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ABSTRACT 

Era of artificial and computational intelligence leads to various kinds of systems that 

evolves. Usually evolving system contains evolving inter-connected entities (or components) that 

makes evolving states created over time. Several evolving computing systems are stored and 

managed in a repository, which makes a kind of time-variant or non-stationary data. Numbers of 

system repositories are increasing across the globe and temporal databases are increasing in size, 

which makes system maintenance and evolution a challenging task. In this thesis, our objectives 

is to model an evolving system state as (Si, ERi, ti), such that the system state Si and the evolution 

representor ERi is representing system at the ith time point ti, where ‘i’ varies from 1 to N. We 

expressed an evolving system as a state series, SS = {S1, S2… SN}, such that each state is pre-

processed to make an evolution representor ER = {ER1, ER2… ERN} for example evolving 

networks EN = {EN1, EN2… ENN}. This modelling is used to do system evolution analysis. The 

state series represents a non-linear time-variant evolving system. A state series of an evolving 

system is stored and managed in a centralized repository. We introduce a System Evolution 

Analytics (SysEvo-Analytics) based on proposed evolving system mining and evolving system 

learning, which are techniques for an evolving system represented as a set of temporal data. The 

evolving (or temporal) networks represented system state series are combined to form an evolution 

representor that can be used for analysis purpose. Our goal is to analyze the evolving inter-

connected entities (or features) in a state series. We present following contributory approaches: 

1. To do evolving system mining, we applied two types of pattern mining: network evolution 

rule and network evolution subgraph.  

- We proposed an approach for Stable Network Evolution Rule Mining and two metrics: 

Stability metric and Changeability metric.  

- We also proposed an approach for mining Network Evolution Subgraphs such as Network 

Evolution Graphlets (NEGs) and Network Evolution Motifs (NEMs) from a set of evolving 

networks. We used frequencies of graphlets changing over graph snapshots to model four proposed 

metrics over a state series: the System State Complexities (SSCs), and the Evolving System 

Complexity (ESC), Changeability metric and Stability metric. 

2. To do evolving system learning, we applied deep evolution learning techniques on the 

evolution representor. We proposed an approach System Evolution Recommender 

(SysEvoRecomd), which used our proposed Graph Evolution and Change Learning (GECL) to do 

network matrix reconstruction. We also proposed System Evolution Learning, which used network 

pattern information for training system graph structure. 

For the above two contributory approaches, we used to demonstrate the application of our 

work on six evolving systems including: one evolving software system, two evolving natural 
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language systems, one evolving retail market system, and two evolving sentiments in IMDB movie 

name-genre system. 

3. To do evolving big data mining, we applied parallel-frequent pattern growth (i.e. a king 

of association rule mining) algorithm, which resulted in the generation of Big Data Evolution Rules 

and Big Data Evolution Concepts. We applied this approach on evolving big scholarly data. We 

presented experimentation results as evolving scholarly topics and the trend of evolving scholarly 

fields. 

4. To do change mining and evolution mining of an evolving web service system. We 

proposed a Web-service change classifier based interface slicing algorithm that mines change 

information from two versions of an evolving distributed system. We also proposed four Service 

Evolution Metrics that capture the evolution of a system’s version series. We demonstrated our 

approach on two well-known cloud services: Elastic Compute Cloud (EC2) from the Amazon Web 

Service (AWS), and Cluster Controller (CC) from Eucalyptus. 

We prototyped our proposed technique as tools, which is applied to eight real-world 

evolving systems collected from open-internet repositories of six different domains: software 

system, natural language system, retail market basket system, IMDb movie genres system, 

evolving big scholarly data system, and evolving web-service systems. We applied our SysEvo-

Analytics on different fields including: Software Evolution Analytics, Natural-language Evolution 

Analytics, Market Evolution Analytics, Movie Evolution Analytics, Big data Evolution Analytics, 

and Service Evolution Analytics. Based on the proposed approaches, we can generate 

recommendation and evolution information report about system evolution. This is demonstrated 

as experimentation reports containing retrieved evolution information for an evolving system. 

 

Keywords: Systems Engineering, Artificial Intelligence, Computational Intelligence, Data 

Mining, Machine Learning, Data Science, Graph (Network) Theory. 

Thesis project link for further information 

https://sites.google.com/site/animeshchaturvedi07/research/phdresearch 
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Introduction 

 

Evolving System is a kind of complex system that evolves and changes over time; this creates 

multiple system states. Usually, real world systems has complex environment, which makes agents to 

change and evolve a system with time. There are different kinds of systems (e.g. software, machine, 

electronic device); if such system evolves with time, this makes them evolving system [1]-[4]. Many 

systems evolve over time due to changing, dynamic, and evolving environment such systems are 

referred as evolving systems [1]-[8], which includes evolving software system [9] and evolving business 

system [10]. These systems evolve with time, and creates ample amount of information about their 

evolution. An evolving system analysis deals with control, prediction, classification, data processing, 

unpredictable environments, and adaptability. 

The information about states of an evolving system can be stored and managed in a repository 

at a centralized place. Collection of such temporal states makes a complex data series [11]. It is good 

option to manage information about evolving system states in a repository (e.g. GitHub, Wikipedia, 

Maven, UCI repository etc.). Constant growth of evolving system - both in number of repositories and 

in the size of individual repository - makes maintenance of system repositories a challenging task. 

Usually, system data are stored and managed in a time-variant data repository that keep track/record of 

state history for different time instances of system data.  

Data mining and learning is a process of extracting information from a database that contains 

interesting patterns or knowledge (implicit, non-trivial, potentially useful, and previously unknown) 

[12][13]. It is challenging to mine or learn evolution information in multiple states of an evolving 

system. The repository can be analysed using techniques like change mining [14], contrast mining [15], 

resume mining [16], evolution mining [17], incremental mining [18], incremental learning [19], or non-

stationary data learning [20]. These techniques have similarities and dissimilarities that make each of 

the technique unique and important in their applications. Techniques to handle time-variant data or 

non-stationary data can be used to learn evolution information from a state series (or an evolving 

repository). An evolving system can be pre-processed to make non-stationary and time variant data that 

can be used for machine-learning purpose. A mining or learning technique can help to identify and 

discover the changes in an evolving system. An evolution and change analysis or a non-stationary 

learning extracts useful information from time-variant or non-stationary data. 

Evolution and change analysis are kind of data analysis that studies evolution of time variant 
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(or evolving or changing or incremental or non-stationary) data [14]-[20]. Analysis of multiple states 

can provide an overview of evolution happened in the evolving system. Such evolution and change 

analysis can be applied to discover hidden, non-trivial, and non-obvious information about evolution 

and changes happened in an evolving system. The evolution information is further helpful in decision 

making. An aggregated information from multiple states can make a time series that can be useful in 

decision-making. The evolution and change analysis is required to adapt, control, and analyze changes, 

which are useful in many domains. This help to study temporal states (i.e. snapshot at different time 

instances) of an evolving system. Some mining and learning techniques that can identify evolution and 

changes happened during the evolution of an evolving system. Such mining and learning process takes 

two or more states (or versions) of a database as input to generate evolution information. Such mining 

and learning techniques are applied in many domains such as source code change analysis [21], process 

management systems [22], and online data streams [23]. Example datasets in which evolution and 

change analysis is applied are: retail marketing [24], real life application [25], patent trends [26], and 

changes in customer behaviours [27].  

In this thesis, we attempt to bridge the gap between two fields of studies: Systems Engineering 

and Artificial (or Computational) Intelligence. We investigate and bridge the system evolution theories 

of the two domains using data analysis. We propose to investigate evolving system, which are based 

on Artificial Intelligence (AI) and Computational Intelligence (CI) techniques for Systems 

Engineering. We further propose to investigate the design and development of intelligent computing 

algorithms and tools for System Evolution Analytics (SysEvo-Analytics). We are interested to do 

analysis of such evolving systems. The implementation of the algorithm by integrating the evolution 

mining and pattern (or rule) mining can retrieve the evolution patterns (or rules). The implementation 

of the algorithm by integrating the techniques that support both evolution learning and deep learning; 

this can train the machine for evolution deep evolution patterns. Basic concepts and preliminaries of 

this thesis are provided in Section 1.1. 

1.1  Preliminaries about Evolving Systems 

Era of artificial and computational intelligence leads to various kinds of systems that evolves. 

A complex system that keeps on changing with time is referred to as evolving system. An evolving 

system maintains changeability in the form of multiple states that we referred as state series. A 

repository stores and manages a system state series at centralize database. Suppose N states for inter-

connected entities of an evolving system are represented as a state series SS = {S1, S2… SN} for N time 

instances T = {t1, t2… tN}. The state series is similar to the well-known time series and data series. An 

evolving system can be represented as a set of Evolution Representor (ER) for temporal states. 

Therefore, we represent system state series as a set ER = {ER1, ER2… ERN}. The set of Evolution 

Representors can be further used for the mining and learning  purpose. An advantage of this is to create 
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a non-linear representation of an evolving system that can generate mining and learning information. 

This information will further help to do system evolution analysis [28][29]. We defined state series of 

an evolving system as given below. 

Definition 1.1: State Series SS is a series of evolving system’s states (or data points) denoted 

as SS = {S1, S2 … SN} at various time points {t1, t2, t3 … tN}, such that each state is represented as a 

series of evolution representor ER = {ER1, ER2… ERN} corresponding to the system states. We can 

define (Si, ERi, ti) where the Si stands for ith system state, the ERi stands for Evolution Representor and 

the ti stands for ith time point, where ‘i’ varies from 1 to N. Collection of such temporal states can be 

referred as a State Series. Example of an evolving state series are: evolving document versions and 

software version. A version series of an evolving software system are stored in a software repository. 

Thus, an evolving system is a complex system that evolves with time and has a number of 

different states. Assume any system with many entities (or components) that are connected to each 

other with a relationship. Due to evolving environment, the system is changed from one state to another. 

Thus, the entity connections are also changed; studying such evolution and change would be an 

interesting problem. We consider such a system with two assumptions: (a) the system contains a 

number of distinct entities and (b) each entity might be connected to zero, one or more other entities 

over time. Thus, this creates an evolving network (or dynamic network) of interconnected entities. We 

shall refer to this network as the system network of entities. 

A basic characteristic of an evolving system is that one or more connections present in a state 

Sa might not be present in another state Sb, while connections present in Sb might not present in state 

Sa. A system has many entities that are transformable to make a set of dynamic databases for the state 

series of an evolving system. These dynamic databases of a system state series can be stored and 

managed in a repository. The dynamic databases can be referred as nonstationary data in context of 

machine learning.  

An example of Evolution Representor is temporal network. An evolving system contains 

evolving interconnected entities (or components) that make evolving networks for the system state 

series. We assume that a system state can be represented using a network of relationship(s) between 

inter-connected entities. This create networks that change over time are referred as evolving networks 

[30] or temporal networks [31], or time-varying networks [32], or dynamic networks [33], or multilayer 

networks [34][35]. An evolving network is a finite sequence of directed graphs, which describes the 

state Si at ith time instance. This makes series of evolving networks {EN1, EN2… ENN}, where an ENi 

represents a state Si. An evolving network ENi = (V, E) has a set of vertices V and a set of edges E.  

The network science communities exhaustively exploited techniques for properties of a single 

network, but we are interested to exploit these properties for a set of evolving networks or temporal 

networks or multilayer networks. Examples of evolving network systems include IMDb, internet links, 
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and social network. An evolving network has a group of nodes connected together; in our case, a node 

represents an evolving entity of the system. As the system evolves, its network connections also 

evolves, which can be used to study the system evolution. 

Usually, different states are built from similar patterns of entities in an evolving system. 

Different states keep same functioning by keeping almost similar patterns of entity connections. All 

entity connections together are represented as complex network (graph). Complex network is a directed 

graph that represents entity connection relationship. In the graph, each entity is a unique vertex (node) 

and each entity connection is represented by an edge between the source and target entity. For example, 

an edge (u, v) means u (source) is connected to v (target); a special case is a loop or cycle (u, u). 

An example of evolving system is an evolving software system under maintenance phase, which 

is a software system that evolves over time. It might be in different states as time passes, and its state 

is referred as software version. Indeed, a software system usually contains a number of procedures and 

each procedure might be calling zero, one, or more other procedures. Here, the entities are the 

procedures such that procedure P is connected to procedure Pꞌ if P calls Pꞌ; and the connections are 

referred as inter-procedural calls.  

Due to continuous evolution of a system with time, its data requires a state configuration 

management. A system state can be represented as a network of inter-connected entities. This means, 

an entity is represented as a vertex (or a node) and connections between entities are represented as 

directed edges. Then, evolving states can be represented with several complex networks such that each 

state is represented as a network, which makes a set of temporal networks. Usually, temporal networks 

make similar connection patterns between entities in different states of an evolving system. 

Suppose there are several inter-connected entities, whose connections are represented as edges 

between nodes in a network. We can represent such connections between entities using binary matrix. 

This means the presence of a connection between two entities can be represented as ‘1’ and the absence 

of connection can be represented as ‘0’. Such matrix can be referred to as connection matrix or 

adjacency matrix or square binary matrix. A connection between two entities can be represented as a 

feature that can be referred to as feature matrix. We convert such feature matrices of various states to 

their equivalent evolution representor as a matrix or an artifact. 

For example, to represent a system we use the entities, as they are the building blocks of the 

evolving system. These entities join together to form an evolving system, and the inter-connections 

between entities can be represented by a network (or a graph) N(E, C), where E is a set of entities and 

C is a set of connection. Alternatively, the inter-connection between entities can also be represented by 

a connection matrix, M(E, C). Each system state can be represented as a complex network, which 

contains relationship between inter-connected entities. Further, these networks can be transformed to 

make another evolution representor. 
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1.2  Motivation and Scope 

This thesis is a study of System Evolution Analytics (SysEvo-Analytics), which is based on 

different data analysis techniques applied on complex and big evolving systems. For a given set of 

states of an evolving system, the motivations of this thesis are as follows. 

1. To contribute in systems engineering, we propose a model for SysEvo-Analytics based on data 

analytics techniques over a state series SS = {S1, S2… SN} represented as an evolution representor 

(like evolving network) of an evolving system. It is challenging to generate evolution information 

by mining a set of evolving networks {EN1, EN2… ENN} that represents multiple states of an 

evolving system. 

2. Inspired from association rule mining [36], temporal/persistent rules [37][38][39], sequential rules 

[40]-[43], and graph evolution rules [44]-[48]. It is interesting to detect stable network evolution 

rules (or patterns) in evolving system networks over time. It is motivating to study the stability and 

persistence of links in the series of evolving network databases can draw conclusions regarding 

system evolution. Thus, we aim to retrieve evolution and stable rules containing information about 

stable (or persistent) co-occurrence of source and target entities in evolving network databases. 

3. Based on frequent subgraph mining [49]-[51], network motif [52][53], and graphlet mining 

[54][55]. It is interesting to retrieve information about network evolution subgraphs (like graphlets 

or motifs) over time for a set of evolving networks. It is motivating to capture graphlets information 

of a state and use it to calculate complexity of a system state. Another motivation is to aggregate 

graphlets information of all states over time to retrieve network evolution graphlets information, 

which aids to calculate complexity of a whole evolving system. 

4. We present approaches to find change specification (like time series) of evolution patterns such as 

rules and subgraphs. Our approach mines and learns the changes in the connections between 

entities, which aids to provide recommendation about the evolving system.  

5. After mining, it is interesting to compute and study system properties like: Changeability, Stability, 

and Complexity. 

6. It is challenging to use a deep learning [56] based approach that learns evolving system states over 

time, which can assist SysEvo-Analytics. Thus, the objective is to introduce an intelligent 

methodology that can learn from the pre-evolved states of a system, and then predict/recommend 

about the evolving system. 

7. It is challenging to generate evolution information of evolving big data, we target this using 

association rule mining. We present an approach to generate association rules of an evolving big 

data. This is followed by an interesting study of evolving big scholarly data [57], which depicts the 

evolution of scholarly fields. 

8. Based on previous work on web service change management and slicing [58]-[60], a new 
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motivation is to study change and evolution mining for distributed systems, which uncover change 

and evolution information over time. Firstly, we use classification theory to label the changes that 

differentiate two versions of a distributed system. Secondly, we devise software metrics to capture 

the evolution over a series of versions. These two kinds of information help to characterize the 

changes and evolution of a cloud system. Creation of automated techniques that exploit this 

information is a challenging task. 

The rationales behind our study over are as follows. We aim to help in improvement and future 

prediction while system is under development and maintenance. Our approaches aim to learn from past 

system states and provide system evolution information to system manager. Our approaches are 

applicable to analyze advantages and disadvantages for the changes occur to the evolving system. 

1.3  Objectives 

In an evolving system, the relationship between system entities (or components) evolves over time. 

Our objectives is to model an evolving system state as (Si, ERi, ti), such that the system state Si and the 

evolution representor ERi is representing system at the ith time point ti, where ‘i’ varies from 1 to N. 

This modelling is used to do SysEvo-Analytics. The state series represents a non-linear time-variant 

evolving system. A state series of an evolving system is stored and managed in a centralized repository. 

The major objectives of our thesis are as follows.  

1. There exist connections (or relationships) between entities [30][31], which also evolve and make a 

series of evolving networks EN = {EN1, EN2… ENN}. We can use these evolving networks to do 

mining and learning over evolving system states for system evolution analysis. Our objective is to 

propose a SysEvo-Analytics model, which studies evolving networks over states to provide system 

evolution information for analysis. 

2. We proposed mining and learning techniques to identify and understand the changes and evolution 

in an evolving system. For the proposed approaches, we aim to develop prototype tools. These tools 

produced results of the evolution information (in the form of time series) for an evolving system.  

3. As an objective, we identified and represented the system evolution information by presenting a 

change specification (including time series). The time series describes the changes between system 

states. We aim to build such time series information, which helps to analytically quantify and 

understand the changes that have occurred in the evolving networks representing an evolving 

system. Significance of such challenging task is to predict and recommend about the evolving 

system. 

4. The objective of the thesis is to design data mining and learning methods for SysEvo-Analytics 

with different proposed algorithms. We also extend these mining algorithms to calculate system 

properties like Changeability, Stability, and Complexity. The proposed learning algorithms are 

used to do prediction and recommendation about system evolutions. 
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5. We applied our approach on various domains of studies. Specifically, we are targeting analysis of 

software inter-procedural call graphs, natural-language word networks, retail market analysis, 

movie-genre analysis, big data analysis, and service oriented architecture analysis.  

6. An aim is to present study on advance technologies like Evolving Big-data system and Evolving 

Web-service system. Specifically, we studied evolution of evolving big scholarly data and evolving 

cloud services. 

7. Our proposed SysEvo-Analytics model is applied on different fields including: Software Evolution 

Analytics, Natural-language Evolution Analytics, Market Evolution Analytics, Movie Evolution 

Analytics, Big data Evolution Analytics, and Service Evolution Analytics. 

1.4  Applied Case Studies 

This section describes the case studies used to apply our proposed approaches of this thesis. To 

accomplish objectives of this thesis, we proposed different approaches based on fundamental mining 

and learning techniques. Using the proposed approaches, we developed prototype tools for SysEvo-

Analytics. The Figure 1.1 depicts the basic flow chart to do the SysEvo-Analytics using the developed 

tools. To develop the tools, we majorly coded in Java technologies. Thereafter, tools are used to do 

exhaustive experimental analysis over various evolving systems. These experiments resulted in 

different kind of SysEvo-Analytics. 

The source and target entities for the type of connections to create a type of network are 

described in the Table 1.1. The type of connection and the type of network depend upon the domain of 

the evolving system. The table’s first column describes type of SysEvo-Analytics based on domain. 

Second column is the name of evolving system used for experiment. Third column describes the kind 

of source and target entities in an evolving system. Fourth column describes ‘type of relationship’ 

between the entities, which depends on the domain of the evolving system. Fifth column provides ‘type 

of network’ for an evolving system. Few networks has an existing well-known name (like call graph 

for software) and few networks do not have name, thus, we name them like word network, purchase 

network etc. Table 1.1 also mentions the links of the dataset that we collected before Oct 2016. 

Different repositories contain different kind of evolving systems, for example, Maven contains 

Hadoop-HDFS library jars as data, Wikipedia contains natural language as data, UCI repository 

contains retail market data, and IMDb contains movie genre data.  

To demonstrate the application of SysEvo-Analytics, we used evolving systems belonging to 

the following six domains: evolving software system, evolving natural language system, evolving retail 

market system, evolving IMDb system, evolving web service system, and evolving big data system. 

This SysEvo-Analytics is described in the following six ways: software evolution analytics, natural-

language evolution analytics, market evolution analytics, movie evolution analytics, service evolution 
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analytics, and big data evolution analytics. To represent a state series, we exploited the following 

relationships: call-graphs, word-networks, purchase-networks, sentiment networks, WSDLs, and 

scholarly big data, respectively. Our proposed techniques are implemented as tools that are used on the 

six domains of evolving systems.  

In case of - evolving software system, evolving natural language systems, evolving retail market 

system, and evolving IMDb movie genre systems - we retrieved recommendations as well as evolution 

patterns information. This helped to perform - inter-procedural analysis, natural language processing, 

retail market analysis, and movie-genre sentiment analysis. These are helpful to the system domain 

expert. Similarly, we analyzed other two system domains: evolving scholarly big data and evolving 

web services. In our study, the six domains of evolving systems resulted in six kind of system analysis.  

1.4.1  Software Evolution Analytics 

We developed approaches and tools to analyse the evolving call graphs of an Evolving Software 

System. Our objective is to establish the SysEvo-Analytics theories, which produce outcome to develop 

mining software repository tools. Based on these theories and tools, we retrieve following kind of 

information: call graph evolution rules, call graph evolution subgraphs (e.g. motifs or graphlets 

patterns), and deep learning to create software neural network. 

1.4.2  Natural-language Evolution Analytics 

We developed approaches and tools to analyse the evolving word networks of an Evolving 

Natural Language System. Our objective is to establish the SysEvo-Analytics theories, which produce 

outcome to develop natural language text-processing tools. Based on these theories and tools, we 

retrieve following kind of information: word network evolution rules, word network evolution 

subgraphs, (e.g. motifs or graphlets patterns), and deep learning to create natural-language neural 

network. 

 

Figure 1.1 A general overview for the flow of System Evolution Analytics Tools. 
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1.4.3  Market Evolution Analytics 

We developed approaches and tools to analyse the evolving product-purchase network of an 

Evolving Market System. Our objective is to establish the SysEvo-Analytics theories, which produce 

outcome to develop market analysis tools. Based on these theories and tools, we retrieve following 

kind of information: product-purchase network evolution rules, product-purchase network evolution 

subgraphs (or motifs or graphlets patterns), and deep learning to create product-purchase neural 

network.  

Table 1.1 Experiment information about Applications of SysEvo-Analytics and Temporal networks 

Applications of 

System Evolution 

Analytics 

Evolving Systems 

“Source” and “Target”  

Entities in Temporal 

Networks 

Type of 

Connections 

Type of temporal 

network 

Software Evolution 

Analytics 
Hadoop  HDFS-Core1 

“Caller” and “Callee” 

Procedures 

Procedural 

calls 
Call graph 

Natural-language 

Evolution 

Analytics 

Bible Translation2 

Words in “Source biblical 

language” and “English 

variant” languages 

Translations Words Network 

Multi-sport Events3 

Words in “Titles” (name) 

and “Scopes” (region) of 

events 

Regional 

names 
Words network 

Market Evolution 

Analytics 

Frequent Market 

Basket4 

Words in “Product 

description” and Words in 

“Product description” 

Purchases Purchase network 

Movie Evolution 

Analytics 

Positive sentiment6 of 

movie genres5 

“Positive words in names” 

and “genres” of movies 
Sentiments 

Positive sentiment 

network 

Negative sentiment6 of 

movie genres5 

“Negative words in names” 

and “genres” of movies 
Sentiments 

Negative sentiment 

network 

1. https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs 
2. https://en.wikipedia.org/wiki/List_of_English_Bible_translations 
3. https://en.wikipedia.org/wiki/List_of_multi-sport_events 

4. https://archive.ics.uci.edu/ml/datasets/Online+Retail 
5. https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html 
6. http://www.imdb.com/interfaces/ 

Table 1.2 Information of the Experiment on Application of Service Evolution Analytics 

Services used 
to do Service 

Evolution 
Analytics 

Kind of Relationship 

between entities 

Average number 

of source lines 

per operations in 

WSDL 

Average 

number of 

parameters 

per operations 

Average 

number of  

message per 

operations 

Average number 

of source code 

lines per 

operation 

Eucalyptus 

Cluster 

Controller 

Operation and 

procedure with their 

input-output parameters 

60.20 3.42 2 205.34 

AWS- Elastic 

Compute Cloud 

(EC2) 

Operation and 

procedure with their 

input-output parameters 

 52.25 8.87 2 
Source code is not 

available 
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1.4.4  Movie Evolution Analytics 

We developed approaches and tools to analyse the evolving movie-genre network of an 

Evolving IMDb System. Our objective is to establish the SysEvo-Analytics theories, which produce 

outcome to develop IMDb analysis tools. Based on these theories and tools, we retrieve following kind 

of information: movie-genre network evolution rules, movie-genre network evolution subgraphs (e.g. 

motifs or graphlets patterns), and deep learning to create movie-genre neural network. 

1.4.5  Big data Evolution Analytics 

We developed approaches and tools to analyse the Evolving Scholarly Data containing 

scholarly keywords and phrases. Our objective is to develop a specialized tool, which identify the 

scholarly keywords, topics, and fields that are frequently occurring in the several titles of the articles 

published. To do this, we used the dataset provided by Microsoft Academic Graph (MAG)1  and Spark 

Parallel Frequent Pattern – Growth2 algorithm. As a result, we generated several rules of scholarly 

keywords, which indicate the evolution of the scholarly field over the time.   

1.4.6  Service Evolution Analytics 

We developed approaches and tools to analyse the Evolving Web service system using a 

specialized tool based on change mining and evolution mining. Our objective is to establish service 

evolution analysis theory, which produce outcome to develop service evolution analysis tools. Based 

on the theory and tool, we fulfilled following goals: WSDL Slicing, Web Service Slicing, Change 

Impact Analysis based Regression testing or Web Service, Service Evolution Metrics. We 

demonstrated our approach on two well-known cloud services (mentioned in Table 1.2): Elastic 

Compute Cloud (EC2) from Amazon Web Service (AWS), and Cluster Controller (CC) from 

Eucalyptus. 

1.5  Contributions and Thesis Organisation 

Rest of the thesis is organized as following.  

Chapter 2: Describes related works of this thesis. Here, we provided basic and exiting state-

of-the-arts to make foundation of this thesis. The contributory chapters are followed next.  

Chapter 3: This chapter describes a given system state series SS is represented as a set of 

evolving networks of evolving inter-connected entities. Then this chapter describes two basic 

contributory models for system evolution analysis. First basic contribution is a model for SysEvo-

Analytics based on rule and subgraph mining. We discuss network evolution rule mining to detect 

1. ACM SIG-KDD-CUP-2016 https://www.kdd.org/kdd-cup/view/kdd-cup-2016 

2. “Frequent Pattern Mining - RDD-based API” https://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html, September 2017. 
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network evolution and change rules that contain information about evolution happened to the source 

and target entities. Then, we discuss network evolution subgraph mining to detect evolution and change 

patterns that contain information about evolution happened to the source and target patterns of system 

entities. Second basic contribution is a model for SysEvo-Analytics based on proposed System 

Evolution Learning. The learning generates meaningful knowledge (in the form of a neural network) 

for evolution happened to source and target entity-connection patterns. Both the contributions are 

further elaborated and described in Chapter 4, 5, and 6. 

Chapter 4: We proposed an approach for Stable Network Evolution Rule Mining and two 

metrics: Stability metric and Changeability metric. Based on this, we developed an intelligent tool, 

which is used for experiments on evolving systems. The main contributions of this chapter are as 

follows: (a) the introduction of stability, as a new measure for characterizing network evolution over 

time, (b) a new algorithm for mining Stable NERs, (c) the detailed “System Network Stability” 

approach for an evolving system, (d) the formula for the system stability and changeability analysis, 

(e) a demonstration tool, called ‘SNS-Tool’ that we use to do experiments with evolving systems. We 

also discuss experimental results of applying our approach to a number of real world evolving systems. 

We applied our approach to a number of real-world systems including: software system, natural 

language system, retail market system, and IMDb system. It results Stable NERs and Changeability 

Metric value for each evolving system. Our approach identifies the evolution and stability information 

about network rules of several inter-connected entities in a state series of an evolving system. The 

proposed mining approach helps to perform system evolution analysis based on source-target nodes in 

a set of evolving networks. 

Chapter 5: We describe subgraph mining for a state and present our proposed keyword 

definitions, which include Network Evolution Graphlets (NEGs), Network Evolution Motifs (NEMs), 

Changeability Metric (CM), Stability Metric (SM), System State Complexity (SSC), and Evolving 

System Complexity (ESC). Thereafter, to analyze an evolving system, we proposed an approach for 

mining Network Evolution Subgraphs such as NEGs and NEMs from a set of evolving networks. We 

used frequencies of graphlets and NEGs over states to model four proposed metrics: the SSCs, and the 

ESC, the CM and the SM. All this is described as algorithms, which includes 

mining_NEGs_NEMs_CM_SM and System Network Complexity (SNC). Then, we describe our SNC-

Tool based on proposed work, which is used to demonstrate the application of SNC on six evolving 

systems of four different domains. 

Chapter 6: Using well-known deep learning concept, we introduced an approach to do 

evolution and change learning, which uses an evolution representor and forms a System Neural 

Network (SysNN). Additionally, we proposed two similar approaches System Structure Learning (SSL) 

and System Evolution Recommender (SysEvoRecomd), which uses an intelligent algorithm Deep 
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Evolution Learner (DEL) to learn about evolution and changes happened to a state series of system. 

The DEL generates a Deep System Neural Network (Deep SysNN) to do network (graph) 

reconstruction. To do this, we used network pattern information for training system graph structure. 

We design three variants by exploring three different deep learning techniques: Restricted Boltzmann 

Machine (RBM), Deep Belief Network (DBN), and denoising Autoencoder (dA). Based on 

SysEvoRecomd, we developed an automated tool named as SysEvoRecomd-Tool, which is used to 

conduct experiments on various real-world evolving systems.  

Chapter 7:   We introduce an approach to do Big Data Evolution Analytics (BDE-Analytics) 

for evolving big data generated through evolving system. The proposed approach pre-processes a given 

evolving big data, which make multiple states as a state series. Then, it mines frequent patterns 

(association rules) that are further processed to generate knowledge as mined Big Data Evolution Rules 

(BDERs) to generate Big Data Evolution Concepts (BDECs) for the given state series. These BDERs 

and BDECs as information are further useful to do big data evolution analysis. We demonstrated this 

approach on an evolving scholarly system of Microsoft Academic Graph (the dataset of KDD CUP 

2016). We presented experimentation results as evolving scholarly topics and the trend of evolving 

scholarly fields. 

Chapter 8: This chapter describes approaches for change mining and evolution mining of an 

evolving distributed system. The first approach proposed a service change classifier, and the second 

approach proposed four service evolution metrics. This chapter also describes a Service Evolution 

Analytics model and tool (AWSCM) that supports change and evolution mining of an evolving 

distributed system. We described two empirical experiments, which consider two self-made illustrative 

evolving web services and two real-word evolving web services. 

Chapter 9: After contributory chapters from Chapter 3 to 8, this chapter concludes thesis and 

provides future scope of the thesis work. 
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Literature Review 

 

In this chapter, we discuss existing state-of-the-art contributions related to this thesis. Initially, 

we start discussing survey for evolving system and its graph representation, which is used to identify 

evolution information. Further, we presented contributions of graph (network) and temporal (evolution) 

mining, which is related to the evolution information retrieval. Then, we presented survey on evolving 

system analysis and its application. Then we presented work related to the deep learning on various 

fields of research. Following are the related literature survey, which we carried-out during this thesis 

work. 

2.1  Evolving Systems and Networks 

We represented an evolving system as a state series, which is extended and advanced form of 

well-known concept of time series or data series. Our tool uses evolving networks [30] (or temporal 

networks [31] or time-varying networks [32] or dynamic networks [33]) of an evolving system. Our 

tools retrieve rules and graphlets (or motifs as subgraphs) as well as learns (trains) a representation 

pattern of inter-connected entities in an evolving network of an evolving system. For our work, we 

investigated open-source codes for tools development based on the fundamental mining and learning 

algorithms. Thereafter, we used different algorithms and tools to build and develop different extended 

tools based on our proposed works. We applied our tools on different evolving systems to do evolving 

system analysis. 

To begin with, Liu et al. [35] developed analytical tool to study controllability of complex self-

organized systems; the tool identifies a set of driver nodes with time-dependent control that can guide 

the system dynamics. Thereafter, Liu et al. [62] developed an approach to study observability by 

reconstructing the system’s internal state from its outputs; the approach identifies sensors that are used 

to monitor a selected subset of state variables. In contrast, our approach and tool finds nodes in the 

antecedent and consequent of a rule; further, we use system network evolution to study stability, 

changeability, and complexity. 

Work related to the comparison of network includes following. Pržulj [63], which is a 

systematic measure of a network’s local structure based on the degree distribution and graphlets of a 

large network. Yaveroğlu et al. [64] developed a framework to analyze and compare networks by 

discovering the interaction between roles played by nodes in a network. Ali et al. [65] described Netdis 

to measure topology-based distance between networks, which aids to do network reconstruction. 



14 

Recently, Wegner et al. [66] introduced a new network comparison methodology NetEmd that aims to 

identify common organizational principles in networks. Additionally, Wegner et al. [66] compared 

NetEmd with the works of Przulj [63], Yaveroglu et al. [64], and Ali et al. [65]. The work by Przulj 

[63], Yaverogluet al. [64], Ali et al. [65], and Wegner et al. [66] presented approaches to analyze and 

compare networks. The four approaches deals with comparison of networks, whereas our approach 

does not intends to compare two graphs directly. Alternatively, we aim to compare two evolving 

network series of two evolving systems. 

2.2  Temporal (or Change or Evolution or Dynamic) Mining 

Data mining explores data (typically business or big data) to retrieve consistent patterns and 

semantic relationships between variables [12][13]. It is an analytic process designed to apply the 

retrieved patterns for decision-making. Alternative names or subfields of data mining such as 

knowledge discovery in databases (KDD), data analysis, pattern mining, data archeology, knowledge 

extraction, information harvesting, data dredging, business intelligence, etc. A database also has 

alternative name such as repository, transaction database, and sequence database. As we are dealing 

with the evolving system, thus we specifically exploit the evolution and change analysis approaches. 

Therefore, we provide various temporal mining techniques. 

Böttcher et al. [14][15] presented change mining and contrast mining. They defined change 

mining as data mining over a volatile and evolving repository with an objective of understanding 

evolution. They stated change analysis as; contrast mining if done on two data instances, and; change 

mining if done on multiple data instances. Change mining is one of the major problem domains of data 

mining, which have numerous applications. Wu et al. [16] applied resume mining on fields such as 

social networks. Takaffoli et al. [17] presented a framework to model and detect community evolution 

in social networks; a community-matching algorithm is used to identify and track similar communities 

over time. Mansoureh and Tamas presented evolution mining [17][18] as a kind of data mining that 

analyses time variant data or incremental data. In contrast, we took advantage of temporal graph 

(network) theories. Our approach is applicable to any kind of evolving system represented as a set of 

evolving system networks. 

2.3  Graph (Network) Mining  

We can analyse the evolving system using the evolving (dynamic) network of the entities. 

Evolution and change(s) happened in an evolving system can be analysed by representing the 

relationship between entities of the system as a graph or network. In the network, nodes are linked 

together, where a node represent an entity of the system. If a system is evolving, then the network of 

its entities is also evolving. A network represents relationship between various entities of a system. 

There are many network systems like movies at IMDB, World Wide Web internet links, and social 
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network. Such network systems can be analysed using techniques like finding frequent patterns, 

recurrent structural patterns, finding subgraphs, detecting cliques, discovering coevolving patterns, and 

identifying sub-sequences. To do evolution and change analysis of evolving networks, we are interested 

in two well-known specialized fields: network rule mining, and network subgraph mining. 

2.3.1  Network Rule Mining 

Network Rule Mining is based on the fundamental concepts of association rule mining. A 

transaction database contains itemsets in an unordered fashion. Association rule mining [36] identifies 

the occurrence of two item together in a transaction database according to given threshold values. A 

rule is denoted as A  B, where ‘A’ and ‘B’ are the set of items in a transaction database where ‘A’ 

is antecedent and ‘B’ is consequent. The entities have random order in association rules whereas 

entities are ordered in sequential rules (retrieved from a sequence database) [40]. We use sequence 

database representing a network database, which contains entity-sets (i.e. itemsets) of ordered network 

of entities. This network database helps to retrieve network rules from a network database. 

Böttcher et al. [15] demonstrated association mining and key performance indicator to detect 

changes at different points of time and retrieved vast number of change rules. Abonyi et al. [67] 

presented views about links between computational intelligence and data mining; this is supported with 

a case study to extract knowledge represented by fuzzy rule-based expert systems that uses data mining. 

Liu et al. [68] presented intelligent computation of association rules based on a fixpoint operator for 

computing frequent itemsets. Ting et al. [69] present a study of linkage discovery (a topic in Genetic 

Algorithms) by using association rule mining instead of applying GAs for data mining. Luna et al. [70] 

proposed a technique for mining context-aware association rule for itemsets depending upon a 

contextual feature. Xuan et al. [71] proposed graph topic model (GTM), which models the edges 

between nodes in a graph. Similar to contributions [70][71], we used network rule over system states 

to retrieve Network Evolution Rules (NERs), which are provides information about multiple states of 

an evolving system. Extensively, we propose Stable Network Evolution Rule Mining (SNERM) 

algorithm on evolving system represented as a set of evolving networks.  

2.3.2  Temporal Rule Mining 

Temporal rule mining was introduced by Ale and Rossi [37], which has following contributions. 

Techniques related to rule and pattern mining includes following contributions. Some database may 

have temporal association rules over time [37]. Related to this, Liu et al. [38] presented a statistical 

approach to analyse temporal databases to identify stable rules, trend rules, and removed unstable rules 

based on statistical calculation. We are interested to retrieve persistent (or stable) link in dynamic 

network databases for example and some network may have persistent links over time [39]. Jakkula 

and Cook [72] described and applied temporal relations discovery in smart home datasets. Liu et al. 
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[73] proposed a general post-filtering framework based on association mining and temporal filtering 

for context knowledge discovery. Recently, Qin et al. [74] presented interactive temporal association 

analytics framework named as Temporal Association Rule Analytics (TARA). Applications of 

temporal association rule mining are: sensor data in smart environment [72], semantic concept 

detection in video [73],  calendar based rule [75], temporal document collections [76], Web Log Data 

[77], and rapport detection in peer tutoring [78]. 

Shokoohi et al. [79] proposed time series rule that are identified using time series motifs. 

Rolfsnes et al. [80] presented application of association rule mining to do accurate change 

recommendations for open-source softwares. Thereafter, Rolfsnes et al. [81] used random forest 

classification models to improve interestingness measures (such as confidence and support) by learning 

from previous change recommendations. Most recently, Gyorgy and Arcak [82] presented a broad 

dynamical model of interconnected modules to study the emergence of patterns; they also characterized 

the stability for the spatially non-homogeneous patterns. In comparison to these approaches, we 

additionally studied evolution as well as stability, changeability, and complexity properties of network 

(or graph or tree) rules for an evolving system. 

In comparison to the work done in temporal rule mining, we presented system network 

evolution rule mining based on system engineering and graph theory. Extensively, we introduce an 

algorithm to retrieve Stable Network Evolution Rules (SNERs). Our novel content includes our 

proposed evolution rules, stable rules, stability metric, and changeability metric. 

2.3.3  Network Subgraph Mining 

In a given system state series, an evolving network ENi represents state Si. The graph H = (V’, 

E’) is a subgraph of ENi if V’ ⊆ V and E’ ⊆ E. The frequency of subgraphs H is the number of 

occurrence of H in ENi. Subgraphs are the building blocks that construct its network; thus, subgraphs 

are used to study network properties. One such property is frequent subgraphs. If the frequency of H 

is higher than a threshold value, then H is a frequent subgraph of ENi. Few frequent-subgraph mining 

techniques are AGM [49], FSG [50], and gSpan [51]. A network motif [52], [53] is a well-known kind 

of frequent subgraph that are statistically obtained using random graphs. The graphlet [54], [55] is 

another well-known kind of subgraph, which is a small connected induced subgraph. 

Network Subgraph Mining is another technique to analyse a network. The subgraph can be of 

two type. On one hand, frequent subgraphs (frequency higher than the given threshold) are termed as 

network motifs. On other hand, induced subgraph are termed as graphlets. Network motif mining and 

Graphlet mining are the well-known techniques of network subgraph mining. A frequent subgraph is 

a subgraph that occurs frequently in a network. Network Motifs are small frequent subgraph (or a 

pattern) in a network with significantly high frequency as compared to random networks. Motif mining 
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gives insights on characteristics and internal working of a network. We use motif mining to capture 

frequent subgraph as a pattern. 

Ahmed et al. [83] proposed a mining technique to capture non-redundant evolution paths in 

evolving networks. Sun et al. [84] proposed a mining technique to detect the co-evolution of multi-

typed objects (such as multi-typed clusters) in a dynamic star network. Shah et al. [85] described 

patterns in a real-world dynamic graphs, identification, and ranking of those patterns; then, proposed 

TimeCrunch algorithm to find coherent and temporal patterns in dynamic graphs.  

In contrast to the approaches, our approach deals with the evolution happened in evolving 

networks of an evolving system. The primary focus of these approaches is to study network evolution 

or dynamics. Generally, network-mining techniques do not consider multiple states of network. 

Similarly, most of the evolution and change analysis techniques do not consider network of inter-

connected entities. Mining on such entities in multiple states of the repository can retrieve many hidden 

information. However herein, we integrated network and evolution information together to propose 

Network Evolution Mining. Additionally, we present an application of mining Network Evolution 

Graphlets, Network Evolution Motifs, Changeability Metric, Stability Metric, and System Complexity 

for six set of evolving networks representing the six evolving systems. 

2.3.4  Temporal Network Motif 

Kovanen et al. [86] proposed a technique to detect temporal motif based on significant, 

intrinsically dynamic, mesoscopic structures, and graphlets in temporal networks. Paranjape et al. [87] 

presented a framework for counting temporal motif using algorithms for classes of motifs to find key 

structural patterns as induced subgraphs on sequences of temporal edges in temporal networks. The 

temporal motif [86][87] and temporal network analysis [88] techniques deal with the time-variant 

patterns occurring as connections that are active only for restricted periods. Holme [88] presented 

review on the methods for temporal network analysis of social media data; he also discussed techniques 

for temporal network motifs. We used the temporal network motif are used to describe the evolving 

system network. Borgwardt et al. [89] extended subgraph mining from static graphs to the time series 

of graphs. After that, Wackersreuther et al. [90] presented a framework to perform frequent subgraph 

discovery in dynamic networks with edge insertions and edge deletions over time. Patel et al. [91] 

followed by Chiu et al. [92] (with Keogh as common co-author) coined the time series motif that sounds 

similar to our network evolution motif, although both are different. The first deals with motifs occurring 

in a time series, whereas the later deals with motifs occurring in evolving network series. 

Following are the application of temporal (or evolving) network motifs. Braha and Bar-Yam 

[93] studied denser motifs on e-mail dataset in which each snapshot network represents contacts 

aggregated over a day. Zhao et al. [94] studied the temporal annotations (e.g., timestamps and duration) 
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of historical communications graphlet in social networks using communication motifs and their 

maximum flow. Jurgens and Lu [95] proposed a method to represent Wikipedia revision history as a 

temporal bipartite graph of editor interactions, which identifies significant author interactions as 

network motifs of diverse editing behaviors. Meng and Guo [96] proposed gene regulatory networks 

(GRNs) based self-organizing robotic to generate evolving network motifs for path detection in 

unknown environment autonomously. Bhattacharya et al. [97] applied network motifs of software 

system to capture, analyze, and infer software properties. 

Hulovatyy et al. [98] presented a dynamic graphlets based analysis of temporal networks by 

capturing inter-snapshot relationships. Recently, Martin et al. [99] proposed two work: (a) 

REConstruction Rate (REC) to determine the rate of graphlet similarity between different states of a 

network and (b) REC Graphlet Degree (RGD) to identify the subset of nodes with the highest 

topological variation. In contrast to these approaches, we presented network evolution subgraphs that 

are further used to calculate the complexity of evolving system states. 

2.3.5  Graph Evolution Patterns 

Berlingerio et al. [44] proposed an approach to mine Graph Evolution Rules (GERs) using a 

tool GERM and shown four real world networks. Subsequently, Leung et al. [45] proposed mining 

interesting Link Formation Rules (LFRs) containing link patterns as dyadic and/or triadic structures in 

social networks. Afterwards, Fan et al. [46] proposed graph-pattern association rules (GPARs) to 

discover regularities between entities in social media graphs, which help in marketing by identifying 

influencing customers. Recently, Scharwächter et al. [47] proposed an EvoMine, a tool to mine 

frequent graph evolution rules with insertions and deletions of edges and nodes using labelling on node 

and edge; additionally, they [47] also compared the GERM, LFR miner, with their EvoMine. Recently, 

Namaki et al. [48] presented an approach to discover graph temporal association rules (GTARs) using 

support and confidence. 

We performed hybrid mining by integrating network rule mining and subgraph mining with 

evolution mining to retrieve evolution information. Our findings are similar to Graph Evolution Rule 

(GER) [44], Link-Formation Rules (LFR) [45], and Graph-Pattern Association Rules (GAPRs) [46]. 

