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ABSTRACT  
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Neuromorphic Computation 
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Supervisor: Prof. Shaibal Mukherjee 

Co-Supervisor: Prof. Ajay Agarwal 

In the last one decade, memristor which is also known as ‘fourth 

fundamental circuit element’ has attracted extensive attention as it offers 

numerous potentials applications in the next-generation non-volatile 

memory (NVM) technology. Memristor is the prominent candidate to 

replace conventional change-based flash memory technology in futuristic 

applications such as data storage and neuromorphic computation. 

Primarily, memristive devices offers several advantages as compared to 

conventional memories technologies such as its simple structure, ultrafast 

operational speed, energy efficient, high endurance and retention, high 

device production yield, three-dimensional (3D) integration capability to 

fabricate high density memory, low device-to-device (D2D), and ultralow 

cycle-to-cycle (C2C) variabilities. On the one hand, the design and 

validation of detailed non-linear analytical models for transition metal 

oxide (TMO) especially Y2O3 are extensively required to emulate the 

fundamental resistive switching response along with several neuromorphic 

characteristics of the memristive devices. 

On the other hand, recent studies strongly suggest that Y2O3 can be an 

alternative option as a gate oxide material  in thin-film transistor-based 

memory to replace SiO2 as it offers numerous outstanding physical 
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properties such as: Y2O3 has high dielectric constant (∼14-18) for 

frequencies (≤1 MHz) which is beneficial for applications in high-

frequency oscillator, Chua’s circuits, neuromorphic networks, and high-

speed logical circuits. The lattice constant of the Y2O3 thin film is 10.60 Å 

which is very similar to that for Si substrate (2αSi = 10.86 Å) that helps to 

achieve a smooth and uniform film surface which is highly desirable in case 

of memristive crossbar array fabrication. Y2O3 has a transparent nature over 

a broad spectral range (0.2-8 μm) which can be further used to fabricate 

transparent electronic memory for integrated transparent electronics. 

Moreover, Y2O3 shows the Schottky behavior with Al which plays a very 

crucial role in interfacial resistive switching mechanism. 

However, a very few experimental reports are available on Y2O3-based 

memristive devices but the fabrication and detailed material and electrical 

investigation of Y2O3-based memristive crossbar array by utilizing dual ion 

beam sputtering (DIBS) system has not been reported to date. DIBS system 

offers several advantages such as produces high-quality thin films with 

reasonably better compositional stoichiometry, small surface roughness, 

excellent adhesion to the substrate even for films grown even at room 

temperature, and also offers large-area deposition for electronic device 

fabrication. 

In this research work, the design of the non-linear memristive analytical 

models and further validation of these analytical models with experimental 

reported data are presented. These proposed models show better non-linear 

current profile at the device boundaries with least values of maximum error 

deviation (MED) i.e., 4.44% in the neuromorphic characteristics as 

corresponds to the experimental data which shows the robustness of the 

designed analytical models. The proposed model also has extendable 

capabilities to emulate the memory transition properties such as short-term 

memory (STM) to long term memory (LTM), and re-stimulation process in 

the artificial neurons. On the other hand, a three-dimension  (3D) physical 

electro-thermal modeling has also been performed for the nanoscale Y2O3-

based memristor device by considering internal Joule heating effect and 
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non-uniform distribution of electrical field inside the device by utilizing 

COMSOL Multiphysics. The simulated data show the perfect zero-crossing 

pinched hysteresis loop in its resistive switching characteristics which is 

purely dominated due to the formation and rupture of conductive filaments 

(CFs) inside the Y2O3-based resistive switching medium. The physical 

modeling also successfully depicted the impact of device switching speed 

(i.e., voltage ramp rate) over the cyclic variations, device switching 

parameters and synaptic characteristics of the memristor device. 

Next, the detailed fabrication process, material, and electrical 

characterizations of the memristive crossbar arrays of (15×12) and (30×25) 

have been discussed. The fabrication of memristive crossbar arrays have 

been performed by utilizing DIBS systems which show better device 

interfaces as confirmed by high resolution-transmission electron 

microscopy (HR-TEM) outcome. Moreover, the fabricated crossbar arrays 

exhibit excellent resistive switching response with remarkable stability, 

repeatability, reproducibility in multiple switching cycles, high endurance 

up to 7.5×105 cycles, better retention (2.25×105 s), high production yield 

(92.67%), lower D2D (1.07%), and ultralow C2C (0.2%) variabilities in 

device switching voltages i.e., VSET and VRESET. The least values of D2D 

and C2C in VSET and VRESET are also favorable for the better thin film 

uniformity and smoothness which is also confirmed by HR-TEM analysis. 

The switching mechanism in the fabricated devices might be dominated 

due to device interfaces (mostly Al/Y2O3 Schottky interface) which is 

confirmed by conductive-atomic force microscopy (C-AFM) analysis. 

Furthermore, the fabricated devices in the crossbar array effectively show 

the device area scaling impact over the VSET and VRESET which further opens 

the way for fabrication of nanoscale device to increase the device density. 

Furthermore, the fabricated crossbar arrays have also exhibited the multi-

level current programing states which further open the new way to store 

multi-bit data in a single memory cell as well as help to train the memory 

array with different set of alphabets digits. The fabricated array structures 

are also successfully demonstrated the synaptic and neuromorphic 

computation responses in terms of potentiation, depression and spike time 
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dependent plasticity (STDP) as analogous to the Hebbian learning rules of 

the biological system.     

In the last chapter of this thesis, the read/write operational mechanism 

based on one bit line pull up (OBPU) scheme has been discussed which is 

performed on fabricated integrated 1S1R device configuration of (4×4) 

crossbar array. The fabricated devices in the crossbar array have effectively 

demonstrated read/write operation via device current mapping method in 

two different resistible states i.e., high resistance state (HRS) and low 

resistance state (LRS) which are represented as logic “0” and “1”, 

respectively, and write the name “HNRG” by considering current map in 

worst case scenario. Moreover, in this section of thesis, the training of 

memristive devices has also been demonstrated with multiple sets of 

alphabets by considering multilevel current programing scheme. 
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Chapter 1 

Introduction: Basic Understanding of the Resistive 

Switching Phenomena in MCA Architecture 

1.1 Background 

In 1971, Chua [1] has postulated memristor as a fourth fundamental passive 

electrical circuit element in addition to resistor, capacitor and inductor 

which is established the physical link between flux (φ) and charge (q) as 

described in the later section of this chapter. Further, memristor element 

theory has been extended in 1976 [2] in which the memristor can store 

information in a form of resistance and the resistance history can be 

modulated by applying external electrical stimuli [1]. In 2008, Strukov et 

al [3] have physically realized the memristor device and established the 

strong link between memristor theory and physical resistive switching 

devices which is initially driven by the need for high-performance non-

volatile memory and most recently accelerates the energy-efficient 

unconventional computing [4]. The typical structure of memristors is a two-

terminal device and consisting resistive switching layer sandwiched 

between these two electrodes. For the resistive switching layer, various 

materials like semiconductor, inorganic insulator and organic materials 

have been utilized. 

With the help of materials engineering, memristive devices can be 

categorised into two parts namely as; non-volatile or volatile memory. In 

the case of non-volatile memristor, the resistance state is maintained after 

the removal of the applied switching voltage or current while in the case of 

volatile memristor, its resistance state is not stable under the absence of 

external applied voltage or current. The stable resistance state is utilized to 

represent the stored information which makes memristive devices suitable 

for data storage applications [5]. The crossbar array architectures of the 

non-volatile memristive crossbar arrays are prominent candidates for future 

applications such as data storage [5], synaptic application [6], 

neuromorphic computation [7], hardware security [8] and analogous signal 
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and image processing application [9]. The aforementioned applications are 

only possible because memristive devices offer device area downscaling at 

the sub 2 nm scale [10] which open the new way to design and fabricate 

high density memristive crossbar array. The nanoscopic level memristive 

crossbar array possess many other desired properties, including high speed 

[11], high endurance and retention properties [12-13], high production 

yield [14], low energy consumption [15], low device-to-device (D2D) and 

ultralow cycle-to-cycle (C2C) variabilities [16],  three-dimensional (3D) 

integration capability [13], and compatibility with complementary metal 

oxide semiconductor (CMOS) technologies [17]. 

Moreover, the non-volatile memristor are being developed to process the 

stored information for in-memory analog computation [18] which further 

offers an efficient and reconfigurable solution to process analog 

information in artificial intelligence (AI) applications [19]. While,  the 

volatile memristor and its programable resistance state gradually relaxes 

toward a thermodynamically stable state under the absence of the 

programming voltage, offering desirable dynamics to mimic the biological 

synapses and neurons [10]. Furthermore, individual memristor has 

potential to show the short-term plasticity (STP) and long-term plasticity 

(LTP) as similar to the biological synapses [10, 20]. Artificial neural 

networks (ANNs) based on memristor crossbar array is also utilized to 

demonstrate brain-inspired functions [18].  

In this chapter, we have comprehensively described the basic 

understandings of non-volatile memories, especially  resistive random-

access memory (RRAM) or Memristor [2]. The chapter also emphasizes 

the basic properties, operating principle, performance parameters, and 

advantages of the memristive crossbar array structure. 

1.2 Resistive Random-Access Memory (RRAM) or 

Memristor 

Currently, several non-volatile memories technologies such as phase-

change random access memory (PCRAM) [21], magnetic random-access 

memory (MRAM) [22], ferroelectric random-access memory (FRAM) 
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[23], and resistive random-access memory (RRAM) [2] have been explored 

extensively to meet the current massive data storage and in-memory 

computation requirements. However, memory technologies like MRAM 

and FRAM face severe designing and technical obstacles during device 

downscaling. While, on the other hand, RRAM technology which is based 

on the resistive switching (RS) phenomena to alter the device resistance by 

modulating electrical bias has fascinated technical and commercial 

interests. Memristor is categorized under the broad category of RRAM as 

depicted in Figure 1.1. 

 

Figure 1.1: Schematic illustration of resistive memory and memristor.  

Moreover, RRAM has attracted scientific attention from last one decade as 

a prominent candidate for non-volatile memory (NVM) due to its 

nanoscopic device size and simple device structure, energy efficient, fast 

operational speed (< 1 ns), and capability to offer 3D integration for high 

density [13, 24].  

1.2.1 Mathematical Formulation for Memristor  

In 1976, Chua [2] has proposed hypothesis for non-linear memristor [1] by 

establishing constitutive relationship between two mathematical variables 



4 
 

i.e., charge (q) and flux (φ) representing the time integral of the current, 

i(t), and voltage, v(t) as described by equations (1) and (2). 

𝑞(𝑡) ≜ ∫ 𝑖(𝜏)𝑑𝜏
𝑡

−∞
                                        (1) 

𝜑(𝑡) ≜ ∫ 𝑣(𝜏)𝑑𝜏
𝑡

−∞
                                        (2) 

Here, it should be noted that the parameters ‘q’ and ‘φ’ are defined 

mathematically hence do not need to have any physical interpretations. It 

has considered that ‘q’ and ‘φ’ as a ‘charge’ and ‘flux’ of the memristor 

when equations (1) and (2) are associated with the formula related to the 

current, and flux to voltage, respectively. Assume that the memristor is 

charge-controlled or flux-controlled and if its constitutive relation can be 

defined by equations (3) and (4), respectively. 

𝜑 =  𝜑(𝑞)̂                                             (3) 

𝑞 =  𝑞(𝜑)̂                                             (4) 

where, 𝜑(𝑞) and 𝑞(𝜑) are continuous and piecewise-differentiable 

functions with bounded slopes. Next, differentiating  equations (3) and (4) 

with respect to time t, and obtain the following equation (5). 

𝑣 =
𝑑𝜑

𝑑𝑡
=  

𝑑𝜑(𝑞)̂

𝑑𝑞

𝑑𝑞

𝑑𝑡
= 𝑅(𝑞)𝑖                            (5) 

where, 

𝑅(𝑞) ≜
𝑑𝜑(𝑞)̂

𝑑𝑞
                                        (6) 

Equation (6) represents the ‘memristance’ at q, and the unit of memristance 

is Ohms (Ω). A memristor shows pinched hysteresis loop in its resistive 

switching (RS) as depicted in Figure 1.2. Under the application of external 

voltage bias, a memristor shows resistive switching (RS) behavior in which 

device resistance switches between two distinct resistance states namely as: 

Low resistance state (LRS) and high resistance state (HRS) as illustrated in 

Figure 1.2.  
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1.2.2 Its Pinched Hysteresis Loop: ‘Memristor Fingerprint’ 

An ideal memristor is a resistance state dependent device which shows 

perfect zero-crossing resistive switching response with pinched hysteresis 

loop [25]. The shape and hysteresis loop area of the resistive switching 

response are inversely proportional to operating frequency and decreases 

when operating frequency increases as depicted in Figure 1.2 which is the 

fingerprints of a memristive device. However, fast variation under 

excitation waveform cannot be responded due to device possesses some 

internal inertia hence, it settles at intermediate states which decreases the 

hysteresis loop area at higher sweep/ramp rates [25]. 

Figure 1.2 shows the pinched hysteresis loop in its resistive switching 

response. As seen from Figure 1.2, under the application of positive voltage 

bias memristive device switches from HRS to LRS and this process is 

termed as “SET process” and voltage defined at this stage is ‘VSET’ [26]. 

On the other hand, under the negative voltage bias device turns back from 

LRS to HRS and this process is known as “RESET process” and voltage 

defined at this stage is ‘VRESET’ [26]. 

 

Figure 1.2: Memristive behavior in resistive switching response exhibiting 

pinched-hysteresis. 

 



6 
 

1.2.3 Resistive Switching Mechanisms 

1.2.3.1 Electroforming 

In the electroforming process, an electronically conductive path is formed 

throughout the dielectric layer (or resistive switching layer) under the 

application of a relatively high electric field [27]. The formed conductive 

path either based on metallic ions (in case of active metal electrode) or 

combination of oxygen vacancies or defects (in case of defect rich 

switching layer) [28]. It is widely accepted that the electroforming involves 

a defect-induced soft dielectric breakdown due to the heating and field 

accelerated bond rupturing [29] processes. 

More specifically, under the application of external strong electric field the 

chemical bonds inside the dielectric layer are ruptured and this allows the 

formation of a conductive channel via vacancies flow towards opposite 

polarity according to the thermochemical dielectric breakdown theory [28]. 

The polarity of the applied electric field decides the orientation of the 

conductive channel. Hence, before commencing the resistive switching 

process in the memristive device, an electroforming process is performed 

to switch the pristine memory device to the high conductive state. 

Moreover, in electroforming process abrupt ‘SET process’ is happened 

which further increases the device variability. 

1.2.3.2 Interfacial or Electroforming-free 

The interfacial switching mechanism is also termed as ‘homogeneous 

switching’ which is based the modification of the Schottky barrier height 

between the metal electrode and the dielectric layer when oxygen vacancies 

(VO
2+) are attracted or repealed from the metal contact under the application 

of an electric field [30]. Interfacial switching mechanism can be modelled 

as a one-dimensional (1D) problem in which VO
2+ concentration is 

modified along the vertical axis of the device. Moreover, interfacial 

switching mechanism-based devices have shown remarkable performances 

in terms of variability and controllability that make them prominent 

candidates for applications in analog or neuromorphic computing [31]. 
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More specifically, under the influence of large electric voltage bias at the 

metal/oxide interface, large numbers of electrons are accumulated 

(extracted) into (from) the interface states under reverse (forward) bias. 

Accordingly, the net variation in charge at the interface states leads to a 

modification of a Schottky-like barrier width and/or height, because the 

degree of the band bending is dependent on a net charge in the interface 

states [26]. 

1.2.4 Types of Resistive Switching  

The resistive switching (RS) process in the memristive device is directly 

underline by non-volatile and reversible change in resistance under the 

application of external electrical stimulus. The resistive switching behavior 

in memristive device can be categorized into two parts namely as: (i) 

bipolar and, (ii) unipolar. In the case of bipolar resisitve switching, the 

opposite voltage polarities are required for the SET and RESET processes, 

as depicted in Figure 1.3. While, in the case of nonpolar or unipolar 

resisitve switching, the SET and RESET processes are associated with 

either positve or negative polarity of the applied voltage bias [26], as shown 

in Figure 1.3. 

 

Figure 1.3: Types of resistive switching based on voltage polarities. 
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1.2.5 Performance Parameters for Resistive Switching  

1.2.5.1 Resistance Ratio 

It is the ratio of the resistance states i.e., HRS and LRS of the memristive 

device and defines as the high resistance state (HRS) to the low resistance 

state (LRS). It plays a very important role in memristive devices, as it 

directly affects the performance of the device during programming and 

erasing schemes [2, 24].  

1.2.5.2 Endurance 

Memristive devices have to be togged between HRS and LRS frequently 

during read/write processes and each read/write operations may initiate 

permanent damage or generally assumed as degradation. Endurance defines 

the number of SET/RESET cycles that can be sustained before the HRS 

and LRS are no longer defined separately. Therefore, a high value of 

endurance is more desirable for highly stable memristive devices [2].  

1.2.5.3 Retention 

It is the ability of the memristive device to retain a state over time. Further, 

it is the time duration in which memristive devices will stay in one stable 

state after programming or erasing [2, 32] which further denotes the 

intrinsic ability of a memristive device. 

1.2.5.4 Variability 

It is described by the coefficient of variation (CV) and can be calculated by 

the ratio of standard deviation (σ) to mean value (µ) [33]. CV can be 

evaluated by considering variations in the switching voltages i.e., VSET and 

VRESET and resistance values in HRS and LRS of the memristive devices. 

Further, it is associated with the D2D and C2C in the memristive crossbar 

array and the value of the coefficient of variation should be minimized for 

the highly stable memristive crossbar array [16]. 
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1.2.5.5 Density 

It is defined as the total number of devices in the single unit area. High-

density memristive devices are more desirable for industry-scale 

applications. The memristive crossbar array offers 3D integration 

capability to ensure the high density and further, has the possibility of 

scalability to build a higher dense memory array [16, 33]. 

1.2.5.6 Device Production Yield 

The device production yield, one of the crucial parameters in a crossbar 

array, describes the percentage of working devices on a wafer-scale in 

comparison to total fabricated devices during a single fabrication process 

[16]. It is important to note that the production device yield in the 

memristive crossbar array signifies an ambitious scientific importance to 

further decline the device manufacturing cost significantly. 

1.2.6 Resistive Switching for Neuromorphic Applications 

1.2.6.1 Synaptic Plasticity 

Firstly, the idea of synaptic plasticity has proposed by psychologist Donald 

Hebb [30]. In general, the plasticity is the functionality of the brain to 

change and adapt to new information. Similarly, synaptic plasticity is the 

temporary change in the synapse between two neurons which allow 

neurons to communicate to each other and transfer the information from 

pre-synapse to post-synapse [22]. The strength of communication between 

two neurons can be dependent on synapse plasticity which further linked to 

other neurons for volumetric conversation. The volumetric conversation of 

the synapse is not static, but rather can change in both the short term and 

long term [22].  

Synaptic plasticity refers to these changes in synaptic strength. The ability 

of change in synaptic weight is called synaptic plasticity and it is a key 

mechanism pursued by the human brain in learning process [23]. Figure 1.4 

shows the critical components of a biological neural network, which 
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consists neurons and synapse alongside with numerous biological units. 

The synaptic plasticity can be divided into two parts such as: 

1. Short-term plasticity (STP) 

2. Long-term plasticity (LTP) 

 

Figure 1.4: Biological neural network components for neural conversation. 

Credit: https://researchoutreach.org/articles/cryo-electron-tomography-

synaptic-transmission-brain/. 

1.2.6.1.1 Short-Term Plasticity (STP) 

It is defined by the rapid changes (either increase or decrease) in synaptic 

strength over a minute. Specifically, STP shows a rapid, bidirectional and 

reversible change in synaptic strength and it is believed to serve as a key 

mechanism for modifying synaptic and circuit functions during 

computation. 

