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Abstract

Least squares twin multi-class classification support vector machine (LST-KSVC) [18]

and K-nearest neighbor-based weighted multi-class twin support vector machine

(KWMTSVM) [23] are novel multi-class classifiers based on the least squares twin sup-

port vector machine (LSTSVM) [17] and twin support vector machine (TSVM) [14]

respectively. LST-KSVC and KWMTSVM obtain two non-parallel hyperplanes for fo-

cused classes by solving a system of linear equations and two small size quadratic pro-

gramming problems (QPPs) respectively. Local information of data points is neglected

in LST-KSVC, and optimal hyperplanes are constructed by assuming that each data

point contribute the same weight but generally each data point have different predomi-

nance on the optimal hyperplanes. KWMTSVM solves the QPPs which consume more

time to compute the optimal hyperplanes. To reduce the drawbacks of the above algo-

rithms we proposed a novel algorithm based on least squares version of KWMTSVM

in chapter 4 of this thesis termed as Least squares K-nearest neighbor-based

weighted multi-class twin support vector machine (LS-KWMTSVM). In

our algorithm to enterprise the local information we introduce the weight matrix

Di(i = 1, 2) in the objective function of QPPs and to enterprise the inter class in-

formation we use Fv1, Fv2, Hv weight vectors in constraints. If any component of

vectors is zero then corresponding constraint is redundant so we can escape it. Evacu-

ation of redundant constraints and solving a system of linear equation instead of QPPs

makes our algorithm faster than KWMTSVM. LS-KWMTSVM evaluates all the train-

ing data points into a “1-versus-1-versus-rest” structure, so it generates ternary output

which helps to deal with imbalance datasets.

Classical TSVM uses hinge loss function [4] which is sensitive to noise and unstable

for re-sampling. To elevate the performance of TSVM, we introduce a novel algorithm

in chapter 5 of this thesis termed as General twin support vector machine with

pinball loss. In our proposed algorithm we use quantile distance [15, 20] and pinball

loss function [15,20] instead of shortest distance and hinge loss respectively. We justify

theoretically and experimentally that our proposed algorithm is noise insensitive i.e.,

it give better classification results for noise corrupted data.
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Chapter 1

Introduction

Support vector machine (SVM) and its variants [4, 14, 17] are classification tools for

supervised learning and its applications. The central idea of SVM is to construct the

optimal hyperplane between two different given classes. The optimal hyperplane is

defined as the one giving maximum margin between the training data points that are

close to the supporting hyperplanes. In contrast with other machine learning techniques

like artificial neural network (ANN) which implements empirical risk minimization

principle, SVM implements the structural risk minimization principle. SVM solves

convex programming problem, reassure that once a optimal solution exists, it is unique

and global.

In general there are two methods to develop classifiers:

1. Parametric approach [8], in which antecedent knowledge about data distribution is

given.

2. A non-parametric method [8], where no antecedent knowledge is given. Support

vector machines are typical non-parametric classifiers.

1.1 Linearly Separable Problem

Generally, a classification problem is considered as follows:

For a given training set T = {(x1, y1), (x2, y2), . . . , (x`, y`)}, where xi ∈ Rn are training
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Chapter 1. Introduction

points (inputs), its components are called features, yi ∈ Y = {−1, 1} are corresponding

class labels (outputs) for i = 1, 2, . . . , `. Objective of classification problem is to find a

real valued function f(x) in R which can determine the value of y (class label of x) for

any given x by the decision function h(x) = sgn(f(x)).

Definition 1 [7]: Consider the training set T = {(x1, y1), (x2, y2), . . . , (x`, y`)}, where

xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, 2, . . . , `. If there exist w ∈ Rn, b ∈ R and a positive

real number ε such that for any subscript i with yi = 1, we have wTxi + b ≥ ε and for

any subscript i with yi = −1, we have wTxi+b ≤ ε, then we say the training set and its

corresponding classification problem are linearly separable. If a classification problem

is not linearly separable then we call it nonlinearly separable problem. Example of

linearly and nonlinearly separable problems shown in Figure 1.1 and 1.2 respectively.

Figure 1.1: Example of linearly separable data.

2



Chapter 1. Introduction

Figure 1.2: Example of nonlinearly separable data.

1.2 Karush-Kuhn Tucker (K.K.T.) Conditions

Consider the following constrained optimization problem with inequality constraints:

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m, (1.2.1)

where f and gi : Rn → R are continuously differentiable functions.

Necessary Part of K.K.T. Conditions [16]: Let x̃ be local minimization point

of the problem (1.2.1). Then there exists multipliers (called K.K.T. multipliers) λ̃i,

i = 1, 2, . . . ,m such that the following conditions are holds:

1. Of(x̃) +
m∑
i=1

λ̃iOgi(x̃) = 0.

2. Ogi(x̃) = 0, where i = 1, 2, . . . ,m.

3. λ̃iOgi(x̃) = 0, where i = 1, 2, . . . ,m.

3



Chapter 1. Introduction

4. λ̃i ≥ 0 ∀ i.

these conditions are called K.K.T. conditions.

Sufficient Part of K.K.T. Conditions [16]: Let (x̃, λ̃1, λ̃2, . . . , λ̃m) satisfies the

K.K.T. conditions (1)-(4). Let f , gi (∀ i) be differential convex function, then x̃ is a

global solution of the optimization problem (1.2.1).

1.3 Linear Support Vector Machine

Let the data points to be classified denoted by the set T . Then we need to obtain

w ∈ Rn and b ∈ R such that

wTxi + b ≥ 1 for yi = 1 and wTxi + b ≤ −1 for yi = −1. (1.3.1)

The optimal hyperplane wTx+ b = 0, lies midway between the supporting hyperplanes

given by:

wTx+ b = 1 and wTx+ b = −1 (1.3.2)

and classify the two classes from each other with margin of 1
‖w‖ on each side. Data

points lies on the supporting hyperplanes given by (1.3.2) are termed as support vectors.

The classifier is obtained by maximizing the margin, it is equivalent to the following

optimization problem:

min
w, b

1

2
‖w‖2

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, . . . , `. (1.3.3)

When the two classes are not strictly linearly separable, in order to relax the condition

to separate all data point correctly, allow the existence of data points that violate the

constraints yi(w
Txi + b) ≥ 1 by introducing the slack variables ξi ≥ 0, i = 1, 2, . . . , `.

In order to reduce this violation, avoid making ξi too large, superimpose a penalty

4



Chapter 1. Introduction

upon them in objective function. Then formulation of the linear SVM is given by [4]:

min
w, b, ξ

1

2
‖w‖2 + c

∑̀
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . , `, (1.3.4)

where ξ = (ξ1, ξ2, . . . , ξ`)
T is slack variable and c > 0 is a penalty parameter. The

parameter c determines the weight between the two terms ‖w‖2 and
∑̀
i=1

ξi.

The Lagrange function corresponding to the problem (1.3.4) is given by:

L(w, b, ξ, α, β) =
1

2
‖w‖2 + c

∑̀
i=1

ξi −
∑̀
i=1

βiξi −
∑̀
i=1

αi(yi(w
Txi + b) + ξi − 1), (1.3.5)

where α = (α1, α2, . . . , α`)
T ≥ 0 and β = (β1, β2, . . . , β`)

T ≥ 0 are Lagrange multipli-

ers. Using the K.K.T. optimality conditions [16] we obtain:

w −
∑̀
i=1

αiyixi = 0,
∑̀
i=1

αiyi = 0 and c− αi − βi = 0 ∀ i = 1, 2, . . . , `. (1.3.6)

By using (1.3.5) and (1.3.6), the dual formulation of (1.3.4) is given by:

max
α

∑̀
i=1

αi −
1

2

∑̀
i=1

∑̀
j=1

αiαjyiyjx
T
i xj

s.t.
∑̀
i=1

αiyi = 0, 0 ≤ αi ≤ c, ∀ i = 1, 2, . . . , `. (1.3.7)

Remark: Assume that α∗ is a solution of dual problem. The input xi, associated to

the training point (xi, yi), is called support vector if the corresponding component

α∗i of α∗, is strictly positive.

5



Chapter 1. Introduction

Algorithm 1: Linear Support Vector Machine [7]

• Input the training set T = {(x1, y1), (x2, y2), . . . , (x`, y`)}, where xi ∈ Rn and

yi ∈ Y = {−1, 1}, i = 1, 2, . . . , `.

• Choose an appropriate penalty parameter c > 0.

• Formulate the convex quadratic programming problem:

max
α

∑̀
i=1

αi −
1

2

∑̀
i=1

∑̀
j=1

αiαjyiyjx
T
i xj

s.t.
∑̀
i=1

αiyi = 0, 0 ≤ α ≤ c, i = 1, 2, . . . , `

and obtain the optimal solution α = (α1, α2, . . . , α`)
T .

• Compute (w, b) by w =
∑̀
i=1

αiyixi and b = yj −
∑̀
i=1

αiyix
T
i xj, j is the jth compo-

nent of α such that αj > 0.

• Construct the separating hyperplane wTx + b = 0 and its associated decision

function h(x) = sgn(f(x)) where

f(x) = wTx+ b =
∑̀
i=1

αiyix
T
i x+ b. (1.3.8)

1.4 Nonlinear Support Vector Machine

There are some classification problem which cannot be classified by linear hyperplane

in the input space. For example, consider 20 training points in R2 as shown in Figure

1.3 [7]. In this figure, “ + ” and “ ◦ ” represent inputs corresponding to label yi = +1

and yi = −1 respectively. The relevant separating curve for this problem looks like an

ellipse centered at the origin in the ([x]1, [x]2) plane, that is a nonlinear classifier. In

fact, this ellipse can be converted into a linear hyperplane by using a nonlinear map

φ(x) = X from [x]1O[x]2 plane to the [X]1O[X]2 plane as shown in Figure 1.3.

6



Chapter 1. Introduction

Figure 1.3: Input space (a) and features space (b) [7].

Definition 2 [1]: Assume x and x′ ∈ R` in input space then K(x, x′) = φ(x)Tφ(x′)

is called Kernel function where φ(x) is a nonlinear map from input space to higher

dimensional space where data points are linearly separable. The advantage of using

kernels is that we do not need to treat the higher dimensional feature space explicitly.