Like others [44][45][46], we also demonstrated experiments to retrieve Network Evolution Rules 

(NERs). In addition to these state-of-the-arts, we presented Stable NERs, Stability metric, and 

Changeability metric for evolving systems. The strength of our proposed Mining NERs and SNERs 

algorithm over the current state-of-art is as following. First, in contrast to GERs [44], LFRs [45], 

GPARs [46], EvoMine [47] and GTARs [48], we identify NERs and then compute stability of NERs 

to retrieve the SNERs. The existing mining algorithms do not use the minimum stability (minStab) 

measure, which is novel in our approach. Second, the existing mining algorithms are not extended to 

find system changeability metric. The stability of SNERs provides important statistical information 
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about the NERs over time to compute the stability and changeability metric. 

2.4  Evolving System Analysis 

After retrieval of mining and learning  information, we can analyse various system evolution 

properties of an evolving system based on change in generation (huge change in system) and state 

(small change in the system). We restricted our studied for three such properties: Changeability, 

Stability, and Complexity. 

2.4.1  System Changeability and Stability 

Changeability [100] is system’s ability to change from one state to another such that it does not 

undergo for a generation change. Evolvability [101] is system’s ability to undergo drastic change such 

that the generation of system will change. Both changeability and evolvability are used to measure the 

chaotic and dynamic nature of system. Stability [102] is another kind of property, which is opposite to 

the changeability and evolvability. Stability is system’s ability to stay unchanged or unevolved from 

one state to another. Stability provides constant functionalities by enduring changes, which is opposite 

to the changeability. Our goal is to study changeability and stability of an evolving system by modelling 

system’s state as graph (or network). 

The difference between changeability and evolvability can be understood with the following 

example. Suppose the generations of a software are given as V8, V9, V10, and V11. If the software is 

updated within a generation (say V10), then it will create states (i.e., versions V10.1, V10.2 etc.) of 

same generation (V10). Changeability deals with analysis of states within a generation, whereas 

evolvability deals with analysis for a set of different generation. However, stability property remains 

same for analysis within a generation and between the different generations.  

Contributions related to the changeability analysis includes following works. Ross and Rhodes 

[103] introduced Epoch-Era Analysis (EEA) as an approach to model a tradespace exploration process 

about the temporal system value environment. Here, an epoch is defined as one of the potential contexts 

for the system lifecycle and an era is defined as sequence of epochs. Afterwards, the EEA is used to 

identify changeability in system design [104] and sustaining lifecycle value of system [105]. The EEA 

was extended by Fitzgerald et al. [106] to propose Valuation Approach for Strategic Changeability 

(VASC), which assesses changeability over a system’s lifecycle. Two application of changeability, 

Koh et al. [107] assess the changeability of complex engineering systems, and Fluri [108] assessed 

changeability of source code entities in evolving software systems. 

 Xuan et al. [109] proposed keyword association line network (KALN) to do uncertainty 

analysis of keyword system for web events. Recently, Avalos et al. [110] analyzed impact of 

changeability during external agent changes, and analyzed change affects the evolution on the complex 
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adaptive system (CAS). In contrast to these contributions [103]-[110] for changeability analysis, we 

made following contribution and improvement. Our approach computes novel changeability metric for 

a state series of an evolving system. Our approach is based on knowledge discover in databases (KDD) 

and network (graph) theory. We also demonstrate its application on six evolving systems. 

Earlier contribution based on system stability analysis includes following. Belykh et al. [111] 

determined the global stability of graphs using the Lyapunov function in addition to graph theoretical 

reasoning. Moreau [112] described stability analysis model based on set-valued Lyapunov theory with 

graph-theoretic and system-theoretic tools. Delvenne et al. [113] measured stability of partition for 

community structure using dynamic Markov process. Angulo et al. [114] showed most motifs emerge 

from interconnection patterns (as modules) can identify intrinsic stability characteristics. The work 

presented in [103]-[114] are fundamental theoretical stability analysis. Whereas, we calculated 

changeability and stability based on knowledge discovery and data mining of evolving system 

networks. 

There are many theoretical and mathematical approaches for the stability of graph e.g. 

[111][112][113][114][115]. In contrast, our approach is based on automated evolution rules and motifs 

(i.e., graphlets) mining of evolving system’s graphs (networks). There are many contributions for 

stability analysis on different kinds of systems: chaotic systems [111], multi-agent systems [112], 

communities based systems [113], and peer-to-peer systems [116]. In contrast, our approach focuses 

on knowledge discovery and data mining of an evolving system. We applied our approach on evolving 

systems modeled as a set of evolving networks. Additionally, we conducted experiments to 

demonstrate a study of SysEvo-Analytics.    

2.4.2  System Complexity  

There is one more property of systems - other than changeability, evolvability, and stability - 

which analyses complexity. System complexity is a measure of entropy and randomness between the 

interconnected entities. Specially, study of system complexity over multiple states can result in useful 

evolution information. The recommendation and knowledge can support the changeability, 

evolvability, stability, and complexity measure. Pincus [117] described approximate entropy (ApEn) 

as mathematical family of formulas and statistics, which quantify the concept of changing complexity. 

Rosen [118] described the complexity as a property to interact with systems around us that are 

continually changing. Different techniques are applied to measure the complexity of software system 

[119] and ecological system [120]. In contrast, our subgraph mining approach aids to calculate 

complexity based on McCabe [121] technique.  

2.5  Deep Learning and Deep Neural Networks 

Artificial Neural Network (ANN) is a paradigm of machine learning, which is inspired from 
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biological systems. The ANN models are based on simplified topology and tries to mimic information 

processing capabilities of the human nervous systems in a computational domain. This implies ANN 

mimic human neural systems. The learning process of ANN adapts its neural network according to 

training data. This process is much like a stimuli-response model of neural network seen in human. 

Deep Neural Network (DNN) [56] is a class of ANNs, which are trained using deep learning 

algorithms. First DNN is based on the work of Paul Smolensky [122], who invented Harmoniums in 

1986, which is now known as RBM [123]. The RBM gained popularity quite later in 2006, when 

Geoffrey Hinton et al. [124] described a fast learning algorithm to train DBN. The persistent contrastive 

divergence algorithm proposed by Tieleman [125], who introduced a fast and simple way to train such 

models. 

In this work, we use deep learning to propose an approach, which learns useful information 

from time variant data of an evolving system. In our approach, we describe how the deep learning can 

be used to create DNNs for an evolving system. This technique reduces human intervention by 

recommending about evolution of the evolving system. The recommender system is constructed to help 

in decision making about evolving system. 

Naturally created data often contain patterns, it is possible for humans to identify and label such 

patterns. These labels prove quite useful to train machine-learning models, known as 'supervised 

learning’ models. However, in other cases, it becomes quite tedious or even impossible to do such a 

labeling of patterns in data. For such cases, there exist different classes of machine learning models 

called ‘unsupervised learning’ models. The ability of unsupervised techniques to learn directly from 

unlabeled data makes them very useful, especially for our purpose, to detect the history of change 

patterns in an evolving system. Hence, we are interested to apply DNN models on evolving systems. 

We discuss three well-known unsupervised DNN models: Restricted Boltzmann Machines (RBM), 

Deep Belief Networks (DBN), and denoising Autoencoders (dA); thus, we explicitly describe 

preliminaries for these three models. 

2.5.1  Restricted Boltzmann Machine (RBM)  

The RBM is a type of neural network, where the neurons in the network topologically form a 

complete bipartite graph, separating the neurons into visible units and hidden units. The weights 

between the nodes are denoted by a matrix W, where Wij represents the weight between ith visible unit 

and jth hidden unit. The state of ith visible neuron is denoted by the variables vi and that of the jth hidden 

neuron by hj. Energy of the machine is defined by the formula  

E(v, h) = − ∑i,j vi hj Wi,j − ∑i vi bi − ∑j hj bj 

where b stands for the biases. This energy formula is used to make a probability equation defined by 

P(v, h) = e-E(v, h)/Z / Z 
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where Z is the normalization constant Z = ∑v,h e
-E(v, h). Therefore, the probability of a data point can be 

defined as  

P(v) = ∑h P(v, h)                          ...Eq1 

Now, the network can be trained by adjusting the weights and biases, which maximizes the 

probability for the training set. To do this, the most common and efficient way is to use the approximate 

gradient of the contrastive divergence [127]. 

2.5.2  Deep Belief Network (DBN) 

There are two phenomena shallow neural network and deep neural network, which explain the 

fundamental understanding of DBN. A shallow neural network can classify a data with the large error 

rate, which is good for surface level learning. Deep neural networks can classify a data with the small 

error rate, which is good for deeper level learning. Before DBN, the shallow networks dominated the 

field of neural networks, and the deep architectures (or deep networks) suffered from vanishing 

gradient problem [128]. However, due to the novel learning techniques developed by Hinton et. al. 

[124], even deep architectures can now be efficiently trained by training each layer greedily. Train the 

first, second, and other layers as greedy layer-wise pre-training using RBM is given by the formula 

P(x, h1, h2…, hL) = (L-2πk=0 P(hk | hk+1)) P(hL-1, hL)    …Eq2 

where x represents input vector, h represents hidden layer and L is the number of hidden layers. Then 

fine-tune the parameters of deep network using supervised gradient descent of the negative log-

likelihood cost function [124]. Such neural network gives better results in different applications. 

2.5.3  Autoencoders 

With the rise of popularity in deep architectures a new deep learning technique autoencoders 

also gain popularity. The autoencoders learns internal patterns of the input data x by encoding it into 

some representation c(x) so that it can be later reconstructed. Simplest autoencoders consist input, 

hidden, and output layers.  

Bengio et al. [129][130] suggested that stochastic gradient descent yields useful results. The 

network is usually trained by minimizing the negative log-likelihood of the reconstruction error. Thus, 

this minimizes error of reconstruction. In case of binary inputs, the error of reconstruction is calculated 

as the sum of Bernoulli cross-entropies, which is given by formula 

L(x, z) = - ∑i xi log[zi + (1-xi) log(1- zi)]            …Eq3 

where zi = d(c(xi)) represent reconstructed xi and where, c(x) represents the coded x and d(c(x)) 

represents decoded c(x).  
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2.5.4  Denoising Autoencoders (dA)  

Autoencoders have been receiving a lot of interest in the research. Some of the promising 

variants of autoencoders are the denoising Autoencoders (dA) [126], Sparse Autoencoders and 

Variational Autoencoder. However, we restrict ourselves only with the dA, due to its simplicity among 

all. Vincent et al. [126] introduced dA, which is modification of the original Autoencoder. In dA, during 

the training phase instead of the actual input data, a slightly corrupted version of the input is given to 

the neural network. This makes a neural network more robust to changes in input data comparatively 

to its predecessor.  

2.5.5  Graph learning 

In graph learning techniques, Yang, et al. [131] presented a framework, Concept Graph 

Learning (CGL), for the academic graphs of courses and concepts using course links onto the concept 

links. Yanardag and Vishwanathan [132] presented Deep Graph Kernels, a framework that learns latent 

representations of sub-structures for graphs by learning dependency information between sub-

structures. Cao et al. [133] proposed a model for learning graph by encoding each vertex as a low 

dimensional vector representation for learning based on stacked denosing autoencoders. Bui et al. [134] 

proposed a framework, Neural Graph Machines, with a graph-regularized that applies neural networks 

on label/unlabeled data with Feed-forward NNs, CNNs, and LSTM RNNs. Somanchi et al. [135] 

presented an approach of Learning Graph Structure (LGS), which is a greedy framework for efficient 

learning of graph structure. Similarly, we proposed the Graph Evolution Learning to study the system 

evolution. Nori et al. [136] proposed ActionGraph, which is used to predict interests of social media 

users based on time-evolving and multinomial relational data. In contrast, we presented deep learning 

of evolving (dynamical) system over time, but our approach takes advantage of robust fundamental 

network (graph) theory.  

2.6  Recommender system 

Current state-of-art with work related to recommender or predictive systems includes 

following. Castro-Herrera et al. [157] describe a recommender system that helps in the challenges of 

dynamic evolving internet forums and representations of user profiles. Susto et al. [158] presented an 

adaptive machine learning and regularized regression based method to support decisions for flexible 

predictive maintenance. Yin et al. [159] proposed temporal context-aware recommender system 

(TCARS) for analysing user behaviours in social media systems that are influenced by intrinsic interest 

and the temporal context. Zeng et al. [160] proposed dynamical context drift model using particle 

learning for time varying contextual multi-armed problem. The graph learning approaches is applicable 

to do scenario like Collective Robot Learning (as described by Kehoe et al. [161]). Our SysEvoRecomd 

can be applicable to all such environments. 
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Our approach can help to construct a recommender system using matrix factorization technique 

along with temporal information; for further reading refer to Koren and Robert [162], which described 

matrix factorization techniques for recommender systems. Our SysEvo-Analytics can improve the 

system thinking; for further reading Whitehead et al. [163] described about the system thinking. Zhao 

et al. [164] proposed a framework of coordinate matrix factorization to construct entity-entity 

association matrix for measuring semantic relatedness between entities, categories, and words in 

Wikipedia. Lian et al. [165] proposed a deep fusion model (DFM) by improving the representation 

learning abilities in deep recommender systems for personalized news recommendations. 

2.7  Matrix and Network Reconstruction 

LeCun et al. [56] described Deep Learning techniques were proven successful in matrix 

reconstruction (as an output) e.g. while reconstructing (brain-neurons and their mutual contacts) neural 

circuits. Unnikrishnan et al., [166] discussed about applications of network reconstruction in the 

systems like: social networks, bioinformatics, and chemical reaction modelling. Yue et al. [167] 

addressed and solved the problem of reconstruction of linear dynamic networks from heterogeneous 

datasets using regression model.  

Recently, Angulo et al. [168] found that reconstructing any property of the interaction matrix 

is generically difficult; they presented fundamental limitations to design algorithms for better network 

reconstruction. Most recently, Porfiri and Marin [169] used finite-state ergodic Markov chain model 

and described an approach for entropy-based network reconstruction. Whereas, we exploited the 

properties of deep learning for reconstructing interaction (connection) matrix to do network 

reconstruction. 

2.8  Possible applications of our work 

In this thesis, our approach is useful for the application of evolving graph mining and temporal 

network analysis. Specially, where there is a need to identify stable (or persistent) rules of system 

entities over time. Our approach has many applications, which includes: temporal networks analysis of 

social media [88], analyzing sensor data using rule-based technique [137], and human interaction 

patterns in temporal networks [138]. 

We demonstrate the two major applications field of study. First, for an evolving software 

system, which is an active working problem. Recently, Di Nucci et al. [139] proposed a technique to 

select a set of classifiers, which are better to predict the software bug proneness. We demonstrate our 

technique on a software repository of Hadoop-HDFS. Second, for evolving natural language 

processing, which is a current working issue in computation intelligence [140]. We demonstrate our 

technique over repositories of natural language system. 



25 

Some possible application of our approaches and automated tools are as follows. Our approach 

can be useful to enhance the quality of Association Link Network (ALN as described by Luo et al. 

[141]) for organizing loose web resources over time instances. Nasraoui et al. [142] presented an 

approach to do mining of web usage patterns from web log files for discovering and tracking evolving 

user profiles. Analogously, we demonstrate experiments on real-world evolving systems. Possibly our 

approach may also be helpful in the business automation based on evolving services (as presented by 

Huang et al. [143]); our approach can help in predicting the evolution and stability of the service 

network. 

Our approach can be applicable to analyze social network structures [144], to characterize 

communication network motifs [145], and to do systems thinking by aiding systems modeling language 

(SysML) [146]. Some other application areas of our work are as follows: biological network, computer 

network, economical network, attackers-victims patterns in computer networks, star patterns in sky, 

co-author patterns over a decade in scholarly data, and family-members patterns over few generations 

in social sciences studies. 

Possible applications of our work is to study complexity of domains like social media [93], 

communication motifs [94], natural language processing [95], robot path [96], and software systems 

[97]. Our approach is applicable to study the fields of evolving (or temporal) networks, and specially 

to identify persistent patterns of entities over time [39]. For example, analysis of temporal networks in 

social media [88], dynamic graphlets in the biological dynamic networks [98], dynamic motifs in socio-

economic networks [147], and communication motifs of dynamic networks [148].  

Deep Recurrent Neural Network (Deep RNN) is a type of recurrent neural network (RNN), 

which is constructed using a deep learning approach [149][150]. Deep RNN is useful in many field 

such as speech recognition [151][152], natural language processing [153], and image recognition [154]. 

Our technique can also be applicable on other kind of evolving systems to do temporal analysis e.g. 

recognizing temporal facial action [155] and facial pain expressions [156]. 
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System Evolution Analytics (SysEvo-Analytics) 

 

There are many evolving system having many entities (or components), which are evolving 

over system states. The connection (or relationship) between entities also evolves over system state, 

which makes series of evolving networks. It is a challenge to do evolution and change analysis over 

state series of an evolving system. Thus, there is need of SysEvo-Analytics model, which studies 

evolving networks over evolving states to provide system evolution information for analysis. This can 

be achieved with the help of hybrid mining and learning approaches. In this chapter, we introduce a 

SysEvo-Analytics model, which is divided into following two parts. 

- We propose two pattern-mining techniques: network evolution rule mining and network evolution 

subgraph mining. The first technique retrieves Network Evolution Rules (NERs), and the second 

technique retrieves Network Evolution Subgraphs (NESs). The network rule information can be 

detected using network rule mining. The network subgraph information can be retrieved using 

network subgraph mining. The evolution information is detected using evolution mining. 

- We propose System Evolution Learning, which uses two kinds of hybrid learning. First, the network 

pattern information is trained using graph structure learning. The evolution information is trained 

using evolution and change learning. We accomplish this by implementing a deep evolution 

learning. This technique uses an evolving matrix to generate evolving memory in the form of a 

proposed System Neural Network (SysNN). The SysNN is useful to predict and recommend based 

on system evolution learning.  

We start by redefining the Definition 1.1 in context of evolving network as evolution 

representor. This is followed by problem definition that we target in Chapter 3, 4, 5, and 6. 

Definition 3.1: A State Series SS = {S1, S2 … SN} at various time points {t1, t2, t3 … tN} is pre-

processed to make a series of an evolving network EN = {EN1, EN2… ENN} corresponding to the 

system states. Thus, we can define (Si, ENi, ti) such that the Si represents system state and the ENi 

represents its evolving network at the ith time point ti, where ‘i’ varies from 1 to N.  

Problem definition: Suppose evolution and change happened in an evolving system can be 

denoted as transition of one state to another. Each state is represented as a system network (or graph) 

of inter-connected entities, such that each node represents an entity in a state and each edge represents 

a connection between two entities. System entities and their connections represent a system network 

(or graph), where entity-connections are prone to undergo evolution and change. The evolution and 

change analysis on an evolving system retrieves hidden evolving information that can be helpful in 
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decision-making. For an evolving system represented as an evolving network series, it is challenging 

to study system properties like changeability, stability, complexity, and evolvability. There are 

following two challenges in evolving system mining and learning: 

A. Usually an evolving system is complex, thus pre-processing of an evolving system is a challenging 

task. This process requires experience of system domain expert. We provide an overview for pre-

processing an evolving system to make a series of evolving network. 

B. One state of an evolving system can be processed with a data analysis algorithm. However, the 

processing of multiple states of an evolving system with the same algorithm is usually a challenging 

task. Thus, such algorithm needs customization. We present an overview of two models for mining 

and learning a system state series. 

3.1  SysEvo-Analytics Based on Pattern Mining of Inter-Connected Entities 

This section proposes SysEvo-Analytics model. We start by defining keywords.  

Definition 3.2: Network Evolution Mining (NEM) is defined as mining of evolving networks, 

which retrieves the network evolution and change information about evolving inter-connected entities 

in a system state series. 

Definition 3.3: Network Evolution Rule (NER) is defined as set of evolution rules, which 

contains the network evolution and change information about inter-connected entities in a system state 

series. The NER can be interpreted as “if evolution and change(s) occur to a source entity-set, then 

evolution and change(s) is likely to occur in its target entity-sets”. For example, suppose if an entity-

set {e1, e2} depends on another entity-set {e3}. Then all possible rules are {e1}{e3} and {e2}{e3}. 

The rule {e1}{e3} means {e1} may be connected to {e3}, which predicts connection with probability 

(minSup and minConf). 

Definition 3.4: Network Evolution Subgraph (NES) is defined as set of subgraphs, which 

contains the network evolution and change information about evolving inter-connected entities in a 

system state series. The subgraph information is described as follows.   

- Subgraph information is a doubleton set of subgraph key and subgraph frequency, which is 

represented as (Hj, freqj), i.e. Hj has independently occurred freqj times in the network. The subgraph 

key and subgraph frequency is described as follows.  

- Subgraph key is an enumeration 

key of subgraph pattern and denoted as 

Hj. Here, Hj denotes the jth subgraph key. 

A set of all possible subgraph keys with a 

given number of nodes in a subgraph is 

denoted as {H1, H2… HM}, where M is the 

……           

Figure 3.1 Example of subgraphs of size 4 (number of 

nodes) as a set of subgraph key {H1, H2, H3, ... H198}. 
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total number of all possible subgraph patterns (as shown in Figure 3.1).  

- Subgraph frequency is the count of independent and non-overlapping occurrences of subgraph 

key Hj in a graph G and is denoted as freqj. Here, freqj denotes the subgraph frequency corresponding 

to jth subgraph key Hj. A set of subgraph frequencies for all possible subgraph keys is denoted as {freq1, 

freq2… freqM}, where, M is the total number of all possible subgraph patterns.  

Solution definition: We propose a model to develop an algorithms and tools for mining of time 

variant data of evolving system. This model reduces human intervention by providing automated 

hidden evolution information about the evolving 

system. The information can be helpful in decision 

making about evolving system. The model has 

four steps to do evolution and change mining of an 

evolving system, which are shown in the Figure 

3.2 and described as follows: 

1. Preprocess a state series of an evolving system 

to make a series of evolving networks EN = {EN1, 

EN2… ENN}, where each evolving network ENi 

stands for state Si. Each evolving network consists 

of relationship between inter-connected entities of a system. Due to several reasons, the connections 

between system entities evolve with time. 

2. Retrieve mining information about each evolving network using well-known network (or graph) 

mining techniques, such as network rule mining and network subgraph (motif or graphlet) mining. 

3. Thereafter, merge the retrieved information of each state together to make an aggregated evolution 

information, which describe mining information about the state series of an evolving system. 

4. As a summarized report, create time series graphs, charts, or tables. Then, use the report to analyze 

the evolution of an evolving system as per the state series.  

Algorithm 3.1 System_Evolution_Mining(EvolvingSystem) 

Initialize i ∈ integer 1 to N  

For each retrieved N states (S1, S2… SN) of the EvolvingSystem and stored in a directory DirRepository 

{ evolvingNetworks = Preprocess(DirRepository) 

 mining_info = NEM(evolvingNetworks)   

 network_evolution_infos = merge(mining_info) 

 } 

report_time_series = info_present( network_evolution_info) 

The SysEvo-Analytics model can be expressed as the Figure 3.2 and as the System Evolution 

Mining algorithm. Network Evolution Mining (NEM) finds the hidden network evolution and change 

information in different states of an evolving system. The output is in the form of evolution and change 

information, which further help in decision-making. Our mining algorithm uses different states as input 

 

Figure 3.2 An overview of the System 

Evolution Analytics model. 

 

NEM 
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to generate evolution and change information as output. The brief description of two approaches are 

given in the following two sub-sections: 

3.2  Network Evolution Rule Mining 

In this sub-section, we describe an approach of rule evolution mining, which is based on three 

mining techniques: Network rule mining, Sequential rule mining, and Evolution mining. This approach 

is shown in the Figure 3.3. Every system has a sequence of entities that are connected together such 

that entity connections evolve over time. Sequential rule mining can detect sequential rules of these 

inter-connected entities. Thus, these sequential rules are the network rules that are the most frequently 

inter-connected entities. Discovering evolution and change(s) in these sequential rules over several 

states aid to generate evolution and change information about evolving systems. For this, we propose 

NER Mining with the following four steps.  

 Collect different state of an evolving system and then pre-process each state of the evolving system 

to make an evolving network for the state. Thus, a system state series is pre-processed to make a series 

of evolving networks. We further pre-processed each evolving networks to make a system network 

database for each state, 

such that the database has 

two ordered sets of source 

and target entities. Due to 

ordered sets, the system 

network database is a type 

of sequence database.  

 The Network Rule 

Mining needs a state of an 

evolving system as input 

(Figure 3.4). The system state requires pre-processing to make 

a system network database. The approach internally uses 

sequential rule mining, which outputs all sequential rules for 

each state based on the sequential occurrence of source and 

target entities. The rule has support no less than some 

thresholds minimum support and confidence no less than 

some threshold minimum confidence given by the user. In this 

case, the sequence rules are the network rules, such that each 

rule contains set of source entities followed by set of target 

entities.  

 Thereafter, our approach merges all the network rule of 

 

Figure 3.4 A flowchart of Network 

Rule Mining process for a state S1 of 

an evolving system. 

 

 

Figure 3.3 An overview of proposed Network Evolution Rule Mining. 
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different states to make a collection of NERs. In short, our approach takes system network databases 

as input, with few threshold parameters. It retrieves NERs that contain antecedent and consequent 

according to the desire threshold. The rules look like {1, 3, 4} => {2, 5}. 

 Out of the collection of NERs, we retrieved the rules that are occurring in most number of states. 

These frequently occurring NERs (over the states) are the output of our approach, which we named as 

stable (or persistent) rules. These stable rules are helpful for the calculation of system stability over 

states. This aggregated system stability helps in decision-making.  

3.3  Network Evolution Subgraph Mining 

In this sub-section, we describe an approach of subgraph evolution mining based on two mining 

techniques: Subgraph mining and Evolution mining. This approach is shown in the Figure 3.5. Network 

Evolution Subgraph Mining finds the subgraph information for each states of an evolving system. The 

subgraph information has the frequency of subgraph occurrence in an evolving network of a state. 

Thereafter, the retrieved subgraph 

information is merged over all the 

states, which generates network 

evolution subgraph information. 

For this, we propose NES Mining 

with the following four steps.  

 We pre-processed each state of 

the evolving system to make an 

evolving network for the state. 

Thus, a system state series is pre-

processed to make a series of 

evolving networks. We further pre-processed each evolving networks to make it compatible for 

network subgraph mining algorithm.  

 Then our approach internally uses network subgraph mining, which outputs all the subgraph 

information for each state of an evolving system. Usually every subgraph mining approach takes 

network as input to retrieve subgraph information as output. Each subgraph information contains 

combination of subgraph key and subgraph frequency. The simplest subgraph mining steps are shown 

in Figure 3.6. Where, each subgraph represents inter-connected entities pattern.  

 Thereafter, our approach merges all the network subgraphs information of different states to make 

a collection of NESs. In short, our approach takes a set of evolving networks as input and retrieves 

NESs with its aggregate frequency of occurrence in the series of evolving networks. Each NES 

 

Figure 3.5 An overview of proposed Network Evolution 

Subgraph Mining. 
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represent subgraph of evolving inter-connected entities.  

 Out of the collection of NESs, we retrieved the subgraphs 

and induced subgraph. Such induced subgraph are referred as 

graphlets. Thus, we retrieved network evolution subgraphs 

(motifs and graphlets) as output of our approach over the states. 

These NESs and their aggregate frequencies are helpful for 

calculation of system complexity over states. This aggregated 

complexity helps for decision-making. 

3.4  SysEvo-Analytics based on Deep learning 

of Evolving system 

In this section, we describe our second proposed 

SysEvo-Analytics model for a state series. A machine learning technique can learn from an evolution 

representor (such as an unlabeled evolving matrix), which is useful to detect change patterns. The 

evolution learning depends upon machine learning that uses evolution representor (evolving matrix). 

Now, we describe the detail of proposed evolution and change learning of time-variant data. First, we 

describe the evolution and change learning technique using an evolution representor. 

Definition 3.5: Evolution and Change learning is a machine learning of evolution and 

change(s) happened to a time-variant data at various states, using a representation of evolution (e.g., 

evolving matrix). It uses an evolution information to learn the evolution of a time-variant data of a state 

series. This makes a computer capable enough to understand the evolution of a time-variant data 

without any explicit programming. 

Evolution and Change learning trains itself from an evolution representor built for a state series 

of evolving system. An existing machine learning technique can learn from the evolution representor 

stored in an evolving matrix. Such technique learns and understands the evolution and change(s) in an 

evolving system. Evolution and Change Learning technique can learn evolution and change(s) 

happened during the evolution of an evolving system. Such techniques can be applied to train a machine 

for hidden, non-trivial, and non-obvious information about evolution happened in an evolving system. 

Evolution and Change learning adapts, controls, and analyzes according to the evolution and change(s) 

automatically. Such learning process takes two or more states of a time-variant data as input to generate 

evolution information that helps to study temporal states of an evolving system. Next, we define the 

learning terminologies for an evolving system.  

Definition 3.6: System Evolution Learning is a machine learning of evolution and change(s) 

happened over evolving system states at various time points. With this, a machine becomes capable to 

understand the system evolution without any explicit programming. 

 

Figure 3.6 A flowchart of Network 

Subgraph Mining process for a 

state S1 of an evolving system. 
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The system evolution learning can be accomplished by learning its evolving system graphs as 

representation of various states. Thus, next we define graph evolution learning, which aids to explain 

about network evolution learning and system graph evolution learning. 

Definition 3.7: Graph Evolution Learning is machine learning of evolution and change(s) 

happened to evolving graphs from an evolution representor with the help of learning evolution and 

change patterns. With this, a machine becomes capable to understand the graph evolution without any 

explicit programming.  

- The GEL may also be referred as Network Evolution Learning (NEL).  

- System Graph Evolution Learning is machine learning of evolving system graphs, which 

makes machine capable enough to understand system graph evolution and change information about 

evolving inter-connected entities in an evolving system graph. 

In our case, for machine learning we used deep learning that forms a deep neural network (a 

kind of artificial neural network). Thus, due to the use of deep learning we formed a new kind of 

artificial neural network that we defined as follows. 

Definition 3.8: System Neural Network (SysNN) is an artificial neural network that contains 

information and understanding of evolution and change(s) happened to an evolving system. The 

weights are adjusted such that neurons provide probable connections (occurrences) of two entities 

(features) together. The SysNN help to recommend about the time-variant data (or non-stationary data) 

by learning and memorizing evolution information about system data. 

Solution definition: The model has few steps to do evolution and change learning of an 

evolving system, which are shown in the Figure 3.7 and described as follows:   

1. Preprocess multiple states of an evolving system, which makes a series of evolving networks {EN1, 

EN2… ENN+1}. Where, each evolving network ENi represents a relationship between evolving inter-

connected system entities of state Si.  

2. Thereafter, represent each of an evolving 

network as a connection matrix for a state. This 

makes (N+1) number of connection matrices to 

do machine learning on the evolution and change 

patterns of connections between system entities. 

Out of (N+ 1) number of matrices (N+ 

1_Matrices), only N number of matrices 

(N_Matrices) are used for training and the 

remaining 1 matrix is used for the testing purpose. 

The N_Matrices are used to make an evolution 

representor referred as evolving matrix. This 

 

Figure 3.7 An overview of the proposed System 

Evolution Analytics model. 
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evolving matrix is used for evolution and change patterns learning based on machine learning technique 

such as active or deep learning.   

3. Thereafter, the learning of the evolving connection matrix makes evolution information for 

prediction. In case of deep learning, the evolution information is in the form of a System Neural 

Network (hidden black box realized as weight matrix) that can be used to reconstruct a matrix. This 

makes an output matrix as a kind of evolving memory about evolving system’s evolution. 

4. Then compare the binary output matrix with a testing matrix (representing a state not used for 

training purpose). To compare, we can use metrics like accuracy, f-measure, precision, and recall. 

Then, we can demonstrate the metrics result values in the form of graphs, charts, or tables. Then, we 

can use the report to analyze the quality of recommendation provided by the machine learning for the 

evolving system.  

The four steps of the model can also be represented as four steps in the following algorithm. 

Algorithm 3.2 System_Evolution_Learning(repository) 

Retrieve N+1 states (S1, S2… SN, SN+1) of an evolving system at a repository 

1. evolvingNetworks = preprocess(repository) 

2. N+1_Matrices = convert(evolvingNetworks) 

evolving_matrix = evolution_representor(N_Matrices) 

3. graph_evolution_learning(evolving_matrix) 

binary_output_matrix = deep_evolution_learning(evolving_matrix) 

4. binary_classifier_metric(binary_output_matrix, testing_matrix) 

Usually deep learning technique uses input matrix to generate a reconstructed matrix (as 

output). We represented each evolving system state as an evolving network, which makes N+1 evolving 

networks (evolvingNetworks) for a state series. Then each evolving network information is transformed 

to a matrix corresponding to each state. This makes N+1 matrices (N+1_Matrices). Thereafter, we 

merged N matrices (N_Matrices) to make an evolving_matrix that contains information about multiple 

states for learning purpose. After this, graph evolution learning uses deep evolution learning to make a 

neural network that contains system states information. Thereafter, the information is stored as an 

output matrix that is transformed to a binary_output_matrix (an evolving memory), which can be used 

for recommendation purpose.  

The System Evolution Learning (SEL) generates SysNN (as a system graph evolution and 

change information), which needs to be accurate. Several states of an evolving system can undertake 

testing of SEL performance and accuracy based on information generation. User will classify 

correctness of the outputs. To improve and achieve correct output, the SEL algorithm is continuously 

adapted and fine-tuned. Fine-tuning will generate information satisfactory according to the human 

(user). The users can use their experience and understanding (visually and heuristically) to check 



34 

correctness of the generated 

information. The SEL learns 

from its user ‘how to use deep 

learning and evolution learning 

together’, ‘how to perform deep 

evolution learning’, and ‘how to 

generate SysNN’. This process 

will continue to generate the 

improved information.  

The SEL underlies upon 

graph structure learning as well as evolution and change learning as shown in the Figure 3.8. 

Specifically, the SEL algorithm takes N+1 states of an evolving system (as input), uses deep evolution 

learning and generates the SysNN (as output).  

3.5  System Evolution Analytics (SysEvo-Analytics) Tools 

This sub-section describes the SysEvo-Analytics tools. With the SysEvo-Analytics model, our 

objective is to construct algorithms, which used various existing Java API to develop tools. Thus, we 

prototyped three different tools based on the four steps of the model discussed in Sections 3.2, 3.3, and 

3.4. 

First proposed approach (in Section 3.2) is prototyped as a tool based on fundamentals of 

Network Evolution Rule (NER) mining a kind of association rule mining. The proposed tool detects 

NERs from system network databases of a state series. Details about mining NERs and its applications 

are given in the Chapter 4. 

Second proposed approach (in Section 3.3) is prototyped as a tool based on fundamentals of 

Network Evolution Subgraph (NES) mining. The proposed tool detects the recurring NESs (e.g. motifs 

or graphlets) with its aggregated frequency of occurrence in the evolving network state series. Details 

about mining NESs and its applications are given in the Chapter 5. 

Third proposed approach (in Section 3.4) is prototyped as a tool based on fundamentals system 

evolution learning. Specifically, we implemented the SEL algorithm in the tool as java application. The 

tool learns evolution and change patterns from evolving matrix. The evaluation is done for the 

recommendation provided by the trained SysNNs, which are generated from the system evolution 

learning on evolving systems. The experiments are conducted to generate and report evolving memory 

as SysNN that helps to do recommendation about system. Details about SysNN and its applications are 

given in the Chapter 6. 

All the tools follow the steps of the SysEvo-Analytics model. The first two tools retrieve 

 

Figure 3.8 The System Evolution Learning (SEL) on N states of 

an evolving system. 
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network evolution patterns (in the form of rules and subgraphs information) and the third tool learns 

network evolution patterns happened over states. These tools are built and requires machine enabled 

with JRE and JDK 7th version or higher. To test the efficiency of the tool, we applied the tools on six 

evolving systems. The experiment on these systems rendered reports with NERs, NESs, and SysNN. 

Details about the experimentations of NERs, NESs, and SysNN are given in the Chapter 4, 5, and 6 

respectively. 

3.6  Summary 

In this chapter, we proposed three System Evolution Analytics (SysEvo-Analytics) models 

based on three algorithms, which are prototyped as tools that are used to do experiments on six evolving 

systems. This chapter provided an overview of the artifacts proposed: Network Evolution Rules 

(NERs), Network Evolution Subgraphs (NESs), and System Neural Network (SysNN). Specially, we 

demonstrated the application of the tools for the system evolution analysis.  

This chapter introduction is an abstract about the SysEvo-Analytics models. Specially, the three 

Sections 3.2, 3.3, and 3.4 of the Chapter 3 are elaborated in the Chapters 4, 5, and 6 respectively. The 

elaborations are described as algorithms, tools, and experimental empirical evaluation. The algorithms 

describe exact programmable steps, which help to visualize the technical details. The tools are based 

on the algorithms; the tools are used as proof of concept to do experiments. The experiments describe 

the usefulness and applications of our approaches.   
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Stable Network Evolution Rule Mining for System Stability and 

Changeability analysis 

 

Growing number of evolving systems creates demand for system evolution analysis with 

modern computational and artificial intelligence algorithms and tools. An evolving system has several 

inter-connected entities with some connections changing over time, which creates multiple states as a 

state series SS = {S1, S2… SN}, where Si is the ith state of the system. Each state can make a database, 

which could be mined to generate association rules. Here, we elaborate the subsection 3.2 on network 

evolution rule mining. In this chapter, we introduced stability characteristics of rules. A rule is called 

interesting in state Si if its support and confidence exceed given thresholds. However, a rule might be 

interesting in one state, but not interesting in another state. A rule occurring in multiple states is called 

an evolution rule and its stability is defined to be the fraction of states in which the rule is interesting. 

An evolution rule is called stable rule if its stability exceeds a given threshold minimum stability 

(minStab). Additionally, we defined stability metric and changeability metric, which are quantitative 

measures of system evolution. All this is explained using an algorithm, System Network Stability (SNS), 

which uses minStab to mine Network Evolution Rules (NERs) and Stable NERs (SNERs).  

We proposed a Stable Network Evolution Rule Mining (SNERM), Stability Metric (SM) and a 

Changeability Metric (CM) for an evolving system. For this, we use two different characteristics of 

Network Evolution Rules (NERs). First, given a network of a system state Si, we call a NER interesting 

in Si if its support and confidence exceed given thresholds (minimum support and minimum 

confidence). Second, given a set of networks for a set of states SS, we define the stability of a NER to 

be the fraction of states in SS in which the rule is interesting. We call a NER stable in SS if its stability 

exceeds a given threshold named as minimum stability (minStab). Further, we introduce new measures 

of stability and changeability for system evolution analysis over time. Based on this, we developed an 

intelligent tool, which is used for experiments on evolving systems. This work is automated as a SNS-

Tool to demonstrate its application on real world systems. We applied our approach to a number of 

real-world systems including: software system, natural language system, retail market system, and 

IMDb system. It results Stable NERs, Stability Metric, and Changeability Metric value for each 

evolving system.  

4.1  Introduction 

A set of evolving networks can be pre-processed to make a database series (like a data series 
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[11]). Such a database series is also referred as dynamic databases or time variant data. The system 

state series is an unstructured (real-world) representation that needs pre-processing, whereas database 

series is structured representation to do data mining. Usually, such database series are stored and 

managed in a repository to keep the representations of the continuously evolving states. A data mining 

technique can be helpful to understand and analyse dynamic databases of an evolving system. 

A database of entities (or items) can be mined using Association Rule Mining, which identifies 

the association rules (AB co-occurrence of entity sets A and B) with support and confidence. The 

sequence of entities in a database can be mined using Sequential Rule Mining (SRM), which generates 

sequential rules with support and confidence. The entities are unordered in association rules and 

ordered in sequential rules. There are other such rules e.g. prediction rules and temporal rules. 

As the system evolves, its database also evolves. As the database evolves, its rules evolve as 

well. These rules can be used to study the system evolution. Rule mining and evolution mining can 

discover rules and evolution information of entities, respectively. Evolution and change analysis on a 

dataset over time retrieves the evolution information. We present evolution rule mining to retrieve 

evolution rule information in the multiple states of an evolving system. This uncovers interesting and 

actionable information for an evolving system. 

This chapter is inspired by recent advancements in the study of system evolution based on graph 

evolution mining. Based on fundamentals of well-known association rule mining, we aim to create an 

intelligent algorithm and tool, which helps to study the system evolution and changeability. Evolving 

systems has properties like changeability, evolvability, and stability. We aim to compute the stability 

and changeability of an evolving system. Given a state series SS = {S1, S2 … SN} of an evolving system, 

we are interested in mining rules of the form XY, called Network Evolution Rules (NERs), with the 

following characteristics:  

(a) the rule is “interesting”, in the sense that if the source entities in set X exist in a state, then 

target entities in set  Y will also present in that state. 

(b) the rule is “stable”, in the sense that its “stability” exceeds a given threshold, where 

“stability” is defined to be the fraction of states in SS in which the rule is interesting. 

The first parameter (“interestingness”) characterizes the behaviour of the NER within an 

individual state Si of SS, whereas the second parameter (“stability”) characterizes the behaviour of the 

whole set of states SS. The advantage of “stability” is to retrieve Stable NERs (SNERs) that remains 

stable (or persistent) in sufficient number of states over time.  

We are also motivated to compute the system’s changeability metric for system evolution 

analysis. For a given set of states SS of an evolving system, our approach mines two kind of rules: 

Network Evolution Rules (NERs) and Stable NERs (SNERs) in a state series. We use NERs and 

SNERs counts to compute the changeability for an evolving system. The proposed approach is useful 



38 

for an evolving system whose states can be represented as system network databases. For a real-world 

evolving system, the challenge is to construct and mine a set of dynamic databases over the multiple 

states. 

The main contributions of the chapter are as follows. We introduce stability as a new measure 

for characterizing NERs over time, which helps to retrieve SNERs. We introduce novel formulas to 

compute system Stability Metric (SM) and Changeability Metric (CM), which aids in quantitative 

system analysis. For this, we propose a new algorithm for System Network Stability (SNS), which uses 

SNERs Mining algorithm. We demonstrate experimental analysis by applying our intelligent approach 

for six real-world evolving systems. Rest of the chapter is organized as following: 

In Section 4.2, we present novel definitions concerning evolution rules and stable rules, whose 

types are NERs and SNERs. This is followed by another central notion of our work, namely the stability 

metric and changeability metric to perform system evolution analysis. This is illustrated as an example 

in Section 4.3. In Section 4.4, we proposed an algorithm System Network Stability (SNS) and its 

computation. In Section 4.5, we describe our prototype ‘SNS-Tool’. In Section 4.6, we use our SNS-

Tool to demonstrate experimental results on six real-world evolving systems. These contributory 

sections are followed by conclusions in Section 4.7. 

4.2  Proposed Definitions and Concepts 

In this section, we present formal definitions and notations. This includes our key definitions 

of Evolution rule, Stable rule, Connection pairs, System Network Database, Network rule, Network 

Evolution Rule (NER) and Stable Network Evolution Rule (SNER) with support, confidence, and 

stability. At last, we formulate system’s Stability Metric (SM) and Changeability Metric (CM).  

4.2.1  Evolution Rule and Stable Rule 

We start with the definitions of Evolution rule and Stable rule of the form XY, where X is 

an antecedent set, and Y is a consequent set for the co-occurrence of the two sets (X and Y) of entities. 

The symbol  means co-occurrence such that if X occurs then Y will also occur. Formal definitions 

are as follows. 

Definition 4.1: Given a rule (XY) in database Di for state Si and a database series DS = {D1, 

D2… DN} for a state series SS. The rule is interesting in Si, if its support and confidence exceeds given 

thresholds. 

- A distinct rule occurring in multiple states is said to be an evolution rule that has some stability 

in the state series, where stability is the fraction of states in which it is interesting. 

- An evolution rule is stable if its stability exceeds a given threshold named minimum stability 

(minStab). The stable evolution rule is said to be stable rule. 
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The interestingness characterizes the association rules for a database Di of state Si, whereas the 

stability characterizes the evolution rules and stable rules of the database series DS of SS. The 

interestingness and stability is the probabilistic measure to form the rule (XY) in a given database. 

The stability is a new measure for characterizing evolution rules over time and constitutes one of the 

main conceptual contributions of this chapter. The functional meaning of stability is the measure of 

evolution happened in the database series. Stable rules provide set of persistently co-occurring entities 

over a database series. 

4.2.2  Connection pair and System network database 

As mentioned earlier, an evolving system contains distinct interconnected entities in an 

evolving system network. If entity e has connecting direction toward entity eꞌ, then we call e the source 

and eꞌ the target of the connection. A convenient way for representation is directed graph to represent 

connections between entities in a given state Si. We call this graph, system network of Si such that nodes 

represent entities and edges represent connections (eeꞌ if and only if source entity e is connected to 

target entity eꞌ).  

Given a state Si of an evolving system, we shall denote the set of source entities by sSi and the 

set of target entities by tSi. Let SS = {S1, S2… SN} be a set of states of an evolving system. Let sSS be 

the set of all source entities in SS, that is, sSS = sS1sS2 … sSN; and let tSS = tS1tS2 … tSN 

be the set of all target entities in SS. Note that sSS and tSS are not necessarily disjoint, which means 

an entity can be a source and a target at the same time.  

To define the support and confidence of a network rule in a state Si, we first define the concept 

of “connection pair” in Si. Assume a system state series is pre-processed to make a set of evolving 

networks represented as EN = {EN1, EN2… ENN}, such that evolving network ENi represents state Si. 

Each evolving network contains many connections between entities. For such evolving networks, we 

explain a concept of connection pair. A connection pair in Si is an ordered pair of two subsets: source 

entities L followed by their target entities R. A source entity e in source set L has a target entity e' in 

target set R. The e and e' forms a directed connection from e to e' in the network of state Si. A connection 

pair is denoted as (L, R), where the symbols L and R as mnemonics for Left and Right, respectively. 