1.2.6.1.1 Long-Term Plasticity (LTP) 

Long-term plasticity is described by a long lasting (from minutes to hours), 

activity-dependent change in synaptic efficacy. LTP can be considered as 
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bidirectional and synaptic strength either strengthening in case of long-term 

potentiation (LTP) or debilitating in case of long-term depression (LTD). 

It defines how humans create and remember new memories. 

1.3 Yttrium Oxide as Switching Material 

In the past one decade, several transition metal oxides (TMOs) materials 

systems such as TiO2 [34], HfO2 [35],  SiO2 [36], ZnO [37] and Ta2O5 [38] 

have been extensively explored to design and fabricate memristive crossbar 

array. However, the aforementioned TMOs-based memristive device  have 

several performance issues in terms of lower thermal stability, higher D2D 

(>15%) and C2C (>10%) variabilities, and poor retention data (<105) [34-

37]. Ta2O5-based memristive device shows highest value of endurance 

cycles (1012) in the case of all TMOs materials [38]. Most recently, Y2O3 

has also been extensively considered [26, 39-41] to the memristive devices 

because it has some excellent physical properties which are outline below:   

i. Y2O3 has high dielectric constant (∼14-18) for frequencies (≤1 

MHz) [39] which is beneficial for applications in a high-frequency 

oscillator, Chua’s circuits, neuromorphic networks, and high-speed 

logical circuits [42]. 

ii. The lattice constant of the Y2O3 thin film is 10.60 Å which is very 

closed to that for Si substrate (2αSi = 10.86 Å) [39]. The lower lattice 

mismatch between Y2O3 and Si is more favorable to achieve a 

smooth and uniform thin film surface [43] which is highly desirable 

in case of memristive crossbar array fabrication. 

iii. Y2O3 has a transparent nature over a broad spectral range (0.2-8 μm) 

[44] which can be further used to fabricate transparent electronic 

memory for integrated transparent electronics [45]. 

iv. Moreover, Y2O3 shows the Schottky behavior with Al which is 

played a very crucial role in interfacial resistive switching 

mechanism [26, 39]. 

These aforementioned physical properties of Y2O3 makes it more suitable 

materials candidate to fabricate memristive crossbar array structure. 

Moreover, Y2O3 has also been investigated as a gate oxide material  to 
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replace SiO2 in thin-film transistor-based memory devices [39] because 

SiO2 are highly unreliable due to high density of pinholes [39] and larger 

tunneling currents [39], which reduces device yield and low breakdown 

strength. Figure 1.5 depicts the cubic structure of the Y2O3 which has been 

utilized as a resistive switching material in this research work. 

 

Figure 1.5: The cubic structure of yttrium oxide [46]. 

1.4 Aim and Objective 

It is very difficult to fabricate memristive devices which shows interfacial 

(electroforming-free) resistive switching behavior as interfacial switching 

mechanism-based devices show remarkable performances in terms of 

variability and controllability that make them prominent candidates for 

applications in analog or neuromorphic computing. The design and 

validation of the analytical and physical modeling for neuromorphic 

computation and device fabrication parameters such as device production 

yield, endurance, resistance ratio, D2D and C2C variations in device VSET, 

VRESET, are the matter of concern in the case of the memristive crossbar 

array. To the best of our knowledge, the experimentally validated high 

accuracy analytical and physical memristive models and fabrication of 

yttria based memristive crossbar array by utilizing dual ion beam sputtering 

(DIBS) system has not been reported elsewhere to date. The main aim of 

this thesis is to design and validation of memristive analytical and physical 

models and realization of Y2O3-based memristive crossbar for non-volatile 
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memory and neuromorphic computing applications by utilizing MATLAB, 

COMSOL Multiphysics and sputtering techniques, respectively, and study 

the numerous memristive device characteristics. This research work 

includes the multiples objectives which are outlined below: 

i. Extension of the previous reported studies on different yttria-based 

resistive switching devices and understand the various design 

methodologies of resistive switching device, which are related to 

memristive device performance parameters.  

ii. Design and validation of memristor analytical models with 

remarkable accuracy and explores the various neuromorphic 

characteristics via these validated models. 

iii. 3D physical electro-thermal modeling of nanoscale Y2O3-based 

memristor device for real synapse application by considering 

internal Joule heating and non-uniform electrical distribution via 

COMSOL Multiphysics.   

iv. Fabrication of yttria based memristive crossbar array device by 

utilizing DIBS as it offers smooth, uniform and economically viable 

deposition which can be used for large-area fabrication. 

v. Investigation of the various memristive characteristics such as 

stability in resistive switching response, endurance and retention 

properties, device production yield, and device area downscaling  

effect on device current on fabricated memristive devices. 

vi. Analysis of multilevel current programming functionality, synaptic 

leaning, and spike time dependent plasticity (STDP) characteristics 

as analogous to the Hebbian learning rules similar to the biological 

system. 

vii. Analysis of D2D and C2C variabilities in fabricated memristive 

crossbar array devices to investigate the performance of the 

crossbar array structure. 
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viii. Study of read/write scheme in fabricated crossbar array via device 

current mapping method and also discussed the writing of array for 

different alphabets digits by considering multilevel current 

programming functionality. 

1.5 Organization of the Thesis 

The research work reported in this thesis is focused on the design and 

validation of analytical and physical memristive device models and 

realization of yttria-based memristive crossbar array by utilizing DIBS 

system. The fabricated crossbar array has remarkable properties such as 

electroforming-free nature in the resistive switching responses, high stable, 

reproducible, repeatable, high endurance, better retention, multilevel 

current functionality, synaptic learning, spike time dependent plasticity 

(STDP), high production yield and low D2D and ultralow C2C variability 

in the switching voltages. The thesis is organized as follows: 

Chapter 2 illustrates the various instruments and tools utilized for 

fabrication and characterizations of the memristive crossbar array. 

Chapter 3 explains the detailed analytical and physical electro-thermal 

modeling of the Y2O3-based memristive devices. This chapter also outlined 

the device fabrication aspects as compared to previous studies in this field. 

Chapter 4 provides the comprehensive details of various modeled results, 

various material and electrical characterizations of the fabricated 

memristive crossbar array by utilizing various external electrical stimuli. It 

also illustrates other characterization details concerning various aspects of 

RS response.  

Chapter 5 explains the statistical distribution analysis and cumulative 

distribution function (CDF) for coefficient of variability in D2D and C2C. 

Chapter 6 describes the read/write operation in the fabricated crossbar 

array structure as well as writing of the memristive array for alphabets 

digits by implementing multilevel current programing functionality.  
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Chapter 7 presents the conclusion and future perspective of the fabricated 

memristive crossbar array. 
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Chapter 2 

 

Fabrication and Characterization Systems for Y2O3-

based MCA 

In this chapter, the dual ion beam sputtering (DIBS) system and direct-

current (DC) magnetron sputtering system which are primarily used for the 

oxide thin film and metal thin film deposition, respectively, and several 

characterization techniques, which are used to investigate the yttria-based 

memristive crossbar array, have been described in detail. Numerous 

characterization techniques are utilized to evaluate the structural, 

morphological, and electrical properties of the yttria resistive switching 

layer. The digital optical microscopy is utilized to investigate the alignment 

of each deposited layer in the fabricated crossbar array structure. The 

electrical properties of the memristive devices in the fabricated crossbar 

array is carried out by using the current-voltage (I-V) measurement system 

(Keithley 4200A-SCS semiconductor parameter analyzer). The quality of 

the various materials interfaces has been analyzed by utilizing the high 

resolution-transmission electron microscopy (HR-TEM) measurement. 

The quality of the surface morphology of the top surface of the yttria 

switching layer is investigated by field emission-scanning electron 

microscope (FE-SEM) images. The conductive-atomic force microscopy 

(C-AFM) is utilized to confirm the dominating resistive switching 

mechanism in the fabricated crossbar array via current distribution mapping 

under different voltage bias. Here, we have discussed all these utilized 

systems in detail. 

2.1 Thin Film Deposition Tools 

In this research work, the growth of the polycrystalline and amorphous 

Y2O3, and Ga-doped ZnO to fabricate yttria-based memristive crossbar 

array on Si substrate, Elettrorava-DIBS system is used. For the metal 

electrode deposition i.e., Aluminium (Al), DC-magnetron sputtering (Excel 

Instruments) is utilized. The following sub-sections are described the DIBS 

and DC-magnetron sputtering systems in detailed manner.  
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2.1.1 Dual Ion Beam Sputtering (DIBS) System 

DIBS system is one of the most important physical vapor depositions 

(PVD) technique which is used to deposit either oxide or metal thin film 

under ultrahigh vacuum environment [1]. DIBS system is well equipped 

with a radio-frequency (RF) deposition ion beam source and a direct-

coupled (DC) assist ion source, as depicted in Figure 2.1. The RF ion source 

is primarily utilized to sputter target materials, which is fixed in a four-

target assembly. The DC assist ion source helps to clean the surface of the 

substrate prior to film deposition also can be utilized to remove the native 

oxide layer from the substrate prior thin film deposition. It also hinders the 

island formation and removes the weak dangling bonds during the thin film 

deposition [2]. The angle between the deposition ion source and the 

sputtering target is fixed at 45o off normal while the angle between the 

assist ion source and the substrate assembly is maintained at 60o. DIBS 

system offers the following numerous benefits as compared to other 

sputtering systems: 

1. DIBS system produces high-quality thin films with reasonably better 

compositional stoichiometry, low surface roughness, provides excellent 

adhesion even at room temperature and better deposition quality for large-

area electronic device fabrication [3]. 

The schematic of a whole DIBS system is shown in Figure 2.1, while Figure 

2.2 depicts the digital camera image of the original DIBS assembly. The 

main components of this system include RF (deposition) ion source, assist 

ion source, a deposition chamber, load lock chamber, two vacuum 

turbopumps, different types of vacuum gauges, a substrate heater assembly, 

a water chiller and a controlling unit [2]. 
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Figure 2.1: The schematic of dual ion beam sputtering (DIBS) system. 

In the DIBS system, both ion sources are manufactured by Kaufman and 

Robinson which produce a cation ion beam. The produced ion beam is 

spatially well confined and mono-energetic [4]. Fundamentally, RF ion 

source creates a plasma of Ar gas which consists with the help of grids. The 

RF deposition ion source consists of three main parts namely as: (i) the 

discharge chamber, (ii) grids, and (iii) neutralizer. The Ar ions are 

generated inside the discharge chamber under the Ar gas environment 

subjected to an RF field. The ionization process starts when gas is reached 

into a small isolated quartz/alumina chamber, which is surrounded by an 

RF powered coil. The created RF field excites outermost electrons of Ar 

gas atoms until they gain sufficient energy to break away from gas atoms, 

and creates the plasma of cations and electrons; this process is termed as 

‘inductive coupling’. 
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Figure 2.2: Digital camera image of the DIBS system. 

These ions are considered as a beam from the discharge chamber under the 

application of the various voltage biases on the grids. Usually, the 

deposition source consists of three grids to extract ions which help to reduce 

the chances of beam spread. The neutralizer also known as ‘hollow 

cathode’ is an electron source, which is utilized to neutralize the generated 

positive ion beam [4]. The schematic block diagram of the deposition ion 

source is depicted in Figure 2.3. 



24 
 

 

Figure 2.3: Schematic block diagram of ICP40 ion deposition source of 

DIBS system. 

The assist ion source is also consisted of two main parts namely as; (i) End-

Hall 400 ion source module and (ii) a neutralizer. This system has three 

types of power supplies which are mentioned below: 

1. Keeper power supply  

2. Emission power supply  

3. Discharge power supply.  

Keeper and emission power supplies are associated with the neutralizer 

while the discharge power supply is connected with the End-Hall 400 ion 

source module to provide voltage and current for generating a positive ion 

beam. This type of cost-effective assist ion source assembly offers some 

advantages like broad ion-beam coverage, large ion-current capabilities, 

and excellent reliability. The large ion-current capabilities of assist ion 

source allow sufficient etch rates [2] even at low ionic energy (≥ 200 eV). 

Here, Figure 2.4 depicts the schematic block diagram of the assist ion 

source assembly of the DIBS system. The keeper power supply is 

connected with hollow cathode neutralizer assembly to provide voltage and 

current and allows it for thermionic emission of electrons [2] from the 

keeper plate by igniting and keeping the keeper plate hot during the 

operation. The emission power supply starts after the keeper power supply 
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which ignited the hollow cathode and then the emission power supply 

provides a negative voltage to the hollow cathode unit to control the 

electron beam. The electron beam neutralizes the positive ions beam which 

are emitted from the End-Hall 400 ion source of the assist ion source.  

 

Figure 2.4: Schematic block diagram of EH400 assist ion source unit of 

DIBS deposition system. 

The materials growth processes are performed inside the deposition 

chamber of the DIBS system which is mostly made up of stainless steel as 

it is non-corrosive, non-magnetic, easy to weld and clean, highly malleable, 

and has excellent outgassing characteristics [2]. The deposition chamber 

consists of a numerous port to perform different functions and small 

viewing windows of the Pyrex glass to visualize the realistic view of the 

generated plasma during operation. The load lock chamber (LLC) is a small 

vacuum enabled chamber which is directly connected with main deposition 

chamber that permits the loading of the substrate into the deposition 

chamber without perturbating the vacuum level of the deposition chamber. 

A robotic arm is used to load or unload the sample from the LLC to main 

deposition chamber. The DIBS system is also equipped with the sets of 

several rotary and turbomolecular vacuum pumps which are used to create 

an ultra-high vacuum inside the deposition chamber and load lock chamber. 

The level of vacuum is measured by different vacuum gauges. The heater 
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assembly is fixed over the substrate holder inside the main chamber which 

is used to heat the substrate up to 1000 °C. The heater assembly allows in-

situ annealing of the deposited thin film at elevated temperatures during the 

material growth. A water chiller unit is also associated with the DIBS 

system to reduce the temperature inside the deposition chamber and target 

assembly and helps to prevent system overheating issues during the 

material growth. The several growth parameters such as deposition 

temperature, gas partial pressure, and RF power are controlled by a 

controlling unit [1-2]. 

2.1.2 Direct-Current (DC) Magnetron Sputtering System 

DC-magnetron sputtering system is a one of the promising physical vapor 

deposition techniques which is primarily used for the metal electrode 

deposition. In DC-magnetron sputtering, Ar gas plasma is created under the 

application of a high DC electrical voltage, and positively charged ions 

(Ar+) from the gas plasma are accelerated towards the negatively charged  

‘target’ assembly. For these positively charged Ar ions, an acceleration 

voltage in the range of few hundred to a few thousand electron volts is 

required. The high acceleration voltage helps Ar+ ions reach the target 

assembly and strike them with sufficient energy to remove atoms from the 

target materials [5]. The Ar+ atoms are ejected in a typical line-of-sight 

cosine distribution on the target surface and highly condensed near to the 

target surface as the target assembly has a permanent magnet to bind them 

closely. 

Moreover, the presence of a strong magnetic field at the target assembly 

helps to enhance the initial ionization process and creates the plasma at 

lower pressure. The lower pressure operation overcomes the problem of 

background gas incorporation in the growing film and energy losses of the 

sputtered atom during gas collisions which improves the quality of thin film 

with faster deposition rates [5]. The experimental setup of DC-magnetron 

sputtering is depicted in Figure 2.5. 
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Figure 2.5: Experimental setup of DC-magnetron sputtering system. 

2.2 Characterization Techniques 

The several characterization techniques are utilized to characterize the 

fabricated memristive crossbar array in this research work which are 

explained in the following sections. 

2.2.1 Digital Optical Microscopy System 

The digital optical microscopy manufactured by  Leica (DM2700 M) has 

universal white light (4500 K) LED illumination in combination with 

premier high quality Leica optics which provides the ideal inspection and 

outstanding image quality of the samples. The Leica DM2700 M shows 

how simple and reliable microscopy which helps to improve your workflow 

so you can concentrate on the task at hand. The key points of the Leica DM 

2700 M are outlined as follows: (i) Brilliance, (ii) Reliability, (iii) 

Flexibility, and (iv) Easy Documentation. 

It is mandatory for the microscope to have good optics unit. Leica digital 

microscopies are innovative, cost-effective, and provide high-contrast, pin 

sharp images as seen via eyepieces and captured with digital cameras. The 
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digital camera unit offers brilliance and sharp contrast with high resolution 

and optimized image fields. The microscopy setup is user-friendly and easy 

to understand the functionality.  

 

Figure 2.6: Digital camera image of Leica DM2700M microscopy. Credit: 

https://www.leica-microsystems.com/products/light-microscopes/p/leica-

dm2700-m/. 

The Leica DM2700 M is a flexible upright microscope system  and can be 

useful for Brightfield (BF), Darkfield (DF), Differential Interference 

Contrast (DIC), Qualitative Polarization (POL), and Fluorescence (FLUO) 

applications. Moreover, it can also be equipped with transmitted light. 

In this research work, digital optical microscopy (Leica DM2700M) is used 

to view the realistic view of the fabricated crossbar array devices which 

also helps to analyze the  perfect crosspoint structure in the crossbar array. 

Figure 2.6 depicts the digital camera image of the digital optical 

microscopy (Leica DM2700M). 

2.2.2 Current-Voltage (I-V) Measurement System 

The Keithley 4200A-SCS semiconductor parameter analyzer (SPA) is a 

vital characterization system to investigate the resistive switching response 

in terms of current-voltage relationship. The SPA-4200A SCS can be 
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utilized to study several parameters such as electrode area dependent device 

current, endurance, retention, and resistance ratio of the fabricated memory 

devices. The SPA-4200A SCS is also facilized with pulse model operation 

which is more preferable during endurance and retention measurements of 

the memory device. Figure 2.7 shows the digital camera image of the I-V 

measurement setup. The I-V measurement setup is equipped with the 

Everbeing cryogenic probe station with the temperature range of 80 K to 

450 K and a SPA 4200A-SCS. 

 

Figure 2.7: Photographs (a) Probe station and (b) Keithley 4200A-SCS 

semiconductor parameter analyzer. 

The I-V measurement setup is fully capable to measure the thin-film 

samples with different sizes and shapes, but in our case, we have used 

complete 3-inch Si substrate for the crossbar array in which minimum and 

maximum device area is 0.24 mm2 and 0.60 mm2, respectively. The 

detailed utilization of I-V protocols is described in the later chapters of the 

thesis. 

2.2.3 Field Emission-Scanning Electron Microscope (FE-SEM) 

The field emission-scanning electron microscope (FE-SEM) creates high 

resolution images of the surface of any sample to scan the sample surface 

through focused high energy electron beam. The electron interaction with 

atoms present in the sample causes the emission of many secondary 
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electrons which can provide significant information about the 

topographical features of the surface and composition of the testing 

samples. In FE-SEM system, primary electrons are induced by a field 

emission source which is connected with the very high electrical field. FE-

SEM creates clear and less electrostatically distorted images as compared 

to the conventional SEM. The electrons generated from the field emission 

gun are focused via a set of electronic lenses to produce a narrow beam of 

electrons which is bombarded on the samples in a random pattern. These 

uncountable collisions with sample induce the emission of secondary 

electrons from the surface of the samples. A FE-SEM system is equipped 

with a detector unit to detect these secondary electrons and generates an 

electronic signal. These electronic signals are further amplified and 

transformed into a video image.  

 

Figure 2.8: Digital camera image of FE-SEM, Zeiss Supra 55. Credit: 

https://commons.wikimedia.org/wiki/File:SUPRA_55_(6908563989).jpg. 