The optimization problem for the nonlinear SVM is as follows [4]:

min
w, b, ξ

1

2
‖w‖2 + c

∑̀
i=1

ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , `, (1.4.1)

where ξ = (ξ1, ξ2, . . . , ξ`)
T is slack variable and c > 0 is a penalty parameter.

The Lagrange function corresponding to the problem (1.4.1) is given by:

L(w, b, ξ, α, β) =
1

2
‖w‖2 + c

∑̀
i=1

ξi −
∑̀
i=1

αi(yi(w
Tφ(xi) + b) + ξi − 1)

−
∑̀
i=1

βiξi. (1.4.2)

7



Chapter 1. Introduction

Using the K.K.T. optimality conditions, the dual formulation of (1.4.1) is given by:

max
α

∑̀
i=1

αi −
1

2

∑̀
i=1

∑̀
j=1

αiαjyiyjφ(xi)
Tφ(xj)

s.t.
∑̀
i=1

αiyi = 0, 0 ≤ αi ≤ c, ∀ i = 1, 2, . . . , `. (1.4.3)

Algorithm 2 Nonlinear Support Vector Machine [7]

• Input the training set T = {(x1, y1), (x2, y2), . . . , (xi, yi)}, where xi ∈ Rn, yi ∈

Y = {−1, 1}, i = 1, 2, . . . , `.

• Choose an appropriate map φ : R` → Hilbert space where data points are linearly

separable and a penalty parameter c > 0.

• Formulate the convex quadratic programming problem:

max
α

∑̀
i=1

αi −
1

2

∑̀
i=1

∑̀
j=1

αiαjyiyjφ(xi)
Tφ(xi)

s.t.
∑̀
i=1

αiyi = 0, 0 ≤ αi ≤ c, i = 1, 2, . . . , `,

and obtain the optimal solution α = (α1, α2, . . . , α`)
T .

• Compute (w, b) by w =
∑̀
i=1

αiyiφ(xi) and b = yj −
∑̀
i=1

αiyiφ(xi)
Tφ(xj), j is the

jth component of α such that αj > 0.

• Construct the separating hyperplane wTφ(x) + b = 0 and its associated decision

function h(x) = sgn(f(x)) where

f(x) = wTφ(x) + b =
∑̀
i=1

αiyiφ(xi)
Tφ(x) + b. (1.4.4)

Remark: Only difference between the algorithm 1 and 2 is that we replace inner prod-

uct (xTi xj) and (xTi x) by inner product in feature space (φ(xi)
Tφ(xj)) and (φ(xi)

Tφ(x))

respectively.

8



Chapter 2

Binary-class Classifiers

2.1 Twin Support Vector Machine (TSVM)

SVM, being computationally powerful tool for supervised learning, it is widely used

for classification. The conventional SVM has drawback such as high computation

complexity, approximately of order O(`3), where ` is number of data points. To resolve

this challenge, Jayadeva et al. [14] proposed a variant of SVM termed as twin support

vector machine (TSVM). The formulation of SVM requires all data points but in TSVM

they are distributed in such a way one class gives the constraints to the other class and

vice verse. So, TSVM solves two smaller size QPPs rather than one large size QPP.

Consider a binary classification problem which classify data points belonging to classes

+1 and -1 are represented by matrices A and B respectively. Let data points belongs

to class +1 and -1 are `1 and `2 respectively in the n-dimensional real space Rn.

2.1.1 Linear TSVM

Linear TSVM seeks for a pair of non-parallel hyperplanes

f+(x) = wT+x+ b+ = 0 and f−(x) = wT−x+ b− = 0, (2.1.1)

9



Chapter 2. Binary Classifiers

such that each hyperplane is close to one class and far from the other class, where

w+ ∈ Rn, w− ∈ Rn, b+ ∈ R and b− ∈ R. The formulation of linear TSVM can be

written as follows [14]:

min
w+, b+, ξ1

1

2
‖Aw+ + e1b+‖2 + c1e

T
2 ξ1

s.t. − (Bw+ + e2b+) + ξ1 ≥ e2, ξ1 ≥ 0 (2.1.2)

and

min
w−, b−, ξ2

1

2
‖Bw− + e2b−‖2 + c2e

T
1 ξ2

s.t. (Aw− + e1b−) + ξ2 ≥ e1, ξ2 ≥ 0, (2.1.3)

where c1, c2 are positive parameters, e1, e2 are standard unit vectors of appropriate

dimensions and ξ1, ξ2 are slack variables. We observe that TSVM is four times faster

than the conventional support vector machine. This is because time complexity of

usual support vector machine is approximately O(`3), where ` is the total number of

data points, and TSVM solves two QPPs (2.1.2) and (2.1.3) each is roughly of size `/2,

then ratio of run times is [
(`3)/

(
2×

(
`

2

)3)]
= 4.

The Lagrange function corresponding to the problem (2.1.2) is given by :

L(w+, b+, ξ1, α, β) =
1

2
‖Aw+ + e1b+‖2 + c1e

T
2 ξ1 − βT ξ1

− αT (−(Bw+ + e2b+) + ξ1 − e2), (2.1.4)

where α ≥ 0 and β ≥ 0 are Lagrange multipliers. Using the K.K.T. optimality condi-

tions we obtain:

AT (Aw+ + e1b+) +BTα = 0, eT1 (Aw+ + e1b+) + eT2 α = 0 and c1e2 − α− β = 0.

(2.1.5)

10



Chapter 2. Binary Classifiers

By using equation (2.1.5), we obtain:

HTHz+ +GTα = 0, i.e. z+ = −(HTH)GTα, (2.1.6)

where H = [A e1], G = [B e2] and z+ = [w+ b+]T .

Although HTH is always positive semi-definite, it is possible that it may not be well

conditioned in some situations. So, introduce a regularization term [21] δI, δ > 0, to

take care of problems due to ill-conditioning of HTH. Here, I is an identity matrix of

appropriate dimension. Therefore (2.1.6) is modified to

z+ = −(HTH + δI)−1GTα. (2.1.7)

By using (2.1.4) and (2.1.5), the dual formulation of (2.1.2) is given by:

max
α

eT2 α−
1

2
αTG(HTH)−1GTα

s.t. 0 ≤ α ≤ c1. (2.1.8)

Similarly, the dual formulation of equation (2.1.3) is given by:

max
β

eT1 β −
1

2
βTH(GTG)−1HTβ

s.t. 0 ≤ β ≤ c2. (2.1.9)

A new data point x ∈ Rn is assigned to class i(i = +1,−1) depending on which of the

hyperplanes in (2.1.1) is closer to x, i.e.,

class(i) = sign
(w+

Tx+ b+
‖w+‖

+
w−

Tx+ b−
‖w−‖

)
. (2.1.10)
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2.1.2 Nonlinear TSVM

We can extend linear TSVM to the nonlinear TSVM by considering the following kernel

generated surfaces:

K(xT , DT )u+ + b+ = 0 and K(xT , DT )u− + b− = 0, (2.1.11)

where D = [A;B]; u+, u− ∈ Rn and K is an arbitrary kernel function. Formulation of

the nonlinear TSVM is as follows [14]:

min
u+, b+, ξ1

1

2
‖K(A,DT )u+ + e1b+‖2 + c1e

T
2 ξ1

s.t. − (K(B,DT )u+ + e2b+) + ξ1 ≥ e2, ξ1 ≥ 0, (2.1.12)

min
u−, b−, ξ2

1

2
‖K(B,DT )u− + e2b−‖2 + c2e

T
1 ξ2

s.t. (K(A,DT )u− + e1b−) + ξ2 ≥ e1, ξ2 ≥ 0. (2.1.13)

Similar to the linear TSVM by introducing the Lagrange multipliers α, β and using

the K.K.T. conditions we can derive dual of (2.1.12) and (2.1.13) as follows:

max
α

eT2 α−
1

2
αTQ(P TP )−1QTβ

s.t. 0 ≤ α ≤ c1 (2.1.14)

and

max
β

eT1 β −
1

2
βTP (QTQ)−1P Tβ

s.t. 0 ≤ β ≤ c2, (2.1.15)

12
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where P = [K(A, DT ) e1] and Q = [K(B, DT ) e2]. Finally solutions of (2.1.14) and

(2.1.15 ) are given by

u+
b+

 = −(P TP + δI)−1QTα and

u−
b−

 = (QTQ+ δI)−1P Tβ, (2.1.16)

where δI, δ > 0 is a regularization term used to avoid the ill-conditioning of matrices

P TP and QTQ.

A new data point x ∈ Rn is assigned to class i(i = +1,−1) depending on which of the

kernel generate surface in (2.1.11) is closer to x, i.e.,

class(i) = sign
(K(xT , DT )u+ + b+

‖u+‖
+
K(xT , DT )u− + b−

‖u−‖

)
. (2.1.17)

2.2 Least Squares Twin Support Vector Machine

(LSTSVM)

The idea of TSVM is extended to LSTSVM [17] by replacing the inequality constraints

in TSVM with equality constraints and taking the squares of 2-norm of slack variables

instead of 1-norm in TSVM. As a result solution of LSTSVM follows from solving a

system of linear equations which makes the algorithm simple and fast.

2.2.1 Linear LSTSVM

Linear LSTSVM seeks for a pair of non-parallel hyperplanes given in equation (2.1.1).

Formulation of the linear LSTSVM is given by [17]:

min
w+, b+, ξ1

1

2
‖Aw+ + e1b+‖2 +

c1
2
‖ξ1‖2

s.t. − (Bw+ + e2b+) + ξ1 = e2 (2.2.2)

13
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and

min
w−, b−, ξ2

1

2
‖Bw− + e2b−‖2 +

c2
2
‖ξ2‖2

s.t. (Aw− + e1b−) + ξ2 = e1. (2.2.3)

After substituting the value of ξ1 into the objective function of (2.2.2) leads to

min
w+, b+

1

2
‖Aw+ + e1b+‖2 +

c1
2
‖e2 +Bw+ + e2b+‖2. (2.2.4)

Using the K.K.T. conditions, the solution of (2.2.2) is given by

w+

b+

 = −
( 1

c1
HTH +GTG

)−1
GT e1. (2.2.5)

Similarly, solution of (2.2.3) is given by

w−
b−

 =
( 1

c2
GTG+HTH

)−1
HT e2. (2.2.6)

Thus the linear LSTSVM completely solves the classification problem with inverse of

two matrices of order (n + 1) × (n + 1) where n << `. A new data point x ∈ Rn is

assigned to class i(i = +1,−1) according to the equation (2.1.10).

