
SOME APPLICATIONS OF MACHINE LEARNING FOR
BIOMEDICAL SIGNAL PROCESSING

M.Sc. Thesis

By

NOURHEVINUO VICTORIA ANGAMI

DISCIPLINE OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY INDORE

MAY 2018



SOME APPLICATIONS OF MACHINE LEARNING FOR
BIOMEDICAL SIGNAL PROCESSING

A THESIS

Submitted in partial fulfillment of the requirements

for the award of the degree

of

Master of Science

by

NOURHEVINUO VICTORIA ANGAMI

DISCIPLINE OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY INDORE

MAY 2018



CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled in

the partial fulfillment of the requirements for the award of the degree of MASTER

OF SCIENCE and submitted in the DISCIPLINE OF MATHEMATICS,

INDIAN INSTITUTE OF TECHNOLOGY INDORE, is an authentic record

of my own work carried out during the time period from July, 2016 to May, 2018

under the supervision of Dr. M. TANVEER, Ramanujan Fellow and Assistant

Professor, Discipline of Mathematics, IIT Indore.

The matter presented in this thesis has not been submitted by me for the

award of any other degree of this or any other institute.

Signature of the student with date

(Nourhevinuo Victoria Angami)

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge.

Signature of Thesis Supervisor with date

(Dr. M. Tanveer)

Nourhevinuo Victoria Angami has successfully given her M.Sc. Oral Examina-

tion held on 18 May, 2018.

Signature of Thesis Supervisor Convener, DPGC

Date: Date:

Sign. of PSPC Member #1 Sign. of PSPC Member #2

Date: Date:

i



Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor Dr. M. Tanveer

for his patience, motivation and enthusiasm for helping me to complete this thesis.

I would also like to express my profound gratitude to Prof. Ram Bilas Pachori

for his guidance and immense knowledge in the field of signal processing and other

areas required in this thesis.

Their collaboration has given me the opportunity to work on this diverse excit-

ing thesis and an insight to research atmosphere.

Sincere gratitude is also extended to the PSPC members, Dr. Md. Aquil Khan

and Prof. Ram Bilas Pachori, for their valuable remarks and kind suggestions.

I would also like to thank Dr. Sk. Safique Ahmad, Head-Discipline of Mathematics,

for ensuring that the research lab is facilitated with the state-of-the-art computa-

tional facilities to carry out research with ease.

Last but not the least, I would like to thank my lab-mates for their encourage-

ment and support and those who have helped me directly or indirectly with this

thesis.

Nourhevinuo Victoria Angami

1603141007

Discipline of Mathematics

Indian Institute of Technology Indore

ii



Dedication

Dedicated to my mentor and my guide Dr. M. Tanveer.

iii



Abstract

Flexible analytic wavelet transform (FAWT) is suitable for the study of oscillatory

signals like electroencephalogram (EEG) signals with versatile features such as shift

in-variance, tunable oscillatory properties and flexible time-frequency domain cov-

ering. In this thesis, we propose two automated methods for the classification of

epileptic EEG signals using FAWT for decomposition of the EEG signals into sub-

bands and suitable features were extracted. The obtained features are given as input

to twin support vector machine (TSVM), least squares TSVM (LS-TSVM) and ro-

bust energy-based least squares twin support vector machines (RELS-TSVM) for

classification. The proposed methods have been implemented on publicly available

Bonn University EEG database [1] and the accuracy of RELS-TSVM was found to

be better as compared to TSVM and LS-TSVM and is comparable to other exist-

ing methods with a maximum accuracy of 100% for the classification of seizure and

non-seizure EEG signals and 98.33% for the classification of seizure and seizure-free

EEG signals.
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Chapter 1

Introduction

Epilepsy is a neurological disorder affecting almost 1% of the world population and

can occur in any age group [3]. Epilepsy is noncontagious, treatable and preventable

if the cause is known [3]. A person who has epilepsy may face social and economic

discrimination and can fail to obtain certain benefits [3]. Epilepsy happens when the

brain neurons undergo uncontrolled electrical impulses in the brain resulting in un-

controlled seizures in the person affected [4]. There are several methods of acquiring

electrical signals from the brain. Detecting brain activity can be invasive, partially

invasive, or non-invasive depending on the application and on the nature of the

electrodes used to acquire the signals. Electroencephalography (EEG) is a standard

non-invasive method of obtaining brain signals. The ease of use, portability, cost-

efficient, and high temporal resolution makes EEG the most widely used technique

for acquiring brain signals to monitor and diagnose epilepsy and other brain condi-

tions [5]. Detection and interpretation of epileptic seizure in EEG signals perform

manually is prone to error and requires experts for examination. Hence, automated

methods are necessary for reliable and accurate detection of epileptic activity in the

EEG signals.

In this chapter, we discuss flexible analytic wavelet transform (FAWT), entropy-

based features, Hjorth parameters and various classification techniques.
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Introduction

1.1 Wavelets

A wave is defined as an oscillating function of time, such as a sinusoid. A wavelet

is a small wave, which has finite energy concentrated around a point. A signal or

function f(t) can be often analyzed better if it is expressed as a linear combination

by,

f(t) =
∑
j

∑
k

cj,kψj,k(t), j, k ∈ Z

where cj,k are the real-valued expansion co-efficients, ψj,k(t) are a set of real-valued

functions of t.

The function space L2(R) is the space of square integrable functions f(t). Mathe-

matically defined as,

L2(R) =
{
f : R→ C :

∫
R

|f(t)|2dt < +∞
}
.