A FE-SEM can be used as a very high-resolution microscope, which can 

produce visualization of the topographic details below 100 nm scale on a 

sample. In this research work, the images of the top surface of Y2O3 

switching layer are taken by FE-SEM, Supra55 Zeiss. The digital camera 

image of the actual system is depicted in Figure 2.8. 
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2.2.4 High Resolution-Transmission Electron Microscopy (HR-TEM) 

High resolution-transmission electron microscopy (HR-TEM) is a 

specialized designed transmission electron microscope (TEM) which can 

be utilized for atomic level imaging of the sample. In TEM, an electron 

beam passes through a very thin (< 100 nm) sample. The passing electron 

beam interacts with the sample atoms to create the image of the sample. 

With the help of the TEM, we can get the morphological, compositional 

and crystallographic information of any sample. The created images by 

TEM have a very high resolution as compared to the light microscopes 

because it uses an electron beam that has a smaller De Broglie wavelength. 

The produced high-resolution images allow capturing very fine details such 

as a single column of atoms of the sample. TEM can be operated in several 

modes such as conventional imaging, scanning TEM imaging (STEM), 

diffraction, and spectroscopy. TEM is well equipped with many modules 

which are mentioned as follows: 

1. A vacuum cavity system for traveling of the electrons beam. 

2. Thermionic or field emission operatable electron emission source to 

generate electron beam into the vacuum. 

3.  A sets of electromagnetic lenses which are made of a solenoid coil, 

nearly surrounded by ferromagnetic materials.  

In HR-TEM, the electrons are emitted from a filament and pass through the 

multiple electromagnetic lenses to form a beam shape. The electron speed 

is directly associated with the electron wavelength and determines the 

resolution of the created images. In HR-TEM, the interference pattern is 

utilized to create a phase-contrast image as an interference pattern is formed 

by the transmitted and the scattered beams. The captured image has a very 

high resolution which further helps to detect a single unit cell of the crystal. 

Moreover, HR-TEM is also utilized to investigate the crystal structures and 

several defects such as lattice deficiencies, point defects, stacking faults, 

dislocations, grain boundaries, and defect in different kinds of materials at 

atomic resolution [6]. 
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In this research work, we have used HR-TEM to investigate the quality of 

various interfaces such as Y2O3/Si, BE GZO/insulating Y2O3, Y2O3 

SL/GZO. Figure 2.9 depicts the digital camera image of HR-TEM system. 

 
Figure 2.9: Digital camera image of HR-TEM system. Credit: 

https://jiam.utk.edu/core-facilities/microscopy/tem. 

2.2.5 Conductive-Atomic Force Microscopy (C-AFM) 

Conductive atomic force microscopy (C-AFM) is a widely accepted 

technique to investigate the topography of a thin film as well as the electric 

current distribution on thin film surface. The surface topography is 

investigated by sensing the deflection in the cantilever tip which is 

connected with the optical system (a combination of laser and photodiode). 

The current passing through the AFM tip is measured by using a current-

to-voltage preamplifier unit because the tip current may be in pico-ampere 

level. In C-AFM, during surface topographical analysis, a conductive 

cantilever tip scans the thin film sample surface in contact mode to produce 

a surface topographical map, and the deviation in the electric current 

passing through the cantilever tip is measured to record the surface map. 

During C-AFM analysis, the testing sample is fixed on the sample-holder 

via conductive tape/paste. 
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In this research work, the quality of the Y2O3 thin film surface is 

investigated by utilizing C-AFM. The schematic of the C-AFM is presented 

in Figure 2.10. The conduction mechanism of our fabricated devices in the 

crossbar array has been verified using C-AFM. C-AFM is performed on the 

top surface of the resistive switching oxide layer of Y2O3 and the outcomes 

have been investigated to understand the switching behavior of the device 

under different amplitude of applied voltage. In this research work, 

Shimadzu, SPM-9500J3 C-AFM system with an Au coated Si3N4 probe has 

been utilized to study the surface morphology of the switching layer of 

Y2O3. 

 

Figure 2.10: Schematic of conductive-atomic force microscopy (C-AFM). 

Credit: Valentina Castagnola, Implantable microelectrodes on soft 

substrate with nanostructured active surface for stimulation and recording 

of brain activities. Micro and nanotechnologies/Microelectronics, 

Universite Toulouse III Paul Sabatier, 2014. English. <tel-01137352> 
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Chapter 3 

 

Analytical and Physical Electro-Thermal Modeling with 

Crossbar Array Fabrication 

 

3.1 Introduction  

In 2008, Williams et al [1] have fabricated TiOx-based memristive device  

and also designed an analytical model to capture the similar resistive 

switching response which was obtained through experimentally, for the 

first time in the world. Later, several analytical models [2-5] have been 

proposed which are based on different materials systems to replicate the 

resistive switching characteristics of the memristive devices. Further, a 

very few attempts have been performed to design and proposed the 

analytical models [3-4] and circuit simulators [2, 5] which are able to 

simulate the resistive switching response along with synaptic learning 

capabilities and neuromorphic characteristics in terms of potentiation and 

depression processes of the memristive systems. However, these previously 

reported analytical models [3-4] and circuit simulators [2, 5] have shown 

large maximum error deviation (MED) with the corresponding 

experimental data and some of these models [4-5] have not been validated 

experimentally. Therefore, we have designed and proposed generic 

analytical models that are able to capture the various memristive device 

characteristics with the realistic nature and show minimum error margin 

corresponding to experimental reports [2, 6]. Besides that, we have also 

performed the 3D physical electro-thermal modeling of nanoscale Y2O3-

based memristor device wherein simulated outcomes exhibited the perfect 

zero-crossing resistive switching response under the application of the 

external electrical potential. The performed physical modeling is based on 

the free energy (FE) of the used materials at certain applied voltage and 

during the physical modeling, internal Joule heating and non-uniform 

distribution of electrical field have been considered as similar to the real 

memory devices which is not reported, till date in case of yttria-based 

memory device.  

On the other hand, many oxide-based materials such TiOx
 [7], InGaZnO 
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[8], ZnO [9], HfO2 [10], Ta2O5 [11], and WOx [2]) have been utilized to 

fabricate the memristive systems. There are very few attempts have 

reported to study Y2O3-based memristive systems [6, 12]. Yttria has widely 

been investigated as a gate oxide material in transistor-based applications 

[13]. Yttria has excellent physical properties such as low lattice mismatch 

(𝑎𝑌2𝑂3
 = 10.60 Å, 2𝑎𝑆𝑖 = 10.86 Å) with Si substrate [6], large bandgap (∼5.1 

eV) [6], high dielectric constant (∼15-18) [6], and shows Schottky contact 

with aluminium [12] for the resistive switching applications. In this 

chapter, we have comprehensively discussed the proposed analytical 

models and the device fabrication steps, which are utilized to fabricate 

memristive crossbar array structure based on yttria material system. Since, 

it is the first time to fabricate yttria-based memristive crossbar array with 

high device stability and higher device production yield by utilizing DIBS 

system or any other physical/chemical methods to fabricate memristive 

crossbar array. 

3.2 Analytical Modeling of Y2O3-based Memristive System 

The proposed analytical model provides a significant improvement 

(~16.66%) in device characteristics in terms of non-linear behavior of drift 

current at device boundaries by incorporating a modified window function 

and a newly incorporated state variable. The proposed model can also 

provide device characteristics for both sinusoidal and triangular input 

voltages. The memristive devices have structural variations as well as 

operational variations, and to cover these variations, several fitting 

parameters such as device conductivity and state variable on the device 

characteristics are used. The developed memristive device model fits well 

with the experimental reported data as shown elsewhere [6, 12], with an 

MED of ~20.1%. This work describes an in-depth analytical study of 

resistive switching response, conductance, actual power consumption, 

synaptic learning behavior, and a potentiation and depression mechanisms 

for a Y2O3-based memristive system.  
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3.2.1 Yakopcic Model 

The current-voltage (I-V) relationship for the Yakopcic model [14] is 

described by equation (1). 

𝐼(𝑡) =  {
𝑎1𝑥(𝑡) 𝑠𝑖𝑛ℎ(𝑏𝑉(𝑡)) ,   𝑉(𝑡) ≥ 0

𝑎2𝑥(𝑡) 𝑠𝑖𝑛ℎ(𝑏𝑉(𝑡)) ,    𝑉(𝑡) < 0
}                      (1) 

In this model, several fitting parameters such as a1, a2 and b are used to fit 

the resistive switching response of memristive devices. To evaluate the 

current response under an externally applied voltage bias, the model 

requires various amplitude parameters that depend on the polarity of the 

applied voltage. The fitting parameter b is used to control the slope of 

electrical conductivity concerning the magnitude of the applied input 

voltage. In the case of the Yakopcic model, b is varied from 0.05 to 3 for 

TiO2-based memristive system to reshape the resistive switching response. 

However, the value of b is dependent on the switching material. In our case, 

the value of b is considered to be 2.7 to achieve the maximum accuracy in 

comparison with the corresponding experimental data of Y2O3-based 

memristive system [6, 12]. I-V relationship also depends on the state 

variable x(t), which provides a significant change in the device resistance. 

The range of x(t) is defined between 0 and 1 that directly affects the device 

conductivity. 

The variation in x(t) is dependent on two different functions, such as g(V(t)) 

and f(x(t)). The functions g(V(t) and f(x(t)) are described as the 

programming threshold and state variable function, respectively, in the 

memristor model. Further, the programming threshold is governed by 

equation (2), which provides the different threshold voltage values on the 

different polarities of the applied input voltage. Equation (2) has some 

parameters such as positive and negative thresholds i.e., Vp and Vn, the 

magnitude of the exponentials i.e., Ap and An. The values of these 

aforementioned parameters represent how quickly the state of device is 

changed. Equations (2), (3) and (4) are described the mathematical 

expressions for the programming threshold voltage, g(V(t)), and window 

function, f(x(t)), which are given below: 
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𝑔(𝑉(𝑡)) =  {

𝐴p(𝑒𝑉(𝑡) − 𝑒𝑉p),        𝑉(𝑡) > 𝑉P

−𝐴n(𝑒−𝑉(𝑡) − 𝑒𝑉n),      𝑉(𝑡) < −𝑉n

0,                          − 𝑉n ≤ 𝑉(𝑡) ≤ 𝑉p

}                   (2) 

 

𝑓(𝑥) =  {
𝑒−𝛼p(𝑥−𝑥p)𝑊p(𝑥,  𝑥p),   𝑥 ≥ 𝑥p

1 ,                            𝑥 < 𝑥p
}                      (3) 

 

𝑓(𝑥) =  {
𝑒𝛼n(𝑥+𝑥n−1)𝑊n(𝑥,  𝑥n),   𝑥 ≤ 1 − 𝑥n

1 ,                                       𝑥 > 1 − 𝑥n
}                      (4) 

When V(t) > 0, i.e., for the positive voltage polarity, the variation in the 

state variable is governed by equation (3), While, for V(t) < 0, i.e., for the 

negative voltage polarity, the variation is defined by equation (4). Here, Wp 

and Wn are the window functions and described by equations (5) and (6), 

respectively. 

𝑊p(𝑥,  𝑥p) =  
𝑥p−𝑥

1−𝑥p
+ 1                                     (5) 

𝑊n(𝑥,  𝑥n) =  
𝑥

1−𝑥n
                                            (6) 

Equation (7) is utilized to show the time derivative of the state variable in 

the memristive devices.  

𝑑𝑥

𝑑𝑡
= 𝑔(𝑉(𝑡)) × 𝑓(𝑥(𝑡))                                      (7) 

3.2.2 Proposed Model 

I-V relationship for the proposed model is governed by equation (8).  

𝐼(𝑡) =  {
𝑎1𝑥(𝑡) 𝑠𝑖𝑛ℎ(𝑏1𝑉(𝑡)) ,   𝑉(𝑡) ≥ 0

𝑎2𝑥(𝑡) 𝑠𝑖𝑛ℎ(𝑏2𝑉(𝑡)) ,    𝑉(𝑡) < 0
}                      (8) 

where, a1 and a2 are experimental fitting parameters, b1 and b2 are the 

conductivity slope controlling parameters under the positive and negative 

applied voltage, respectively. Equation (8) defines the individual 

conductivity control parameters for both the voltage polarities which 

provide better control on device hysteresis loop in the resistive switching 



39 
 

characteristics. On the other hand, equation (1) has single conductivity 

control parameter for both voltage polarities which is only applicable for 

bipolar memristive device. Here, it should also be noted that equation (8) 

is useful for both unipolar and bipolar memristive system. 

In general, memristive devices show higher conductivity under positive 

voltage bias as compared to that under negative bias [2, 6, 12]. The higher 

conductivity under positive voltage bias is due to the migration of oxygen 

vacancies which takes place towards the interface between aluminum, used 

as the top electrode, and Y2O3 as in the case for Y2O3-based memristive 

system [6, 12]. These oxygen vacancies play important role in the resistive 

switching phenomena at the Al/Y2O3 interface in Y2O3-based memristive 

devices. Moreover, it is essential to note that the developed model is not 

dependent on threshold voltage while the Yakopcic model depends on the 

threshold voltage.  

The time derivative of the state variable (x(t)) is governed by equation (9) 

where it depends on various parameters such as G(V(t)), αp, αn, Wp, Wn, x 

and U(t).  The physical interpretation and utilized numerical values of all 

modeling parameters are discussed in Table 3.1. In Yakopcic model, a 

specific range of numerical values for each parameter is given, and we have 

also used these values for analytical modeling. 

𝑑𝑥

𝑑𝑡
=

 {
𝐺(𝑉(𝑡))𝑒−𝛼p𝑈(𝑥−𝑥p)(𝑥−𝑥p) (1 + (𝑊p − 1)𝑈(𝑥 − 𝑥p)) , 𝑉(𝑡) > 0

𝐺(𝑉(𝑡))𝑒𝛼n𝑈(𝑥p−𝑥)(𝑥−𝑥p) (1 + (𝑊n − 1)𝑈(𝑥p − 𝑥)) ,    𝑉(𝑡) < 0  
} (9) 

where, G(V(t)) is the programming voltage which depends on the several 

parameters such as magnitude of exponentials (Ap and An) and amplitude of 

applied input voltage V(t), as described by equation (10). U(t) defines the 

unit step function.  

𝐺(𝑉(𝑡)) = {
𝐴p(𝑒𝑉(𝑡) − 1),                𝑉(𝑡) > 0

−𝐴n(𝑒−𝑉(𝑡) − 1),          𝑉(𝑡) < 0
}                  (10) 
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where, Wp and Wn are the window functions which bound the device state 

variable between 0 and 1. In the developed model, one more boundary 

condition has also been applied on window function, i.e., 𝑥p + 𝑥n = 1 and 

described by equations (11) and (12). 

𝑊p =  
𝑥p−𝑥

𝑥n
+ 1                                         (11) 

𝑊n =  
𝑥

𝑥p
                                                    (12) 

As described in equations (11 and 12), Wp controls the boundary of state 

variable when x(t) approaches 1 and   Wn controls the boundary of state 

variable when x(t) approaches 0. 

Table 3.1: Physical interpretation and numerical values of modeling 

parameters used in the analytical modeling. 

Parameters Numerical 

Values 

Physical Interpretation 

a1 7×10-4 Experimental fitting parameter 

a2 3.9×10-5 Experimental fitting parameter 

b1 3.8 Conductivity slope controlling 

parameter for positive voltage 

polarity 

b2 1.5 Conductivity slope controlling 

parameter for negative voltage 

polarity 

αp, αn 1.2 Control parameters for the rate of 

change of state variable 

xp 0.7 Constant for determining the 

boundedness of state variable  

xn 0.3 Constant for determining the 

boundedness of state variable 

Ap, An 0.0021 Magnitude of exponentials 
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3.3 Generic Analytical Memristive Model for Neuromorphic 

Computation 

In this generic analytical model, a non-linear I-V relationship along with a 

new piecewise window function has been proposed to investigate the 

performance of the memristive system. Recently, Kumar et al [15] have 

reported a semi-empirical model to overcome lacking in non-linear profile 

in the drift current at device boundaries by implementing certain 

mathematical modifications in several equations of the Yakopcic model. 

However, the reported model [15] does not capture the physics of a 

memristive system which is based on the interfacial switching mechanism 

and shows MED of ~20.1% in the neuromorphic computation 

characteristics, which is larger than the current generic non-linear 

developed model [16]. The developed non-linear analytical model is the 

parallel connection of rectifier and memristive device, as shown in Figure 

3.1 which is able to capture the better non-linear profile in the device 

current along with non-ideal effects of the switching characteristics such as 

asymmetrical and non-zero crossing nature of switching and rectifying 

nature in the resistive switching response.  

 

Figure 3.1: Parallel connection of rectifier and memristor. 

The proposed non-linear analytical model is validated with the help of 

experimental results on Y2O3 [6] and WO3 [2]-based memristive systems 

and the modelled data shows ~4.44% MED with the corresponding 

experimental results of Y2O3 [6] and ~4.50%  MED in WO3 [2]-based 

memristive device in the neuromorphic characteristics. The proposed 

newly piecewise window function fulfils all the necessary conditions as 

reported by Prodromakis et al [17]. This work describes the detailed non-

linear analytical model with its resistive switching response, conductance 
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variations, synaptic learning behavior and synaptic plasticity functionality 

of Y2O3 and WO3-based memristive systems. 

3.3.1 Proposed Analytical Model 

I-V relationship for the proposed non-linear analytical model is described 

by the equation (13) [16] which is closely related to the model equation 

reported by Yang et al [18]. 

𝐼(𝑡) = {
 𝑏1 𝑤𝑎1(𝑒𝛼1𝑉i(𝑡) − 1) + 𝜒(𝑒𝛾𝑉i(𝑡) − 1),       𝑉i(𝑡) ≥ 0

𝑏2𝑤𝑎2(𝑒𝛼2𝑉i(𝑡) − 1) + 𝜒(𝑒𝛾𝑉i(𝑡) − 1),        𝑉i(𝑡) < 0
}      (13) 

Here, the first term on the right-hand side of equation (13) defines the flux-

controlled memristive behavior which is dominated by the interfacial 

switching mechanism as it is not included in previously reported analytical 

models [14-15, 18]. The newly introduced parameters a1 and a2 are related 

to the degrees of influence of the state variable on device current for 

positive and negative voltage biases, respectively. In this proposed model 

experimental fitting parameters are described in terms of b1 and b2 which 

define the slope of conductivity in I-V characteristics, w is the state variable, 

α1 and α2 are the hysteresis loop area controlling parameters. While, the 

second term on the right-hand side of equation (13) is related to the ideal 

diode behavior in I-V characteristics which plays a crucial role when the 

state variable (w) approaches zero i.e., the memristive device is near to the 

‘OFF’ state and parameters χ and γ denote the net electronic barrier of the 

memristive device. Vi(t) is the applied input voltage and in the case of I-V 

characteristics, a triangular waveform and while in the case of synaptic 

functionality, rectangular voltage pulses are utilized as an input applied 

voltage. Here, it should be noted that during the I-V measurement, non-

pulsing scheme is utilized to perform the switching response while, in the 

case of synaptic functionality analysis, pulsing scheme (i.e., rectangular) is 

the better way to capture the variations in the device conductance under a 

train of the consecutive pulses with positive and negative amplitude [6, 15-

16]. 
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The proposed non-linear analytical model can be utilized for both unipolar 

and bipolar memristive systems while previously reported models [2, 18] 

are utilized only for bipolar memristive system. Under the application of 

the positive bias condition, memristive devices generally show a larger 

hysteresis loop area due to the higher device conductivity as compared to 

that under the negative voltage bias [2, 6]. Because under the application 

of positive bias, oxygen vacancies move towards the interface between Al 

used as the top electrode and Y2O3 as switching oxide layer in the case for 

Y2O3-based memristive system [6]. The movements of these oxygen 

vacancies at the metal-insulator interface play a significant role in the 

resistive switching phenomena. Moreover, Chang et al [2] also have 

experimentally reported similar resistive switching phenomena for WO3-

based memristive system at the Pt/WO3 interface. A new piecewise window 

function, f(w) is described by equation (14), as depicted in Figure 3.2 which 

ensures that the state variable (w) is limited between 0 and 1. 