2.2.2 Nonlinear LSTSVM

Linear LSTSVM can be extended to the nonlinear LSTSVM by considering two kernel

generated surfaces given in (2.1.11). Formulation of the nonlinear LSTSVM is given

by [17]:

min
u+, b+, ξ1

1

2
‖K(A,DT )u+ + e1b+‖2 +

c1
2
‖ξ1‖2

s.t. − (K(B,DT )u+ + e2b+) + ξ1 = e2 (2.2.7)

14



Chapter 2. Binary Classifiers

and

min
u−, b−, ξ2

1

2
‖K(B,DT )u− + e2b−‖2 +

c2
2
‖ξ2‖2

s.t. (K(A,DT )u− + e1b−) + ξ2 = e1. (2.2.8)

Similar to the linear LSTSVM, solution of QPPs (2.2.7) and (2.2.8) can be derived as

follows:u+
b+

 = −(QTQ+
1

c1
P TP )−1QT e2 and

u−
b−

 = (P TP +
1

c2
QTQ)−1P T e1.

It is observed that the solution of the nonlinear LSTSVM requires the inverse of matrix

of order (`+1)× (`+1). However using Sherman-Morrison-Woodbury (SMW) formula

[10], solution of nonlinear LSTSVM given by using the inverse of three matrices of

smaller order rather than (` + 1) × (` + 1). The class i(i = +1,−1) is assigned to a

new data point x according to the equation (2.1.17).

2.3 Twin Support Vector Machine With Pinball Loss

(Pin-TSVM)

2.3.1 Loss Functions

• Consider the training set T = {(x1, y1), (x2, y2), . . . , (x`, y`)}, where xi ∈ Rn are

inputs and yi ∈ Y = {−1, 1} are corresponding outputs for i = 1, 2, . . . , `.

• Suppose f : Rn → R is a map from xi ∈ Rn to yi ∈ {−1, 1}. Loss function

represents the price paid for inaccuracy of precision in classification problem.

• 0-1 Loss Function: It takes the value zero if the predicted class is same as the

true class and one if the predicted class does not match the true class and it is

defined by

L(x, y, f(x)) = I(y 6= f(x)), (2.3.1)
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where I is the indicator function.

• Hinge Loss Function [13]: The hinge loss function is defined by

Lhinge(x, y, f(x)) = max(0, 1− yf(x)). (2.3.2)

Figure 2.1: Hinge and pinball loss funtion.

In all the algorithms discussed in previous chapters, we use hinge loss function.

Hinge loss function is noise sensitive. To resolve this problem Suykens et al. [13]

use pinball loss function in support vector machines.

• Pinball Loss Function [13, 15]: The pinball loss function is defined by

Lτ (x, y, f(x)) =

 −yf(x), −yf(x) ≥ 0,

−τ(−yf(x)), −yf(x) < 0,

(2.3.3)

where τ ∈ [0, 1]. Pinball loss gives an additional penalty to the correctly classified

points.

2.3.2 Linear Pin-TSVM

Twin parametric-margin support vector machine (TPMSVM) [19] is an efficient clas-

sifier but it is noise sensitive. To further improve the generalization performance, Xu

16
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et al. [26] introduced twin support vector machine with pinball loss (Pin-TSVM), es-

pecially for noise-corrupted data. Similar to TPMSVM, Pin-TSVM also derives a pair

of non-parallel hyperplanes in input space (Rn) given in equation (2.1.1). Formulation

of the linear Pin-TSVM is given by [26]:

min
w+, b+, ξ1

1

2
‖w+‖2 +

ν1
`2
eT2 (Bw+ + e2b+) +

c1
`1
eT1 ξ1

s.t. (Aw+ + e1b+) ≥ −ξ1, (Aw+ + e1b+) ≤ ξ1
τ1

(2.3.4)

and

min
w−, b−, ξ2

1

2
‖w−‖2 −

ν2
`1
eT1 (Aw− + e1b−) +

c2
`2
eT2 ξ2

s.t. − (Bw− + e2b−) ≥ −ξ2, −(Bw− + e2b−) ≤ ξ2
τ2
, (2.3.5)

where ν1, ν2 > 0 are margin parameters and τ1, τ2 ∈ [0, 1] are pinball loss function

parameters. When τ1 and τ2 are zero then QPPs (2.3.4) and (2.3.5) are converted into

the QPPs of TPMSVM. The Lagrange function corresponding to the problem (2.3.4)

is given by:

L(w+, b+, ξ1, α, β) =
1

2
‖w+‖2 +

ν1
`2
eT2 (Bw+ + e2b+) +

c1
`1
eT1 ξ1

− αT (Aw+ + e1b+ + ξ1) + βT (Aw+ + e1b+ −
ξ1
τ1

). (2.3.6)

After using the K.K.T. conditions we obtain:

w+ +
ν1
`2
BT e2 − ATα + ATβ = 0,

ν1
`2
eT2 e2 − eT1 α + eT1 β = 0 and

c1
`1
e1 − α +

β

τ1
= 0.

(2.3.7)

Using equation (2.3.6) and (2.3.7), the dual of (2.3.4) is given by:

max
α, β

ν1
`2
eT2BA

T (α− β)− 1

2
(α− β)TAAT (α− β)

s.t. eT1 (α− β) = ν1, α +
β

τ1
=
c1
`1
e1,

α ≥ 0, β ≥ 0. (2.3.8)
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Value of the bias term (b+) is given by:

O+ = {i : αi > 0 and βi > 0}, b+ = − 1

|O+|
∑
i∈O+

wT+xi.

Similarly, we can obtain the dual of QPP (2.3.5)

max
γ, σ

ν2
`1
eT1AB

T (γ − σ)− 1

2
(γ − σ)TBBT (γ − σ)

s.t. eT2 (γ − σ) = ν2, γ +
σ

τ2
=
c2
`2
e2,

γ ≥ 0, σ ≥ 0, (2.3.9)

where γ and σ are Lagrange multipliers.

Value of bias term (b−) is given by

O− = {i : γi > 0 and σi > 0}, b− = − 1

|O−|
∑
i∈O−

wT−xi.

A new data point x ∈ Rn is assigned to class i(i = +1,−1) according to the equation

(2.1.10).

2.3.3 Nonlinear Pin-TSVM

Linear Pin-TSVM can be extended to the nonlinear Pin-TSVM by considering the

kernel generated surfaces given in equation (2.1.11). Formulation of the nonlinear Pin-

TSVM is given by [26]:

min
u+, b+, ξ1

1

2
‖u+‖2 +

ν1
`2
eT2 (K(B, DT )u+ + e2b+) +

c1
`1
eT1 ξ1

s.t. (K(A, DT )u+ + e1b+) ≥ −ξ1,

(K(A, DT )u+ + e1b+) ≤ ξ1
τ1

(2.3.10)
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and

min
u−, b−, ξ2

1

2
‖u−‖2 −

ν2
`1
eT1 (K(A, DT )u− + e1b−) +

c2
`2
eT2 ξ2

s.t. − (K(B, DT )u− + e2b−) ≥ −ξ2,

− (K(B, DT )u− + e2b−) ≤ ξ2
τ2
. (2.3.11)

Similar to linear Pin-TSVM we can find the dual formulation of (2.3.10) and (2.3.11)

by introducing the Lagrange function and using the K.K.T. conditions as follows:

max
α, β

ν1
`2
eT2K(B, DT )K(A, DT )T (α− β)− 1

2
(α− β)TK(A, DT )K(A, DT )T (α− β)

s.t. eT1 (α− β) = ν1, α +
β

τ1
=
c1
`1
e1,

α ≥ 0, β ≥ 0, (2.3.12)

max
γ, σ

ν2
`1
eT1K(A, DT )K(B, DT )T (γ − σ)− 1

2
(γ − σ)TK(B, DT )K(B, DT )T (γ − σ)

s.t. eT2 (γ − σ) = ν2, γ +
σ

τ2
=
c2
`2
e2,

γ ≥ 0, σ ≥ 0. (2.3.13)

Similar to linear Pin-TSVM we can obtain the value b+ and b−. A new data point

x ∈ Rn is assigned to class i(i = +1,−1) by using the equation (2.1.17).
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Multi-class Classifiers

3.1 Multi-class Classification Problems

Multi-class classification problem are more applicable in real life situation. In literature

there are two approaches for dealing with multi-class classification problems.

ONE-VERSUS-ONE [12]: If there are k classes then we consider two particular

classes as focused classes and classify them by any binary classifier, where it construct

k(k−1)
2

possible binary classifiers. There only two kinds of samples are involved for

each classifier, and no information is given for rest of the samples, therefore we receive

unfavorable outputs.

ONE-VERSUS-ALL [12]: In this approach we fix one class and consider rest (k−1)

classes as another class which can be executed as binary classification problem giving

us k classifiers. This approach leads to the class imbalance problem and produces a

bad performance.
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3.2 Twin Multi-class Support Vector Machine (Twin-

KSVC)

To resolve the drawbacks of above approaches, a new multi-class classification algo-

rithm, called K-SVCR [2], was proposed by Cecilio et al. It produces better forecasting

results for multi-class classification problem, as it evaluates all the training points into

the “1-vs-1-vs-rest” structure with ternary output {−1, 0, 1}. By integrating both the

structural advantage of K-SVCR and the speed advantage of TSVM, Xu et al. [24]

proposed a novel algorithm called Twin-KSVC. It finds two non-parallel planes

f+(x) = wT+x+ b+ = 0 and f−(x) = wT−x+ b− = 0 (3.2.1)

for two focused classes selected from k classes, where w+ ∈ Rn, w− ∈ Rn, b+ ∈ R and

b− ∈ R. The rest (k − 2) classes are mapped into a region between hyperplanes given

in (3.2.1) which satisfies (wT+x + b+) ≥ 1 − ε and (wT−x + b−) ≥ 1 − ε, where ε is a

positive real number.