Definition 4.2: A connection pair in Si is an ordered pair (L, R) such that L is a subset of source 

entities and R is a subset of target entities. For each e in L there exit eꞌ in R that makes a connection 

eeꞌ in the network of state Si. Where, the symbols L and R stand for “left” and “right”. Thus, we shall 

say that a set XY of entities occurs in a connection pair (L, R) if XY is a subset of LR. 

A collection of connection pairs makes a system network database as required input for 

Network Rule Mining. 
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Definition 4.3: A system network database (SysNetDb) is made-up of a set of connection pairs 

{CP1, CP2 … CPM}, where M is the total number of connection pairs. The SysNetDb of state Si is 

denoted as SysNetDb_i. Dynamic databases for a state series is denoted as 

SysNetDbs = {SysNetDb_1, SysNetDb_2… SysNetDb_N}. 

The connection pairs of a state create a System Network Database (SysNetDb). A collection of 

system network databases for multiple states is referred as SysNetDbs.  

Assume X is a subset of source entities in L and Y is a subset of target entities in R. During pre-

processing, each connection pair (L, R) is transformed into a numerical sequence based on the 

following two steps:  

- The set of all entities appearing in state Si are encoded as positive integers, that is, each entity 

is associated with a unique positive integer.  

- For each connection pair (L, R), we replace the entities in L and in R with the sets of their 

encodings. The encodings of all connection pairs are stored in a database, which we represent them as 

SysNetDb_i. 

 4.2.3  Network Rule, Network Evolution Rule, and Stable Network Evolution Rule 

Now, given a set of states SS, we are interested in the count of network rules that occurs in one 

or more states. Additionally, we consider three kinds of rules the Network Rule, the Network Evolution 

Rule (NER), and the Stable NER. All of them have the form XY, but they have different 

characteristics. A network rule has a characteristic of interestingness, which measures support and 

confidence with respect to a given state. A NER and a Stable NER have an additional characteristic of 

stability, which is defined with respect to a given state series.  

Definition 4.4: A Network Rule (NR) in state Si is an expression of the form XY, where X is 

a subset of source entities sSi and Y is a subset of target entities tSi. 

A network rule can be interpreted as “if source entity (or entities) occurs in set X, then target 

entity (or entities) in Y are likely to occur with a given support and confidence in a connection pair”. 

The support and confidence of a network rule in a state Si is computed with respect to a given set of 

connection pairs. Such a set is defined with respect to some aspect of the evolving system. However, 

we shall assume that a set of connection pairs is given. Different kind of systems has different 

mechanism to generate their system network. Thus, mechanism to collect connection pairs depends 

upon pre-processing of system network. For example, if an evolving system is a software system then 

it is usually structured as modules and each module contains a number of procedures (as entities). In 

each module, each procedure calls zero, one, or more procedures in the same module or in different 

modules. Therefore, each module determines a connection pair between its own set of procedures, say 

L, and the set of target procedures, say R.  
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Definition 4.5: Given a set of connection pairs in Si, let XY be a network rule and let XY 

be a set of entities in XY. 

- The support count of XY in Si is denoted as supCount(XY, Si), and defined by 

supCount(XY, Si) = m, where m is the number of connection pairs in which XY occurs.  

- The support of XY in Si is denoted as sup(XY, Si), and defined by sup(XY, Si) = 

supCount(XY, Si) ÷ card(Si), where card(Si) is the cardinality (number) of connection pairs in state 

Si. 

- The support of XY in Si is denoted as sup(XY, Si), and defined by: sup(XY, Si) = 

sup(XY, Si) = sup(XY, Si). 

- The confidence of XY in Si is denoted as conf(XY, Si), and defined by: conf(XY, Si) 

= sup(XY, Si) ÷ sup(X, Si) 

- An interesting network rule has support (or support count) and confidence greater than 

thresholds minSup (or minSupCount) and minConf, respectively. 

Definition 4.6: A Network Evolution Rule (NER) in SS is an expression of the form XY, 

where X is a subset of source entities sSS and Y is a subset of target entities tSS. Each NER has a 

characteristic stability because it is distinct and interesting in one or more states.  

- The stability count of XY in SS is denoted as stabCount(XY, SS), and defined by 

stabCount(XY, SS) = n, where n is the number of states in SS that has XY as interesting NER. 

- The stability of XY in SS is denoted as stab(XY, SS), and defined by stab(XY, SS) = 

stabCount(XY, SS) ÷ card(SS), where card(SS) is the cardinality of SS i.e. number of states N in SS. 

- The NER XY is defined to be stable in SS if its stability (or stability count) is greater 

minStab (or minStabCount); such NERs are Stable Network Evolution Rules (SNERs). 

The stability is a new measure for characterizing NERs over time. The stability of a NER is our 

conceptual contribution. The stability count of a NER (stabCount) is the frequency of states in which 

the NER is interesting. Consequently, stability of NER is the fraction of states in which the NER is 

interesting. The SNER is a new information for system network evolution over time and constitute 

another conceptual contribution. The functional meaning of the discovered NER is frequent network 

rule of interconnected entities occurring in a SysNetDb of a state. The functional meaning of a SNER 

is the frequent NER of inter-connected entities occurring in SysNetDbs for a set of states. 

Intuitively, network rule XY in a state means, “presence of the source entities (X) implies 

presence of the target entities (Y) in a sufficiently high fraction of connection pairs (in a SysNetDb)”. 

In a network rule, the antecedent X contains frequent source entities co-occurring with the consequent 

Y containing frequent target entities.  

Intuitively, stable NERs are the rules of co-occurring persistent (stable) entities over a set of 

graphs. The collection of network rules (from multiple state) makes NERs. A NER is stable in a state 
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series, and referred as SNER, if it exceeds the three expert specified thresholds minSup-minConf-

minStab. The minSup and minConf characterizes the behaviour of network rules in a state Si, and the 

minStab characterizes the behaviour of NERs over a state series SS. 

4.2.4  Stability metric and Changeability metric 

We can now define another central concept of our work, namely stability metric. The intuitive 

significance of the stability metric is to measure the speed of evolution, which helps to do SysEvo-

Analytics using threshold minStab, count of evolution rules, and count of stable rules. In a state series 

SS, we can measure the speed of evolution in an evolving system based on two obvious facts.  

Fact 1: if there is high minStab i.e. fraction of minStabCount over the number of states, then 

the system has evolved slowly (i.e. undergone few changes). Inversely, if there is a low minStab i.e. 

fraction of minStabCount over the number of states, then the system has evolved fast (i.e. undergone 

numerous changes). This implies system stability is directly proportional to the minStab i.e. fraction of 

minStabCount over the number of states. This makes equation 

System Stability ∝ 𝑚𝑖𝑛𝑆𝑡𝑎𝑏 = 
minStabCount

N
    …(1). 

Fact 2: if there are many stable rules, then it reflects slow evolution among states. Inversely, if 

there are few stable rules, then it reflects fast evolution among states. This implies system stability is 

directly proportional to the stable rule count and inversely proportional to the distinct evolution rule 

count. This makes equation 

System Stability ∝ 
SR_Count

ER_Count
  …(2) 

where, SR_Count stands for the StableRule_Count (i.e. the number of stable rules) and ER_Count 

stands for the EvolutionRule_Count (i.e. the number of evolution rules). These two facts (i.e., eq. (1) 

and (2)) are combined to define stability metric that characterizes system evolution. 

Definition 4: Given a state series SS = {S1, S2… SN} of an evolving system with its evolution 

and stable rules, then the stability metric of the system is defined as 

Stability metric = minStab ∗
SR_Count

ER_Count
∗ 100       …(3). 

This equation (3) is a generalized formula for evolution and stable rule count. Now, we present 

formula in context of system network, named as System Network Stability metric (SNS metric) and 

defined as 

SNS metric = minStab ∗
SNER_Count

NER_Count
∗ 100         …(4) 

where, SNER_Count stands for the stable NER count, (i.e. the number of stable NERs) and 

NER_Count stands for the NER count (i.e. the number of NERs). 

Two important remarks regarding the stability metric:  
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1) On one hand, low values of minStab and SR_count produces low value of the stability metric, 

which means that few stable rules occurring in less number of states. On the other hand, high values of 

minStab and SR_count produces high value of stability metric, which means that many stable rules 

occurring in many states. Low value reflects fast evolution and high value reflects slow evolution in 

the given state series. The low value of stability metric does not reflect unstable system. However, the 

lower bound of stability metric is 0 for a volatile system (that has no common rule between any two 

states). Conversely, the upper bound of stability metric is 100 for a constant system (that does not 

changed with time and has all states same). Both lower and upper bound are ideal conditions, which 

rarely occur with a normal system. In real-world system, stability metric value varies due to three 

reasons: the system domain, the fraction of (minStabCount ÷ N), and the fraction of (SR_count ÷ 

ER_count). 

2) We can use the stability metric to know about the stability of a new state. Suppose the 

stability metric is SMN for N states. If we add a new state to the system, then new stability metric is 

SMN+1 for N+1 states. Following three conditions are possible SMN+1 > SMN or SMN+1 < SMN or SMN+1 

= SMN. If SMN+1 > SMN, then changes are significantly done to construct a new state. If SMN+1 < SMN, 

then the new state is not changed much as compared to the old states. If SMN+1 ≅ SMN, then the new 

state is similar to the old states. 

Next, we use the numerical values of input-output parameters in the SNER mining to do the 

system changeability analysis. The changeability is a system property, which depends upon both 

evolution and stability information of an evolving system. To compute the changeability (as another 

conceptual contribution) for an execution of SNER mining, we defined following metric. 

Definition 4.8: A Changeability Metric (CM) in a set of states SS of an evolving system is 

defined as  

CM = 
N

minStabCount
∗

NER_Count 

SNER_Count
∗ 100    …(5) 

where the N is the number of states and the minStabCount is the threshold value used for SNER mining. 

Where, the NER_Count is the number of NERs retrieved and the SNER_Count is the number of SNERs 

retrieved. Note, the value of (N/minStabCount) is equal to (1/minStab) i.e. inverse of stability. 

4.2.5 Overview of Approach 

The advantage of the new measure for stability of NERs is to compute stability and 

changeability property of an evolving system. Figure 4.1 describes the summary of all the steps to 

intelligently compute the SNER and the Changeability metric. These steps are according to the 

guideline steps of Knowledge Discovery in Databases (KDD).  
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4.3  Illustrative Examples 

This section discusses an illustration for pre-processing and Network Rule Mining (NRM) of a 

state, followed by NERs and stable NERs retrieval for a state series. We also calculate Stability and 

Changeability metrics for the illustrative example. We present this in the following four sub-sections. 

4.3.1  Pre-processing of a State 

This sub-section describes pre-processing of a state to make a dynamic database: System 

Network Database (SysNetDb). Firstly, pre-process a system state series to make a series of evolving 

networks, where a node represents an entity and an edge represents directed entity connection. The pre-

processing of state Si depends upon the type of system i.e. different systems have different techniques 

to create evolving networks.  

Secondly, use the evolving networks to gather a set of connection pairs with respect to a 

connection relationship between entities of an evolving system. The connection relationship decides 

the connection pairs to make a set of SysNetDbs. For example, sequence of words in a sentence decides 

a connection pair of words (as entities). Thus, formation of SysNetDb depends upon connection 

relationship chosen to form connection pairs. The experimental section describes mechanism to gather 

connection pairs using connection relationship for making SysNetDbs. The following sections assume 

that SysNetDbs are given for mining.  

Assume E = {e1, e2, e3 … eK} be a set of entities, where K is total number of entities and let 

SysNetDb_i_ID = {CP1, CP2… CPM} be a set of connection pairs. In Figure 4.2, we assume a 

connection relationship providing three connection pair from the network of Si, thus K= 5 and M = 3. 

The figure shows a general model for system pre-processing to make SysNetDb_i of Si in the form of 

entityName. Each entityName based connection pair (L, R) is transformed to entityID based connection 

pair. The process of encoding and storing all connection pairs to make a SysNetDb_i_ID is as follows. 

A) The set of all entity names appearing in Si are encoded as entityID (a positive integers i(e)).  

Each entity e is associated with a unique positive integer.  

B) In each connection pair (L, R) in SysNetDb_i, the entities in L and in R are replaced with the 

 
Figure 4.1 The process-artifacts involved to intelligently compute the SNERs and the Changeability 

Metric. Where, each rounded-rectangle shows a process and rectangle shows input-output artifact as 

per arrows. Each sentence starts from process at top and finishes at the artifact box. 
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sets of their encodings. This creates numerical SysNetDb, which is denoted by SysNetDb_i_ID.  

In the next two subsections, we illustrate mining of Network Rule, Network Evolution Rule 

(NER), and Stable NER (SNER) with support, confidence, and stability.  

4.3.2  Network Rule Mining of a State 

This sub-section describes use of a System Network Database (SysNetDb) for NRM. The NRM 

takes three inputs (SysNetDb, minSupCount, and minConf) to generate network rules. Figure 4.2 shows 

an overview of NRM, first pre-process a state Si to make SysNetDb_i_ID that is used by NRM along 

with minSupCount and minConf to generate network rules in the form of ID (net_Rules_i_ID).  

Search space of NRM is SysNetDb of a state that contains connection pairs for entity connection 

relationship. The NRM computes the support and confidence of a network rule XY in a state Si 

according to the given connection pairs in SysNetDb_i_ID. To do NRM, scan the SysNetDb of state Si 

to calculate frequency of each entity and then identify all entities with frequencies greater than 

minSupCount. Then use the frequent entities to generate ordered network rules XY. Also, calculate 

the support (frequency) and confidence (conditional probability) for co-occurrence of antecedent X and 

consequent Y. The output of NRM is network rules with support and confidence higher than or equal 

to user-defined threshold minSupCount and minConf.  

A connection pair (in SysNetDb) has two ordered entity-sets, which resembles it with sequence 

(in sequence database used for sequential rule mining). Thus, SysNetDb becomes a kind of sequence 

database, which converges NRM to the sequential rule mining that can generate sequential rules as 

network rules. Hence, the NRM is a special case of sequential rule mining because the input sequence 

database (SysNetDb) and the resulting sequential (or network) rules contain ordered set of source and 

target entities.   

 
Figure 4.2 An overview of pre-processing on a state Si to make SysNetDb_i_ID that contains three 

connection pairs. This is followed by an overview of Network Rule Mining step on the 

SysNetDb_i_ID. 
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4.3.3  Stable Network Evolution Rules of State series 

After pre-processing, we applied NRM over a state series to retrieve network rules of all the 

states, and then we identified NERs and SNERs. Figure 4.3 continues the example given in Figure 4.2 

by assuming that SysNetDb_i_ID as SysNetDb_1_ID. Here, number of states (N) is three. In Figure 

4.3, the interesting network rules are generated according to minSupCount = 2 and minConf = 0.5. 

Thereafter, we merged the network rules of the three states to create collection. From the collection, 

we identify distinct NERs with their stabilities. Then, we retrieved the SNERs from NERs whose 

Stability Count is greater than minStabCount = 2. For the illustration in Figure 4.3, the SNS metric as 

given in equation (4) is {(2 ÷ 3) × (5 ÷ 11)} × 100 = 30.30. 

4.3.4  Real-world Example 

An example for the list of multi-sport events database is presented in Figure 4.4, which has one 

 
Figure 4.3 Collection of network rules to make Network Evolution Rules (NERs) from which Stable 

NERs (SNERs) are retrieved. 
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connection pair in first two SysNetDbs and 3 connection pairs in third SysNetDb. By pre-processing, 

we eliminated stop-words and kept only keywords (as entities).  

For example, the Index in Figure 4.4 has 13 entities, which are encoded to transform the 

SysNetDb. For example, in Figure 4.4 the SysNetDb_189, SysNetDb_190, and SysNetDb_191 denotes 

SysNetDbs for decades (as states) 1890, 1900, and 1910 respectively. Figure 4.4 also shows an 

illustration for Network Rule Mining (NRM). Use “input of NRM” along with threshold minSupCount 

 

Figure 4.4 An illustrative example to mine NERs, SNERs, and Changeability metric. 



48 

= 1 and minConf = 0.5 to generate “output of NRM” containing network rules. The support count is 

convertible to the support fraction by dividing supCount with the number of connection pairs (i.e. 3). 

Thus, minSup is equal to minSupCount (= 1) divided by cardinality (= 3) for SysNetDb_191, which is 

equal to 1/3. In Figure 4.4, the network rule in “output of NRM” is in the order of their interestingness 

i.e. top most rule (in first row) is highest interesting, rules in middle row are moderately interesting in 

decreasing order, and last rule is least interesting. In Figure 4.4, the SNER mining resulted in 36 NER 

and 1 SNER, whose execution time was 1 second. This resulted in 5400 as CM value. Next section 

presents an algorithm for mining SNERs from a given set of states SS.  

4.4  System Network Stability 

Thus far, we presented novel definitions, concepts, and an illustrative example. This section 

presents proposed algorithms System Network Stability (SNS), a theory to analyse stability of pre-

evolved system. Search space of SNS is an evolving system that can be represented as a set of evolving 

networks EN = {EN1, EN2… ENN} for a state series SS = {S1, S2 … SN} at time points {t1, t2, t3… tN}. 

The system network database series is SysNetDbs = {SysNetDb_1, SysNetDb_2… SysNetDb_N}, 

whose ith database is represented as SysNetDb_i for a state Si. We are interested to find SNERs having 

“the presence of source entities (X) implies the presence of target entities (Y) in a sufficiently high 

fraction of states”. Next, we introduce a new SNS algorithm, which has following four steps (also 

manifested in Figure 4.5):  

1. Pre-process N states stored in a repository to make N SysNetDbs and an IndexFile with 

<entityName, entityID>. 

2. Mining NERs and SNERs use four inputs (SysNetDbs, minSupCount, minConf, and minStab) to 

retrieve the NERs_ID and SNERs_ID. 

3. The NERs_ID and SNERs_ID are in the form of entityIDs. Use the IndexFile to replace each 

entityID with its entityName in each NER and SNER. This converts NERs_ID into NERs_Name 

and SNERs_ID into SNERs_Name. 

4. Calculate stability (SNS) metric given in Equation (4) using the minStab, number of SNERs 

retrieved (SNER_Count), and number of NERs retrieved (NER_Count). 

Algorithm SNS(repository) 

Retrieve N system states and store them in a repository. 

1. SysNetDbs & IndexFile = Pre-process(repository) 

2. NERs_ID & SNERs_ID = Mining_NERs_SNERs(SysNetDbs, minSupCount, minConf, minStab) 

3. NERs_Name & SNERs_Name = Indexing(NERs_ID, SNERs_ID,  IndexFile) 

4. SNS_metric = stabMetric(minStab, SNER_Count, NER_Count) 

 The following four sub-sections elaborate these steps.  
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4.4.1  Pre-processing of a state series 

The Algorithm 4.1 Pre-process takes N states of an evolving system to make N System Network 

Databases (SysNetDbs) for a connection relationship. A SysNetDb of state Si is SysNetDb_i that 

contains connection pairs of entities in the form of entityName. Then, transform each SysNetDb_i to 

make SysNetDb_i_ID in the form of entityIDs. An entity occurring in several states must have the same 

entityID. Thus, an entityID keeps track for multiple occurrences of an entity in a state series. 

Simultaneously, an IndexFile is also created, which has a list with two entries <entityName, entityID> 

for each entity. Output of pre-processing is N SysNetDbs & an IndexFile. The N SysNetDbs is a set of 

dynamic databases such that each SysNetDb follows the semantics, syntax, and structure for input 

required in NRM. For reproducibility, we present following pseudo code for pre-processing of a state 

series. 

Algorithm 4.1 Pre-process(repository) 

Initialize HashMap Index< entityName, entityID >  
Initialize integer counter = 1 
Initialize String Buffer buffer 

For each state Si where i ∈ integer and i varies from 1 to N 

 

Figure 4.5 The System Network Stability, a theory for N states in a state series of an evolving system. 
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Depending on type of repository, extract relationship between set of inter-connected entities to 
create a SysNetDb_i for a state Si  
Read SysNetDb_i and store it in buffer until end of file  

For each line of buffer, scan entityName 
If an entityName is in the Index 

In buffer, replace the entityName with its entityID 
Else   

entityID = counter 
Add the new tuple < entityName, entityID > in the Index 
In buffer, replace the entityName with its entityID 
Increment the counter by 1 i.e. counter = counter + 1 

End of Scan when end of buffer is reached 

Write the buffer in SysNetDb_i_ID 
Store the file SysNetDb_i_ID in directory SysNetDbs 
End For when all the states are pre-processed 

Make an IndexFile and store Index<entityName, entityID>. 

Return SysNetDbs & IndexFile 

4.4.2  Mining NERs and SNERs 

The Algorithm 4.2 Mining_NERs_SNERs takes four inputs: SysNetDbs, minSupCount, 

minConf, and minStab. The algorithm has minStab a threshold for measuring stability of a NER over 

a state series (a set of states ordered by time).  

The algorithm executes the NRM to processes SysNetDbs (N system network databases) and 

generates network rules for N states. This step processes each SysNetDb_i_ID to produce network rules 

(net_Rules_i_ID) for state Si. The network rules for N states are stored in N files that are collectively 

stored in a directory referred as netRules. This collection may have some similar rules and some 

dissimilar rules. The algorithm uses the network rules of the N states in the following three steps. 

- Firstly, merge network rules (each as XY) of N states to make a collection of rules as 

Collect_NRs_ID. The algorithm identifies Network Rules (NRs) using a Network Rule Mining (NRM) 

algorithm. The NRM algorithm depends upon the sequential rule mining over the set of connection 

pairs (in SysNetDbs). The source and target sets in a connection pair is a sequence of a sequence 

database. A network rule (as a sequential rule) can be identified using minimum support and mining 

confidence on the network database (as a sequential database). Thus, intuitively NRM is reducible to 

SRM because the SRM efficiently used as a subroutine to solve the NRM efficiently. This reduction 

of transforming NRM algorithm to the SRM algorithm is our conceptual contribution. We 

accomplished this by applying the NRM algorithm on SysNetDb_i to identify the network rules 

(net_Rules_i) for a state Si. A network rule XY has antecedent X as a subset of source entities and 

consequent Y as a subset of target entities for connection pairs. 

- Secondly, using Merge algorithm the network rules of different states are merged together to 

make a collection of network rules (Collect_NRs). From this collection, we select unique (or distinct) 

network rules over states as NERs. Count the occurrence of each identical rule NER_ID (XY) in 
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Collect_NRs_ID. The count is the stabilityCount of a NER_ID, such that stabilityCount is the number 

of states in which NER_ID is interesting. Calculate stability as the fraction of stabilityCount and 

number of states (N).  Then add the NER_ID and its stability to the hash-map (NERs_HM). Make a file 

NERs_ID to store the retrieved NERs and their stability. 

- Thirdly, select a NER_ID as SNER_ID, if the NER_ID has stability more than minStab. Make 

a file SNERs_ID and store each SNER (XY) only once. For each NER, we count its number of 

distinct occurrence in states - the count is the ‘stability count’ of the NER. An expert specifies a 

threshold minStabCount, which aids to retrieve SNERs from NERs whose stability count is greater 

than minStabCount value. 

The threshold (minSupCount-minConf-minStab) is used to control the quality of output rules. 

A set of low values of threshold can generate exhaustive number of rules, which may be useless in 

decision-making. A best possible high value of threshold optimizes the number of interesting NERs 

and SNERs. We determine the best possible high values of threshold based on well-known theory of 

exploration and exploitation. The threshold values are dependent on domain and SysNetDbs. Search 

minSupCount-minConf values, which generate optimal number of NERs. For optimum low values of 

minSupCount-minConf, explore NERs by varying the value of minStab. After getting optimum number 

of NERs, start searching a range of minStab. In the range, start exploiting SNERs by varying the value 

of minStab. This results in best possible high values of the three thresholds. Furthermore, optimize the 

number of SNERs by using distinct NERs in each state. This helps in decision-making and taking-

actions. 

The retrieved NERs and SNERs are generated as the output. In the output, the SNERs are more 

meaningful as compared to NERs because a SNER is interesting as well as stable in an evolving system. 

Here, ‘meaningful’ means selected SNERs have more ‘stability’ than the unselected NERs, where 

stability is measured with the threshold minStab 

Algorithm 4.2 Mining_NERs_SNERs(SysNetDbs, minSupCount, minConf, minStab) 

Initialize File net_Rules_i_ID 
Initialize Array Collect_NRs_ID,  
Initialize HashMap NERs_HM < NER_ID, stability >  
Initialize File NERs_ID, SNERs_ID 
Initialize i ∈ integer 

For each SysNetDb_i_ID in SysNetDbs, where i varies from 1 to N 
net_Rules_i_ID = NRM(SysNetDb_i_ID, minSupCount, minConf) 
Store net_Rules_i_ID file in directory netRules 

End For 

For each state net_Rules_i_ID in netRules, where i varies from 1 to N 
Collect_NRs_ID = Merge(Collect_NRs_ID, net_Rules_i_ID) 

End For 

For each distinct rule (as NER_ID) in Collect_NRs_ID 
Initialize int stabilityCount = 0 
For each rule_x in Collect_NRs_ID 
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if(NER_ID equal to rule_x)  
then stabilityCount++  

end if 
End for 

Initialize float stability = stabilityCount ÷ N 
if(NER_ID is not in NERs_HM)  

then Add(<NER_ID, stability> to NERs_HM) 
end if 

if(stability > minStab) 
if(NER_ID is not in SNERs_ID)  

then Add(NER_ID to SNERs_ID) 
end if 

end if 

End For 

NERs_ID = NERs_HM 

Return NERs_ID and SNERs_ID  

Algorithm 4.2.1 NRM(SysNetDb_i, minSupCount, minConf) 

seq_rule_i = SRM (SysNetDb_i, minSupCount, minConf) 

// The NRM is reducible to the sequential rule mining (SRM) because SysNetDb is a kind of sequence 
database, where each connection pair is a sequence of source and target sets.  

// The SRM uses minSupCount and minConf to generate sequential rules (i.e. network rules with source 
and target sets.  

Return net_Rules_i 

Algorithm 4.2.2 Merge(Collect_NRs, net_Rules_i) 

For each distinct network rule (NR) in net_Rules_i 

append(NR) to Collect_NRs 

// This makes multiple NR for multiple states.  

// These NR in Collect_NRs is referred as NER.  

// This multiple entries of NR helps to calculate stability of the NER in the SNERM algorithm. 

 Return Collect_NRs 

The meaningful NERs depend upon the threshold minStab. If the minStab is higher than the 

expected range of meaningful NERs, then less number of most meaningful SNERs are retrieved. 

Conversely, if the minStab is lower than the expected range of meaningful NERs, then the retrieved 

SNERs includes both meaningful and meaningless NERs. On one hand, for a high value of minStab, 

there might be no SNERs. On the other hand, for a low value of minStab, there might be exhaustive 

number of SNERs. 

The NERs are not retrieved as SNERs belongs to the set of less stable rules, which can be 

considered as interesting but unstable NERs for a threshold. Such NERs also have support, confidence, 

and stability; however such NERs has stability lesser than the minStab. The thresholds are measured 

by the values of minSupCount-minConf–minStabCount that are decided by performing experiments. 

The retrieved NERs and SNERs are in the form of entityIDs. These entityIDs are hard to 

comprehend because it is in the number format. Thus, for better comprehension convert them into the 
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form of entityNames. 

The Mining_NERs_SNERs algorithm finds and compares the counts of NERs and SNERs. 

The computational complexity of the Mining_NERs_SNERs algorithm mainly depends upon O(N×λ), 

where λ is the complexity of NRM algorithm. 

4.4.3  Indexing 

The Algorithm 4.3 Indexing replaces all the entityIDs in the NERs_ID and SNERs_ID with their 

corresponding entityNames. The algorithm uses the IndexFile produced in pre-processing. Make two 

files NERs_Name and SNERs_Name to store the NERs and SNERs in the form of entityNames. For 

example, the format of SNERs (XY) in SNERs_ID contains entityID like {1, 2}{3}, which are 

same as format of association rules with X = {1, 2} and Y = {3}. These rules can be converted to 

entityName format rules like {butter, jam}{milk} where 1, 2, and 3 stands for butter, jam, and milk, 

respectively.  

Algorithm 4.3 Indexing(NERs_ID, SNERs_ID, IndexFile) 

Initialize HashMap Index<entityName, entityID>  
Initialize integer counter = 1 
Initialize String Buffer buffer1, buffer2 
Make two file NERs_Name, SNERs_Name 

For each line of IndexFile 
Scan line and Store <entityName, entityID> in Index 

End For when IndexFile is completely scanned 

For each line of file NERs_ID, 
Scan and store the line in buffer  
In buffer, replace each entityID with its entityName in Index 
Store the buffer in NERs_Name  

End For when NERs_ID is completely scanned 

For each line of file SNERs_ID, 
Scan and store the line in buffer  
In buffer, replace each entityID with its entityName in Index 
Store the buffer in SNERs_Name 

End For when SNERs_ID is completely scanned 

Return NERs_Name, SNERs_Name 

4.4.4  SNS and Changeability Metric 

After retrieving the NERs and SNERs, finding their counts is a straightforward process. 

Thereafter, use stability and changeability metrics formula to compute the system stability and 

changeability metrics. Keep note of the number of states N and minStab used to retrieve NERs and 

SNERs. As per the definition and its formula, this step uses: N, minStab, NER count, and SNER count. 

It measures the stability quantitatively for a state series of an evolving system. The calculation of 

stability given in equation (4) is self-explanatory. Similarly, find NERs_Count, and SNERs_Count, 

then use Changeability Metric formula (given in equation (5)) to compute and store in changeability 

metric. 
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Based on our approach, we developed a prototype tool on Java. The next section present a tool 

based on the described Algorithm SNS.  

4.5  SNS-Tool 

Based on Algorithm SNS, we developed an automated tool and named it as System Network 

Stability Tool (SNS-Tool) using Java technology (JRE and JDK 7th version or higher). As input, the 

SNS-Tool takes N system network databases (SysNetDbs) with minSupCount-minConf-

minStabCount. As output, the tool retrieves network rules, collection of NERs, and SNERs. The SNS-

Tool discovers these system evolution rules using three components ‘Pre-processing’, 

‘Mining_NERs_SNERs’ and ‘Indexing’.  

First component pre-processes each state to produce its network, which is a directed graph to 

describe relationships between inter-connected entities. The tool creates a system network database 

using evolving network of a state. In this way, the tool creates N SysNetDbs for N states. Each 

SysNetDb contains entity connection information as a connection pairs (L, R) that contains set of 

source entities and target entities. 

Second component processes the N SysNetDbs to retrieve NERs and SNERs. Our tool 

internally uses fundamental Sequential Rule Mining (SRM) [40] (a kind of association rule mining 

[14]) to do Network Rule Mining (NRM). For NRM, the tool uses SRM because the system network 

database is the kind of sequence database. A SysNetDb contains sequence of two sets of source and 

target entities. Specifically, for each state, our tool used RuleGrowth [41][42][43] to generate network 

rules using a set of connection pairs in a SysNetDb. In our tool, we used RuleGrowth algorithm (and 

tool) proposed (and developed) by Fournier et al. [41][42][43] as sequential rule mining algorithm, 

which finds most frequently occurring partially ordered sequential rules. 

Although any sequential rule mining algorithm can be used in the SNS-Tool, we used 

RuleGrowth algorithm because it mines sequential rules common to several sequences (i.e. connection 

pairs). In our case, a sequence is a connection pair as a special case, thus we got network rules between 

the inter-connected entities. Rest of the approach is same as described in the Mining_NERs_SNERs 

algorithm. We merged unique network rules to make a collection of NERs. Thereafter, the SNS-Tool 

finds NERs with stability count greater than minStabCount to retrieve non-redundant SNERs. 

Third component converts the entity ID based rules (NERs and SNERs) to entity name based 

rules, which are in natural language, thus comprehensible. The tool summarizes the SNERs into a report 

file, which contains information about the co-occurrence of interconnected entities. The NERs and 

SNERs can predict missing and possible co-occurring entities.  

This tool is interesting for practitioners, who deal with an evolving system that can be 

represented as a set of evolving networks. The evolving network represents connections between 
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several entities in a system state. Existing approaches concentrate on either network mining or 

evolution mining, but we used both network and evolution mining together. We also added 

characteristic of stability for a system and its evolving networks. We used network rule mining 

approach, which is an automated technique for knowledge discovery. With the proposed SNS technique 

and tool, one can retrieve stable and evolution rules about system evolution. This information can be 

used to identify the system stability over a time-period. The SNS-Tool experiment aims to show 

application and usefulness to achieve automation. Further, a practitioner can apply similar steps of SNS 

to gain insight about an evolving system. The insightful information is useful due to evolution and 

stable characteristic of rule for inter-connected system entities. The next section describes the use of 

SNS-Tool, and we discuss experimental results by applying our tool for six real-world evolving 

systems. 

4.6  Experimentation and Results  

This section describes application of SNS using our automated SNS-Tool on six real-world 

evolving systems collected from open-internet repositories. We pre-processed six evolving systems to 

generate their six set of evolving networks such that each network is a directed graph, which contains 

relationship information about their inter-connected entities. Each line of a network file contains two 

entities (as nodes) to represent a directed connection (as edge) from the source entity to the target entity. 

For each evolving system, we transformed its set of evolving networks to produce SysNetDbs (system 

network databases) for a state series.  

In Table 4.1, the first two columns describe the six evolving systems belonging to four different 

domains. Third column contains total number of entities used to make networks. Fourth column 

contains average number of neighbours (entities). Fifth column presents calculation for the number of 

aggregated connections using: number of states, number of entities, and average number of neighbours. 

We used our SNS-Tool to show the practical implication of proposed approach and algorithm 

described in previous sections. We now discuss experiments on six evolving systems of following four 

domains. This also demonstrates how to apply the SNS technique and tool on different kinds of 

evolving system. We describe three experimental results on evolving systems following three sub-

sections: Stable Network Evolution Rules (SNERs), Comparing NERs and SNERs, and System 

Network Stability Metrics.  

4.6.1  Stable Network Evolution Rules (SNERs) 

 With the proposed tool, we conducted experimentation on six evolving systems shown in Table 

4.2, where the first column is list of evolving system names. The second column listed the number of 

states used in the experimentation for an evolving system. The third column listed the number of entities 

in an evolving system. The fourth column listed the experimental thresholds of minSupCount-
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minConf-minStabCount. Here, minSupCount and minStabCount are in frequency, which are 

convertible to fraction minSup and minStab. Where, the minSupCount is a threshold for the number of 

entities occurring together in the connection pairs, and the minStabCount is a threshold for the number 

of states in which NER occurs.  

As we used fixed size of individual system network database for each evolving systemsꞌ 

experiments, thus both support count and support fraction have same significance. Hence, we used 

minSupCount for thresholding the support count (since integer value is simple to interpret as compared 

to float). Similarly, we used fixed number of states (N) for each evolving systemsꞌ experiments, thus 

both stability count and stability fraction have same significance. Hence, we used minStabCount for 

thresholding the stability count. 

Table 4.2 also demonstrates the empirical evaluation of the experiment by mentioning the 

experimental results in following columns. The fifth column provides the number of NERs retrieved 

in the experiments. The sixth column provides number of SNERs retrieved. The seventh column 

provides the number of distinct source and target entities in the SNERs. The eighth column provides 

changeability metric value computed from the given details about experiment in each row.  

Table 4.1 Domain Information of Evolving systems and their Evolving networks. 

Domains of   Evolving 

System 
Evolving Systems 

Number of 

entities 

Average number 

of neighbours 

Number of aggregated 

connections 

(A) Evolving Software 

Systems 
Hadoop  HDFS 3129 2.166 15×3129×2.166 = 101661.21 

(B) Evolving 

Natural-language 

Systems 

List of Bible Translation 246 1.456 13×246×1.456 = 4656.288 

List of Multi-sport 

Events 
141 1.786 13×141×1.786 = 3273.73 

(C) Evolving Retail 

Market System 
Retail Market 1872 7.204 13×1872×7.20 =  175219.2 

(D) Evolving IMDb 

movie-genre System 

Positive sentiment of 

movie genres 
284 2.661 16×284×2.661 = 12091.58 

Negative sentiment of 

movie genres 
510 3.303 16×510×3.303 = 26952.48 

 

Table 4.2 Information about SNERM experiments conducted on the six evolving systems. 

Evolving Systems N 

Number 

of 

entities 

minSupCount-

minConf-

minStabCount 

NER 

Count 

Stable 

NER 

Count 

Number of 

source and 

target entities 

Changeability 

metric 

HDFS-Core 15 3129 4-0.4-3 5 4 4 & 4 6.25 

List of Bible Translation 13 246 3-0.3-2 3715 16 2 & 4 1509.21 

List of Multi-sport Events 13 141 3-0.2-2 11 6 3 & 2 11.91 

Retail Market 13 1872 4-0.6-3 131 12 12 & 2 46.94 

Positive sentiment of movie 

genres 
16 284 2-0.3-4 146 5 5 & 3 116.8 

Negative sentiment of movie 

genres 
16 510 2-0.3-4 258 10 9 & 5 103.2 
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The different values of minSupCount, minConf, and minStabCount generate different number 

of rules (with varying interestingness and stability) as output. The low values of minSupCount-

minConf-minStabCount results in many SNERs, which include less interesting and less stable rules. 

For low thresholds, such exhaustive number of rules is tedious to manage. Therefore, best possible high 

values of minSupCount, minConf, and minStabCount produce optimized number of interesting and 

stable rules, which help in decision-making. Thus, in the experiments, we used the best possible high 

values of minSupCount-minConf-minStabCount to optimize number of interesting and stable NERs.   

A system data engineer wants to report less number of manageable and meaningful rules by 

choosing best-possible high value of thresholds. The meaningfulness is a qualitative measure and 

optimized with the quantitative values of the threshold. Although we can generate large number of 

NERs, such exhaustive number of NERs, which have both meaningful and meaningless NERs. Thus, 

we used explore and exploit theory to choose of threshold values: minSupCount, minConf, and 

minStabCount. We explored minSupCount and minConf to generate optimized number of NERs, and 

then exploited the minStab to generate meaningful SNERs. Experiments are done for the best-possible 

high values of thresholds to generate manageable number of NERs and meaningful SNERs. Each 

SNER (XY) is a kind of persistently linked co-occurring entities over a network states. Such NERs 

and SNERs are helpful in inferencing, decision-making, and action-taking. 

Table 4.3 shows the SNERs retrieved for the experiment mentioned in Table 4.2. The 

experiments are done for the thresholds given in the fourth column of Table 4.2. We show only SNERs 

because they are interesting as well as stable. The NERs and SNERs are generated using 

Mining_NERs_SNERs code for a set of evolving system’s states. The SNERs (in Table 4.3) represents 

antecedents as set of source entities and consequents as set of target entities. To do experiments, we 

used set of states as follows: set of versions for the Hadoop-HDFS (a software), set of centuries for the 

list of bible translation, set of decades for the list of multi-sport events, set of months for the retail 

market data, set of decades for the Internet Movie Database (IMDb).  

We describe experiment on each evolving system separately by making inferences from the 

SNERs that are mentioned in Table 4.3. We also explain the advantages of those SNERs for their 

evolving systems. The SNS-Tool automatically retrieved many other such evolution rules (NERs and 

SNERs). The inferences and advantages of the SNERs for the six evolving systems are as follows.   

a) Call graph analysis of evolving software: Hadoop-HDFS 

We pre-processed 15 jars of Hadoop-HDFS1 to make 15 evolving call graphs (networks) that 

are further pre-processed to make 15 SysNetDbs for 15 versions (states). A retrieved SNER (create 

==> convert) suggest that procedure ‘create’ is a source entity (caller procedure) and ‘convert’ is a 

target entity (callee procedure). The rule suggests that the procedure ‘create’ frequently depends upon 

the procedure ‘convert’ for a given threshold. This makes us to know changes in procedure ‘convert’ 
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affects to the procedure ‘create’.  

In Hadoop-HDFS, the SNER “readAll ==> readFully” means that if procedure ‘realAll’ is 

present in a module then most probably ‘readFully’ is also present in that module. Similarly, the other 

rules can also be interpreted. The advantage of these SNERs is in program analysis to do efficient 

software maintenance and evolution automatically.  

b) Processing of evolving natural language: List of Bible Translation and Multi-sport Events 

We used natural language text from two Wikipedia pages: list of bible translations2 and list of 

multi-sport events3. First dataset contains list of bible translations, which mention the translations done 

since 7th century until 2014, from source biblical languages (like Hebrew and Greek) to English variant 

languages (like Modern and Old English). We combined three tables: incomplete Bibles, partial Bibles, 

and complete Bibles given in the Wikipedia page. We made evolving networks using inter-connected 

entities (words) in columns of ‘English variant’ and ‘Source’ of bible, such that each network is for a 

century. We extracted 13 evolving networks that are converted to 13 SysNetDbs for 13 centuries. Two 

retrieved SNERs (English, Modern ==> Greek) and (English ==> Vulgate) suggest that bible in the 

Modern English language is mostly translated from Vulgate or Greek with a probability (i.e. minSup-

minConf-minStab). In List of Bible Translation, the SNERs suggest that most of the ‘Modern English’ 

Table 4.3 For each evolving system, the Stable NERs are generated based on the minSupCount-

minConf-minStabCount as mentioned in Table 4.2. 

Hadoop-HDFS1 List of Multi-sport Events3 Positive6 sentiment in IMDb5 

create ==> convert 

readAll ==> readFully 

checkAccess ==> getDelegationToken 

close ==> getRemoteAddressString 

World ==> International 

Games ==> Regional 

Games ==> International 

Games, World ==> International 

Games, Asian ==> Regional 

Asian ==> Regional 

premier ==> Short 

fond ==> Short 

fine ==> Short 

humor ==> Comedy 

grand ==> Music 

List of Bible Translation2 Retail Market4 Neagative6 sentiment in IMDb5 

English ==> Vulgate 

English ==> Masoretic 

English, Modern ==> Masoretic 

English ==> Masoretic, Text 

English, Modern ==> Masoretic, Text 

English ==> Text 

English, Modern ==> Text 

English ==> Text, Greek 

English, Modern ==> Text, Greek 

English ==> Greek 

English, Modern ==> Greek 

Modern ==> Masoretic 

Modern ==> Masoretic, Text 

Modern ==> Text 

Modern ==> Text, Greek 

Modern ==> Greek 

SUKI  SHOULDER BAG ==> 17841 

ASSORTED MONKEY SUCTION CUP HOOK ==> 17841 

CARRIAGE ==> 14911 

SKULL DESIGN TV DINNER TRAY ==> 17841 

ASSORTED COLOUR LIZARD SUCTION HOOK ==> 17841 

SMALL YELLOW BABUSHKA NOTEBOOK ==> 17841 

LIPSTICK PEN RED ==> 17841 

UNION STRIPE CUSHION COVER ==> 17841 

DISCO BALL CHRISTMAS DECORATION ==> 17841 

BLUE/CREAM STRIPE CUSHION COVER ==> 17841 

CAKE PLATE LOVEBIRD WHITE ==> 17841 

KITCHEN METAL SIGN ==> 17841 

rue ==> Short 

terrible ==> Short 

rue ==> Documentary 

pain ==> Short 

vent ==> Short 

passe ==> Short 

sin ==> Drama 

brat ==> Drama 

terror ==> Horror 

perverse ==> Adult 
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bibles are translated from the ‘Valgute’, ‘Masoretic Text’, and ‘Greek Text’. The advantage of these 

SNERs is in natural language processing to study bible evolution automatically.  

Second dataset contains list of multi-sport events, which mention events happened since 1890’s 

until 2015. We pre-processed this dataset to create a set of evolving networks from connections 

between entities (words) in columns of ‘Title’ and ‘Scope’ (regional, international, and provinces), 

such that each network is for a decade. We extracted 13 evolving networks that are converted to 13 

SysNetDbs for 13 decades. Two retrieved SNERs (Games, Asian ==> Regional) and (Games, World 

==> International) suggests that the ‘Asian’ ‘Games’ are of type ‘Regional’ sport. Similarly, we can 

deduce ‘World’ ‘Games’ are of type ‘International’ sport. In the List of Multi-sport Events, the SNERs 

suggest that events named with ‘World Games’ are probably having ‘International’ scope (level) and 

events named with ‘Asian Games’ are probably having ‘Regional’ scope (level). The advantage of 

these SNERs is in natural language processing to study multi-sport event evolution automatically. 

c) Market analysis of evolving retail-market  

We used a dataset for retail market [170], which contains purchasing information between 

December 2010 and December 2011 from online retail based on UK. To make evolving networks, we 

used product descriptions and customer IDs for each month in following way. A word in product 

description is used as a source entity only if the word appears in more than or equal to 10 months. 

Similarly, a customer ID is used as a target entity only if the customer did purchasing in more than or 

equal to 10 months. These frequent product words and customer IDs are used to create 13 evolving 

networks that are further converted to 13 SysNetDbs for 13 months.  

A retrieved SNER “SUKI SHOULDER BAG ==> 17841” suggest that the product with 

description (source entity) ‘SUKI SHOULDER BAG’ is frequently purchased by the customer (target 

entity) ‘17841’, with a given probability (i.e. minSup-minConf-minStab). Such SNERs are useful to 

do target marketing on customers. There could be many such evolution rules (NERs and SNERs) for 

low values of minSupCount-minConf-minStabCount. In Retail Market, the SNER suggest that the 

customer with ID ‘17841’ frequently purchases shopping items listed as the antecedent of the rules. 

Similarly, the customer with ID ‘14911’ frequently purchases ‘carriage’ as the shopping item. These 

shopping items are useful to do target marketing on such customers. The advantage of these SNERs is 

in automated market analysis.  

d) Positive and Negative Sentiment analysis on evolving IMDb system 

We used movie name and genre data of IMDB5 for 16 decades (1870’s - Oct 2016). We made 

two types of evolving networks using two sentiment-list6 of positive and negative words; Minqing and 

Bing [171][172] created the list.  