 

Figure 3.2: Proposed piecewise window function. 

During the analytical modeling, a constant value of p = 2 (for Y2O3) and 

1.5 (for WO3) are used to capture the analytical data which are comparable 

to experimentally reported outcomes [2, 6]. The range of parameter ‘p’ 

defines the limit of the f(w) ɛ {0, 1} and if the value of p > 10, the upper 

limit of the f(w) is beyond 1 thus violating the essential conditions as 

reported by Prodromakis et al [17]. 
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𝑓(𝑤) = 𝑙𝑜𝑔 {

(1 + 𝑤)P,          0 ≤ 𝑤 ≤ 0.1

(1.1)P,              0.1 < 𝑤 ≤ 0.9

(2 − 𝑤)P,           0.9 < 𝑤 ≤ 1

}                   (14) 

The time derivative of the state variable (w(t)) is described by the equation 

(15) where it depends on the nature of input applied voltage and window 

function.  

𝑑𝑤

𝑑𝑡
= 𝐴 × 𝑉i

m(𝑡) × 𝑓(𝑤)                            (15) 

where, A and m are the parameters that determine the dependence of the 

state variable on the applied input voltage and m is always an odd integer 

to ensure that the opposite polarity of the applied voltage leads to opposite 

change in the rate of change of state variable. Table 3.2 presents the 

physical interpretation and numerical values of all parameters used in 

analytical modeling. 

Table 3.2: Physical interpretation and values of parameters for analytical 

modeling. 

Parameters Values for 

Y2O3 

Values for 

WO3 

Physical Significance 

b1 1.59 ×10-3 1.2 ×10-5 Experimental fitting 

parameters 

b2 -6.2 ×10-4 6.7×10-7 Experimental fitting 

parameters 

a1 1.2 1.5 Degrees of influence 

of the state variable 

under positive bias 

a2 0.3 1.9 Degrees of influence 

of the state variable 

under negative bias 

α1 0.60 0.80 Hysteresis loop area 

controlling parameters 

under positive bias 

α2 -0.68 -1.5 Hysteresis loop area 

controlling parameters 

under negative bias 

χ 1 ×10-11 1×10-10 Magnitude of ideal 

diode behavior 
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γ 1 1 Diode parameters like 

thermal voltage and 

ideality factor 

A 5 ×10-4 3×10-4 Control the effect of 

the window function 

m 5 5 Control the effect of 

input on the state 

variable 

p 0 < p ≤ 10; 

p = 2 (For 

result 

validation with 

the reported 

experimental 

data [6]) 

0 <p ≤ 10; 

p = 1.5 (For 

result 

validation with 

the reported 

experimental 

data [2]) 

Bounding parameter 

for window function 

between 0 and 1 

3.4 3D Physical Electro-Thermal Modeling for Nanoscale 

Memristor for Synaptic Application 

In this section, the physical electro-thermal modeling of nanoscale Y2O3-

based memristor devices for synaptic application has been presented. For 

the physical simulation, a combined software package of COMSOL 

Multiphysics and MATLAB has been utilized which is able to provide the 

realistic semiconductor device physics environment by considering several 

fundamental semiconductor physics equations. The performed physical 

modeling is based on the minimization of free energy at an applied voltage. 

The simulated results exhibit a stable pinched hysteresis loop in the 

resistive switching (RS) response in multiple switching cycles. The 

physical modeling is effectively shown the impact of voltage ramp rate 

(VRR) on the device characteristics such as switching response and synaptic 

plasticity behavior of the device. The simulated outcomes significantly 

depict the impact of oxide layer thickness on the switching voltages in the 

nanoscale device. In this physical modeling work, for the first time in the 

literature, we proposed a 3D physical electro-thermal modeling of 

nanoscale Y2O3-based memristive devices with device size of 10 nm 

(radius of the top electrode of the device). The proposed model is based on 

the quantitative thermodynamic numerical model of the memristive 
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devices. The COMSOL  [19] Multiphysics tool helps to solve the partial 

differential equations by utilizing Finite Element Method (FEM). The heat 

transfer and electrodynamic equations have solved for the defined structure 

by utilizing Y2O3 material parameters. 

3.4.1 Numerical Analysis  

RS corresponding to the SET process is a combination of two sub-processes 

such as fast shunting of electrodes and the radial growth of conductive 

filament (CF). The shunting process can be further classified as nucleation 

and longitudinal growth of CFs due to their stochastic nature [20]. 

Similarly, the RESET process is also composed of two sub-processes; 

nucleation and growth of the gap, as originated due to rupturing of the CFs. 

The growth of the gap in the RESET process is also of stochastic nature 

[20]. 

In the simulation process, Al/Y2O3/Al memristive structure is considered 

with a cross-sectional area of 314 nm2. Figure 3.3(a-b) shows the simulated 

device geometry with corresponding layer thicknesses and description of 

various parameters. As seen from Figure 3.3(a-b), a SiO2 insulating layer 

(with a width of 490 nm, and top and bottom thickness of 300 nm) is used 

as a heat shield layer surrounding the memristor structure. The effective 

thickness of the memristor is 110 nm including Al as bottom electrode (BE) 

of 65 nm, Y2O3 as switching layer of 5 nm, yttrium  metal (Y) layer of 10 

nm and Al as top electrode (TE) of 30 nm. The yttrium metal acts as an 

oxygen reservoir layer and helps to form the stable CFs during the device 

switching process and also controls the oxygen ion profile in the device. 

The thermodynamic numerical analysis is based on the principle of 

minimum free energy (FE) of memristive device and FE increases due to 

an applied external voltage. At the same time, the device evolves in such a 

way to minimize its free energy due to phase transition in oxide material by 

breaking chemical bonds. The free energy in a memristive device can be 

expressed as [21]: 

𝐹 =  ∫ 𝜌𝐶P 𝛿𝑇𝑑𝑥3 +
1

2
∫ 𝜀|𝐸|2𝑑𝑥3 + 2𝜋𝑟ℎ𝜎S + 𝜋𝑟2ℎ𝛿µ            (16) 
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where, ρ is the mass density, Cp is the specific heat capacity at constant 

pressure, δT is the change in temperature, ε is the permittivity, E is the 

electric field, r is the radius of CF, h is the CF height in SET process 

(referred as: l is gap length in the case of RESET process), σs is the 

interfacial energy, and δμ is the difference in chemical potential between 

unstable conductive phase and insulating phase during SET process (δμ1) 

and between unstable conductive phase and metastable conductive phase 

during RESET process (δμ2) [21-22].  

The first and second terms of equation (16) describe the thermal and 

electrostatic energies, respectively, while the last two terms of equation 

(16) can be correlated to the phase transformation energy. The electrostatic 

energy of the conductive components (electrodes and filament) is 

negligible, as compared to that of the insulating layer, which has higher 

capacitance. Hence, the electrostatic energy contribution in the overall 

value of FE is typically dominated by the insulator layer. On the other hand, 

the thermal contribution is dominated by the conducting filament that 

assists in the flow of current between the top and bottom electrodes. In this 

work, the following numerical algorithm steps have exploited to find the 

minimum FE configuration of the device and its corresponding current-

voltage (I-V) characteristics: 

(a) Construct a device;  

(b) Apply the source voltage and calculate device FE for various values of 

filament radii; 

(c) Calculate the variation in FE corresponding to the change in CF radius 

(∂F/∂r) and gap length (∂F/∂l) for a constant source voltage;  

(d) Recalculate steps (b) and (c) for  different source voltages;  

(e) Capture the device voltage and current, CF radius and CF gap length, 

and their corresponding minimum FE for all source voltages; 

(f) Finally, two sets of I-V are achieved in step (e) associated with the SET 

and RESET processes. 

3.4.2 COMSOL Multiphysics Model 

The 2D axisymmetric model of the memristive device in COMSOL for 

SET and RESET processes, is shown in Figure 3.3(a) and (b), respectively. 
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The 2D geometry of memristive device in COMSOL helps to reduce the 

volume integrals in equation (16) to area integrals. 

 

Figure 3.3: (a) 2D structure of memristive device under SET operation,  

and the inset shows the CF formation during the SET process, (b) 2D 

structure of memristive device under RESET operation, and the inset shows 

the CF rupturing during the RESET process. 

The area integrals directly associated with SET and RESET processes in 

COMSOL are expressed as [21-22]: 

𝐹SET =  ∬ 𝜌𝐶𝑃𝛿𝑇𝑑𝑟𝑑𝑧 +
1

2
∬ 𝜀|𝐸|2𝑑𝑟𝑑𝑧 + 2𝜋𝑟ℎ𝜎𝑆 + 𝜋𝑟2ℎ𝛿µ1     (17) 

𝐹RESET =  ∬ 𝜌𝐶𝑃𝛿𝑇𝑑𝑟𝑑𝑧 +
1

2
∬ 𝜀|𝐸|2𝑑𝑟𝑑𝑧 + 2𝜋𝑟ℎ𝜎𝑆 + 𝜋𝑟2𝑙𝛿µ2    (18) 

In case of COMSOL modeling, the values of E and T can be solved by 

utilizing several partial differential equations which are given below [21-

22]: 

[i] Electric current module formulations: 

∇. 𝐽 = 0                                             (19.1) 

𝐽 =  𝜎𝐸                                         (19.2) 
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𝐸 =  −∇𝑉                                       (19.3) 

[ii] Heat transfer module formulation (in solid): 

−𝜅∇2𝑇 =  𝑄S                                            (20) 

[iii] Multiphysics module: 

𝑄S = 𝐽. 𝐸                                            (21) 

where, J is the current density, σ is the electric conductivity, κ is the thermal 

conductivity and Qs is the heat source. Typically, these equations are 

incorporated in the respective COMSOL modules and are extended to 

numerical modeling. 

Here, equations (19.1 to 19.3) define the current conservation law, Ohm’s 

law and the relation between electric field and electric potential due to 

Maxwell’s law,  respectively. Equation (20) is the Fourier heat law in which 

the heat source is provided by the Joule heat term given in equation (21). 

The boundary conditions and associated electrical configurations utilized 

during simulation have reported elsewhere [21-22]. Moreover, the C2C 

variability in the resistive switching parameters has been investigated after 

considering Joule heating and non-uniform electric field distribution inside 

the memristive device via physical electro-thermal modeling. The 

simulated memristive structure has also emulated the synaptic plasticity 

functionalities in terms of displaying of potentiation and depression 

processes. The simulation study also reveals the impact of voltage ramp 

rate (VRR) on switching response which further significantly affects the 

synaptic functionality of the memristive device.  The values of the 

coefficients of the differential equations such as (19.1)-to-(19.3), (20) and 

(21) and FE equation (17) and (18) used in this physical electro-thermal 

modeling are listed in Tables 3.3. 
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Table 3.3: Values of the coefficients of the differential equations and FE 

used in this physical electro-thermal modeling. 

Materials Electrical Conductivity (σ) [S/m] Thermal 

Conductivity 

(κ) [W/K.m] 

Specific 

Heat 

Capacity  

[J/kg. K] 

Relative 

Permittivity 

(𝜺𝐫) 

Mass 

Density 

(ρ) 

[kg/m3] 

SiO2 1×103 1.38 703 3.9 2.20 
×103 

Al 3.8×107 235 904 -∞ 2.70×103 

Y 1.8×106 17 298 -∞ 4.47×103 

Y2O3 10-11 0.3 440 15 5.01×103 

Y2O3-x 

𝜎if exp (𝜎fln (
𝑡

𝑡i

)) exp (√
𝑒𝑉

𝑘𝑇
) 

𝜎c(𝑇, 𝑉)𝑇𝐿 528 -∞ 6.01×103 

Gap 

𝜎ig𝑒𝑥𝑝 (−𝜎g𝑙𝑛 (
𝑡

𝑡i

)) 𝑒𝑥𝑝 (√
𝑒𝑉

𝑘𝑇
) 

𝑘eff𝜎c(𝑇, 𝑉)𝑇𝐿 440 15 5.01×103 

 

 

 

 

Electrical 

Conductivity 

Parameters Values  

 

 

Circuitry 

Parameter

s 

Values 

𝜎if 5 kS/m RL 3.1 kΩ 

𝜎ig 3 kS/m V (+) 1.5 V 

𝛼f -0.05 V (-) -1.5 V 

𝛼g 0.05 λ 100 V/s, 10 

kV/s,  

1 MV/s 

t V/ λ Thermal 

Conductivity 

(Gap) 

𝑘eff 10 

 𝑡i 0.1ps 

3.5 Fabrication Process of MCA 

For the fabrication of GZO/Y2O3/Al structure-based memristive crossbar 

array architecture a simple and feasible fabrication process is utilized as 

represented in Figure 3.4. During the fabrication of crossbar array, metal 

shadow masks are used to pattern the bottom electrode (BE), switching 

layer (SL), and top electrode (TE) of the crossbar array. For the (15×12) 

crossbar array fabrication, a 3-inch low-resistive (0.001-0.005 Ω.cm) n-

type Silicon (100) substrate is used and cleaned in trichloroethylene (TCE), 

acetone, and isopropyl alcohol (IPA) for 15 minutes each under sonication 

to remove the unwanted residual impurities and dust particles from the 

substrate surface and subsequently rinsed thoroughly with de-ionized (DI) 

water. Further, Si substrate is purged by pure (99.999%) N2 gas to remove 

the residual water droplets, as shown in step (a) of Figure 3.4.  

After cleaning of Si substrate, Ar+ plasma etching process is performed for 

15 minutes by the secondary ion assist source in the DIBS system to remove 

the native ultrathin SiO2 layer on top of Si substrate [23] as it may increase 
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the surface roughness of the deposited thin films which further affects the 

surface uniformity and smoothness of the films. Then, a 150-170 nm thick 

polycrystalline Y2O3 is deposited as an insulating layer [6], as shown in 

step (b) of Figure 3.4, on Si substrate at substrate temperature of 100 °C 

with pure Ar of 5 sccm environment used in the assist ion source of the 

DIBS system. The surface morphology and smoothness of as-deposited 

insulating Y2O3 is remarkable, as reported elsewhere [24]. 

As it is observed that the similar lattice constants of Si (2αSi = 10.86 Å) and 

Y2O3 (10.60 Å) plays a very important role to provide better film 

uniformity and surface morphology of the Y2O3 insulating layer [25] on top 

of which BE is deposited. Low resistive (5.3×10-4 Ω.cm) [26] Gallium-

doped Zinc Oxide (GZO) (3% Ga doping in ZnO) of 100-110 nm is 

deposited on top of the insulating Y2O3 layer at 100 °C substrate 

temperature with pure Ar flow of 5 sccm in the assist ion source of DIBS 

system. GZO acts as the BE and patterned via shadow mask with the line 

width of 800  m, as depicted in steps (c and d) of Figure 3.4. Subsequently, 

45-50 nm of amorphous Y2O3 layer is deposited as a resistive SL, as shown 

in steps (e and f) of Figure 3.4. 

Here, it should be noted that, during the resistive  SL deposition, a substrate 

temperature of 300 °C and the ratio of Ar and O2 gas flow of 2:3 in the 

assist ion source of the DIBS system [6] which are completely different 

deposition conditions as opted during insulating layer deposition. Finally, 

a 70-80 nm Al TE is deposited via direct current (DC) magnetron sputtering 

system, as presented in steps (g and h) of Figure 3.4. The step (i) of Figure 

3.4 shows a digital camera photograph of finally fabricated memristive 

crossbar array architecture of (15×12). It should be noted that during the 

fabrication of crossbar, the line width of the TE shadow mask is varied from 

600 to 300 m to investigate the impact of area on the device current. 
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Figure 3.4: (a-h) Detailed fabrication process for the (15×12) memristive 

crossbar array via DIBS system: (a) Cleaned Si substrate, (b) Deposition 

of insulating Y2O3 layer, (c) Shadow mask alignment for BE deposition, (d) 

Deposited BE via DIBS system, (e) Shadow mask alignment for SL 

deposition, (f) Deposited SL via DIBS system, (g) Shadow mask alignment 

for TE deposition, (h) Deposited TE via DC magnetron sputtering, (i) A 

Photograph of the finally fabricated crossbar array architecture (top view). 

3.6 Conclusion 

In this chapter, we have discussed the developed analytical models, 3D 

physical electro-thermal modeling of nanoscale memristor and designed 

fabrication process flow for our fabricated memristive crossbar array which 

can prove our hypothesis of resistive switching in yttria-based memristive 

crossbar array. Also, in this chapter, we have comprehensively discussed 

the analytical models’ parameters with its physical interpretation and 

numerical values used during the analytical modeling. This chapter 

comprehensively outlined the physical model and utilized FE equation with 

semiconductor modules equations in the COMSOL Multiphysics to 

simulate the memristor device at nanoscale level. Moreover, the chapter 

also discussed about the adopted fabrication process and contained the 

information about the materials used for the different layers of the crossbar 

array architecture such as BE, SL and TE, these deposition conditions, 
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utilized deposition systems and also discussed the device size in the 

crossbar array. 
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Chapter 4 

 

Analytical and Physical Models Analysis, Material and 

Electrical Characterizations of Fabricated MCA 

 

4.1 Introduction 

The comprehensive advantages of analytical modeling are that it has the 

ability to provide practical feedback to designers and practitioners to design 

memristive systems for the diverse real-time applications. The analytical 

models allow the designer to determine the correctness and efficacy of a 

memristive system. By utilizing the analytical modeling, the designer is 

able to better understand the behavior and interactions of the memristive 

system and, therefore, remains better equipped to counteract the complexity 

of the overall system.  

Previously, several experimental reports have been published which are 

related to the different materials-based memristive systems [1-3]. These 

reported outcomes efficiently show synaptic learning behavior which is 

analogous to the biological synapses [4-6]. Among these transition metal 

oxides (TMOs) materials, Y2O3 is one of the most promising TMO material 

candidates for the memristive system for the neuromorphic applications [7-

8] which has been carried out by utilizing a dual ion beam sputtering 

(DIBS) system. DIBS system offers plenty of advantages as compared to 

other conventional sputtering techniques, such as high-quality thin films 

with better compositional stoichiometry, small surface roughness, and good 

adhesion to the substrate [7]. However, no literature to date has reported on 

analytical modeling of a Y2O3-based memristive system for neuromorphic 

applications. Hence, it is essential to design and develop a generic model 

for the memristive system which can predict the experimental 

characteristics of a device for synaptic applications.  

The proposed analytical model provides a significant improvement 

(~16.66%) in the device characteristics in terms of non-linear behavior of 

drift current at the device boundaries by incorporating a window function 
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and a newly introduced state variable. The developed model can also 

provide device characteristics for both sinusoidal and triangular input 

voltages. Since memristive devices have a significant variation in structure 

as well as in operation, the present model uses several fitting parameters to 

incorporate the effects of different parameters, such as device conductivity 

and state variable on the device characteristics. This work describes an in-

depth analytical study of conductance, actual power consumption, and a 

potentiation and depression mechanism for a Y2O3-based memristive 

system. 

Further, a 3D physical electro-thermal modeling is also performed to 

investigate the performance of real memristor device at nanoscopic level 

by considering several physical parameters such as internal Joule heating 

and non-uniform distribution of the electrical field. In this physical 

modeling, a thin layer (5 nm) of switching oxide layer is used as a resistive 

switching layer which allows filamentary based switching mechanism 

under the application of low input voltage and also emulated the various 

memristive properties under the ideal conditions. Therefore, the extensive 

benefit of the physical electro-thermal modeling includes the ability to 

capture the realistic behavior of the biological synapse which helps the 

researchers to analyze the various functionality of the artificial synapse. 

