSL [108], LFRLS [158], and

MZSL-GCN [40]. The results of existing approaches are taken from the GCN based

zero shot learning for multi-label classification [40].

Table 6.3 gives the details of experimental results obtained for the MS-COCO

dataset. Our proposed pairnorm based ML − ZSLPGCN approach provides supe-

rior results against the baselines approaches WSABIE, Logistics, ML-KNN, Fast0Tag,

MZSL-KG, ML-GCN, and MZSL-GCN.
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Table 6.4: Comparison results for NUS81 dataset

P R F1
WSABIE 27 46.1 34.1
Logistics 35.2 43.3 38.8
ML-KNN 25 43.6 31.8
Fast0Tag 28.9 51.2 36.9
MZSL-KG 41.2 45.3 43.2
ML-GCN 53.1 37.3 43.8
MZSL-GCN 53.3 38.4 44.6
ML-ZSLPGCN 53.6 40.2 45.94

Table 6.4 gives the details of experimental results obtained for the NUS-81 dataset.

ML−ZSLPGCN provides superior results against the compared WSABIE, Logistics,

ML-KNN, Fast0Tag, MZSL-KG, ML-GCN, and MZSL-GCN in terms of F1 score.

The value of α mentioned in Eq. 6.11 represents the effect of the unseen and seen

labels correlation on matrix A. The 0 value of α represents correlation matrix A2
cs as

Acs. The 1 value of α represents the correlation matrix A1
cs as Acs. The value of α

ranges between 0 and 1, and the value toward 1 makes the correlation matrix suitable

for seen labels learning, and The value of α towards zero makes the correlations matrix

suitable for unseen labels. The balance of correlation between seen and unseen labels

is needed for better multi-label zero-shot learning. In this work, the value is taken as

0.5, which provides equal weightage for seen and unseen labels correlation matrix.

The parameter λ mentioned in Eq. 6.16 has a significant effect on the performance

of the multi-label ZSL performance. This parameter provides the balance to the loss

function for seen and unseen labels. The small value of λ leaves the ZSL problem

unsolved because the part of unseen labels becomes very less significant in the loss

function according to the Eq. 6.16. The large value of λ provides weightage to the

unseen label learning. The range of λ is considered between [0, 0.1, ...0.9, 1].

The threshold variable τ converts the continuous values of the correlation matrix

A to the binary matrix. The higher value of τ increases the number of filtering edges,

due to which the F1 score gradually decreases. The 0 value of τ does not filter out

edges, so it does not converge the model. The effect of τ on the F1 score is shown in
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Figure 6.4: F1 score performance vs. label correlation threshold τ
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Figure 6.5: F1 score vs number of epochs

Figure 6.4. In this figure, both the datasets NUSWIDE-81 and MS-COCO have the

highest F1 score on the 0.4 value of label correlation threshold τ . The value of τ is

kept the same for all the datasets because it is based on the Glove embeddings of the

nodes, which is similar for all the datasets. The graph shown in Figure 6.5 describes

the improvement of the F1 score provided by the proposed ML−ZSLPGCN , which

is based on the number of epochs for both MS-COCO and NUSWIDE-81 datasets.

6.4.1 Ablation Study

The ablation study to analyze the effect of the proposed pairnorm based ML −

ZSLPGCN is discussed in this section. Table 6.5 represents the precision, recall, and
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Table 6.5: Ablation study for ML− ZSLPGCN

Layer 2-layer 3-layer 4-layer
P 84.5 84.2 83.8

MS-COCO R 73.2 72.8 72.2
F1 78.445149 78.0861146 77.5687179
P 53.6 53.2 52.8

NUS-81 R 40.2 39.8 39.6
F1 45.9428571 45.5346237 45.2571429

F1 score by using 2, 3, and 4 layers in ML − ZSLPGCN . The performance of the

GCN based approaches decreases by increasing the number of layers. This decrement

can be tackled by using the pairnorm with the GCN based approaches so that the

performance deduction can be minimized. The results on the datasets MS-COCO and

NUS-81 are nearby similar by increasing the layers in ML−ZSLPGCN . The output

dimensions for the three layers are set in the experimentation as 1024, 1024, and 2048.

The output dimensions for four layers are set in the experimentation as 1024, 1024,

and 2048.

6.5 Summary

In this chapter, we have proposed a GCN-based zero-shot multi-label classifier

(ML−ZSLPGCN) that is able to alleviate the over-smoothing problem in GCN us-

ing pairnorm technique. The ML− ZSLPGCN contains three modules. The first is

the image representation module, which creates the features of images, and the second

module is the label aware module which creates the features of seen labels. The third

GCN module maps the class-relevant representations to the inter-dependence repre-

sentation of classes. The co-occurrence of labels in GCN is captured by a correlation

matrix which is created by two different types of correlation matrices. The first cor-

relation matrix considers the co-occurrence of seen labels, and the second correlation

matrix is used for transferring knowledge from seen labels to unseen labels. The ex-

perimentation results performed on MS-COCO and NUS-WIDE benchmark datasets

show that ML − ZSLPGCN is better than state-of-the-art multi-label approaches
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in terms of precision, recall, and F1-score. Hence GCN based multi-label algorithms,

MLGCNpairnorm and ML − ZSLPGCN are able to classify the raw images with a

large number of labels. However, these approaches are unable to classify the sequential

data. Therefore, we have proposed the heuristic-based deep learning approach that

is able to classify the sequential data and simultaneously handle the data imbalance

problem.
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Chapter 7

Heuristic based Deep Learning

Multi-Label Classifier for Sequential

Protein Data

In this chapter, we have proposed a heuristic-based deep learning algorithm for

multi-label sequential data. The greatest challenge with multi-label classification is

to handle the data imbalance, which appears due to variance in frequencies of the

labels in the data. We have proposed a heuristic-based deep learning algorithm for

functional annotation of primary protein structure, which is an imbalanced sequential

data. The amino acids in protein sequences are responsible for multiple functions;

hence the classification of protein sequences is multi-label in nature. The proposed

approach improves the performance in comparison to state-of-the-art algorithms in

terms of precision, recall, AUC, subset accuracy, and F1 score. We have proposed

a heuristic approach to improve the precision and recall of the individual functional

classes to handle the data imbalance problem. In the next section, we have introduced

the multi-label classification of the protein sequences.

