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Abstract

The purpose of this project is to study the development of a model of topological

electromagnetism in empty space and to extend it further to non-Abelian theories.

This topological model, which we are looking for, is based on Hopf map, a many-to-

one continuous function (or ”map”) from the S3 onto the S2, discovered by a German

mathematician, Hein Hopf in 1931. In the literature survey, we have studied how

such solutions (Hopfion solution) were constructed via Bateman’s and Ranada’s

construction. Some attempts have been made to construct Hopfion solutions in

SU(2) Yang-Mills theory. An ansatz has been made by taking a analogy similar to

Ranada’s construction. This approach has shown to be a promising candidate for

such type of solution in SU(2) Yang-Mills theory.
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Chapter 1

Introduction

”Topology will play a very important role in future field theory.”-A.F. Ranada

Since 1931, Dirac’s monopole solution opens up to more challenging

questions about the existence of solutions of similar type in field the-

ories. Some already known solutions of field theory include instanton,

vortex, domain walls etc. One interesting thing about these solutions

is the fact that they are classified by various homotopy classes, each

characterized by a topological invariant. In fact, Antonio F Ranada

of Complutense University of Madrid, Spain have proposed a model

of electromagnetism [4] in which he has shown that any pair of mag-

netic field lines are exactly linked once and so are any pair of electric

field lines. Their corresponding helicity is a topological constant of

the motion separately. It allows for the classification into various ho-

motopy classes as expected. The solution is based on Hopf fibration,

introduced by a German mathematician Heinz Hopf in 1931.
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Chapter 1. Introduction

Chapter 2 discusses some topological solutions of gauge theories. For

electromagnetic Hopfion solution, two constructions have been found

in the literature survey and are known by the name- Bateman’s con-

struction and Ranada’s construction. Riemann-Silverstein complex

vector is introduced in Bateman’s construction while in Ranada’s con-

struction, a properly normalized area 2-form is used to define Faraday

2-form from which the entire topological model is developed. The

helicity defined for this model is closely related with the charge of

the Abelian Chern-Simons current. Such a realization naturally leads

to the generalization in non-Abelian gauge theories. As a matter of

fact, Bateman’s construction have been shown to be mapped to non-

Abelian Yang-Mills theory via quaternionic formulation, to the van-

ishing field strength tensor [2] . In SU(2) Yang-Mills theory, there ex-

ist a non-perturbative solution called instanton solution based on the

mapping S3 → S3 [5], characterized by a unit winding number. On

the boundary of real space S3, the corresponding curvature tensor van-

ishes, which is one of the important feature of such solutions. However

these two solutions are very much different in their behaviour because

Hopfions are 3D solitons. Despite the differences between them, an at-

tempt to construct SU(2) Yang-Mills Hopfion is discussed in Chapter

3.
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Chapter 2

Toplogical solutions

The following literature survey will discuss more about the two types of

topological solutions in gauge theory. One is the well known instanton

solution in SU(2) Yang-Mills theory. This solution is based on the

mapping S3 → S3. While the other one is based on a non-trivial

mapping S3 → S2, also known as Hopf map.

2.1 Hopfion solutions

Since the original formulation of the laws of electrodynamics with the

famous Maxwell’s equations, many methods have been proposed to

determine the evolution of ~E and ~B field in space and time. The

method that we are dealing with is the one that solves the simplest

configuration of the fields but, at the same time, admits a non-trivial

topology. These are known by the name Hopfion solutions. In U(1)

3



Chapter 2. Toplogical solutions

gauge theory, two constructions have been proposed to obtain Hopfion

solutions. They are

1) Bateman’s construction

2) Ranada’s construction

2.1.1 Bateman’s construction

This construction is based on the grouping of electric and magnetic

field to form a complex vector field ~F called Riemann-Silberstein vec-

tor. It is expressed in terms of two complex functions α and β [1]

as

~F = ~E + i ~B = ~∇α× ~∇β (2.1)

In the absence of charge matter, Maxwell’s equations reduce to

~∇ · ~F = 0, ~∇× ~F = i∂t ~F (2.2)

In terms of α and β, the dynamical equation becomes

~∇α× ~∇β = i(∂tα~∇β − ∂tβ~∇α) (2.3)

The divergenceless condition of ~F is obvious with the choice of the

ansatz ~F = ~∇α × ~∇β and the dynamical equation and the norm of

the field ~F give the following constraint to ~E and ~B as

~E2 − ~B2 = 0

~E · ~B = 0
(2.4)

4



Chapter 2. Toplogical solutions

and hence they are known as null solutions. The condition ~∇ · ~F = 0

implies the existence of a vector potential function as

F = ~∇× ~V = ~∇× (~C + i ~A)

so that we can express ~V in terms of α and β. Upto gauge transfor-

mations,

~V = α~∇β

Then,

~C = Re(α~∇β), ~A = Im(α~∇β)

To characterize the non-trivial topology of electromagnetic fields, a

common set of observables are the helicities. Helicity is a generaliza-

tion of the topological concept of linking number to differential quan-

tities required to describe the electromagnetic field (for our case). The

electric and magnetic helicities are defined as

hee =

∫
d3x~C · ~E

hmm =

∫
d3x ~A · ~B

(2.5)