First type of evolving networks have connections between positive words in ‘movie names’ as 

source entities and its ‘genres’ as target entities. A retrieved SNER “premier ==> Short” suggests that 
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the movie name containing ‘premier’ appears in the ‘Short’ genre movies for a given threshold. Such 

SNERs are useful to find positive words for naming a movie according to a genre, which is suitable to 

target a positive kind of audience. In the positive sentiment based dataset of IMDb, a rule suggest that 

movie name with positive sentiment words like ‘premier’, ‘fond’, and ‘fine’ probably belongs to ‘Short’ 

movie genre. Similarly, positive sentiment word ‘humor’ most probably appears in movies of genre: 

Comedy. Similarly, positive sentiment word ‘grand’ most probably appears in movies of genre: Music. 

The advantage of these SNERs is in automated positive sentiment analysis of movie names-genre. 

Second type of evolving network has connections between negative words in ‘movie names’ as 

source entities and its genre as target entities. A retrieved SNER “sin ==> Drama” suggests that the 

movie name containing ‘sin’ appears in ‘Drama’ genre for a given threshold. Such SNERs are useful 

to find negative words that are suitable for a genre to target a negative kind of audience. In the negative 

sentiment of IMDb result, a rule suggest that movie name with positive sentiment words like ‘rue’, 

‘terrible’, ‘pain’, ‘vent’, ‘passe’ probably belongs to ‘Short’ movie genre. Similarly, negative sentiment 

word ‘rue’ most probably appears in movies of genre: Documentary. Similarly, negative sentiment 

words ‘sin’ and ‘brat’ most probably appears in movies of genre: Drama. Similarly, ‘terror’ and 

‘perverse’ belongs to movie genres Horror and Adult respectively. The advantage of these SNERs is 

in automated negative sentiment analysis of movie names-genre.  

4.6.2  Comparing NERs and SNERs 

Interpreting NER and SNER count optimization in Figures 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11, 

which describes a brief overview to demonstrate experimentation results. Each figure is a bar chart that 

demonstrates nine pair of bars to represent nine experiments. In each bar chart, horizontal-axis depicts 

the values of minSupCount-minConf-minStabCount for which experiments are performed to generate 

NERs and SNERs. In each bar chart, vertical-axis depicts the count of NERs or SNERs; such that the 

SNERs count is in decreasing order. Each pair of bars represents the number of NERs and SNERs 

retrieved for single execution of mining NERs and SNERs algorithm. Each figure shows nine pair of 

bars for nine such executions. Each pair of bars is for a combination of the values of minSupCount-

minConf-minStabCount used in Mining_NERs_SNERs algorithm. Based on these figures (4.6 - 4.11), 

we can observe following three inferences for relative changeability between six evolving systems. 

- In Figures 4.6 and 4.8 of the Hadoop-HDFS and the List of Multi-Sport Events, respectively 

- for an experiment - the difference between the counts of SNERs and NERs are less. Thus, both of the 

systems are less prone to changeability. 

- The evolving systems of Figures 4.9, 4.10, and 4.11 have moderate difference between the 

counts of SNERs and NERs (for an experiment). Thus, the three evolving systems are moderately prone 

to changeability. 

- In Figure 4.7 of the List of Bible Translation, the difference between the counts of SNERs and 
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NERs are high. Thus, it is highly prone to changeability. 

The above three inferences are also true in case of the changeability metric value given for the 

six evolving systems in Table 4.2. The NERs and SNERs can also be retrievable in other fields like 

bioinformatics data, geological data, agricultural data etc. Such domains can use and take advantage of 

the Mining_NERs_SNERs algorithm. The Mining_NERs_SNERs applied on an evolving system can 

help a subject matter specialist (or domain expert). 

We presented novel technique to retrieve NERs, and then we used NERs as baseline for SNERs 

to show improvement. Both NER and SNER are “interesting” (same as an interesting association rule), 

but a SNER is also “stable” in the system states. If we assume the retrieved NERs as the baseline then 

the SNERs are the improvements. We compared this improvement in terms of the number of stable 

rules (SNERs) with respect to the remaining unstable rules (in NERs). The Figures 4.6, 4.7, 4.8, 4.9, 

4.10, and 4.11 shows pair of bars as improved optimization such that the number of NERs is larger 

than number of SNERs. This provides the quantitative improvement in efficiency due to retrieved 

SNERs from NERs. 

The accuracy of the NERs and SNERs depends upon the algorithm for Network Rule Mining 

(NRM), which further depends upon the Sequential Rule Mining (SRM). The execution time of 

Mining_NERs_SNERs algorithm mainly depends upon four factors. First factor is the chosen SRM 

algorithm. Second, the database size used for the SysNetDbs; larger the database size more the 

execution time and smaller the database size lesser the execution time. Third factor is the threshold 

values used for experiments; lower values need more execution time and higher values need less 

execution time. Fourth factor is the complex connections between the entities used to make connection 

pairs; complex network connections make a complex SysNetDb and simpler network connections make 

simpler SysNetDb. The complexity of network connections to create SysNetDb depends upon system 

domain of the dataset. Higher the complexity of network to create SysNetDb results in higher execution 

time. Lower the complexity of network to create SysNetDb results in lesser execution time. 
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Figure 4.6. Mining_NERs_SNERs experiments for the Hadoop-HDFS. 

 

Figure 4.7 Mining_NERs_SNERs experiments for the list of bible translation. 

 

Figure 4.8 Mining_NERs_SNERs experiments for the list of multi-sport events system. 
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Figure 4.9 Mining_NERs_SNERs experiments for the retail market. 

 

Figure 4.10 Mining_NERs_SNERs experiments for the positive sentiment in IMDb data. 

 

Figure 4.11 Mining_NERs_SNERs experiments for the negative sentiment in IMDb data. 
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4.6.3  System Network Stability Metrics  

This subsection describes two experimental results for the (System Network Stability) SNS 

metric calculation. We demonstrate nine experiments for each evolving system, which proves 

usefulness of automation achieved with our SNS-Tool. For all nine experiments of an evolving system, 

we present details about SNS metric (equation (4)) calculation. In the end, we show two time series 

plots (Figure 4.12) to demonstrate stability metric values of the six evolving systems. 

System Network Stability (SNS): The automated SNS-Tool retrieves information about 

evolution and stability of rules, which are useful to calculate system stability. Table 4.4 reports the nine 

experiments to calculate SNS metric for each of the six evolving systems. We divided the table into six 

part such that each part represents nine experiments for an evolving system, where each row describes 

an experiment. In each part, there are eight columns that describes following. First column mentions 

the experiment number (1 to 9) and the values of minSupCount-minConf-minStabCount to do the 

experiment. Second column contains the minStabCount value of the experiment. Third column contains 

the number of states (N) of an evolving system. Fourth column contains the fraction of minimum 

Table 4.4 SNS metric calculations for nine experiments on each of the six evolving systems. 

minSupCount-

minConf-

minStabCount 

min Stab 

Count 
N 

min Stab 

fraction 

SNER 

Count 

Total NER 

Count 

Stable NERs 

fraction 

SNS 

metric 

Hadoop-HDFS Software System 

1 4-0.6-5 5 15 0.33 2 2 1 33.33 

2 4-0.6-4 4 15 0.27 2 2 1 26.67 

3 4-0.4-5 5 15 0.33 3 5 0.6 20 

4 4-0.6-3 3 15 0.2 2 2 1 20 

5 4-0.2-7 7 15 0.47 2 5 0.4 18.67 

6 4-0.8-5 5 15 0.33 1 2 0.5 16.67 

7 4-0.4-3 3 15 0.2 4 5 0.8 16 

8 4-0.4-4 4 15 0.27 3 5 0.6 16 

9 4-0.8-6 6 15 0.4 0 2 0 0 

List of Multi-sport events a natural language system 

1 3-0.8-2 2 13 0.15 5 8 0.625 9.62 

2 3-0.2-2 2 13 0.15 6 11 0.545 8.39 

3 2-0.3-2 2 13 0.15 14 41 0.341 5.25 

4 2-0.8-2 2 13 0.15 11 37 0.297 4.57 

5 2-0.3-4 4 13 0.31 5 41 0.122 3.75 

6 2-0.3-3 3 13 0.23 6 41 0.146 3.38 

7 2-0.8-3 3 13 0.23 4 37 0.108 2.49 

8 2-0.8-4 4 13 0.31 3 37 0.081 2.49 

9 3-0.8-4 4 13 0.31 0 8 0 0 

Positive sentiment of IMDb movie genres system 

1 2-0.3-3 3 16 0.19 21 146 0.144 2.70 

2 2-0.3-4 3 16 0.25 5 146 0.034 0.86 

3 2-0.3-5 4 16 0.31 4 146 0.027 0.86 

4 3-0.3-4 4 16 0.25 4 74 0.054 1.35 

5 4-0.3-3 4 16 0.19 4 49 0.082 1.53 

6 3-0.4-4 4 16 0.25 3 60 0.050 1.25 

7 3-0.5-4 5 16 0.25 2 48 0.042 1.04 

8 4-0.3-4 4 16 0.25 1 49 0.020 0.51 

9 4-0.3-5 5 16 0.31 0 49 0.000 0.00 
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Stability {minStabCount ÷ N}. Fifth column contains the number of SNERs retrieved in the 

experiment. Sixth column contains the distinct NER count retrieved in the experiment. Seventh column 

contains the fraction of stable NERs {(SNER count) ÷ (total NER count)}. Eighth (the last) column 

contains the value of the SNS metric for the experiment. Each part of Table 4.4 is sorted in increasing 

order of SNS metrics for an evolving system. 

Figure 4.12 presents six time series for six evolving systems. Each time series has nine co-

ordinates that represent nine SNS metric values for the nine experiments done on an evolving system. 

The X-axis in the figure has same sequence as mentioned in Table 4.4 for each evolving system. For 

the time series of Hadoop-HDFS, in X-axis the ‘1’ represents the first experiment ‘1’ mentioned in first 

column of Table 4.4 for Hadoop-HDFS with minSupCount-minConf-minStabCount = 4-0.6-5.  

Figure 4.12 helps to measure speed of evolution (0 to 100 in Y-axis) for the evolving systems. 

We inferred all the six systems are evolving in nature with different speeds. The List of Bible translation 

system has evolved fastest, while Retail market system and IMDB movie genre system has evolved 

moderately, whereas List of Multi-sport event and Hadoop-HDFS has evolved slowly. The positive 

Table 4.4 SNS metric calculations for nine experiments on each of the six evolving systems. 

minSupCount-

minConf-

minStabCount 

min Stab 

Count 
N 

min Stab 

fraction 
SNER Count 

Total NER 

Count 

Stable NERs 

fraction 

SNS 

metric 

List of Bible translations a natural language system 

1 3-0.2-2 2 13 0.15 25 3715 0.007 0.1 

2 2-0.3-2 2 13 0.15 28 5397 0.005 0.08 

3 3-0.3-2 2 13 0.15 16 3715 0.004 0.07 

4 2-0.2-4 4 13 0.31 12 5644 0.002 0.07 

5 3-0.3-3 3 13 0.23 6 3715 0.002 0.04 

6 2-0.3-3 3 13 0.23 6 5397 0.001 0.03 

7 2-0.3-4 4 13 0.31 3 5397 0.001 0.02 

8 3-0.3-4 4 13 0.31 3 3715 0.001 0.02 

9 2-0.2-5 5 13 0.38 0 5644 0 0 

Retail market system 

1 4-0.6-2 2 13 0.15 25 131 0.191 2.94 

2 5-0.6-2 2 13 0.15 12 71 0.169 2.6 

3 4-0.8-2 2 13 0.15 14 86 0.163 2.5 

4 4-0.6-3 3 13 0.23 12 131 0.092 2.11 

5 4-0.6-4 4 13 0.31 7 131 0.053 1.64 

6 5-0.6-3 3 13 0.23 5 71 0.07 1.63 

7 4-0.8-3 3 13 0.23 6 86 0.07 1.61 

8 5-0.6-4 4 13 0.31 3 71 0.042 1.3 

9 4-0.8-4 4 13 0.31 3 86 0.035 1.07 

Negative sentiment of IMDb movie genres system 

1 2-0.3-3 3 16 0.19 31 258 0.12 2.25 

2 4-0.3-3 3 16 0.19 7 79 0.089 1.66 

3 2-0.3-4 4 16 0.25 10 258 0.039 0.97 

4 4-0.3-4 4 16 0.25 3 79 0.038 0.95 

5 3-0.3-4 4 16 0.25 4 116 0.034 0.86 

6 3-0.4-4 4 16 0.25 2 84 0.024 0.6 

7 3-0.5-4 4 16 0.25 1 63 0.016 0.4 

8 4-0.3-5 5 16 0.31 1 79 0.013 0.4 

9 2-0.3-5 5 16 0.31 3 258 0.012 0.36 
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and negative sentiment system has similar evolution rate.  

We cannot infer the following two deductions from the SNS metric values. First, the two 

evolving systems of different domains are not comparable based on the SNS metric values because an 

experiment also depends upon factors like: type of entities and their connections. Second, low SNS 

metric value does not reflects unstable system, but it reflects fast evolution.  

4.6.4  Advantage over existing works 

In addition to the advantages of SNERs as compared to the baseline NERs, we also compared 

our approach with the existing state-of-the-arts (in Chapter 2). Despite unavailable exact comparable 

experiments; nevertheless, in the Chapter 2 we compared of our approach with some similar existing 

approaches, and described applications of our approach. In contrast to existing state-of-the-art, our 

proposed SNS algorithm is applicable to an evolving system that can be represented as a set of evolving 

networks. On one hand, usually rule-mining techniques are independent of state series. On the other 

hand, evolution (or temporal) mining techniques are independent of inter-connected entities. However, 

in this chapter, we presented an approach to mine evolution and stable rules about inter-connected 

entities of an evolving system. We demonstrated the use of prototype SNS-Tool for real-world 

 

 

Figure 4.12 SNS metrics using the nine experiments for all six evolving systems. 
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applications that includes four domain based six evolving systems. In each experiment, we used 

optimize number of NERs and SNERs to calculate the SNS metric. The Algorithm SNS depends upon 

rule mining, thus pros-cons of rule mining are also pros-cons for Algorithm 4.2 Mining_NERs_SNERs.   

4.7  Summary 

In this chapter, we proposed System Network Stability (SNS) algorithm that uses an algorithm 

for mining Network Evolution Rules (NERs) and Stable Network Evolution Rules (SNERs). The 

algorithm analyses a pre-evolved system using novel parameter minimum Stability (minStab) to 

generate Stable NERs (SNERs). We introduced stability as a new measure for characterizing Network 

Evolution Rules (NERs) over time. We did this using a proposed algorithm Mining_NERs_SNERs, 

which retrieves NERs and Stable NERs (SNERs) in a set of states SS = {S1, S2 … SN} of an evolving 

system. The purpose of SNERs is to study and compute the stability and changeability property of an 

evolving system. 

Based on SNS algorithm, we developed an intelligent tool, which is used to do experiments on 

evolving systems. We prototyped the SNS algorithm as a tool named as SNS-Tool. We used SNS-Tool 

to demonstrate experiments to mine NERs and SNERs from six state series of six different evolving 

systems. We also demonstrated applications of the tool on six evolving systems. We summarized 

experimental results to show various SNERs for some chosen value of minimum support count 

(minSupCount), minimum confidence (minConf), and minimum stability count (minStabCount). We 

also demonstrated the optimization in the number of SNERs as compared to NERs.  

Using the mining information, we presented a formula for stability metric and its type SNS 

metric, which quantifies the speed of evolution in the evolving system. Additionally, we also calculated 

nine SNS metric values for nine experiments of each evolving system. To the best of our knowledge, 

we found our approach is novel in context of system evolution analysis based on SNERs, Stability 

Metric, and Changeability Metric. 

Our SNS-Tool automatically retrieves Stable NERs (rules) that can help to deduce evolution 

information. We quantified the speed of evolution by measuring slow or fast evolution of an evolving 

system, which is interesting and non-obvious information. The information may be further helpful to 

study system evolution analysis. We presented one of the novel approach and tool to do the stability 

and changeability analysis of an evolving system based on knowledge discovery and data mining. 
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Network Evolution Subgraph (Graphlet or Motif) Mining for System 

Stability, Changeability, and Complexity analysis 

 

We consider a complex system that evolves with time, which creates a state series SS = {S1, 

S2… SN} such that each state corresponds to a time point. In this chapter, we introduce two kinds of 

Network Evolution Subgraphs such as Network Evolution Graphlets (NEGs) and Network Evolution 

Motifs (NEMs) retrieved from a set of evolving networks {EN1, EN2… ENN} that represents multiple 

states of an evolving system. Such evolving subgraph patterns are interesting information about 

dynamic networks. Here, we elaborate the subsection 3.3 on network evolution subgraph mining. 

We used frequencies of graphlets changing over graph snapshots to model a changeability 

metric, which is an evolution information about a set of evolving networks. Based on the changeability 

metric, we defined stability metric that aids to do system stability analysis. Further, we proposed an 

algorithm for mining NEGs and NEMs information followed by calculating changeability metric and 

stability metric over a state series. This technique is prototyped as a tool that we used to demonstrate 

the application of our work on six evolving systems including: one evolving software system, two 

evolving natural language systems, one evolving retail market system, and two evolving sentiments in 

IMDB movie name-genre system. 

We also used graphlets information of a state to calculate System State Complexity (SSC). The 

System State Complexities (SSCs) represent time-varying complexities of multiple states. Additionally, 

we also used the NEGs information to calculate Evolving System Complexity (ESC) for a state series 

over time. We proposed an algorithm named System Network Complexity (SNC) for mining NEGs, 

SSCs, and ESC, which analyzes a pre-evolved state series of an evolving system. Again, we prototyped 

this technique as a tool named SNC-Tool, which is applied to six real-world evolving systems collected 

from open-internet repositories of four different domains: software system, natural language system, 

retail market basket system, and IMDb movie genres system. This is demonstrated as experimentation 

reports containing retrieved — NEGs, NEMs, SSCs, and ESC. 

5.1  Introduction 

Graph (or Network) can be used as a data structure to represent system entities (as nodes) and 

their connections (as relationships). Frequent subgraph mining is a popular data mining technique. A 

frequent subgraph is a graph whose support is greater than minimum support threshold as presented in 

AGM [49], FSG [50], and gSpan [51]. 
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Network Motif is one of the well-known kind of frequent subgraph. Network motifs are patterns 

in the form of subgraphs in a network, which represents a statistically recurrent (or significant re-

occurring) subgraph H in the network ENi. A network motif is an interconnection occurring with 

significantly high frequency in a network. Milo et al. [52][53] has defined and detected “network 

motifs” for protein-protein interaction, food webs, and electronic circuits. This resulted in the 

development of many tools with the objective to retrieve network motif. These motifs are the building 

blocks that make up the network and useful to analyse the underlying network.  

Graphlets [54][55] are the small connected non-isomorphic induced subgraphs. The motifs are 

statistically significant subgraphs, and the graphlets are induced subgraphs. Induced subgraphs means 

when they are aggregated according to their frequency then they represent its network structure. 

Frequency of induced subgraph is referred as graphlet frequency [173][174], which is the graphlet 

count to quantify the occurrence of local structural properties of a network. Mining of graphlets and 

motifs information is computationally expensive for large graphs, but they provide useful information. 

There are few more graph properties like centrality, degree distribution, and connectedness. We aim to 

calculate aggregate frequencies of subgraphs over time to generate network evolution information. 

Since the inception of network motifs and graphlets, the following subgraph mining tool came 

into existence: mFinder [52][53], FANMOD [175], Kavosh [176], NetMode [177], ORCA [173], acc-

Motif [178], and Co-evolving relational motifs [83]. Such tools find subgraphs occurring in the input 

graph, and then group the isomorphic subgraphs in classes. As output, the tools retrieve a class of 

subgraph with its frequency. Our work is independent of how subgraph-mining techniques work. We 

are interested to study their outputs over time. Our primary objective is to study the network evolution 

subgraphs, and our secondary objective is to study of system changeability and stability analysis. Our 

third objective is to study system network complexity. 

For this, an algorithm is proposed, which retrieves information of Network Evolution Graphlets 

(NEGs) with their frequencies over states. Then, Network Evolution Motifs (NEMs) are retrieved from 

the set of NEGs. Further, the graphlet’s evolving frequencies are used to calculate system’s 

Changeability Metric (CM), Stability Metric (SM), System State Complexity (SSC), and Evolving 

System Complexity (ESC). Our approach is simple and easy to understand; therefore, it can be included 

into existing evolving systems. To show such application, we conducted experiments on multiple real-

world evolving systems of different kinds and characteristics.  

Rest of the chapter is organized as follows. Section 5.2 describes the preliminaries about 

subgraph mining for a state. Section 5.3 contributes novel definitions, and equations for NEG, NEM, 

CM, SM, SSC, and ESC. Section 5.4 presents illustrative examples. Section 5.5 contributes a proposed 

algorithm to compute NEGs, NEMs, CM, and SM for an evolving system. Section 5.6 contributes an 

approach System Network Complexity (SNC), which calculates SSCs and ESC to analyze an evolving 
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system. Section 5.7 describes SNC-Tool based on proposed work. Section 5.8 demonstrates the 

experiments for System Stability and Changeability analysis. Section 5.9 demonstrates the experiments 

for System Network Complexity analysis. Lastly, Section 5.10 gives concluding remarks. 

5.2  Preliminaries for Subgraph Mining 

This section presents subgraph mining for a system state. Before defining terminologies, we 

start with basic notations and concepts. For a fixed number of nodes (subgraph-size), subgraphs are 

grouped into classes (i.e. motifs or graphlets). In the strict manner, the motif and graphlet represent two 

different properties of subgraph in a given network. For better understanding, we introduce some 

auxiliary notations and search space for subgraph mining.  

Initially, choose a subgraph size to fix the number of vertices in a subgraph. Suppose there are 

M numbers of subgraph classes. We discriminated various subgraphs (or motifs or graphlets) by 

enumerating subgraphs from 0 to M. A subgraph class of induced subgraphs (graphlets) can be given 

as {G0, G1, G2… GM}, where Gj denotes jth graphlet. The {G0, G1, G2 . . . GM} denotes a set of all 

possible graphlets for a given graphlet size, where M is the total possible graphlets. Graphlet frequency 

is the count of a subgraph occurring in a network and denoted as freqj corresponding to the Gj. The 

{freq0, freq1, freq2 . . . freqM} denotes a set of graphlet frequencies for all possible graphlets. Similarly, 

{M0, M1, M2… MM} denotes a subgraph class of frequent subgraph (network motifs), where Mj denotes 

jth motif. Where G0 is same as motif M0, G1 is same as motif M1 and so on. The graphlet or motif 

frequency is denoted as freqj corresponding to the jth graphlet or motif (Gj or Mj). Thus, the {freq0, 

freq1, freq2… freqM} also denotes a set of frequencies for the set of motifs (i.e. frequent graphlets).  

These graphlets can be retrieved with a subgraph mining technique. Search space of subgraph 

mining in our case is a system network containing connections between entities. Local subgraph mining 

on a network retrieves graphlets information that is denoted as graphlets_info. Subgraph mining 

retrieves induced subgraph information i.e., graphlets information, which is a doubleton set of graphlet 

and its frequency. The graphlets information is denoted as 

graphlets_info = < Gj, freqj > | 0 ≤ j, m ≤ M    -- (1) 

where, Gj is a graphlet occurring freqj number of times in the network, and j is in enumeration of 

graphlet. Such that j and m ranges from 0 to M. Where, GM is the highest enumerated graphlet. 

After retrieving graphlets information, we retrieve motifs from the set of graphlets whose 

frequency is significantly high. However, the number of retrieved motifs is less than the number of 

retrieved graphlets. The definition for the graphlet of state Si is simple “a subgraph which is an induced 

subgraph in an evolving network ENi of state Si”. Similarly, the definition for the network motif of 

state Si is simple “a subgraph which is statistically significant (or frequent) in evolving network ENi of 

state Si”. 
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Different pre-processing techniques make different networks (i.e., relationship between entities 

as source and target nodes). The pre-processing depends upon the kind of the evolving system, i.e., 

different system has different pre-processing to make a series of evolving networks. This means a 

system pre-processing requires system domain expert, who can identify appropriate entities and 

relationship between those entities. The selection of relationship between inter-connected entities 

depends upon the required result (as final output). Even a system itself has different kinds of complex 

pre-processing to generate its evolving network. There two example of pre-processing: first, procedure-

calls are entity-connections relationships in a software system; second, word-sequences are entity-

connections relationships in a natural language system. 

Subgraph mining can solve crucial problems by retrieving insight about characteristics and 

internal working of system network. In Figure 5.1, a state Si is pre-processed to make an evolving 

network ENi using intrinsic property of inter-connected entities in the evolving system. Further, the 

subgraph mining tool takes ENi as input to retrieve graphlets information as output. Counting of 

subgraphs (e.g., motifs or graphlets) in a given network is the primary task of subgraph mining 

[173][180][181]. In subgraph mining, counting a class of subgraph requires different approaches of 

graph theory. Usually a subgraph mining tools and techniques involve (following) three steps. Firstly, 

it finds isomorphic subgraphs in a network. Secondly, it groups them into classes. Thirdly, determine 

frequencies of the subgraph classes. We are interested to enhance such existing subgraph mining 

technique that can study system network evolution over time.   

Subgraph mining for a network ENi of a state Si can retrieve graphlets information. 

Sequentially, we can retrieve graphlets information for all states one by one (locally on each state). Our 

aim is to process a state series to identify the network evolution graphlets and complexities of an 

evolving system. Afterwards, we explain a novel technique for mining evolving networks, which 

discovers the hidden information for an evolving system. 

5.3  Proposed Definitions and Concepts 

This section describes proposed terminologies and definitions that we need to present this 

chapter. To start with, we express a system state series SS as a set {S1, S2… SN} at various time points 

such that Si belongs to time ti.  

Suppose we used a subgraph mining technique. Assume we already used a local subgraph 

mining technique (or tool) on each evolving network for all states of a system. This retrieves graphlets 

 

Figure 5.1 Subgraph mining of an evolving network ENi for a state Si. 
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information for each state. Then, we aggregate this information over set of states, which retrieves 

network evolution subgraphs with their frequencies. Based on this assumption, our key conceptual 

contribution is definitions in the following subsections. 

5.3.1  Network Evolution Subgraphs 

Definition 5.1: A network evolution subgraph is a subgraph that has multiple occurrences in a 

state series SS, such that it appears in multiple states of a system with changing frequencies. Depending 

upon graph properties, the network evolution subgraph can be of three types:  

- network evolution frequent subgraph: if subgraph is frequently occurring (means more than 

minimum support and minimum confidence) in a set of evolving networks;  

- network evolution motif: if subgraph is statistically recurrent in a set of evolving networks; and  

- network evolution graphlet: if subgraph is induced subgraph in a set of evolving networks.  

For a network evolution subgraph, its frequencies keep on changing with states. These 

frequencies are aggregated to generate accumulated knowledge for a network evolution subgraph of a 

state series. On one hand, frequent subgraphs and network motifs are frequently (or statistically) 

occurring (or recurrent) as compared to a given threshold. On the other hand, graphlets are induced 

subgraphs, which provide frequencies that can be combined to form and represent its network. Thus, 

we are interested to accumulate knowledge of graphlets over a state series. We are interested to retrieve 

network evolution graphlets with its frequency in given set of evolving networks to make an aggregated 

information. This knowledge leads to define aggregate frequency for each retrieved network evolution 

graphlets. Thus, network evolution graph is defined as follows. 

Definition 5.2: A Network Evolution Graphlet (NEG) is a graphlet Gj (induced subgraph) that 

appears in multiple evolving networks with evolving frequencies freqji over a state series SS, where ‘i’ 

stands for state Si. 

Next, we aggregate frequencies freqji to generate accumulated knowledge for a state series. To 

do this, we present a formula to calculate the aggregate frequency for each retrieved graphlets and it is 

defined as follows. 

Definition 5.3 Aggregate frequency: Let Gj is a network evolution graphlet (NEG) appearing 

in multiple states. The Aggregate_freqj denotes aggregate frequency of a NEG Gj. The aggregate could 

be calculated in many ways, e.g. mean, median, mode, sum, count, max, min etc. The arithmetic mean 

of frequency over N states for a NEG Gj is given by 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑓𝑟𝑒𝑞𝑗 =
∑ 𝒇𝒓𝒆𝒒𝒋𝒊

𝑵
𝒊=𝟏

𝑵
                  -- (2) 

where, freqji is the frequency of NEG Gj in state Si such that i vary from integer 1 to N and j is constant. 

This means i is a variable for different states and j is constant for Gj. 



73 

Definition 5.4: Network Evolution Graphlets information is a doubleton set that contains pair 

of retrieved NEGs (as a subgraphs) and their aggregate frequencies. The NEGs information is denoted 

as   

NEGs_info = < Gj, Aggregate_freqj > | 0 ≤ j, mꞌ ≤ M  --  (3) 

where, Gj is jth NEG with aggregate frequency as Aggregate_freqj and j is the enumeration of the NEG; 

such that mꞌ is the number of retrieved NEGs (distinct graphlets) over all the states in SS. Such that j 

and mꞌ ranges from 0 to M. This makes pair of retrieved NEGs with their aggregate frequencies. 

Definition 5.5: A Network Evolution Motif (NEM) is a NEG Gj that occurs statistically 

significant (or frequent) with aggregate frequency (Aggregate_freqj) above a threshold given by an 

expert. 

5.3.2  System Changeability Metric and Stability Metric 

As we assumed, we already computed graphlets information of multiple states using an existing 

technique (or tool). We use this graphlets information over a state series to make a function Fj 

representing a function of jth graphlet frequency 

𝐹𝑗 =  𝐹( 𝑖, 𝑓𝑟𝑒𝑞𝑗𝑖)                                   -- (4) 

where i represents state and j represents enumeration of graphlet Gj. The function Fj is used to measure 

the evolving system’s changeability and stability, which is our second key conceptual contribution. 

The changeability and stability are the important measuring criteria that measures evolution over states. 

The equation (4) aids to define changeability metric. We can use derivative over the curve of a 

graphlet’s frequencies (in multiple states) to compute the system changeability. 

 Definition 5.6: Changeability Metric (CM) is defined as summation of differential gradient of 

a graphlet’s frequencies over states, which is further summed over all the retrieved graphlets  

𝐶ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 = ∑ ∑ |
𝑑 F (𝑖, 𝑓𝑟𝑒𝑞𝑗𝑖)

𝑑 𝑖
|

𝑁

𝑖=1

𝑚′

𝑗=1

   -- (5). 

Physical significance of changeability metric is that it measures randomness (or entropy) of 

inter-connected entities over a state series. The term 𝑑F (𝑖,  𝑓𝑟𝑒𝑞𝑗𝑖) is computed by finding difference 

between frequencies of jth graphlet retrieved for two consecutive states (i.e. {freqj(i+1) and  freqji}), and 

then divide this by epoch between the two consecutive states (epoch is the time-lag between two states 

{(i+1)th state to ith state}). We took its modulus in equation (5) because we are interested only in 

magnitude for change and evolution analysis. The value of the derivation depends upon the change in 

the graphlet’s frequency between two states. A system remains stable over a long period, means it is 

not changed frequently. If system network dynamics is changing slowly over states, then the NEGs’ 

frequencies will be stable. However, if system network dynamics are fluctuating, then NEGs’ 
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frequencies will also vary.  

Less change in a graphlet’s frequencies between states (e.g. from freqji to freqj(i+1) of Gj) suggest 

less change between the two consecutive states. Note, i and (i+1) represents two consecutive states. 

Less change between states depicts stability in the evolving system, whereas high changes depict high 

instability due to high evolution-rate. From the changeability metric, we made following remarks. On 

the one hand, low change in the values of NEGs produces low value of the changeability metric, which 

means that only few NEGs are stable. On the other hand, high change in the values of NEGs produces 

high value of changeability metric, which means that many NEGs are unstable. However, the range of 

changeability metric is [0, ∞). The lower bound is zero (0) for a constant system, which is never 

underwent any change. The upper bound is infinity (∞) for an unstable system, which is underwent 

infinite changes. 

High value of changeability metric depicts less stability, whereas low value of changeability 

metric depicts high stability. Based on this, we defined stability metric as follows.   

Definition 5.7: Stability Metric (SM) is defined as the inverse of the changeability metric 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 =
1

𝐶ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐
        -- (6). 

Physical significance of stability metric is that it measures stability (or persistence) of inter-

connected entities over a system’s state series. However, the range of stability metric is [0, ∞), such 

that lower bound is zero (0) for an unstable system and upper bound is infinity (∞) for a constant 

system.  

We can use the stability metric to know about the relative stability of a new state. Suppose the 

stability for Nth state is SMN. If we add a new state to the system, then new stability for (N+1)th state is 

SMN+1. There are three conditions possible. If SMN+1 > SMN, then changes are significantly done to 

construct a new state. If SMN+1 < SMN, then the new state is not changed much as compared to the old 

states. If SMN+1 = SMN, then the new state is similar to the old states. 

5.3.2  System State Complexity and Evolving System Complexity 

This subsection describes proposed system network complexity analysis definitions and 

concepts. A graph can be useful to calculate system complexity as a measure of interaction between 

various system entities as nodes. To calculate system network complexities, we use the well-known 

and widely appreciated metric, cyclomatic complexity by McCabe’s [121]. It is a metric to calculate 

the complexity from a graph of system (especially software). The cyclomatic complexity is a graph 

metric that is proven useful for determining the complexity of computer programs when applied to their 

control and decision flow graphs. Mathematically, cyclomatic complexity is a number of regions or a 

number of linearly independent paths in the graph and calculated by the formula, C = (e– n + 2), where 
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‘e’ stands for the number of edges and ‘n’ stands for the number of nodes in the graph. In this chapter, 

we demonstrate that “cyclomatic complexity is also applicable to systems that are represented as a 

network (or graph)”. Such result is non-obvious and non-trivial information about an evolving system. 

We represent an evolving system as a set of evolving networks to retrieve graphlets. 

Collectively these graphlets are helpful to calculate the complexity of the evolving networks. We 

enhance the existing concept of cyclomatic complexity to calculate the system network complexity 

over time. To do this, we calculate and store the cyclomatic complexity (number of independent paths) 

of all possible graphlets. Usually, the cyclomatic complexity also considers the number of connected 

components, but in our case, cyclomatic complexity is calculated only for small-connected subgraphs 

(e.g., graphlets or motifs). The frequencies of graphlets are meaningful quantity that can be useful to 

calculate complexity for the network. Using cyclomatic complexity and subgraphs, we can quantify 

the complexities of an evolving system states. Every subgraph possesses a certain cyclomatic 

complexity. Thus, our technique is applicable to any system that can be represented as network. 

Firstly, use the graphlets information of a state to calculate its System State Complexity. 

Definition 5.8 System State Complexity (SSC): The SSCi is the complexity of a state Si in an 

evolving system. Numerically, it is the weighted arithmetic mean of cyclomatic complexities over the 

frequencies of all retrieved graphlets, such that a frequency represents the weight. Its formula is given 

by the following equation 

System State Complexity of Si (SSCi) = 
∑ (𝑓𝑟𝑒𝑞𝑗𝑖 × 𝐶𝑗)𝑚

𝑗=0

∑ 𝑓𝑟𝑒𝑞𝑗𝑖
𝑚
𝑗=0

   -- (7) 

where Cj denotes cyclomatic complexity and freqji represents frequency for graphlet Gj of state Si and 

m is count of retrieved graphlets. System State Complexities (SSCs) information is given by 

SSCs_info = < Si, SSCi > | 0 ≤ i ≤ N         -- (8) 

Secondly, use the NEGs information to calculate the Evolving System Complexity. 

Definition 5.9: Evolving System Complexity (ESC) is defined as the aggregated complexity of 

a state series SS for an evolving system. Numerically, it is the weighted arithmetic mean of cyclomatic 

complexities over the aggregate frequencies for all NEGs, such that an aggregate frequency represents 

the weight. Its formula is given by the following equation 

Evolving System Complexity = 
∑ (𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑓𝑟𝑒𝑞𝑗×𝐶𝑗)𝑚′

𝑗=0

∑ 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑓𝑟𝑒𝑞𝑗
𝑚′
𝑗=0

   -- (9) 

where, Aggregate_freqj denotes the aggregate frequency of a graphlet Gj over time, Cj denotes the 

cyclomatic complexity of the graphlet Gj and m is count of retrieved NEGs. 

Mathematically, we can deduce the average of non-zero SSCs is equal to the ESC. Note the 

ESC is not equal to the average of SSCs. The SSCi calculates complexity of an individual state, whereas 
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ESC calculates complexity of a state series. We need both quantities because they express their own 

physical significance independent of each other.  

An evolving system with less ESC has fewer interactions between its entities, whereas an 

evolving system with high ESC has many complex interactions between its entities. If an evolving 

system has many frequent subgraphs (i.e. NEMs) that have less complexity, then probably it has less 

ESC. If an evolving system has many frequent subgraphs (i.e. NEMs) that have high complexity, then 

probably it has high ESC. Using the ESC, we can quantitatively compare the complexity of two 

evolving systems of the same domain. Additionally, using the SSCs, we can quantitatively measure the 

changes between states.   

5.4  Illustrative Example 

In this section, we describe an illustrative example to describe definition and overall approach. 

To do local subgraph mining for a single state Si in Figure 5.2, which consider an evolving network 

EN1 = (E1, C1) of state S1, where E1 denotes a set of evolving entities and C1 denotes a set of directed 

evolving connections. Further, the output of pre-processing is adjusted automatically such that it can 

be acceptable (as input) by a subgraph mining algorithm. This means, we need coding to format each 

network according to the required input of the mining algorithm.   

Usually, subgraph (motif or graphlet) mining tool takes adjacency list (of network) shown as 

EN1 in the Figure 5.2. In the figure, the local subgraph mining is applied on the evolving network EN1 

to retrieve graphlets (G0, G2, and G71) with frequencies (25, 25, and 50) respectively. The frequency is 

given in percent occurrence of a graphlet in the formation of its network. For example, both the 

graphlets G0 and G2 are occurring 25% of times, additionally a graphlet G71 is occurring 50% of times. 

This means ‘G0’ occurs 25% in network formation of state S1
 with node (6, 1, 4, 2). Similarly, the 

graphlets G0 and G71 has 25% and 50% of occurrence in the network formation.  

For a Network Evolution Graphlet (NEG), its frequency keeps on changing over states. Suppose 

three states {S1, S2, S3} where S1 is already presented in the Figure 5.2. The Figure 5.3 highlights time 

series of ‘G71’ for state S1 with 50% frequency. In the Figure 5.3, for state S2 and S3 the graphlets 

information is [<G20, 50>, <G30, 25>, <G135, 25>] and [<G20, 20>, <G71, 20>, <G30, 20>, <G100, 20>, 

 

Figure 5.2 An overview of local subgraph mining for an evolving network EN1 of state S1. 
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<G101, 20>] respectively. Such graphlets information over states is useful to do system changeability 

and stability analysis because evolving frequencies are depicting the evolution happened in the system.   

For the illustrative example in the Figure 5.2 and 5.3, the graphlets information of a state series 

also aids to calculate the NEGs_info. The NEGs_info is [<G20, 23.33>, <G71, 23.33>, <G30, 15>, <G0, 

8.33>, <G135, 8.33>, <G2, 8.33>, <G100, 6.66>, <G101, 6.66>]. The NEMs is [<G20, 23.33>, <G71, 

23.33>] if threshold frequency is 20%. The changeability and stability are 320 and 0.003125 

respectively.   

Now, we are extending the illustrative example (in Figure 5.4) for subgraph mining of three 

network states. In Figure 5.4, suppose a state S1 is pre-processed to make an evolving network EN1 = 

 

Figure 5.4 Illustrative example of subgraph mining for a state series SS = {S1, S2, S3} represented as 

three evolving networks. 

 

 

Figure 5.3 Time series graph describing frequencies of NEGs for a state series SS = {S1, S2, S3}. 
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(E1, C1), where E1 = {e1, e2, e3, e4, e5, e6} denotes a set of entities and C1 = {(e4, e1), (e4, e2), (e3, e2), 

(e5, e6), (e3, e4), (e6, e1)} denotes a set of directed evolving connections. Here, (e4, e1) represent a 

directed edge from entity e4 to e1. Similarly, S2 and S3 are also pre-processed to make EN2 and EN3 

respectively. Thereafter, we do subgraph mining on all three evolving networks locally.    

In Figure 5.4, for state S1 graphlets (G0, G2, and G71) has cyclomatic complexity (C0 = 1, C2 = 

2, C71 = 1) and frequency (freq0,1 = 25, freq2,1 = 25, freq71,1 = 50). The resulting system state complexity 

for S1 is calculated as (25 × 1 + 25 × 2 + 50 × 1) ÷ (25 + 25 + 50) = 1.25 also inferable in the time-

varying series of Figure 5.5. The resulting evolving system complexity for state series SS = {S1, S2, S3} 

is 1.816 also shown in the constant time-series of Figure 5.5.  

In the following sections, we use the definitions and equations to describe the proposed 

approach and its applications on real-world evolving systems. Next two sections (5.5 and 5.6) describe 

algorithms to mine evolving networks to do SysEvo-Analytics.  

5.5  Proposed: Mining Changeability Metric, Stability Metric, Network 

Evolution Graphlets and Network Evolution Motifs 

In this section, we present an algorithm to mine changeability metric (CM), stability metric 

(SM), NEGs, and NEMs information for a given state series SS of an evolving system stored in a 

repository. Search space of our algorithm is a set of evolving networks {EN1, EN2… ENN} for a state 

series SS = {S1, S2… SN}, where N is the number of states for an evolving system. 

The steps of our approach are based on the fundamental steps for knowledge discovery and data 

mining theory; these steps are shown in the Figure 5.6. First, pre-process a system state series to create 

evolving networks. Then, mine each network of a state to retrieve graphlets information. Thereafter, 

aggregate the evolving frequencies for the evolving networks to discover the information about NEGs 

 

Figure 5.5 Illustrative example of complexity calculation for three states given in Figure 5.4. 

 



79 

as knowledge. Again, evolving frequencies is also useful to make a time-series graph over multiple 

states (as described in Figure 5.3). The evolving frequencies of graphlets can be used for the system’s 

changeability and stability analysis.  

The mining_NEGs_NEMs_CM_SM algorithm takes N evolving networks (as input) 

corresponding to N states of an evolving system. Thereafter, the algorithm retrieves changeability 

metric (CM), stability metric (SM), NEGs, and NEMs (as output) in three sub-steps. 

- First, the algorithm uses an existing subgraph-mining technique to retrieve the subgraph 

information for each state. The subgraph-mining technique processes each ENi to detect induced 

subgraphs (or graphlets) information. The local subgraph mining retrieves graphlets with their 

frequencies as given in equation (1). We refer graphlets information for state Si as graphlets_info_i. 

- Second, the algorithm aggregates the graphlets_info of all N states by calculating the 

aggregate frequency of each NEG, according to the equation (2). The algorithm output the retrieve 

NEGs information according to equation (3). The NEGs with their Aggregate_freq greater than a user 

defined threshold (ϴ) can be selected as NEMs. Thus, the algorithm is useful to identify the NEGs and 

NEMs of interconnected evolving entities during system evolution. 

Algorithm mining_NEGs_NEMs_CM_SM (evolvingNetworks) 

Initialize j ∈ integer 0 to M graphlets 

Initialize i ∈ integer 1 to N states 

Initialize HashMap graphlets_info < Gj, freqji > 

Initialize HashMap NEGs_info < Gj, Aggregate_freqj > 

Initialize CM = 0 as the changeability metric value  

For each state ENi in evolvingNetworks 

graphlets_info < Gj, freqji > = subgraphMining(ENi) 

End For 

Suppose mꞌ is the count of retrieved graphlets over all states 

 
Figure 5.6 An overview of framework presented showing combined steps of the Algorithm 

mining_NEGs_NEMs_CM_SM, the Algorithm 2: mining_NEGs_SSCs and the Algorithm 3: 

Calculate_ESC. 
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For each graphlet Gj out of mꞌ graphlets, where 1 ≤ j, mꞌ ≤ M 

Initialize float frequencySum = 0 

Initialize integer Aggregate_freqj = 0 

For each graphlets_info_i of Si where i varies from 1 to N 

frequencySum = frequencySum + freqji 

End For 

Aggregate_freqj = frequencySum ÷ N 

Add tuple < Gj, Aggregate_freqj > to NEGs_info 

NEGs with their Aggregate_freq ≥ threshold ϴ are NEMs. 

End For 

For each of graphlet Gj of mꞌ graphlets, where 1 ≤ j, mꞌ ≤ M 

Initialize 
Δ𝐹𝑗

Δ𝑖
  = 0, 

ΔF

Δ𝑖
 = 0 

For each epoch between state i and (i+1), where i varies form 1 to N 

ΔF

Δ𝑖
  =  |

𝑑 F (i, 𝑓𝑟𝑒𝑞𝑗𝑖)

𝑑 𝑖
|  =  |

𝑓𝑟𝑒𝑞𝑗(𝑖+1) − 𝑓𝑟𝑒𝑞𝑗𝑖 

(i+1) − i
| 

Δ𝐹𝑗

Δ𝑖
 = 

Δ𝐹𝑗

Δ𝑖
 + 

ΔF

Δ𝑖
 

End For  

CM = CM + 
Δ𝐹𝑗

Δ𝑖
 

End For 

SM = (1/CM) 

Return NEGs_info, NEMs, CM, and SM 

- Third, the algorithm calculates the changeability metric (CM) and stability metric (SM) based 

on the equation (5) and equation (6) respectively. Initially, the algorithm calculates the gradient for jth 

graphlet frequencies over the state series. Then, these gradients are added over all the retrieved 

graphlets, this result in the changeability metric (CM). In the last, stability metric (SM) is simply 

inverse of the CM. 