7.1 Introduction

In this section, we have introduced the multi-label classification for functional

annotation of sequential protein structure. In [159], the authors propose a protein
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classification approach in which proteins are stored in 20 x 20 bi-peptide matrices.

The protein classification approach uses unsupervised learning. As a result of this,

the self-organization of the neuron activation is used in a topologically ordered map,

such that the proteins belonging to a known family are associated with the same

neuron or one neighboring it. This self-organization into topologically ordered maps

makes the classification fast for new inputs. This method filters 1758 protein sequences

with lengths greater than 50. Another approach with the n-gram hashing or singular

value decomposition(SVD) method is useful for applying protein sequences to encode

the input vectors to the neurons [160]. This approach uses the annotated Protein

Identification Resource (PIR) database, and the input is applied to a three-layered

feed-forward neural network that employs the backpropagation learning algorithm. In

this work, target classes are pairwise disjoint. Hence this solution does not consider

the multi-label characteristic of protein sequences.

There are some approaches based on the Protein-Protein Interaction (PPI) datasets

that use random walk [161] and fruit fly optimization-based approaches [162] to char-

acterize the protein. The random walk based approach uses biological and topological

properties to determine protein essentiality in PPI. This approach is based on static

PPI networks and can not reflect the transient behavior of protein sequences. The

fruit fly optimization-based approach is able to determine the dynamic behavior of

protein, but this approach is unable to use the primary structure of protein sequences.

Even though experimentally validated PPI data drives research and development of

proteomics, they often have high false positives and false negatives. The cluster in-

formation and graph creation process is also time-consuming for the large available

protein data. For the sequential data, RNN has been introduced to fetch the complex

features and patterns[163]. The RNN still requires computation cost, and its two vari-

ants, Long Short Term Memory ( LSTM) and Gated recurrent unit (GRU), still are

unable to be in a parallel manner. These work in a sequential manner and the tasks

using RNN can not be parallelized. Also, the RNN based models suffer from the van-

ishing or exploding gradient problem, which occurs based on the depth of the model.

In [164], the neural network trained on 80% of the sequences of the SwissProt subset of
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the UniProt Dataset and tested its performance on the remaining 20%. This provides

a nearly 100% accuracy and classifies the proteins into only four different classes. In

this work, filtering of sequence length was limited between 10-1000 or 10-2000 as per

the classes. The 1-dimensional convolution neural network (1D-CNN) has the ability

to find the receptive fields which overcomes the vanishing gradient problem. Hence

we have proposed the 1-D CNN to classify the UniProt data which has more than a

thousand classes.

In order to overcome the vanishing gradient problem, we have proposed a deep 1D-

CNN to annotate the protein sequences on the basis of functional classes. This is our

motivation to use 1D-CNN for the proposed heuristic based deep learning approach.

We propose a 1D-CNN based heuristic approach to annotate the protein sequences

using the available structure information, i.e., the primary structure, which contains

the sequence of amino acids of a protein. We have filtered the UniProt data sequences

to make them available to process with neural networks. The proposed heuristic

approach is inspired by the harmonic heuristics [41] which has been adapted in various

domains such as feature selection, clustering-based approaches, and optimization [165,

166, 167]. We have proposed the heuristic approach to improve the individual precision

and recall of the labels which do not have better values by exchanging the weights

in the loss function of the 1D-CNN. The heuristics improve the performance of the

1D-CNN based architecture. The raw primary structure of protein needs to be filtered

so that it can be provided to the deep neural network as an input. The UniProt data

and its filtering process is discussed in the next section.

7.2 UniProt Data Representation and its Filtering

In this section, we have discussed the representation of the sequential UniProt

data, which has been used in the proposed approach, followed by the discussion of the

embedding of protein sequences.
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Figure 7.1: Embedding of ACDAD partial proteing sequence with size W × L

7.2.1 Filtering of UniProt data

The UniProt database, which is used in the experimentation, is a primary sequen-

tial structure of the protein. After obtaining the raw data from the UniProt source,

It is necessary to filter this data suitably. Data is shuffled and split into train and test

data, with the test data containing 5000 entries and the rest of the data being used

for training purposes. Some filtering measures are applied to make them suitable for

learning algorithms. The filtering criteria for the train data are as follows.

(i) Constraining the sequence length between 162 and 2000. This is largely deter-

mined by the available video memory on our GPU(Nvidia GP102 TITAN Xp 12

GB GPU). The lower limit is set to 162 so that the output of the last pooling

layer is at least one amino acid.

(ii) The starting character ”M,” which represents Methionine, is removed from all

the sequences.

(iii) Once protein sequences are filtered, the corresponding labels are filtered such

that every label has at least one protein sequence belonging to it.