A function ψ ∈ L2(R) is said to be wavelet in L2(R) if the system

{ψj,k(·) = 2j/2 ψ(2j · −k) | j, k ∈ Z}

forms an orthonormal basis for L2(R).

The wavelet system is a set of building blocks to represent a signal and the wavelet

expansion gives a good time-frequency localization of the system [6].

1.2 Flexible analytic wavelet transform (FAWT)

The iterated filter banks of FAWT [7] is constructed by one lowpass channel and

two highpass channels, where one of the highpass channel analyzes ‘positive frequen-

cies’ and the other ‘negative frequencies’. This separation of negative and positive

2



Introduction

frequencies obtains Hilbert transform pairs of wavelet bases. Let f(θ) be a polyno-

mial [8],

f(θ) =
1

2
(1 + cos(θ))

√
2− cos(θ), (1.1)

which satisfies the perfect construction condition [7]:

|f(θ)|2 + |f(θ − π)|2 = 1, θ ∈ [0, π]. (1.2)

Daubechies’ orthonormal wavelet filters with 2 vanishing moments is used to con-

struct f(θ) [2]. Let H(w) and G(w) be the frequency response of the lowpass fil-

Figure 1.1: Frequency response of FAWT filters [2].

ter and highpass filters respectively for the underlying perfect reconstruction filter

banks. The attributes of the filters can be controlled by the parameters p, q, r and

s. The positive constants β and ε and the parameters p, q, r and s should satisfy

the below constraints [2]:

1− p

q
≤ β ≤ r

s
, ε ≤

(p− q + βq

p+ q

)
π. (1.3)

Figure 1.1 can be mathematically written as [7]:

H(w) =



√
pq, |w| < wp,

√
pqf
[ (w−wp)

(ws−wp)

]
, wp ≤ w ≤ ws,

√
pqf
[ (π−w+wp)

(ws−wp)

]
, −ws ≤ w ≤ −wp,

0, |w| > ws,

(1.4)

3



Introduction

where

wp =
1− β
p

π +
ε

p
, ws =

π

q
.

G(w) =



√
rsf
[ (π−w+w0)

(w1−w0)

]
, w0 ≤ w ≤ w1,

√
rs, w1 < w < w2,

√
rsf
[

(w+w2)
(w3−w2)

, w2 ≤ w ≤ w3,

0, w ∈ [−π,w0] ∪ [w3, π],

(1.5)

where

w0 =
1− β
r

π +
ε

r
, w1 =

p

qr
π, w2 =

π

r
− ε

r
, w3 =

π

r
+
ε

r
.

The parameters p, q, r, s and β with desired Q-factor Q, dilation factor d and

redundancy factor R give flexibility to design wavelets where the accurate extraction

of the impulse intervals can be extracted. The factors Q, d and R are related as

given [2],

Q ≈ 2− β
β

, d ≈ p/q, β ≤ 1, R ≈ r/s

1− d
, R >

β

1− d
. (1.6)

1.3 Feature extraction

Extraction of suitable features is the most important part for better classification

purposes. Features are attributes or characteristics that help us to study the complex

EEG signals in a better way. In this section, the features selected for this thesis are

briefly described.

4



Introduction

1.3.1 Entropy-based features

It is observed that the analysis of EEG signals using a combination of joint time-

frequency tools and nonlinear features yields an excellent performance [9]. In the

seizure detection, the performance of wavelets used with nonlinear features has been

found promising. Since EEG signals are highly complex and nonlinear [21], we

have chosen nonlinear features viz., entropy-based features. The entropies we have

chosen are log energy entropy [10], SURE entropy [11] and Shannon entropy [12]

and mathematically defined as follows:

• The computation of log energy entropy [13] is performed to evaluate the degree

of complexities in EEG signals. It is given by [10],

ELogEn =
N∑
i=1

log(y2i ),

where yi is the ith sample of the signal and N represents the length of the

signal.

• SURE entropy is based on Stein’s unbiased risk estimate (SURE) [11,13] which

is a common measuring tool for quantifying properties related to information

for an accurate representation of the signal defined as [11],

ESURE = N −#
{
i : |yi| ≤ ε

}
+

N∑
i=1

min(y2i , ε
2),

where yi is the ith sample of the signal, # is the number of times i : |yi| ≤ ε,

ε > 0 and N represents the length of the signal.

• Shannon entropy is an efficient tool to measure uncertain information [14].

The formula of the Shannon entropy can be given as [12],

H(X) = −
N∑
i=1

y2i log2 y
2
i ,

5
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where yi is the ith sample of the signal and N represents the length of the

signal.

1.3.2 Hjorth parameters

Hjorth parameters are commonly used features for classification of EEG signals

introduced by Hjorth in 1970 [15]. It has three parameters to study an EEG signal

viz., activity, mobility and complexity.

• Activity is the measure of the average power of the signal (variance of the

signal). Mathematically, it can be expressed as [15]:

Activity =
N∑
i=1

(y(i)− µ)

N
.

• Mobility is an estimate of the mean frequency. It can be defined as follows [15]:

Mobility =

√
var(y′)

var(y)
.

• Complexity is an estimate of the bandwidth of the signal. It can be defined as

follows [15]:

Complexity =
Mobility(y′)

Mobility(y)
,

where y(t) is the signal, y′ = dy(t)
dt

is the first derivative of the signal, µ is the mean

of the signal and N is the number of samples.

As the Hjorth parameters can be calculated easily, it is capable for real-time appli-

cation.