The condition ~E. ~B = 0 guarantees the conservation of electric and

magnetic helicity (when integrated over the whole space) as can be

shown explicitly as

5



Chapter 2. Toplogical solutions

∂thmm =

∫
d3x(∂t ~A · ~B + ~A · ∂t ~B)

= −
∫
d3x(( ~E + ~∇φ) · ~B + ~A · (~∇× ~E))

= −
∫
d3x( ~E · ~B + ~∇ · (φ~B)− φ~∇ · ~B + ~E · (~∇× ~A)

− ~∇ · ( ~A× ~E))

= −2

∫
d3x~E · ~B

= 0

where we have used Maxwell’s equation and the fact that the diver-

gence term vanishes when integrated over the whole space. Similar

calculation shows the same result for electric helicity. Even the cross

helicities hem =
∫
d3xC · B and hme =

∫
d3xA · E can also be shown

to be conserved by the condition ~E2 − ~B2 = 0

In particular, we have an interesting result of the helicities defined

above using Bateman’s construction. The cross helicities turn out to

be equal in magnitude but opposite in sign while the electric and the

magnetic helicity have the same value. Explicitly,

~V · ~F = α~∇β · (~∇α× ~∇β) = 0

(~C + i ~A) · ( ~E + i ~B) = 0

6



Chapter 2. Toplogical solutions

~C · ~E − ~A · ~B = 0, and ~C · ~B + ~A · ~E = 0.

As a matter of fact, the solution of topologically non-trivial nature

must also be characterized by Noether charges corresponding to space-

time translations and rotations for which we have the following three

charges.

• Energy density: E = 1
2(E2 +B2)

• Momentum density: ~p = ( ~E × ~B)

• Angular momentum density: ~l = (~p× ~x)

A topologically non-trivial solution must be characterized by the finite

value of the above charges and the helicities. In fact, such a solution

does exist and is based on the Hopf map S3 → S2. Hence, they are

known by the name “Hopfion” solution. In addition, there exists 4

more charges owing to the invariance of the Maxwell’s equation under

conformal transformations. We will not be dealing with such charges

for the moment since the topological nature of the Hopfion solutions is

revealed by topological invariants (helicity or Hopf index in our case)

but not by Noether charges. Having mentioned some features of a

Hopfion solution, an explicit solution is worth mentioning here. The

solution is found in [1], [2]

α =
l − t2 − 2 + 2iz

l − t2 + 2it
,

β =
2(x− iy)

l − t2 + 2it

(2.6)

7



Chapter 2. Toplogical solutions

where l = 1 + r2 = 1 + x2 + y2 + z2.

The explicit form of the Riemann-Silverstein vector is given in Ap-

pendix A. There, it is easy to see that the solution has finite energy

E, momentum ~p = (0, 0,−E
2 ) and angular momentum ~l = (0, 0, E2 ).

Furthermore, hee = hmm = E
2 and hem = hme = 0 which implies topo-

logically non-trivial nature in the sense that electric and magnetic field

lines are linked with each other as shown in the following figure (2.1)

(image is shown for illustration purpose only, source [2]).

Figure 2.1: Electric field line (black) and magnetic field line (red) at t=0

2.1.1.1 Covariant formulation

Since we have the expression of ~E and ~B field in terms of α and β, we

can recast them in a covariant form. So we begin with the component

form of the ansatz (2.1) as

Ei + iBi = εijk∂iα∂jβ (2.7)

8



Chapter 2. Toplogical solutions

Before we move on using the electromagnetic field strength tensor, we

have to adopt a proper convention so that the following chapters do

not have any inconsistencies. The conventions are

Ei = F 0i

Bi =
1

2
εijkFjk

εijk = εijk

ε0ijk = εijk

ε0ijk = −εijk

(2.8)

In covariant form,

F µν − i1
2
εµνρσFρσ = −εµνλγ∂λα∂γβ (2.9)

and they are found to be imaginary anti-self dual [2]. If we define a

complex potential function as

Hµ =
1

2
(α∂µβ − β∂µα) (2.10)

then for Aµ = Im(Hµ)

Fµν = ∂µAν − ∂νAµ = Im(∂µα∂νβ − ∂να∂µβ) (2.11)

consistent with the expression derived from the covariant formulation.

Similarly, the real part of Hµ i.e. C = Re(Hµ) gives the corresponding

9



Chapter 2. Toplogical solutions

dual

Gµν =
1

2
εµνρσF

ρσ.

Since we are working out the U(1) gauge theory, so the helicity which

we defined above is nothing but the charge of Abelian Chern-Simons

current κµ defined as

κµ = εµνρσAνFρσ, (2.12)

so that for the null solutions

∂µκ
µ =

1

2
εµνρσFµνFρσ ∝ ~E · ~B = 0. (2.13)

Then the charge defines the helicity as shown below

−1

2

∫
d3xκ0 =

1

2
εijkAiFjk

=

∫
d3x ~A · ~B

= hmm.

(2.14)

2.1.2 Ranada’s construction

In this construction, we start by defining a complex scalar field φ(~r)

in R3. Let the field be well defined as r → ∞ i.e. the map does

not depend on the direction. Identifying S3 ≡ R3 ∪ {∞} and S2 ≡

C1∪{∞} via stereographic projection, it is easy to see that the above

map φ is indeed a Hopf map φ : S3 → S2.