For the testing purpose, we have considered the sequences with a length greater than

162. The longer sequences are cropped to a maximum length of 2000 for testing

purposes.
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7.2.2 Encoding of protein sequences

The primary protein sequences are the amino acid sequence where each amino

acid is represented by the 20 characters mentioned in table 2.5. These sequences are

converted into numerical representations using one hot-encoding. Hence the characters

of protein sequences are converted into numerical values. Each character is converted

to the 1-hot vector. We have used 20 amino acids and their six properties, so each

character becomes the vector of 26 lengths. Suppose the length of the sequence is L,

so each sequence is converted to the 26×L. The 1-hot encoding is the vector of values

0 and 1, so these vectors are converted to the vector of continuous values with fixed

length size W . The embedding is done by the wordtovec model named as ProtVec

embedding. Each protein sequence becomes the size of W×L. The embedding process

for the partial sequence ACDAD is shown in Figure 7.1. This embedding is fed to

the proposed heuristic based deep learning approach, which is discussed in the next

section.

7.3 Heuristic based Deep Learning approach for

Multi-Label Protein Sequences

In this section, We discuss the proposed heuristic based 1D-CNN deep learning

approach for the classification of primary protein structures. The proposed approach

consists of an encoding module, deep learning based 1D-CNN module, and a heuris-

tic module. In the first module, the protein sequences of amino acids and their six

properties create the 26-dimensional vector for each amino acid. These sequences are

converted to the fixed W × L size matrix using the embedding, and these sequences

are fed to the 1D-CNN module followed by fully connected layers. The heuristic rules

have been applied to the two generated models based on the best subset accuracy. The

heuristic approach increases the precision, recall, and F1 score using the increase in

the individual precision and recall of the labels. As shown in Figure 7.2 first, the pro-

tein sequences are converted into the numerical matrix to make them suitable for the
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Figure 7.2: Heuristic based system architecture

convolution process. These matrices are passed by the different convolution and max

pool layers. Nonlinear features of protein sequences are captured by these convolution

layers. These protein sequences are considered analogous to text sequences.

We use a deep network of 1D-CNN for the classification of protein sequences. The

stacking of convolution layers, max-pooling layers, and fully connected layers is used

for the classification. At the end of fully connected layers, the heuristic approach is ap-

plied to improve the classification performance. We discuss the encoding of sequences

and the heuristic based 1D-CNN approach in the next subsections.

The 1-D convolution takes into consideration the type of amino acid as well as its

properties, which determine the protein structure while doing the convolution opera-

tion. The effect produced by certain constituent amino acids only lasts in its neigh-

borhood and is not observed beyond it. The choice of the kernel size is used to restrict

the learning only to the neighborhood. The information extracted by convolution

operation effectively calculates the aggregated effect of groups of amino acids. With

each pass through a convolution layer, the length of the sequence decreases depending

upon the kernel size and stride. Therefore, in this process, complex information on

neighborhood influence can be learned. After the convolution and pooling layers, the

information is passed on to the fully connected layers of the neural network. At the

final fully connected layer, the values are compared to the target vector, and the model

is trained using the following loss function.

L(y, ŷ) =
m∑
i=1

n∑
j=1

−yij log ŷij − (1− yij) log(1− ŷij) (7.1)
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where y be the target output vector and ŷ be the output vector predicted by the

model. The total number of samples are m and total number of labels are n.

The loss function mentioned in Eq. 7.1 penalizes the training algorithm if the

output is not matched with the target vector. In the genome-related multi-label

classification tasks, the frequency of the label is calculated for the entire data set.

The distribution of labels is usually skewed for genome-related data. The learning

task is difficult for the labels with less frequency in the dataset. The solution to this

problem is to do over-sampling of labels with lower frequency or under-sampling of

labels with higher frequency or adding weights in the loss function. The annotation

task of protein sequences is multi-label in nature, so over-sampling a label occurring

a few times can also lead to over-sampling of a frequently occurring label. A similar

case can be considered for the under-sampling of labels. Hence, introducing weights

associated with individual labels in the loss function is a better approach. The loss

function with weights is shown as follows

L(y, ŷ) =
m∑
i=1

n∑
j=1

wj [−yij log ŷij − (1− yij) log(1− ŷij)] (7.2)

If the training procedure is done without weights (wj = 1.0) in the loss function,

then precision and recall becomes poor for label frequencies smaller than mean fre-

quency. Hence the weights for labels with frequency less than the mean frequency

need to be increased. Let sj be the label frequency of the jth label. The weight wj is

given as follows:

wj = max

{
1,min

{
mean (s)

sj
, 5

}}
(7.3)

where, mean (s) is Mean Label Frequency. Here, we limit the weights to be in the range

of [1, 5] for practical purposes. In this work, the mean label frequency for the genome

data is 1100. Thus the 1D CNN based approach using the weighted loss function

improves the performance of classification for protein sequences. The learning using

the weighted loss function mentioned in Eq. 7.2 results in good overall precision and

recall, but the precision and recall for individual labels can still be quite poor.
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Algorithm 5: A heuristic approach to improve the performance of multi-
label classification

Input : Two models A and B
Output: A new, improved output model

1 Choose two models, A and B, with the best two subset accuracy. while
either of A or B has a better of both precision and recall do

2 Find the labels lAp with individual precision for model A < fixedthreshold
3 Find the labels lBp with individual precision for model B <

fixedthreshold
4 Find the labels lAr with individual recall for model A < fixedthreshold
5 Find the labels lBrwith individual recall for model B < fixedthreshold
6 if lAp ≥ lBp then
7 Substitute the weights of labels having the precision of model A <

fixedthreshold by the weights of the same labels of model B and
generate a new model C.

8 else
9 Substitute the weights of labels having the precision of model B <

fixedthreshold by the weights of the same labels of model A and
generate a new model C.