Based on the approach presented in this section, we developed a prototype tool that we used to 

do experiments. Section 5.8 discusses experiments using this approach. 

5.6  Proposed: System Network Complexity (SNC) 

This section presents System Network Complexity (SNC) that analyses pre-evolved state series 

SS of an evolving system. The SNC aims to analyze the evolving graphlets and complexities between 

inter-connected entities of an evolving system. The SNC is a novel approach, which retrieves Network 

Evolution Graphlets information, System State Complexities information, and Evolving System 

Complexity. Functionally, the discovered Network Evolution Graphlet (NEG) is a subgraph pattern of 

inter-connected entities occurring in the evolving networks over time. Functionally, a System State 

Complexity (SSC) represents complexity of a single state.  



81 

Functionally, an Evolving System Complexity (ESC) represents aggregate complexity for a state 

series SS of an evolving system. The NEGs, SSCs, and ESC can be retrieved with our proposed SNC 

algorithm. Search space of SNC is an evolving system that has N evolving states as a state series, SS 

= {S1, S2… SN}, stored in a repository. All the steps in the SNC are according to the guidelines of 

knowledge discovery and data mining – as shown in the Figure 5.7. The Figure 5.8 shows the flow 

chart of the Algorithm SNC that integrates the subgraph mining and evolution mining to discover 

subgraph evolution information. The SNC outputs evolution information about the network evolution 

subgraphs in the form of NEGs and SSCs information. Further, the SNC uses the NEGs information to 

calculate ESC.   

Next, we will present the three steps of SNC in detail to ensure their reproducibility. Algorithm 

5.1 Preprocess uses the N states of an evolving system stored in a repository such that each state Si is 

pre-processed to make an ENi, where i represent a state number varying from 1 to N. The pre-processing 

creates N evolving networks for N states.  

The Algorithm 5.2 mining_NEGs_SSCs takes N evolving networks (as input) corresponding to 

the N states of an evolving system. The algorithm processes N evolving networks one by one i.e., each 

ENi is processed locally, where ‘i’ varies from 1 to N. Thereafter, the algorithm retrieves NEGs 

information (as output) in two sub-steps.  

- First, the subgraph mining algorithm processes each ENi to detect graphlets information 

(graphlets_info_i) according to equation (1). To do so, we used HashMap that store pairs of (key, value) 

such that a set contains unique key and its value. A subgraph mining technique can be used as 

subgraphMining, which we described in Section 5.2. 

- Second, the algorithm aggregates the graphlets_info of a state series. Let there are m retrieved 

distinct graphlets over all the states. Thereafter, calculate the aggregate frequency of each graphlet over 

states using equation (2). This results in the NEGs_info as presented in equation (3).  

 

Figure 5.7 An overview of the process-artifact interaction, where each rounded-rectangle shows a 

process and rectangle shows artifact created after the process. Each sentence starts from top and 

finishes at the artifact box. Where, the upward arrow denotes artifact goes to a process and 

downward arrow denotes artifact is generated from a process. 
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Thereafter, the algorithm calculates N system state complexities for all N states. The frequencies 

of retrieved graphlets (in graphlets_info_i) and the cyclomatic complexities of all M graphlets (in array 

C[M]) are used to calculate system state complexity for each state (Si). To do this, the array with pre-

calculated cyclomatic complexity (Cj) is used with frequency (freqji) of graphlet (Gj) according to the 

equation (7). The SSCs of all the N states are stored in a hash-map SSCs_info according to the equation 

(8). 

The Algorithm 5.3 Calculate_ESC uses - the aggregate frequency (Aggregate_freqj ) and 

cyclomatic complexity (Cj ) of jth NEG (Gj ) to calculate the ESC - over all m retrieved NEGs. We 

assign pre-calculated cyclomatic complexity (Cj ) for all graphlets (Gj ) in an array (C[M]). Firstly, for 

all the m retrieved NEGs calculate “the sum of products between all cyclomatic complexities and 

aggregate frequencies. Second, for all the NEGs, also calculate “the sum of frequencies of all the m 

retrieved NEGs”. Divide the sum of products by the sum of frequencies to calculate the ESC, according 

to the equation (9).  

Algorithm SNC(repository) 

Initialize i ∈ integer 1 to N  

Retrieve N states of a state series SS = {S1, S2… SN} stored in repository 

1. evolvingNetworks = Preprocess(repository) 

2. NEGs_info & SSCs_info = mining_NEGs_SSCs(evolvingNetworks) 

3. ESC = Calculate_ESC(NEGs_info) 

 

Figure 5.8 An overview of flow-chart for the system network complexity. 
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Algorithm 5.1 Preprocess(repository) 

For each state Si where i ∈ integer 1 to N 

Detect an evolving network of inter-connected entities in Si 

//Evolving network stores <sourceEntityIDs, targetEntityIDs> 

Denote the evolving network as ENi 

End For 

Return evolvingNetworks 

Algorithm 5.2 mining_NEGs_SSCs(evolvingNetworks) 

Initialize j ∈ integer for graphlet Gj such that 0 ≤ j ≤ M 

Initialize i ∈ integer varying from 1 to N states 

Initialize HashMap graphlets_info< Gj, freqji > 

Initialize HashMap NEGs_info< Gj, Aggregate_freqj > 

Initialize HashMap SSCs_info< Si, SSCi > 

Where, Gj is jth graphlet, freqji is frequency of Gj of state Si, and Aggregate_freqj is aggregate 

frequency of NEG Gj over a state series. 

For each ENi in evolvingNetworks where i varies from 1 to N 

graphlets_info_i < Gj, freqji >= networkSubgraphMining(ENi) 

End For 

Suppose mꞌ is count of retrieved graphlets over all states 

For each graphlets Gj out of mꞌ graphlets, where 1 ≤ j, mꞌ ≤ M 

Initialize float frequencySum = 0 

Initialize integer Aggregate_freqj = 0 

For each graphlets_info_i where i varies from 1 to N 

frequencySum = frequencySum + freqji 

End For 

Aggregate_freqj = frequencySum ÷ N 

Add tuple < Gj, Aggregate_freqj > to NEGs_info 

End For 

Initialize cyclomatic complexity array C[M] for all graphlets 

For each graphlets_info_i of Si where i varies from 1 to N 

Initialize float frequencySum = 0 

Initialize float sumOfProducts = 0 

For each Gj in graphlets_info_i 

frequencySum = frequencySum + freqji 

sumOfProducts = sumOfProducts + { freqji × Cj } 

// where Cyclomatic complexity Cj for graphlet Gj at C[j] 

End For 

Float SSCi = sumOfProducts ÷ frequencySum 

Add tuple < Si, SSCi > to SSCs_info 
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End For 

Return NEGs_info & SSCs_info 

Algorithm 5.3 Calculate_ESC(NEGs_info)  

Let mꞌ is the number of retrieved graphlets in NEGs_info 

Initialize j ∈ integer for graphlets such that 0 ≤ j ≤ M 

Initialize float sumOfProducts = 0 

Initialize cyclomatic complexity array C[M] for all graphlets 

Gj ∈ jth NEG in NEGs_info 

Initialize Aggregate_freqj = 0 

Aggregate_freqj ∈ aggregate frequency of Gj in NEGs_info 

For each NEGs Gj over all states 

sumOfProducts = sumOfProducts + { Aggregate_freqj × Cj } 

//where Cyclomatic complexity Cj for graphlet Gj at C[j] 

frequencySum = frequencySum + Aggregate_freqj 

End For 

Float ESC = sumOfProducts ÷ frequencySum 

Return ESC  

The computational complexity of the SNC algorithm can be given in the following way. Firstly, 

the computational complexity of Algorithm 5.1 Preprocess is dependent upon the system domain and 

technique for pre-processing system state to make evolving networks. Secondly, the computational 

complexity of the Algorithm 5.2 mining_NEGs_SSCs is O(N × λ) + 2O(N × m), where N is number of 

states, m is the number of retrieved NEGs over all states, and λ is the complexity of subgraph mining 

algorithm. Thirdly, the computational complexity of Algorithm 5.3 Calculate_ESC is O(m). Thus, the 

SNC complexity mainly depends upon Algorithm 5.2 mining_NEGs_SSCs, which majorly depends on 

O(N × λ) i.e., number of states (N) times complexity of subgraph mining (λ). Based on the proposed 

SNC algorithm we developed a prototype tool, which is described in the next section.  

5.7  SNC-TOOL 

Based on the SNC algorithm, we developed a Java-based tool named as SNC-Tool, which is 

executable on machine enabled with JRE and JDK 7th
 version or higher. There are many existing 

subgraph mining algorithms and open source tools. In SNC-Tool, we used the acc-Motif algorithm (and 

tool) [179] as subgraph mining algorithm developed by Meira et al. [178], which detects accelerated 

motif (acc-Motif) using combinatorial techniques. We opted for the acc-Motif because it is an efficient 

open-source tool, which is also implemented in Java (the language opted for our SNC-Tool). 

Additionally, the acc-Motif builds upon old tools and techniques. The acc-Motif has following three 

computational time complexities λ = O(a(G)e), O(e2), and O(ne) for the detection of subgraph size 3, 4 

and 5 in directed graphs, where a(G) is the arboricity of graph G(V, E), n is |V| vertices, and e is |E| 

edges. The SNC-Tool has three components ‘PreProcessing’, ‘Mining_NEGs_SSCs’, and 
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‘EvolvingSystemComplexity’. First component is based on Algorithm 5.1 Preprocess(repository). 

Second component is based on the proposed Algorithm 5.2 mining_NEGs_SSCs(evolvingNetworks). 

Third component is based on Algorithm 5.3 Calculate_ESC(NEGs_info). The next section describes 

the use of SNC-Tool by doing experimentation on six different evolving systems.  

5.8  Experimentations 

This section is divided into two subsections. First subsection demonstrates expertimenations 

for stability and changeability analysis. Second subsection demonstrates experimentations for system 

network complexity analysis. 

5.8.1  Experimentations for System Stability and Changeability analysis 

This subsection demonstrates six experiments using our tool on six open-internet based real-

world evolving systems. For each evolving system, we discuss a detailed application of the 

mining_NEGs_NEMs_CM_SM algorithm over the state series. The evolving system details are 

mentioned in the first four columns of the Table 5.1. We pre-processed each evolving system’s state 

series of N states into a set of N evolving networks. Each evolving network is a file such that each line 

contains two entities (as nodes) to represent a directed connection from the source entity to the target 

entity of a system state. The total number of entities in all the states is mentioned in the third column. 

The average number of neighbours (entities) is a commonly used graph property. We find average 

number of entities for each network of a state series, and then calculated its average over state series 

(as mentioned in the fourth column). The statistic of average number of entities is useful to understand 

density of entity connections in a set of evolving networks. 

We used our implemented Java-based tool for mining_CM_ SM_NEG. The tool internally uses 

acc-Motif as a subgraphMining algorithm developed by Meira et al. [178], which detects induced 

subgraphs (i.e. graphlets). While local subgraph mining (using acc-Motif [179]), we used following 

four parameters to fine-tune the subgraph information retrieval. We used following values of the 

parameters: subgraph-size = 4, the number of random networks = 1000, the number of exchanges per 

edge = 3, and the number of exchange attempts = 3. Although the experiments are also possible with 

subgraph-size 3, 5, and 6, but to keep brevity we present results solely for subgraph-size = 4. Because 

the subgraph-size = 3 yields almost constant frequencies, and the subgraph-size = 5 yields many 

graphlets, which are hard to manage (i.e. tabulate and visualize). There are 199 graphlets {G0, G1 … 

G198} for motif-4 (subgraph-size) in the acc-Motif, which are manageable number of graphlets.  

We retrieved NEGs with their aggregate frequencies, which are mentioned in the fifth column 

of Table 5.1. We show few frequent evolution subgraphs as NEMs with high frequencies as shown in 

the last column of Table 5.1. For each evolving system, we kept simple threshold to choose NEMs 

from the NEGs. The threshold frequency for NEMs selection is the frequency mentioned in the last 
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pair of system’s NEGs information. Here, G0 corresponds to M0, G1 corresponds to M1, and so on.  

The NEMs mentioned in the Table 5.1 have following inferences for their domains. For 

software system, four NEMs (M178, M135, M0, and M71) have a collective inference that mostly source 

node reaches to a common target node. This also happens when a program terminates at common end 

(example return, exception, or graphical output). For natural language systems: the Bible Translation 

has five NEMs (M198, M192, and M185); and the Multi-sport Events has four NEMs (M178, M192, and 

M185). All these NEMs are similar in structure, which infers either root or leaf node(s) are connected 

to multiple nodes. For frequent market basket, there are many kinds of NEMs (M178, M0, M71, M87, 

M29, M135, M36, and M156). This means, usually retail market system remains highly dynamic (or 

chaotic) as compared to other systems. For both - Positive and Negative sentiment in IMDb movie 

name-genre system - there are four NEMs (M178, M0, M198, and M192). Having same NEMs means both 

systems have almost similar structure, which infers root or leaf node(s) are connected to multiple nodes.  

We show the result of the six experiments as a time series graph in Figure 5.9, 5.10, 5.11, 5.12, 

5.13, and 5.14; where the horizontal axis represents the N states (each instance as a state) and vertical 

axis represents the percentage NEG frequency. This helps to study stability for the changing 

frequencies of NEGs over a state series SS. Each figure contains many time series that represents 

retrieved NEGs with their frequencies over time. In the figures, the NEGs time series with higher 

frequencies are visible, but some are invisible due to overlapping. Next, we describe six experiments 

Table 5.1 Experimental results of Mining NEGs and NEMs for six Evolving systems. 

Evolving 

Systems 
N 

Number 

of entities 

Average 

number of 

neighbours 

(entities) 

Network Evolution Graphlets 

Information  

(in decreasing frequencies) 

Network Evolution Motifs  

(or frequent evolution 

subgraphs) 

Hadoop HDFS-

Core1 
15 3129 2.166 

<G178, 81.59>, <G135, 11.02>, <G0, 

4.46>, <G71, 0.83> and other 20 

NEGs.  

M0 

 

M29 

 

M36 

 

M71 

 

M87 

 

M135 

 

M156 

 
M178 

 
M185 

 
M192 

 
M198 

Bible 

Translation2 
13 246 1.456 

<G198, 44.83>, <G192, 15.59> <G185, 

7.92> and other 14 NEGs 

Multi-sport 

Events3 
13 141 1.786 

<G178, 70.59>, <G192, 9.89>, <G185, 

2.94> and other 7 NEGs. 

Frequent 

Market Basket4 
13 118 8.002 

<G178, 17.79>, <G0, 15.92>, <G71, 

11.83>, <G87, 8.47>, <G29, 5.87>, 

<G135, 5.61>, <G36, 4.89>, <G156, 

4.94> and other 26 NEGs. 

Positive 

sentiment6 in 

IMDb movie 

names-genre5 

16 284 2.661 
<G178, 70.59>, <G0, 9.89>, <G198, 

2.88> and   <G192, 2.47> 

Negative 

sentiment6 in 

IMDb  movie 

names-genre5 

16 510 3.303 

<G178, 70.59>, <G0, 9.89> <G198, 

4.72>, <G192, 1.62> and other 16 

NEGs. 

1. https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs 2016. 

2. https://en.wikipedia.org/wiki/List_of_English_Bible_translations Oct 2016. 

3. https://en.wikipedia.org/wiki/List_of_multi-sport_events Oct 2016. 

4. https://archive.ics.uci.edu/ml/datasets/Online+Retail Oct 2016. 

5. http://www.imdb.com/interfaces/ Oct 2016. 

6. https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html Oct 2016 
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on the six evolving systems.  

Evolving system 1, we pre-processed 15 jars of Hadoop-HDFS-Core to produce 15 call graphs 

(networks) for 15 versions (states). In a call graph, caller procedure (as source entity) calls callee 

procedure (as target entity). Thereafter, we mined NEGs on the 15 call graphs of 15 versions. The 

NEGs are the procedure call graphlets over versions. As a state of software is referred as a software 

version, thus a state series of software can be referred as a version series. The time series graph in 

Figure 5.9 shows 24 time series representing 24 NEGs for 15 versions as a version series.    

Evolving system 2, list of Bible translations, contains short information about all the bible 

translation done since 7th century until 2014. The translations are from “source biblical languages” like 

 

Figure 5.9 The time series for frequencies of NEGs over 15 versions (states) as a version series of 

the Hadoop HDFS-core system. 

 

Figure 5.10 The time series for frequencies of NEGs over 13 centuries (states) of the List of Bible 

translation system. 
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Hebrew, Aramaic, and Greek etc. to the various “English variant languages” like Modern English, Old 

English etc. We pre-processed the dataset to make evolving networks from connections between words 

(as entities) in columns of ‘English variant’ and ‘Source biblical language’. The words in the ‘English 

variant’ are chosen as source entities and the words in the ‘Source biblical language’ are chosen as 

target entities. This aids us to make 13 evolving networks for 13 centuries. Thereafter, we mined NEGs 

on such word networks of 13 centuries. As single state is for a century, thus a state series of this system 

can be referred as a century series. The time series graph in Figure 5.10 shows 17 time series 

representing 17 NEGs for 13 centuries as 13 states.    

Evolving system 3, list of multi-sport events, contains short information about all the multi-

sports events happened since 1890’s until 2015. We pre-processed the dataset to make evolving 

networks from connections between words (as entities) in two columns: ‘Title’ (name) and ‘Scope’ 

(regional, international, and provinces) of an event. The words in the ‘Title’ are chosen as source 

entities and the words in the ‘Scope’ are chosen as target entities. This aids us to make 13 evolving 

networks for 13 decades. Thereafter, we mined NEGs on such word networks of 13 decades. As a 

single state is for a decade, thus a state series of this system can be referred as a decade series. The time 

series graph in Figure 5.11 shows 10 time series representing 10 NEGs for 13 decades as 13 states.      

Evolving system 4, evolving retail market system, a dataset of retail market [170] is available 

on UCI Repository. The dataset contains all the transactions occurring between 01/12/2010 and 

09/12/2011 for a UK-based online retail (non-store). Initially, we made a frequent market basket from 

column ‘Description’ of the product, such that we set threshold to select a product sold atleast 10 

months. Thereafter, in each line of the ‘Description’, we used the sequence (as a connection) between 

two words (as entities) to make an evolving network (for each month). This aids us to make 13 evolving 

 

Figure 5.11 The time series for frequencies of NEGs over 13 decades (states) as decade series of the 

List of multi-sport events system. 
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networks for 13 months. Thereafter, we mined NEGs on such product description networks of 13 

months. As a single state is for a month, thus a state series of this system can be referred as a month 

series. The time series graph in Figure 5.12 shows 8 time series representing 8 NEGs for 13 months as 

13 states. There are total 34 NEGs retrieved; few significant NEGs (i.e. NEMs) are shown in Figure 

5.12 and Table 5.1.     

Evolving system 5 and 6 is based on evolving IMDb movie name-genre system. We collected 

the movie name and genre data of IMDb for 16 decades since 1870’s until Oct 2016. The subset of the 

IMDb dataset is available online. We used two list of positive and negative sentiment words, which 

was created and used by Minqing and Bing et al. [171][172]. As a single state is for a decade, thus a 

state series of this system can be referred as a decade series.   

 

Figure 5.12 The time series for frequencies of NEGs over 13 months (states) as month series of the 

frequent market basket state series. 

 

Figure 5.13 The time series for frequencies of NEGs over 16 decades (states) of the positive 

sentiment in IMDb movie names-genre system. 
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Evolving system 5: We used the positive sentiment words in movie names (as source entities) 

and their genres (as target entities) to generate evolving networks. While using movie names, we 

specifically used only positive word(s) in each name. The Figure 5.13 shows experimental results for 

connections between entities: 'positive words in movie name' and 'genres' in the IMDb dataset. The 

figure shows 4 time series representing 4 NEGs for 16 decades as 16 states.       

Evolving system 6: We used the negative sentiment words in movie names (as source entities) 

and their genres (as target entities) to generate the evolving networks. While using movie names, we 

specifically used only negative word(s) in each name. The Figure 5.14 shows experimental results for 

connections between entities: 'negative words in movie name' and 'genres' in the IMDb dataset. The 

figure shows 20 time series representing 20 NEGs for 16 decades (states).   

Next, we calculated the equation 4 and 5 for evolving frequencies of graphlets retrieved over a 

state series. The results are mentioned in the Table 5.2. We derived following inferences from the time 

series graphs and the Table 5.2.  

1. System evolution can be analysed by measuring changeability and stability between two states.  

2. The changeability and stability observations over a state series are as follows. 

 From Figure 5.9, we observed that time series are almost constant (or stable) due to low variation 

in the frequencies of NEGs. Thus, we inferred that the Hadoop HDFS-Core system is relatively 

stable as compared to other five evolving systems. 

 From Figure 5.10, we observed that time series are highly varying due to high variation in the 

frequencies of NEGs. Thus, we inferred that the List of Bible Translation system has relatively 

underwent more changes as compared to other five evolving systems. 

 From Figure 5.11, 5.12, 5.13, and 5.14, we observed that time series are moderately varying due 

to moderate variation in the frequencies of NEGs. Thus, we inferred that these four systems are 

 

Figure 5.14 The time series for frequencies of NEGs over 16 decades (states) of the negative 

sentiment in IMDb movie names-genre system. 
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moderately change (or moderately stable) as compared to other system.   

The above three observations and inferences are also true in case of changeability and stability 

values given in Table 5.2. From Table 5.2, we directly infer that software system (HDFS-Core) is stable 

and less changeable as compared to other five systems. Whereas, we directly infer that the List of Bible 

Translation system is less stable and more changeable.  

3. Using the proposed approach, we can compare two evolving systems, which have same pre-

processing technique to make evolving network series. Thus, the two evolving network series - negative 

and positive sentiment systems - are comparable to each other based on the time-series plots for 

frequencies of NEGs in the Figure 5.13 and 5.14. In these figures, the first four graphlets are same with 

slightly different evolving frequencies. In Table 5.2, we can see negative sentiment system has slightly 

less value of changeability metric as compared to positive sentiment system. Thus, the stability metric 

value of the negative sentiment system is slightly more than the positive sentiment system. Thus, the 

negative sentiment system is slightly more stable as compared to the positive sentiment system. 

5.8.2  Experimentations for System Network Complexity analysis 

This subsection describes an empirical evaluation of SNC-Tool for evolving systems available 

on open internet repositories of four domains: software, natural language, retail market, and IMDb. We 

also discuss a detailed application of SNC for each domain and demonstrate experiments (using SNC-

Tool) on six evolving systems. Description of the Table 5.3 is as follows. First column contains name 

of the system used in the experiment. Second column contains number of states used in the 

experimentation. Third column contains the number of entities. Fourth column contains average 

number of neighbours (entities), it is a commonly used property of network or graph. Fifth column 

contains number of NEGs. Sixth column contains calculated value of Evolving System Complexity 

(ESC).  

Evaluation of NEGs: We retrieved NEGs information for each evolving system using the 

proposed mining algorithm that uses the set of evolving networks along with input parameters. We 

used parameters to fine-tune the retrieval of subgraph according to the desired accuracy. Although in 

each experiment we retrieved many NEGs, but we present significant NEMs (network evolution motifs 

Table 5.2 Experimental results of Changeability and Stability Metrics for the six Evolving systems. 

Evolving Systems Changeability metric Stability Metric 

Hadoop HDFS-Core 25.66 0.03896 

List of Bible Translation 1695.20 0.000589 

List of Multi-sport Events 468.46 0.00213 

Frequent Market Basket 538.11 0.00185 

Positive sentiment in IMDb movie name-genre 571.06 0.00175 

Negative sentiment in IMDb movie name-genre 552.59 0.00180 
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ith high frequencies) in the Table 5.4, which also includes complexities of those subgraphs (size 4).  

Evaluation of SSCs and ESC: We used the retrieved information about subgraphs of an evolving 

system to calculate its complexity. Using frequencies and cyclomatic complexities of the graphlets (in 

graphlets_info), we computed SSC for each state according to the equation (7). Using aggregate 

frequencies and cyclomatic complexities of the NEGs, we computed ESC for a state series according 

to the equation (9). We calculated ESC for all evolving systems, which are given in Table 5.3. Since 

every NEG (subgraph) has exactly 4 nodes and all such subgraphs have complexity in between 1 to 4. 

Therefore, SSCs and ESC values will range from 1 to 4. Low complexities of retrieved frequent 

subgraphs results in low SSCs and ESC. High complexities of retrieved frequent subgraphs results in 

high SSCs and ESC.  

The six experimental results are shown as six time series plots. In each plot, the x-axis 

represents state series SS of N states where each instance is a state (Si) and y-axis represents the 

complexity of each state. In the time series plots (of Figures 5.15, 5.16, 5.17, 5.18, 5.19, and 5.20), 

there are two time series for various states. First, the time-varying series shows the system state 

complexity (SSC) of each states. Second, the constant time series shows the ESC of the whole system 

state series. For example, to read the time series in Figure 5.15, the Hadoop-HDFS version 2.2.0 (a 

state) has SSC = 1.00625 and for whole state series it has ESC = 1.0054.  

Next, for all the six evolving systems, we describe pre-processing of each evolving system to 

make evolving networks that are used to calculate the SSCs and ESC.  

Table 5.3 Experimental results on the Evolving systems. 

Evolving Systems N # entities Average # neighbour # NEGs ESC* 

Hadoop-HDFS1 15 3129 2.166 24 1.0054 

Bible Translation2 13 246 1.456 17 1.456 

Multi-sport Events3 13 141 1.786 10 1.00487 

Frequent Market Basket4 13 118 8.002 34 1.33888 

Positive sentiment6 of movie genres5 16 284 2.661 4 1.03050 

Negative sentiment6 of movie genres5 16 510 3.303 20 1.03683 

# stands for “number of”. *Range of ESC is in between 1 to 4 because cyclomatic complexity of subgraph-size (subgraph-4) is in 

between 1 to 4. 

Table 5.4 Most significant retrieved NEMs (subgraphs). 

M0, C0 = 1 M2, C2 = 2  M71, C71 = 1 M87, C87 = 1 M135, C135 = 1 

     
M156, C156 =1 M178, C178=1 M185, C185=3  M192, C192=2 M198, C198 = 1 
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A) Evolving software systems: Evolving software systems [9] are stored and maintained as a 

state series SS at some software repository. A state series of software can be referred as a version series 

because a software state is referred as a software version. We collected 15 Hadoop-HDFS1 versions 

(states) of jars. Many open-source tools are available to construct call graph of a software. Software 

developed in different programming languages has different tools to make a call graph. The call graph 

contains procedure call information stored in the form of a network. It is a directed graph to describe 

procedure-call (or dependency) relationships. Each line of a call graph file contains two nodes (as 

procedures) to represent a directed edge (as call) from the first node to the second node. Where, the 

first node represents caller procedure and the second node represents callee procedure. A HDFS version 

series of 15 versions are pre-processed to make a series of 15 call graphs (networks). During pre-

processing, a single procedureID keeps track for a procedure appearing in different modules of a 

repository. We analyzed the call graphs by identifying the graphlets information that helps in the 

calculation of complexities for the evolving software versions. The time series plot in Figure 5.15 

shows the time-varying complexity of each version (state) and the ESC (1.0054). We got “M178” as the 

most significant NEM, where M178 suggests a subgraph where three procedures are calling another 

procedure, which depicts less complex subgraph. This high frequency of low complex subgraph leads 

to the low ESC of the Hadoop-HDFS.  

B) Evolving natural language systems: We used text of two web pages available on Wikipedia. 

i) List of Bible translations: This dataset contains table that includes translation information 

from “source biblical languages” (like Hebrew, Aramaic, and Greek) to the various “English variant 

languages” (like Modern English and Old English). To generate the evolving state series SS, we 

combined the tables of “incomplete Bibles”, “partial Bibles” and “complete Bibles”. We made evolving 

networks from connections between entities (words) in columns of ‘Source biblical language’ and 

 

Figure 5.15 The time series representation of SSCs and ESC for Hadoop-HDFS over 15 versions 

as a version series. 
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‘English variant’, such that each network is for a century. There are total 13 centuries that are pre-

processed to make 13 evolving networks. The time series plot in Figure 5.16 shows the time-varying 

complexity of each state (century) and the ESC (1.45). We can observe three points from the Figure 

5.16. First, the figure shows spike in between 8th to 10th centuries because there are many translations 

happened in this period. Second, the figure shows increase in between 11th to 14th century this is due 

to increase in number of translation in this period. Third, the figure shows, after 14th century the bible 

translation complexity is almost constant due to stable number of translations in this period.   

ii) List of multi-sport events: We made evolving networks from connections between entities 

(words) in two columns: ‘Title’ (name) and ‘Scope’ (regional, international, and provinces) of an event, 

such that a network is for a decade (10 years). There are total 13 decades that are pre-processed to make 

13 evolving networks. The time series plot in Figure 5.17 shows complexity for connections between 

entities ‘Title’ and ‘Scope’ of multi-sport events. In the figure, first time series is for the time-varying 

complexity of each state (decade) and second time series is for ESC (1.004). We can observe from the 

Figure 5.17 that the system state complexities are almost constant between 191 to 196’s decade and 

506 to 201’s decade because there are few target nodes of scopes.      

C) Evolving retail market system: This is a dataset of retail market [170] for UK based 

registered non-store online retail transaction between 01/12/2010 and 09/12/2011. To make evolving 

network we followed following steps. First, we make a collection of market basket from products 

bought by customers with their IDs during each month. Second, to make frequent market basket of 

products, we kept a product as node in the network only if it is sold atleast 10 months. We used these 

frequent products to generate the evolving networks for products bought by customers, such that 

connections between words in column ‘Description’ of products. We made 13 such evolving networks 

for 13 months such that each network is for a month.   

 

Figure 5.16 The time series representation of SSCs and ESC for list of bible translation over 13 

centuries as a century series. 
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The time series plot in Figure 5.18 shows the time-varying complexity of each state (month) 

and ESC (1.33). We can observe two points from the Figure 5.18. First, the figure shows high 

complexity in between 5th to 6th month of 2011 (i.e., 511 to 611) because of many transactions happened 

in this period. This is may be due to “summer season in Europe promote more shopping”. Second, the 

figure shows two spikes, firstly sudden decrease in month January 2011 (111) this is due to “sale 

decreases in December just after the Christmas”, and secondly sudden increase in November 2011 

(1111) month this is contrarily due to “sale increases in November just before the Christmas”.   

D) Evolving IMDb movie genre system5: We collected the movie and genre data of IMDb for 

16 decades since 1870’s until Oct 2016. In Figures 5.19 and 5.20, out of 16 decades we omitted three 

 

Figure 5.17 The time series representation of SSCs and ESC for multi-sport events over 11 

decades as a decade series. Note, out of 13 decades, we omitted two decades (189’s and 190’s) 

from the x-axis because their resulting complexity is undefined due to insufficient data. 

 

 

Figure 5.18 The time series representation of SSCs and ESC for frequent market basket over 13 

months as a month series. 
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decades (187’s, 188’s, and 202’s) from the x-axis because their resulting complexity is undefined due 

to insufficient data. We used list6 of positive and negative words, which was created and used by 

Minqing and Bing et al. [171][172].  

i) Evolving system 5: In this experiment, we used positive sentiment words in movie names 

and all genres of IMDb. While generating the evolving networks, we specifically used only positive 

words in movie names. The Figure 5.19 shows experimental results for entities (words) connections 

between ‘positive words in movie names’ and ‘genres’ in the IMDb dataset. The time series plot in 

figure shows the time-varying complexity of each state (month) and the ESC (1.03).   

ii) Evolving system 6: In this experiment, we used negative sentiment words in movie names 

 

Figure 5.19 The time series representation of SSCs and ESC for positive sentiment IMDb system 

over 13 decades as a decade series. 

 

Figure 5.20 The time series representation of SSCs and ESC for negative sentiment IMDb system 

over 13 decades as a decade series. 
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and all genres of IMDb. While generating the evolving networks, we specifically used only negative 

words in movie names. The Figure 5.20 shows experimental results for connections between entities 

‘negative words in movie names’ and ‘genres’ in the IMDb dataset. The time series plot in figure shows 

the time-varying complexity of each state (month) and the ESC (1.03).    

We made two observations from the Figure 5.19. First, the SSCs are virtually uniform in 

between 198’s to 201’s decades because there is large number of similar genre movies in this period. 

Second, the SSCs vary for decades between 189’s to 195’s because there are fewer interactions in less 

number of different genres. In Figure 5.20, the SSCs vary for all decades because of fewer interactions 

due to less number of different genres. From Figures 5.19 and 5.20, we infer values of both SSCs and 

ESC are approximately 1.04 for both the systems.  

Observations:-  

– Using time series plots, we can measure the change in the complexities between two states in 

an evolving system.  

– We got M0, M178, and M198 as the most common and significant NEMs in the most of the 

evolving systems. The M178 and M198 suggest a subgraph where a single entity connects to three 

different entities. All three depicts less complex subgraphs.  

– When two evolving systems have different pre-processing to generate their evolving 

networks, then they are not comparable to each other based on their SSCs and ESC. 

– When different evolving systems have same pre-processing semantics to generate their 

evolving networks, then they are comparable to each other based on their SSCs and ESC. For example, 

we can compare the positive and negative sentiment in the IMDb movie genre system because of the 

same pre-processing semantics to generate evolving networks. The Table 5.3 quantitatively shows that 

“the movies promote negativity more than positivity” because use of negative words (i.e., entities) is 

more than the positive words (i.e., entities) in movie names. The Table 5.3 also depicts - the average 

number of neighbours, the NEGs (subgraphs), and the ESC of negativity are more than positivity in 

the IMDb movie genre system.  

– The SNC depends upon subgraph mining, thus pros-cons of subgraph mining are pros-cons 

of SNC algorithm. As a limitation, our algorithm depends on the efficiency of subgraph mining 

technique. Although our SNC algorithm can work with any subgraph-mining technique, but the choice 

of the subgraph-mining technique influences the performance of the SNC. Thus, the choice of subgraph 

mining tool should be prudent, which depends on the required output. 

Contributions from experiments: 

– We demonstrated the integration of graphlet and evolution information while applying SNC 

on six state series of six evolving systems, which are collected from open- internet repositories of four 

domains. The SNC-Tool generated SSCs and ESC information about each evolving system.  
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– Using SSCs, we inferred complexity changes happened in an evolving system. Using SSCs 

and ESC, we compared two evolving systems (if they are of same domain with same pre-processing). 

5.9  Summary 

This chapter introduced two kind of network evolution subgraph: Network Evolution Graphlet 

(NEG) and Network Evolution Motif (NEM). We did SysEvo-Analytics based on network evolution 

subgraph mining. We proposed four metrics: Changeability Metric (CM), Stability Metric (SM), 

System State Complexity (SSC), and Evolving System Complexity (ESC). This provides an insightful, 

interesting, and non-obvious information, which helps to do SysEvo-Analytics. With these metrics, we 

can compare two similar evolving systems. Application on state series of an evolving system makes 

our approach novel and useful. Thereafter, we described two main proposed approaches. 

First approach, we proposed an algorithm for mining NEGs, NEMs, CM, and SM, which 

analyses and assesses a state series SS of an evolving system. The algorithm finds NEGs information 

that contains collective pairs of NEGs with their aggregate frequencies over all the states. The NEGs 

are induced subgraphs (or graphlets) of evolving inter-connected entities over network states. We 

selected NEMs from the NEGs having significantly high frequencies. The NEMs are significantly re-

occurring subgraphs of evolving inter-connected entities over network states. Additionally, we create 

a time series for evolving frequencies of graphlets over states to measure changeability and stability of 

an evolving system. This aids to compare two similar evolving systems. We implemented a prototype 

tool and used it to conduct experiments on six open-internet based evolving systems. For each evolving 

system, the tool identifies NEGs, NEMs, CM, and SM information for the inter-connected entities in 

evolving networks of system state series SS. This helps to take decisions and actions about an evolving 

system. 

Second approach, the graphlets information is used to calculate the System State Complexity 

(SSC) for each state Si. The NEGs information is used to calculate the Evolving System Complexity 

(ESC) for a state series SS. Both SSC (of a state) and ESC (of a state series) are interesting and non-

obvious information. We implemented the proposed SNC algorithm as a prototype SNC-Tool, which 

is used to conduct experiments on six open-internet based evolving systems. The tool calculated the 

complexity of individual states (as SSCs) and complexity of a state series (as ESC). The SSCs are 

useful to compare between two states of an evolving system. The ESC is useful to compare between 

two different evolving systems of the same domain. This provides insightful and actionable information 

about an evolving system. The merit of our work is that it is an extension of the popular and well-used 

cyclomatic complexity technique of McCabe [121]. Our technique to measure complexity is 

significantly different from existing techniques. Our SNC algorithm computation is novel with respect 

to study of system complexities. To the best of our knowledge, our SNC algorithm - that includes SSCs 

and ESC - is a novel concept for system evolution analysis.  
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Deep Graph Evolution and Change Learning to make System Neural 

Network for System Evolution Recommendation 

 

Emerging computational intelligence leads to increasing demand of computing techniques for 

system that evolves over time. An evolving system has several entities (or features) that evolve over 

time to make a time-variant data (or non-stationary data) {D1, D2 … DN, DN+1} of a state series SS = 

{S1, S2… SN, SN+1}. In this chapter, we described two similar and complementary approaches. 

First, we introduce an approach to do evolution and change learning, which uses an evolution 

representor and forms a System Neural Network (SysNN). Additionally, we proposed an algorithm 

System Structure Learning (SSL) that uses evolution representor as an Evolving Design Structure 

Matrix (EDSM) of a system state series. The EDSM is a kind of time-variant data or non-stationary 

data. The SSL internally uses a Deep Evolution Learner (DEL) that learns from evolution and change 

patterns of an evolving matrix (EDSM) to generate Deep SysNN.  

Second, we present our approach System Evolution Recommender (SysEvoRecomd), which 

uses a novel intelligent algorithm Graph Evolution and Change Learning (GECL) that does matrix 

reconstruction leading to network reconstruction. Internally, GECL uses Deep Evolution Learner 

(DEL) to learn about evolution and changes happened to a state series of system. The DEL is an 

extension of the intelligent deep learning algorithm, which uses an Evolving Connection Matrix (ECM) 

for training. The DEL generates a Deep System Neural Network (Deep SysNN) to do network (graph) 

reconstruction. The SysEvoRecomd considers the evolving characteristic of graph with deep neural 

network techniques. It aims to learn the evolution and changes of the system states series and 

reconstruct the network.  

Based on SysEvoRecomd, we developed an automated tool named as SysEvoRecomd-Tool, 

which is used to conduct experiments on various real-world evolving systems. We apply the 

SysEvoRecomd-Tool to analyze six real-world evolving systems that we collected from four kind of 

repositories: software (Maven), natural language (Wikipedia), retail market (UCI), and movies genres 

(IMDb). We design three variants by exploring three different deep learning techniques: Restricted 

Boltzmann Machine (RBM), Deep Belief Network (DBN), and denoising Autoencoder (dA). Then, we 

demonstrate the usefulness of intelligent recommendations using three variants of GECL based on 

RBM, DBN, and dA.  
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6.1  Introduction 

An evolving system is a system which is continuously changing with time. Improper utilization 

of entities may lead to inefficient maintenance. Further, there is also a possibility of logical errors and 

faults in newer component due to many developers. The study of the system evolution can help to 

tackle these problems. An evolving system can be represented as a graph of entity-connections (a set 

of entities are vertices and directional connections among entities are edges). An evolving system makes 

time variant (or non-stationary) data that has many inter-connected entities (or components). Such 

system evolves to different states over time. A state (or instance or version) can be represented as an 

evolving network (or graph). There are several applications for evolving systems to perform SysEvo-

Analytics. Entity connections of such a system can be modelled as an adjacency matrix.  

 We can represent complex data of a system state in the form of Design Structure Matrix (DSM) 

[182][183]. The DSM is a simple, compact, and visual representation of a system (or project) in the 

form of a square matrix. In 1981, Steward [183] coined the term “design structure matrix” to solve 

mathematical systems of equations. Thereafter, DSM gained many industrial, engineering, and project 

applications [184][185][186]. The DSM represents complex structure of a system in the form of a 

matrix, which helps in systems engineering, project management, performance analysis, 

planning/designing the system (or project). The DSM has various purpose with multiple names like: 

Dependency structure matrix, Dependency source matrix, Problem Solving Matrix (PSM), Design 

precedence matrix, and Dependency matrix. The DSM can be: Adjacency matrix, Binary matrix, 

Logical matrix, Relation matrix, Boolean matrix, Incidence matrix, N2 matrix, Interaction matrix, or 

Dependency map. To study a system evolution using a DSM, the machine learning and data mining 

techniques are the favourable options that aim automation. 

By learning patterns of entity connections in various system states, it is possible to recommend 

relevant and existing entity connections during system development. Learning changes in patterns of 

entity connections improves components (or entities) reusability; this can saves both time and effort 

for system development by teams. Suppose a system becomes large and its patterns of entity 

connections became more complex. This is due to evolution and changes in the entity connections of 

the evolving system. Tracking changes in patterns of entity connections over time is a challenging 

problem for humans. This implies, these change information can predict connections, which further 

makes future system recommendations. Hence, there is a need to apply machine-learning techniques, 

which can become an appropriate option that can learn the patterns of entity connections. 

Deep learning is a machine learning technique that forms a Deep Neural Network (DNN) (a 

type of Artificial Neural Networks (ANN) inspired by biological systems. The DNN models have been 

receiving a lot of research interest recently, especially because of promising results in image or speech 

or natural language processing.  
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In this chapter, we aim to do SysEvo-Analytics by extracting useful information (knowledge) 

from time-variant data of evolving states. For this, we proposed an approach System Structure 

Learning, which has the following two steps. First, an evolving system is represented in the form of an 

evolving matrix (EDSM a time-variant or non-stationary data). Second, we used a deep evolution 

learner (an extension of the deep learning), which learns evolution and change information from the 

EDSM. This learning forms a System Neural Network (SysNN), which helps to construct an output 

matrix (as a disk memory) that forecast about an evolving system. We also aim to reconstruct matrix of 

a system network (graph), which gives recommendation about system that can further help in system 

development and maintenance. Our approach presented is applicable to assist in the process of network 

reconstruction for connections between nodes (entities). Hence, this helps to do prediction of system 

graph structure (e.g. connection prediction) by considering the graph structure evolution over time. The 

details of our proposed approach are given in Section 6.2, 6.3, and 6.5. 

6.2  Evolution and Change Learning based System Neural Network 

This section describes our key idea to do evolution and change learning that forms a System 

Neural Network (SysNN), which is a type of Artificial Neural Network (ANN). Suppose each state (Si) 

of the state series can be represented as a data (Di). This makes a time-variant dataset {D1, D2 … DN, 

DN+1} of a state series SS = {S1, S2 ... SN, SN+1} at (N+1) time points {t1, t2 … tN, tN+1}. Next, we 

describe the proposed two definitions in the context of machine learning of time-variant or non-

stationary data. 

Definition 6.1: Evolution and Change Learning is a kind of machine learning that learns and 

memorizes the evolution and changes happened to a time-variant data of a state series, using an 

evolution representor. Such learning extracts useful information from an evolution representor 

constructed from a state series of temporally changing system. An existing learning technique can learn 

from such evolution representor. Evolution and change learning identifies, discovers, and understands 

the changes in an evolving system. This makes a computer capable enough to understand the evolution 

and changes of a system without any explicit programming. It is perceivable that evolution and change 

learning is a kind of non-stationary learning and memorization, which focuses on the evolution and 

change of a system state series. 

Definition 6.2: System Neural Network (SysNN) is the type of artificial neural network, which 

contains information and understanding of evolution happened in a state series. The hidden layers 

contain evolution information in the form of adjustment between weights and neurons such that it gives 

probable connections (occurrences) of two entities (features) together. A machine with SysNN can 

recommend about the time-variant data (or non-stationary data) of an evolving system. The SysNN 

learns evolution information that constructs an output matrix (as a disk memory). The evolution 

information in the memory can be useful to forecast about possible future of the system data. It is 
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perceivable that the SysNN is a unique and novel kind of cybernetics. The advantage of a SysNN over 

an ANN is to model non-linear relationships between entities (or features) in time-variant data of an 

evolving system. 

Our approach has two steps to generate a SysNN. 

- In first step, the state series of an evolving system is represented into an evolution representor. 

We denote evolution representor as ER, which represent state series of an evolving system. The ER is 

calculated by a function f(SS) named as EvolutionRepresentor given as equation 

𝐄𝐑 =  f(𝐒𝐒)                                                   … (1) 

ER = f({a11, a12 … amm}, {b11, b12 ... bmm} … {x11, x12 … xmm}). 

Where, ajk, bjk… xjk are the elements of adjacency matrix, which are either 1 or 0 such that, if 

there exist a connection between entity j and k, then ajk is 1 otherwise 0, similarly for bjk… xjk. 

- In the second step, the algorithm uses this hidden vector ER to calculate an output vector Y. 

The calculation is done by a hidden function g(ER), named as EvolutionLearner, which is in equation 

(2). The purpose of the function is to learn evolution and changes happened to the system entities. 

While learning, the input layer depends on the size of elements in the ER, a user provides the number 

of hidden layers, and the output layer depends on the size of output vector. An expert initializes these 

three parameters before neural network learning. This learning forms a SysNN that recommends about 

system evolution using memorized output vector Y.  