6
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1.4 Classifiers

In machine learning, one of the primary tasks is classification. Support vector ma-

chines introduced by Vapnik [16] is a machine learning technique which is based on

statistical learning theory. Due to the good generalization performance, it has been

widely used for classification problems. The objective of SVM is to find the optimal

hyperplane with maximum margin between the data points of different classes. The

data points which lie on the supporting hyperplane are called support vectors. The

optimization problem of SVM is convex in nature which gives a global and unique

solution. In this section, we briefly discuss support vector machines (SVMs) [16] and

its variants [17–19] used for classification purposes. In this thesis we have worked

on two class classification of EEG signals, hence only the binary classification algo-

rithms of SVM and its variants (TSVM [17], LS-TSVM [18] and RELS-TSVM [19])

are briefly discussed.

1.4.1 Support vector machine (SVM)

Consider the training set T = {(x1, y1), (x2, y2), . . . , (x`, y`)}, where xi ∈ Rn are

inputs and yi ∈ Y = {−1, 1} are corresponding outputs for i = 1, 2, . . . , `. If there

exist w ∈ Rn, b ∈ R and a positive number ε such that for any subscript i with

yi = 1, we have wTxi + b ≥ ε, and for any subscript i with yi = −1, we have

wTxi + b ≤ −ε, we say the training set and corresponding classification problem is

linearly separable. If the training data are not linearly separable then to enhance

the linear separability, we introduce φ(·) a nonlinear function that maps the original

input space into higher-dimension Hilbert space H called the feature space.

7
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1.4.1.1 Linear SVM

The optimization problem for the linear case of SVM can be formulated as [16]:

min
w, b, ξ

1

2
‖w‖2 + a

∑̀
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , `,

(1.7)

where ξ = (ξ1, ξ2, . . . , ξ`) is slack variable and a is the penalty parameter. To solve

the above optimization problem we consider its dual formulation by introducing the

Lagrange function,

L(w, b, ξ, α, β) =
1

2
‖w‖2 + a

∑̀
i=1

ξi−
∑̀
i=1

βiξi−
∑̀
i=1

αi(yi(w
Txi + b) + ξi− 1), (1.8)

where α = (α1, α2, . . . , α`)
T ≥ 0 and β = (β1, β2, . . . , β`)

T ≥ 0 are the Lagrangian

multipliers.

Using the Karush-Kuhn-Tucker (KKT) [20] conditions, we get the dual formulation

of (1.7) as,

max
α

−1

2

∑̀
i=1

∑̀
j=1

αiαjyiyjx
T
i xj +

∑̀
i=1

αi

s.t.
∑̀
i=1

αiyi = 0, 0 ≤ αi ≤ a.

(1.9)

The following decision function D(x) assigns an unknown data point x ∈ Rn to the

class {+1,−1} accordingly as,

D(x) = sgn
(∑̀
i=1

yiαi(xi · x) + b
)
. (1.10)

8
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1.4.1.2 Nonlinear SVM

Suppose the training points are not linearly separable then we introduce the kernel

function and the optimization problem is formulated as [16],

min
w, b, ξ

1

2
‖w‖2 + a

∑̀
i=1

ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , `,

(1.11)

where ξ = (ξ1, ξ2, . . . , ξ`) is the slack variable, a is the penalty parameter and φ(·) is

a non-linear function that maps input space into feature space. To solve the above

optimization problem we consider its dual formulation by introducing the Lagrange

function,

L(w, b, ξ, α, β) =
1

2
‖w‖2 + a

∑̀
i=1

ξi −
∑̀
i=1

βiξi −
∑̀
i=1

αi(yi(w
Tφ(xi) + b) + ξi − 1),

(1.12)

where α = (α1, α2, . . . , α`)
T ≥ 0 and β = (β1, β2, . . . , β`)

T ≥ 0 are the Lagrangian

multipliers. After solving (1.12) as similar to the linear case, the dual formulation

of (1.11) is given by,

max
α

∑̀
i=1

αi −
1

2

∑̀
i=1

∑̀
j=1

αiαjyiyjφ(xi)
Tφ(xj)

s.t.
∑̀
i=1

αiyi = 0, 0 ≤ αi ≤ a.

(1.13)

The following decision function D(x) assigns an unknown data point x ∈ Rn to the

class {+1,−1} accordingly as,

D(x) = sgn
(∑̀
i=1

yiαiK (xi, x) + b
)

(1.14)

where K (xi, x) is the kernel function.

9
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1.4.2 Twin support vector machine (TSVM)

Twin support vector machine (TSVM) [17] seeks two non-parallel hyperplanes in-

stead of a single hyperplane as in the case of conventional SVM by solving two

quadratic programming problems (QPPs) where the whole data points are divided

to formulate the objective function and the constraints. In this manner, the run

time of TSVM is much faster as compared to the computational time of conven-

tional SVM [17].

Consider the binary classification problem where data points belonging to class 1

is represented by the matrix A and the data points belonging to class -1 is repre-

sented by the matrix B with `1 and `2 number of data points respectively in the

n-dimensional real space Rn.