10 end
11 if lAr ≥ lBr then
12 Substitute the weights of labels having recall of model A <

fixedthreshold by the weights of the same labels of model B and
generate a new model D.

13 else
14 Substitute the weights of labels having recall of model B <

fixedthreshold by the weights of the same labels of model A and
generate a new model D.

15 end
16 Select a better model based on subset accuracy between C and D.

Consider the selected model based on better subset accuracy as model B
go to step 2.

17 end

Hence, to improve the individual precision and individual recall of labels, we pro-

pose a heuristic based approach inspired by the harmonic heuristics rules with the

1D-CNN based architecture. This heuristic approach relies mostly on modifying the

weights of the loss function for each instance that influences the learning process.

After creating various variations, two models based on subset accuracy are selected.

Let these two models be named A and B. The idea is to import the weights from

a model performing better than another model. Using these models A and B, the
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labels having individual precision and recall less than a specific fixedvalue are found.

In our experimentation, we have set the fixedvalue 67%. Now in the next subse-

quent learning steps, the weights of the better models again replace the weights of the

same labels in the second model for both individual precision and recall. Thus this

proposed heuristic approach generates another set of two new models named C and

D. This process can be continued until the desired subset accuracy, precision, and

recall is achieved. The overall steps of this proposed heuristic approach are formalized

in algorithm 5. The proposed approach is implemented using the PyTorch and the

experimentation details are discussed in the next section.

7.4 Experimentation and Results

In this section, we discuss the experimental results and provide a detailed analysis

of these results obtained by exhaustive experiments. We first discuss the results and

performance of various variations of the proposed deep learning model. Later we

discuss the improvement in the results by using the heuristic approach.

7.4.1 Experimental Results and Discussion

We have performed experiments to verify our approach to solve the multi-label

classification problem related to genome sequences. As mentioned for this, the 1D-

CNN is used for the functional annotation of protein data. The initial configuration of

parameters and architecture-related deep convolution model is mentioned in Table 7.1.

In this network, adam optimizer is used for optimization. This architecture provides

81.39 % precision, 68.38 % recall, 99.03% AUC, and 29.88 % SA. The value of SA is

very poor in this model, and it is improved further by making various variations in

the structure of the convolution neural network. All the variations in the experiments

are denoted as a model.

As shown in table 7.2, model 1 improves the precision, recall, and AUC, but the

SA value is reduced slightly by removing the spatial pooling layer from model 0. The

precision, recall, AUC, and SA are reported as 83.09 %, 81.97 %, 99.52 %, and 29.02
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Table 7.1: Network architecture and parameters for model 0

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
spatial pyramid pool (levels=3, divs per level=4)
fully connected 1 (units=1024, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=1200)

Table 7.2: Network architecture and parameters for model 1

conv (size=6, stride=1, depth=64, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=64, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=128, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
fully connected 1 (units=5000, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=1200)

%, respectively by model 1.

As shown in table 7.3, in model 2, the batch norm is removed from model 0, and its

impact is clearly seen in the results that evaluation metrics are worsening by a large

margin. The precision, recall, AUC, and SA values provided by model 2 are 13.52%,

10.75 %, 77.84%, and 0.01 % respectively.

In model 3, the activation function ReLU is used, and the rest of the configuration

is the same as model 0. The summary of the network architecture of model 3 is shown

in table 7.4. This variation performs better than model 2, but the overall performance

of this model is not good as the values of precision, recall, AUC, and SA values are
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Table 7.3: Network architecture and parameters for model 2

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
spatial pyramid pool (levels=3, divs per level=4)
fully connected 1 (units=1024, activation=prelu)

dropout (p=0.5)
fully connected 2 (units=1200)

Table 7.4: Network architecture and parameters for model 3

conv (size=6, stride=1, depth=128, padding=VALID, activation=relu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=relu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=relu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
spatial pyramid pool (levels=3, divs per level=4)
fully connected 1 (units=1024, activation=relu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=1200)

42.07%, 26.24%, 94.27%, and 3.64% respectively. The effect of the activation function

LeakyReLU is presented by model 4, and it is found that it improves the precision,

recall, AUC, and SA values in comparison to model 3. The precision, recall, AUC, and

SA are reported as 78.28 %, 65.92 %, 98.82 %, and 27.23 %, respectively, by model 4.

The architecture is mentioned in table 7.5.

The increment in the number of neurons in the fully connected layer to 4096

improves the recall and SA when it is compared to model 0, but it improves all

metrics precision, recall, AUC, and SA when it is compared to model 4. This model is

represented as model 5 in table 7.6. The precision, recall, AUC, and SA are reported

as 75.10 %, 72.01 %, 98.91 %, and 30.67 %, respectively, by model 5.

Model 6 is the variation of model 1, and this is described in table 7.7. In this

model, one fully connected layer with 2048 units and the PReLU activation function

is added. The batch norm is included in this model after the dropout value of 0.5. This
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Table 7.5: Network architecture and parameters for model 4

conv (size=6, stride=1, depth=128, padding=VALID, activation=leaky relu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=leaky relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=leaky relu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=leaky relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=leaky relu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=leaky relu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
spatial pyramid pool (levels=3, divs per level=4)

fully connected 1 (units=1024, activation=leaky relu)
dropout (p=0.5)

batch norm (scale=True)
fully connected 2 (units=1200)

Table 7.6: Network architecture and parameters for model 5

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
spatial pyramid pool (levels=3, divs per level=4)
fully connected 1 (units=4096, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=2048, activation=prelu)
dropout (p=0.5)

batch norm (scale=True)
fully connected 3 (units=1200)

model improves the recall and AUC values. The values of precision and SA provided

by model 6 are not satisfactory. The precision, recall, AUC, and SA are reported as

79.97 %, 72.09 %, 98.96 %, and 29.96 %, respectively, by model 6.