10



Chapter 2. Toplogical solutions

The area 2-form [B.4] in S2 is defined to be

F =
1

2πi

dφ ∧ dφ
(1 + φφ)2

, (2.15)

where the bar over φ denotes the complex conjugation. Since F is

closed in S3, then it must also be exact i.e., there exists a one-form

A such that F = dA. Then the Hopf index, defined in the context of

Bateman’s construction, becomes

n =

∫
A ∧ F (2.16)

The pull-back of F in R3 is given by

F =
1

2
Fijdx

i ∧ dxj =
1

4πi

∂iφ∂jφ− ∂jφ∂iφ
(1 + φφ)2

dxi ∧ dxj (2.17)

Now we can define a vector field out of Fjk as

Bi = Bi =
1

2
εijkFjk

=
1

2
εijk

1

2πi

∂jφ∂kφ− ∂kφ∂jφ
(1 + φφ)2

=
1

2
εijk

1

2πi

2∂jφ∂kφ

(1 + φφ)2

=
1

2πi

(~∇φ× ~∇φ)i

(1 + φφ)2

Thus

~B = g(φφ)~∇φ× ~∇φ (2.18)

11



Chapter 2. Toplogical solutions

The reason why we choose the letter ~B to define the vector field is

because it satisfies ~∇· ~B = 0 (as can be explicitly shown by employing

the usual vector calculus identities). Indeed, the vector ~B = Bidx
i =

W (φ) is the Whitehead vector of the map φ [9]. In addition, g is a

well behaved function that depends on (~r, t) through φ and φ where

we have included t for a more realistic model and will be discussed

later at the end of this section.

It is easy to see from the above definition of ~B that [2.24]

~B · ~∇φ = 0 (2.19)

then the magnetic lines are seen to be the level curves of φ(X, Y, Z, T )

which define a line at any point for each value of time. Here, X, Y, Z

and T are the dimensionless coordinates.

Remarks: Here we have mentioned a realistic model without having

to worry about the dimension of the magnetic field we just defined.

For the moment, we will just continue using the same model by pre-

tending that we employ the dimensionless coordinates. For the sake

of brevity, we introduce a constant a [10] in the form below

Fµν =

√
a

2πi

∂µφ∂νφ− ∂νφ∂µφ
(1 + φφ)2

?Fµν =

√
ac

2πi

∂µθ∂νθ − ∂νθ∂µθ
(1 + θθ)2

12



Chapter 2. Toplogical solutions

so that the electric and the magnetic fields have got the correct di-

mensions and c is the speed of light. The above two choices are the

ansatz for the topological model of EM in Ranada’s construction, to

be discussed in a moment in the next subsection.

We can do the same analysis to come up with a suitable object that

defines the electric field by introducing another map θ (precisely a

Hopf map θ) so that ~E is the Whitehead vector W (θ) and takes the

form

~E = g(θθ)~∇θ × ~∇θ (2.20)

Then the electric lines are seen to be the level curves of θ(X, Y, Z, T )

since ~E.~∇θ = 0. Note that the same function g appears in both ~E

and ~B. This shows that the electromagnetic field of the model is built

out of two scalars. Despite the appearance, θ can be derived from φ

through a duality relation as shown in (2.22).

2.1.2.1 An ansatz for the topological model of the EM field

The above Hopf theory and the Maxwell’s equation has one big dif-

ference for the role ’time’ plays in both theories. In the Hopf theory,

’time’ plays no role while it is inevitable in Maxwell’s theory. But

13



Chapter 2. Toplogical solutions

the Hopf theory gives us a promising, yet incomplete, attempt to de-

scribe the topological nature of the electromagnetic field. Neverthe-

less, the apparent contradiction can be resolved by assuming that the

solutions obtained in Hopf theory are the initial value at t0 of some

time-dependent functions.

An ansatz to handle this situation is to extend (2.17) in 4 dimensional

space-time so that

Fµν =
1

2πi

∂µφ∂νφ− ∂νφ∂µφ
(1 + φφ)2

(2.21)

The corresponding dual is

Mµν = ?Fµν =
1

2
εµνρσF

ρσ

=
1

2πi

∂µθ∂νθ − ∂νθ∂µθ
(1 + θθ)2

.
(2.22)

It is now easy to see that the so formed topological electromagnetic

fields are actually the radiation fields (except for the dimensions of the

electric and magnetic fields). That means the electric and magnetic

field satisfy the condition ~E. ~B = 0 as they evolve. Moreover, E2 −

B2 = 0. These two conditions are found in [9], where

Ei = Fi0 =
1

2
εijkM

jk = W (θ),

Bi = M0i =
1

2
εijkF

jk = W (φ)
(2.23)

14



Chapter 2. Toplogical solutions

Since ~E. ~B = 0, the electric and magnetic helicity, defined out of ~E

and ~B in the same way we did within the context of Bateman’s con-

struction, are separately conserved. In addition, the level curve of φ

and θ are orthogonal to each other. To see this, we calculate

~B · ~∇φ = Bi∂iφ

= ∂iφ
1

2
εijkFjk

=
1

4πi
εijk∂iφ(∂jφ̄∂kφ− ∂kφ̄∂jφ)

= 0

(2.24)

owing to the anti-symmetric nature of εijk and symmetric nature of

∂iφ∂jφ thus giving 0. Similarly,

~E · ~∇θ = 0

and by the condition of radiation fields ~E · ~B = 0, we see that the two

level curves of φ and θ are orthogonal to each other.