1.4.2.1 Linear TSVM

Linear TSVM seeks a pair of non parallel hyperplanes,

wT+x+ b+ = 0 and wT−x+ b− = 0, (1.15)

where x ∈ Rn, w+ ∈ Rn, w− ∈ Rn, b+ ∈ R and b− ∈ R. Each hyperplane is close

to the data points of one class and far from the data points of the other class. The

two optimization problems for the linear case can be expressed as follows [17]:

min
w+, b+, ξ1

1

2
‖Aw+ + e1b+‖2 + a1e

T
2 ξ1

s.t. − (Bw+ + e2b+) + ξ1 ≥ e2, ξ1 ≥ 0

(1.16)

and

min
w−, b−, ξ2

1

2
‖Bw− + e2b−‖2 + a2e

T
1 ξ2

s.t. (Aw− + e1b−) + ξ2 ≥ e1, ξ2 ≥ 0,

(1.17)

10
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a1, a2 are positive parameters, ξ1 and ξ2 are the slack variables and e1, e2 are

vectors of ones of appropriate dimensions. Similarly, we introduce the Lagrangian

multipliers α and β and get the dual formulation of TSVM as,

max
α

eT2 α−
1

2
αTG(HTH)−1GTα

s.t. 0 ≤ α ≤ a1

(1.18)

and

max
β

eT1 β −
1

2
βTH(GTG)−1HTβ

s.t. 0 ≤ β ≤ a2,

(1.19)

where G = [B e2]; H = [A e1]; α ∈ R`2 and β ∈ R`1 are Lagrange multipliers.

On solving (1.18) and (1.19) we get,

w+

b+

 = −(HTH + δI)−1GTα (1.20)

and w−
b−

 = (GTG+ δI)−1HTβ, (1.21)

where I is an identity matrix of appropriate dimension and δ is a very small positive

scalar introduced in order to deal with the case when (HTH) or (GTG) is singular

and avoid the possible ill-conditioning of the matrices in finding the inverse.

A new point x ∈ Rn is assigned to class {+1,−1} depending on which of the two

hyperplanes (1.15) is closer to the decision function D(x),

D(x) = sgn
(wT+x+ b+
‖w+‖

+
wT−x+ b−
‖w−‖

)
. (1.22)

11
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1.4.2.2 Nonlinear TSVM

The nonlinear problem can be formulated by considering the following kernel gen-

erated surfaces:

K (xT , DT )w+ + b+ = 0 and K (xT , DT )w− + b− = 0, (1.23)

where D = [A;B] and K (·, ·) is an arbitrary kernel function. The primal problem

of nonlinear TSVM can be expressed as follows [17]:

min
w+, b+, ξ1

1

2
‖K (A, DT )w+ + e1b+‖2 + a1e

T
2 ξ1

s.t. − (K (B, DT )w+ + e2b+) + ξ1 ≥ e2, ξ1 ≥ 0

(1.24)

and

min
w−, b−, ξ2

1

2
‖K (B, DT )w− + e2b−‖2 + a2e

T
1 ξ2

s.t. (K (A, DT )w− + e1b−) + ξ2 ≥ e1, ξ2 ≥ 0.

(1.25)

By introducing the Lagrangian multipliers α and β, we can derive their dual prob-

lems as follows:

max
α

eT2 α−
1

2
αTN(MTM)−1NTα

s.t 0 ≤ α ≤ a1

(1.26)

and

max
β

eT1 β −
1

2
βTM(NTN)−1MTβ

s.t. 0 ≤ β ≤ a2,

(1.27)

where M = [K (A, DT ) e1];N = [K (B, DT ) e2]; ξ1, ξ2 are slack variables and

ei(i = 1, 2) is the vectors of ones of appropriate dimensions. After solving (1.26)

and (1.27) we get, w+

b+

 = −[MTM ]−1NTα (1.28)

12
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and w−
b−

 = [NTN ]−1MTβ. (1.29)

A new point x ∈ Rn is assigned to class {+1,−1} depending on which of the two

hyperplanes (1.23) is closer to the decision function D(x),

D(x) = sgn
(K (xT , DT )w+ + e1b+

‖w+‖
+

K (xT , DT )w− + e2b−
‖w−‖

)
. (1.30)

1.4.3 Least squares twin support vector machine (LS-TSVM)

The idea of TSVM is extended to formulate least squares TSVM (LS-TSVM) [18]

algorithm where the inequality constraints in TSVM is replaced by equality con-

straints by the addition of squares of 2-norm of the slack variables. This makes the

algorithm simple and fast since the objective function reduces to a linear system of

equations.

1.4.3.1 Linear LS-TSVM

The optimization problem for the linear LS-TSVM can be expressed as [18]:

min
w+, b+, ξ1

1

2
‖Aw+ + e1b+‖2 +

a1
2
‖ξ1‖2

s.t. − (Bw+ + e2b+) + ξ1 = e2

(1.31)

and

min
w−, b−, ξ2

1

2
‖Bw− + e2b−‖2 +

a2
2
‖ξ2‖2

s.t. (Aw− + e1b−) + ξ2 = e1.

(1.32)

The two hyperplanes are obtained by solving the two system of linear equations

(1.31) and (1.32) by replacing the values of ξ1 and ξ2 in their respective objective
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functions and we get, w+

b+

 = −
( 1

a1
HTH +GTG

)−1
GT e1, (1.33)

w−
b−

 =
( 1

a2
GTG+HTH

)−1
HT e2, (1.34)

where a1 and a2 are positive penalty parameters, G = [B e2] and H = [A e1].

A new point x ∈ Rn is assigned to class {+1,−1} depending on which of the two

hyperplanes is closer to D(xi),

D(x) = sgn
(wT+x+ b+
‖w+‖

+
wT−x+ b−
‖w−‖

)
. (1.35)

1.4.3.2 Nonlinear LS-TSVM

Following the same idea as nonlinear TSVM, nonlinear LSTSVM can be formulated

by considering the following kernel generated surfaces:

K (xT , DT )w+ + b+ = 0 and K (xT , DT )w− + b− = 0. (1.36)

The primal QPPs of nonlinear TSVM can be modified in the same way with 2-norm

of slack variables and inequality constraints replaced by equality constraints [18].

min
w+,b+,ξ1

1

2
‖K (A, DT )w+ + e1b+‖2 +

a1
2
‖ξ1‖2

s.t. − (K (B, DT )w+ + e1b+) + ξ1 = e1,

(1.37)

and

min
w−,b−,ξ2

1

2
‖K (B, DT )w− + e2b−‖2 +

a2
2
‖ξ2‖2

s.t. (K (A, DT )w− + e2b−) + ξ2 = e2.