3.2.1 Linear Twin-KSVC

Similar to TSVM [14], the Twin-KSVC generates two non-parallel hyperplanes for the

two focused classes such that each hyperplane is closer to one of the class and as far

as possible from the other. The remaining classes are mapped into a region between

hyperplanes which satisfies the following constraints:

Cw+ + e3b+ + η1 ≥ e3(1− ε) and Cw− + e3b− + η2 ≥ e3(1− ε),

where ε is a positive parameter and non-parallel separating hyperplanes are given by

(3.2.1). Let matrix A ∈ R`1×n represents the data points which belongs to the class

+1, B ∈ R`2×n represents the data points which belongs to the class −1 and C ∈ R`3×n

indicates the rest of data points which are labeled 0. Then hyperplanes in equation
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(3.2.1) are obtained by following QPPs [24]:

min
w+, b+, ξ1, η1

1

2
‖Aw+ + e1b+‖2 + c1e

T
2 ξ1 + c2e

T
3 η1

s.t. − (Bw+ + e2b+) + ξ1 ≥ e2,

− (Cw+ + e3b+) + η1 ≥ e3(1− ε), ξ1 ≥ 0, η1 ≥ 0 (3.2.2)

and

min
w−, b−, ξ2, η2

1

2
‖Bw− + e2b−‖2 + c3e

T
1 ξ2 + c4e

T
3 η2

s.t. (Aw− + e1b−) + ξ2 ≥ e1,

(Cw− + e3b−) + η2 ≥ e3(1− ε), ξ2 ≥ 0, η2 ≥ 0, (3.2.3)

where ci(i = 1, 2, 3, 4) are positive penalty parameters, ei(i = 1, 2, 3) are standard unit

vectors of appropriate dimensions and ξi, ηi(i = 1, 2) are slack variables.

The Lagrange function corresponding to the problem (3.2.2) is given by:

L(w+, b+, ξ1, η1, α, β) =
1

2
‖Aw+ + e1b+‖2 + c1e

T
2 ξ1 + c2e

T
3 η1

− αT (−(Bw+ + e2b+) + ξ1 − e2)− γT ξ1

− βT (−(Cw+ + e3b+) + η1 − e3(1− ε))− σTη1, (3.2.4)

where α ≥ 0, β ≥ 0, γ ≥ 0 and σ ≥ 0 are Lagrange multipliers. Define H = [A e1],

G = [B e2], T = [C e3] and z+ = [w+ b+].

By using the K.K.T. optimality conditions, the dual formulation of (3.2.2) is given by:

max
ρ

eT4 ρ−
1

2
ρTE1(H

TH)−1ET
1 ρ

s.t. 0 ≤ ρ ≤ K1, (3.2.5)
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where E1 = [G; T ]; K1 = [c1e2; c2e3]; ρ = [α; β] and e4 = [e2; e3(1− ε)].

Similarly, the dual of (3.2.3) is given by

max
ζ

eT5 ζ −
1

2
ζTE2(G

TG)−1ET
2 ζ

s.t. 0 ≤ ζ ≤ K2, (3.2.6)

where E2 = [H; T ]; K2 = [c3e1; c4e3]; ζ = [γ;σ] and e5 = [e1; e3(1− ε)].

3.2.2 Nonlinear Twin-KSVC

Linear Twin-KSVC can be extended to the nonlinear Twin-KSVC by considering the

following kernel generated surfaces

K(xT , DT
∗ )u+ + b+ = 0 and K(xT , DT

∗ )u− + b− = 0, (3.2.7)

where D∗ = [A; B; C]; u+, u− ∈ Rn and K is an arbitrary kernel function. They can

be obtained by resolving the following pair of QPPs:

min
u+, b+, ξ1, η1

1

2
‖K(A,DT

∗ )u+ + e1b+‖2 + c1e
T
2 ξ1 + c2e

T
3 η1

s.t. − (K(B,DT
∗ )u+ + e2b+) + ξ1 ≥ e2,

− (K(C,DT
∗ )u+ + e3b+) + η1 ≥ e3(1− ε),

ξ1 ≥ 0, η1 ≥ 0 (3.2.8)

and

min
u−, b−, ξ2, η2

1

2
‖K(B,DT

∗ )u− + e2b−‖2 + c3e
T
1 ξ2 + c4e

T
3 η2

s.t. (K(A,DT
∗ )u− + e1b−) + ξ2 ≥ e1,

(K(C,DT
∗ )u− + e3b−) + η2 ≥ e3(1− ε),

ξ2 ≥ 0, η2 ≥ 0. (3.2.9)
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The Lagrange function corresponding to the problem (3.2.8) is given by:

L(u+, b+, ξ1, η1, α, β) =
1

2
‖K(A,DT

∗ )u+ + e1b+‖2 + c1e
T
2 ξ1 + c2e

T
3 η1

− αT (−(K(B,DT
∗ )u+ + e2b+) + ξ1 − e2)− γT ξ1

− βT (−(K(C,DT
∗ )u+ + e3b+) + η1 − e3(1− ε))− σTη1.

(3.2.10)

Define R = [K(A, DT
∗ ) e1], S = [K(B, DT

∗ ) e2] and M = [K(C, DT
∗ ) e3]. By using

the K.K.T. optimality conditions, the dual formulation of (3.2.8) is given by

max
ρ

eT4 ρ−
1

2
ρTN1(R

TR)−1NT
1 ρ

s.t. 0 ≤ ρ ≤ K1, (3.2.11)

where N1 = [S; M ]. Similarly, the dual formulation of (3.2.9) is given by:

max
ζ

eT5 ζ −
1

2
ζTN2(S

TS)−1NT
2 ζ

s.t. 0 ≤ ζ ≤ K2, (3.2.12)

where N2 = [R; M ]. The solution of QPPs (3.2.11) and (3.2.12) are given by:

u+
b+

 = −[RTR + δI]−1[STα +MTβ] and

u−
b−

 = [STS + δI]−1[RTγ +MTσ],

where δI, δ > 0 is a regularization term used to avoid the ill-conditioning of matrices

RTR and STS.
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3.2.3 Decision Rule of Twin-KSVC

For a new testing point x, Twin-KSVC determines its class label by the following

decision function in linear case [24]:

f(x) =


1, wT+x+ e1b+ > −1 + ε

−1, wT−x+ e2b− < 1− ε

0, otherwise.

(3.2.13)

In case of nonlinear Twin-KSVC decision function is given by [24]:

f(x) =


1, K(xT , DT )u+ + e1b+ > −1 + ε

−1, K(xT , DT )u− + e2b− < 1− ε

0, otherwise.

(3.2.14)

In this way Twin-KSVC constructs k(k− 1)/2 classifiers for k -classes. For a new point

x, a vote is given to one of the focused class based on the condition satisfied by it.

Finally, the given point x is assigned to the class that gets highest votes.

3.3 Least Squares Twin Multi-class Classification

Support Vector Machine (LST-KSVC)

In LST-KSVC [18] primal QPPs of Twin-KSVC are modified to least squares sense same

as in case of LSTSVM [17], inequality constraint replaced with equality constraint and

1-norm of slack variables are replaced with 2-norm. As a result solution of LST-KSVC

follows from solving a system of linear equations which makes the algorithm simple

and fast.
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3.3.1 Linear LST-KSVC

Linear LST-KSVC seeks for two non-parallel hyperplanes given in equation (3.2.1) to

classify the focused classes. Formulation of the linear LST-KSVC is given by [18]:

min
w+, b+, ξ1, η1

1

2
‖Aw+ + e1b+‖2 +

c1
2
‖ξ1‖2 +

c2
2
‖η1‖2

s.t. − (Bw+ + e2b+) + ξ1 = e2,

− (Cw+ + e3b+) + η1 = e3(1− ε) (3.3.1)

and

min
w−, b−, ξ2, η2

1

2
‖Bw− + e2b−‖2 +

c3
2
‖ξ2‖2 +

c4
2
‖η2‖2

s.t. (Aw− + e1b−) + ξ2 = e1,

(Cw− + e3b−) + η2 = e3(1− ε). (3.3.2)

The square of 2-norm of slack variables ξ1, ξ2, η1 and η2 with weights c1
2

, c2
2

, c3
2

and c4
2

instead of 1-norm of ξ1, ξ2, η1 and η2 with weights c1, c2, c3 and c4 are used in (3.3.1)

and (3.3.2) which makes ξ1 ≥ 0, η1 ≥ 0, ξ2 ≥ 0 and η2 ≥ 0 redundant. By substituting

the value of slack variables ξ1 and η1 into the objective functions of (3.3.1) we obtain

min
w+, b+

1

2
‖Aw+ + e1b+‖2 +

c1
2
‖Bw+ + e2b+ + e2‖2 +

c2
2
‖Cw+ + e3b+ + e3(1− ε)‖2.

(3.3.3)

Using K.K.T. optimality conditions, the solution of (3.3.1) is given by:

w+

b+

 = −(HTH + c1G
TG+ c2T

TT )−1(c1G
T e2 + c2T

T e3(1− ε)). (3.3.4)

Similarly, the solution of equation (3.3.2) is given by

w−
b−

 = (c3H
TH +GTG+ c4T

TT )−1(c3H
T e1 + c4T

T e3(1− ε)), (3.3.5)
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where ei(i = 1, 2, 3) are standard unit vectors of appropriate dimensions. The LST-

KSVC solves the classification problem with inverse of two matrices of smaller dimen-

sion rather than solving QPPs.

3.3.2 Nonlinear LST-KSVC

Linear LST-KSVC can be extended to the nonlinear LST-KSVC [18] by considering

the kernel generated surfaces given in equation (3.2.7). These surfaces can be obtained

by solving the following pair of QPPs [18]:

min
u+, b+, ξ1, η1

1

2
‖K(A,DT

∗ )u+ + e1b+‖2 +
c1
2
‖ξ1‖2 +

c2
2
‖η1‖2

s.t. − (K(B,DT
∗ )u+ + e2b+) + ξ1 = e2,

− (K(C,DT
∗ )u+ + e3b+) + η1 = e3(1− ε) (3.3.6)

and

min
u−, b−, ξ2, η2

1

2
‖K(B,DT

∗ )u− + e2b−‖2 +
c3
2
‖ξ2‖2 +

c4
2
‖η2‖2

s.t. (K(A,DT
∗ )u− + e1b−) + ξ2 = e1,

(K(C,DT
∗ )u− + e3b−) + η2 = e3(1− ε). (3.3.7)

By substituting the value of slack variables into the objective functions of (3.3.6) and

(3.3.7) it gives

min
u+, b+

1

2
‖K(A,DT

∗ )u+ + e1b+‖2 +
c1
2
‖K(B,DT

∗ )u+ + e2b+

+ e2‖2 +
c2
2
‖K(C,DT

∗ )u+ + e3b+ + e3(1− ε)‖2 (3.3.8)

and

min
u−, b−

1

2
‖K(B,DT

∗ )u− + e2b−‖2 +
c3
2
‖e1 −K(A,DT

∗ )u−

− e1b−‖2 +
c4
2
‖e3(1− ε)−K(C,DT

∗ )u− − e3b−‖2. (3.3.9)
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Using the K.K.T. optimality conditions, solution of (3.3.8) and (3.3.9) are given by:

u+
b+

 = −
(
c1S

TS +RTR + c2M
TM

)−1(
c1S

T e2 + c2M
T e3(1− ε)

)
(3.3.10)

and u−
b−

 =
(
c3R

TR + STS + c4M
TM

)−1(
c3R

T e2 + c4M
T e3(1− ε)

)
. (3.3.11)

The nonlinear LST-KSVC requires inverse of two matrices of size (` + 1) × (` + 1).