Model 7 as described in tabel 7.8 is the variation of model 1 with the number

of output channels in each layer. This model 7 improves the precision, recall, AUC,

and SA values to a significant amount as 87.04%, 86.23%, 99.69%, and 34.57%, re-

spectively. Model 8 represents the 2048 neurons in a fully connected layer with the

PReLU activation function of model 7 with the batch norm. This variation declines

the performance of model 7 slightly. Model 8 is summarized in table 7.9. The preci-

sion, recall, AUC, and SA are reported as 83.47 %, 75.80 %, 99.20 %, and 33.36 %,
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Table 7.7: Network architecture and parameters for model 6

conv (size=6, stride=1, depth=64, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=64, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=128, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
fully connected 1 (units=5000, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=2048, activation=prelu)
dropout (p=0.5)

batch norm (scale=True)
fully connected 3 (units=1200)

Table 7.8: Network architecture and parameters for model 7

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
fully connected 1 (units=5000, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=1200)

respectively, by model 8.

The change in the dropout value to 0.25 provides a better value of precision, recall,

AUC, and SA than in model 8, but the effect of this variation is observed to be slightly

poor than model 7 for recall, AUC, and SA. This variation in the convolutional neural

network is mentioned as model 9, and its structure is summarized in table 7.10. The

precision, recall, AUC, and SA are reported as 87.42 %, 81.50 %, 99.61%, and 33.37%,

respectively, by model 9.

Model 10 performs best among all the models from 0 to 10. This model is a

variation of model 7 with the value of dropout equal to 0.25. The structure of model

10 is shown in table 7.11. The precision, recall, AUC, and SA are reported as 94.30 %,

92.97 %, 99.87 %, and 44.46%, respectively, by model 10. From table 7.1 to table 7.11
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Table 7.9: Network architecture and parameters for model 8

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
fully connected 1 (units=5000, activation=prelu)

dropout (p=0.5)
batch norm (scale=True)

fully connected 2 (units=2048, activation=prelu)
dropout (p=0.5)

batch norm (scale=True)
fully connected 3 (units=1200)

Table 7.10: Network architecture and parameters for model 9

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
spatial pyramid pool (levels=3, divs per level=4)
fully connected 1 (units=4096, activation=prelu)

dropout (p=0.25)
batch norm (scale=True)

fully connected 2 (units=1200)

we have provided the different variations in the proposed network. The experimental

results for these variations are summarized in table 7.12 in terms of precision, recall,

AUC, and SA. In model 2, the batch norm is removed. Due to this, the performance

of the network is significantly degraded. This is due to the occurrence of covariance

shift and unable to normalize the output values of each layer. In this way, for the CNN

network, it becomes difficult to differentiate the similar type of sequences of proteins.

The performance of model 3 is better in comparison to model 2 because of the

dropout layer, but its performance is not significantly improved. The activation func-

tion used in model 3 is ReLU which suffers from the dying ReLU problem [168]. The

results reported by activation functions PReLU and leaky ReLU are good and signif-

icantly better than ReLU as shown in table 7.12 because these activation functions
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Table 7.11: Network architecture and parameters for model 10

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
batch norm (scale=False)

conv (size=6, stride=1, depth=128, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=256, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)

max pool (size=2, stride=2, padding=VALID)
batch norm (scale=False)

conv (size=5, stride=1, depth=512, padding=VALID, activation=prelu)
max pool (size=2, stride=2, padding=VALID)

batch norm (scale=False)
fully connected 1 (units=5000, activation=prelu)

dropout (p=0.25)
batch norm (scale=True)

fully connected 2 (units=1200)

Table 7.12: Summary of the results

Model Precision Recall AUC SA
0 81.39% 68.38% 99.03% 29.88%
1 83.09% 81.97% 99.52% 29.02%
2 13.52% 10.75% 77.84% 0.01%
3 42.07% 26.24% 94.27% 3.64%
4 78.28% 65.92% 98.82% 27.23%
5 75.10% 72.01% 98.91% 30.67%
6 79.97% 72.09% 98.96% 29.96%
7 87.04% 86.23% 99.69% 34.57%
8 83.47% 75.80% 99.20% 33.36%
9 87.42% 81.50% 99.61% 33.37%
10 94.30% 92.97% 99.87% 44.46%

handle the dying ReLU problem.

Spatial pyramid pooling is used to convert any size input to a fixed size output

[118]. It is used between the convolution layer and the fully connected layer. In

our experiments, it is used in models 2, 3, 4, 5, and 9 in our experimentation. The

performance is improved by removing the spatial pyramid pooling in model 10, as

shown in tables 7.11 and 7.12.

Another factor in the performance of the classification is the distribution of fre-

quency of the labels. The UniProt dataset was found skewed when the frequency

of the labels was calculated for the entire data set. Label Frequency Distribution is

shown in Figure 7.3.

The distribution of Precision and Recall vs Label Frequency is represented in Figure
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Figure 7.3: Label Frequency Distribution

Figure 7.4: Precision and Recall vs Label Frequency

7.4. The heuristic approach is used to improve the performance of the skewed data

after the variations using various models. The proposed heuristic approach imports

the weights of a better-performing model to another model which have less precision

and recall values. Model 10 achieves the subset accuracy of 44.46 % with 225 labels

with precision lesser than 67% and 58 labels with recall lesser than 67%(a benchmark

set for reference purposes). Another model (Model 11) is trained with no weights in

the loss function and achieved subset accuracy of 50.85%, with 94 labels with precision

lesser than 67%, and 113 labels with recall lesser than 67%. There is no change done

in the architecture during this process. The new models can be generated from the

existing models, as mentioned in algorithm 1. We denote the generation of new models

as phases. The phases are described below.