(1.38)

Like the linear case, the solution of QPPs (1.37) and (1.38) can be derived to be,
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w+

b+

 = −(NTN +
1

a1
MTM)−1NT e1 (1.39)

and w−
b−

 = (MTM +
1

a2
NTN)−1MT e2, (1.40)

where M = [K (A, DT ) e2] and N = [K (B, DT ) e1].

A new point x ∈ Rn is assigned to class {+1,−1} depending on which of the two

hyperplanes distance |K (xT , DT )w+ + e1b+| or |K (xT , DT )w−+ e2b−| is minimum.

1.4.4 Robust energy-based LS-TSVM (RELS-TSVM)

The algorithm of RELS-TSVM [19] uses positive definite matrix in the formulation

to maximize the margin by addition of regularization term to each of the objec-

tive constraints and by considering different energy parameters for each hyperplane

unlike the constraints of LS-TSVM which requires the hyperplane to be exactly 1

distance away from the data points of the other class.

1.4.4.1 Linear RELS-TSVM

In linear case, the objective functions of RELS-TSVM are expressed as follows [19]:

min
w+,b+,ξ1

1

2
‖Aw+ + eb+‖2 +

a1
2
ξT1 ξ1 +

a3
2

∥∥∥∥∥∥
w+

b+

∥∥∥∥∥∥
2

s.t. − (Bw+ + eb+) + ξ1 = E1

(1.41)
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and

min
w−,b−,ξ2

1

2
‖Bw− + eb−‖2 +

a2
2
ξT2 ξ2 +

a4
2

∥∥∥∥∥∥
w−
b−

∥∥∥∥∥∥
2

s.t. (Aw− + eb−) + ξ2 = E2,

(1.42)

where e is a vector of ones of appropriate dimensions; a1, a2, a3, and a4 are positive

parameters; E1 and E2 represents energy parameters of the hyperplanes; w+, w− ∈

Rn and b+, b− ∈ R.

The solution of the QPP (1.41) is obtained as follows:

w+

b+

 = −(a1G
TG+HTH + a3I)

−1
a1BTE1 (1.43)

and the solution of QPP (1.42) is obtained as follows:

w−
b−

 = (a2H
TH +GTG+ a4I)

−1
a2ATE2, (1.44)

where I is an identity matrix of appropriate dimension, H = [A e] and G = [B e].

The label of an unknown data point x ∈ Rn is assigned to the class {+1,−1},

depending on the following decision function D(x),

D(x) =


+1, if |x

Tw++eb+
xTw−+eb−

| ≤ 1

−1, if |x
Tw++eb+
xTw−+eb−

| > 1

where |.| is the absolute value.
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1.4.4.2 Nonlinear RELS-TSVM

For the nonlinear RELS-TSVM, the following kernel-generated surfaces are consid-

ered [19]:

K (xT , DT )w+ + b+ = 0 and K (xT , DT )w− + b− = 0, (1.45)

where D = [A;B] and K is a suitably chosen kernel.

The two optimization problems for the nonlinear RELS-TSVM can be expressed

as [19]:

min
w+,b+,ξ1

1

2
‖K (A, DT )w+ + eb+‖

2
+
a1
2
ξT1 ξ1 +

a3
2

∥∥∥∥∥∥
w+

b+

∥∥∥∥∥∥
2

s.t. − (K (B, DT )w+ + eb−) + ξ1 = E1

(1.46)

and

min
w−,b−,ξ2

1

2
‖K (B, DT )w− + eb−‖

2
+
a2
2
ξT2 ξ2 +

a4
2

∥∥∥∥∥∥
w−
b−

∥∥∥∥∥∥
2

s.t. (K (A, DT )w− + eb−) + ξ2 = E2.

(1.47)

The solution of the QPP (1.46) is obtained as follows:

w+

b+

 = −(a1N
TN +MTM + a3I)

−1
a1N

TE1 (1.48)

and the solution of QPP (1.47) is obtained as follows:

w−
b−

 = (a2M
TM +NTN + a4I)

−1
a2M

TE2, (1.49)
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where I is identity matrix of appropriate dimension, N = [K (B;DT ) e] and M =

[K (A, DT ) e].

In comparison to the algorithm of LS-TSVM, due to the addition of extra regular-

ization term the matrices (a1N
TN +MTM + a3I) and (a2M

TM +NTN + a4I) are

positive definite, which makes the solution of nonlinear RELS-TSVM more stable.

The following decision function D(x) labels an unknown data point x ∈ Rn to the

class {+1,−1} as,

D(x) =


+1 if |K (xT ,DT )w++eb+

K (xT ,DT )w−+eb−
| ≤ 1

−1 if |K (xT ,DT )w++eb+
K (xT ,DT )w−+eb−

| > 1

where |.| is the absolute value.