Next, the chapter comprehensively describes the optical, materials, and 

electrical properties of the fabricated memristive crossbar arrays size of 

(15×12) and (30×25). These properties play a critical role in deciding the 

thin film properties such as resistivity, crystallinity, and surface roughness 

which will affect the resistive switching behavior of the fabricated 

memristive devices. After the device fabrication, we have performed 

current-voltage (I-V) measurement of the fabricated devices in pulse-mode 

using Keithley 4200A semiconductor parametric analyzer at room 

temperature in order to know the optimized values of these parameters. I-

V measurements of samples have been performed under triangular 

waveform voltage excitation  of ±3 V, compliance current of 20 µA) for the 

pinched hysteresis loop analysis. 
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4.2 Analytical Modeling of Y2O3-based Memristive System 

An analytical model for Y2O3-based memristive systems is discussed, since 

a traditional model such as the Yakopcic model significantly deviates to 

capture the neuromorphic behavior for yttria-based memristive systems. On 

the one hand, the developed analytical model shows high correlation with 

the reported experimental data and removes the shortcomings of the 

Yakopcic model such as lack of non-linear behavior in the drift current at 

the device boundaries by incorporating a new window function and state 

variables. On the other hand, the Yakopcic model is based on the device 

threshold voltage parameters, while the developed model is generic and 

remains independent on threshold voltage parameters. As a result, the 

developed analytical model can be used in designing real-world 

applications based on the neuromorphic properties of yttria-based or any 

generic memristive systems. 

4.2.1 Resistive Switching Characteristic  

To investigate the resistive switching characteristics of the Y2O3-based 

memristive system, similar electrical conditions are utilized, which have 

been experimentally reported elsewhere [7-8]. For the switching 

characteristics and their memristive behavior, a triangular waveform is 

utilized as an input voltage with peak-to-peak voltages amplitude of ±5 V 

and a compliance current of 10 mA. Figure 4.1 depicts the resistive 

switching characteristics with pinched hysteresis loop property of the 

fabricated memristive system along with their substantial correlation with 

the analytical modeling data. The existence of the pinched hysteresis loop 

in the resistive switching is a footprint of the memristive system [9].  



59 
 

 

Figure 4.1: Nonlinear pinched hysteresis switching characteristics of the 

memristive device. Inset shows the enlarge view of the switching response. 

Moreover, according to Chua [10], a device which shows a pinched 

hysteresis loop in its resistive switching response is the sufficient condition 

for resistive random-access memory to be considered under a broad 

category of memristive devices in which the pinched hysteresis loop can 

collapse into a single-valued function [10]. 

4.2.2 Variations in Device Conductance and Utilized Power 

Figure 4.2(a) depicts the change in device conductance under the 

application of applied negative voltage bias from 0 to -5 V. In general, 

conductance is a positive electrical parameter; however, in this case, the 

negative direction of conductance under negative voltage bias shows the 

flow of device current in the opposite direction and the experimentally 

results show better agreement with the analytically modeled data. Figure 

4.2(b) shows the actual power utilization when the memristive device under 

operation/test. The device utilized power is directly influenced by the 

applied voltage and corresponding generated device current. If one of the 

parameters such as applied input voltage or generated device current are 

varied, the corresponding utilized power by the device is also varied. 

Moreover, the device utilized power is associated with the device switching 

parameters such as switching voltages (VSET and VRESET) and device 

switching speed. The negative polarity of power shows that the applied 
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voltage direction is opposite (0 to -5 V). In this case, too, the presented 

analytical modeling fits perfectly with the experimentally obtained results 

[7-8]. 

 

Figure 4.2: (a) Variation in device conductance under negative applied 

voltage, and (b) Actual power consumption by the device when in 

operation. 

4.2.3 Variations in Synaptic Weight: “Learning Behavior” 

For the analysis of the ‘synaptic learning behavior’ of the memristive 

device, a chain of 40 consecutive positive rectangular voltage pulses is 

imposed on the device with an amplitude of +4 V and a pulse width of 100 

ms as reported elsewhere [7]. Under the consecutive pulses, the synaptic 

weight (or normalized device conductance) is continuously increased with 

the number of pulses. The learning behavior of the memristive system is 

shown in Figure 4.3. 

 

Figure 4.3: “Learning behavior”: variation in synaptic weight under 

positive voltage pulses. Inset shows the applied rectangular voltage pulse 

as an input. 
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4.2.4 Synaptic Plasticity: Potentiation and Depression Mechanisms 

A sufficient increment or decrement in device conductance is similar to the 

potentiation (P) or depression (D) mechanisms, respectively, of the 

synapses in a neuromorphic system [7]. The potentiation and depression 

processes can be achieved by applying rectangular voltage pulses. For the 

potentiation and depression processes, a chain of 50 positive pulses with an 

amplitude of +4 V and pulse width of 100 ms and a chain of 40 negative 

pulses with an amplitude of -4 V and pulse width of 100 ms are used for 

the excitation of the synapse. It should be noted that the overall electrical 

flux passing through the memristive device is zero after completion of the 

potentiation and depression processes, and the synaptic weight of the 

memristive device returns to its initial state. Figure 4.4 shows the response 

of a train of 50 positive voltage pulses, followed by 40 negative pulses. By 

applying a train of positive voltage pulses, the synaptic weight of the 

memristive device is continuously strengthened, known as potentiation, 

while in the case of negative voltage pulses the synaptic weight of the 

device is gradually weakened, which leads to depression process.  

 

Figure 4.4: Variation in synaptic weight under the influence of consecutive 

potentiation (positive) and depression (negative) pulses. Inset shows the 

applied positive and negative voltage pulses. 

In order to evaluate the maximum error deviation (MED) of the modeled 

fitting data with corresponding experimental results, a similar mathematical 

formulation approach is used which has been reported by Bakar et al [11] 
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and Hemmati et al [12]. By implementing the mathematical approach, the 

Yakopcic model results show the ~36.8% MED at a specific point while 

the developed analytical model results represent the ~20.1% MED with 

respect to the corresponding experimental data [7-8]. 

4.3 Generic Analytical Memristive Model for Neuromorphic 

Computation 

The development of a generic model for the memristive systems which 

simulates the biologically inspired nervous system of living beings, is one 

of the most attracting aspects. More specifically, the develop generic model 

has capability to resolve the problems in the field of artificial neural 

network with better efficacy. Here, a generic, non-linear analytical 

memristive model, which is based on interfacial switching mechanism, has 

been discussed. The proposed model has the capability to simulate the high-

density neural network of biological synapses that regulates the 

communication efficacy among neurons and can implement the learning 

capability of the neurons. Further, the developed non-linear analytical 

model is the parallel connection of the rectifier and memristive device 

which shows better non-linear profile along with non-ideal effects and 

rectifying nature in its pinched hysteresis loop in the resistive switching 

characteristics. Moreover, developed analytical model shows the 

significant low value of MED ~4.44% for Y2O3-based and ~4.5% for WO3-

based memristive systems, respectively, in its neuromorphic characteristics 

with respect to the corresponding experimental results [1, 7-8]. Therefore, 

the proposed analytical memristive model can be utilized to develop the 

memristive system for real-world applications based on neuromorphic 

behaviors of any transition metal oxide-based memristive systems. 

4.3.1 Resistive Switching Characteristic 

To investigate the various experimentally-obtained characteristics of Y2O3-

based memristive system, similar electrical conditions are used which have 

been reported elsewhere [7]. For analyzing the resistive switching 

characteristics, a triangular voltage waveform is applied on the device with 

peak-to-peak voltage amplitude of ±5 V with a compliance current of 10 
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mA. Figure 4.5 depicts the pinched hysteresis loop in the resistive 

switching characteristics of developed memristive devices along with their 

modeled data. In order to calculate the MED of the modeled data with the 

corresponding experimental results, similar mathematical pathway is used 

which has been reported by Bakar et al [11], Hemmati et al [12], and Kumar 

et al [13]. By utilizing as reported [11-13] mathematical formulation, the 

modeled data shows ~18.5% MED at +4 V in resistive switching response 

as shown in Figure 4.5 with respect to the experimental data of the 

fabricated device. The presence of a pinched hysteresis loop in resistive 

switching characteristics of the device is a fingerprint of memristive system 

[9]. Moreover, Chua [10] has claimed that the pinched hysteresis loop can 

be collapsed into a single-valued function. 

 

Figure 4.5: Resistive switching characteristic of a memristive device 

(sweep rate: 1.042 V s−1). Inset-1 and inset-2 show parallel connection of 

rectifier and memristive device and piecewise window function, 

respectively. 

4.3.2 Variations in Device Conductance and Power Consumption  

Figure 4.6(a) shows the actual power utilization by the device under 

operation/test. The power utilized by the device under test is dependent on 

both applied voltage and current flow through the device. The significant 

variations in the current and voltage can lead to a change in the utilized 
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power by the device. The negative direction of power represents the current 

direction from ground terminal to excitation terminal. The device utilizes 

maximum power when the state variable is close to unity, i.e., the device is 

in the ‘ON’ state. The modeled data shows ~2% MED at +4 V as shown in 

Figure 4.6(a) with respect to the associated experimental result. 

 

Figure 4.6: (a) Actual power utilization by the device under test, (b) 

Change in device conductance under negative voltage polarity (sweep rate: 

1.042 V s-1). Inset shows the variation in device conductance under positive 

voltage polarity. 

 

Figure 4.6(b) depicts the variations in the device conductance under the 

application of applied negative voltage bias from 0 to -5 V. However, 

conductance is a positive quantity, and in this case, the negative direction 

of conductance under negative voltage polarity shows the flow of current 

in the opposite direction and the obtained modeled data shows ~14.4% 

MED at -2 V as shown in Figure 4.6(b) with the respective experimental 

data. 

4.3.3 Conductance Variations and Synaptic Learning Mechanism 

Figure 4.7(a) shows the change in conductance of the fabricated memristive 

systems along with their modeled data. Here, it is noted that whenever a 

chain of 100 successive positive rectangular voltage pulses with different 

amplitudes such as +2 and +2.5 V and pulse widths of 50 and 100 ms are 

imposed on the memristive system, significant variations in the device 

conductance is observed due to a larger change in the device current [7-8]. 
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Wang et al [14] have also reported similar characteristics in amorphous 

InGaZnO-based memristive devices. Therefore, if the variation in the 

device conductance is observed which is also similar to the synaptic weight 

update, then the above discussed mechanism shows closed analogy with 

the non-linear transmission characteristics of a real biological synapse [9]. 

The modeled data of device conductance variation under different voltage 

amplitude shows <1% MED with respect to the experimental data. 

 

Figure 4.7: (a) Variation in conductance under different voltage amplitude 

with the pulse number, and (b) Synaptic learning characteristics of 

memristive system. 

Further, to analyze the ‘synaptic learning’ behavior of the memristive 

systems, a train of 40 successive positive rectangular voltage pulses with 

an amplitude of +4 V and pulse width of 100 ms is applied on the 

memristive device. Under the excitation of such positive successive pulses, 

the synaptic weight is continuously strengthened along with the number of 

pulses as the device is continuously in ON state. In this case, the modeled 

learning behavior shows ~11.2% MED with corresponding experimental 

data at pulse number 18, as shown in Figure 4.7(b). 

4.3.4 Neuromorphic Functionality: Potentiation and Depression 

Processes 

Figure 4.8(a) shows the synaptic behavior of the memristive system in 

terms of potentiation and depression processes. Under the application of a 

train of 50 successive positive rectangular voltage pulses with an amplitude 

of +4 V and a pulse width of 100 ms, the synaptic weight of memristive 
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system is continuously strengthened and this mechanism is termed as the 

potentiation. While, in the case of depression mechanism, a train of 40 

successive negative rectangular voltage pulses with an amplitude of -4 V 

and a pulse width of 100 ms is imposed on the memristive system where 

the synaptic weight of the memristive system is gradually debilitated.  

After the potentiation and depression mechanisms, the overall electric flux 

passing through the memristive systems is zero and synaptic weight of the 

memristive system returns back to its initial level [1]. This process is 

analogous to the learning behavior of the human brain whereas the synaptic 

weight of the neuromorphic system changes according to the number of 

electrical stimuli received during the learning process. The proposed non-

linear analytical model shows ~4.44% MED at pulse number 85 with 

respect to the corresponding experimental outcome. 

 

Figure 4.8: (a) Change in synaptic weight under the excitation of 

successive positive (potentiation) and negative (depression) cycles in Y2O3-

based memristive device. Inset shows the applied rectangular voltage as an 

input pulse, and (b) Synaptic plasticity behavior of the WO3-based 

memristive device under potentiating and depression mechanisms. 

Figure 4.8(b) represents the potentiation (P) and depression (D) process of 

the device while studying the synaptic plasticity behavior. During the 

potentiation process, a train of 50 successive positive rectangular voltage 

pulses with an amplitude of +1.2 V followed by 50 rectangular negative 

pulses with an amplitude of -1.2 V and pulse width of 5 μs is applied on the 

device. Under positive pulses, the synaptic weight is strengthened with the 



67 
 

number of stimulating positive pulses and debilitated under the negative 

voltage pulses. 

4.4 3D Physical Electro-Thermal Modeling of Nanoscale 

Memristor for Synaptic Application 

In this section, we have discussed the physical electro-thermal modeling of 

nanoscale Y2O3-based memristor. The presented simulation study is carried 

out by the combined software package of COMSOL Multiphysics and 

MATLAB. The presented physical modeling is based on the minimization 

of free energy of the utilized materials at an applied voltage. The simulated 

results exhibit a stable pinched hysteresis loop in the resistive switching  

(RS) response in multiple switching cycles. The RS responses show low 

values of coefficient of variability (CV) i.e., 17.36% and 17.09% in SET 

and RESET voltages, respectively, during C2C variation. The impact of 

voltage ramp rate (VRR) on the device characteristics such as switching 

response and synaptic plasticity behavior of the device, is successfully 

investigated. The simulated outcomes significantly depict the impact of 

oxide layer thickness on the switching voltages in the nanoscale device. 

4.4.1 Resistive switching response 

Figure 4.9(a) shows the simulated RS response of the Y2O3-based 

memristive device under an applied voltage of ±1.5 V with a pulse width 

of ~10 ms imposed to the top electrode via a load resistance. The RS 

response is divided into four parts: positive forming voltage (+VF), positive 

SET voltage (VSET), negative rupture voltage (-VR), and negative RESET 

voltage (VRESET). 
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Figure 4.9: (a) Resistive switching response of Y2O3-based memristive 

device, electric potential distribution under (b) SET and (c) RESET 

processes. The “red” spot at the top electrode side in (b) shows the 

formation of CFs, while the “blue” spot at the top electrode side in (c) 

shows the rupturing of CFs. 

During the forming process, all the CFs are formed inside the RS Y2O3 

layer and memristive device is switched into the SET position for voltage 

amplitude ≤VF, as shown in Figure 4.9(b). For the Y2O3-based memristive 

device, the simulated VF and VSET are +0.7261 and +0.6585 V, respectively. 

On the other hand, during the rupturing process, all the formed CFs are 

ruptured and memristive device is switched into RESET position for 

voltage amplitude ≤ -VR, as shown in Figure 4.9(c). The simulated values 

of -VR and VRESET are -1.1119 and -0.6659 V, respectively. 

4.4.2 Impact of cycle-to-cycle variation in resistive switching 

C2C variations are associated with the stochastic nature of the resistive 

switching material of the memristor [15-16]. Specifically, C2C variations 

are induced due to the formation of some undefined current path during 

every switching cycle [15]. Therefore, every switching cycle is repeated 

under nominally identical conditions with slightly different microscopic 

structures.  
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Figure 4.10(a) depicts the RS response in 40 cycles under the continuous 

device operation in which the absolute valued I-V response for multiple 

cycles is represented in the inset.  Figure 4.10(b) shows the C2C variations 

in VSET and VRESET. To consider these variations, the coefficient of 

variability (CV) is calculated and defined as the ratio of standard deviation 

(σ) to mean value (µ) [16] of the corresponding switching voltage 

parameters. For VSET and VRESET, the values of CV are 17.36% and 17.09%, 

respectively. These moderate variations in the C2C CV of the switching 

parameters confirm that the thermal stability of the Y2O3-based memristor 

is significantly beneficial as compared the other oxide materials [15, 17]. 

However, the fluctuations in the C2C operation of the memristive device is 

random in nature and more dominated due to the stochastic nature of ionic 

movement and uncontrolled formation of the conductive filament during 

the resistive switching process [16]. Also, it is dependent on the several 

other parameters such as induce electric field, internal Joule heating, and 

active area of the memory device. 

 

Figure 4.10: (a) Resistive switching response of Y2O3-based memristive 

device in continuous operation where the inset shows the I-V response in 

multiple cycles for absolute values of current along y-axis., (b) C2C 

variations in VSET and VRESET. 
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4.4.3 Impact of voltage ramp rate variation in resistive switching 

Figure 4.11(a) shows the impact of the variation of voltage ramp rate (VRR) 

on device switching characteristics and the inset in Figure 4.11(a) shows 

the I-V response for absolute values of current at y-axis. As seen from 

Figure 4.11(a-b), when one shifts from slower (100 V/s) to faster VRR (1 

MV/s), the values of VSET and VRESET are increased. It is observed that under 

fast VRR the device switching speed is increased and no sufficient time 

windows are available for the mobile vacancies to settle down [18]. Similar 

behavior is  also reported by Fantini et al [18] in HfO2-based memristive 

device under fast electrical measurement. Hence, from the point of view of 

physical modeling, one can conclude that the RS characteristics are directly 

dependent on VRR in cyclic operation. 

 

Figure 4.11: (a) Impact of VRR variation on RS characteristics where the 

inset shows the I-V response for absolute values of current along y-axis, (b) 

Incremental trend in VSET and VRESET under different VRR. 
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4.4.4 Impact of voltage ramp rate variation in synaptic plasticity 

To emulate the synaptic plasticity behavior of the memristive device in 

terms of potentiation and depression, a train of positive and negative 

voltage pulses with amplitude of ±1.5 V and VRR of 100 V/s are applied on 

the memristive device. As seen from Figure 4.12(a), under the application 

of positive voltage pulses, the synaptic weight or the normalized 

conductance of the memristive device is continuously strengthened. On the 

other hand, in case of negative electrical stimulus, the synaptic weight is 

gradually weakened, as shown in Figure 4.12(b). The continuous 

strengthening and weakening of the device conductance are analogous to 

the synaptic plasticity functionality of the human brain [1, 7, 19, 20-22]. 

Here, a train of 100 (50 positive and 50 negative) identical pulses with an 

amplitude of ±1.5 V and pulse width of 15 ms to compute the synaptic 

characteristics. As reported in the literature, when the identical pulses have 

been imposed, the metal/insulator interfaces are observed to exhibit gradual 

potentiation and abrupt depression process [23-26], as depicted in Figure 

4.12(c). The abrupt change in the depression process is associated with the 

difference in metal and oxide free energy [27]. Moreover, the effect of VRR 

over the synaptic weight is also investigated, as depicted in Figure 4.12(c), 

which clearly shows that under faster pulse operation (i.e., higher VRR), the 

device conductance is significantly lower. The decrement in the device 

conductance at higher switching speed can be associated with the partial 

switching induced inside the device and follows almost linear behavior 

when the value of VRR is changed from 100 V/s to 1 MV/s, as depicted in 

Figure 4.12(d). Similar linear decay in the synaptic weight is also reported 

by Costa et al [28] in porous silicon based memristor. 
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Figure 4.12: I-V characteristics of memristive device under consecutive (a) 

Potentiating voltage pulses of +1.5 V and (b) Depressing voltage pulses of 

-1.5 V at VRR of 100 V/s, (c) Effect of VRR variation on device synaptic 

weight, (d) Approximate linear decrement trend in synaptic weight under 

varied VRR. 