𝐘 =  g(𝐄𝐑)               … (2) 

𝐘 =  g(f(𝐒𝐒)) 

Y = ({y11, y12 … y1m}, {y21, y22 … y2m} … {ym1, ym2 … ymm}) 

Here, Y is a desired output_vector. The variable yjk is in between 0 to 1 such that, the yjk gives 

probability for existence of a connection between entity j and k thus 1 ≤ yjk  < 0, where yjk = 0 means 

missing connection. 

The System Neural Network learns system evolution information by adjusting its neurons and 

weights. The neuron weight adjustments are according to the probability for existence of connections 

between system entities. The SysNN reconstructs a zero vector into an output vector, both contains 

m×m elements. After this, convert the output vector into output matrix MO of size m×m such that this 

MO is an evolution and change learning information. The MO is a disk memory that stores information 

about the evolving states of a system. Subsequently, this memory will help to do recommendation about 

the evolving system. 

Next section describes algorithmic form of the proposed System Structure Learning to realize 

our approach for evolution and change learning that makes a System Neural Network. 
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6.3  System Structure Learning using Design Structure Matrix 

This section describes contributory algorithm System Structure Learning (SSL). It uses N 

Design Structure Matrices (N_DSMs) to represent N states of an evolving system. The Figure 6.1 gives 

an overview of SSL that internally uses evolution representor (as Evolving DSM i.e., EDSM) and Deep 

Evolution Learner (DEL). In the SSL algorithm, the DEL uses evolution representor to learn the 

evolution of a time-variant data of a state series. The DEL reconstructs a zero vector (zero_vector) to 

an output vector (output_vector), which is transformed to an output matrix Mo that is normalized as 

MNO. Details about the Algorithm 6.1 SSL are given in the rest of this section, which elaborates the 

evolution and change learning of time-variant data.  

Algorithm 6.1  SSL(N_DSMs) 

Initialize a zero matrix as MZ 

zero_vector = matrixToRowVector(MZ) 

EDSM = evolutionRepresentor(N_DSMs) 

output_vector = deep_evolution_learner (EDSM, zero_vector) 

MO = rowVectorToMatrix(output_vector) 

MNO = normalize(MO) 

Return MNO 

To begin with, the evolutionRepresentor transforms N DSMs (N_DSMs) into N vectors, which 

represents a system’s state series SS in an Evolving DSM (EDSM). To do this, the algorithm transforms 

 

Figure 6.1 An overview of System Structure Learning using Deep Evolution Learner to construct 

a Deep SysNN. 
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a DSM of state Si into vector_i. For a state, its DSM has size m×m and each vector (vector_i) has m×m 

elements. After that, each vector_i combines to form an EDSM. The EDSM given in equation (3) is a 

type of evolution representor ER as described in the Section 6.2 equation (1).  

EDSM = 𝒆𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝑹𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒐𝒓(𝑁_𝐷𝑆𝑀𝑠) =  f(𝐒𝐒)   … (3) 

Algorithm 6.2  evolutionRepresentor(N_DSMs) 

For each DSM_i in N_DSMs where i ∈ state number 

vector_i = matrixToRowVector(DSM_i) 

EDSM  = 

vector_i 

+ 

EDSM 

End for 

Return EDSM 

Now, we describe two more definitions.  

Definition 6.3: Evolving Design Structure Matrix (EDSM) is a type of DSM that represents an 

ordered collection of N vectors for time-variant data of N states in a state series SS of an evolving 

system. Fundamentally, three types of changes are possible: addition (or insertion), modification (or 

alteration), and deletion (or removal). We represented these changes as the collection of N vectors of 

an EDSM. This EDSM can work as an input for unsupervised learning. Example of EDSM is in Figure 

6.2. An unsupervised learning technique can learn from an EDSM as an unlabeled data, which is useful 

to detect evolution and change patterns. Thus, evolution and change learning depends upon the EDSM 

and the unsupervised learning.  

Definition 6.4: Deep Evolution Learner (DEL) elaborates the evolution learner g(ER) 

mentioned as equation (2) in the Section 6.2. The DEL learns evolution and change patterns in the 

time-variant data (e.g., EDSM) of a state series. It makes the machine capable enough to understand 

the evolution and changes happened between states without explicit programming. The DEL is an 

extension of deep learning that learns from an EDSM and outputs a vector (output_vector). The DEL 

internally uses deep learning to make the machine intelligent by generating Deep System Neural 

 

Figure 6.2 Evolving Design Structure Matrix (EDSM) as a time-variant data (or non-stationary 

data) consisting N data vector of a state series. 
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Network (Deep SysNN).  

Next, we describe the use of deep_evolution_learner algorithm in SSL. The 

deep_evolution_learner takes the EDSM of size N × (m×m) for training purpose, where N is the 

number of states and m × m is the size of square DSM. The DEL makes a Deep SysNN (in the form of 

weight matrices) based on the training by delTrain (means deep evolution learner training). The three 

main training parameters (trainParameters) control deep learning: learning rate (LR), epoch (Ep), and 

number of hidden units of neurons (i.e. size and number of hidden layers L). The deep learning can use 

anykind of matrix, but in DEL we specifically used evolution representor (i.e., EDSM), which is the 

crux of our approach. The Deep SysNN consists of information about patterns of entity connections in 

the form of weight matrix of neural network. In DEL algorithm, the delReconstruct uses Deep SysNN 

to reconstructs a zero_vector into an output_vector (both the vectors has m×m elements). 

Algorithm 6.3  deep_evolution_learner (EDSM, zero_vector) 

Initialize List trainParameters< LR, Ep, L >  

Initialize a weight matrix Deep_SysNN 

Deep_SysNN = delTrain(EDSM, trainParameters) 

output_vector = delReconstruct(Deep_SysNN, zero_vector) 

Return output_vector 

Next, we describe how delTrain and delReconstruct works in the DEL using extended 

objective functions of deep learning techniques. We demonstrate reconstruction property of ANN using 

three well-known unsupervised deep learning techniques [56]: Restricted Boltzmann Machines (RBM) 

[122][123], Deep Belief Networks (DBN) [124], and denoising Autoencoders (dA) [126][130]. The 

three deep learning structures are shown in the Figure 6.3. 

The DEL reformulates the Restricted Boltzmann Machine’s energy model as equation (4) with 

𝐸(𝑬𝑫𝑺𝑴, 𝒉) =  

∑(𝑎𝑖 𝑒𝑐𝑗𝑘)

𝑖

+ ∑(𝑏𝑙 ℎ𝑙)

𝑙

+ ∑ ∑(𝑒𝑐𝑗𝑘 𝑤𝑖𝑙 ℎ𝑙)

𝑙𝑖

              … (4) 

where 𝑖 represent ith state, 𝑬𝑫𝑺𝑴 represents an evolution representor that contains 𝑒𝑐𝑗𝑘 as the entity 

connection between two entities 𝑗 𝑎𝑛𝑑 𝑘. In the weight matrix of size (m×m) × L, the 𝑤𝑖𝑙 represents 

the weight of 𝑖 and 𝑙 position. The weight matrix represent connections between SysNN such that a 

visible unit is a DSM of size m×m and hidden unit 𝒉. As per the standard RBM equation, the two bias 

weights (offsets) are 𝑎𝑖  for the visible units and 𝑏𝑙  for the hidden units. Reformulating the energy 

model 𝐸(𝑬𝑫𝑺𝑴, 𝒉) into a probabilistic model makes equation (5).  

𝑃(𝑬𝑫𝑺𝑴, 𝒉) =
1

𝑍
𝑒−𝐸(𝑬𝑫𝑺𝑴,   𝒉)                          … (5) 

Then find conditional probability of hidden layer h when EDSM is given as input, which makes 
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equation (6). 

g(𝐄𝐑) = 𝑃(𝒉|𝑬𝑫𝑺𝑴) = ∏ 𝑃(ℎ𝑙|𝑬𝑫𝑺𝑴)       … (6)

𝐿

𝑙=1

 

For best reconstruction using equation (6), the reconstruction error needs to be minimize 

objective function as equation (7). 

𝑑𝑙𝑜𝑔𝑃(𝒉|𝑬𝑫𝑺𝑴)

𝑑𝑾𝑗𝑘𝑙
≈ < 𝑒𝑐𝑗𝑘ℎ𝑙 >𝑑𝑎𝑡𝑎 −< 𝑒𝑐𝑗𝑘ℎ𝑙 >𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 … (7) 

The DEL reformulates the Deep Belief Network as a stack of RBMs working together for 

training on EDSM. This greedy learning forms Deep Belief Network. Therefore, the reformulation 

makes equation (8) with  

g(𝐄𝐑) = 𝑃(𝑬𝑫𝑺𝑴, ℎ1, ℎ2 … ℎ𝐿) = (∏ 𝑃(ℎ𝑙|ℎ𝑙+1)

𝐿−2

𝑙=0

) 𝑃(ℎ𝐿−1, ℎ𝐿)      … (8) 

where 𝐿 denotes a user-defined number of hidden layer and ℎ𝑙 denotes the 𝑙th  hidden layer.  

The DEL reformulates the auto-encoder to make a deep neural network by encoding the input 

𝑬𝑫𝑺𝑴 into 𝑐(𝑬𝑫𝑺𝑴). The objective is to reconstruct 𝑐(𝑬𝑫𝑺𝑴) using a decoder function with least 

error. The DEL reformulates minimization of the reconstruction error by minimizing the objective 

function of negative log-likelihood given as equation (9) 

𝑅𝐸 = − log 𝑃(𝑬𝑫𝑺𝑴|𝑐(𝑬𝑫𝑺𝑴))                    … (9) 

 

Figure 6.3 Three kinds of Deep SysNN constructed by three DEL variants based on the three deep 

learning techniques: RBM, DBN, and dA. 
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𝑅𝐸 = − ∑ 𝑒𝑐𝑗𝑘 𝑙𝑜𝑔𝑓𝑖(𝑐(𝑬𝑫𝑺𝑴)) + (1 − 𝑒𝑐𝑗𝑘) log (1 − 𝑓𝑖(𝑐(𝑬𝑫𝑺𝑴)))

𝑖

 

where 𝑓𝑖(𝑥) is the function to decode xi, and 𝑓𝑖(𝑐(𝑬𝑫𝑺𝑴)) is the function to reconstruct ith state of 

𝑬𝑫𝑺𝑴 using the Deep SysNN. 

The denoising Autoencoder (dA) is a stochastic version of the auto-encoder. The input of the 

dA is stochastically corrupted, and uncorrupted input is used to reconstruct target. The dA recommends 

the entity connections pattern using randomly selected subsets of entity connection patterns. The 

reformulated training equation (10) for dA to reconstruct negative log-likelihood 

𝑅𝐸 = − log(g(𝐄𝐑)) = − log 𝑃 (𝑬𝑫𝑺𝑴|𝑐(𝑬𝑫𝑺𝑴̃))         …(10) 

where 𝑬𝑫𝑺𝑴 is the uncorrupted input, 𝑬𝑫𝑺𝑴̃ is the stochastically corrupted input, and c(𝑬𝑫𝑺𝑴̃) is 

encode form of 𝑬𝑫𝑺𝑴̃ . To obtain best reconstruction, minimize the equation (10) as objective 

function.  

In the SSL algorithm, the output_vector is converted to form a matrix MO of size (m×m). The 

elements in MO are between 0 and 1, which gives probability of connections between two entities. In 

last step, the MO is transformed to a normalized matrix output MNO. The normalization means the 

element in the MO is converted to ‘0’ or ‘1’ according to the normalized distribution, thus MNO is a 

binary matrix. The MNO is a kind of memorized information about an evolving system, which is useful 

for decision-making and taking-action. This helps to deal with adaptation, control, and analysis of 

evolution and changes in a system over evolving states.  

6.4   SysEvoRecomd Approach 

This section describes the proposed System Evolution Recommender (SysEvoRecomd), which 

uses Graph Evolution and Change Learning (GECL). The SysEvoRecomd learns the evolution based 

on changes happened among evolving system states. Suppose an evolving system has more than N+1 

continuously evolving states, such that we can use N states for training purpose and 1 remaining state 

for testing purpose. Retrieve N+1 states {S1, S2… SN+1} for various time points T = {t1, t2, t3 … tN, 

tN+1} and store them in a local directory. The Si stands for the ith state in a repository, and i varies from 

1 to N+1. The overview of the SysEvoRecomd is shown in Figure 6.4. 

The SysEvoRecomd preprocess a set of states to create a collection of N+1 graphs in the form 

of connection lists with a mapping file. The SysEvoRecomd converts the collection of graphs into N+1 

connection matrices. A deep learning technique can help in efficient learning of evolution in a state 

series. To do this, we introduced Graph Evolution and Change Learning (GECL), which processes the 

N connection matrices and produces an output matrix. The SysEvoRecomd compares the output matrix 
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with testing matrix (a matrix not used for training).  

Definition 6.5: System Evolution Recommender learns evolution happened over evolving states 

of a system at various time-points. It makes the machine capable enough to understand the evolution 

in a state series without any explicit programming. The learned information can recommend about the 

system evolution. 

Definition 6.6: Graph Evolution and Change Learning (GECL) is the process of learning 

evolution happened over evolving graphs from an intermediate representation that contains changing 

patterns of entity connections. It makes a machine capable enough to understand the evolution in 

evolving graphs without any explicit programming. The GECL can do network reconstruction in the 

form of a connection matrix. The GECL may also be referred as Network Evolution and Change 

Learning (NECL).  

The SysEvoRecomd algorithm preprocesses a set of states to create a ListsN+1 with a mapping 

file. Then it converts the collection of graphs into MatricesN+1. An intelligent deep learning is done by 

Graph Evolution and Change Learning (GECL) algorithm, which uses the MatricesN and produces a 

MNO. The SysEvoRecomd compares the MNO with MT. To facilitate the automation of Algorithm 6.4 

 

Figure 6.4 An overview to make a System Evolution Recommender, which uses ECM to generate a 

Deep System Neural Network. 

Algorithm 6.4  SysEvoRecomd 

Input: repository 
Retrieve N+1 states (S1, S2… SN, SN+1) of a repository 
1: ListsN+1 and mapping = preprocess(repository) 
2: MatricesN+1 = conversion(ListsN+1) 
3: MNO = GECL(MatricesN) 
4: time_series = testing(MNO, MatricesN, MT) 
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SysEvoRecomd over a broad of applications, we describe an intelligent tool, which has four steps in 

the following four sub-sections.   

6.5.1  Preprocessing of a State Series  

The SysEvoRecomd theory and approach creates basis for us to develop an automation tool 

named as SysEvoRecomd–Tool. The tool helps in recommendations about system states, which 

reduces human intervention and efforts. We developed the tool in Java, which pre-processes evolving 

entity connections in evolving networks (graphs) of a system state series. After pre-processing, 

SysEvoRecomd-Tool converts each evolving graph into a connection matrix. The tool has GECL, 

which uses Deep Evolution Learner (DEL) to generate Deep System Neural Network (Deep SysNN). 

The tool uses the GECL to reconstruct a zero matrix into an output matrix, which helps to study the 

system evolution.  

 An evolving system contains entities that can be chosen to make a graph such that it represents 

a relationship between entities. Although there are several evolving systems having different pre-

processing techniques (depending upon domain), here we describe a general way of preprocessing. 

Each state is pre-processed to make a graph represented as connection list (i.e. an adjacency list). Each 

graph contains a set of connections (as edges) between entities (as nodes). The pre-processing 

algorithm takes N+1 states as input from a directory (i.e. repository). Process each state (say Si) to 

make a connection list for connections of entities (say connList_i). The connList_i represents a graph 

for a state Si. Store all the N+1 graphs as a connection list in a directory (say ListsN+1). Simultaneously, 

the algorithm also built a mapping file (say mapping) that contains two entries: entityName and entityID 

for each entity. Each entity reappearing in a state series must have the same entityID at all the 

appearances. This mapping file helps to map entityID to its entityName in post-processing. The pre-

processing outputs are N+1 connection lists and one mapping.  

Algorithm 6.5.1  preprocess 

Input: repository 

Output: ListsN+1 and mapping 

1: Initialize HashMap HM<entityName, entityID> 

2: Initialize integer counter = 1 

3: Initialize String buffer = null 

4: For each state Si where i ∈ integer 1 to N +1 

5: Detect a graph of relationship between entities in the state Si. The graph is in the form of 
<entityName, entityName> Store the graph in a file say connList_i 

6: End For 

7: For each connList_i where i ∈ integer 1 to N 

8:   Scan connList_i  

9:   until end of file and Store it in buffer 
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9:   Scan buffer 

10:     If an entityName is in the HM 

11:   In buffer replace the entityName with its entityID 

12:     Else 

13:   entityID = counter 

14:   Add the new tuple <entityName, entityID> in HM 

15:   In buffer replace the entityName with its entityID 

16:   Increment counter by 1 i.e. counter = counter  + 1 

17:   until End of buffer 

18:    Write buffer in connList_i and store it in ListsN+1 

19: End For 

20: Store the HM in a file named as mapping 

21: return ListsN+1 and mapping 

6.5.2  Conversion 

After pre-processing step, each graph (connection list) is converted into its connection matrix. 

The conversion algorithm converts N+1 connection lists (ListsN+1 as input) to N+1 connection matrix 

(stored in a directory (say MatricesN+1)). Process each connList_i to make a connection matrices (say 

conn_matrix_i) and store them in a directory (say MatricesN+1), where i represents state such that 1 ≤ i 

≤ N+1. 

Algorithm 6.5.2  conversion 

Input: ListsN+1 

Output: MatricesN+1 

1: Initialize integer counter = 1 

2: Initialize String buffer = null 

3: For each connList_i where i ∈ integer 1 to N 

4:    Initialize matrix[u][v] = {(0, 0… 0),... (0, 0… 0)} 

5:    For each u ∈ connList_i | u is a source node 

6:      do while each v ∈ connList_i | v is target node of u 

7:    matrix[u][v] = 1 

8:  end do whlie 

9:  End For 

10:  Write matrix[u][v] as conn_matrix_i in MatricesN+1 

11: End For 

12: return MatricesN+1 

6.5.3  Graph Evolution and Change Learning based on Deep Evolution Learner 

This subsection presents our key contributory algorithm, Graph Evolution and Change 

Learning (GECL). After encoding a state series as connection matrices, the GECL is used. The GECL 
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algorithm uses a time-variant data MatricesN (N connection matrices) of a state series as input. The 

GECL algorithm combines multiple connection matrices of a state series to form an Evolving 

Connection Matrix (ECM) as an unlabelled data to learn system evolution. 

Suppose a system state is represented as a graph (first graph of Figure 6.5) with edges (or 

connections) {(a, a), (a, b), (a, c), (b, c), (c, a)}. Such that if entity ‘a’ is connected to entity ‘b’ then 

intersection between ‘a’ (row) and ‘b’ (column) has entry ‘1’ else has entry ‘0’. The first graph is 

represented as the first matrix, such that each row and column represents connection of an entity (as 

node). This matrix can be converted to its equivalent vector [1, 1, 1, 0, 0, 1, 1, 0, 0]. Let the system 

state is evolved to make two more states, which are represented as second and third graphs (represented 

as second and third matrix). Firstly, we provide two formal definitions for the matrices.  

Definition 6.7: A connection matrix stores information about connections between entities in 

the form of a square binary matrix. It is a type of adjacency matrix, such that presence of connection 

is represented as ‘1’, whereas ‘0’ represents absence of connection. The size of connection matrix is 

(m×m), where m is the number of entities in a state. The connection matrix can be converted to its 

equivalent row vector. An appropriate name for this vector is connection vector. The number of 

elements in a connection vector is (m×m), where m is the number of entities in a state. 

Definition 6.8: Evolving Connection Matrix (ECM) represents an ordered collection of 

connection vectors for different states of a system state series SS = {S1, S2... SN}. The ECM also 

represents evolving connections between entities in a state series of an evolving system. The size of 

ECM is equal to N × (m × m), where N is the number of states, and m × m is the size of a square 

connection matrix for a state. 

Secondly, the GECL uses the Deep Evolution Learner (DEL) that takes ECM as input to learn 

evolution and changes. Inside GECL algorithm, the deep_evolution_learner identifies evolution and 

changes happened over states of an evolving system. An ECM is a kind of evolution representor that 

consists of evolution and change information happened over several states. This ECM can be useful to 

learn information using deep learning algorithm. For this purpose, we extended deep learning to make 

 a b c 
a 1 1 1 
b 0 0 1 
c 1 0 0 
 a b c 
a 1 1 0 
b 0 0 1 
c 1 0 0 
 a b c 
a 1 1 0 
b 0 0 1 
c 1 0 1 

 

Figure 6.5 An overview to make a System Evolution Recommender, which 

uses ECM to generate a Deep System Neural Network. 
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the GECL intelligent.  

During training, the DEL learns the evolution and change patterns of the evolving entity 

connections in ECM. Although, the ECM is a matrix but it can also be visualized as a column matrix 

of - N connection vectors, where each connection vector has m × m elements. Internally, the DEL 

forms a Deep System Neural Network (Deep SysNN). The training in the algorithm makes Deep 

SysNN learned about the evolution of a system. The Deep SysNN is in the form of weight matrices 

based on the training (means deep evolution learner training). The main parameters during training are: 

learning rate (LR), epoch, and number of hidden units of neurons.   

Although the deep learning can use any kind of matrix, the DEL uses evolution represented 

information (as ECM), which is the key idea of our approach. The Deep SysNN contains information 

about evolution and change patterns of entity connections in the form of weight matrix of neural 

network. Thereafter, the DEL reconstructs a zero_vector into an output_vector (both the vectors has 

m×m elements). Thus, the Deep SysNN helps to reconstruct a zero_vector (made of a zero matrix MZ 

of size m×m) to make an output_vector. 

Key idea of DEL is to use reconstruction property of deep learning. The objective of DEL is to 

learn each connection vector of a state given in ECM (as primary input). This learning helps to 

reconstruct the entity connections of a zero vector (as secondary input). The pre-training happens on 

several connection vectors sequentially containing entity connections as feature, this initializes weight 

matrix of a Deep_SysNN with sensible values. Thereafter, last layer of output units is added on the top 

Algorithm 6.5.3  GECL 

Input: MatricesN 

Output: MNO 

1: Initialize a zero matrix as MZ 

2: zero_vector = matrixToRowVector(MZ) 

3: For each conn_matrix_i in MatricesN | i ∈ 1 to N 

4: conn_vector_i = matrixToRowVector(conn_matrix_i) 

5: End for 

6: output_vector =   

  conn_vector_i 

ECM = + 

  ECM 

 

    deep_evolution_learner(ECM, zero_vector) 

7: MO = rowVectorToMatrix(output_vector) 

8: MNO = normalize(MO) 

9: return MNO 
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of the Deep_SysNN and then the whole Deep SysNN is fine-tuned using backpropagation.  

The objective of deep evolution learner model is to minimize the connection-vector 

reconstruction error. To achieve this goal, the DEL uses existing and successful reconstruction theory 

of deep learning. We restrict the description of the DEL model to three well-appreciated deep learning 

techniques: Restricted Boltzmann Machine (RBM), Deep Belief Networks (DBN), and denoising 

Autoencoder (dA). RBM model can be re-written using ECM as equation 

𝑃(𝒉|𝑬𝑪𝑴) = ∏ 𝑃(ℎ𝑙|𝑬𝑪𝑴)

𝐿

𝑙=1

 

Similarly, Deep Belief Network (DBN) model using 𝑃(𝒉|𝑬𝑪𝑴) can remodel as equation 

𝑃(𝑬𝑪𝑴, ℎ1, ℎ2 … ℎ𝐿) = (∏ 𝑃(ℎ𝑙|ℎ𝑙+1)

𝐿−2

𝑙=0

) 𝑃(ℎ𝐿−1, ℎ𝐿) 

where, 𝐿 is the total number of hidden layers and ℎ𝑙 is the 𝑙th  hidden layer. 

Our remodeled training equation for dA is expressed as a reconstruction negative log-likelihood 

𝑅𝐸 = − log 𝑃 (𝑬𝑪𝑴|𝑐(𝑬𝑪𝑴̃)) 

where 𝑬𝑪𝑴  is the uncorrupted input, 𝑬𝑪𝑴̃  is the stochastically corrupted input, and c(𝑬𝑪𝑴̃) is 

encoded form of 𝑬𝑪𝑴̃. The objective is to minimize the negative log-likelihood of the equations. 

After training phase, the DEL minimizes zero_vector reconstruction error while making an 

output_vector. Thus, this is how the DEL makes a connection vector named as an output_vector. In 

GECL, the output_vector is then converted to its equivalent matrix, which is an output matrix MO. The 

MO consist information about probable existence of a connection between two entities in the ECM. The 

DEL makes MO (elements are in between 0 to 1) that further makes normalized output matrix MNO 

(elements are binary). This MNO is our desired objective, which represents a reconstructed network. 

In short, the GECL algorithm helps to analyze an evolving system. The GECL algorithm uses 

N states to make an ECM. The GECL further depends upon DEL algorithm that learns evolving states. 

The DEL takes an ECM to generate a Deep SysNN, which helps to reconstruct a zero vector into an 

output vector. The vector reconstruction done by the DEL leads to network reconstruction matrix MNO 

that might have some inaccuracy. Thus, we need to validate the network reconstruction result (MNO) 

against an actual system network state (not used for training). 

6.5.4  Recommendation Performance Evaluation 

This section explains formal performance evaluation of our recommender system tool by testing 

the given recommendations. After core learning, testing is performed for the recommendations 

provided by MNO about the entity connections of the evolving systems. The testing algorithm measures 

similarity based on four evaluation metrics: accuracy, precision, recall, and f-measure. The algorithm 
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uses the four metrics to compare between the normalized output matrix MNO and connection matrices.   

For each state, the values of these four metrics are stored in a file named as time_series. For 

each i vary from 1 to N, the algorithm calculates the four metrics values between MNO and 

conn_matrix_i. The state number ‘i’ followed by the metrics values are appended as a line in the 

time_series file. Thereafter, the algorithm calculates the four metrics values between MNO and testing 

matrix MT. The state number ‘N+1’ of MT and the four metrics values are appended as a line in the 

time_series file. The time_series file aids to produce a (time series) graph, which shows similarity of 

MNO with the system states and highlights comparison between MNO and MT.  After learning and testing 

phases of our SysEvoRecomd, we can make and show time series graphs. Based on the SysEvoRecomd 

algorithm, we made three variants of DEL using three deep learning techniques: RBM, DBN, and dA. 

This makes three variant of GECL. For this, we used Java source code 

(https://github.com/yusugomori/DeepLearning). 

6.5   SysEvoRecomd Tool 

To show application, we developed a prototype tool (in Java) based on the proposed approach 

and named it SysEvoRecomd-Tool (System Evolution Recommender – Tool), which is a recommender 

system. Our tool learns and recommends the patterns of evolving entity connections over a state series. 

This helps to study and recommend about system’s evolution. A practitioner dealing with an evolving 

system (represented as a series of graphs with inter-connected entities) can find our tool interesting. 

An evolving graph represents connections between system entities. Our SysEvoRecomd approach 

considers graph and evolution learning together, and it helps to do graph (network) matrix 

reconstruction. Our approach is an automated technique to build a recommender system. With the 

Algorithm 6.5.4  testing 

Input: MNO, MatricesN, MT 

Output: time_series 

1: Initialize accuracy, precision, recall, f-measure, time_series  

2: For each conn_matrix_i in MatricesN where i ∈ integer 1 to N 
3:  accuracy = accuracy(MNO, conn_matrix_i) 
4:  precision = precision(MNO, conn_matrix_i) 
5:  recall = recall(MNO, conn_matrix_i) 
6:  f-measure = fmeasure(precision, recall) 
7:  time_series = addLine(i, accuracy, precision, f-measure, recall) 
8: End for 

9:  accuracy = accuracy(MNO, MT) 
10: precision = precision(MNO, MT) 
11: recall = recall(MNO, MT) 
12: f-measure = fmeasure(precision, recall) 
13: time_series = addLine(N+1, accuracy, precision, f-measure, recall) 

10: return time_series 
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proposed SysEvoRecomd approach and tool, one can learn evolution happened to a system over time. 

This learning can be used to do recommendation (or prediction) about system. Further, our tool would 

be helpful in making recommendations about system evolution in following ways.  

 It can predict unknown connections between entities.  

 It is helpful while upgrading system to a new state.  

 It is helpful during intermediate phase of the system development.  

 It can assist a system developer. 

 It can speed-up the system development.  

 It can do automatic correction of some errors during system development.  

 It can determine possible future of the system.  

These advantages are analysed with the experiments (in the next section), which enables to use 

such recommender system for an evolving system. 

6.6   Evaluation using K-Fold and Forward Chaining 

This section describes evaluation of our SSL algorithm using two techniques for experimental 

cross validation: kFold and forward chaining (also known as time series cross validation). Our model 

has four parts to do system structure learning: training data, testing data, target output, and classifier 

metrics. The training data of DEL is an EDSM. The DEL learns evolution patterns from EDSM of a 

state series in an ‘unsupervised manner’. The training data is the connection patterns between a set of 

entities (features) in the form of EDSM for a state series. After training, the DEL creates Deep SysNN. 

Learning and recommendation of changes rely on frequency of occurrence of connection between two 

entities (features) in an EDSM. The Deep SysNN helps to reconstruct a zero matrix MZ to an output 

matrix MO.  

The testing data is a testing matrix MT, which represents entity connections of a state for 

testing. The testing data is a DSM of a state that is unused during training phase. The target output is 

the output matrix MO that can reflect evolution information about evolving system. Using Deep SysNN, 

we can automatically produce an output matrix MO (containing patterns of entity connections) that 

recommends about evolving entity connections of an evolving system. There are four well-known 

binary classifier metrics [187] (accuracy, precision, recall, and f-measure), which checks whether 

the output is correct or incorrect. The four metrics can analyze the output MNO according to the desired 

correctness. 

Next, we discuss two cross validation techniques using the four binary classifier metrics. The 

kFold is a well-known technique [188][189], thus we skip its basic explanation. The forward chaining 

[190] is used for time (state) series based data where learning from earlier states has importance. To do 

the two types of cross validation, we made two types of directory (folder) that contains training and 

testing data. 
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- We made a kFold folder such that it contains N+1 sub-folder, where each sub-folder contains 

N training matrix and 1 testing matrix MT_i of state Si. The name of the sub-folder is the testing state 

name (or number), and we denote it as ‘i’. Here, k stands for the N states used for training purpose. 

- We made a forwardChaining folder such that it contains N sub-folder. Each sub-folder 

contains training matrices of previous states and 1 testing matrix MT_i of current (i.e. testing) state Si. 

The name of the sub-folder is the current state name (or number), and we denoted it as ‘i’. Here, training 

data varies from 1 to N states. 

The kFold_forwardChaining algorithm performs two types of cross validation: kFold and 

forward chaining. The first ‘for-loop’ identifies the four binary classifier metrics over the kFold folder 

and stores the values in test_metric. The algorithm uses the test_metric to calculate the average of 

accuracy, precision, f-measure, and recall over the number of sub-folders (or results) in kFold folder. 

The second ‘for-loop’ identifies the four binary classifier metrics over the forwardChaining folder and 

stores the values in test_metric. The algorithm uses the test_metric to calculate the average of accuracy, 

precision, f-measure, and recall over the number of sub-folders (or results) in forwardChaining folder. 

Algorithm 6.5  kFold_forwardChaining 

Initialize accuracy, precision, recall, f-measure, test_metric 
For each ith sub-folder in kFold where i ∈ state number 

MNO = SSL(MatrixN) 
accuracy = accuracy(MNO, MT_i) 
precision = precision(MNO, MT_i) 
recall = recall(MNO, MT_i) 
f-measure = f-measure(precision, recall) 
test_metric = addline(i, accuracy, precision, f-measure, recall) 

End for 

Calculate four averages of all four metrics (accuracy, precision, f-measure, recall) over the number of 
states in test_metric. The four averages are: kFold<Acc., Pre., FMe., Rec.> 
For each ith sub-folder in forwardChaning where i ∈ state number 

MNO = SSL(Matrixprevious_states) 
accuracy = accuracy(MNO, MT_i) 
precision = precision(MNO, MT_i) 
recall = recall(MNO, MT_i) 
f-measure = f-measure(precision, recall) 
test_metric = addline(i, accuracy, precision, f-measure, recall) 

End for 

Calculate four averages of all four metrics (accuracy, precision, f-measure, recall) over the number of 
states in test_metric. The four averages are: forwardChaning<Acc., Pre. FMe., Rec.> 

kFold folder where k = 4: forwardChaining folder  

folder 1: train [2 3 4] and test [1] folder 2: train [1] and test [2] 

folder 2: train [1 3 4] and test [2] folder 3: train [1 2] and test [3] 

folder 3: train [1 2 4] and test [3] folder 4: train [1 2 3] and test [4] 

folder 4: train [1 2 3] and test [4]   
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Return kFold<Acc., Pre., FMe., Rec.> and forwardChaning<Acc., Pre., FMe., Rec.> 

Our approach is applicable to an evolving system represented as a state series of DSM, thus we 

present analysis of six different evolving systems in the next section. 

6.7   Experimentation on Evolving Systems 

This section describes application of our approach on the six real-world evolving systems of 

four domains as mentioned in Table 6.1. We demonstrate performance evaluation of our 

SysEvoRecomd-Tool on six evolving systems. Usually, some recommender systems are inherently 

better at studying specific input patterns, and hence can work accurately in a specific domain. The 

evolving systems have both regular and irregular time intervals between states. Only HDFS software 

versions have irregular time interval. All other systems have regular time interval e.g. bible translations 

have intervals of centuries, multi-sport have intervals of decades, retail market have intervals of 

months, movie-genres have intervals of decades. 

6.7.1  Experiments for System Structure Learning (SSL) 

Each experiment evaluates the recommendation of SSL algorithm for an evolving system. To 

do experiments, suppose there are N+1 states of a system. From these states only N states are used in 

training phase to create a Deep SysNN by SSL. We evaluate the SSL algorithm based SysEvoRecomd-

Tool for the six evolving systems. The size of each DSM is m×m given in forth column, where m is 

the number of procedures (entities) in a code version (state) series of evolving system. The 

evolutionRepresentor algorithm transforms N DSMs into N vectors such that each vector contains 

m×m elements. The algorithm combines the N vectors of N training states to form an EDSM (N × 

m×m) as training input to the DEL. Internally, the deep_evolution_learner generates Deep SysNN that 

creates an output_vector with m×m elements. The evolutionRepresentor uses output_vector to make a 

binary matrix MNO of size m×m. The testing algorithm compares the MNO with the testing matrix MT, 

which is a binary matrix containing few 1s and many 0s. To do evaluation, we performed the following 

three steps on each of the evolving system. 

- First, for each experiment, we partition system data into two parts: training data and testing 

data. The training data contains DSM of N states, and the testing data contains testing matrix MT. For 

each experiments, the kFold_forwardChaining algorithm uses these two partitions.  

- Second, for each experiment, the SSL combines N DSMs of the training data to make an 

EDSM. Then, in the SSL, the DEL uses EDSM to generate a Deep SysNN that reconstructs a zero 

matrix MZ into an output matrix MO. The output matrix MO is transformed to a normalized output 

matrix MNO that mimics the pattern of the old states. The SysEvoRecomd-Tool models an evolving 

system to do recommendation based on deep evolution learner. The tool uses deep learning source code 

(written in java) for (RBM, DBN, and dA), written by Sugomori Yusuke [191], and available on 
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GitHub [192]. Sugomori followed the same approach as suggested in techniques: RBM, DBN, and dA. 

We used three variants of deep evolution learner using three different deep learning techniques: RBM, 

DBN, and dA. The DEL variants have its own advantages and disadvantages to analyze the system 

evolution. We used following three training parameters for deep learning: learning rate (LR), Epoch 

(Ep), and number of hidden units/layers of neurons (L). We did many (hundreds of) experiments to 

determine the model training parameters. The training parameter values that resulted in high accuracy 

and f-measure are presented in fifth column of the Table 6.1 with a sequence of LearningRate-Epoch-

HiddenLayers. The DEL works like feed-forward neural network learning algorithm, which uses many 

iterations (i.e. epochs) during learning phase. Learning rate controls the learning of an algorithm. For 

all the dA experiments, we used 0.3 for the data corruption rate. To reduce the complication, in DBN 

we used same learning rate for pre-training and for fine-tuning. 

- Third, for each experiment, the kFold_forwardChaining algorithm compares the normalized 

output matrix MNO with the testing matrix MT. The algorithm calculates the similarity between the two 

matrices. For each evolving system, the table contains group of three rows for three DEL variants: 

RBM, DBN, and dA.    

The use of standard statistical techniques [187]: such as precision, recall, and accuracy provide 

a better assessment of the tool’s performance. The precision is the measures of “how many of all 

connections have been recommended correctly”. The recall is the measure of “how many of all missing 

connections have been recommended correctly”. The accuracy is the measure of “how many of all 

connections and missing connections have been recommended correctly”. Thus, precision, recall, and 

accuracy measure the percentage of correct recommendation. Mathematically, these metrics are re-

formulated for our goal in the following way 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑎𝑙𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑡𝑜𝑜𝑙   
 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

(# 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 +

𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑐𝑜𝑚𝑒𝑛𝑑𝑒𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑠 𝑚𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠
)
 

Table 6.1 Information about imbalanced dataset Used. 

Evolving Systems Testing matrix (MT) Number of 1s Number of 0s 

Hadoop  HDFS Version 2.7.2 2938 9787703 

List of Bible Translation 20th Century 46 579 

List of Multi-sport Events 201 i.e. 2010-2017 decade 8 188 

Frequent Market Basket 1211 i.e. December 2011 617 13307 

Positive sentiment of movie 
genres 

201 i.e. 2010-2019 decade 47 578 

Negative sentiment of movie 
genres 

201 i.e. 2010-2019 decade 177 1848 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(#

 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 +
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

)

# 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑛𝑡𝑖𝑡𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖. 𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 
 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 .  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 

where, # denotes “count of” and misconnections means missing connections.  

Using these four metrics, we evaluate our recommender system. These metrics calculate 

similarity between the two binary matrices: normalized output matrix MNO and testing matrix MT. The 

similarity results are shown in Table 6.1, which are generated using the SysEvoRecomd-Tool. Higher 

value of a metric represents high similarity (means good result) and low value of a metric represents 

dissimilarity (means bad result). The accuracy metric represents the similarity between all the values 

 

 

Figure 6.6 Graph plots to show experimental results for four metrics values in the vertical axis. The 

experiments done for six evolving systems are highlighted in the horizontal axis. The sequence of the 

values has same sequence mentioned for six evolving systems in the Table 6.1. 
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(0’s and 1’s) of two binary matrices, whereas precision, recall, and f-measure represent the similarity 

between all the values of 1’s. In all matrices at jth row and kth column, each ‘1’ represents there exist 

an entity connection and each ‘0’ represents connection do not exist between two entities (or features).  

In Figure 6.6, we presented the two kind of cross-validation results in the two graphical plots. 

We plotted all the values of the four binary-metrics for the four domains mentioned in the Table 6.1. It 

shows domain B and D are harder to learn as compared to domain A and C. 

Observations during experimentations:  

Finally, we discuss our experience while conducting experiments. Our experiments are novel 

for studying system evolution. Nevertheless, we present following seven outcomes of our observations. 

1. Learning and Memorization both are useful in recommendations: Like human being, a machine also 

needs both logical and memory oriented learning. Logical learning (or generalization) provides 

analytical power to the machine, whereas memorized learning (or specialization) provides 

recommendation power to the machine. Thus, memorization of old memory helps machine to 

recommend an upcoming and non-existing data. Generally, the entity connection patterns are almost 

constant in every system states, which can be learned and strored as a memory in the form of a 

reconstructed information (normalized output matrix MNO). Thus, we did pattern learning and then 

stored that information in the form of an output matrix as a disk memory. This makes our results 

accurate and precise. Hence, learning and memorization both are useful for a machine to mimic 

patterns like a human.   

2. We made two inferences from the Table 6.1, while comparing between natural language based 

systems and software systems. First, natural language based system data (list of bible translation and 

multi-sport events) are hard to learn for recommendation. Second, inter-procedural calls of software 

are easier to learn for recommendation. The medium of communications (e.g. natural languages) 

used by humans are significantly complex in nature, whereas medium of communications (e.g. inter-

procedural calls) used by the computers are relatively less complex in nature. Hence, learning of 

software systems (used by machines) are relatively easier as compared to learning of natural 

language systems (used by humans).  

3. Large size matrices are hard problem for deep learning. When we processed Hadoop-HDFS data 

system, it took large time to learn because of the EDSM size 14 × (3129 × 3129). Whereas, learning 

for the same environment, all the other dataset (with smaller EDSM) took lesser time as compared 

to the large EDSM of HDFS.  

4. When an entity (or feature) is present in some states of training data but missing in other states of 

training data, it is hard to recommend about such entity. Generally, in machine learning algorithm 

the size of features are fixed. However, in our case number of entities (as features) is different in the 
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different states. For example, some entities (software procedures or natural languge words) exists in 

some state but do not exist in other state. Thus, in the DSM of a state, we put zeros at all the places 

corresponding to the entities that do not exist in the state. We find an interesting observation that it 

is hardest to recommend about the entities (or nodes or features) that appeared in few training states. 

For example, when many entities are added to a new state of an evolving software corresponding to 

new functionalities. We find that it is hard for an algorithm to recommend about these new entities 

that never existed in old state used for training purpose. Hence, it is hard to recommend the future 

connections for the entities (or features) that are absent in some states used in training. 

5. For learning purpose, our SSL solves the problem for pre-processing of an evolving system. Further, 

our DEL generates Deep SysNN that has information about evolution and changes happened in a 

system state series. The SysNN consist of information about the relationship between system entities 

in various evolving system states.  

6. As our approach depends upon the deep learning, which also has some drawbacks e.g. it is complex 

and take time to learn. Relatively some algorithm (e.g. Support Vector Machine, Decision trees, and 

Regression) are simpler, faster, easier to learn from a dataset. Thus, the drawbacks of deep learning 

are the drawbacks of our approach too. 

7. Accuracy metrics alone cannot give a justified measure for the correctness of a model, thus we used 

precision, recall and f-measure. The datasets used in the experiments (presented in this section) are 

imbalanced. Generally, imbalanced data means classes are not distributed equally and learning form 

an imbalanced dataset is a challenging task [193]. Specifically, in our case (see Table 6.2), 

distribution of zeroes (‘0’s) and ones (‘1’s) are uneven i.e. the number of ‘0’s are significantly higher 

than the number of ‘1’s. For entity connection recommendation, true positive TP (connection 

recommended correctly) has more significance as compared to TN (true negative). Similarly, false 

positive FP (connection recommended incorrectly) has more significance as compared to FN (false 

negative). Due to imbalanced dataset, we are getting high value of accuracy metric as compared to 

f-measure. Because accuracy metric compare the two matrices bit-by-bit assuming each 

recommendation has the same significance, whereas this is not our case. Thus, we used precision, 

recall and f-measure metric. Hence, for imbalanced data, in addition to accuracy metrics it is 

required to use some other evaluation metrics like precision, recall, and f-measure.  

6.7.2  Experiments for System Evolution Recommender 

We benchmark SysEvoRecomd-Tool for six evolving systems collected from six open-internet 

repositories. We collected data from four types of repositories: Wikipedia, Software repository, UCI 

repository, and IMDb. These system data have rich state or time instance history due to active 

contributions on them. We used these datasets because they provide many states to evaluate our system 
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evolution recommender tool. For each evolving system, we made its combined matrix for the training 

phase of GECL. To study system evolution, we used GECL by using models of deep evolution learner 

based on the fundamental models of deep learning.  

For each evolving system, we formed a set of evolving networks, which are further converted 

to an ECM (evolving connection matrix) for training purpose. The GECL (graph evolution and change 

learning) algorithm internally uses DEL (deep evolution learner) algorithm. The DEL algorithm used 

the ECM to generate a reconstructed connection matrix (as output), which does network reconstruction. 

For network reconstruction, we used deep learning approach of matrix reconstruction. 

To study system evolution, we used three variants of GECL by using three models of DEL 

based on: RBM, DBN, and dA. The normalized output matrix (MNO) represents the required 

reconstructed network, thus, there are three such network reconstructions by three variants of the 

GECL. To compare the correctness of recommendation by network reconstruction, we compared MNO 

and MT (testing matrix). For comparison, we used four metrics: precision, recall, accuracy, and f-

measure. Next, we discuss experiments on six evolving systems using Figure 6.7, which helps to study 

correctness of recommendations done by SysEvoRecomd-Tool.    

The Figure 6.7, helps to study correctness of automatic recommendations done by 

SysEvoRecomd-Tool. Each (time series) graph has the horizontal axis representing the state series of 

the evolving system and the vertical axis represents value of metrics between (0-1). The state series 

are: version series for HDFS; century series for Bible translation; decade series for Multi-sport events; 

month series for Frequent market basket; and decade series for Positive and Negative sentiment of 

IMDB movie genres. We made following inferences from the time series. 

Hadoop-HDFS: The reconstructed matrix is almost similar to all the trained versions (except 

slightly dissimilarities with some earlier versions: 2.2.0, 2.3.0 etc.). The testing metrics values are 

slightly less as compared to the last two training versions (2.7.0 and 2.7.1). In the graph, 

recommendation done by the reconstructed network matrix for testing version (2.7.2MT) is 

significantly satisfactory.  

List of Bible translation: The reconstructed matrix is almost similar to last two training data of 

centuries (15-16-17-18 and 19) and dissimilar to the earlier two training data of centuries (7-8-9-10 

and 11-12-13-14). The testing metrics values are slightly less as compared to the last two training data 

of centuries (15-16-17-18 and 19). The recommendation done for the testing century (20MT) by the 

reconstructed network matrix is significantly satisfactory. 

List of multi-sport events: The reconstructed matrix is 50% (approx.) similar to all the trained 

decades. The testing metrics values are slightly less than the 50% (approx.) training decade. The 

recommendation done for the testing decade (201MT) by the reconstructed network matrix is 
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satisfactory for the randomness (entropy) between states used for training.  