18



Chapter 2

Literature review

Initially, EEG signals were studied by Fourier transformation assuming that they

were stationary. However, studies show that EEG signals are non-stationary [21] and

highly nonlinear [22]. Hence, various time-frequency domain methods have been pro-

posed for the detection of epileptic seizure in EEG signals. Many researchers have

proposed methods for the study of EEG signals and the automated detection. Sev-

eral methods are discussed briefly. Empirical mode decomposition (EMD) is applied

for the analysis of EEG signals based on Hilbert transformation [23]. Classification

of the epileptic seizure in EEG signals using second-order difference plot of intrinsic

mode function (IMF) by artificial neural network (ANN) has been performed [24].

The method of classifying EEG signals based on fractional-order calculus and sup-

port vector machine (SVM) with different kernel function has been proposed in [25].

Features from phase space representations (PSRs) of IMFs of EEG signals and em-

ployed LS-SVM for classification [26]. A method based on one-dimensional local

binary pattern (1D-LBP) features for the classification of seizure and seizure-free

EEG signals by nearest neighbour classifier has been performed in [27]. Empirical

wavelet transform (EWT) has been explored for the analysis of multivariate sig-

nals with six classifiers namely: random forest (RF), functional tree (FT), C4.5,
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Chapter 2. Literature review

Bayes-net, Naive-Bayes, and K-nearest neighbours (K-NN) in [28]. EEG signal clas-

sification using universum support vector machine has been performed in [29].

Recent works are focusing on wavelet transforms (WT) for signal processing. Since

signals are ephemeral and non-stationary, the properties of wavelets make it easier to

analyze the signals. WT has good time-frequency concentration and multi-resolution

analysis capacity is a powerful mathematical tool for signal processing. Flexible an-

alytic wavelet transform (FAWT) was also used to study various bio-medical prob-

lems other than EEG signals [30–32] which yielded good results. The methods in [8]

and [13] proposes study of EEG signals by FAWT with fractal dimension [8] and

entropy-based features [13] with LS-SVM classifier. Many intrinsic limitations in

other WTs are enhanced by FAWT [2]. Employing arbitrary and fractional scal-

ing and translation factors, FAWT enjoys flexible TF covering manner of the bases.

Hence we are motivated to explore the properties of FAWT for decomposing the

EEG signals.

For classification purpose we used variants of support vector machines ((TSVM) [17],

(LS-TSVM) [18] and (RELS-TSVM [19])). In the recent years, some variants have

emerged based on the idea of constructing non-parallel hyperplanes other than

searching for an optimal hyperplane in the convention SVM [17–19, 33–37]. TSVM

is one of the powerful classification methods. TSVM seeks two non-parallel proximal

hyperplanes such that each hyperplane is closer to one of the two classes and as far

as possible from the other one [17]. Experimental results have shown the promis-

ing performance over SVM and LS-SVM with lesser training time due to its strong

generalization ability. Recently, few studies [18,19,33–37] have proposed variants of

TSVM. LS-TSVM has been proposed by replacing the convex quadratic program-

ming problem (QPP) with convex linear system leading to very fast computational

speed [18]. Different energy for each class has been considered in energy-based

LS-TSVM (ELS-TSVM) [34] proposed by Nasiri et al., and can also be applied to

unbalanced datasets. To overcome the problems in TSVM, LSTSVM and ELS-

TSVM like satisfying only empirical risk-minimization principle and the matrices
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used in the formulation to be always positive semi-definite, RELS-TSVM algorithm

has been proposed by Tanveer et al. [19] in which the margin is maximized with a

positive definite matrix formulation. Furthermore, the algorithm for RELS-TSVM

does not need any specific optimizer and applies energy parameters to minimize the

effect of the noise and outliers which makes the classification not only robust to noise

and outliers but also more stable [19]. With all these advantages, in this thesis, we

explore the performances of TSVM, LS-TSVM and RELS-TSVM.

21



Chapter 3

Proposed work and numerical

experiments

In this chapter, two automated methods are proposed for the classification of epilep-

tic EEG signals using FAWT for decomposition of the EEG signals into sub-bands

and suitable features were extracted. The EEG database has been taken from Bonn

University which is publicly available compiled by Andrzejak et al. [1,38]. The sets

Z, O, N, F, S contain 100 EEG segments with each segment have a duration of 23.6

s with 4097 samples, sampled at a sampling rate of 173.61 Hz. The sets Z and O

contain EEG recordings of five normal volunteers in a relaxed and awake state with

eyes open and eyes closed respectively. The sets N and F are recorded from five

patients during seizure free intervals. The EEG signals in dataset N were recorded

from the epileptogenic zone while the signals in F were recorded from the opposite

hemisphere of the brain. The set S comprises EEG recordings during seizure activity.

In total we have 500 EEG segments.

In the first proposed method we have taken (Z, O, N, F) as the non-seizure class

and S as seizure class with entropy-based features to classify the seizure and non-

seizure EEG signals. The class (Z, O, N, F) versus S is a more generalized way of

classification of EEG signals hence in the second proposed method we have restricted
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Figure 3.1: EEG signals for various subsets.

the sets to (N, F) termed as the seizure-free class versus seizure class (S) and used

Hjorth parameters feature for the classification of EEG signals. Although Hjorth

parameters are applied in the time domain, they can be interpreted in the frequency

domain as well and better accuracy was achieved after decomposition of EEG signals

by empirical mode decomposition (EMD) in [5]. The figure below shows the steps

involved in the automated detection applied in this thesis.

Figure 3.2: Proposed approach for the classification of EEG signals

Each of these EEG segments has been decomposed up to J = 15th level [13] by FAWT

which gives (J + 1) sub-bands and one additional sub-band is of the reconstructed
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signal, i.e., 17 sub-bands were produced for each of the EEG segment. The parameter

of FAWT has been set to ε = 1
32

(
p−q+βq
p+q

)
π, p = 3, q = 4, r = 1 and s = 2 [2,13].