4.4.5 Impact of oxide thickness on switching voltages 

In this section, the impact of thickness of the Y2O3 switching oxide layer 

on the switching voltages (i.e., VSET and VRESET) of the memristive device 

is studied. As shown in Figure 4.13, when switching oxide layer thickness 

is increased from 2 to 20 nm, the corresponding switching voltages are also 

increased due to the higher amount of applied voltage is required to switch 

the memristive device to the SET and RESET states. Similar behavior has 

also experimentally reported by Zhang et al [29] in ZnMnO2O4-based 

memristive devices. It should be noted that a higher amount of applied 

voltage is required to create the large electric field which further helps to 

accelerate the mobile ions/vacancies to form CFs inside the thick switching 

oxide layer. 
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Figure 4.13: Impact of variations in switching oxide layer thickness on 

device switching voltage parameters. 

Therefore, the adopted physical modeling approach offers benefits to the 

researchers to develop the Y2O3-based memristor which can be operated at 

low switching voltage with very thin oxide layer and make it suitable for 

low-power memory applications. The outcomes also reveal that the 

nanoscale Y2O3 memristor perfectly emulates the synaptic plasticity which 

leads to the possibility to build artificial synapses similar to the human brain 

system. 

4.5 MCA: Optical, Material and Electrical 

Characterizations 

Several characterizations have been performed such as the semiconductor 

parameter analyzer (SCS-4200A) system is utilized to study the resistive 

switching performance of the fabricated crossbar arrays size of (15×12) and 

(30×25); optical microscopy is used to see the realistic view of the 

fabricated crossbar arrays; field emission-scanning electron microscopy 

(FE-SEM, Carl Zeiss) is performed to investigate the surface 

morphological analysis of the resistive switching material; high-resolution 

transmission electron microscopy (HR-TEM, Hitachi HD2300A) is carried 

out for various interfacial study; and  a conductive-atomic force 

microscopy (C-AFM, Shimadzu SPM-9500J3) is done to analyze the 

current distribution during the operational condition of the fabricated 

devices. 
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4.5.1 Optical Microscopy Characterization 

Figure 4.14(a-c) shows the digital camera photograph and optical 

microscopy images of the fabricated memristive crossbar array 

architecture. As seen from Figure 4.14(b-c), the fabricated devices in the 

crossbar array have perfect aligned crosspoint structure which is highly 

desirable in case of the crossbar array fabrication to avoid any electrical  

shorting issues in the memristive devices. 

 

Figure 4.14: (a-c) Optical microscopy images of fabricated memristive 

crossbar array structure at different scale. 

4.5.2 Material Characterizations 

To investigate the surface morphology, grain size and grain distribution of 

the resistive switching layer of amorphous Y2O3, FE-SEM is utilized. 

Figure 4.15(a and b) shows the SEM outcomes at varied scales and exhibits 

a continuous Y2O3 SL layer with compact grains, which is also described 

elsewhere [30]. Moreover, we have performed cross-sectional HR-TEM to 

investigate the various interfaces of the fabricated devices in the crossbar 

array as shown in Figure 4.15(c). The cross-sectional HR-TEM analysis 

reveals that in the fabricated memristive structure all interfaces such as 

insulating Y2O3/Si, BE GZO/insulating Y2O3, Y2O3 SL/GZO are distinct 

and shows smooth and uniform film deposition. The HR-TEM analysis also 

reveals that there is no formation of interfacial oxide between Si and Y2O3 
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insulating layer which is beneficial for uniform SL deposition [31]. Figure 

4.15(d-h) depicts the current distribution carried out by C-AFM study 

without any bias (0 V), at ±3 V and at ±5 V on the surface of Y2O3 SL. The 

current distribution in the “bright” images (Figure 4.15(e and g) at +3 and 

+5 V, respectively) is higher which denotes the high conduction state or 

“low resistance state (LRS)” of the memristive device. On the other hand, 

the current distribution in the “dark” images (Figure 4.15(d, f and h) at 0, -

3, and -5 V) is lower which is corresponding to the low conduction state or 

“high resistance state (HRS)” of the memristive device. Here, it should be 

noted that the insignificant amount of surface current even at a large bias 

(±5 V) and area (1×1 µm2) confirms that the conductive-filamentary-based 

switching might not be a dominant case for these devices. In fact, interface-

type of resistive switching (see Figure 4.16) seems to be dominant at the 

interface between the metal electrode and the switching oxide as 

experimentally observed by Das et al [8] for Y2O3-based single memristive 

devices. 

 

Figure 4.15: (a-b) FE-SEM images of top surface of Y2O3 thin film, (c) 

Cross-sectional HR-TEM image of fabricated memristive structure (n-

Si/Y2O3/GZO/Y2O3/Al), (d-h) Conductive-AFM images of current 

distribution map in memristive structure at (g) No bias (0 V), (h and i) +3 

V (bright: “LRS state”) and -3 V (Dark: “HRS state”), respectively, and (j 

and k) +5 V (bright: “LRS state”)  and -5 V (Dark: “HRS state”), 

respectively. 
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4.5.3 Electrical Characterizations 

4.5.3.1 Resistive Switching Response 

To analyze the switching response of the crossbar array, top electrode (TE) 

is connected with the positive/negative voltage polarity of the SCS-4200A 

while bottom electrode (BE) is fixed to ground as depicted in Figure 

4.16(a). For evaluating the switching response, a triangular voltage 

waveform is imposed on the device with an amplitude of ±3 V and pulse 

width of 100 ms, as shown in Figure 4.16(e), and captures the resistive 

switching performance of the single device in the crossbar array,  as shown 

in Figure 4.16(d). During the memristive device testing in the crossbar 

array, tipping with source measurement unit (SMU) is deployed for target 

memristive device only and all other remaining devices are in floating 

condition. The value of compliance current (ICC) is fixed at 20 µA during 

the measurement to prevent permanent damage to the device. Figure 

4.16(b-c) shows the process of switching mechanism under different 

voltage polarities. When a positive voltage polarity (0 to +3 V) is imposed 

on the TE, the device resistance state is switched from high resistance state 

(HRS) to low resistance state (LRS). This process is known as “SET” 

process, as shown in Figure 4.16(b) and the SET voltage (VSET) of the 

device is +1.8 V. The detailed switching mechanism of the Y2O3-based 

memristive device is reported by Das et al [8]. 
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Figure 4.16: (a) Memristive crossbar array architecture. Interfacial 

switching mechanism in the memristive device: (b) Device during “SET” 

process under the positive voltage bias, (c) Device during “RESET” 

process under negative voltage bias, (d) Resistive switching characteristics 

of fabricated memristive crossbar array and inset shows the enlarge view 

of the resistive switching responses, (e) Schematic of applied input voltage 

waveform. 

On the other hand, when the negative voltage bias (from 0 to -3 V) is 

imposed on the TE, the device resistance state is switched from LRS to 

HRS as described by Das et al [8]. This process is termed as “RESET” 

process as depicted in Figure 4.16(c) and the RESET voltage (VRESET) of 

the device is -1.93 V. Furthermore, when the applied negative bias on TE 

is replaced by the positive bias, the device switches back from HRS to LRS 

as shown in Figure 4.16(b).  

As seen from Figure 4.16(d), the resistive switching of devices in the 

crossbar array consistently follows the memristive behavior in multiple 

switching cycles and toggle between HRS to LRS and back without any 

noticeable change in the switching voltages i.e., VSET and VRESET. The 

negligible variation in the VSET and VRESET shows that the DIBS system is 

extremely promising to realize a reliable memristive crossbar array. 
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4.5.3.2 Endurance, Retention and Device Scaling Properties of MCA 

To investigate the stability and reliability of the Al/Y2O3/GZO crossbar 

array, the endurance and retention measurements are performed. The 

devices in the array are observed to be stable up to ~7.5×105 switching 

cycles but beyond ~7×105, the value of IRatio is reduced down to ~30, as 

depicted in Figure 4.17(a). A high value of current ratio (IRatio > 200) is 

observed on an average for the memristive devices in the crossbar array. 

The high values of endurance and IRatio confirm that the memristive devices 

in crossbar array architecture show highly stable, reliable and reproducible 

resistive switching responses. Figure 4.17(b) depicts the device retention 

characteristic which can be emphasized that the HRS and LRS are distinctly 

separated from each other up to 2.25×105 s with IRatio > 200 and beyond 

1.5×105 s, the value of IRatio is reduced down to ~30. Similar reduction in 

the value of RRatio from 640 to 80 is also reported by the Petzold et al [33] 

in Y2O3-based single memristive devices when the retention period goes 

beyond 5×105 s. Baeumer et al [34] have also reported that the current level 

in LRS state is reduced by 90% of its initial value (1 µA) at 103 s in the 

Nb:SrTiO3-based single memristive device. 

Maikap et al [35] have also reported that the value of RRatio is decreased 

from 15 to 10 when the retention period goes beyond 104 s in (4×4) TaOx-

based memristive crossbar array. This instability in the current/resistance 

ratio with time can be attributed to insufficient heat dissipation [36] while 

the device is under operation and, therefore, can be correlated with a writing 

error. 



79 
 

 

Figure 4.17: (a) Endurance measurement up to 7.5×105 cycles and 

degradation is found nearly 7×105 
cycles

 
in current ratio, and inset shows 

the applied input programming voltage pulse, (b) Retention measurement 

of the fabricated device up to 2.25×105 s and degradation is found nearly 

1.5×105 s in current ratio, (c) Effect of area scaling via shadow mask on 

device current. 

Moreover, in the oxide films, the spontaneous distribution of the oxygen 

vacancies upon reduction of the electric field is related to the thermal 

diffusion assisted by the repelling coulombic forces of the ionized 

vacancies [37]. Figure 4.17(c) shows the increase in current with the 

corresponding rise in the active area of the device [8]. At the third stage of 

the device fabrication via shadow masking technique, as depicted in Figure 

3.4(h) in the chapter 3, the device area is scaled down from 0.6 to 0.3 mm2 

and subsequently the device current is measured. 

4.5.3.3 Memristive Device Production Yield in Crossbar Array 

The device yield is one of the crucial parameters in a memristive crossbar 

array, describes the percentage of working devices on a wafer-scale in 

comparison to total fabricated devices during a single fabrication process. 

The level of yield determines the cost-effectiveness and commercialization 

viability of the system. In total, 180 GZO/Y2O3/Al devices are measured 
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from the crossbar arrays, and 143 of them display bipolar resistive 

switching, as shown in Figure 4.16(d), implying a yield of 79.44% which 

are depicted in Figure 4.18. 

 

Figure 4.18: (a) Working and non-working devices mapping in (15×12) 

crossbar array structure, (b) Percentage scale for corresponding device 

yield. 

It is important to note that the production device yield in the memristive 

crossbar array signifies an ambitious scientific importance to further 

decline the device manufacturing cost significantly. However, the 

memristive devices in the crossbar array structure still face poor fabrication 

yield and reliability which further hinder them from direct practical 

applications [38]. Here, to investigate the production yield of the fabricated 

memristive crossbar array, we have measured switching responses of all 

750 devices in the array size of (30×25) and ~92.67% devices display a 

bipolar, stable, repeatable, and reliable switching response. 
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Figure 4.19: (a) Wafer-level location mapping for functional and non-

functional devices in the (30×25) crossbar array, (b) Device yield in a 

percentage scale. 

The wafer level location mapping and percentage yield of the functional 

and non-functional devices is depicted in Figure 4.19. The device yield can 

be further improved by involving nanofabrication processes as reported in 

previous reports [39-40] while realizing the crossbar array with reduced 

individual device area and larger device density and precise control over 

contaminants during the fabrication process as carried out in a cleanroom 

environment. 
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4.5.3.4 D2D and Device Area Impact on Switching Voltages  

Figure 4.20(a-b) shows the variation in VSET and VRESET in various devices 

in the fabricated crossbar array structure. The devices in the crossbar array 

show lesser variation in VSET and VRESET in the D2D which further confirms 

that the fabricated crossbar array is highly stable and reliable with 

minimized D2D variations [31]. Figure 4.20(c) shows the location map for 

the devices (D1-D5) used in Figure 4.20(a-b). 

 

Figure 4.20: (a) Resistive switching response of device D4 in the fabricated 

MCA, (b-c) Variation in VSET and VRESET in D2D (5 devices are used). The 

error boxes show the slight variation in the VSET and VRESET during C2C 

operation of the device. (d) Impact of device area scaling on switching 

voltages. 

The impact of device area scaling over the switching voltages is shown in 

Figure 4.20(d). It is observed that when the device area increases, the 

corresponding values of VSET and VRESET of the device are marginally 

increased. The slight variation in VSET and VRESET is associated with the 

observable increment in the device current due to the increment in the 

device active area which is favorable in terms of the availability of more 
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electronic sites for current conduction as reported by Das et al [8] and 

Nirantar et al [41]. 

4.5.3.5 Multilevel Current Programming Functionality and 

Potentiation and Depression Processes 

To evaluate the multilevel current programming scheme on the fabricated 

MCA, we have selected the MCA size of (8×8) and varied the amplitude of 

applied input voltage (VA) from +1.3 V (Figure 4.21(a)), +2.1 V (Figure 

4.21(b)), +3 V (Figure 4.21(c)) to +4 V (Figure 4.21(d)) with constant 20 

input pulses and 10 ms pulse width (PW). Here, word lines correspond to 

the top electrodes (TEs) and bit lines correspond to the bottom electrodes 

(BEs) of the fabricated MCA structure. As shown in Figure 4.21(e), the 

fabricated MCA exhibits multiple and distinct current levels when all the 

devices are in the ‘ON’ states, which further extends the capability of the 

fabricated MCA for a multilevel current programming scheme. Further, it 

should be noted that the device current is varied from 10 to 108 µA under 

different values of VA with constant number of pulses, as depicted in a color 

bar of the current distribution map. 

 
Figure 4.21:   Multilevel current mapping of fabricated MCA devices with 

an array size of (8×8): (a) VA = +1.3 V, (b) VA = +2.1 V, (c) VA = +3 V, 

(d) VA = +4 V with 20 pulses and 10 ms pulse width, (e) Distinct current 

levels. 
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To extend the functionality of the fabricated MCA, synaptic weight 

modulation characteristics have been investigated. The potentiation and 

depression features of the artificial synapse have been mimicked by 

applying the input voltage pulses. Figure 4.22(a) shows the potentiation (P) 

process, wherein the device conductance is continuously strengthened 

under the application of 50 positive successive pulses with VA = +1.3 V and 

PW = 10 ms. In the depression (D) process, 50 negative pulses are applied 

with of VA = -1.0 V and PW = 10 ms, as depicted in Figure 4.22(b). Here, 

the amplitude of the read voltage pulse (VR) is 0.1 V. Figure 4.22(c) and (d) 

show the combined plot and normalized current distribution of P and D. 

The nonlinearity (NL) factor values between P and D are found to be 0.67 

at pulse number (n) = 25. The value of NL is defined the symmetrical 

behavior of the P and D with respect to linear fitting line. The obtained 

memristive device characteristics are in good agreement with the P and D 

functionalities of the real biological synapse [42]. 

 

Figure 4.22: (a) Potentiation, (b) Depression, and (c-d) Normalized 

current distribution synaptic behaviors of the MCA. The pulse parameters 

are shown in the inset of each figure. 
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4.5.3.6 Demonstration of Spike Time Dependent Plasticity (STDP) on 

Fabricated MCA 

The activity-dependent plasticity of fabricated MCA has been investigated 

by utilizing the Hebbian learning-based spike-time-dependent plasticity 

(STDP) rules. According to the Hebbian theory, the synaptic efficiency is 

strengthened/weakened by controlling the pre-and post-synaptic pulse 

activity [43-44]. The STDP responses are varied due to different spikes of 

stimulus reaching the synaptic cleft at different time intervals [45]. 

Sometimes, the polarity of the synaptic weight changes due to the temporal 

order of the pre- and post-synaptic spikes, as shown in Figure 4.23(a) and 

(b).  While in other cases, the polarity of the synaptic weight is modulated 

due to the relative timing of the pre-and post-synaptic spikes, as shown in 

Figure 4.23(c) and (d). The exponential and Gaussian functions have been 

utilized to calculate the scaling factor (A), and time constant (τ) of STDP 

events. These variables are useful in computational neuroscience and 

neuromorphic hardware design [46]. 

 
Figure 4.23: Demonstration of biological STDP forms mimicked using 

Y2O3 MCA. The values of A and τ are shown in the inset of each figure. (a) 

Symmetric Hebbian learning and (b) symmetric anti-Hebbian learning. 

Applied training spikes for (c) asymmetric anti-Hebbian learning and (d) 

asymmetric Hebbian learning. 
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As seen in Figure 4.23, four different types of STDP learning rules such as 

symmetric Hebbian (Figure 4.23(a)), symmetric anti-Hebbian (Figure 

4.23(b)), asymmetric anti-Hebbian (Figure 4.23(c)), and asymmetric 

Hebbian learning rules (Figure 4.23(d)) are mimicked by utilizing the Y2O3 

MCA and can be controlled with amplitude, polarity and duration of pre- 

and post-spikes [46-47]. Here, it should be noted that the effect of synaptic 

weight modulation can be more pronounced when trains of pre/post spikes 

are imposed on the electronic synapse as compared to the single pre/post 

pair which is similar to the biological synapse [46-48]. Moreover, by 

designing and optimizing the pulse schemes, the time constant can be 

further modulated in a wide temporal range, from the biological 

millisecond scale down to ultrafast nanoseconds [46]. This enables the 

flexibility of the neural circuit to design the neuromorphic system 

effectively. 

4.6 Conclusion 

In summary, an analytical model for a Y2O3-based memristive system with 

synaptic behavior and stable resistive-switching phenomena has been 

discussed. The learning and forgetting characteristics of the proposed 

analytical model display ~20.1% maximum deviation error with the 

experimental data, which is less than that reported elsewhere. The proposed 

model can be further considered for modeling of memristive devices for 

neuromorphic application. Further, a generic non-linear analytical model 

has been discussed for any material-based memristive system displaying 

resistive switching, synaptic learning and synaptic plasticity characteristics 

which are essential parameters for neuromorphic computing. The proposed 

model and its piecewise window function have shown better non-linear 

behavior in device current at device boundaries by considering the 

rectifying nature and non-ideal effects which are not incorporated by the 

other reported models available in the literature. The synaptic plasticity 

characteristic of modeled data shows ∼4.44% MED in case of Y2O3 and 

∼4.5% MED in case of WO3 with respect to corresponding experimental 
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results and these values are the least as compared to values reported in the 

literature till date. 

Here, we have also discussed a physical electro-thermal modeling of 

nanoscale Y2O3-based memristor device. The simulated outcomes show the 

stable RS behavior in the pinched hysteresis RS response with multiple 

switching cycles. The simulated switching characteristics show lower 

values of CV , i.e., 17.36% and 17.09% in VSET and VRESET, respectively, in 

C2C variation. The physical modeling also reveals the impact of VRR on the 

device switching characteristics and shows that when VRR is increased, 

switching voltages are slightly increased because under fast VRR the device 

switching speed is increased and no sufficient time is available for the 

mobile vacancies to settle down. Moreover, the simulated memristor device 

has also effectively emulated the synaptic plasticity behavior which is 

analogous to the functionality of human brain. The simulation study reveals 

the impact of VRR on device switching response which further significantly 

affects the synaptic plasticity functionality of the memristor device.  