 
Figure 6.7 The three graphs for three variants of GECL applied on an evolving system. Each graph contains 

four time series with a metric value for similarity between MNO and connection matrix of a state (in horizontal 

axis). Last value of each time series is a metric value for similarity between MNO and MT.  
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Frequent market basket: The reconstructed matrix is almost similar to last three training data of 

months (911, 1011, and 1111) and dissimilar to the training data of 111 i.e. January month of 2011. 

The testing metrics values are slightly less as compared to the training data of last eight months. The 

recommendation done for the testing month (1211MT) by the reconstructed network matrix is 

satisfactory.  

Positive sentiment of movie genres: The reconstructed matrix is almost similar to last two 

training decades (199 and 200) and slightly dissimilar with training decades (191, 192, 194, and 195). 

The testing metrics values are slightly less as compared to the last training decade 200 i.e. 2000-2009. 

The recommendation done for the testing decade (201MT) by the reconstructed network matrix is 

satisfactory even for the randomness (entropy) between consecutive states in the training. Thus, the 

recommendations are useful.  

Negative sentiment5 of movie genres6: The reconstructed matrix is almost similar to last two 

trained decades (199 and 200) and dissimilar with earlier decades (190, 191, 192, 193, 194, 195, and 

196). The similarity of the reconstructed matrix is progressive with respect to the states (time points). 

The testing metrics values are slightly less as compared to the last trained decade 200 i.e. 2000-2009. 

The recommendation done for the testing decade (201MT) by the reconstructed network matrix is 

satisfactory even for the randomness (entropy) between consecutive states in the training dataset. Thus, 

the recommendations are useful.  

Managerial Applications of SysEvoRecomd: The SysEvoRecomd-Tool helps to automate the 

process of system development, evolution, and maintenance for both existing and upcoming states. The 

time variant (or nonstationary) data of four domain are modeled as evolving systems, then we used 

SysEvoRecomd-Tool leading to following advantages. 

- First, it can help to predict connection between entities: call between two procedures, link 

between two words, purchasing of items by a customer, and relation between two movies. 

- Second, it can also be helpful while upgrading software system, correcting natural language 

errors, improving retail market distribution, and targeting audience for a genre. 

- Third, it is helpful during software development, rephrasing a text, doing target marketing, 

and while naming a movie.  

- Fourth, it can assist system employees e.g., software programmer, writers (of book, article, 

and novel), retail market (sales, finance, and marketing team), and film production team.  

- Fifth, it can help to speed-up the software development, predictive text, customer billing, and 

selecting movie name. 

- Sixth, it can do automatic correction of some errors during software debugging, autocorrecting 

while writing text, customer satisfaction, and re-making a movie.  

- Seventh, it can determine possible future of the software, text usage trend, market analysis, 
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and videos naming. 

6.7.3  Comparison with other similar techniques 

Karniel and Reich [194] proposed a use of DSM for process planning and conversion of a DSM 

based plan to a DSM-net process. Recently, Kosari [195] studied Work Transformation Matrix (WTM) 

at the level of Coupled Blocks of Activities (CBAs); they also provided equivalency between properties 

of dynamic systems modeled in state space and numerical process DSMs. Whereas, we presented an 

approach to use DSM for neural network training, which is a novel approach. We described a learning 

technique (using existing deep learning algorithms) that can use an evolving matrix (like an EDSM) to 

learn about evolution and changes. The EDSM extends existing theory of DSM.  

Recurrent Neural Network (RNN) [196] is a type of ANN that has directed cycle to capture 

dynamic behavior of time-variant or sequence data. The RNN can work with the dynamic systems such 

as state series (like evolving software). A RNN captures the dynamic behavior of the temporal data. 

Whereas, we represent system data into an evolving matrix, thereafter, we used system structure 

learning models for learning purpose that creates SysNN (a novel type of ANN). The SysNN is more 

specifically representing a system’s structure, whereas RNN is a generalized group of artificial neural 

network. 

Recently a class of learning model named Memory Networks [197] is popular because it learns 

from a given knowledge for answering questions correctly. Thereafter, Sukhbaatar et al. [198] 

demonstrated a neural network with an explicit memory and recurrent attention mechanism for reading 

the memory; they trained neural network using backpropagation on diverse tasks from question 

answering to language modeling. Ankit et al. [199] introduced dynamic memory network (DMN) to 

process input sequence and questions, which forms episodic memories to generate relevant answers. 

They used recurrent neural network (RNN) and long-short term memory (LSTM) for learning purpose. 

In addition to such ANNs, we proposed Deep SysNN, which is based on a feed-forward deep neural 

network technique for learning the system state series.  

Long-term memory enhances capability to remember and understand relationships between two 

separate entities, objects, and features. This is proven in case of dolphins [200], chimpanzees and 

orangutans [201], and hyenas [202]. Similarly, we did learning and memorization, which is useful in 

repeating (or mimicking) patterns of system entity connections. 

Gulli et al. [203] invented a method and a system to store, extract, and analyze entity from the 

temporal content to present temporal trends according to user search query. Recently, Rishwaraj et al. 

[204] presented an approach of temporal difference learning using Markov games and heuristics to 

estimate trust in multi-agent systems. Instead of Markov’s theory, we used deep learning based 

approach to present evolution and change learning of an evolving system. 
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Li et al. [205] proposed a RBM model for representation learning on linked data. Poria et al. 

[206] proposed a method to extract and learn features from visual and textual modalities based on deep 

convolutional neural networks for emotion recognition and sentiment analysis. For three variants of 

DEL, we observed an obvious result that recommendation done by DBN and dA has outperformed 

RBM. Our proposed work has applications to realize a hardware device using theory of Spiking Neural 

Network (SNN) [207] based on proposed System Neural Network (SysNN). 

6.8   Summary 

This chapter introduced evolution and change learning that forms System Neural Network 

(SysNN) a type of ANN. We exploited this concept to propose a System Structure Learning (SSL) 

algorithm, which internally uses evolution representor and deep evolution learner (DEL). The DEL 

uses an Evolving Design Structure Matrix (EDSM as evolution representor) to construct a feed-forward 

neural network i.e. Deep SysNN that contains information of evolving system states.  

We have also proposed a System Evolution Recommender (SysEvoRecomd) algorithm that 

internally uses Graph Evolution and Change Learning (GECL) and Deep Evolution Learner (DEL). 

The GECL studies a given sequence (or series) of directed graphs using deep evolution learner 

algorithm. The DEL algorithm uses an Evolving Connection Matrix (ECM) and outputs a Deep System 

Neural Network. Based on the proposed algorithm, we constructed an automated tool named as 

SysEvoRecomd-Tool. We found that our tool done promising network reconstruction. Our 

SysEvoRecomd is novel, useful, and sensible as it uses inherent matrix reconstruction characteristics 

of deep learning.  

Based on the proposed approach, we developed a prototype tool named as SysEvoRecomd-

Tool to analyze time variant data (or non-stationary data) of an evolving system. We conducted 

experiments on six evolving systems collected from open internet repositories of four different 

domains. We demonstrated our approach using three variants of DEL based on three deep learning 

techniques namely, RBM, DBN, and dA. For an evolving system, each of the variant uses an EDSM 

as input to generate three Deep SysNNs. As an observation, we found that the Deep SysNN is a feed-

forward neural network that has ability to learn and memorize information of evolving system’s states 

by reconstructing vector of entity connections. We found our SysEvoRecomd-Tool is useful for system 

evolution analysis by doing system evolution recommendations. 

To demonstrate automation capability of SysEvoRecomd-Tool, the experiments on six evolving 

systems demonstrated useful application of System Structure Learning. The experimental results are 

satisfactory according to the four metrics: accuracy, precision, fmeasure, and recall. This contributes 

to an emerging field of managing an evolving system represented as a state series. The six evolving 

connection matrix used as the input are huge and computational expensive for real-world applications. 
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However, our efficient Java codes based on deep learning solved such real-world applications in 

feasible-time. In future, our technique can be applicable on other kinds of evolving systems to do 

temporal analysis. Instead of using deep learning, another machine learning technique can be used.   
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Big Data Evolution Analytics for Evolving Scholarly Systems 

 

Era of developing world leads to the growth of several systems that evolve with time. Such 

evolving system may also create big data, which also evolves with time. Analysis of big data from such 

evolving system needs big data analytics techniques. We introduce an approach to do Big Data 

Evolution Analytics (BDE-Analytics) for evolving big data generated through evolving system. We 

proposed BDE-Analytics in two steps. Firstly, we pre-processed a given evolving big data to make 

multiple states as a state series SS = {S1, S2,.. SN} of an Evolving Big Data System (EBD-System), 

where Si is a state of ith instance. Secondly, we mine Big Data Evolution Rules (BDERs) that are further 

post-processed to generate Big Data Evolution Concepts (BDECs) for the given state series of EBD-

System. These BDERs and BDECs as information are further useful to do EBD-System evolution 

analysis. We demonstrate this approach on an evolving scholarly system of Microsoft Academic Graph 

(the dataset of KDD CUP 2016). We presented experimentation results as evolving scholarly topics 

and graphical scholarly evolution information of past 2 centuries i.e. 217 years (1800-2017). 

Additionally, we presented the trend of evolving scholarly fields (i.e. area of studies) for the past 217 

years. 

7.1   Introduction 

Big Data is a term that describes large volumes of high velocity, complex, and variable data 

that require advanced techniques and technologies to enable the storage and distribution, management, 

and analysis of the information [208]. Big Data pre-processing is an essential step for unstructured 

data. Therefore, pre-processing is required to prepare big data for analysis [209]. Even structured data 

requires some amount of pre-processing techniques that includes numeration, discretization, principal 

component analysis, feature reduction etc. After structuring a given big data, various big data analytic 

techniques [210] are used to analyse the given big data for identification of undiscovered correlations, 

patterns, and other useful information. 

An evolving system may create evolving big data such that its entities keep on evolving (or 

incrementing) with time. The evolving big data can be pre-processed and represented as a state series. 

This kind of state series is similar to a data series but because system data is changing depending on 

the time instance, thus it is better to refer it as state series instead of data series. Data mining can be 

performed on each state separately and then merge the retrieved information of each state to retrieve 

the accumulated information. Thus, in this way we do Big Data Evolution Analytics (BDE-Analytics) 
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on state series of an evolving big data generated by an evolving system. To do BDE-Analytics, we use 

text mining and association rule mining to retrieve knowledge and information from the state series of 

evolving big data.  

The text mining is helpful to recognize the pattern in the evolving big data, thereafter we feed 

the pattern to a data mining algorithm [211][212] like association rule mining [213][214]. Association 

rule mining is concerned with identification of correlations within items of a dataset. These correlations 

can prove to be very useful as they can help in revealing novel, significant, and insightful information. 

Both text and association mining techniques are widely accepted and used to discover interesting and 

meaningful relationships between associated entities (or items) in a large dataset. We used them on 

evolving system entities in order to gain interesting insights about relationship between entities. 

In this chapter, we propose an approach to do BDE-Analytics by breaking a big data into a state 

series {S1, S2… SN}, such that Si represents ith state of the Evolving Big Data System (EBD-System). 

Then we do mining on each state of big data separately to retrieve big data evolution rules as 

information of each state. Thereafter, we cleaned and arranged such information to retrieve our 

proposed big data evolution concepts. The proposed work is applied on real-world big scholarly data 

to retrieve evolving scholarly topics (as big data evolution concepts) in last 2 centuries (1800-2017). 

The rest of chapter is organized as follows. Section 2 describes our approach to do Big Data 

Evolution Analytics. Section 3 describes experimentation done on evolving big data of evolving 

scholarly system over last 217 years. Section 4 and 5 presents related works and concluding remarks 

respectively. 

7.2  Big Data Evolution Analytics 

This section describes about the proposed approach to do BDE-Analytics. To begin with, we 

present an overview of our approach, which is shown in Figure 7.1. Firstly, unstructured big data is 

transformed into a representation that exhibits a higher degree of structuring as a state series. Secondly, 

we did big data evolution rule mining on each state to identify Big Data Evolution Rules (BDERs) 

information between associated entities. Further, we aggregate the retrieved BDERs to retrieve big data 

evolution concepts (BDECs), which are further used to do system evolution analysis of state series 

using system domain knowledge. In the proposed algorithms, we used following two notations: 

 𝑎 ← 𝑏 : This means 𝑏 is assigned to 𝑎. 

 𝑎 → 𝑏 : This means access element 𝑏 inside 𝑎. 
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Figure 7.1 An overview of Big Data Evolution Analytics (BDE-Analytics). This figure shows 

Process-Artifacts of the BDE-Analytics that intelligently computes BDERs and BDECs. Where, 

each rounded-rectangle shows a process and rectangle shows artifact (i.e. input-output denoted by 

horizontal arrow). Here, a vertical arrow denotes each sentence starts from process at top and 

finishes at the artifact box. 

Now, we present details about steps involved in our pre-processing technique. 

7.2.1  Pre-processing 

Parallel pre-processing of big data is often performed using Map-Reduce frameworks. Even in 

the specific case of evolving big data, preprocessing can be performed using these frameworks in order 

to produce a state series. To do the pre-processing, we extract required group of entities from a given 

big data. Then within the extracted dataset, we remove unwanted-entities (e.g. stop-words in case of 

natural language), which are the noisy-entities in the dataset. Thereafter, we prepare a state series 

containing evolving entities of an evolving big data, thus the data in the state series is structured over 

time. We explain this in following three sub-steps, which is our first contribution. 

A) Extraction of the required entities. The initial dataset consists of many kinds of entities. 

However, only a few of them may actually be needed for data analysis. Therefore, based on the 

application, we select the kinds of entities that are required. We do this using a map operation where 

each transaction in given data is mapped to a corresponding transaction having only the entities that 

are required. he result of this step is referred to as subset big data in later sections. Here, the normalized 

data 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is data without punctuation and/or capitalization. It was one of the columns in 

the dataset. We have expressed this with formal manner given in Algorithm 7.1. 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.1: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑒𝑛𝑡𝑖𝑡𝑒𝑠 

𝒎𝒂𝒑(𝑑𝑎𝑡𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙): 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑙𝑖𝑛𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎 ∈ 𝑑𝑎𝑡𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙: 

𝑠𝑢𝑏𝑠𝑒𝑡 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎
= 𝒐𝒖𝒕𝒑𝒖𝒕(𝑙𝑖𝑛𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝑙𝑖𝑛𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎

→ 𝐼𝐷𝑒𝑛𝑡𝑖𝑡𝑦 , 𝑙𝑖𝑛𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎 → 𝑆𝑖) 

 

 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.1: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑒𝑛𝑡𝑖𝑡𝑒𝑠 
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  B) Removal of unwanted-entities. In big data, there might be some unwanted-entities and 

noise. The unwanted-entities are inconsistent and irrelevant entities that may increase the noise in the 

result without adding any considerable value to the meaning of the result. In order to gain insightful 

and relevant results, it is always necessary to reduce the noise as much as possible. Thus, the extracted 

data (subset big data) needs data cleaning i.e. pre-processing for removal of unwanted-entities. This 

cleaning process makes a clean subset big data. This is again performed using a map operation where 

each transaction is mapped to a corresponding transaction with noise removed. The method to remove 

the noise depends upon the domain of application. Thus, the map expression for this step can be written 

as in Algorithm 7.2. 

C) Breaking big data into state series. To perform a time variant analysis, we need to make 

separate datasets for different states of time instances. In this step, we use Algorithm 7.3 to make state 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.2: 𝑅𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑜𝑝 𝑤𝑜𝑟𝑑𝑠 

𝐿𝑖𝑠𝑡 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝒈𝒆𝒕𝑼𝒏𝒘𝒂𝒏𝒕𝒆𝒅𝑬𝒏𝒕𝒊𝒕𝒆𝒔𝑶𝒇𝑫𝒂𝒕𝒂() 

𝒎𝒂𝒑(𝑠𝑢𝑏𝑠𝑒𝑡 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎): 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 ∈  𝑠𝑢𝑏𝑠𝑒𝑡 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎: 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 ∈ 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑: 

𝒊𝒇(𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 ∉ 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠): 

𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 + 𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 

𝒂𝒔𝒔𝒊𝒈𝒏(𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) ← 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 

𝑐𝑙𝑒𝑎𝑛 𝑠𝑢𝑏𝑠𝑒𝑡 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎
=  𝒐𝒖𝒕𝒑𝒖𝒕(𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝑙𝑖𝑛𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎

→ 𝐼𝐷𝑒𝑛𝑡𝑖𝑡𝑦, 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑆𝑖) 

 

 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.2: 𝑅𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑜𝑝 𝑤𝑜𝑟𝑑𝑠 

𝐿𝑖𝑠𝑡 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝒈𝒆𝒕𝑼𝒏𝒘𝒂𝒏𝒕𝒆𝒅𝑬𝒏𝒕𝒊𝒕𝒆𝒔𝑶𝒇𝑫𝒂𝒕𝒂() 

𝒎𝒂𝒑(𝑠𝑢𝑏𝑠𝑒𝑡 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎): 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 ∈  𝑠𝑢𝑏𝑠𝑒𝑡 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎: 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 ∈ 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑: 

𝒊𝒇(𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 ∉ 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠): 

𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 + 𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 

𝒂𝒔𝒔𝒊𝒈𝒏(𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) ← 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 

𝑐𝑙𝑒𝑎𝑛 𝑠𝑢𝑏𝑠𝑒𝑡 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎
=  𝒐𝒖𝒕𝒑𝒖𝒕(𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝑙𝑖𝑛𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎

→ 𝐼𝐷𝑒𝑛𝑡𝑖𝑡𝑦, 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑆𝑖) 

 

 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.2: 𝑅𝑒𝑚𝑜𝑣𝑒 𝑠𝑡𝑜𝑝 𝑤𝑜𝑟𝑑𝑠 

𝐿𝑖𝑠𝑡 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝒈𝒆𝒕𝑼𝒏𝒘𝒂𝒏𝒕𝒆𝒅𝑬𝒏𝒕𝒊𝒕𝒆𝒔𝑶𝒇𝑫𝒂𝒕𝒂() 

𝒎𝒂𝒑(𝑠𝑢𝑏𝑠𝑒𝑡 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎): 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 ∈  𝑠𝑢𝑏𝑠𝑒𝑡 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎: 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 ∈ 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑: 

𝒊𝒇(𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 ∉ 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠): 

𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 + 𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 

𝒂𝒔𝒔𝒊𝒈𝒏(𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) ← 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 

𝑐𝑙𝑒𝑎𝑛 𝑠𝑢𝑏𝑠𝑒𝑡 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎
=  𝒐𝒖𝒕𝒑𝒖𝒕(𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝑙𝑖𝑛𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎

→ 𝐼𝐷𝑒𝑛𝑡𝑖𝑡𝑦, 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑆𝑖) 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.3: 𝑀𝑎𝑘𝑒 𝑆𝑡𝑎𝑡𝑒 𝑆𝑒𝑟𝑖𝑒𝑠 

𝒎𝒂𝒑(𝑐𝑙𝑒𝑎𝑛 𝑑𝑎𝑡𝑎): 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑙𝑖𝑛𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝑎𝑡𝑎 ∈ 𝑐𝑙𝑒𝑎𝑛 𝑑𝑎𝑡𝑎: // key-value pair 

𝑜𝑢𝑡𝑝𝑢𝑡 (𝑙𝑖𝑛𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑆𝑖, (𝑙𝑖𝑛𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝑙𝑖𝑛𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝑎𝑡𝑎 → 𝐼𝐷𝑒𝑛𝑡𝑖𝑡𝑦)) 

𝑟𝑒𝑑𝑢𝑐𝑒𝑊𝑟𝑖𝑡𝑒(𝑑𝑎𝑡𝑎(𝑘𝑒𝑦,   𝑣𝑎𝑙𝑢𝑒)): 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) 𝑎𝑠 (𝑆𝑖, (𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝐼𝐷𝑒𝑛𝑡𝑖𝑡𝑦)) ∈ 𝑑𝑎𝑡𝑎(𝑘𝑒𝑦,   𝑣𝑎𝑙𝑢𝑒): 

𝑜𝑝𝑒𝑛𝐹𝑖𝑙𝑒(𝑆𝑖)    //Open file for writing 

𝑠𝑡𝑎𝑡𝑒𝐹𝑖𝑙𝑒. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝐼𝐷𝑒𝑛𝑡𝑖𝑡𝑦) 

𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝑁 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓𝑠𝑡𝑎𝑡𝑒𝐹𝑖𝑙𝑒𝑠 𝑜𝑓 𝑁 𝑠𝑡𝑎𝑡𝑒  

 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.3: 𝑀𝑎𝑘𝑒 𝑆𝑡𝑎𝑡𝑒 𝑆𝑒𝑟𝑖𝑒𝑠 

𝒎𝒂𝒑(𝑐𝑙𝑒𝑎𝑛 𝑑𝑎𝑡𝑎): 
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series from the clean data. We map the data into pairs, where a state is the first element in the pair and 

the other Entities is the second element. Thereafter, combine the resulting “paired” data in the form of 

Key-Value pairs of a State and Entity, by modifying the way outputs Key-Value Pairs. In Algorithm 

7.3, which describes state series construction, where Si represents a data of ith state.  

7.2.2   Big Data Evolution Rules and Concepts 

 After data pre-processing, the big data state series can be used to mine evolution rules. This 

process is of three steps. Firstly, generate BDERs for a state. Secondly, we transform a set of similar 

BDERs to a BDEC for better understanding. Because the BDERs are large in number due to the size 

of big data and hence are less comprehensive. Moreover, as a final step, we clean up the set of BDECs 

obtained for unwanted-entities. 

A) Big Data Evolution Rules of Entities. In the BDER mining algorithm, we retrieved list of 

unwanted entities from a file stored in a local directory. We defined a parameter, window size, which 

is the number of continuous states. This help to create a window of states to select fixed number of 

continuous states from a state series. The algorithm uses each window for BDER mining purpose. The 

states in a window are combined sequentially, which makes a dataset (windowSizeData) for rule 

mining. 

B) Big Data Evolution Concepts of Entities. We now group a set of similar BDERs together to 

make the largest superset of contained entities. It is possible to analyse the rules when there are only 2 

or 3 entities present in the rules. However, it is hard to comprehend when the number of entities is 

larger than 4 or 5 or more entities; this makes many similar BDERs. Steps of grouping similar BDERs 

are given next. 

Suppose there are k entities e1, e2... ek, such that there is a BDER Rk: [𝑒1, 𝑒2, . . . 𝑒𝑘−1] → [𝑒𝑘]. 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.4: 𝐵𝑖𝑔 𝐷𝑎𝑡𝑎 𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 𝑀𝑖𝑛𝑖𝑛𝑔 

𝐿𝑖𝑠𝑡 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝒈𝒆𝒕𝑼𝒏𝒘𝒂𝒏𝒕𝒆𝒅𝑬𝒏𝒕𝒊𝒕𝒆𝒔𝑶𝒇𝑫𝒂𝒕𝒂() 

𝐼𝑛𝑡𝑒𝑔𝑒𝑟   𝑤𝑖𝑛𝑑𝑜𝑤𝐵𝑎𝑠𝑒 = 𝑥, 𝑖 = 0 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑆𝑖 + 𝑏𝑎𝑠𝑒 ∈ 𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝑁 ;  i + base ≤ windowSize ; i + + 

𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒𝐷𝑎𝑡𝑎 = 𝒎𝒂𝒑(𝑆𝑖+𝑏𝑎𝑠𝑒 ): 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 ∈ 𝑆𝑖 + 𝑤𝑖𝑛𝑑𝑜𝑤𝐵𝑎𝑠𝑒: 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 ∈ 𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑: 

𝒊𝒇(𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 ∉ 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠) 

𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 + 𝑛𝑜𝑖𝑠𝑦𝐸𝑛𝑡𝑖𝑡𝑦 

𝒂𝒔𝒔𝒊𝒈𝒏(𝑙𝑖𝑛𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 → 𝑛𝑎𝑚𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) ← 𝑢𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 

𝐵𝐷𝐸𝑅𝑠 = 𝑹𝒖𝒍𝒆𝑴𝒊𝒏𝒊𝒏𝒈(𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒𝐷𝑎𝑡𝑎) 

 

 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.4: 𝐵𝑖𝑔 𝐷𝑎𝑡𝑎 𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 𝑀𝑖𝑛𝑖𝑛𝑔 
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Since, Rk is a one of the generated BDERs, using the downward-closure property (every subset of a 

frequent item set is also frequent), we can successfully conclude that all such rules containing subset 

of entities in Rk would also exist in the generated BDERs.  

The number of subset is 2j-1-1 where j is the total number of entities in the BDERs. This number 

would grow further to 3, 7, 15, 31, 63 or more as the number of entities in the rules would increase. 

Hence, it would only lead to redundancy if we wish to study the BDERs. 

In the case of concept generation, both the order of the BDERs and the order of entities in 

BDERs do not matter. Swapping the entity on the LHS and the entity of the RHS keeps the BDER with 

same significance. It is now safe to conclude that we can group similar BDERs into a single large 

superset named as Big Data Evolution Concept (BDEC):  

𝐵𝐷𝐸𝐶 = {𝑒1, 𝑒2, 𝑒3, . . . 𝑒𝑚}     … (Equation I) 

where, BDEC is a set that consists of all entities (on LHS and RHS) of given rules that are 

grouped, provided there exist rules with k number of entities (in the generated rules) of the form: 

[𝑒1, 𝑒2, … 𝑒𝑘−1] → [𝑒𝑘] … (Equation II) 

where ((𝑖𝑗 , 𝑗) ∈ 𝑁) ∧ (𝑘 ≤ 𝑚) ∧ (𝑖𝑗 ≤ 𝑚) 

Note that number of entities in the rule k is less than (or equal to) the number of entities in the 

BDEC(m). Thus, we take all rules of the form in Equation II, and form BDEC in Equation I. Also, note 

that the 𝑒k in BDEC should exist in at least one of the Equation II using which the BDEC is formed. 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.5: 𝐵𝑖𝑔 𝐷𝑎𝑡𝑎 𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠 

𝑚𝑎𝑥𝑆𝑒𝑎𝑟𝑐ℎ(𝐵𝐷𝐸𝑅): 

𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ ←  0 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝐵𝐷𝐸𝐶 ∈ 𝐵𝐷𝐸𝑅𝑆: 

𝒊𝒇 𝐵𝐷𝐸𝑅 ⊆ 𝐵𝐷𝐸𝐶 𝒂𝒏𝒅 𝐵𝐷𝐸𝐶. 𝑙𝑒𝑛𝑔𝑡ℎ ≥ 𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ: 

𝑚𝑎𝑝𝑝𝑒𝑑𝑆𝑢𝑝𝑒𝑟𝑆𝑒𝑡 ← 𝐵𝐷𝐸𝐶 

𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ ← 𝐵𝐷𝐸𝐶. 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑎𝑝𝑝𝑒𝑑𝑆𝑢𝑝𝑒𝑟𝑆𝑒𝑡 

𝑚𝑎𝑝(𝐵𝐷𝐸𝐶𝐿): 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝐵𝐷𝐸𝑅 ∈ 𝐵𝐷𝐸𝐶𝐿: 

𝑜𝑢𝑡𝑝𝑢𝑡(𝑚𝑎𝑥𝑆𝑒𝑎𝑟𝑐ℎ(𝐵𝐷𝐸𝑅)) 

𝑟𝑒𝑑𝑢𝑐𝑒𝑊𝑟𝑖𝑡𝑒(𝐵𝐷𝐸𝐶𝑠): 

𝑤𝑟𝑖𝑡𝑒(𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝐵𝐷𝐸𝐶𝑠))𝑎𝑠 𝐵𝐷𝐸𝐶𝐿𝑓𝑖𝑛𝑎𝑙 

𝑶𝒖𝒕𝒑𝒖𝒕 𝐵𝐷𝐸𝐶𝐿𝑓𝑖𝑛𝑎𝑙 

 

 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 7.5: 𝐵𝑖𝑔 𝐷𝑎𝑡𝑎 𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠 
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Additionally, each entity in BDEC occurs in at least one of the rules that are grouped. Alternatively, 

we did this in three steps. Firstly, convert each rule into a corresponding set containing all the entities 

on its LHS and RHS, and create a list BDECL of all such sets. Secondly, map the largest superset for 

all the BDECs in the BDECL. Thirdly, reduce the list of largest supersets into distinct supersets and 

call it BDECLfinal. Thus, BDECLfinal consists of all the desired sets of entities that form a big data 

evolution concept. We present the Algorithm 7.5 to make BDECs. 

As an illustration, let us consider a rule R4 with four entities: A, B, C, and D such that this forms 

a list of similar rules: {A, B, C → D}; {A, B → D}; {A, C → D}; {B, C → D}; {A → D}; {B → D}; 

{C → D}. Here, for j = 4, number of rules are, 24-1 - 1 = 8 - 1 = 7, such that this forms a superset rule 

as [𝐴, 𝐵, 𝐶] → [𝐷]. This forms a superset of entities (A, B, C, D) which removes redundancy in rules 

and makes it easier to analyse. 

7.2.3  Post-processing based on BDERs and BDECs 

It is tricky to remove unwanted-entities from concepts. The primary intention of using concepts 

made up of entities is to look for trends associated with such concepts. An entity that is misconceived, 

irrelevant, and inconsistent in a concept is an unwanted-entity, which is a noisy-entity causing hassle 

in analyzing a BDEC. Noise may be due to several issues depending on the domain of the EBD-System. 

Thus, a system domain expert decides, whether an entity is a noisy-entity or not. Noise can also be due 

to their vagueness in concept formation. If there is a noisy-entity in a BDEC, then it is better to exclude 

the noisy-entity.  

Although, domain expert tries to remove noise by keeping all the unnecessary entities in the 

unwanted-entities list (see sub-section 2.1.2). However, it is possible to get unnecessary entities in the 

concepts. Thus, to retrieve the BDECs, there are two ways to remove such noisy-entities.  

- First way is simple; remove noisy-entities (automatically or manually) from the generated BDECs.  

- Second way is better; before constructing the big data state series (see sub-section 2.1.2), repeatedly 

add the noisy-entities to the unwanted-entities (see sub-section 2.1.1). To do this, add the noisy-

entities (appearing in the BDERs) to the list of unwanted-entities, and then re-construct the big data 

state series of the given EBD-System. Further, re-generate the BDERs for all states from the new 

big data state series. The re-generated BDERs may again contain some other noisy-entities. Thus, 

it is required to repeat this step until the generated BDERs are satisfactory or containing noise-free 

entities. 

We use the updated unwanted-entities list to recreate the big data state series with noise-free 

entities. Thereafter regenerate the BDERs, which are re-group the BDERs into largest superset of 

entities. Such entities’ supersets are the BDECs that are the most frequently occurring associated 

entities of a state. In the end, a domain expert can analyse the retrieved BDECs. Usually reports or 
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graphical representations of time series are generated for analysis. Such analysis varies from domain 

to domain. We present detailed statistical analysis of BDECs in the next section for the evolving 

scholarly system. 

7.3  Experiments on Evolving Scholarly Big Data 

This section describes experiment of our proposed approach on publication dataset fetched from 

KDD Cup 2016, “Microsoft Academic Graph”. The dataset contains “Publication Title” and “Year of 

Publications” in past 2 centuries. We used these two kind of entities to make a big data, which is further 

pre-processed to eliminate noise (irrelevant words in titles). Thereafter, we created state series with 

each state representing normalized data for a year. Thereafter, we did state series analysis of clean 

subset big data on publication titles. Our analysis reports the impact and trends of the various scholarly 

topics retrieved for the past 2 centuries (1800-2017). 

We used experimental environment that has Spark and Hadoop Distributed File System (HDFS) 

because they combine to provide distributed storage along with scalable and fault tolerant processing 

of big data. In such environment, we did java based coding on Spark set-up that has the capability of 

performing faster distributed computing by using in-memory primitives [215]. Such coding style is 

well suited for fast and efficient processing of big data. In addition to this, we also used Python for web 

crawling and further statistical analysis.  

We carried out the analysis on a machine with following configuration 32 GB RAM, i7-4770 

CPU 3.40 GHz × 8 cores, 1000 GB Hard-Disk. The machine has operating system Ubuntu 14.04 along 

with HDFS, Spark, and Java for parallel processing. The objective of the experimentation is to verify 

usefulness of BDECs. It is clear that if number of node increases, then this improves efficiency of the 

computing. We are interested in showing significance of the EDB-Analytics experiment in generating 

BDERs and BDECs. The steps of data pre-processing for dataset of KDD Cup 2016 are given next. 

7.3.1  Pre-processing 

Initially, we used the Spark based parallel Java codes to pre-process the publication list that we 

stored on HDFS. Once we uploaded the data on HDFS, we used Java-Spark based parallel codes for 

the three algorithms on parallel-computing environment of HDFS. We implemented the algorithms 1, 

2, and 3 on distributed programming models of Java-Spark-Hadoop. Using the codes, we broke the big 

data into datasets of state series, with one state for every year. Thereafter, this big data state series of 

yearly publication list is stored in HDFS. Next, the steps to construct a big data state series from the 

given data of publication.  

7.3.1.1 Uploading data to HDFS. As a starting step, the dataset was uploaded to HDFS. The 

HDFS automatically splits the large input data set. This was because we intended to run Apache Spark 
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to utilize efficient big data handling features of HDFS like splitting a big file (of the scholarly 

publication data) into smaller block files that are easy to read and process. 

7.3.1.2 Data preparation. We prepared the big data state series based on the parallel pre-

processing techniques (as in Algorithms 1, 2 and 3) using Spark. To validate our parallel 

implementation, we also generated state series using a serial (without using spark) java based pre-

processing on some small block files taken from the HDFS. We compared the state series data 

generated from the serial pre-processing code and the parallel pre-processing code. The details of the 

parallel pre-processing steps for the scholarly publication data are provided in the following steps. 

1. Entity extraction: Clearly, out of the many entities, we selected only two kind of entities – Paper 

Title and Year. Specifically, we were interested in using only the normalized name of publication 

and year of publication. The normalized name consisted of text in lowercase without any 

punctuation and symbols. 

2. The name of publication may contain stop-words in the unwanted-entities list and the publication 

title needed a data cleaning pre-processing in which we removed the stop-words from the titles of 

the publication. Additionally, we removed noise like unwanted symbols and commonly used words 

in the publication that do not make up any keyword (or jargon) (e.g. result, study, scientist). We 

also removed the noise due to - formatting issues and vagueness of entities - while forming a 

scholarly topic. As we restricted our analysis to the English based scholarly data, hence we removed 

words and symbols of other languages. We also removed Roman numerals, place names, other 

language words, abbreviations that made no sense. This process leads us to make a list of stop-

words (i.e. unwanted-enetities) for the scholarly publication titles in English. 

3. Creating year wise datasets: We made separate dataset (state) for each year. This resulted in the 

formation of over 217 separate datasets as a state series (each state corresponding to a year in 

between 1800-2017). We mapped each line of the data into a pair, with Year as the first element 

and Publication Title Keywords (entities) as the second element. Now, we combined the resulting 

pairs in the form of Key-Value pairs of Year and Publication Title Keywords, by modifying the 

way Hadoop outputs Key-Value pairs. Then, by modifying Hadoop's MultipleTextOutputFormat, 

we were able to write data for a period of one year. 

Next, we illustrate the evolving scholarly topics by retrieving the BDERs and BDECs for the 

constructed big data state series. 

7.3.2  Evolving Scholarly Topic 

Initially, we made the state series such that the data for each year is represented by a separate 

state. However, presenting rules for each year (state) separately is tedious because it gives 217 results 

(from 1800 to 2017). Thus, we combined 10 years data and considered a decade as a window. This 
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means that the window size = 10 in the Algorithm 4 Big Data Evolution Rule Mining. This made 22 

decades as windows for (217 years as 217 states), and on each we applied association rule mining. 

Then, we mined Big Data Evolution Rules using the Algorithm 4. 

A popular association rule mining approach for big data mining is named as Parallel Frequent 

Pattern Growth (PFP-Growth), which is proposed by Li et al. [216]. For each state of the state series, 

we used PFP-Growth algorithm that is pre-implemented in spark machine learning library [217]. It is 

based on the Frequent Pattern Growth (FP Growth) algorithm [218][219], which is one of the most 

widely used association rule mining technique. Pattern growth algorithms unlike the candidate 

generation algorithm, do not generate all the possible candidate frequent patterns and verify, but instead 

complex hyper-structures are created and all the frequent patterns are extracted from such structures. 

Specifically, FP Growth algorithm uses a tree-based structure called FP-Tree and an associated link 

structure called FP-Link to extract frequent patterns. The PFP-Growth is a distributed and scalable 

approach to make growing FP-trees based on the suffixes of transactions. During the rule-generation 

phase, for each decade we used the PFP-Growth, and generated the BDERs. 

A) Generating BDERs and BDECs. We generated BDERs from scholarly data of each decade 

(as a state). This gives BDERs for 22 decades as a decade series. To comprehend a set of similar BDERs 

we generated their BDECs (as evolving scholarly topics). To do this, we group a set of similar BDERs 

together in largest supersets. For example, a set of similar BDERs are as follows: 

[𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡, 𝑐𝑟𝑜𝑝𝑠, 𝑡𝑟𝑎𝑐𝑒, 𝑔𝑟𝑜𝑤𝑡ℎ] →   [𝑠𝑒𝑒𝑑𝑠] 

[𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡, 𝑐𝑟𝑜𝑝𝑠, 𝑡𝑟𝑎𝑐𝑒, 𝑔𝑟𝑜𝑤𝑡ℎ] →  [𝑔𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛] 

[𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑡𝑟𝑎𝑐𝑒, 𝑔𝑟𝑜𝑤𝑡ℎ] →  [𝑐𝑟𝑜𝑝𝑠] 

[𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑡𝑟𝑎𝑐𝑒, 𝑔𝑟𝑜𝑤𝑡ℎ] →  [𝑒𝑓𝑓𝑒𝑐𝑡] 

[𝑔𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑡𝑟𝑎𝑐𝑒] →  [𝑐𝑟𝑜𝑝𝑠] 

[𝑔𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑡𝑟𝑎𝑐𝑒] →  [𝑒𝑓𝑓𝑒𝑐𝑡] 

… 𝑎𝑛𝑑 435 𝑚𝑜𝑟𝑒 … 

A BDEC equivalent to their largest superset is 

(𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑡𝑟𝑎𝑐𝑒, 𝑐𝑟𝑜𝑝𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡, 𝑔𝑟𝑜𝑤𝑡ℎ, 𝑠𝑒𝑒𝑑𝑠, 𝑔𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛)  

With this, we removed redundancy from the BDERs as we can see from the above example the 

BDEC is more comprehensible than their BDERs. Here, we combined 441 rules into one largest 

superset. In experimentation, we observe that the BDEC is easier to analyse as compared to the number 

of BDERs. In an observation for a decade, we found that number of BDERs  were reduced to a 

significantly lower number of BDECs. 

B) Removing Noisy-Words from the rules. Even after removing stop-words during the pre-

processing stage, we observe that there were many noisy words in rules generated for example 

 [𝑥𝑖𝑒𝑠𝑡𝑤𝑎, 𝑝𝑜𝑧𝑛𝑎𝑛𝑠𝑘𝑖𝑒𝑔𝑜] → [𝑤𝑖𝑒𝑙𝑘𝑖𝑒𝑔𝑜] . These three noisy-words belong neither to English 
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language nor to a field jargon. We realized problems with words (as entities) appearing in the BDERs 

and concepts. We primarily intended to use keywords of scholarly topics in English language to look 

for trends associated with various scholarly topics. Realizing the inconsistencies in the BDERs and 

BDECs made us exclude few noisy-words. The noise in the original data may be due to formatting 

issues, symbols, and other language words. However, due to any issue, we dropped noisy-words (as 

noisy-entities) from the dataset. 

To remove the noisy-words from the generated BDERs and BDECs, we did the following steps. 

We analyzed the BDERs and BDECs for a decade and then added noisy-words (as noisy-entities) to 

the list of stop-words (as unwanted-entities in Algorithm 7.3). Therefore, such noisy-words needed to 

be added manually to the list of stop-words. We did this in an ordered fashion by adding noisy-words 

from each decade (chronologically) into the list of stop-words. Thereafter, using the final list of stop-

words, we re-constructed the big data state series. For the new big data state series, we re-generated 

the BDERs and BDECs for a decade. We repeated this re-generation until proper BDECs for that 

decade. We did this process of re-generation of BDECs for all the decades. In last, we re-grouped the 

proper BDERs into their supersets as proper BDECs of every decade. These BDECs represent the most 

frequently occurring evolving scholarly topics in a decade. 

C) Scholarly BDERs and BDECs. The rules generated were mostly in the form of: 

[𝑛𝑒𝑟𝑣𝑜𝑢𝑠, 𝑐𝑒𝑛𝑡𝑟𝑎𝑙] → [𝑠𝑦𝑠𝑡𝑒𝑚]

[𝑐𝑒𝑛𝑡𝑟𝑎𝑙, 𝑠𝑦𝑠𝑡𝑒𝑚] → [𝑛𝑒𝑟𝑣𝑜𝑢𝑠]
 

This tells us that the words central, nervous, and system occur most frequently together. Thus, 

they occur prominently in many publication titles for a decade. We expressed above rule in the form 

of scholarly concept: nervous central system. We did this because there are many BDERs of same 

scholarly keywords, thus we merged the rule with same keywords to make a superset of keywords as 

a BDEC. 

These keywords are the jargons (as entities) that describe the kind of scholarly field the paper 

titles. It makes easy to comprehend if we merge multiple similar rules representing one scholarly topic. 

A scholarly topic may belong to one or more scholarly fields. For example, the sample data given above 

tells that the words are related to Neurology, Neurosciences, and Biology. Hence, this gives inference 

that one of the prominent scholarly topic for the given decade is Neurology, Neurosciences, and 

Biology. Hence, we need an automated field detection method. 

7.3.2.4 Analyzing Scholarly Fields. After the rule and concept generation, we did post-

processing where we used concepts to identify respective scholarly field(s). We counted the number of 

available scholarly concepts for each scholarly field. This gave us information to compare different 

scholarly fields for a decade. In figure 7.2, 7.3 and 7.4, the horizontal axis represents decade series such 

that each ordinate is for a decade (e.g. 200 represents decade in between 2000 to 2009) and vertical 
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axis represents the number of the scholarly concepts contributing to a scholarly field. Here, a BDEC 

represents an evolving scholarly topic, which means a collection of keywords occurring in a publication 

title. 

Figure 7.2, 7.3, and 7.4 shows the number of frequent scholarly topics for some scholarly fields 

in 22 decades. For example, the number of frequent scholarly topics is highest for “Computational 

Intelligence” followed by “Theory of Computation” for the two decades of 21st century. Further, we 

can observe that the “Biochemistry” has highest in the number of frequent scholarly topics in many 

decades.  

Manually determining the scholarly fields of the given concepts are infeasible due to many 

decades and the many number of BDECs per decade. Thus, this leads us to analyse many scholarly 

topics and fields. Additionally, since manually detecting the scholarly fields may lead to human error. 

For example, one might argue that ascorbic acid is a scholarly topic in both biology and chemistry. 

Thus, we need a threshold number of scholarly fields for each topic to normalise any errors in field 

identification. We realize that even for a number as small as 5, the number of fields might go up to 

1000 or more inclusive of any errors. Hence, we implemented a python script to do automatic detection 

of scholarly fields for each BDEC.    

To find the number of scholarly topics for a field in a decade we wrote and used a python script 

that does following three steps. Firstly, it sends a search query for a scholarly topic to the Springer 

website’s search. Then, it downloads the resulting web page returned as the query result. Finally, it 

parses the field information given in the page.  

 

Figure 7.2  Comparison between the top-most scholarly fields of research based on their number of 

most frequent scholarly topics during 1800 to 1900 as a state series where each state is for a year and 

window is for a decade. 
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 On the extremely old data (of years 1800-1900), few of Springer’s recommendations were 

different from the actual relationship between the scholarly concepts and the fields of research. Thus, 

we manually removed such wrong recommendation for the period of 1800-1900. Whereas, the 

recommendation for the period of 1900-2000 and 2000-2017 were appropriate, thus presented as it is. 

In Figures 7.2, 7.3, and 7.4, the results are aggregated over each decade separately. 

 In Figure 7.2, the top-most fields of research (or study) are presented for the duration in 

between 1800-1900. In this duration, the topmost fields are Science, Humanities and Social Sciences, 

multidisciplinary, Biochemistry, Probability Theory and Stochastic Processes, Analysis, and so on. In 

 

Figure 7.3 Comparison between the top-most scholarly fields of research based on their number of 

most frequent scholarly topics during 1900 to 2000 as a state series where each state is for a year and 

window is for a decade. 

 

 

Figure 7.4 Comparison between the top-most scholarly fields, based on number of most frequent 

scholarly topics, during 2000 to 2017 as a state series where each state is for a year and window is for 

a decade. 
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Figure 7.3, the top-most fields of research (or study) are presented for the duration in between 1900-

2000. In this duration, the topmost fields are Computational Intelligence, Computer Communication 

Networks, Theory of Computation, Science, Humanities and Social Sciences, multidisciplinary, and so 

on. In Figure 7.4, the top-most fields of research (or study) are presented for the duration in between 

2000-2017. In this duration, the topmost fields are Computational Intelligence, Theory of Computation, 

Computer Communication Networks, Circuits and Systems, and so on. 

7.4  Comparison with other similar techniques 

This section describes the current state-of-the-art in the fields of (a) evolution and change 

mining (b) big data rule mining or analytics, (c) KDD CUP 2016 dataset experimentations, and (d) 

scholarly big data mining. Work related to evolution and change mining are as follows. Recently, 

Namayanja and Janeja [220] presented big data processing techniques using MapReduce, to detect and 

monitor changes in large evolving computer networks by identifying the Time Periods of Change 

(TPC) associated with their consistency and inconsistency. Most recently, Basanta-Val [221] presented 

an approach for time-critical big-data system, which deals with requirements, analyses of the specific 

characteristics of some popular big-data applications. In this chapter, we extended the state-of-the-art 

of big data evolution analytics, which is demonstrated for evolving scholarly system. 