(i) In Phase-I of crossing the weights, the individual recall can be improved in Model

11 and individual precision in Model 10. Hence, the weights of Model 10 for the
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Table 7.13: Results provided by Model 12

Measure value
Subset Accuracy 48.20 %
number of labels with precision lesser than 67% 106
Number of labels with recall lesser than 67% 107

Table 7.14: Results provided by Model 13

Measure value
Subset Accuracy 49.44 %
number of labels with precision lesser than 67% 173
Number of labels with recall lesser than 67% 58

Table 7.15: Results provided by Model 14

Measure value
Subset Accuracy 50.16%
number of labels with precision lesser than 67% 112
Number of labels with recall lesser than 67% 64

Table 7.16: Results provided by Model 15

Measure value
Subset Accuracy 49.31%
number of labels with precision lesser than 67% 137
Number of labels with recall lesser than 67% 85

Table 7.17: Results provided by Model 16

Measure value
Subset Accuracy 55.43%
number of labels with precision lesser than 67% 81
Number of labels with recall lesser than 67% 87

corresponding labels(labels whose recall for Model 11 is lesser than 67%) are

assigned to the same labels in Model 11, represented in Model 12. Similarly,

weights of Model 11 are assigned to the same labels in Model 10 for labels whose

precision for Model 10 is lesser than 67%, represented in Model 13. The results

provided by model 12 and 13 are shown in table 7.13 and table 7.14.

(ii) In Phase-II, the same process is performed between Model 11 and Model 13(be-

cause of higher subset accuracy), resulting in Model 14(improving recall in Model

11) and Model 15(improving precision in Model 13). The results provided by

model 12 and 13 are shown in table 7.15 and table 7.16.
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Figure 7.5: Plot of Recall for individual Labels for Models - 10,11 and 12.

Figure 7.6: Plot of Precision for individual Labels for Models - 10,11 and 13.

(iii) In the final phase, model 11 and model 14 are considered. The results provided

by final model 16 are shown in table 7.17.

Figure 7.5 represents the performance of recall of individual label samples versus

labels for models 10, 11, and 12. Using the heuristics, model 12 provides better recall.

This model 12 is generated by substituting the weights of model 10 in model 11 as per

the proposed heuristic approach.

Figure 7.6 provides the visualization of the precision of individual label samples

versus label plots for models 10, 11, and 13. Using the heuristics, model 13 provides

better precision. This model 13 is generated by substituting the weights of model 11

in model 10 as per the proposed heuristic approach.
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Figure 7.7: Plot of Recall for individual Labels for Models - 11,13 and 14.

Figure 7.8: Plot of Precision for individual Labels for Models - 11,13 and 15.

Figure 7.7 provides the visualization of recall of individual label samples versus

labels for models 11,13,14. Using the heuristics, model 14 provides a better recall.

This model 14 is generated by substituting the weights of model 13 in model 11 as per

the proposed heuristic approach.

Figure 7.8 provides the visualization of the precision of individual label samples

versus labels for model 11,13,15. Using the heuristics, model 15 provides better pre-

cision. This model 15 is generated by substituting the weights of model 11 in model

13 as per the proposed heuristic approach.

Figure 7.9 provides the visualization of the precision of individual label samples

versus labels for models 11,14,16. Using the heuristics, model 16 provides better
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Figure 7.9: Plot of Precision for individual Labels for Models - 11,14 and 16.

Table 7.18: Summary of the results using heuristic approach

Model Precision Recall AUC SA
11 96.73% 95.23% 99.92% 50.86%
12 96.52% 93.80% 99.92% 48.20%
13 95.46% 95.79% 99.93% 49.44%
14 96.00% 95.56% 99.93% 50.17%
15 95.72% 94.68% 99.92% 49.31%
16 98.37% 97.57% 99.94% 55.43%

precision. This model 16 is generated by substituting the weights of model 11 in

model 14 as per the proposed heuristic approach.

Figure 7.5, 7.6, 7.7, 7.8, and 7.9 represent the performance visualization of the

heuristic approach by the plots of Precision and Recall of individual label samples for

the parent models and the child model. As it can be concluded from the above graphs,

performing the substitution of weights using a heuristic approach in the models leads

to improvement in Precision and Recall for the individual label samples. All the results

produced by models 11 to 16 have been shown in Table 7.18.

The performance of our work has been compared with LSTM [169], biLSTM[169],

GRU[169], CNN[169], and SVM[169], and deep CNN[39]. All the compared approaches

work on the primary raw structure of protein sequences. The detailed parameter values

related to compared approaches are mentioned in table 7.19. These methods report

the values of the F1 score for consideration, and the best values are mentioned as a

result in Table 7.20. The work based on deep CNN [39] provides performance based on
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Table 7.19: Parameter setting for the comparative approaches

Architecture hidden unit learning rate l2 regulizer dropout
SVM – – – –
LSTM 100 0.01 0 .85
biLSTM 100 0.007 0 .7
GRU 100 0.01 0 .8
CNN 384 .0001 .0001 .8

DeepCNN Number of Epochs 10, 20, 30
Amino Acid Embedding Size 11, 21, 31
Dropout FC 0.55, 0.65, 0.75, 0.85
Batch size 64, 128, 256
Fully Connected Layer Size 256, 512, 1024
Optimizer Adam

Table 7.20: comparison of prediction performance across various models

Approaches Dropout F1 Score
LSTM 0.85 92.51
biLSTM 0.7 92.22
GRU 0.8 94.84
CNN 0.8 93.4
SVM NA 87.88
Deep CNN 0.6 97.77
Heuristic based 1D-CNN not used for 97.96

heuristic

the F1 score and AUC. The best AUC for our proposed heuristic approach is 99.94%,

which is better than all other competitive approaches. The subset accuracy measure

is essential, and we consider it for our results. It can be seen that heuristic-based

classifier performs better than other compared approaches. The proposed heuristic-

based approach can be investigated with other machine learning or deep learning based

approaches in other domains such as computer vision and natural language processing.