The fabricated (15×12) and (30×25) Y2O3-based memristive crossbar array 

architectures exhibit stable resistive switching characteristics based on 

interfacial mechanism, consistent switching repeatability in multiple 

cycles, and low variability in VSET and VRESET characteristics. Moreover, 

the fabricated crossbar array shows high current ratio (> 200), high device 

yield (79.56% in (15×12) and 92.67% in (30×25) crossbar arrays), excellent 

endurance characteristics up to ~7.5×105 (0.7 million) cycles and high 

retention of ~2.25×105 s. Furthermore, a large-area fabricated crossbar 

array of (30×25) on 3-inch Si substrate also depicts the excellent resistive 

switching properties with remarkable stability, repeatability and 

reproducibility in the resistive switching phenomena. The fabricated 

devices in crossbar array show a marginal variation in VSET and VRESET in 

case of D2D which further confirms the smooth and uniform thin film 

deposition by utilizing DIBS. The fabricated MCA structure are also fully 

capable to perform the multilevel current programing functionality under 

the application of varied input voltage amplitude which further utilize these 
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devices for multi-bit storage application. The realized MCA successfully 

demonstrated the synaptic learning capability by performing potentiation 

and depression processes at low input voltage and also effectively 

demonstrated the STDP analysis which are similar with the different type 

of Hebbian learning rules and analogous to the real biological system 

characteristics. This is encouraging for the practical application of the 

large-area memristive crossbar array. The feasible fabrication process via 

DIBS system also leads to the fabrication of high-density crossbar array 

with low-cost, and scalable manufacturing possibilities for the next-

generation resistive memory devices. 
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Chapter 5 

 

Analysis of Coefficient of Variability in D2D and C2C 

 
5.1 Introduction 

As it is widely accepted that the memristive devices are one of the most 

promoting emerging memory technologies due to its outstanding features 

such as down-scaling, low power consumption, high speed, and possibility 

of multibit operation [1-6]. These aforementioned features are most useful 

in logic-in-memory applications, and neuromorphic computing 

architectures [1-6]. In the memristive devices, under the application of 

external electrical stimulus, the resistance of the switching oxide layer is 

changed between two distinct resistance states namely as; low resistance 

state (LRS) and high resistance state (HRS). In the simplest observation, 

the device can be SET under the LRS and RESET into the HRS, which 

further can be logical categorized as “1” and “0”, respectively. However, 

there are several major hurdles to implement the large-scale memristive 

crossbar array into state-of-the art memory, in-memory computation and 

logic applications, are large device-to-device (D2D) and cycle-to-cycle 

(C2C) variabilities in both LRS and HRS or in the device switching 

voltages i.e., VSET and VRESET [7-8]. These variabilities typically follow a 

log-normal distribution [8] which can describe the stochastic nature of the 

switching process within one cell. Due to these variabilities, multiple 

resistances states are obtained for each switching cycle and for different 

cells on the same chip [9]. 

The resistive switching process in the transition metal oxides is happened 

to be driven by the nanoscale level movement of the donor-type defects 

such as oxygen vacancies [1, 10-11]. The nanoscale level movement further 

may help to change the resistance of the switching oxide layer or the 

resistance of the electrode/oxide interface [1, 10-11]. In the case of 

electroforming resistive switching mechanism, continuous conductive 

filaments (CFs) are formed between top and bottom electrodes [12]. The 

stochastic nature of the CFs has been suspected phenomenologically and 
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affected the thermodynamic stability of the generation/recombination of 

the oxygen vacancies into CFs [13-14] which further affects the shape and 

oxygen vacancy distribution of the CFs [12, 15-16]. Importantly, during the 

formation and rupture processes of CFs, the changes in microscopic 

structure of switching oxide layer which might cause the C2C variability in 

redox-based memristive devices. 

The primary source of the variability is associated to the stochastic nature 

of the resistive switching process [8] inside the resistive switching layer 

which results in the different resistances states for each switching cycle and 

different values of resistance obtained for different memory cells on the 

same crossbar chip [17]. More specifically, the D2D variability is 

associated to the inhomogeneity in the switching system originated from 

the fabrication process [18-19]. Further, D2D can be a major obstacle to 

develop a large-scale passive crossbar array for accurate analog 

computation [20]. On the other hand, the C2C variability is connected with 

the stochastic nature of the resistive switching in a memristive device. 

Furthermore, the large field-accelerated random migration of ions also 

leads the variability in the memristive systems [9]. The induced local Joule 

heating and random ionic/electronic conductions are also affected the 

consistency in the resistive switching characteristics [9]. 

The electroforming-based memristive devices are more suffered from the 

large D2D and C2C variabilities because of the growth and disruption 

processes of the CFs are not well controlled [17]. On the other hand, to 

reduce the variability, an electroforming-free interface dominated, highly 

stable and uniform resistive switching characteristics of the memristive 

devices with high retention and endurance parameters are highly desired 

for neuromorphic computing and image processing. Moreover, in case of 

an electroforming-free memristive devices, the device switches from the 

pristine state to a particular resistance state depending on the applied input 

signal which excludes the unnecessary application of a strong electric field 

during the electroforming process that leads to large D2D variation or even 

damages the memristive system. 
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5.2 D2D Variability in Memristive Crossbar Array 

Device-to-device (D2D) or spatial variations are the major obstacles to 

design and implementation of large-scale memristive crossbar array-based 

artificial neural networks (ANNs). Under D2D variations, various devices 

in the crossbar array show different non-linearity in the resistive switching 

characteristics. These variations are mostly appeared in the electroforming 

type memristive devices such as valance change memory (VCM) or electro-

chemical memory (ECM) due to stochastic nature of formation and rupture 

of the CFs [17, 21]. The D2D variation is connected with the randomness 

occurred in the electroforming process which further leads to the different 

shapes and structures of the CFs inside the devices [21]. Therefore, it is 

essential to avoid the electroforming process during design and 

implementation of the large crossbar arrays. 

On the other hand, forming-free resistive switching mechanism-based 

memristive devices with selector are played a very important role as it 

usually operates more frequently as compared to memristive device. 

However, if selector and memristive device face large switching variations, 

it will further increase the difficulties leads to the failure in the operation of 

crossbar arrays. Many fabrication strategies have been developed to design 

and implement the forming-free devices-based memristive crossbar array. 

Several studies [22-23] have been demonstrated to change the thickness of 

the resistive switching materials and some of the reported studies [24] 

utilized a conductive oxide materials layer as a bottom interface to increase 

the bottom interface resistance and eliminate the electroforming process as 

well as the effect of breakdown. Therefore, by controlling the concentration 

of defects such as oxygen vacancies or ions can also help to develop 

electroforming free resistive switching behavior-based memristive crossbar 

array [25-26]. Instead of the formation of CFs under the application of 

applied external electric field, the preformed CFs can also be avoided by 

precise control over the manufacturing process [27-21].  

Generally, metal oxide-based memristive systems often show large 

variation, due to the stochastic nature of the switching process [17]. A 
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statistical analysis of 120 I-V switching cycles has been investigated on 30 

GZO/Y2O3/Al memristive devices for quantitative estimation of the D2D 

variabilities in VSET and VRESET parameters by evaluating the coefficient of 

variation (CV) by calculating the ratio of standard deviation (σ) to the mean 

value (μ) [28]. 

The statistical distribution of D2D variability data is plotted in Figure 5.1. 

The distribution is measured at ICC of 20 µA and it is observed that the 

statistical distribution parameters are almost independent of the value of ICC 

as depicted in Figure 5.2. The insignificant dependency of the variability 

on ICC may be attributed to large bottom interface resistance (> 200 kΩ) at 

GZO/Y2O3. The statistical distribution in VSET and VRESET for D2D is 

matched with Gaussian fitting curves. The values of  goodness of fitting 

(Chi-Sqr (χ)) and the error coefficient (R2) are estimated as 0.01576 and 

0.94635, respectively, for VSET and 0.045 and 0.91386, respectively, for 

VRESET in case of D2D variability, as described in Figure 5.1(a) and 5.1(b). 

 

Figure 5.1: D2D statistical distribution of  (a) VSET and (b) VRESET for 30 

memristive devices fitted with Gaussian curves. 
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Figure 5.2: (a) Resistive switching response of memristive device at 

different values (20 µA, 1 mA, 10 mA, 100 mA) of compliance current (ICC), 

(b) Negligible variation in VSET and VRESET over the different values of ICC, 

(c-d) Error bar plots show the negligible variations in VSET and VRESET over 

different values of ICC. 

The cumulative probability distribution of D2D variability data is plotted 

in Figure 5.3 which shows the cumulative probability distribution in VSET 

and VRESET for 30 memristive devices using ICC of 20 µA. The values of CV 

for D2D variability in VSET and VRESET, as described in Figure 5.3 are 0.25 
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and 0.3154, respectively. Moreover, the experimentally obtained values of 

D2D, as described in Table 5.1, are comparatively less than those reported 

for TiN/HfOx/AlOy/Pt and Au/Cu-SiO2/Cu resistive system-based 

crossbars, as reported in the published literature [29-31]. 

 

Figure 5.3: D2D cumulative probability distribution in VSET and VRESET for 

30 memristive devices. 

5.3 C2C Variability in Memristive Crossbar Array 

The cycle-to-cycle (C2C) variation is associated with the instability in the 

CFs or random/stochastic formation of new CFs. However, by adopting 

perfect fabrication strategies it can be possible to control the CF 

formation/dissolution to reduce the C2C variation significantly. Previously, 

several reports [31-33] have been published in which bilayer resistive 

switching is adopted to confine the formation and rupture of CFs. More 

specifically, in this bilayer memristive structure, two different thermal 

conductivities and oxygen ion migration layers have been utilized which 

helps to increase the interface barrier. Thus, the CFs is completely ruptured 

in one oxide layer and remain unchanged in another oxide layer. The 

partially ruptured CFs in the bilayer structure can play a significant role in 

confining the formation of CFs which further beneficial for the uniform 

resistive switching.  

On the other hand, if the interfaces between the resistive switching 

materials and the electrodes are not uniform, there should be many local 

sites available for CFs nucleation which further increases the randomness 
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of the film, especially its switching parameters. When a memristive device 

incorporates a uniform material with a smooth surface, a conducting paths 

and interfaces of the film surface are uniformed as compared to the random 

or zigzag which provides the reasonable similarity and uniformity in 

conductive sites and interfaces [34].  

A statistical analysis of 120 I-V switching cycles is performed for 

quantitative estimation of the C2C variability in VSET and VRESET 

parameters by evaluating the coefficient of variation (CV) by calculating 

the ratio of standard deviation (σ) to the mean value (μ) [28]. The statistical 

distribution of C2C variability data is plotted in Figure 5.4. The distribution 

is measured at ICC of 20 µA and it is observed that the statistical distribution 

of VSET and VRESET for C2C are matched with Gaussian fitting curves. For 

C2C variation, the values of  χ and R2 are estimated as 0.000639 and 0.9611, 

respectively, for VSET and 0.002071 and 0.9482, respectively, for VRESET, as 

described in Figure 5.4(a) and 5.4(d). 

 

Figure 5.4: C2C statistical distribution for 120 cycles of (a) VSET and (c) 

VRESET in a single memristive device with Gaussian fitting. 

The cumulative probability distribution of C2C variability data is plotted in 

Figure 5.5. The values of CV for C2C variability in VSET and VRESET, as 

presented in Figure 5.5, are 0.0608 and 0.0809, respectively. These values, 

as described in Table 5.1, are comparatively less than those reported for 

TiN/HfOx/AlOy/Pt and Au/Cu-SiO2/Cu resistive system-based crossbars, 

as reported in the published literature [29-31]. 
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Figure 5.5: C2C cumulative probability distribution in VSET and VRESET for 

120 cycles in a single memristive device. 

Moreover, the C2C variability is associated with the stochastic nature of 

resistive switching in the memristive device and it is related to the large 

field-accelerated random migration of ions which leads the variability in 

memristive devices [35]. Besides that, the induced local Joule heating and 

random ionic/electronic conduction also account for the undesirable 

variations in the RESET and SET characteristics [35]. Hayakawa et al [36] 

and Niu et al [37] have demonstrated that the careful control of ionic 

movement to reduce the C2C variability in memristive devices which can 

also minimize the D2D variability as both are interlinked to each other in 

memristive crossbar array. 
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Table 5.1: Comparative analysis between our work and previously 

reported data. 

References Our work Ref. [29] Ref. [30] Ref. [31] 

Memristive 

structure in the 

crossbar 

GZO/Y2O3/

Al 

TiN/HfOx/

AlOy/Pt 

Au/Cu-

SiO2/Cu 

TiN/SiCN/Ta

/Cu 

Crossbar array 

size 

(15 ×12) (24×24) (4×4) (2×2) 

VSET/VRESET 

(V) 

+1.8/-1.93 +0.9/-2 +3/-3 +4/-2.6 

Retention time 

(s) 

~2.25×105 104 106 - 

Endurance 

(cycles) 

~7.5×105 104 104 150 

IRatio > 200 10-15 > 100 50 

Cv for C2C 

variability 

0.0608 in 

SET 

0.0809 in 

RESET 

0.1014 in 

SET 

0.1554 in 

RESET 

 

 

- 

> 0.1504 in 

SET 

> 0.1244 in 

RESET 

Cv for D2D 

variability 

0.25 in SET 

0.3154 in 

RESET 

 

 

- 

> 0.3517 in 

SET 

> 0.3253 in 

RESET 

> 0.3519 in 

SET 

> 0.3210 in 

RESET 

Deposition 

technique 

DIBS Atomic 

Layer 

Deposition 

Aerosol jet 

printing 

Radio 

Frequency-

Plasma 

Enhanced 

Chemical 

Vapor 

Deposition 
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5.4 Impact of VA, ICC, and PW on CV of D2D and C2C 

It is well-known that the resistive switching phenomena is influenced by 

the levels of applied input voltage (VA) and pulse width (PW) [38] as these 

two factors have significant impact on the Joule heating of individual 

device [17]. In memristive devices, the variation in the random distribution 

of oxygen vacancies at the interfaces and in the bulk switching material 

[28, 38-39] are also significantly affected by the values of VA and PW. 

Cumulative probability distribution in VSET and VRESET of D2D with varied 

compliance current (ICC) is depicted in Figure 5.6. As observed from Figure 

5.6, CV values of 6.03%, 5.98% and 2.64% in VSET and 11.51%, 10.13% 

and 11.36% in VRESET are obtained at ICC of 100, 200 and 300 µA, 

respectively. The low values of D2D CV confirm the stability and reliability 

of the MCA developed on a 3-inch Si substrate. The D2D variability is 

associated with the inhomogeneity in the memristive cells which induces 

from the fabrication process [8, 18-19, 35] and poses a stringent challenge 

in the fabrication of large-scale MCA on a chip level [35]. 

 

Figure 5.6: (a-c) D2D cumulative probability distribution in VSET and 

VRESET voltages at ICC of 100, 200, 300 µA, respectively. 
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Cumulative probability distribution in VSET and VRESET of C2C with varied 

ICC is presented in Figure 5.7. As observed from Figure 5.7, ultralow values 

of CV of 1.58%, 0.2% and 0.4% in VSET and 2.69%, 1.14% and 1.07% in 

VRESET are obtained at ICC of 100, 200 and 300 µA, respectively. These 

significantly ultralow values of C2C CV establishes that the fabricated 

MCA has excellent cyclic stability, repeatability and reproducibility. 

 

Figure 5.7: (a-c) C2C cumulative probability distribution in VSET and 

VRESET voltages at ICC of 100, 200, 300 µA, respectively. 

Further, the impact of VA together with the variation in ICC and PW on C2C 

CV is depicted in Figure 5.8. From Figure 5.8, it can be observed that at the 

higher ICC (300 µA), the values of CV are smaller in both VSET and VRESET 

as compared to the lower ICC (100 µA). At VA of ±3 V, the calculated value 

of CV in VSET and VRESET are minimized as compared to those for other 

applied voltage levels i.e., ±2 and ±2.5 V. Similarly, at higher PW (100 

ms), the values of C2C CV in both VSET and VRESET are comparatively lower 

as compared to those at lower PW (10 ms), as depicted in Figure 5.8. The 

efficient resistive switching of devices is observed under 10 and 100 ms 

PW, however, the values of CV are  comparatively lower in the case of 100 

ms which may be attributed to the larger memory cell in the MCA. 

Moreover, we have experimentally achieved significantly low values of 
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D2D and C2C CV are compared to those reported by other researchers [28, 

31, 40] in Table 5.2. 
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Figure 5.8: C2C cumulative probability distribution in VSET and VRESET 

voltages at (a-c) VA = ±2 V, ICC varied from 100 to 300 µA, and PW is 

constant at 10 ms, (d-f) VA = ±2.5 V, ICC varied from 100 to 300 µA, and 

PW is constant at 10 ms, (g-i) VA = ±3 V, ICC varied from 100 to 300 µA, 

and PW is constant at 10 ms, (j-l) VA = ±2 V, ICC varied from 100 to 300 

µA, and PW is constant at 100 ms, (m-o) VA = ±2.5 V, ICC varied from 100 

to 300 µA, and PW is constant at 100 ms. 
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Table 5.2: Comparative analysis between our work and previously 

reported data. 

References Our work Ref. [28] Ref. [31] Ref. [40] 

Memristive 

structure in 

the crossbar 

Al/Y2O3/GZO Ag/h-

BN/Ag 

TiN/Al2O3/

SiCN/Ta/Cu 

Ti/HfSe2/Ti/

Au 

 

Crossbar 

array size 

(30 ×25) (10×10) (2×2)  (5×5) 

VSET/VRESET 

(V) 

+2.72/-2.24 +2.60/-

2.25 

+2/-2  +0.7/-1.4 

Cv for C2C 

variability 

SET: 0.2%  

and 

RESET: 

1.07% 

SET: 

1.53%  

and 

RESET: 

6.21% 

SET: 3.45%  

and  

RESET: 

3.7% 

SET: 2.42%  

and 

RESET: 

Not 

Available 

Cv for D2D 

variability 

SET: 2.64%  

and 

RESET: 

10.13% 

SET: 

5.74%  

and  

RESET: 

12.37% 

 

Not 

Available 

SET: 

18.05%  

and 

RESET: 

31.21% 

Deposition 

technique 

DIBS Chemical 

Vapor 

Deposition 

Radio 

Frequency-

Plasma 

Enhanced 

Chemical 

Vapor 

Deposition 

Molecular 

Beam 

Epitaxy 

 

5.5 Conclusion 

In conclusion, the fabricated memristive crossbar array on large-area of 3-

inch exhibits excellent resistive switching properties with remarkable 

stability, repeatability and reproducibility in the resistive switching 

phenomena. Moreover, the fabricated devices show a marginal variation in 

VSET and VRESET in case of D2D. The fabricated devices also show low D2D 

variability in VSET (2.64%) and VRESET (10.13%) and ultralow C2C 

variability in VSET (0.2%) and VRESET (1.07%). Further, the fabricated 

memristive devices in the MCA also show a minimum level (2%) of overall 

variations in the values of CV both for VSET and VRESET for varied levels of 
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ICC, VA and PW. This is encouraging for the practical application of the 

large-area MCA. Furthermore, the feasible fabrication process via DIBS 

system also leads to the fabrication of high-density crossbar array with low-

cost, and scalable manufacturing possibilities for the next-generation 

resistive memory devices. 
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Chapter 6 

 

Read/Write Operation in Fabricated MCA Structure  

6.1 Introduction 

RRAM or memristive devices are the most promising future candidates for 

the next generation non-volatile memories not only due to its low power 

consumption, high switching speed, easy fabrication and excellent 

reliability but also its offer the ultimate nanometer level (< 10 nm) scaling  

which is more desirable for high-density crossbar array architectures [1]. 

However, due to high-density and compact crossbar array size the 

undesirable sneak current can arise from nearby unselected devices which 

is further affected the read/write margins and restricting the development 

of the large size of the crossbar array [2]. In the case of unipolar memristive 

devices, the sneak current problem can be minimized or neglected by 

connecting a diode in series with memristive device which acts as a selector 

device and this configuration is known as one diode-one resistor (1D1R) 

[3-4]. However, one directional operation of the diodes is not applicable for 

the bipolar memristive devices as it is inherently more stable. Further, 

complementary resistive switching (CRS)  has also been proposed in which 

two bipolar resistive switching elements are connected in an anti-series 

configuration to suppress the sneak current [4-7], but CRS features have a 

destructive read problem.  