However using Sherman-Morrison-Woodbury (SMW) formula [10], the nonlinear LST-

KSVC can be solved by using the inverse of three matrices of smaller size rather than

(`+ 1)× (`+ 1).

The decision function of LST-KSVC is same as the decision function of Twin-KSVC.

3.4 K-nearest Neighbor-based Weighted Multi-class

Twin Support Vector Machine

In Twin-KSVC and LST-KSVC samples have same weights when constructing the

hyperplanes. So that local information of samples is omitted and inter-class infor-

mation is also not exploited. However, they have different effects on the hyper-

planes. In K-nearest neighbor-based weighted multi-class twin support vector ma-

chine (KWMTSVM) [23] in order to obtain information of intra-class and inter-class,

K-nearest neighbor method [5] is employed.

For each sample xk in class +1, define two sets: Nebs(xk) andNebd(xk), whereNebs(xk)

contains its neighbors in class +1, while Nebd(xk) contains its neighbors in class -1.

Nebs(xk) = {xjk| if xjk and xk belong to the same class, 0 ≤ j ≤ m1} (3.4.1)
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and

Nebd(xk) = {xjk| if xjk and xk belong to the different class, 0 ≤ j ≤ m2}. (3.4.2)

Nebs denotes a set of m1-nearest neighbors of xk in class +1, and Nebd denotes a set

of m2-nearest neighbors xk in class -1. For two adjacent matrices for class +1, define

Ms and Md as follows [23]:

Ms,ij =

1, if xj ∈ Nebs(xi) or xi ∈ Nebs(xj)

0, otherwise

(3.4.3)

and

Md,ij =

1, if xj ∈ Nebd(xi) or xi ∈ Nebd(xj)

0, otherwise.

(3.4.4)

When Ms,ij = 1 or Md,ij = 1, an undirectional edge between two points. For the

reduction of the training points, redefine the weight matrix Md,ij as follows:

fj =

1, if ∃ i, Md,ij 6= 0,

0, otherwise.

(3.4.5)

3.4.1 Linear KWMTSVM

Linear KWMTSVM seeks for two non-parallel hyperplanes given in equation (3.2.1) to

classify the focused classes. Formulation of the linear KWMTSVM is given by [23]:

min
w+, b+, ξ1, η1

1

2
‖D1(Aw+ + e1b+)‖2 + c1e

T
2 ξ1 + c2e

T
3 η1

s.t. − F1(Bw+ + e2b+) + ξ1 ≥ Fv1 ,

−H1(Cw+ + e3b+) + η1 ≥ (1− ε)Hv,

ξ1 ≥ 0, η1 ≥ 0 (3.4.6)
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and

min
w−, b−, ξ2, η2

1

2
‖D2(Bw− + e2b−)‖2 + c3e

T
1 ξ2 + c4e

T
3 η2

s.t. F2(Aw− + e1b−) + ξ2 ≥ Fv2 ,

H2(Cw− + e3b−) + η2 ≥ (1− ε)Hv,

ξ2 ≥ 0, η2 ≥ 0, (3.4.7)

where F1 = diag(f1, f2, . . . , f`2); H1 = diag(h1, h2, . . . , h`3); F2 = diag(f1, f2, . . . , f`1);

H2 = diag(h1, h2, . . . , h`3); D1 = diag(d1, d2, . . . , d`1) and dj =

`1∑
i=1

Ms,ij. Fv1 denotes

the vector of diagonal elements of F1, similarly Fv2 and Hv are defined.

The Lagrange function corresponding to the problem (3.4.7) is given by :

L(w+, b+, ξ1, η1, α, β) =
1

2
‖D1(Aw+ + e1b+)‖2 + c1e

T
2 ξ1 + c2e

T
3 η1

− αT (−F1(Bw+ + e2b+) + ξ1 − Fv1)− γT ξ1

− βT (−H1(Cw+ + e3b+) + η1 − (1− ε)Hv)− σTη1. (3.4.8)

Using K.K.T. optimality conditions, the dual formulation of (3.4.6) is given by:

max
ρ

eT4 ρ−
1

2
ρTLT1 (HTD1H)−1L1ρ

s.t. 0 ≤ ρ ≤ K1, (3.4.9)

where ρ = [α; β], L1 = [GTF1 T
TH1] and e4 = [F T

1 e2; (1− ε)HT
1 e3].

Similarly, the dual formulation of (3.4.7) is given by:

max
ζ

eT5 ζ −
1

2
ζTLT2 (GTD2G)−1L2ζ

s.t. 0 ≤ ζ ≤ K2, (3.4.10)
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where ζ = [γ; σ], L2 = [HTF2 T
TH2] and e4 = [F T

2 e1; (1− ε)HT
2 e3].

Solution of QPPs (3.4.9) and (3.4.10) are given by:

w+

b+

 = −(HTD1H + δI)−1(GTF1α + T TH1β)

and w−
b−

 = (GTD2G+ δI)−1(HTF2γ + T TH2σ), (3.4.11)

where δI, δ > 0 is a regularization term used to avoid the ill-conditioning of matrices

HTD1H and GTD2G.

3.4.2 Nonlinear KWMTSVM

Nonlinear KWMTSVM seeks for two kernel generated surfaces given in equation (3.2.7).

Formulation of the nonlinear KWMTSVM is given by [23]:

min
u+, b+, ξ1, η1

1

2
‖D1(K(A,DT

∗ )u+ + e1b+)‖2 + c1e
T
2 ξ1 + c2e

T
3 η1

s.t. − F1(K(B,DT
∗ )u+ + e2b+) + ξ1 ≥ Fv1 ,

−H1(K(C,DT
∗ )u+ + e3b+) + η1 ≥ (1− ε)Hv,

ξ1 ≥ 0, η1 ≥ 0 (3.4.12)

and

min
u−, b−, ξ2, η2

1

2
‖(D2K(B,DT

∗ )u− + e2b−)‖2 + c3e
T
1 ξ2 + c4e

T
3 η2

s.t. F2(K(A,DT
∗ )u− + e1b−) + ξ2 ≥ Fv2 ,

H2(K(C,DT
∗ )u− + e3b−) + η2 ≥ (1− ε)Hv,

ξ2 ≥ 0, η2 ≥ 0. (3.4.13)
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By introducing the Lagrange multipliers α, β, γ and σ, the dual formulation of (3.4.12)

and (3.4.13) are as follows:

max
ρ

eT4 ρ−
1

2
ρTMT

1 (RTD1R)−1M1ρ

s.t. 0 ≤ ρ ≤ K1, (3.4.14)

where M1 = [STF1 M
TH1] and e4 = [F T

1 e2; (1− ε)HT
1 e3].

max
ζ

eT5 ζ −
1

2
ζTMT

2 (STD2S)−1M2ζ

s.t. 0 ≤ ζ ≤ K2, (3.4.15)

where M2 = [RTF2 M
TH2] and e5 = [F T

2 e1; (1− ε)HT
2 e3].

The decision function of KWMTSVM is same as the decision function of Twin-KSVC.
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4.1 Least Squares K-Nearest Neighbor-based Weighted

Multi-class Twin Support Vector Machine

In this chapter, we introduce a novel algorithm termed as least squares K-nearest

neighbor-based weighted multi-class twin support vector machine (LS-KWMTSVM).

We modify the primal problems of KWMTSVM in least square sense, by replacing

the inequality constraints with equality constraints and slack variables are replaced by

2-norm with weights c1
2

, c2
2

instead of c1 and c2. As a result solution of LS-KWMTSVM

follows from solving a system of linear equations which makes the algorithm simple and

fast.

4.2 Linear LS-KWMTSVM

Let matrix A ∈ R`1×n represents the data points of class +1, B ∈ R`2×n represents the

data points of class -1 and C ∈ R`3×n represent the rest data points which are labeled

0. To classify the focused classes, we are trying to find two non-parallel hyperplanes
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defined as follows:

f+(x) = wT+x+ b+ = 0 and f−(x) = wT−x+ b− = 0, (4.2.1)

where w+, w− ∈ Rn and b+, b− ∈ R. Formulation of the LS-KWMTSVM is given as

follows:

min
w+, b+ ξ1, η1

1

2
‖D1(Aw+ + e1b+)‖2 +

c1
2
‖ξ1‖2 +

c2
2
‖η1‖2

s.t. − F1(Bw+ + e2b+) + ξ1 = Fv1 ,

−H1(Cw+ + e3b+) + η1 = (1− ε)Hv (4.2.2)

and

min
w−, b− ξ2, η2

1

2
‖D2(Bw− + e2b−)‖2 +

c3
2
‖ξ2‖2 +

c4
2
‖η2‖2

s.t. F2(Aw− + e1b−) + ξ2 = Fv2 ,

H2(Cw− + e3b−) + η2 = (1− ε)Hv, (4.2.3)

where D1, D2, H1, H2, F1, F2, Fv2 , Fv1 and Hv are same as defined in KWMTSVM. ξ1,

η1, ξ2, η2 are slack variables. By substituting the value of ξ1 and η1 into the objective

function of QPP (4.2.2) we obtain:

min
w+, b+

1

2
‖D1(Aw+ + e1b+)‖2 +

c1
2
‖Fv1 + F1(Bw+ + e2b+)‖2

+
c2
2
‖(1− ε)Hv +H1(Cw+ + e3b+)‖2. (4.2.4)

Using the K.K.T. optimality conditions [16] we obtain:

ATDT
1D1(Aw+ + e1b+) + c1B

TF T
1 (Fv1 + F1(Bw+ + e2b+))

+ c2C
THT

1 ((1− ε)Hv +H1(Cw+ + e3b+)) = 0 (4.2.5)
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and

eT1D
T
1D1(Aw+ + e1b+) + c1e

T
2 F

T
1 (Fv1 + F1(Bw+ + e2b+))

+ c2e
T
3H

T
1 ((1− ε)Hv +H1(Cw+ + e3b+)) = 0. (4.2.6)

Arranging equation (4.2.5) and (4.2.6) in matrix form we get

AT
eT1

DT
1D1[A e1]

w+

b+

+ c1

BT

eT2

F T
1

(
Fv1 + F1[B e2]

w+

b+

)

+ c2

CT

eT3

HT
1

(
Hv(1− ε) +H1[C e3]

w+

b+

) = 0 (4.2.7)

HTDT
1D1Hz+ + c1G

TF T
1 [Fv1 + F1Gz+] + c2T

THT
1 [Hv(1− ε) +H1Tz+] = 0,

where H = [A e1], G = [B e2], T = [C e3] and z+ =

w+

b+

.

z+ = −(HTDT
1D1H + c1G

TF T
1 F1G+ c2T

THT
1 H1T )−1

(c1G
TF T

1 Fv1 + c2T
THT

1 Hv(1− ε)). (4.2.8)

Similarly, the solution of (4.2.3) is given by:

w−
b−

 = (GTDT
2D2G+ c3H

TF T
2 F2H + c4T

THT
1 H1T )−1

(c3H
TF T

2 Fv2 + c4T
THT

1 Hv(1− ε)). (4.2.9)

In this regard, optimal hyperplanes of (4.2.1) are obtained. LS-KWMTSVM solves

the classification problem with just inverse of two matrices of smaller size rather than

solving two QPPs in KWMTSVM.
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4.3 Nonlinear LS-KWMTSVM

We can extend the linear LS-KWMTSVM to the nonlinear LS-KWMTSVM by con-

sidering the following kernel generated surfaces:

K(xT , DT
∗ )u+ + b+ = 0 and K(xT , DT

∗ )u− + b− = 0, (4.3.1)

where D∗ = [A; B; C]; u+, u− ∈ Rn and K is an arbitrary kernel function. Formulation

of the nonlinear LS-KWMTSVM is given by:

min
u+, b+, ξ1, η1

1

2
‖D1(K(A,DT

∗ )u+ + e1b+)‖2 +
c1
2
‖ξ1‖2 +

c2
2
‖η1‖2

s.t. − F1(K(B,DT
∗ )u+ + e2b+) + ξ1 = Fv1 ,

−H1(K(C,DT
∗ )u+ + e3b+) + η1 = (1− ε)Hv (4.3.2)

and

min
u−, b−, ξ2, η2

1

2
‖D2(K(B,DT

∗ )u− + e2b−)‖2 +
c3
2
‖ξ2‖2 +

c4
2
‖η2‖2

s.t. F2(K(A,DT
∗ )u− + e1b−) + ξ1 = Fv2 ,

H1(K(C,DT
∗ )u− + e3b−) + η1 = (1− ε)Hv. (4.3.3)

Similar to linear case, we obtain the solution of (4.3.2) and (4.3.3) as follows:

u+
b+

 = −(RTDT
1D1R + c1S

TF T
1 F1S + c2M

THT
1 H1M)−1

(c1S
TF T

1 Fv1 + c2M
THT

1 Hv(1− ε)) (4.3.4)

and u−
b−

 = (STDT
2D2S + c3R

TF T
2 F2R + c4M

THT
1 H1M)−1

(c3R
TF T

2 Fv2 + c4M
THT

1 Hv(1− ε)), (4.3.5)
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where R = [K(A,DT
∗ ) e1], S = [K(B,DT

∗ ) e2], M = [K(C,DT
∗ ) e3] and ε is a real

positive parameter. We notice that for the solution of nonlinear case we require inverse

of two matrices of size (` + 1)× (` + 1). Now to reduce the computation cost, we use

Sherman-Morrison-Woodbury (SMW) formula [10] to recast (4.3.4) and (4.3.5)

u+
b+

 = −
(
Z − Z(F1S)T

( I
c1

+ (F1S)TZ(F1S)T
)−1

F1SZ
)

(
c1S

TF1Fv1 + c2M
THT

1 Hv(1− ε)
)
, (4.3.6)

u−
b−

 =
(
F∗ − F∗(F2R)T

( I
c3

+ (F2R)TF∗(F2R)T
)−1

F2RF∗

)
(
c1R

TF2Fv2 + c2M
THT

1 Hv(1− ε)
)
, (4.3.7)

where Z = (RTDT
1D1R+ c2M

THT
1 H1M)−1 and F∗ = (STDT

2D2S + c4M
THT

1 H1M)−1.

Again by using the SMW formula we obtain:

Z =
1

c2

(
Y − Y (F2R)T (c2I + F2RY (F2R)T )−1F2RY

)
, (4.3.8)

F∗ =
1

c4

(
Y − Y (F1S)T (c4I + F1SY (F1S)T )−1F1SY

)
, (4.3.9)

where Y = (MTHT
1 H1M)−1. To avoid the case when Y is ill-conditioned we add a

regularization term δI, where δ > 0 then

Y =
1

δ
(I − (H1M)T (δI +MTHT

1 H1M)−1H1M). (4.3.10)

Advantage of SMW formula is that earlier we have to compute the inverse of matrix

with size (`+ 1)× (`+ 1) and after using SMW we can compute it by using inverse of

three smaller dimension matrices of size (`1 × `1), (`2 × `2) and (`3 × `3) respectively.
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4.4 Decision Function

For a new testing point x, we decide the class label by using the following decision

function in the linear case:

f(x) =


1, wT+x+ e1b+ > −1 + ε

−1, wT−x+ e2b− < 1− ε

0, otherwise.

(4.4.1)

In case of nonlinear, decision function is given by:

f(x) =


1, K(x,DT )u+ + e1b+ > −1 + ε

−1, K(x,DT )u− + e2b− < 1− ε

0, otherwise.

(4.4.2)

In our proposed algorithm we construct k(k − 1)/2 classifiers for k -classes. For a new

data point x, a vote is given to one of the focused class based on condition it satisfies.

Finally, the given data point x is assigned to the class that gets highest votes.

4.5 Algorithm Analysis

Our proposed algorithm seeks for two non-parallel hyperplanes by solving a system of

linear equations.

• We give different weights to the data points of the focused class +1 in (4.2.2) by

using K-nearest neighbor (KNN) graph [25]. If a data point in the focused class

+1 has more KNNs, then we give more weight to it.

• Constraint Reduction: We introduce F1 = diag(f1, f2, . . . , fl2) where fi = 1

or 0 in (4.2.2). Similarly, H1 = diag(h1, h2, . . . , hl3) where hi = 1 or 0. If any
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data point of focused classes belongs to the KNN of another focused class i.e.,

fi = 1 or hi = 1 otherwise the corresponding constraint is redundant.

• Our proposed algorithm exploits the local information of intra-class and inter-

class by using the K-nearest neighbor method and imbalance problem is removed

by using the “1-versus-1-versus -rest” approach.

• Our proposed algorithm is an extension of LST-KSVC [18]. In equation (4.2.2)

if all components of Ms,ij = 1, fi = 1 and hi = 1 ∀ i, j then it reduces to

LST-KSVC.

• Computation Complexity: It is well known that computational complexity of

SVM is O(`3) [4] where ` is the number of data points. Computation complexity

of TSVM is O(2× ( `
2
)3) because TSVM divides the data into roughly equal size

matrices of order ( `
2
× n).

In a 3-class classification problem, assume each class have approximately `/3

data points. The data points of 3rd class involved twice in the constraints of the

K-SVCR, thus there are 4`
3

constraints. Therefore, computational complexity of

K-SVCR is O(4`
3

)3. In Twin-KSVC, the data points of 3rd class are used only

once hence computational complexity of Twin-KSVC is O(2× (2`
3

)3).

If LS-KWMTSVM have no redundant constraint then LS-KWMTSVM has al-

most same construction as Twin-KSVC, so they have same computational com-

plexity. If LS-KWMTSVM have some redundant constraint then computational

complexity of LS-KWMTSVM is less than O(16`
3

27
). In LS-KWMTSVM, KNN-

graph needs `2(log(`)) steps to compute the weight matrices for each data point.

Thus, total computational complexity is approximately O(16`
3

27
+ `2(log(`)).

4.6 Numerical Experiments

In this section, we demonstrate the performance of the four algorithms i.e., KWMTSVM

[25], LST-KSVC [18], Twin K-SVC [24] and our proposed algorithm. We conduct ex-

periments on ten benchmark datasets taken from UCI machine learning repository [3]
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and KEEL repository. The datasets are iris, teaching evaluation, wine, hayes-roth,

glass, lenses, contraceptive, zoo, cleave land and tae. In Table 4.1, total number of

samples, attributes and number of classes are denoted by sign “ · × · × · ” below the

dataset name. For example Iris dataset contains 150 samples and each sample consist

of the four attribute classified to three classes is denoted by “150 × 4 × 3”. We test

the performance of the proposed algorithm in classification accuracy and running time

aspects. In our experiments, we use 10-fold cross-validation to compare the perfor-

mance of the four algorithms. In 10-fold cross validation the dataset randomly splits

into ten subsets, nine of them are used for training and one is used for testing. This

process is repeated ten times and performance measure is taken as the average of ten

tested results. All the algorithm are implemented by MATLAB R2010b on Windows

10 Education on a PC with system configuration Intel (R) Core (TM) i7-6700 CPU @

3.40 GHZ with 8 GB of RAM. Gaussian kernel function K(x, y) = exp−(‖x−y‖
2/µ2) is

considered on benchmark datasets, as it is often applied and yields great generalization

performance, where µ is a parameter.

4.6.1 Parameter Selection

It is clear that the performance of the algorithms depend on the choices of parameters.

In our experiments, optimal parameters are obtained by the grid search method [12].

For all the algorithms, penalty parameters ci(i = 1, 2, 3, 4) are selected from the set

{2j | j = −5,−4, · · · , 4, 5}. The Gaussian kernel parameter µ is selected over the range

{2j | j = −10,−9, · · · , 9, 10}. Parameter ε is set to a small value 0.2. To reduce the

computational cost of parameter selection, we set c1 = c3 and c2 = c4 for all the

algorithms.

