
SLA Driven Performance Optimization in Cloud Computing

Ph.D. Thesis submitted by

Dheeraj Rane

Discipline of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY INDORE

January 2019

SLA Driven Performance Optimization in Cloud Computing

Thesis submitted by

Dheeraj Rane

under the guidance of

Dr. Abhishek Srivastava

in partial fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

Discipline of Computer Science and Engineering
INDIAN INSTITUTE OF TECHNOLOGY INDORE

January 2019

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled “SLA Driven

Performance Optimization in Cloud Computing" in the partial fulfillment of the require-

ments for the award of the degree of DOCTOR OF PHILOSOPHY and submitted in the DIS-

CIPLINE OF COMPUTER SCIENCE AND ENGINEERING, Indian Institute of Technology

Indore, is an authentic record of my own work carried out during the time period from January

2012 to December 2018 under the supervision of Dr. Abhishek Srivastava, Associate Professor,

Indian Institute of Technology Indore, India.

The matter presented in this thesis has not been submitted by me for the award of any other

degree to this or any other institute.

Signature of the student with date

(Dheeraj Rane)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This is to certify that the above statement made by the candidate is correct to the best of my

knowledge.

Signature of Thesis Supervisor with date

(Dr. Abhishek Srivastava)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Dheeraj Rane has successfully given his Ph. D. Oral Examination held on

Signature of Chairperson (OEB) Signature of External Examiner Signature of Thesis Supervisor

Date: Date: Date:

Signature of PSPC Member#1 Signature of PSPC Member#2 Signature of Convener, DPGC

Date: Date: Date:

Signature of Head of Discipline

Date:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ACKNOWLEDGEMENTS

The work presented in this thesis is a result of blessings and good wishes from all those who

are associated with me and inspired me to step towards the research.

At the outset, I would like to express my deep sense of gratitude to my supervisor Dr.

Abhishek Shrivastava for his invaluable guidance, help and persistent pursuance to keep me

motivated during my doctoral research endeavor. His patience, inspiration and encouragement

nurtured me to be focused on achieving my goal. I shall always be indebted for his help to drive

me through the hurdles that came during my Ph.D. His simplistic style of putting complicated

theories into benefiting applications of technology motivated my work in cloud computing to

coincide in the realms of wireless networks, business modeling, service brokerage architecture

and quality assessment.

I extend my thanks to my PSPC committee members Dr. Anirban Sengupta and Dr. Bhu-

pesh Kumar Lad, for their critical comments and suggestions given time to time. Their generous

guidance, cooperation, support and appreciation kept my instincts high and paved my paths to-

wards accomplishing the doctoral study. I am grateful to all the faculty members of discipline

of CSE who have helped directly or indirectly.

I would like to express my sincere thanks to the Director Prof. Pradeep Mathur, who fa-

cilitated us with all resources and encouraged to find our place in international venues through

conferences and symposiums. My special word of thanks to Prof. N.K. Jain for all the support.

I thank administrative and technical staff who have been kind to help in their respective roles.

I acknowledge MHRD for providing the stipend and granting travel support which enabled

me to attend international conference. I would also like to thank MPCST for the research grant.

I am grateful to my family for caring me during all phases and putting patience when I

made tough calls in my slogged times. They have always stood by my side and their sacrifice is

an inspiration to me. My heartfelt regard to my peer colleagues who smiled everyday to wish

a new beginning of research, toiled hard to put that spirit live throughout. I shall always look

i

ii

back with the same spirit that I owe them for.

Finally, “Goodness can never be defied and good human beings can never be denied” and

so is my gratitude to all those whom I have fallen short of mentioning here.

DEDICATION

To my parents and sister

iii

ABSTRACT

KEYWORDS: Service Level Agreement; Cloud Economics; Pricing Model;

Agent-Based Cloud Computing; Dynamic Assignment Algorithm.

The main idea behind cloud computing technology is to implement “Everything-as-a-service”.

In realizing such a service there are mainly two issues: technology and business. The focus in

technology is towards adaptation and implementation, IT strategy/policy including security, and

other related aspects. On the other hand, in the business category, cloud computing economics,

regulatory issues are among the main concerns. Substantial research has been undertaken to

address the technology issues; however, if cloud computing is to achieve its true potential,

there needs to be a clear understanding and subsequent development in the various aspects of

cloud computing economics both from the perspective of providers and the consumers of the

technology.

There is a strong correlation between economics and the delivered Quality of Service (QoS).