7.4.2 Computational Complexity

1D convolution is considered as a sum of the row-wise dot products of input em-

bedding matrix A ∈ RW×L with a filter K ∈ RW×k, where W are the dimensionality

of word embedding space and k is the length of filter to convolve over the matrix A.

One dot product consists of the k multiplication and k−1 additions. Total W number

of dot products are performed, so the complexity of complete dot product operations

139



becomes O(Wk). The filter is applied over the input L − k + 1 times, where L is

the length of the sequence. Usually, L>>>k, so the final complexity of a convolu-

tion layer becomes O(LWk). The number of the filter in a layer can be denoted by

f , so using f filters, the complexity becomes O(LWkf). The time required by the

pooling operation is linear, so the dominating time complexity for each operation is

O(LWkf). The deep neural network requires high computational power due to the

size of the data, and this complexity is compensated by the computing resources such

as the graphics processing unit(GPU).

7.5 Summary

In this chapter, we have proposed a heuristic based deep learning approach that

is able to classify the primary protein sequences along with the handling of data

imbalance issue in it. The heuristic approach is used to handle to data imbalance

problem of the SwissProt subset of UniProt data. The proposed approach is exten-

sively experimented, and its performance is evaluated in terms of various parameters;

and performance metrics precision, recall, subset accuracy, and AUC. The proposed

heuristic-based approach handles the data imbalance through weight modulation in

the loss function to influence the learning process. The experimental results confirm

the effectiveness of the proposed approach by providing the precision, recall, AUC,

and subset accuracy as 98.37%, 97.57%, 99.94%, and 55.43%, respectively, which are

the best among compared state-of-the-art deep learning approaches.
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Chapter 8

Conclusions and Future Work

In this chapter, we have discussed the conclusion and future work related to the pro-

posed multi-label classification approaches throughout in thesis. This thesis primarily

investigates the non-iterative and deep learning approaches for multi-label classifica-

tion. We have developed non-iterative algorithms ML-BLS, ML-FBLS, ML-RVFL, and

ML-KRVFL for multi-label classification. Further, we have developed deep learning

based multi-label classifiers in the image and sequential data domain. The developed

non-iterative learning algorithm ML-BLS creates the mapped features using the input

instances and then creates the enhancement nodes using the mapped features. At the

output layer of ML-BLS, the adaptive threshold function is used to separate the rele-

vant label from the irrelevant labels for an input instance. Further, we have developed

ML-FBLS which is a hybrid neuro-fuzzy approach for multi-label classification. In the

ML-FBLS, the mapped features are replaced by the fuzzy subsystems to get a better

interpretation of the results in comparison to ML-BLS. The ML-FBLS improves the

performance of ML-BLS in terms of five evaluation metrics of multi-label classifica-

tion. To improve the evaluation metrics coverage and average precision further, we

have proposed a simple and effective SLFN-based ML-RVFL classifier, which connects

the input features directly to the output layer using direct links. This approach im-

proves the performance of multi-label classification in comparison to both ML-BLS

and ML-FBLS. Finally, we have proposed a fourth non-iterative multi-label classifier

ML-KRVFL, which uses the kernel approach to avoid the estimation of the number
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of neurons in the hidden layer of ML-RVFL. All of these four multi-label classifiers

ML-BLS, ML-FBLS, ML-RVFL, and ML-KRVFL, use pseudoinverse to compute the

output layer weights. Further, for complex domains such as images, these approaches

lead to huge time complexity due to the increased overheads in pseudoinverse com-

putation during training; hence we have proposed deep learning based multi-label

classifiers for multi-label classification in the image and sequential data domains be-

cause deep learning approaches are able to extract features from a large amount of raw

data. For the image domain, we have proposed MLGCNpairnorm which uses semantic

embeddings of the labels as the nodes of GCN. MLGCNpairnorm is able to tackle the

over-smoothing problem of GCN using the simple normalization approach pairnorm.

Further, we have extended MLGCNpairnorm to consider the unseen labels by proposing

a zero-shot multi-label classification approach ML− ZSLPGCN . For the sequential

data domain, a large amount of raw sequential data is available to be processed using

deep learning. We have proposed a heuristic-based deep learning multi-label classifier

to classify the primary protein sequences. This heuristic-based classifier also handles

the data imbalance problem which occurs in the primary protein sequence obtained

from Uniprot data. In this thesis, all the proposed algorithms are generalized for

multi-label classification in their respective domains. The results and analysis exhibit

that the proposed approaches outperformed the existing state-of-the-art multi-label

algorithms on the basis of evaluation measures and statistical tests in their respective

domains

8.1 Summary of Research Achievements

The objectives specified in Section 2.3.2 have been successfully fulfilled by the

following main contributions:

(i) ML-BLS and ML-FBLS multi-label classification approaches: We have

proposed non-iterative randomization-based neural networks named ML-BLS

and ML-FBLS for multi-label classification. The output weights of these neural

networks are computed using pseudoinverse. At the output layer, multi-label
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classification is performed by using an adaptive threshold function. The com-

putation of output weights using pseudoinverse retains the faster computation

power of these algorithms compared to iterative learning algorithms. The adap-

tive threshold function used in the proposed approach considers the correlation

among the output labels and the whole dataset for threshold computation. These

approaches are simple to implement and less computationally expensive in com-

parison to iterative algorithms such as BP-MLL and RankSVM.