2.1.2.2 Hopf index

Since helicity is a common set of observable that defines the topological

nature of the solution, it will be quite proper to give a treatment to

this topological number. For our case, we have the corresponding Hopf

fibration S3 → S2, and the term for the topological number is called

Hopf index. Within the context of Ranada’s construction, the Hopf

15



Chapter 2. Toplogical solutions

index n as shown in 2.15 is

n =

∫
A ∧ F

In order to find the 1-form A, we must rewrite the Clebsch represen-

tation of the area 2-form. So we parametrize the map φ as

φ = R exp2πiψ (2.25)

where R and ψ are real maps R3 → R. Then

F = dρ ∧ dψ

A = dψ + dξ
(2.26)

where ρ and ξ are another real map R3 → R and ρ takes the form

ρ = − 1

1 +R2

Thus the Hopf index becomes

n =

∫
dξ ∧ dρ ∧ dψ

=

∫
d(ξdρ ∧ dψ)

(2.27)

and is zero by Gauss’ theorem unless ψ or ρ is multiple valued. We

will assume ψ to be multiple valued, and ~∇ψ to be a single valued

function. Since ~B is the Whitehead vector of the map φ, so the Hopf

index for the map φ must correspond to the magnetic helicity. In fact,
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Chapter 2. Toplogical solutions

it is found in [1] that

n(φ) = hmm

.

2.2 Instanton

Instantons are localized objects in four-dimensional (Euclidean) space-

time. Originally, it was called ”pseudo-particles” by Polyakov in the

first paper [5] of these type of solutions. The name ”instantons” was

suggested by ’t Hooft and we will stick to this name for the very rea-

son that follows. In the quasi-classical approximation they describe

the least action trajectory (in Euclidean time) that connects two dis-

tinct energy-degenerate states in the space of fields. The initial point

of the instanton trajectory at t = −∞ is one such state, while the

final point at t = +∞ is another such state. Naturally, instantons

are present only in those theories in which energy-degenerate states in

the space of fields exist. They minimize the (Euclidean) action under

the given boundary conditions. Therefore, instantons present classical

solutions of the Euclidean equations of motion.

In non-Abelian gauge theories, they were discovered by Belavin, Polyakov,

Schwarz and Tyupkin [5] and are usually referred to as BPST instan-

tons. Our main focus is the SU(2) Yang-Mills theory for which we

17



Chapter 2. Toplogical solutions

have the corresponding Lagrangian

L = −1

4
Ga
µνGaµν

where Ga
µν is the corresponding component of the gauge field strength

tensor

Gµν = gGa
µν

τ a

2

Ga
µν = ∂µA

a
ν − ∂νAa

µ + gεabcAb
µA

c
ν

The corresponding gauge field is

Aµ = gAa
µ

τ a

2

where ’g’ is the coupling constant, τ a are the Pauli matrices for a =

1, 2, 3. They satisfy the SU(2) Lie algebra

[
τ a

2
,
τ b

2

]
= ıεabc

τ c

2

and a, b, c = 1, 2, 3

Instanton solutions are the solutions for which the corresponding

gauge fields Aµ minimizes the Euclidean action. Therefore the gauge

18



Chapter 2. Toplogical solutions

potential should tend to 0 as x→∞ or equivalently the gauge trans-

formation of Aµ = 0 i.e.

Aµ = ıS(x)∂µS(x)†

where S(x) is a matrix belonging to SU(2) that depends on x. This

boundary condition also implies the vanishing gauge field strength

as x → ∞. In fact, S(x) can be realized as a continuous mapping

S3(space − time) → S3(SU(2)) and all such mappings are classified

by Homotopy theory into various classes Sn(x) characterized by

winding number (the number of times the group space sphere S3 is

swept when the coordinate x sweeps the sphere in coordinate space

once). Mathematically, this is expressed by the formula

π3(SU(2)) ≈ π3(S
3) = Z

The unit matrix I represents the class S0(x). For a unit winding

number, the simplest choice of S1(x), not homotopic to I, can be taken

as

S1(x) =
x4 + i~x · ~τ√

x2
(2.28)

It corresponds to the unit topological charge q (winding number). In

fact, we can see that the Euclidean action in a given sector, labelled

19



Chapter 2. Toplogical solutions

by q, is bounded. Explicitly, we can show by rewriting the instan-

ton action by introducing the corresponding dual ?Gµν(=
1
2εµνρσG

ρσ,

where εµνρσ is fully-antisymmetric rank 4 tensor) as

SE = Sinst =
1

2g2

∫
d4xTr(GµνG

µν)

=
1

4g2

∫
d4xTr(Gµν ∓ ?Gµν)2 ± 2Tr(Gµν ? G

µν)

≥ ± 1

2g2

∫
d4xTr(Gµν ? G

µν)

≥ ± 1

2g2

∫
d4xεµνρσ∂µKµ

≥ 8π2

g2
|q|

where we have used the Chern-Simon current Kµ = 2εµνρσ(Aa
ν∂ρA

a
σ +

g
3ε
abcAa

νA
b
ρA

c
σ)] to define the topological charge q = g2

32π2

∫
d4x∂µKµ.