Big Data Analytics or Mining uses the capability of extracting useful information from large 

datasets and data streams using data mining frameworks and services [222][223]. Conventional 

methods of data mining encounter several problems due to high computational costs. Therefore, a 

number of algorithms have been proposed to efficiently apply association rule mining of big data. Y. 

Chen et al. [224] proposed one such example named as Niche-Aided Gene Expression Programming 

(NGEP), which is compared with the FP-Growth and Apriori algorithms for environment pressure (Iris 

dataset) and an Artificial Simulation Database (ASD). Ölmezogullari et al. [225] discussed and 

developed a system to cope up with velocity of big data, specifically for big data mining. Sumbaly et 

al. [226] presented a survey of big data and machine-learning techniques used at LinkedIn and 

described how industries are applying big data mining techniques to their benefit. 

The KDD Cup 2016 competition aimed at ranking affiliations of institutions based on predicting 

how many of their papers would be accepted in any upcoming top conferences [227]. It involved 

utilizing the given dataset, which included the Microsoft Academic Graph data and any other publically 

available data on the internet. Researchers all around the world proposed many solutions to the task. 

After the initial feature engineering process, many of the high ranked solutions incorporated attributes 

of various models for an optimal solution. Some notable examples included an approach by Qiu et al. 

[228] that combines Random Forest [229] and Gradient Boosting Regression Tree (GBRT) [230] as 

the dynamic approach of choosing different ensemble way in every phase. Qian et al. [232] described 

baseline, regression, and ranking SVM model to provide a final ensemble and average the output scores 
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of all the models; conclusively stating that similar conference features were beneficial for prediction 

by dimensionality reduction. The winning paper was by Sandulescu and Mihai [233] that used the 

gradient boosting decision trees along with the mixed models approach, they inferred that the short-

term factors and the longer-term contributions of an affiliation to a conference. All works 

[228][232][233] predict the relevance of the publication and institution. In contrast, our work 

performed scholarly evolution analysis. 

Work related to the scholarly big data includes following. Xia Feng, et al [57] presented the 

survey of the background, relevant technologies, and analysis methods (like statistical analysis, social 

network analysis) that deals with big scholarly data. Tuarob et al. [234] proposed scalable techniques 

for AlgorithmSeer (a search engine for algorithms as part of CiteSeer) to identify and extract algorithm 

representations in a heterogeneous pool of scholarly documents. Datta et al. [231] studied factors that 

are related to the inter-domain presence of research topics. Zhou et al. [235] used integration of multi-

source scholarly big data to study academic influence aware and multidimensional network analysis. 

Song et al. [236] proposed a Hadoop key-value based database named as FacetsBase, which store, 

index, and query scholarly big data. Zhang and Kabuka [237] proposed an implemented distributed 

hardware and software infrastructure for maintaining big scholar data as a large knowledge graph and 

calculating relationship among entities.  

7.5  Conclusions 

In this chapter, we presented the approach retrieved valuable information as Big Data Evolution 

Rules (BDERs) and Big Data Evolution Concepts (BDECs) about associations and trends in the 

evolving big data. For experimentation purpose, we had chosen scholarly system that produced a 

scholarly big data collected from KDD Cup 2016 of Microsoft Academic Graph as a publication 

bibliography dataset. This helped us to construct an evolving scholarly big data state series that we 

used to understand the impact made by various evolving scholarly topics (BDECs) that are frequently 

trending since last 2 centuries in scholarly publication titles. We were able to appreciate the gradual 

change in scholarly topics and fields with time. We also created visualizations of the data that is 

valuable for scholarly community (see Figures 7.2, 7.3, and 7.4). The figures demonstrate the top-most 

scholarly fields for each of the 22 decades in between the 2 centuries (1800-2017). In future, we will 

analyse the changeability, stability, and complexity of the EBD-system to do System Evolution 

Analytics.  
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Service Evolution Analytics: Evolution and Change Mining of an 

Evolving Web Service System 

 

An evolving distributed system is a kind of evolving system that often stored in a software 

repository to support its continuous evolution. Similar to systems in other domains [238], continuous 

changes to the requirements of distributed systems mandate their ongoing maintenance and evolution. 

This process becomes increasingly challenging as system complexity grows and thus tool support is 

needed to reduce the cost (or effort) of maintaining an evolving distributed system. We are interested 

in studying the changeability [5][239] and evolvability [240][241] of distributed systems. This study is 

based on change mining, which aims to discover change information, and evolution mining, which aims 

to discover evolution information. 

Changeability and evolvability analysis can aid an engineer tasked with a maintenance or an 

evolution task. This chapter applies change mining and evolution mining to evolving distributed 

systems. First, we propose a Service Change Classifier based Interface Slicing algorithm that mines 

change information from two versions of an evolving distributed system. To compare old and new 

version, change classification labels are used: inserted, deleted, and modified. These labels are then 

used to identify subsets of the operations in our newly proposed Interface (WSDL) Slicing algorithm. 

Second, we proposed four Service Evolution Metrics that capture the evolution of a system’s version 

series VS = {V1, V2 …VN}. Combined the two form the basis of our proposed Service Evolution 

Analytics model, which includes learning during its development phase. We prototyped the model in 

an intelligent tool named AWSCM (Automatic Web Service Change Management). Finally, we present 

results from experiments with two well-known cloud services: Elastic Compute Cloud (EC2) from the 

Amazon Web Service (AWS), and Cluster Controller (CC) from Eucalyptus. These experiments 

demonstrate AWSCM’s ability to exploit change and evolution mining. 

8.1  Introduction 

Computing models such as Grid Computing, Cloud Computing, Utility Computing, and Service 

Oriented Computing rely upon service frameworks. Grid Computing, the mother of all four, combines 

a distributed collection of computing resources to achieve scalability. Cloud Computing enables 

convenient, on-demand shared computing resources at several levels (e.g., at the infrastructure, 

platform, and software levels). Utility Computing enables an on-demand, pay-as-you-go billing method 

in which a service provider makes computing resources available to customers. Service Oriented 
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Computing supports loosely coupled distributed systems through the sharing of remote Web Service.  

Our approach makes use of data mining techniques to extract information from an evolving 

distributed system. The particular distributed systems we focus on are web-based system and thus we 

focus our attention on web-based data mining. Traditionally, such web-mining techniques come in 

three types: web content mining, web usage mining, and web structure mining [242][243]. We consider 

the latter, web structure mining, which retrieves information from service interface documents (e.g., 

HTML, XML, and WSDL documents) as well as the underlying implementation. In doing so, we 

consider a cloud service as a time-varying dataset and apply techniques combining aspects of change 

mining and evolution mining. 

Specifically this chapter applies change mining and evolution mining using an analytic model 

to study service changes and evolution. The analytic model exploits the history (e.g., as provided by a 

version-control system) to reduce the human effort required while analyzing the software evolution 

over the series of versions. In doing so, the chapter makes the following three contributions, which are 

presented in the next three sections: 

 In Section 8.2, we propose a service change classifier algorithm that performs change mining based 

on two service versions. The change information is used to perform interface slicing, which results 

in an interface slice (a subset of service’s interface). We also propose a technique for evolution 

mining of multiple service versions using four new service evolution metrics. 

 In Section 8.3, we describe a Service Evolution Analytics model and its implementation as a 

prototype component in an existing tool, AWSCM, which performs change mining and evolution 

mining of cloud services.  

 In Section 8.4, we present experiments applying AWSCM on evolving distributed systems. 

After these contributory sections, we present related works in Section 8.5 and concluding 

remarks in Section 8.6. 

8.2  Change and Evolution mining of an Evolving Distributed system 

This section describes how we perform change mining on two versions of an evolving 

distributed system and evolution mining on a version series from an evolving distributed system. Here 

a version series VS = {V1, V2… VN} is a series of version snapshots taken at times {t1, t2, …, tN}. Each 

version involves two key artifact: a specification written in a Web Services Description Language 

(WSDL) and the Web Service (WS) code itself.  

The next two sub-sections provide details regarding the two kinds of mining used. The first 

sub-section explains change mining using change classifiers that are applied to two versions of a 

system. The crux of this step is classify changes between versions to make an Interface slice. Then the 

second sub-section introduces evolution mining and the four service evolution metrics used to study 
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the evolution of an evolving distributed system. The crux of this step is to study evolution in a version 

series. 

A. Change mining of two versions: Service Change Classification 

The goal of the service change classification is to capture the changes between an old and a new 

version of a distributed system (thus the four parameters of the actual algorithm). We include changes 

at both the WSDL and the WS code levels. We first overview our change mining algorithm before 

considering each of its three steps in greater detail. The algorithm, ChangeMiningOfService, is given 

as Algorithm 8.1. It takes old and new versions of the system as input and first invokes Algorithm 8.2, 

ServiceChangeClassifier, which has label (opLabel) initialized operations with unchanged label. The 

Algorithm 8.2 adds the following change labels to the WSDL and WS code of the new version: inserted, 

deleted, and modified. It then gathers up all operations (as operation_j) that are tagged inserted or 

modified. The gathered operations are 

kept is a set of operations (as 

subset_operations). Finally, it invokes 

Algorithm 8.3, WSDL_Slicing, to 

construct a Subset of the WSDL, 

referred to as the Subset WSDL, which 

is captured by the WSDL slice returned 

by the algorithm. These steps are 

summarized in Figure 8.1.  

In greater detail, the first step 

performs change classification on the 

WSDL and the WS code. Table 8.1 

overviews the types of changes 

identified. Each change includes the 

level of the change (WSDL or WS code), the purpose of the change, and the WSDL Subsets (explained 

 

Figure 8.1 Summary of the Change Mining of two versions. 

Algorithm 8.1 ChangeMiningOfService (WSDLOld, WSDLNew, WScodeOld, WScodeNew) 

opLabel<opName, label>  ServiceChangeClassifier(WSDLOld, WSDLNew, WScodeOld, WScodeNew) 

Initialize an empty set subset_operations 

For each operation_j in opLabel where j represents operation number 

 If label of operation_j is ‘insert’ or ‘modify’ 

  subset_operations  subset_operations  {operation_j} 

End for 

WSDL_Slice = WSDL_Slicing(WSDLNew, subset_operations) 
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later in this section) that capture the change.  

A WSDL description has six major parts [244], which are summarized in Table 8.2. The first 

part provides the definitions of the services provided. The second include the schema XSD, which 

represents the data structures for the input and output of each operation. The third part, message calling, 

supports communication between the client and the operation (we use the term “operation” to denote 

a procedure that is exposed as part of the service’s external functionality available to a client). The 

fourth part provides the port used for each operation. Fifth is a binding that binds input and output data 

types to each operation. Finally, the sixth part defines the service that is accessed through a URL. 

Table 8.1 Cloud service Change Classifiers 

Label of the change Level Purpose at location of change Captured in Subset WSDL 

Insertion IWSDL WSDL 
Insertion of an operation in WSDL or 

Datatype in XSD 
DWSDL 

Insertion  

IWS Code 
WS Code Insertion of code for new operation UWSDL 

Deletion DWSDL WSDL 
Deletion of operation from WSDL to 

make its disfunction to client 
None. These changes are rare 

and unusual. Deletion  

DWS Code 
WS Code 

Deletion of operation from WS code to 

make disfunction at WSDL 

Modification MWSDL WSDL Modification of XSD DWSDL 

Modification MWS Code WS Code 
Modification at code lines without 

affecting WSDL 
UWSDL 

Table 8.2 Changes in WSDL Properties 

Property Effect of changes on the properties of WSDL 

Definition change Change in the xml version, name of service, xmlns or targetNamespace 

XSD Type 

(schema) 

The XSD includes sequence of two kind of data types in the form of XML elements: complex 

data types and simple data types. Changes may be in Simple Types or Complex Types, which are 

represented by elements, names, or data type. The simple data types contain only literal text, 

while the complex data types contain nested attributes and parameters. 

Message 
Changes may be in the message name of an operation. Changes may also be in the elements and 

part name of a message. 

Port Type change 
Change may be in the port type name or operation. Changes may also in the way message input 

and output were used. 

Binding  change 
Change may be in the binding name and soap binding. Changes may also in the soap body (input 

- output). 

Service change Changes may be in the service name, binding address, or soap address location. 
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The goal of the first step is to classify the elements of the WSDL and the WS code. A change 

can be made to any of the following three service elements: the operation code, the messages used for 

communication, and the input-output parameters. A common approach from data mining used to 

classify items is to attach classification labels. We can therefore identify changed operations by 

labeling the three kinds of service elements. Step 2 simply gathers together all the operations (as 

subset_operations) marked inserted or modified. 

The example shown in Figure 8.2 illustrates the first two steps. To begin with, the “Service 

version 1” is upgraded to make “Service version 2”. In the “Service version 1”, a modified 

‘Operation_11’ calls modified ‘Method_11’ (which further calls ‘Operation_12’, which was deleted) 

and modified ‘Operation_21’. 

Furthermore, ‘Operation_13’ calls 

‘Method_12’, which were both deleted in 

“Service version 2”. From the perspective 

of “Service version 2”, modified 

‘Operation_11’ calls modified 

‘Method_11’ and modified 

‘Operation_21’. Furthermore, inserted 

‘Operation_12’ calls inserted 

‘Operation_21’ and subsequently inserted 

‘Method_21’, and inserted ‘Method_13’. 

Note the ‘Operation_21’ is provided by 

some other service. 

Algorithm 8.2, ServiceChangeClassifier, takes four input artifacts: WSDLNew (WSDL of new 

version), WSDLOld (WSDL of old version), WScodeNew (WS code of new version), and WScodeOld (WS 

code of old version). The algorithm involves the following six steps. 

1. Identify semantic WSDL difference between WSDLNew and WSDLOld based on semantic 

differencing. Store the result in WSDLChanges. 

2. Identify semantic code difference between WScodeNew and WScodeOld based on semantic 

differencing. Store the result in WScodeChanges. 

3. Initialize the list opLabel, which will hold the labels of the differences between the old and new 

versions. 

4. While scanning the WSDLChanges for operation changes:  

a. if an operation was added to the new version of the WSDL, then assign it the inserted label in 

opLabel. 

b. if an operation is deleted from the old version to create the new version of the WSDL, then assign 

 

Figure 8.2 Simple representation of changes in a service.  
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it the deleted label in opLabel. 

c. if an operation from the old version is modified while migrating to the new version of the WSDL, 

then assign it the modified label in opLabel. 

5. While scanning the WScodeChanges for operation changes:  

a. if any line of code in an operation was added to the new version of the WS code, then assign it 

the inserted label in opLabel. 

b. if any line of code in an operation is deleted to create new version of the WS code, then assign 

it the deleted label in opLabel. 

c. If any line of code in an operation is modified while migrating to the new version of the WS 

code, then assign it the modified label in opLabel.   

Note that in this algorithm the order of Steps 4 and 5, which scan the WSDL and the WS code, 

is important because the second scan may reset a label from the first. Thus, if the WSDLChanges analysis 

is done before the WScodeChanges analysis, then the WS code analysis takes priority over the WSDL 

analysis. In contrast, if Step 4 and Step 5 are interchanged, then the WSDL analysis takes precedence. 

Furthermore, either step may be skipped enabling the approach to be applied separately by a cloud 

service owner or its consumer. In the implementation, finding the differences between the two versions 

of the WS code and the two versions of the WSDL is performed using a semantic differencing tool. 

Algorithm 8.2 ServiceChangeClassifier(WSDLOld, WSDLNew, WScodeOld, WScodeNew) 

1. WScodeChanges = semanticCodeDiff(WScodeOld, WScodeNew) 

2. WSDLChanges = semanticWSDLDiff(WSDLOld, WSDLNew ) 

3. Initialize array list opLabel<operation, label> with each operations with unchanged label 

4. For each operation_j_change in WSDLChanges 

a. If (operation_j_change  == insert) 

Assign label inserted to operation_j in opLabel 

b. If (operation_j_change  == delete) 

Assign label deleted to operation_j in opLabel 

c. If (operation_j_change == modify) 

Assign label modified to operation_j in opLabel 

End For 

5. For each operation_j_change in WScodeChanges 

a. If (operation_j_change == insert) 

Assign label inserted to operation_j in opLabel 

b. If (operation_j_change == delete) 

Assign label deleted to operation_j in opLabel 

c. If (operation_j_change == modify) 

Assign label modified to operation_j in opLabel 

End For 

Return opLabel<opName, label> 
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The algorithm depends on the accuracy of this tool in its ability to distinguish between the three kinds 

of changes: insert, delete, and modify.  

The third step captures the changes between the old and new versions in a WSDL slice. We 

first formalize the concept of WSDL Slicing. 

Definition: WSDL Slicing is a variation of interface slicing that extracts a subset of a given 

system’s WSDL (as an interface) to capture a subset of the original WSDL’s behaviour. The resulting 

interface slice is referred to as a WSDL slice and contains a subset of WSDL’s operations. 

For example, given a bank service that supports two operations ‘deposit’ and ‘withdraw’. A 

WSDL slice might contain only the ‘deposit’ functionality. 

As an interoperable subset of a service, a WSDL slice can aid an engineer (e.g., when testing) 

by focusing their attention on the relevant subset of the service. Furthermore, the slice of the distributed 

service’s code can provide a similar focus. As seen in Table 8.1, our approach makes use of two WSDL 

subsets: the Difference WSDL (DWSDL) and the Unit WSDL (UWSDL) [58][59][60]. The DWSDL is 

constructed based on differences in the WSDL, while the UWSDL is constructed based on differences 

in the WS code. 

The WS code differences are obtained from the WS change classification. This process first 

parses the old and the new versions of the code to separate-out the operations and methods of each, and 

then identifies differences including the location (file and line) of each change. On one hand, the 

DWSDL (a subset of the WSDL) is constructed to capture WSDL-level changes. The DWSDL is a 

type of WSDL Slice. On the other hand, building on the intra-operational and intra-procedural changes, 

we then identify operations that have inter-operational dependencies on changed operations and 

methods. These changed operations are used to construct the UWSDL, which is a WSDL Slice that 

captures changes at the WS code level. This makes the UWSDL useful to access and execute changes 

in the WS code. Based on the labels in opLabel, we capture changes in three ways: 

- First, inserted operations are captured in both the DWSDL and the UWSDL. 

- Second, deleted operations are ignored in the Subset WSDLs because they are not part of the new 

version of the service.  

  - Third, modified operations can occur in two places – in the WSDL and in the WS code. 

Modifications at the WSDL level mean changes in port, binding, and XSD (input, output, or both) as 

described in Table 8.2. The DWSDL captures these changes. Modifications at the WS code level are 

captured in the UWSDL. 

Finally, Algorithm 8.3 WSDL_Slicing takes the WSDL of the new version and the identified 

subset operations as input; these two are used to construct the WSDL_Slice using the functions 

sliceXSD, sliceMessage etc., which each extract a subset of the WSDL. These subsets (captured as 
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substrings) are combined (concatenated) to form the WSDL slice.  

A WSDL slice cleanly captures a semantically meaningful subset of a service’s functionality. 

As noted above, it can be computed in the absence of the code. However, as WSDL provides access to 

the WS code and thus the WSDL slice can also provide access to a reduced version of the code 

supporting the regression testing. 

B. Evolution mining of a Version series: Service Evolution Metrics 

This sub-section describes evolution mining of a service using the four novel service evolution 

metrics. The metrics are based on five important quantitative attributes: number of operations, WSDL 

lines, parameters, messages, and operation code lines. These five attributes are used to generate a 

quantitative evaluation of a version series VS = {V1... Vi... VN} such that Vi represents ith version of 

the service. Using the five attributes, we define four Service Evolution Metrics. The intuition behind 

the Service Evolution Metrics is to represent cloud service evolution information by aggregating 

attributes over multiple versions.   

1) Effective lines per operation in the WSDL: the first metric is the ratio of number of WSDL 

lines (non-comment and non-blank) to the number of operations in the WSDL. For version Vi, 

LOWSDLi denotes the Lines per Operation in the WSDLi and is defined as follows: 

𝐿𝑂𝑊𝑆𝐷𝐿𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒 𝑙𝑖𝑛𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑊𝑆𝐷𝐿 𝑓𝑜𝑟 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑖
 

This defines a set as LOWSDL = 

{(V1 , LOWSDL1 )… (Vi , LOWSDLi )… (VN , LOWSDLN )} 

2) Parameters per operation in the WSDL: the second metric is the ratio of the number of 

Algorithm 8.3 WSDL_Slicing(WSDLNew, subset_operations) 

String cStartDef, cXSD, cMsg, cPort, cBinding, cService, cEndDef 

Array of String[] operationOfWSDLNew 

1. [subset_operations ∈ operationOfWSDLNew | subset_operations = operation required to 

construct WSDL_Slice ] 

2. cStartDef = sliceStartDefinition(WSDLNew) 

cXSD = sliceXSD(WSDLNew, subset_operations) 

cMsg = sliceMessage(WSDLNew , subset_operations) 

cPort = slicePort(WSDLNew, subset_operations) 

cBinding = sliceBinding(WSDLNew, subset_operations) 

cService = sliceService(WSDLNew) 

cEndDef = sliceEndDef(WSDLNew) 

3. WSDL_Slice = cStartDef + cXSD + cMsg + cPort + cBinding + cService + cEndDef 

Return WSDL_Slice } 
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parameters in the XSD to the number of operations in the WSDL. This reflects the expected growth in 

a service’s interfaces. It is denoted as POi the Parameters per Operation in the WSDLi for Vi and defined 

as follows: 

𝑃𝑂_𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑊𝑆𝐷𝐿 𝑓𝑜𝑟 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑖 
 

This defines a set as PO =  

{(V1 , PO1 )… (Vi , POi )… (VN , PON )} 

3) Messages per operation in the WSDL: the third metric is the ratio of the number of messages 

to the number of operations in the WSDL. Under normal conditions, the number of messages per 

operation is two, which reflects having one message for input and one for output. The metric is denoted 

as MOi the Messages per Operation in the WSDLi of Vi and defined as follows: 

𝑀𝑂𝑖 =     
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑊𝑆𝐷𝐿 𝑓𝑜𝑟 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑖
 

This defines a set as MO =  

{(V1 , MO1 )… (Vi , MOi )… (VN , MON )} 

4) Code Lines per operation in the WS code: the fourth metric is based on the logic behind the 

WSDL. It is the ratio of the number of lines of code to the number of operations. This reflects the 

growth of service operations in terms of business logic. It is denoted as WSCLOi the WS Code Line 

per Operation in WSCodei of Vi  

𝑊𝑆𝐶𝐿𝑂_𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑊𝑆 𝑐𝑜𝑑𝑒 𝑖𝑛 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑖
 

This defines a set as WSCLO = 

 {(V1 , WSCLO1 )… (Vi , WSCLOi )… (VN , WSCLON )} 

These four novel metrics can be expressed together as  (Vi , LOWSDLi , POi , MOi , WSCLOi ). 

With respect to the versions, these four metrics are used to create four time series graphs that are useful 

in the study of the evolving distributed systems. The evolution mining of a version series using Service 

Evolution Metrics is summarized in Figure 8.3.  

 

Figure 8.3 Summary of the Evolution mining of version series based on Service Evolution Metrics. 
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8.3  Service Evolution Analytics 

We now describe our Service Evolution Analytics model and tool. The model in Figure 8.4 is 

based on the WSDL and the WS code of a version series. As illustrated in Figure 8.5, tool construction 

includes a development phase (duration t2) and a subsequent testing phase (duration t3).  

During the development phase, the tool learns from a prefix of the service’s version series. A 

supervised learning approach is used: if the output is incorrect, the developer updates the tool’s code 

and then recomputes the interface slice. Output correctness can be judged using two possible criteria: 

software acceptance and human acceptance. For software acceptance, an IDE (e.g., NetBeans and 

Eclipse) or testing framework (e.g., SoapUI and JMeter) must accept a subset of the WSDL as an 

interface slice. For human acceptance, an engineer determines if the tool’s output is satisfactory. While 

generating a slice can be a complex task, a developer (or a tester) should be able to easily identify 

correct output. In this way, the tool learns to produce the correct interface slice from its developer. The 

process terminates when the IDE or testing framework accepts the tool’s output as the desired interface 

slice.  

 
Figure 8.4 The Service Evolution Analytics model. 

 

Figure 8.5 Development and testing phases of the Service Evolution Analytics tool. Assuming starting 

at time t1 the development phase runs for time t2. Let the subsequent testing phase starts at time t1 + t2 

and runs for time t3. Therefore, both the phases end at time t1 + t2 + t3. 
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Next, in the testing phase the resulting tool is tested using the remainder of the service’s version 

sequence. The performance of the tool is measured by comparing its output with the expected output, 

which includes the WSDL (interface) slices. 

AWSCM: Using this model, we incrementally developed a new slicing component of our 

existing tool AWSCM (“Automated Web Service Change Management”) [59]. AWSCM is an 

automated intelligent tool that seeks to understand the structure of the WSDL and the WS code. It slices 

the WSDL by performing change mining of evolving distributed systems. AWSCM constructs a WSDL 

slice based on semantic differences between two versions of the WSDL extracted using the Membrane 

SOA Model [277]. To find the semantic differences between two versions of the WS code, we use the 

jDiff [276]. To incorporate these semantic differences, we developed several functions, for example, a 

function for operation separation and a function that slices out portions of the WSDL. As described 

above, AWSCM’s slicing code was repeatedly updated until the tool was able to independently 

generate the correct WSDL slice for each system studied in the next section. AWSCM was also updated 

to compute the four proposed service evolution metrics defined in Section II.B. This new feature was 

implemented in a new module named “Service Evolution Metrics”.   

8.4  Experiments on Distributed systems 

This section describes two empirical experiments, which considers two self-made illustrative 

web services and two real-word web services (see Table 8.3). The first subsection considers the use of 

change classification in the construction of a WSDL slice. The second subsection presents experiments 

involving the Service Evolution Metrics.  

a. WSDL Slice Construction 

Using Algorithms 8.1, 8.2, and 8.3, the first experiment computes a WSDL slice. It applies 

change mining (Algorithm 8.1) to compute the change classification. It then uses this change 

classification to construct the resulting WSDL slice. The WSDL subsets produced for each system 

considered are shown in Table 8.3. Recall that, as described in Subsection II.A, we consider two Subset 

WSDLs: the Difference WSDL (DWSDL) and the Unit WSDL (UWSDL). In the table a ‘Y’ indicates 

that the Subset WSDL was constructed, while the single ‘N’ indicates the one case in which the source 

was not available to us. Figure 8.6 shows the changes that we made to the two web services: SaaS and 

BookService. The figure demonstrates the effects of changes in the form of dependency graphs of the 

two web services. In greater detail the following changes are involved:  

- SaaS version 1 has three operations: Index, Searching and readingFile. We made following 

two changes to version 1 to create version 2. First, we inserted two new operations: edit and editFile, 

which are captured by the DWSDL. Second, we modified the code of the Searching operation, which 

is captured by the UWSDL.   
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- BookService version 1 is upgraded to version 2 with two modifications at the code level that 

affect the following operations. Code Change 1 affects the two operations: bgAllVerse and bgOp, 

which further affect their parent nodes in the graph. Code Change 2 affects the two operations: 

bibleAllVerse and bibleOp, which further affected their parent nodes in the graph. Overall, the two 

code changes affect three out of four BookService operations.  

Table 8.4 provides two examples of the three classification labels (insertion, deletion, and 

modification) for the two large-scale evolving distributed systems based cloud services: Eucalyptus 

Cluster Controller (CC) and the Amazon Web 

Service Elastic Compute Cloud (AWS-EC2). 

Looking at the output it is clear that the 

accuracy of the change detection is dependent 

on the semantic differencing tool. In other 

words, AWSCM depends directly on the 

capability and accuracy of semantic 

differencing tool that it uses.  

Table 8.3 Changes between two Subsequent WSDLs 

Example for Eucalyptus-Cluster Controller (CC)  

Feb-13.Eucalytpus-CC.wsdl  Aug-13.Eucalytpus-CC.wsdl 

Operation Change: ModifyNode inserted; MigrateInstances inserted. 

Schema Change: CT ccInstanceType has modified; CT virtualBootRecordType has modified; CT 

metricCounterType has modified; CT metricDimensionsType has modified. 

 

May-15.Eucalytpus-CC.wsdl  Dec-16.Eucalytpus-CC.wsdl 

Operation Change: DescribePublicAddresses deleted; AttachNetworkInterface inserted; 

DetachNetworkInterface inserted;  

Schema Change:  CT DetachVolumeResponseType inserted; CT ccInstanceType has modified; CT 

netConfigType has modified; 

 

  

Example for AWS-Elastic Compute Cloud (EC2)  

Feb-13.ec2.wsdl  Aug-13.ec2.wsdl 

Operation Change: DescribeReservedInstancesModifications inserted; ModifyReservedInstances 

inserted. 

 

August-13.ec2.wsdl  Oct-13.ec2.wsdl 

Operation Change: AcceptVpcPeeringConnection inserted; CreateVpcPeeringConnection inserted; 

DeleteVpcPeeringConnection inserted; DescribeVpcPeeringConnections inserted; 

RejectVpcPeeringConnection inserted. 

 

* where CT stands for ComplexType input-output data structure 

* for inserted operations, it is obvious that their input-output data-structure were also inserted, thus we skipped its details. 

* for deleted operations, it is obvious that their input-output data-structure were also deleted, thus we skipped its details. 

Table 8.4 Subset WSDL for Change analysis 

Web services DWSDL UWSDL Available at 

SaaS Y Y Self-made 

BookService Y Y Self-made 

Eucalyptus Y Y GithHub 

AWS Y N GithHub 
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b. Service Evolution Metric Study 

We present a study of the two cloud services that are belonging to large-scale evolving 

distributed systems: Eucalyptus Cluster Controller (Eucalyptus-CC) and Amazon Web Service – 

Elastic Compute Cloud (AWS-EC2). To study our four service evolution metrics, we use the 

repositories available from Github [278][279][279]. The number of lines, parameters, lines of WS code, 

and WSDL operations are given in Table 8.5. These counts are used to calculate the service evolution 

metrics; the resulting calculation values are shown in Figure 8.7.   

We deduce the following from Figure 8.7. First, the number of lines per operation in WSDL of 

Eucalyptus-CC is slightly larger than that of AWS-EC2. In contrast, AWS-EC2 has more parameters 

per operation as compared to Eucalyptus-CC. Both projects have two messages per operations for all 

versions. Eucalyptus-CC has almost 200 lines of code per operation, which is found in the file 

handlers.c inside module ‘cluster’.  

 
 

 
Figure 8.6 Simple representation of changes in two self-made web services, SaaS and BookService. 
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To keep experimental result simple, external code dependencies are not considered. All the 

graphs suggest that both projects are growing at a steady pace. In general, the metric values can help a 

manager to take decisions regarding a cloud service’s evolution task such as regression testing and 

service monitoring. In a time series graph of a service evolution metric, a sudden change (glitch) may 

denote an anomaly such as an incorrect upgrade. In this case, the project manager can go for validating 

the reason of the anomaly. Therefore, in Figure 8.7, all the glitches in time series graphs are the point 

of deviation from normal trend.  

 

Table 8.5 Information of Eucalyptus-CC & AWS-EC2 to calculate Service Evolution Metrics. 

Time 

Sequence 
Eucalyptus Cluster Controller (CC) 

Amazon Web Service-Elastic 

Compute Cloud (EC2) 

Time for last 

commit 

Versio

n 

# 

Comm

its 

# Lines of 

WSDL 

# 

Paramet

er 

# Code 

lines 

# 

Operatio

ns 

# Lines of 

WSDL 

# 

Paramet

er 

# 

Operatio

ns 

June-06 

The project was not published on GitHub during this period. 

865 96 14 

January-07 1157 130 19 

Feb-08 1560 181 26 

July-09 3568 523 65 

November-09 4565 714 81 

March-10 1.0 2612 912 50  3272 15 Data is not available for these 

months. Feb-09 1.5 512 848 45 2086 14 

June-10 2.0 4054 1087 59 3663 18 4077 762 87 

Nov-10 
Data is not available for these months. 

4536 890 95 

Nov-11 5637 1116 119 

Feb-12 3.0 13647 1464 83 4822 24 
Data is not available for this 

month. 

June-12 3.1.0 14252 1684 101 4870 28 6513 1359 137 

August-12 3.1.1 14310 1465 84 4870 24 7021 1455 144 

Feb-13 3.2.1 16770 1580 98 5606 26 7252 1501 149 

August-13 3.3.1 19974 1684 101 6438 28 7392 1535 151 

Oct-13 3.4 20621 1783 102 6672 30 
Data is not available for this 

month. 

Feb-14 Data is not available for this month. 7612 1579 156 

May-14 4.0 22130 1836 102 6869 31 

Data is not available for these 

months. 
May-15 4.1.1 23208 1840 104 7066 31 

Dec-16 4.3.1  1905 105 6346 32 
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Figure 8.7. Time-series graphs for four Service Evolution Metrics of Eucalyptus-CC & AWS-EC2. 
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For example, consider the following three changes shown in Table 8.5. First, in August of 2006, 

public beta of Amazon EC2 was released1. This is reflected in the first row (June-06). In October of 

2007, two new instance types were added2 to EC2, Large and Extra-Large. Thereafter, in May of 2008, 

EC2 added3 two more instance types, High-CPU Medium and High-CPU Extra Large. These four 

additions are reflected in Table 8.5 in the second row (January-07), third row (Feb-08), fourth row 

(July-09), and fifth row (November-09). These changes are evident in the POi time series of AWS-EC2 

shown in Figure 8.7. To begin with the initial point at (June-06). Second is the almost constant growth 

between (January-07) and (Feb-08). Third is the sudden increase (glitch) from the (Feb-08) to the (July-

09) and (November-09).     

In summary, the change classification enables AWSCM to construct a WSDL slice that captures 

the operations changed from an old to a new version. The evolution mining provides information about 

an entire version series, which helps to compare the two services empirically. Collectively, the two 

mining techniques retrieve different information, which helps in service evolution analysis.  

8.5  Related Works and Discussions 

This section discusses related contributions. To begin with, we used fine-grained change mining 

information based on the three change classifications (insertions, deletions, and modifications). This 

change information aids in extracting various WSDL subset slices, which are combined to construct a 

WSDL slice. Chaturvedi et al. [245][246][247], these WSDL slices (or Subset WSDLs) were used to 

select a subset of the test cases for regression-testing of a subset service. Furthermore, the algorithm 

and definition for WSDL slicing is novel work as compared to the Subset WSDL construction 

algorithm and interface slicing definition by Chaturvedi et al. [58][59][60]. Building on this work, this 

chapter describes a mining algorithm and the service evolution metrics.  

A WSDL slice is also helpful in subset service analysis, which reduces the effort required in 

regression testing, reverse engineering, and refactoring. The effort is reduced because WSDL slice 

construction takes only a few millisecond. The provider can also control the usage of a service with the 

help of an interface subset (Subset WSDL). Finally, the Subset WSDL is also helpful in accessing a 

subset of a service, which helps clients focus on subsets of the service’s functionalities. The WSDL 

slices are useful to study impact of the effect of change in one operation to the other operations in a 

distributed system. Using a reduced regression test suite can save effort, and thus cost [246][247][60]. 

Regression testing is a key part of maintaining quality of service and service-level agreements. 

1. Jeff Barr, (August 25, 2006). “Amazon EC2 Beta”. https://aws.amazon.com/blogs/aws/amazon_ec2_beta/. Link 

accessed on February 2019.  

2. Jeff Barr, (October 16, 2007). “Amazon EC2 Gets More Muscle”. Link accessed on February 2019. 

3. Jeff Barr, (May 29, 2008). “More EC2 power”. https://aws.amazon.com/blogs/aws/more-ec2-power/. Link accessed 

on February 2019. 
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Other related works include work related to software analysis and mining software repositories 

[248] in the context of change impact analysis [249] includes the following. For example, Ying et al. 

[250] presented an approach to determine change patterns and evaluated their work on the code 

repositories for Eclipse and Mozilla. Likewise, we evaluate our work by analyzing the repositories of 

Eucalyptus-CC and AWS-EC2. More recently, Negara et al. [251] identified previously unknown 

frequent code change patterns from an old repository. Thereafter, they analyzed some of the mined 

unknown code change patterns and some high-level program transformations. 

Work related to change analysis, mining, and learning of an evolving service repository 

includes that of Xiao et al. [249] who proposed a formula to quantify the cost of a business process 

change in a service-oriented architecture. Dam et al. [252] analyzed change propagation using 

extensions of the well-known UML framework in SOA as SoaML. Papazoglou et al. [253][254] present 

a unifying theoretical framework for controlling the evolution of services using distinguished shallow 

and deep changes. Alam et al. [255] presented a literature survey of 60 relevant studies of change 

propagation in SOA and Business Process Management (BPM) based on four research questions. 

Romano and Martin [256] proposed a tool WSDLDiff for gathering fine-grained changes between 

subsequent versions of a service. They then use this information to analyze the evolution of four web 

services. Recently, Karn et al. [257] proposed a methodology for selection and tuning a machine-

learning model, which is applied on dynamic changing environment to achieve higher accuracy in 

prediction of security attacks. 

Intuitively, our approach is useful in both static and dynamic program analysis for testing and 

verification [258]. For example, in support of mobile app testing [259], Facebook researchers have 

developed CT-Scan [260], which can also aid in regression testing [261]. The application of change 

impact analysis based interface slicing, such as WSDL slicing, can also be used in regression testing 

of web services [60]. 

The second kind of related work involves evolution mining of an evolving distributed system. 

Here, we proposed four service evolution metrics that are helpful when evaluating the risk associated 

with evolving a cloud service. Additionally, these metrics can be helpful in the - maintenance of 

existing versions and development of future versions. The metrics can also be helpful to a consumer 

while analyzing functionalities of the WSDL, XSD, and WS code. It is also helpful in the regression 

testing of the upgraded cloud service system. 

The work related to software and service evolution metrics includes the following. 

Constantinou et al. [262] presented six metrics to measure the architectural stability and evolution of 

software projects for reuse. Wang et al. [263] proposed a service evolution model based on four service 

evolution patterns used to analyze service dependencies, identify changes on services, and estimate 

impact on consumers. Recently, Kohar et al. [264] proposed a service evolution metric, a service client-
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code evolution metric, and service usefulness evolution metric. Similarly, we consider service 

evolution analysis using the four novel service evolution metrics. Their analysis produced useful 

interpretations (e.g., see Figure 8.7 and Table 8.5). 

Fokaefs et al. [265] presented WSDL evolution analysis through the empirical study of their 

VTracker algorithm for XML differencing. The algorithm can recognize and analyze changes between 

subsequent versions of various WSDL web-services. Thereafter, Fokaefs et al. [266] introduced 

WSDarwin, a specialized differencing method for WSDL and WADL (Web Application Description 

Language), which produces a set of rules. Li et al. [267] reported an empirical study on web API 

evolution and then drew conclusions for application developers. In contrast to these works, our tool 

AWSCM can use change information to generate interface (WSDL) slices, which can execute subsets 

of a cloud/web service. Additionally, AWSCM can also retrieve cloud/web service evolution 

information that can lead to the extraction of facts about the evolution of an evolving distributed system. 

Mohamed et al. [268] presented SaaS evolution platform based on Software Product Lines 

(SPLs) for a multi-tenant single instance; the platform provides evolution rules based on feature 

modeling to govern evolution decisions. Jamshidi et al. [269] reviewed cloud migration research and 

include a comparative study between SOA and Cloud migration. Ghosh et al. [270] proposed SelCSP 

framework to facilitate selection of a trustworthy and competent service provider. Similarly, our service 

evolution metrics generate empirical reports that may be helpful in the Cloud/SOA migration and in 

the selection of a trustworthy service provider. Recently, Noor et al. [271] described a trust 

management framework named as CloudArmor, which is based on reputation and credibility model. 

Both of our approaches are useful for establishing and maintaining Service Level Agreements 

(SLAs) and Quality of Service (QoS). Service providers often update or enhance a service to meet new 

requirements, thus this may cause a potential SLA violation where an incorrect change leads to an 

incorrect behaviour. Thus, QoS monitoring is required to check and re-establish the specific QoS 

described in the SLA [272][273]. Reduced cloud/web service maintenance effort can further reduce the 

effort required to guarantee the QoS and the SLA [274][275]. 

8.6  Conclusions 

This chapter describes approaches for change mining and evolution mining of an evolving 

distributed system. The first approach uses a service change classifier algorithm to assign change labels 

to a service’s operations and then extracts a WSDL slice. The second approach uses four service 

evolution metrics to study cloud service evolution and to deduce facts from a version series. The 

experiments demonstrate how the tool can be used to study the evolution of cloud services. Our Service 

Evolution Analytics model is also helpful in subset regression testing, which in turn helps to maintain 

the QoS required by a SLA. In the future, we plan to apply change and evolution mining to other APIs.  
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Conclusions and Future Works 

 

System entities (or components) in an evolving system keeps on evolving, which makes a set 

of states that we referred as state series. There exist connections (or relationships) between entities, 

which also evolve over system state, and make a series of evolution representor e.g. a set of evolving 

networks. We can use these evolution representor (like evolving networks) to do mining and learning 

over evolving system states for system evolution analysis. Our main objective is to introduce System 

Evolution Analytics (SysEvo-Analytics), which is helpful to do system evolution analysis. For this, we 

proposed end-to-end approaches for data mining and machine learning of evolving system; here end-

to-end means a set of steps that contains data pre-processing, information retrieval, result post-

processing, and graphical representation. To accomplish these tasks, we proposed novel algorithms and 

developed few analytic tools based on fundamental mining and learning techniques. The tools are 

majorly coded in Java technologies. Our tools are used to do exhaustive experimental analysis over 

various evolving systems. These experiments resulted in different kind of SysEvo-Analytics. 

We introduced SysEvo-Analytics model, which uses network evolution mining over a state 

series of an evolving system. This mining is a hybrid mining of network rule mining and network 

subgraph mining with evolution mining over multiple states of a system. This mining is realized as two 

mining techniques: Network Evolution Rule Mining and Network Evolution Subgraph Mining. Both 

these techniques retrieve evolution information. The first generates Network Evolution Rules (NERs) 

and the latter generates Network Evolution Subgraphs (NESs). We have implemented these two 

approaches as two prototype tools of SysEvo-Analytics model, which mines multiple states of an 

evolving system. For evolving system mining, we developed tool for evolution rule mining. The tool 

is based on the Rule-Growth algorithm of SPMF1 rule mining tool. Our tool extends this existing tool 

to accomplish the application of network evolution rule mining for evolving systems. We conducted 

experiments and considered network evolution rules with their support, confidence, and stability. We 

developed tool for evolving system subgraph mining. The tool is based on the acc-motif2. Our tool 

extends this existing tool to accomplish the application of network evolution subgraph mining on 

evolving systems. The developed tools are used to conduct experiments. In the experimentation, the 

tools are used for six different evolving systems. For each evolving system, the tools retrieved the 

NERs and NESs, which are interesting and non-obvious information. The information is helpful in 

system development and maintenance. 

We have also introduced a model for SysEvo-Analytics, which is based on system network 
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evolution learning over a state series of an evolving system. This learning is a hybrid of graph learning 

with evolution learning over multiple states of a system. This learning is realized with the deep learning 

techniques: RBM, DBN, and dA. The proposed approach is used to implement a SysEvo-Analytics 

tool that learns multiple states of an evolving system. For evolving system learning, we developed a 

tool based on java technology. We developed the tool for deep evolving system learning. The tool is 

based on the code available for deep learning3. Our tool extends the code to accomplish the application 

of deep learning on evolving systems. We used the tool to do experiments on six different evolving 

systems. In the experiments, we have generated the System Neural Network (SysNN) for each evolving 

system. The SysNN can be used to do recommendation or prediction. For recommendation purpose, 

the SysNN reconstructed a network matrix. To measure the quality of recommendation, we compared 

binary output matrix against a testing matrix of a state that remain unused during training phase. The 

SysNN can be helpful in system development and maintenance. 

We also presented two application of SysEvo-Analytics. First, we also presented an approach 

to do Big Data Evolution Analytics (BDE-Analytics) for a given Big Data State Series, which is 

constructed from an Evolving Big Data System (EBD-System). We applied the BDE-Analytics 

approach on big scholarly data collected from KDD Cup 2016 of Microsoft Academic Graph as a 

publication bibliography dataset. Second, we also describes a Service Evolution Analytics model and 

tool (AWSCM) that supports change and evolution mining of an evolving distributed system. We 

applied this on real-world evolving distributed system based on Web Services having service-oriented 

architecture enabled with WSDL. We performed four several case studies to construct WSDL slices of 

four web services. We also demonstrated the service change classifier and service evolution metrics 

using two well-known cloud services: Eucalyptus-CC and AWS-EC2. 

In future, some other pattern mining techniques (like rule and subgraph mining) can be used 

with evolution and change analysis to make another hybrid pattern mining. Similarly, some other 

machine learning techniques (like deep learning) can be used with evolution and change learning to 

make another hybrid evolution learning. It is also possible to perform similar studies of the 

changeability and stability for an evolving system. It is also possible to present enhanced 

experimentations on similar evolving systems, which demonstrate few more applications of our tool 

for other domains. Other mining techniques with network evolution mining techniques can produce 

another hybrid mining approach. Additionally, our approach can be applicable to the large networks or 

big graphs. Our approach is applicable to various domains such as system biological networks (of 

DNA, genome, protein-protein interactions), food web, computer networks, social networks, and so 

on. Our SysEvo-Analytics model can be done using other evolution mining or learning techniques. We 

plan to use other techniques for studying system evolution. Further, we plan to execute our tool on 

other types of evolving systems. We plan to strengthen our experimentation with more number of 

datasets from other domains like software system and natural language.
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