4.6.2 Results Comparison and Discussion

We compare our proposed algorithm with Twin-KSVC [24], LST-KSVC [18] and

KWMTSVM [25]. The experimental results are given in Table 4.1. In the perspec-

tive of prediction accuracy, we find out that our proposed algorithm LS-KWMTSVM
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outperforms on most of the datasets. In our algorithm, we solve the system of linear

equation, which makes the computation speed fast. LST-KSVC also solves system of

linear equations and even faster than proposed algorithm. Figure 4.1 shows the influ-

ence of penalty parameters (c1, c2) on the performance of LS-KWMTSVM with the

optimal value of kernel parameter for Wine dataset. It is observed from Figure 4.1

that c1 have more impact on the predictive accuracy of proposed algorithm as com-

pared to c2. As value of c1 increase accuracy also increase linearly. Figure 4.2 shows

the influence of penalty parameters (c1, c2) on the performance of LS-KWMTSVM

with the optimal value of kernel parameter for Teaching dataset. It is observed from

Figure 4.2 that variation in the value of c1 and c2 does not much effect the variation

of predictive accuracy. Predicative accuracy of proposed algorithm is approximately

constant. Figure 4.3 shows the influence of penalty parameters (c1, c2) on the perfor-

mance of LS-KWMTSVM with the optimal value of kernel parameter for Iris dataset.

It is observed from Figure 4.3 that c1 have more impact on the predictive accuracy as

compared to c2. For large value of c1, the performance of LS-KWMTSVM suddenly

degrades.

Figure 4.1: Wine
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Chapter 4. Proposed Algorithm 1

Figure 4.2: Teaching

Figure 4.3: Iris
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4.7 Statistical Analysis

In Table 4.1 we observe that our algorithm does not outperform for all the datasets. To

analyze the statistical significance of our proposed algorithm LS-KWMTSVM in com-

parison of Twin-KSVC [24], LST-KSVC [18], and KWMTSVM [23]. We use Friedman

test [6,9] with corresponding post hoc tests. Friedman test is considered to be simple,

robust, non-parametric and safe test for comparison of different classifiers over multi-

ple datasets. It ranks the algorithm for each dataset separately, the best performing

algorithm getting the rank 1, second one rank 2 and so on. In the case of ties average

ranks are assigned. The average ranks of all algorithms on the accuracy with Gaussian

kernel function are computed and listed in Table 4.2.

Table 4.2: Average rank on accuracy of four algorithms on ten benchmark datasets

Dataset Twin-KSVC LSTKSVC KWMTSVM LSKWMTSVM

Iris 1.5 3 4 1.5

Teaching 4 1 3 2

Wine 3.5 1 3.5 2

Hayes 3.5 1.5 3.5 1.5

Glass 4 2 3 1

Lenses 3 3 3 1

Contraceptive 1.5 4 3 1.5

Zoo 3.5 2 3.5 1

Cleveland 2 3.5 3.5 1

Tae 4 3 2 1

Average Rank 3.05 2.4 3.2 1.35

Under the null hypothesis, the Friedman statistics is distributed according to X 2
F with

(k − 1) degree of freedom as follows [6]:

X 2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
and FF =

(N − 1)X 2
F

N(k − 1)−X 2
F

. (4.7.1)

X 2
F =

12× 10

4(4 + 1)

[
3.052 + 2.42 + 3.22 + 1.352 − 4× 52

4

]
= 12.75. (4.7.2)
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FF =
(10− 1)× 12.75

10× (4− 1)− 12.75
= 6.65, (4.7.3)

where Rj = 1
N

∑
j r

j
i and rji denotes the rank of jth algorithm on the ith dataset out of

N datasets and FF is F-distribution with degree of freedom (k− 1)(N − 1), where k is

the number of algorithms and N number of datasets. The critical values of F(3, 27)

at significance level (α = 0.025, 0.05, 0.1) are 3.65, 2.96, 2.29 respectively. Since FF

value 6.65 of our algorithm is larger than the critical values i.e., the average rank of our

proposed algorithm is much lower than other algorithms. One can conclude that our

proposed LS-KWMTSVM is significantly better than Twin-KSVC, LST-KSVC and

KWMTSVM.
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Proposed Algorithm 2

5.1 General Twin Support Vector Machine With

Pinball Loss (Pin-GTSVM)

Usual TSVM affiliates hinge loss function which is sensitive to noise and unstable for

re-sampling. To elevate the performance of TSVM [14] similar to Pin-TSVM [26] we

also introduce pinball loss [13] in usual TSVM and propose a novel algorithm termed as

general twin support vector machine with pinball loss. Pin-GTSVM deals with quantile

distance [15] which makes it less sensitive to noise.

5.2 Linear Pin-GTSVM

The linear Pin-GTSVM obtains two non-parallel hyperplanes

f+(x) = wT+x+ b+ = 0 and f−(x) = wT−x+ b− = 0, (5.1.1)
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Chapter 5. Proposed Algorithm 2

where w+, w− ∈ Rn and b+, b− ∈ R. Introducing the pinball loss into the TSVM, we

obtain following QPPs:

min
w+, b+

1

2
‖Aw+ + e1b+‖2 + c1

`2∑
j=1

Lτ2(x
−
j , yj, f

+(x−j )) (5.2.1)

and

min
w−, b−

1

2
‖Bw− + e2b−‖2 + c2

`1∑
i=1

Lτ1(x
+
i , yi, f

−(x+i )), (5.2.2)

where `1 and `2 denotes the number of data points in positive and negative class

respectively. Data point x−j corresponds to the negative class and x+i corresponds to the

positive class respectively. Lτ1(·) and Lτ2(·) are pinball loss functions with parameter

τ1, τ2 ∈ [0, 1] respectively.

Substituting the pinball loss in (5.2.1) and (5.2.2) we obtain the following QPPs:

min
w+, b+, ξ1

1

2
‖Aw+ + e1b+‖2 + c1e

T
2 ξ1

s.t. − (Bw+ + e2b+) + ξ1 ≥ e2,

− (Bw+ + e2b+)− ξ1
τ2
≤ e2 (5.2.3)

and

min
w−, b−, ξ2

1

2
‖Bw− + e2b−‖2 + c2e

T
1 ξ2

s.t. (Aw− + e1b−) + ξ2 ≥ e1,

(Aw− + e1b−)− ξ2
τ1
≤ e1, (5.2.4)

where c1, c2 are positive penalty parameters and e1, e2 are standard unit vectors of

appropriate dimensions and ξ1, ξ2 are slack variables.

Remark: We observe that when τ1 and τ2 tends to zero then QPPs (5.2.3) and (5.2.4)

are reduced to QPPs of TSVM.
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Chapter 5. Proposed Algorithm 2

To obtain the solution of (5.2.3), we introduce the corresponding Lagrange function

with Lagrange multipliers α ≥ 0 and β ≥ 0

L(w+, b+, ξ1, α, β) =
1

2
‖Aw+ + e1b+‖2 + c1e

T
2 ξ1 − αT (−(Bw+ + e2b+) + ξ1 − e2)

+ βT (−(Bw+ + e1b+)− ξ1
τ2
− e2). (5.2.5)

Using K.K.T. optimality condition [16] we obtain:

AT (Aw+ + e1b+) +BTα−BTβ = 0 (5.2.6)

eT1 (Aw+ + e1b+) + eT2 α− e2β = 0 (5.2.7)

c1e2 − α−
β

τ2
= 0. (5.2.8)

By using equation (5.2.8) and α ≥ 0, we obtain −τ2c1e2 ≤ (α− β).

Combining equation (5.2.6) and (5.2.7) leads to

AT
eT1

 [A e1]

w+

b+

+

BT

eT2

 (α− β) = 0. (5.2.9)

Define H = [A e1], G = [B e2] and z+ =

w+

b+

 . With these notations (5.2.9) can be

rewritten as follows :

HTHz+ +GT (α− β) = 0, i.e., z+ = −(HTH)−1GT (α− β). (5.2.10)

Although HTH is always positive semi-definite, it is possible that it may not be well

conditioned in some situations. So, we introduce regularization term [21] δI, δ > 0, to

take care of problems due to possible ill-conditioning of HTH. Here, I is an identity
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matrix of appropriate dimensions. Therefore, equation (5.2.10)

z+ = −(HTH + δI)−1GT (α− β). (5.2.11)

Using (5.2.5) and above K.K.T. conditions, we get the dual of (5.2.3) as follows:

max
(α−β)

eT2 (α− β)− 1

2
(α− β)TG(HTH)−1GT (α− β)

s.t. − τ2c1e2 ≤ (α− β). (5.2.12)

Similarly, we can obtain the dual of QPP (5.2.4) as follows:

max
(γ−σ)

eT1 (γ − σ)− 1

2
(γ − σ)TH(GTG)−1HT (γ − σ)

s.t. (γ − σ) ≥ −τ1c2e1, (5.2.13)

where γ ≥ 0 and σ ≥ 0 are Lagrange multipliers. Finally, optimal separating hyper-

planes are obtained by:

w+

b+

 = −(HTH + δI)−1GT (α− β) and

w−
b−

 = (GTG+ δI)−1HT (γ − σ).