For good economics, therefore, it is imperative that a Service Level Agreement (SLA) is real-

ized between cloud consumers and cloud providers. Service Level Agreements (SLAs) play a

key role in translating IT effectiveness into measurable business value. Contemporary cloud

SLA mechanisms are typically limited to cost-performance trade-offs, where both service

providers’ revenue and consumers’ QoS are intended to be optimized. In fact, these mecha-

nisms are trivial and do not take several significant factors such as trust, risk, power into ac-

count. As an alternative therefore, more involved economic models incorporating these factors

are required. These models, among other things, should include parameters to compare per-

formance repercussions between alternative configurations. Furthermore, such models should

employ business-related terms that can be translated to service and infrastructure parameters

during development and deployment of services. Effectively doing this requires optimization

of several factors through a run-time monitoring mechanism that includes analysis of histori-

cal usage patterns and prediction of future events. Such management in clouds is non-trivial

owing to the ever growing complexity and inherent variability in services. Moreover, rapid

iv

v

responses are a necessary requirement to satisfy the conditions of SLAs. Accordingly, human

administration becomes unfeasible and building self-managed systems seems to be the only

way forward.

To address the above issues, most existing solutions emphasize upon resource management

with the aim of maximizing profit without sufficiently considering consumer requirements. To

address this discrepancy, this thesis proposes an SLA template, algorithms, and techniques

for optimal provisioning of Cloud resources with the aim of minimizing cost and maximizing

customer satisfaction by automatically handling the dynamism associated with SLAs in an

environment of heterogeneous resources.

List of Publications

International Journals

1. Rane D. and Srivastava A., "A Novel Approach to Dynamic Pricing for Cloud

Computing Through Price Band Prediction". Accepted in Computers, MDPI, 2020.

2. Rane D., Shakhov V., and Srivastava A., "CBPM: A dynamic pricing model for cloud-

based sensing infrastructure" Problems of Informatics, Russian Federation, No. 1 (38),

pp. 20-41, 2018.

3. Rane D. and Sarma M., "CSLAT: An SLA Template for Cloud Service Management",

International Journal of Communication Networks and Distributed Systems,

Inderscience, vol. 14, no. 1, pp. 19-39, 2014.

International Conference

1. Rane, D. and Srivastava A., "Cloud Brokering Architecture for Dynamic Placement of

Virtual Machines", in IEEE 8th International Conference on Cloud Computing

(CLOUD), pp. 661-668, 2015.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iv