The equality holds true only if

?Gµν = ±Gµν,

where ′±′ corresponds to self-dual and anti-self-dual condition which

also corresponds to q > 0 and q < 0 respectively. In fact, instanton

solutions are the one that satisfy the Euclidean equation of motion

DµGµν = 0 and also at the same time minimizes the action Sinst. The

above duality condition holds true only in the Euclidean space but

not in the Minkowski space and so this is the reason why we begin

with the Euclidean space. An explicit way of showing why the above

duality condition with ± sign do not work in Minkowski space can be

20



Chapter 2. Toplogical solutions

found in the Appendix C.

It is easy to see that

D ? Gµν = 0, (2.29)

which is nothing but the Bianchi identity, which, taking the above

duality condition into account, further implies that they also satisfy

the equation of motion.

Now that we have a choice for S1(x) for which the topological charge is

unity. The BPST instanton solution can be constructed in an explicit

form by using all the properties that we defined above. But before we

do that, we need to introduce ’t Hooft symbols that links the genera-

tors of SU(2) subgroup of the higher group SO(4)(= SU(2)×SU(2)),

the group of rotations in 4D Euclidean space, and has the defining

condition

ηaµν =



εaµν µ, ν = 1, 2, 3

−δaν µ = 4

δaµ ν = 4

0 µ = ν = 4

so that

Ia1 =
1

4
ηaµνMµν

Ia2 =
1

4
η̄aµνMµν

(2.30)
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Chapter 2. Toplogical solutions

for a = 1, 2, 3 and η̄aµν differs from ηaµν in the sign of δ. Here, Ia1 and

Ia2 are the generators of the two subgroups of SO(4), which has Mµν

as its generators. Now we consider an element of SU(2) as

x4 + i~x · ~τ = iτ+
µ xµ (2.31)

where we define τ±µ matrices, the Euclidean analogs of the Minkowski

matrices σµ and σ̄µ as

τ±µ = (~τ ,∓i) (2.32)

The transformations of the combination of τ±µ is shown for complete-

ness as

τ+
µ τ
−
ν = δµν + iηaµντ

a

τ−µ τ
+
ν = δµν + iη̄aµντ

a
(2.33)

The corresponding explicit form of the Instanton (Self-Dual) solution

with its centre at the point x0 and with size ρ [8] is given by

Aa
µ =

2

g
ηaµν

(x− x0)ν
(x− x0)2 + ρ2

,

Ga
µν = −4

g
ηaµν

ρ2

[(x− x0)2 + ρ2]2
.

(2.34)

22



Chapter 2. Toplogical solutions

Allowing the self-dual and anti-self-dual nature of ηµν and η̄µν respec-

tively, we can define a rank two self-dual and anti-self-dual tensor as

Σµν = ηaµν
τ a

2

Σ̄µν = η̄aµν
τ a

2

(2.35)

so that the self-dual instanton solution becomes

Aµ = Σµν
(x− x0)ν

(x− x0)2 + ρ2
,

Gµν = −2Σµν
ρ2

[(x− x0)2 + ρ2]2
.

(2.36)

The instanton action for the above solution is 8π2

g2 which means the

topological charge is 1. The anti-instanton (anti-self-dual) solution is

obtained by the substitution ηaµν → η̄aµν.
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Hopfion solution in SU(2)

Yang-Mills theory

Before we begin discussing some of the novel attempts to construct

Hopfion solutions in SU(2) Yang-Mills theory, we need to introduce

a bit of the mathematics of ’Quaternion’. This particular branch of

mathematics forms a bridge between Abelian gauge theory to that of

non-Abelian gauge theory. With this realization, it is worthwhile to

try to understand some of the basics of Quaternionic algebra.

Quaternions are number systems and serves as an extensions of the

complex numbers. It is written generally as

q = a+ bi+ cj + dk

and the conjugate quaternion q̄,

q̄ = a− bi− cj − dk
24



Chapter 3. Hopfion solution in SU(2) Yang-Mills theory

where i, j, k are the fundamental quaternionic units having the prop-

erty

i2 = j2 = k2 = −1

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j

and a, b, c, d are the real numbers. A general quaternion [2] can also

be expressed in terms of two complex numbers(functions) as

q = (α + βj) (3.1)

where α = a+bi and β = c+di. Here a, b, c, d are numbers (functions)

depending on the context where they are being used. In conjunction

with α and β complex numbers(functions), the quaternionic conjugate

is defined by

q̄ = (ᾱ− βj) (3.2)

so that qq̄ = |α|2 + |β|2

In particular, qq̄ = 1 represents the hyper-sphere of unit radius in 4D

space, which is usually denoted by S3.