Recently, a one selector-one resistor (1S1R) memory configuration has 

been proposed in which memory cell structure has one non-linear bipolar 

selector and one bipolar resistive switching element [8-10]. Several pull-up 

read/write schemes such as one bit line pull up (OBPU), all bit line pull up 

(ABPU) and partial bit line pull up (PBPU) have been utilized in the 1S1R 

memory configuration [11-13]. In the case of OBPU, the maximum size of 

a single crossbar array is estimated to be 10 Mb with at least a 10% read 

margin [14]. However, the aforementioned estimation may be too 

optimistic without considering line resistance, which cannot be neglected 

in the case of large crossbar arrays. Further, the read margin can be 
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improved by utilizing an ABPU scheme in a crossbar array with linear [13] 

and non-linear [15] cell resistances. The ABPU scheme also suggests that 

the optimization of the read scheme may play an important role in the read 

margins of the 1S1R configuration of the crossbar array with highly non-

linear cell resistance. Furthermore, a PBPU scheme is useful to optimize 

the total power consumption during random read access. If the multiple or 

all bit lines are pulled up in memristive crossbar array, these are considered 

under PBPU and ABPU schemes.  

Moreover, ABPU scheme substantially increased the maximum array size 

as compared to OBPU scheme while PBPU shows a moderate 

improvement in the read margin as compared to OBPU. Hence, an 

appropriate number of additional pull-up bit lines can be determined for the 

desired size of crossbar array depending on the application. The ABPU 

scheme can also be applicable for a large size crossbar array of 16 Mb in 

comparison to the OBPU scheme even when the line resistance is not 

negligible because the effective resistance at the sneak current path is 

substantially less sensitive to the array size. 

6.2 One Bit line Pull Up (OBPU) Scheme 

Figure 6.1 shows the crossbar array structure and equivalent circuit of 1S1R 

configuration by utilizing OBPU. The resistance of the non-linear resistive 

switching elements as a function of voltage is denoted by Rsneak and defined 

by the equation (1) as given below [11, 16-17]: 

𝑅sneak =
𝑅LRS

sneak(𝑉1)

𝑁−1
+

𝑅LRS
sneak(𝑉2)

(𝑁−1)2 +
𝑅LRS

sneak(𝑉3)

𝑁−1
             (1) 

The effective resistance values for HRS and LRS are defined by equations 

(2) and (3), respectively. 

𝑅HRS =  
𝑅HRS

select×𝑅sneak

𝑅HRS
select+𝑅sneak

                                       (2) 

𝑅LRS =  
𝑅LRS

select×𝑅sneak

𝑅LRS
select+𝑅sneak

                                        (3) 

The resulting measurable normalized read voltage margin (ΔV) is given by 

equation (4): 
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∆𝑉

𝑉pu
=

𝑉out,   HRS

𝑉pu
−

𝑉out,   LRS

𝑉pu
=

𝑅pu

𝑅HRS+𝑅pu
−

𝑅pu

𝑅LRS+𝑅pu
             (4) 

where, the Rselect, Rsneak and Rpu represent the resistance of selected cell, 

sneak path and connective resistance in measured system, respectively. The 

read margin decreased as increment in the crossbar line number (N) for both 

1R and 1S1R devices. Therefore, the upper values of N with at least 10% 

read margin for general memristive and self-selective memristive devices. 

 

Figure 6.1: (a) A schematic of N × N crossbar arrays and (b) 

Corresponding equivalent circuit of crossbar arrays using one bit-line and 

pull-up read scheme, with which the red dotted line denotes the sneak path. 

The misreading current path (sneak path) in N × N crossbar arrays occurs 

where all bits are at LRS except the red cell is selected. The green regions 

are parallel resistor networks, namely bits on selected bit lines (BLs) and 

bits on selected word lines (WLs). The blue regions are bits on unselected 

WLs and BLs. 

6.3 All Bit line Pull Up (ABPU) Scheme 

For the enhancement in the read margin, ABPU scheme is utilized. Figure 

6.2 shows the equivalent circuit diagram of a 1S1R non-linear memristive 

crossbar array under the ABPU scheme. In the case of ABPU scheme, at 
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the additional pull-up bit lines, V3 is significantly higher as compared to V1 

and V2 as described in equation (1) in the section 6.2. Whenever, a non-

linearity factor (α) is greater than 1 i.e., α >1, the sneak path resistance is 

significantly higher than the resistance (either LRS or HRS) of the selected 

device [18]. Therefore, the read margin is effectively improved in ABPU 

by utilizing 1S1R cells. The mathematical formulations to calculate various 

resistance such as Rsneak, RLRS, RHRS and Rpu are mentioned in the section 

6.2. 

 

Figure 6.2: Equivalent circuit of the nonlinear 1S1R crossbar array under  

ABPU scheme. 

6.4 Partial Bit line Pull Up (PBPU) Scheme 

In this section, the additional practical considerations of the read margin 

are discussed which include the selection of Vpu and Rpu, and an alternative 

PBPU scheme. The selected value of Vpu can affect the non-linearity factor   

(α) which further affects the read margin. Theoretically, the optimized 

values of Vpu can be calculated numerically according to the non-linear 

characteristic of the 1S1R memristive cell [18]. However, the upper limit 

of Vpu is dependent on device switching voltage to prevent any bit from 

reading disturb during a potential full Vpu drop. Moreover, the optimized 

value of Rpu is preferable as compared to fix value as it can maximize the 

read margin. Considering the aforementioned discussion, PBPU is 
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examined with nearly 100% of the pull-up bit lines. Therefore, a suitable 

number of additional pull-up bit lines can be calculated for the desired array 

size as per the required application. Among all these schemes, ABPU 

scheme is extremely efficient to the simultaneous readout of the all-stored 

bits on the same word line as it may consume low power during operation. 

6.5 Implementation of OBPU Read/Write Scheme on 

Fabricated MCA 

6.5.1 Implementation of Read/Write Scheme on (4×4) MCA Structure 

Section 6.2 describes the OBPU read scheme on memristive crossbar array. 

As observed in the integrated selector-based functioning of the crossbar 

array as in Figure 6.3(a), the individual memory cell has a different 

conductance state either “ON” or “OFF” depends on the programming 

applied bias condition which is similar to a one bit-line pull up (OBPU) 

scheme [19]. In this OBPU scheme, the applied voltage bias on the selected 

bit line is ±3 V, and the selected device in the array is either in LRS or HRS 

depend on the applied bias polarity. As shown by the device current-based 

color mapping in Figure 6.3(b), the accessibility of measurement data of a 

(4×4) 1S1R crossbar array is displayed in the worst-case scenario. One can 

easily extend the results to a multiple (N×N) crossbar by integrating the 

additional peripheral circuits with the memory array [19-20]. Figure 6.3(c) 

depicts the results of a readout measurement to addressing tests based on 

the current of the LRS (“1”) and the HRS (“0”) with a (4×4) image 

representing the word “HNRG”. The minor fluctuations observed in HRS 

and LRS can be further minimized by refining the fabrication processes 

[21-22]. The results evidently confirm that the GZO/Y2O3/Al crossbar 

array perform efficiently using 1S1R logic without electrical interference 

by integrating selector line with each memory cell [23]. 
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Figure 6.3: (a) Schematic of the crossbar memory array in a reading 

process, (b) Current histogram of a (4×4) 1S-1R crossbar-structured 

memory and the corresponding color map under the worst-case scenario, 

(c) Readout measurement of the addressing test result of the (4×4) 

GZO/Y2O3/Al crossbar array following 1S1R logic expressing the current 

histograms representing the word “HNRG”. 

6.5.2 Implementation of Read/Write Scheme on (8×8) MCA Structure 

To investigate the writing capability of the fabricated MCA, a random 

(8×8) out of (30×25) of the MCA is selected. At the outset, all devices in 

the MCA are turned ‘ON’ by applying a constant input voltage of +1.3 V 

with a current in the range of 15-24 µA, as shown in Figure 6.4. Once the 

devices are in the ‘ON’ states, the input voltage amplitude is further 

increased to +2.1 V for those devices only which are required for alphabet 

writing. Such devices at a higher voltage excitation exhibit larger range of 

current of 35-45 µA, as demonstrated in Figure 6.4. Following this 

technique, one can easily write any desired alphabets such as “HNRG”, 

“IITI”, “SUK”, and “GNU”, as shown in Figure 6.4. It should be noted here 

that the Y2O3 MCA is successfully used to write multiple alphabet patterns 

that exhibits the robustness of the fabricated MCA. 
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Figure 6.4: (8×8) MCA electric pulse writing for random alphabet. 

6.6 Conclusion 

In summary, this chapter describes the read/write schemes which have been 

utilized for the memristive crossbar array. The ABPU scheme is efficiently 

increased the array size as compared to OBPU scheme while PBPU is more 

useful to improve the read margin as compared to OBPU. Therefore, an 

appropriate number of additional pull-up bit lines can be determined for the 

desired size of crossbar array depending on the application. We have also 

implemented the OBPU read scheme on the DIBS grown (4×4) crossbar 

array and by utilizing current mapping method, word “HNRG” has been 

demonstrated. Furthermore, the writing of random alphabets has also been 

performed by considering multilevel current programming functionality of 

the selected (8×8) MCA structure and realized the multiple word such as 

“HNRG”, “IITI”, “SUK”, and “GNU”.  
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Chapter 7 

 

Conclusion and Future Perspective 
 

Nowadays, semiconductor memories are an essential part of in-memory 

computation. As per the desirable requirement, various computing systems 

are required as per their abilities in the semiconductor memory 

functionality. Hence, we need to find an optimized solution as per our 

desirable task. From the last decade, a new non-volatile memory (NVM) 

prototype is discovered which can be utilized as a synapse and show the 

similar functionalities as analogues to the human brain. Several two 

terminals’ devices efficiently show the resistive switching behavior in 

which their resistance is changed between two stable states i.e., LRS and 

HRS and the devices can remember the new resistance. These devices are 

known as RRAM which further can be considered in the broad category of 

memristive systems. The memristive devices behave like a tiny analog 

memory which forms a crosspoint junctions of the electrodes separated by 

the resistive switching materials. Further, memristive devices are more 

promising to be a high-density, energy efficient, simple structure, low cost, 

easy fabrication process and fast-switching memories. However, it is hard 

to say that the memristive device will be capable to replace the current 

memory technology completely.  

In this work, we have proposed two analytical models and explored the 

crossbar array architecture of yttria-based memristive devices which are 

developed by the DIBS system and DC-magnetron sputtering. The 

proposed analytical models are efficiently emulated the various 

neuromorphic characteristics such as synaptic learning, synaptic plasticity 

functionality i.e., potentiation and depression, short-term memory (STM) 

and long-term memory (LTM). The 3D physical electro-thermal modeling 

further revealed the resistive switching performance of the nanoscale Y2O3-

based memristor by considering the internal Joule heating and non-uniform 

distribution of electric field. The physical modeling also effectively shown 

the effect of device switching speed over the device switching parameters 
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(VSET and VRESET), and synaptic leaning behavior in terms of potentiation 

and depression processes. Further, the DIBS system offers numerous 

advantages such as it produces high-quality thin films with reasonably 

better compositional stoichiometry, small surface roughness, good 

adhesion to the substrate even at room temperature deposition and large-

area scale electronic device fabrication. After the successful fabrication of 

crossbar array structure of the memristive devices, we have carried out 

several desirable experiments on the fabricated devices such as resistive 

switching response which is also termed as current-voltage measurement, 

optical microscopy measurement, FE-SEM, HR-TEM, and C-AFM. The 

performed experiments help us to understand the geometry of fabricated 

device structure in crossbar array, surface morphology of the deposited thin 

film,  interfacial study, and mechanism and behavior of the memristive 

device. In the resistive switching responses, we have achieved consistent 

switching response in the multiple cycles with better repeatability, 

reproducibility, and have also achieved low D2D (2.64% in VSET) and 

ultralow C2C (0.4% in VSET) coefficient of variabilities (CV) in the device 

switching voltages i.e., VSET and VRESET. Moreover, the devices in the 

crossbar array show better endurance i.e., 7.5×105 (0.7 million) cycles and 

good retention time i.e., 2.5×105 s with better current ‘ON’ and ‘OFF’ ratio. 

Furthermore, the device production yield in the crossbar array structure is 

> 92.50% with stable resistive switching response. However, the device 

production yield in the crossbar array can be further improved to precise 

control over contaminations during fabrication process and by utilization 

of the cleanroom environment. 

To the best of the author’s knowledge, the analytical modeling, fabrication 

of yttria-based memristive crossbar array by utilizing DIBS system and its 

detailed electrical and structural analysis have not been reported to date. 

Therefore, the presented study on yttria-based memristive crossbar array 

and corresponding relation with electrical, optical, elemental, and structural 

properties are impressive which can further lead to the development of 

compact high-density memristive chips. 
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7.1 Conclusions 

The primary outcomes of this thesis are outlined as follows: 

1. The first proposed analytical model of the memristive devices which is 

based on the Yakopcic model shows the good value of MED i.e., ~20.10% 

with respect to the experimental reported data in term of neuromorphic 

characteristics while the Yakopcic model shows ~36.80% MED. Hence, 

our proposed model shows ~16.66% better MED value as compared to the 

Yakopcic model with better non-linearity in the resistive switching 

response at the device boundaries. Moreover, the proposed analytical 

model successfully depicted the various memristive device characteristics 

such as learning behavior, and synaptic plasticity which are analogous to 

the human brain functionalities.  

2. The second proposed analytical model is the parallel connection of the 

memristive device and rectifies (bunch of diodes). The proposed analytical 

model shows the remarkable accuracy with least values of MED i.e., 

~4.44% in the case of Y2O3 and ~4.5% in the case of WO3-based 

memristive devices in terms of neuromorphic characteristics. Further, the 

proposed model is also emulated the realistic memristive device behavior 

as it has ideal diode equation in its current-voltage relationship. Moreover, 

the proposed analytical model has better controllability over its resistive 

switching response due to the involvement of the newly piecewise window 

function. 

3. The 3D physical electro-thermal modeling of nanoscale Y2O3-based 

memristor devices has been performed by utilizing combined software 

package of COMSOL Multiphysics and MATLAB. The discussed physical 

modeling is based on the minimization of free energy of the utilized 

materials at certain applied voltage. The simulated memristor device 

structure exhibits a stable pinched hysteresis loop in the resistive switching 

(RS) response in multiple switching cycles by considering internal Joule 

heating and non-uniform distribution of electric field. The RS responses 

show low values of coefficient of variability (CV) i.e., 17.36% and 17.09% 
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in SET and RESET voltages, respectively, during C2C variations. The 

impact of VRR on the device characteristics such as switching response and 

synaptic plasticity behavior of the device is also successfully investigated. 

Moreover, the performed simulation study significantly depicted the impact 

of oxide layer thickness on the switching voltages in the nanoscale device 

which further open the new way to develop nanoscale device to enable low 

power computation. 

4. We have fabricated GZO/Y2O3/Al-based memristive crossbar array of 

(15×12) and (30×25) by utilizing DIBS and DC-magnetron sputtering 

through metal shadow mask technique. During the crossbar array 

fabrication, polycrystalline Y2O3 is used as an insulating layer instead of 

SiO2 as it is provided better surface smoothness and roughness because of 

lower lattice mismatched (αY2O3 = 10.60 Å; 2αSi = 10.86 Å) with Si 

substrate and it is grown at 100 °C substrate temperature and pure Ar 

environment in the assist ion source of the DIBS system.  

5. The low resistive GZO is deposited on the insulating layer which acts as 

a bottom electrode and also provides the higher interfacial resistance which 

further helps us to fabricate the highly stable resistive switching memories 

with better cyclability as compared to Al metal. For the resistive switching 

medium, amorphous Y2O3 is used and it is deposited at 300 °C substrate 

temperature and Ar to O2 ratio is 2:3 in the assist ion source of the DIBS 

system which shows better resistive switching response with Al as a top 

electrode. 

6. Al forms the Schottky junction with yttria which plays an important role 

in the shape and size of the resistive switching response of the fabricated 

device. The bottom i.e., GZO/Y2O3 and top i.e., Y2O3/Al interfaces play a 

significant role in the bipolar resistive switching response of the fabricated 

devices in the crossbar array. 

7. Our optical microscopy results reveal that the fabricated crossbar array 

structure is perfectly aligned to form crosspoint structure which is more 

desirable in the case of the crossbar memory array. FE-SEM and HR-TEM 
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analysis are confirmed that the deposited switching oxide layer has 

compact grain size with uniform structure and all device interfaces such as 

Si/Y2O3 (IL), Y2O3 (IL)/GZO, (BE) GZO/Y2O3 (SL) and Y2O3 (SL)/Al are 

clearly depicted separately which further confirm the better and smooth thin 

film deposition via DIBS system. Moreover, the C-AFM analysis reveals 

that the switching mechanism is interfacial dominated as no conductive 

filaments are formed inside the resistive switching medium which is also 

confirmed by the current level in the C-AFM mapping.  

8. Our fabricated memristive devices in the crossbar array show excellent 

resistive switching characteristics with better repeatability and 

reproducibility, high ON/OFF current ratio, long endurance cycles (0.7 

million) and good retention characteristics up to 2.5×105 s. We have also 

achieved high device production yield i.e., ~92.67% in the crossbar array 

size of (30×25). 

9. The devices in the memristive crossbar array show the low D2D (2.64% 

in VSET and 11.36% in VRESET) and ultralow C2C (0.4% in VSET and 1.07% 

in VRESET) coefficient of variabilities (CV) in the device switching voltages 

i.e., VSET and VRESET. 

10. We have also experimentally investigated the impact of various 

electrical parameters such as compliance current (ICC), applied input 

voltage and pulse width on CV of VSET and VRESET of the devices in the 

fabricated memristive crossbar array. The obtained results show that the 

devices can be efficiently switched under the 10 ms and 100 ms pulse width 

but the values of CV in VSET and VRESET are comparatively lower in the case 

of 100 ms which may be attributed due to the large device size. The overall 

variations in the CV of VSET and VRESET due to the ICC, applied voltages and 

pulse width are not much higher and can be easily covered within the range 

of 2% which is further more favorable for the high stability of the fabricated 

crossbar array. 

11. The fabricated memristive crossbar array is also capable to perform 

integrated selector-based functioning in which individual memory cell has 
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a different conductance state under ‘ON’ and ‘OFF’ depending upon the 

programming applied voltages similar to a one bit-line pull up (OBPU) 

scheme. Based on the device current-based color mapping, the accessibility 

of measurement data of a (4×4) 1S-1R crossbar array is displayed the word 

“HNRG” in the worst-case scenario where current of the LRS (“1”) and the 

HRS (“0”) in the (4×4) crossbar array. Furthermore, the multilevel current 

programming functionality is enabled the writing capability of random 

alphabets by selecting (8×8) MCA structure and realized the multiple word 

such as “HNRG”, “IITI”, “SUK”, and “GNU”.  

7.2 Future Scope 

We have fabricated an electroforming free, Y2O3-based memristive 

crossbar arrays size of (15×12) and (30×25) with high endurance, stable, 

repeatable and reproducible switching response, good retention, high 

device production yield, low D2D and ultralow C2C variabilities. The 

resistive switching response of the fabricated crossbar array devices is 

interfacial dominated which can be further affected by the switching oxide 

layer thickness and electrode combinations. Further, it is observed that the 

device area scaling is significantly affected the  device current level as well 

as device switching speed which can be further played a viable role to 

fabricate nanoscopic level devices to build high-density memristive 

crossbar array with nanosecond switching speed. Future scope of our 

research is outlined below: 

1. Improvement in the memory endurance and retention by doping in Y2O3 

or using two-dimensional (2D) material layer as a heat sink to introduce 

bilayers concept in the switching layer. 

2. The device density in the crossbar array can be further improved by 

utilizing lithography process to scale down the size of the memristive 

devices.  

3. The energy efficient memristive crossbar array can be fabricated by 

utilizing device scaling at nanometer level. 