A new data point x ∈ Rn is assigned to class i(i = +1,−1) depending on which of the

two hyperplanes in (5.2.1) is closer to x, i.e.,

class(i) = sign
(w+

Tx+ b+
‖w+‖

+
w−

Tx+ b−
‖w−‖

)
. (5.2.14)

5.3 Nonlinear Pin-GTSVM

In order to extend the linear Pin-GTSVM to the nonlinear Pin-GTSVM we consider

the following kernel generated surfaces:

K(xT , DT )u+ + b+ = 0 and K(xT , DT )u− + b− = 0, (5.3.1)
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where D = [A ; B]; u+, u− ∈ Rn and K is an arbitrary kernel function. Similar to

linear Pin-GTSVM we construct the following optimization problems:

min
u+, b+, ξ1

1

2
‖K(A, DT )u+ + e1b+‖2 + c1e

T
2 ξ1

s.t. − (K(B, DT )u+ + e2b+) + ξ1 ≥ e2,

− (K(B, DT )u+ + e2b+)− ξ1
τ2
≤ e2 (5.3.2)

and

min
u−, b−, ξ2

1

2
‖K(B, DT )u+ + e2b+‖2 + c2e

T
1 ξ2

s.t. (K(A, DT )u− + e1b−) + ξ2 ≥ e1,

(K(A, DT )u− + e1b−)− ξ2
τ1
≤ e1, (5.3.3)

where ξ1, ξ2 are slack vectors. ei(i = 1, 2) are standard unit vectors of appropriate

dimensions. By introducing the Lagrange function and applying the K.K.T. optimality

conditions, the dual of (5.3.2) is given by:

max
(α−β)

eT2 (α− β)− 1

2
(α− β)TQ(P TP )−1QT (α− β)

s.t. − τ2c1e2 ≤ (α− β). (5.3.4)

Similarly, we can obtain the dual of equation (5.3.3)

max
(γ−σ)

eT1 (γ − σ)− 1

2
(γ − σ)TP (QTQ)−1P T (γ − σ)

s.t. (γ − σ) ≥ −τ1c2e1, (5.3.5)

where P = [K(A, DT ) e1] and Q = [K(B, DT ) e2]. α, β, γ, and σ ≥ 0 are Lagrange

multipliers. Finally, optimal separating hyperplanes are given by:

u+
b+

 = −(P TP + δI)−1QT (α− β) and

u−
b−

 = (QTQ+ δI)−1P T (γ − σ). (5.3.6)
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It is possible that P TP and QTQ may not be well conditioned in some situations. So,

we introduce a regularization term [21] δI, δ > 0, to take care of problems due to

possible ill-conditioning of P TP and QTQ. Here, I is an identity matrix of appropriate

dimensions. A new point x ∈ Rn is assigned to class i(i = +1,−1) depending on which

of the two kernel generated surface in (5.3.1) is closer to x, i.e.

class(i) = sign
(K(xT , DT )u+ + b+

‖u+‖
+
K(xT , DT )u− + b−

‖u−‖

)
, (5.3.7)

5.4 Algorithm Analysis

Similar to TSVM our proposed algorithm Pin-GTSVM explores two non-parallel hy-

perplanes by solving a pair of smaller sizes QPPs. Twin parametric-margin support

vector machine (TPMSVM) is a improved version of TSVM in which Peng et al. [19]

determine the parametric-margin hyperplanes similar to par-ν-SVM [11]. Xu et al. [26]

introduce pinball loss function in TPMSVM and propose a algorithm Pin-TSVM. We

ventilate the pinball loss function in classical TSVM which is more general than Pin-

TSVM [26].

It is well known that computational complexity of SVM is O(`3) [4] where ` is the

number of data points. Computation complexity of TSVM is O(2 × ( `
2
)3) because

TSVM divides the data into roughly equal size matrices of order ( `
2
×n). Computational

complexity of Pin-GTSVM and Pin-TSVM is same as of TSVM. The major advantage

of our proposed algorithm is that Pin-GTSVM is noise insensitive, especially for the

feature noise around the decision boundary. Pin-GTSVM is more stable than TSVM for

re-sampling. The re-sampling stability and noise insensitive are sustained by numerical

experiments. In term of computation time, Pin-GTSVM costs nearly the same time

as TSVM i.e., pinball loss function does not increase the computation time of Pin-

GTSVM. From Table 5.1 we observe that as we increase the value of pinball loss

parameter τi(i = 1, 2) ∈ [0, 1] it gives more better results.
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5.5 Numerical Experiments

In this section, we exhibit the performance of three algorithms i.e, TSVM [14], LSTSVM

[17] and our proposed Pin-GTSVM. In our proposed algorithm Pin-GTSVM we perform

experiments for different values of τi(i = 1, 2) = 0.5, 0.8 and investigate the variation

in accuracy. We conduct experiments on twelve benchmark datasets taken from UCI

machine learning repository [3] and KEEL repository. The datasets are Fertility, Iono,

Banknote, Votes, and so on which are given in Table 5.1. In Table 5.1, total number

of samples, attributes and number of classes are denoted by sign “ · × · × · ” below

the dataset name. For example Fertility dataset contains 100 samples and each sample

consists of the nine features classified in two classes, it is denoted by “100×9×2”. We

test the performance of the proposed algorithm in classification accuracy and running

time aspects.

In our experiments, we normalize the datasets before training and testing. We incorpo-

rate the feature noise [13] in datasets with zero-mean Gaussian noise. For each feature

standard deviation is denoted by r. The value of r is fixed r = 0(i.e, noise free), 0.05

and 0.1. The testing and training sets are aggravated by the same noise.

In our experiments, we use 10-fold cross-validation to compare the performance of

the three algorithms. In 10-fold cross-validation the dataset randomly splits into ten

subsets, nine of them are used for training and one is used for testing. This process

is repeated ten times and performance measure is taken as the average of ten tested

results. All the algorithm are implemented by MATLAB R2010b on Windows 10

Education on a PC with system configuration Intel (R) Core (TM) i7-6700 CPU @

3.40 GHZ with 8 GB of RAM. Gaussian kernel function K(x, y) = exp−(‖x−y‖
2/µ2) is

considered on benchmark datasets, as it is often applied and yields great generalization

performance, where µ is a parameter.

5.5.1 Parameter Selection

It is clear that the performance of different algorithms depends on the choices of pa-

rameters. In our experiments optimal value of parameters are found by the grid search
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method [12]. In all the algorithms we have to choose three parameters i.e, penalty

parameter c1 and c2, Gaussian kernel parameter µ. We use the fix value of τ1, τ2

0, 0.5 and 0.8. The optimal value for c1 and c2 parameter are selected from the set

{2j | j = −5,−4, · · · , 4, 5} and µ is selected over the range {2j | j = −10,−9, · · · , 9, 10}.

To reduce the computation cost of parameter selection, we set τ1 = τ2.

5.5.2 Results Comparison and Discussion

We compare our proposed algorithm Pin-GTSVM with TSVM [14], LSTSVM [17]. The

experimental results are presented in Table 5.1. From the perspective of prediction

accuracy, we find out that our proposed algorithm Pin-GTSVM outperforms on 8 data

sets out of 12. Pin-GTSVM attains best prediction accuracy in 24, 15 cases out of 36,

when τi = 0.8 and 0.5 respectively. Pin-GTSVM gives better results for noise corrupted

datasets due to use of pinball loss function. From the perspective of time, we observed

that Pin-GTSVM cost nearly the same computation time as TSVM. LSTSVM solves

the system of linear equation, so it is much faster than TSVM and Pin-GTSVM.

5.6 Noise Insensitivity

The main advantage of pinball loss minimization enjoys insensitivity with respect to

noise around the optimal separating hyperplanes. For easy comprehension, we focus

on the linear case. Consider the pinball loss function as follows:

Lτ (x, y, f(x)) =

 −yf(x), −yf(x) ≥ 0,

−τ(−yf(x)), −yf(x) < 0,

(5.6.1)
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where τ ∈ [0, 1]. Sub-gradient of the pinball loss Lτ (x, y, f(x)) is given by sign function

sgnτ (x, y, f(x)) given below:

sgnτ (x, y, f(x)) =


1, −yf(x) > 0,

[−τ, 1], −yf(x) = 0,

−τ, −yf(x) < 0.

(5.6.2)

Using the K.K.T. optimality condition for QPP (5.2.1) we obtain:

ATAw+ + AT e1b+ + c1e1

`2∑
j=1

sgnτ2(x
−
j , yj, f

+(x−j ))x−j = 0. (5.6.3)

For given w+ and b+ the whole index set can be separated into three distinct subsets

as follows:

S1 = {j : wT+xj + b+ < 0},

S2 = {j : wT+xj + b+ > 0},

S3 = {j : wT+xj + b+ = 0}.

Using the notation S1, S2 and S3, equation (5.6.3) can be recast as follows:

ATAw+ + AT e1b+ − c1e1τ2
∑
j∈S1

x−j + c1e1
∑
j∈S2

x−j + c1e1
∑
j∈S3

ζ+j x
−
j = 0,

where j = 1, 2, · · · , `2 and ζ+j ∈ [−τ2, 1]. We perceive that τ2 controls the numbers of

points in S1, S2, and S3. When τ2 is small enough, there are a lot of points in set S2

and hence the amount of points in S1 and S2 will decrease and when τ2 becomes large,

all of the three sets contain many points, and hence the result is less sensitive.
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Conclusion and Future Work

A novel multi-class algorithm, i.e., least squares K-nearest neighbor-based weighted

multi-class twin support vector machine (LS-KWMTSVM), is proposed in chapter 4 of

this thesis. In this algorithm local information of samples is exploited. For the infor-

mation of intra-class we introduce different weights D1 and D2 in the objective function

of QPPs and for inter-class information weight vectors Fv and Hv are involved in the

constraint. If any component of Fv = 0 or Hv = 0 is zero, it implies that the corre-

sponding constraint is redundant so it can be ignored. LS-KWMTSVM solves a system

of linear equations which make it simple and fast so that we can use it to classify the

large datasets in shorter time. Experimental results on ten UCI datasets authenticates

that our proposed algorithm LS-KWMTSVM outperforms existing algorithms on most

of the datasets.

We also proposed another algorithm, general twin support vector machine with pinball

loss. Pinball loss function is widely used in regression problems since there is a strong

relation between quantile regression and pinball loss function. Here we use pinball loss

function in usual TSVM instead of hinge loss. Some properties like noise insensitivity is

investigated from both theoretical and experimental aspects. In addition, we compare

our proposed algorithm with TSVM and LSTSVM. We also investigate the effect of

value τi(i = 1, 2) in our algorithm. Pin-GTSVM is more stable for noise corrupted

data than usual TSVM, it is sustained by numerical experiments.

57



Chapter 6. Conclusion and Future Work

In future, we will inspect the techniques of data compressing and re-sampling so that

our Pin-GTSVM can be applied to large-scale noise corrupted datasets for classifica-

tion. Further study on this topic will also include many application of Pin-GTSVM

in real life classification with noise. Another interesting topic would be to design fast

algorithm for our Pin-GTSVM and introduce pinball loss function in other variants of

TSVM. It should be identify that there are several parameters in our proposed algo-

rithms, so parameter selection is a interesting problem and we will need to address in

future. The selection of an appropriate kernel function is very important for perfor-

mance improvement.
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