Topological solutions:

Given the above information, we wish to check if there exists topolog-

ical solutions of the SU(2) Yang-Mills theory of the Hopfion type. So

we start with the pure gauge condition Aµ → ıS1(x)∂µS1(x)†. Using
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Chapter 3. Hopfion solution in SU(2) Yang-Mills theory

the representation of 1, i, j and k as

1 = I, i = −τ 1, j = −iτ 2, k = −iτ 3

It is easy to realize that S1(x) serves as a quaternion. So S1(x)∂µS1(x)†

serves as a quaternionic valued potential of the general form [2]

Qµ = q (∂µq̄) (3.3)

It is worth to pause for a moment and study some of the properties of

Qµ.

Properties:

1) Qµ is purely quaternionic since Qµ = −Q̄µ

2) If Qµν = ∂µQν − ∂νQµ, then

Qµν + [Qµ, Qν] = 0 (3.4)

Since by property 1, Qµ is expressed in terms of i, j, k and so can

be expressed explicitly in terms of Pauli matrices or SU(2) generators.

Property 2 also implies the fact that the corresponding non-Abelian

gauge field strength vanishes, irrespective of the choice of q which

defines Qµ.
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Chapter 3. Hopfion solution in SU(2) Yang-Mills theory

Our strategy is to express Qµ in terms of the SU(2) generators as

Qµ = Qa
µ

τ a

2i

where the components Qa
µ are related to the Hopf map since we seek

solutions of the Hopfion type and the complex i is introduced for

if the gauge potential is expressed in anti-Hermitian form, then the

corresponding gauge field strength becomes the LHS of 3.4. Putting

the above expression in property 2 yields the following constraint

∂µQ
a
ν − ∂νQa

µ = −εabcQb
µQ

c
ν (3.5)

Imposing the Lorentz gauge condition ∂µA
µ = 0, we can deal with the

4th component by only working with the spatial parts. So the above

constraint reduces to

∂jQ
a
k − ∂kQa

j = −εabcQb
jQ

c
k

Multiplying on both sides by εijk, we have

~∇× ~Qa = −ε
abc

2
~Qb × ~Qc (3.6)

where i, j, k =1,2,3

To obtain a solution using Hopf fibration map, φ : S3 → S2, one can

pullback a volume form on S2 to get 2-form on S3 and such 2-form

on S3 can be written as an exact differential of a 1-form. By using

stereographic projection. we can associate with a vector field on S3,
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Chapter 3. Hopfion solution in SU(2) Yang-Mills theory

determined by the 1-form, a vector field ~A in R3. It is found in [7]

A1 =
xz − y

2l2

A2 =
yz + x

2l2

A3 =
2z2 + 2− l

4l2

(3.7)

for l = 1 + x2 + y2 + z2. The above vector field A = A1, A2, A3 has the

following identities

~∇× ~A = 4
~A

l

~r × ~A = ~A+
~v

4l

where ~r = (x, y, z) is the position vector and ~v = (−y, x, 1).

We intend to take Qa
i proportional to Ai for i = 1, 2, 3 with unknown

functions so as to satisfy ~∇× ~Qa = −εabc

2
~Qb × ~Qc. We further plan to

work in this direction to develop a partial Hopfion solution of SU(2)

Yang-Mills theory.

In fact, a general SU(2) gauge theory need not have a vanishing field

strength tensor for the existence of a solution of Hopfion type. The

2nd property (3.4) needs to be modified so that the pre defined quater-

nionic valued potential (derived from two complex Hopf maps) do not

map to the vanishing field strength tensor.
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Chapter 3. Hopfion solution in SU(2) Yang-Mills theory

Some other attempts to use quaternionic formulation to map to non-

zero field strength tensor have also been tried out. But the necessary

modifications of the quaternionic valued potential (3.3) to obtain a

non-vanishing field strength tensor have not been observed yet.

Alternatively, seeking a solution of Hopfion type can also be analyzed

starting from the the general expression of non-Abelian gauge field

strength. For this purpose, we employ the differential form notation

for SU(2) Yang-Mills theory. In this notation, the gauge field strength

is seen to be

F = dA+ A ∧ A (3.8)

The Bianchi identity tells us that dF = 0 which implies

dF = dA ∧ A = 0

since d2A = 0 and if A = Aa τa

2 for a, b, c = 1, 2, 3, then

dF a = d[
i

2
εabc(dA

b ∧ Ac − Ab ∧ dAc)] = 0

= iεabcdA
b ∧ Ac = 0

(3.9)
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Chapter 3. Hopfion solution in SU(2) Yang-Mills theory

If we now write Aa = Aa
µ
τa

2 , then (3.9) becomes

dF a = iεabcdAb ∧ Ac

= iεabc
[

1

2
(∂µAν − ∂νAµ)bAc

ρdx
µ ∧ dxν ∧ dxρ

]
= iεabc

1

2
Ab
µνA

c
ρdx

µ ∧ dxν ∧ dxρ

=
i

3!
εabcAb

[µνA
c
ρ]dx

µ ∧ dxν ∧ dxρ

where Aµν = ∂µAν − ∂νAµ and the last step is achieved by anti-

symmetrizing the component in µ, ν, ρ indices. So the Bianchi identity

3.9 reduces to

εabcAb
[µνA

c
ρ] = 0 (3.10)

So a general expression, if it has to satisfy the equation of motion, must

also satisfy the above identity. In particular, our ansatz for generating

an SU(2) Hopfion solution must hold the above identity (3.10). So we

take the ansatz similar to the one found in Ranada’s construction

A1
µ =

φ∂µφ̄

(1 + φφ̄+ θθ̄ + ψψ̄)2
,

A2
µ =

θ∂µθ̄

(1 + φφ̄+ θθ̄ + ψψ̄)2
,

A3
µ =

ψ∂µψ̄

(1 + φφ̄+ θθ̄ + ψψ̄)2
.