After the decomposition of EEG signals into sub-bands, features has been extracted

from each of these sub-bands. To reduce the computational time of the classifiers,

we have applied Kruskal-Wallis (K-W) [39] test to discriminate the significant sub-

bands with p-value ≤ 0.05 to be taken as input for classification of EEG signals.

Table 3.1 shows the p-values of the sub-bands with entropy based features tested

against seizure class versus non-seizure class. As seen in table the p values are less

than p ≤ 0.5, hence all the sub-bands are considered as features for classification

purpose.

Table 3.1: p-values of sub-bands (Entropy-based features)

Sub-band Log energy entropy Shannon entropy SURE entropy
1 04.98× 10−39 1.07× 10−80 8.91× 10−27

2 07.78× 10−06 7.43× 10−45 0.034845084
3 01.43× 10−98 6.07× 10−110 2.46× 10−88

4 01.82× 10−110 2.51× 10−120 5.36× 10−99

5 03.91× 10−122 2.67× 10−126 1.17× 10−114

6 04.51× 10−121 4.03× 10−122 4.56× 10−116

7 43.35× 10−116 1.43× 10−117 2.12× 10−113

8 04.20× 10−120 3.16× 10−120 5.15× 10−118

9 08.81× 10−129 3.86× 10−128 3.22× 10−129

10 05.49× 10−129 1.41× 10−128 3.04× 10−127

11 02.44× 10−113 3.25× 10−115 2.65× 10−109

12 04.94× 10−107 4.82× 10−109 1.57× 10−104

13 01.53× 10−95 1.71× 10−99 4.88× 10−89

14 05.68× 10−70 1.16× 10−74 1.51× 10−62

15 01.48× 10−52 1.33× 10−57 2.01× 10−47

16 01.39× 10−17 2.04× 10−32 5.11× 10−10

17 03.38× 10−126 2.63× 10−128 4.03× 10−110
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Similarly, we applied K-W test to discriminate the significant sub-bands tested

against seizure class versus seizure-free class. Table 3.2 shows the p-values of the

sub-bands with Hjorth parameters features. As seen below, p-values of some of the

sub-bands are greater than p = 0.05, hence the highlighted sub-bands were not

considered for feeding into the classifiers.

Table 3.2: p-values of sub-bands (Hjorth parameters)

Sub-band Activity Mobility Complexity
1 1.25× 10−44 1.25× 10−19 8.57× 10−05

2 1.35× 10−44 0.909100447 1.29× 10−08

3 9.03× 10−59 7.17× 10−44 0.00614096
4 2.31× 10−64 3.86× 10−27 2.42× 10−07

5 3.02× 10−65 9.08× 10−40 2.10× 10−10

6 2.68× 10−64 0.417180712 0.513175327
7 7.49× 10−66 2.87× 10−13 7.93× 10−07

8 2.27× 10−63 1.46× 10−25 0.43020936
9 1.03× 10−63 8.65× 10−11 0.524383843
10 1.80× 10−63 0.018210469 0.036643259
11 1.03× 10−51 1.11× 10−10 0.451747071
12 1.52× 10−46 0.675482692 0.00047207
13 3.01× 10−38 0.021999018 0.474950302
14 4.69× 10−23 1.18× 10−05 0.315696464
15 1.91× 10−16 0.020824924 0.010202237
16 3.40× 10−13 6.88× 10−07 0.018381077
17 2.08× 10−63 1.39× 10−52 6.71× 10−65

We now have the required significant feature matrix for classification. Certain pa-

rameters have to be set in order to get a better classification performance. In both

the methods, for the selection of optimal parameters we have used the grid search

method [40]. The Gaussian kernel parameter σ is selected from the set {2j|j =

−10,−9, ..., 10}. The values of the parameters (a1, a2, a3, a4) and (E1, E2) for the ker-

nel were selected from the sets {2j| = −5,−3,−1, 0, 1, 3, 5} and {0.6, 0.7, 0.8, 0.9, 1}

respectively. For the training phase, we set a1 = a2 and a3 = a4 to reduce the

training time [19]. The classifiers used in both the methods are TSVM, LS-TSVM

and RELS-TSVM. The ten-fold cross-validation methodology has been applied to

evaluate the efficiency of the classifiers [41]. We choose 70% of the data for training
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and rest 30% for testing. The results achieved by these methods are shown in Table

3.3 and Table 3.4.

Table 3.3: Accuracy % of the first proposed method (Entropy-based features)

Entropy-based features TSVM LS-TSVM RELS-TSVM
Log energy entropy 100 100 100
Shannon entropy 98.75 98.75 97.92
SURE entropy 96.25 98.33 98.75
Combined 99.58 96.25 100
Shannon-log energy entropy 99.58 95.83 99.17
Log energy-SURE entropy 97.5 99.58 99.58
SURE-Shannon entropy 98.33 99.58 99.17

Table 3.4: Accuracy % of the second proposed method (Hjorth parameters)

Hjorth parameters TSVM LS-TSVM RELS-TSVM
Activity 97.5 98.33 97.5
Mobility 98.33 97.5 98.33
Complexity 95 93.33 96.67