(ii) ML-RVFL and ML-KRVFL multi-label classification approaches: We

have proposed simple and effective non-iterative randomization-based neural net-

works ML-RVFL and ML-KRVFL for multi-label classification. The ML-RVFL is

a single-layer feedforward neural network that improves the performance of multi-

label classification based on five evaluation measures hamming loss, ranking loss,

one error, coverage, and average precision. At the output layer of ML-RVFL,

multi-label classification is performed by using an adaptive threshold function.

Further, we have proposed a kernelized approach ML-KRVFL which eliminates

the need for estimation of the number of neurons in the hidden layer. Over-

all, ML-KRVFL provides the best performance among all proposed non-iterative

classifiers.

(iii) MLGCNpairnorm multi-label classifier to tackle the over-smoothing

problem in GCN for image domain: To tackle the complex image domain

problems, we have proposed GCN based multi-label classifier MLGCNpairnorm

which represents the labels as feature embeddings. This approach tackles the

over-smoothing problem of the deep structure of GCN by proposing a simple

normalization technique pairnorm. Further, it uses a correlation matrix to con-

sider the dependency among labels. Thus it is able to provide scalability for the

number of labels as these labels are used in the form of nodes in GCN. Exper-

imental outcomes show that it outperforms existing state-of-the-art approaches

in terms of mean average precision, per class precision, per class recall, per class

F1 score, overall precision, overall recall, and overall F1 score on the MS-COCO

and VOC 2007 datasets.
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(iv) ML − ZSLPGCN zero-shot multi-label classifier for image domain:

We have proposed the ML−ZSLPGCN approach for zero-shot multi-label clas-

sification using GCN. The proposed approach takes the benefits of seen labels

created from the label awareness module and unseen labels from the semantic

embedding. Label aware module and semantic embedding both are used to rep-

resent the labels feature for seen and unseen labels, respectively, for multi-label

zero-shot learning. The over-smoothing issue in the zero-shot multi-label learn-

ing is also tackled by introducing pairnorm. Experimentation testing ensures

that the proposed classifier ML − ZSLPGCN outperforms existing zero-shot

state-of-the-art approaches in terms of precision, recall, and F1 score on the

MS-COCO and NUS-WIDE datasets.

(v) Heuristic-based deep learning multi-label classifier for sequential pro-

tein data: We have proposed a novel heuristic-based approach with deep CNN

to improve the overall performance of multi-label classification to functionally

annotate the protein sequences, which is sequential data, and this approach is

able to handle the issue of data imbalance of the labels related to these protein

sequences. The filtering of data (SwissProt subset of the UniProt Dataset) is

discussed to make it ready for applying the neural network. For this, filtering

methods are applied before encoding the protein sequence for mathematical re-

alization. In this phase, the protein sequences are considered as a mathematical

function that takes the sequence as an input and provides the functional classes.

We used the encoding of sequences after the prepossessing to make it compatible

with the 1D-Convolution Neural Network to classify genome data. Experimental

results show that the proposed heuristic based approach performs better than

existing state-of-the-art algorithms.

8.2 Future Research Directions

In recent times, multi-label classification has been explored in various research

areas such as image, sequential modeling, and zero-shot learning. Despite the signif-
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icant progress in multi-label classification, it has the potential to explore in several

interesting future directions.

(i) Extension of Non-iterative learning based multi-label classification to

handle large data: The non-iterative algorithms ML-BLS, ML-FBLS, ML-

RVFL, and ML-KRVFL provide the simple implementation of neural networks

for multi-label classification. These approaches provide good results with simple

structure. In the future, these approaches can be extended with fuzzy inference

and combined with GCN to represent the labels. ML-BLS, ML-FBLS, ML-

RVFL, and ML-KRVFL are limited for the preprocessed data, and with medium

size datasets due to the pseudoinverse computation, these approaches can be

extended with incremental learning to make them suitable for large datasets

[170]. In the future, the approaches have scope to be used with intuitionistic

fuzzy systems [171], which provide the weightage to the input samples based on

their features.

(ii) Graph Convolution Network based multi-label classifier: The GCN

based approaches MLGCNpairnorm and ML−ZSLPGCN proposed in the thesis

are developed for the image domain, and GCN is used to represent the labels with

deep learning models such as ResNet 101. In the future, the proposed approach

can be extended with other embeddings as graph nodes such as Google News [87]

and FastText semantic embeddings [172]. In this thesis, we consider correlation

as the inter-dependence relationship for MLGCNpairnorm and ML−ZSLPGCN ,

which can be extended to use the geometry information and prior knowledge as

an interdependence relationship among nodes.

(iii) Multi-label classifier using a heuristic-based deep learning approach

for sequential models: A multi-label classifier based on a heuristic-based deep

learning approach is designed to handle the data imbalance problem. The pro-

posed heuristic approach can be extended further to other deep learning based

approaches, such as RNN constructing methodologies [173] for multi-label clas-

sification. In the future, this approach can be extended with image domain deep
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learning models. The other metaheuristic algorithms, such as evolutionary al-

gorithms, can be used to optimize the structure of deep learning models rather

than backpropagation to optimize the parameters.
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