(3.11)

So the Bianchi identity must be satisfied by the above choice of Aa for

a = 1, 2, 3. So we take the component a = 1, then (3.10) reduces to

A2
[µνA

3
ρ] = A3

[µνA
2
ρ] (3.12)
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Chapter 3. Hopfion solution in SU(2) Yang-Mills theory

On expanding, we have

LHS = A2
µνA

3
ρ + A2

νρA
3
µ + A2

ρµA
3
ν,

RHS = A3
µνA

2
ρ + A3

νρA
2
µ + A3

ρµA
2
ν

where Aµν = ∂µAν−∂νAµ as defined above. Then the LHS is evaluated

to be

LHS =
(∂µθ∂ν θ̄ − ∂νθ∂µθ̄)ψ∂ρψ̄ + (µ→ ν → ρ) + (ν → ρ→ µ)

(1 +M2)2

where we define M2 = φφ̄ + θθ̄ + ψψ̄ such that ∂µM2 = 0. Using

∂µM2 = 0, we have

(∂µφ)φ̄+ φ∂νφ̄+ (∂µθ)θ̄ + θ∂ν θ̄ + (∂µψ)ψ̄ + ψ∂νψ̄ = 0 (3.13)

So using (3.13), the LHS can be rearranged to become

LHS =RHS + ∂µ[(θ∂ν θ̄)(ψ∂ρψ̄)]− ∂ν[(θ∂µθ̄)(ψ∂ρψ̄)]

+ (µ→ ν → ρ) + (ν → ρ→ µ)

By (3.12), we have

∂µ[(θ∂ν θ̄)(ψ∂ρψ̄)]−∂ν[(θ∂µθ̄)(ψ∂ρψ̄)]+(µ→ ν → ρ)+(ν → ρ→ µ) = 0

(3.14)
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Chapter 3. Hopfion solution in SU(2) Yang-Mills theory

So our task now is to consider some functions of φ, θ and ψ that will

satisfy both (3.13) and (3.14). So the obvious choice is

φ = c1e
if(r),

θ = c2e
ig(r),

ψ = c3e
ih(r).

(3.15)

where c1, c2 and c3 are constants and f(r), g(r) and h(r) for r2 =

x2 + y2 + z2 are real functions from R3 to R. This particular choice of

the functions f(r), g(r) and h(r) still gives the vanishing field strength

tensor. In this case, the equation of motion is trivially satisfied. So,

we intend to work further by making a slight modification to (3.15) in

such a way that the Bianchi identity is still satisfied but also at the

same time gives non-vanishing field strength tensor.
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Conclusion and future scopes

As it turns out, there have been hardly any satisfactory results for

the problem within the time limit given for the project. The problem

becomes more complicated as we probe further with the ansatz. We

have adopted three different ways of constructing Hopfion solutions,

but none seem to have a simplified situation for the moment. But

there is a greater hope that one of the above three attempts will spit

out a desired solution, given some time and effort.

So, the 1st attempt is just a particular case where the gauge field

strength simply vanishes. If there exist a solution that describes the

behaviour of the corresponding gauge field using the Hopf map, then

this solution could, in principle, be extended so that the new gauge

field do not possess a vanishing field strength tensor. This motivation

comes from the analysis of instanton solution wherein the pure gauge

33



Chapter 4. Conclusion and future plans

condition at far away points is taken care for any points including in-

finity [5], [8].

2nd attempt is also related to the 1st attempt, but this time, we try

not to solve the particular case. But, indeed, we try to modify the

quaternionic valued potential in such a way that the corresponding

gauge field do not vanish. Unfortunately, many modifications have

been tried but none fruitful. We hope we would be able to find one

good modification in the near future.

The last one is what we have been doing very recently. This time

we started with the Bianchi identity. The reason is that, no matter

what choice of the ansatz we consider, the solutions have to satisfy

the Bianchi identity. So the ansatz might satisfy the Bianchi identity

but may satisfy the equation of motion with or without source term.

The ansatz we adopted here is very much similar to the one we found

in Ranada’s construction for U(1) gauge theory. Even here, the prob-

lem is complicated, so we make certain assumptions as we go along

to simplify the problem. Fortunately, the Bianchi identity is satisfied

this time. But the vanishing field strength tensor will be reviewed by

making a slight modification to the choice of f(r), g(r) and h(r) in

(3.15).