3.1 Discussion

In this section we briefly discuss some existing methods and the comparison with the

proposed method. Table 3.5 contains some of the works done on seizure versus non-

seizure classification of EEG signals. In [21], the ability of time-frequency domain

has been explored on EEG signals containing epileptic seizures classified by artificial

neural network (ANN) provided an accuracy of 97.73%. In [42], line length features

were extracted by discrete wavelet transform (DWT) and classified by multi-layer

perceptron neural network (MLPNN) given an accuracy of 97.77%. In [43], dis-

crimination of the EEG signals were done both by SVM and probabilistic neural

network (PNN), signals decomposed by DWT with energy standard and entropy

features which gave an accuracy of 95.44%. In [45], decomposition of EEG signals

were done by DWT with fuzzy approximate entropy and classified by SVM with
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accuracy 97.38%. In [14], DTCWT with features energy, standard deviation (std),

root-mean-square (rms), Shannon entropy are applied through general regression

neural network (GRNN) yielding an accuracy of 100%. In [44], signal decomposi-

tion based on empirical mode decomposition for classifying seizure and non-seizure

EEG signals by LS-SVM gave accuracy 99.50%-100% for different intrinsic mode

functions obtained after decomposition. Recent work [8], analytic time-frequency

flexible wavelet transform (ATFFWT) with fractal dimension (FD) features with

least squares support vector machine (LSSVM) gave an accuracy of 99.20%. In [46],

local binary pattern (LBP) with histogram features fed to SVM gave an accuracy of

99.31%. In this work, EEG signals decomposed by FAWT with log energy entropy

and the combination of all these entropies viz., log energy entropy, Shannon entropy

Table 3.5: Comparison of existing methods for classification of seizure and non-
seizure EEG signals

Works Year Method Classifier
Accuracy
(%)

Tzallas et al.
[21]

2007
Time-frequency analy-
sis

ANN 97.73

Guo et al. [42] 2010 Line length MLPNN 97.77
Gandhi et al.
[43]

2011
DWT and energy- and
entropy features

SVM and PNN 95.44

Bajaj and Pa-
chori [44]

2012 EMD LS-SVM 99.50-100

Kumar et al.
[45]

2014
DWT-fuzzy approxi-
mate entropy

SVM 97.38

Swami et al.
[14]

2016
DTCWT and energy,
std, rms Shannon en-
tropy features

GRNN 100

Sharma et al.
[8]

2017
ATFFWT and FD fea-
tures

LS-SVM 99.20

Tiwari et. al
[46]

2017
LBP and histogram
feature

SVM 99.31

Our pro-
posed work

2018
FAWT with log en-
ergy entropy

TSVM,
LSTSVM,
RELS-TSVM

100, 100,
100 re-
spectively
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and SURE entropy fed into TSVM, LSTSVM, RELS-TSVM gave an maximum ac-

curacy of 100%.

Table 3.6 consists of some works done on seizure and seizure-free classification of

EEG signals. In [47], various features viz., power spectral features, Petrosian fractal

dimension and Higuchi fractal dimension, Hjorth parameters were used as features of

EEG signals and further classified using PNN with accuracy of 97%. Empirical mode

decomposition (EMD) is applied for the analysis of EEG signals based on Hilbert

transformation with energy of linear prediction and classification by SVM yielded

an accuracy of 95.33% in [23]. Classification of the epileptic seizure in EEG signals

using second-order difference plot of intrinsic mode function (IMF) by MLPNN with

an accuracy of 97.75% in [24]. Features from phase space representations (PSRs)

Table 3.6: Comparison of existing methods for classification of seizure and
seizure-free EEG signals

Works Year Method Classifier
Accuracy
(%)

Bao et al. [47] 2008

Power spectral fea-
tures, Petrosian
fractal dimension
and Higuchi, Hjorth
parameters

PNN 97

Joshi et al.
[25]

2014
Energy of linear pre-
diction

SVM 95.33

Pachori and
Patidar [24]

2014
95% Second-order dif-
ference plot intrinsic
mode functions

MLPNN 97.75

Sharma and
Pachori [26]

2014 95% PSR of IMFs SVM 98.67

Gupta et al.
[13]

2017
FAWT with cross cor-
rentropy, log energy
entropy, SURE entropy

LS-SVM 94.41

Our pro-
posed work

2018
FAWT with Hjorth
parameters

TSVM,
LSTSVM,
RELS-TSVM

98.33
98.33
98.33

of IMFs of EEG signals and employed LS-SVM for classification with accuracy of

98.67% in [26]. Similar work with cross correntropy, log energy entropy and SURE
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entropy implemented by Gupta et al. in [13] gave an accuracy of 94.41% with LSSVM

as classifier. In this work, EEG signals decomposed by FAWT with Hjorth parame-

ters features fed into TSVM, LSTSVM, RELS-TSVM gave a maximum accuracy of

98.33%.
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Conclusion and future work

The manual analysis of epilepsy in EEG signals is not efficient and time-consuming.

Hence the methodologies proposed in this project can overcome these shortcomings

and minimize the errors too. Early detection and timely diagnosis may help a person

to prevent serious brain disorders. The experimental results presented in this project

demonstrates that FAWT is a useful tool to decompose EEG signals into sub-bands

for better analysis. The features used in both the methods are found to be effective

and RELS-TSVM as classification model with Gaussian kernel gives a maximum

accuracy of 100% for classifying seizure and non-seizure EEG signals and 98.33% for

the classification of seizure and seizure-free EEG signals.

In this thesis, the approach of the two methods are novel. FAWT is useful as a

decomposition tool for biomedical signals. Variants of support vector machines is

widely used as classifiers for various classification problems. As discussed and by

the experimental results, the performance of RELS-TSVM is better and comparable

with other classifier. It is also worth mentioning that RELS-TSVM is used as a

classifier for EEG signals for the first time.

I would be very interested to explore more on these areas of machine learning and

its applications in various areas of research.
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