Future scopes:

If such a solution is constructed, we will try to study some of the

properties and its significance with the other already known solutions.
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One good example is the instanton solution. As seen in the paper

[2], the Abelian Hopfion solution can be mapped to the non-Abelian

theories and their corresponding current are also closely related. So,

there is a possibility that the instanton solution can be described using

the Hopf fibration. In fact, there is a paper on ’Hopf instantons in

Chern-Simons theory’ [11]. Since SU(2) is the simplest non-trivial

group we have, getting some topological solutions like Hopfion type

can lead us to gain some insight into the theory of higher non-Abelian

group. For example, the gluonic congifuration in QCD can also be

studied with the solutions since SU(2) is a subgroup of SU(3). Such

type of solutions can also be studied within the context of gravity.
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Appendix A

Explicit form of the

Riemann-Silverstein vector

The explicit form of the Riemann Silverstein vector of the Hopfion

solution defined by 2.6 is

F =
4

(l − t2 + 2it)3


(t− x− z + i(y − 1))(t+ x− z − i(y + 1))

− i(t− y − z − i(x+ 1))(t+ y − z + i(x− 1))

2(x− iy)(t− z − i)


Then the electric and the magnetic field is the real and the imaginary

component of the above vector. Although the expression looks compli-

cated, we can see the behaviour of the solution at t = 0 and at ~r = 0.

So, an expression for the x component of the F field is given below.

At t = 0,

Fx = −4(2x2 + 2− l)
l3

+ i
4(yz + x)

l3
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Appendix A. Explicit form of the Riemann-Silverstein vector

while at ~r = 0,

Fx = −4
t4 − 6t2 + 1

(1 + t2)4
+ i

16t(1− t2)
(1 + t2)4

It is interesting to see that the components of electric and magnetic

field at t = 0 are proportional to 3.7 or to cyclic permutation of some

of them.
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Area 2-form

The ordinary sphere of unit radius in R3 is defined by the equation

x2 + y2 + z2 = 1

Realizing that S2 ≈ R2 ∪∞ or C1 ∪∞, we have the following coordi-

nates of S2 via the stereographic projection of S2 from the north pole

(0, 0, 1)

(x, y, z)→
(

x

1− z
,

y

1− z

)
Call it

(U, V ) =

(
x

1− z
,

y

1− z

)
Rewriting (x, y, z) in terms of (U, V ), we have

(x, y, z) =

(
2U

1 + U 2 + V 2
,

2V

1 + U 2 + V 2
,
U 2 + V 2 − 1

1 + U 2 + V 2

)
(B.1)
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Let ω be an area 2-form in S2. Now we express the area 2-form in terms

of (U, V ) by viewing the coordinates (x, y, z) as being parametrized by

U and V , so that

ω = ||~TU × ~TV ||dU ∧ dV (B.2)

where ~TU and ~TV are the tangent vectors on the surface U = constant

and V = constant respectively. Explicitly,

~TU =

(
∂x

∂U
,
∂y

∂U
,
∂z

∂U

)
=

2

1 + U 2 + V 2

(
−U 2 + V 2 + 1,−2UV, 2U

)
and

~TV =

(
∂x

∂V
,
∂y

∂V
,
∂z

∂V

)
=

2

1 + U 2 + V 2

(
−2UV, U2 − V 2 + 1, 2V

)
so that B.2 becomes

ω =
4

(1 + U 2 + V 2)2
dU ∧ dV (B.3)

Since a Hopf map φ is a surjective and many-to-one map from S3 to

S2, we can visulaize S3 as R3 ∪∞ via stereographic projection. Now

any point of three coordinates on S3 will be mapped to a point of two

coordinates on S2 by the Hopf map φ. Thus

φ = (U, V )

39



Appendix B. Area 2-form

or

φ = U + iV

allowing the complex mappping. Then

dφ̄ ∧ dφ = 2idU ∧ dV

Finally, the area 2-form B.2 can be written in terms of Hopf map as

ω =
4

(1 + dφφ̄)2

φ̄ ∧ dφ
2i

Dividing by the total area 4π, we get the normalized area 2-form

F =
1

2πi

dφ̄ ∧ dφ
(1 + φφ̄)2

(B.4)
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Duality configurations in

Euclidean space-time

In a 4D Euclidean spacetime, we have the following identity of the

Levi-Civita symbol

ερσµνε
ρσαβ = 2!δαβµν

where δαβµν is the generalized Krnonecker delta. However, in a 4D

Minkowskian spacetime, the above identity becomes

ερσµνε
ρσαβ = −2!δαβµν

So let’s start by defining the dual of the dual of Gµν as

˜̃Gµν =
1

2
ε ρσ
µν G̃ρσ

=
1

4
εµνρσε

ρσαβGαβ

(C.1)
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In Euclidean space-time,

˜̃Gµν =
1

4
ερσµνε

ρσαβGαβ

=
1

4
2!δαβµνGαβ

=
1

2
(δαµδ

β
ν − δαν δβµ)Gαβ

= Gµν

(C.2)

Symbollically, we can write the above result as

˜̃Gµν = ε2Gµν (C.3)

where ε2 = 1 implies ε = ±1, which corresponds to self-dual and

anti-self-dual configurations. While in 4D Minkowskian space-time,

we have

˜̃Gµν =
1

4
ερσµνε

ρσαβGαβ

= −1

4
2!δαβµνGαβ

= −1

2
(δαµδ

β
ν − δαν δβµ)Gαβ

= −Gµν

(C.4)

for which we have ε2 = −1, thus implying

ε = ±i

which does not correspond to self-dual and anti-self-dual configura-

tions [4].
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