ABBREVIATIONS x

ABBREVIATIONS xi

LIST OF TABLES xii

LIST OF FIGURES xiv

1 Introduction 1

1.1 Cloud Computing Economics . 3

1.1.1 Service Level Agreement . 4

1.1.2 Agent-based Cloud Resource Provisioning 5

1.1.3 Dynamic Pricing . 7

1.2 Problem Statement and Objectives 8

1.2.1 Challenges and Requirements 9

1.3 Proposed Solution . 12

1.4 Contributions . 13

1.5 Organization . 14

2 Background and Related Work 16

2.1 SLA in Web Technologies . 17

vii

TABLE OF CONTENTS viii

2.2 Cloud Brokering Architecture . 19

2.2.1 Grid resource brokering . 20

2.2.2 Web service brokering . 21

2.2.3 Cloud computing brokering 21

2.3 Cloud Broker Pricing . 23

2.3.1 Dynamic pricing . 24

2.3.2 Hybrid pricing . 25

2.4 Summary . 27

3 Service Level Agreement in Cloud Computing 28

3.1 Need for SLA in Cloud Computing 30

3.2 Our Work . 31

3.2.1 Availability . 31

3.2.2 Interoperability . 38

3.2.3 Reliability . 43

3.2.4 Trust . 50

3.3 CSLAT: A Template for Cloud SLA 52

3.4 CSLAT utilization . 56

3.5 Summary . 58

4 Cloud Brokering Architecture 60

4.1 Broker Architecture . 63

4.2 Cloud Scheduler . 67

4.3 Experimental Setup . 71

4.4 Results . 73

4.5 Summary . 75

5 Dynamic Cloud Broker Pricing Model 77

5.1 Motivation . 80

5.2 Cloud Broker Pricing Model . 82

5.2.1 Basic Model . 85

5.2.2 Pricing Band Estimation . 88

5.3 Evaluation . 90

5.4 Discussion and Analysis . 93

5.5 Summary . 100

6 Conclusion and Future Work 101

6.1 Summary . 101

6.2 Lessons Learned and Significance 104

6.3 Future Scope and Research Directions 105

6.3.1 Automation of SLA . 105

6.3.2 Implementing broker-intervened multi-level dynamic SLA . . 106

6.3.3 Machine learning approach for QoS based dynamic pricing . . 106

6.3.4 Migration of VMs . 107

6.3.5 Enhancing assignment of resources in changing requirements 107

Bibliography 108

NOTATION

c Consumer

p Provider

d Consumer’s Demand

r Provider’s Rating at time t

H Historical Cumulative Rating

x

ABBREVIATIONS

AMPL A Mathematical Programming Language

API Application Program Interface

ASP Application Service Provisioning

CBPM Cloud Broker Pricing Model

CSB Cloud Service Broker

CSC Cloud Service Consumer

CSP Cloud Service Provider

DMTF Distributed Management Task Force

EC2 Elastic Compute Cloud

EMOF Essential Meta-Object Facility

MCDM Multi-Criteria Decision Making

NIST National Institute of Standards and Technology

OCL Object Constraint Language

QoS Quality of Service

SLA Service Level Agreement

SLAs Service Level Agreements

SOA Service Oriented Architecture

UML Unified Modeling Language

VM Virtual Machine

XML Extensible Markup Language

xi

List of Tables

3.1 Comparison of cloud computing, grid computing and web-services . . 32

3.2 Availability considerations of various components under cloud environ-

ment . 35

3.3 Transition kernel [q(s, s’)] . 37

3.4 Maturity levels of cloud interoperability 42

3.5 Two dimensional view of solution space 43

3.6 Characterization of different elements involved in a cloud service . . . 49

3.7 Calculation of time component in different element 49

4.1 MINOS solver output for an iteration 74

5.1 Spot instances Vs on-demand instances pricing 78

5.2 Values of demand factor . 91

5.3 Limits assigned for different demand factor 91

5.4 Comparison of pricing models . 98

xii

List of Figures

3.1 State transition diagram . 36

3.2 Interoperability in IaaS . 39

3.3 Cloud computing management system 44

3.4 Markov model for the request queue in CMS 47

3.5 Proposed cloud SLA template (CSLAT) 53

3.6 Conversion of Java class to XML . 55

3.7 Mapping of low level metrics to SLA parameter 56

3.8 Monitoring with proposed CSLAT 57

4.1 Cloud service broker . 61

4.2 Cloud broker architecture . 63

4.3 Cloud service aggregation . 64

4.4 Provider rating calculation process 69

4.5 Cloud broker prototype . 72

4.6 Cost comparison of broker and random assignment 74

4.7 Comparison of response time . 75

5.1 Cloud broker pricing model . 83

xiii

LIST OF FIGURES xiv

5.2 Dynamic pricing . 87

5.3 Pricing limits . 88

5.4 Amazon EC2 spot pricing . 92

5.5 Effective pricing at different instances 93

5.6 Percentage gain by adoption of CBPM 94

5.7 Fixed vs. dynamic pricing . 96

5.8 Provider’s benefit and loss . 97

5.9 Consumer’s benefit and loss . 97

Chapter 1

Introduction

Cloud computing evolved in the 1960’s when Leonard Kleinrock, envisioned

that any computing facility can be delivered as a utility [1]. From 1969, scien-

tists working in the field of communication have made this vision evolve into

reality [2]. This evolution leads to the concept of delivering computing as a

commodity or service. In the utility computing model, consumers can access

services on-demand according to their requirements regardless of where they

are hosted. In today’s scenario, the concept of utility computing is material-

ized as Cloud computing which proved to be a major facilitator to the emerging

era of technology [2]. It converges highly scalable computing resources with

business agility thereby providing services through rapid deployment without

capital investment. It is utility based sanctioning of resources for demands from

web based client; a paradigm for sharing potential infrastructure from service

providers on-demand from consumers. The impact of this paradigm shift can be

observed in the transition of business processes of giant, large-scale or medium-

scale enterprises to Cloud platforms [3]. As per the statistics projected from

NASSCOMM, SaaS will capture the market with 60% workload being deployed

on the Cloud and 600ZB data expected to be stored on the cloud by the year 2020

[4]. The figures have doubled from last year and are continuously rising to the

niche of technological boon in society. The cloud has arrived as an effective res-

olution to several issues such as configuration, distribution, licensing, and oper-

ation of enterprise applications associated with IT infrastructure, software SLAs

and deployment models. NIST defines Cloud computing as a service provision-

ing model for enabling ubiquitous, convenient, on-demand network access to a

2

shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction [5]. It is not a

new concept, rather a new operational model that correlates strategies and archi-

tectures to leverage business in an innovative way. Cheaper, Faster, Better has

revolutionized the scenario of IT services and have proved to be the ultimate

goal of Cloud computing. The two important stakeholders of Cloud based sys-

tems are service providers and consumers. The expectations of consumers are

mapped to the available services from a provider with resultant benefit to both.

The procurement of Cloud based services with quality and low-cost leads to sat-

isfaction and trust of the consumers. On the other hand, the provider gets the

maximum utilization of his upfront infrastructure and also maximizing profit.

When compared to Grid computing, Cloud extends resource sharing and utiliza-

tion with dynamic resource provisioning [6]. It is optimized utility computing

with dynamic pricing and minimal operating costs. It also equips virtualization

and autonomic computing to impress on its distinctive benefits to support tech-

nical requirements. Cloud computing has succeeded with enhanced business

performance, service automation, flexibility, faster adoption of new technolo-

gies, lower fixed costs, on demand and pay per use [7]. The Quality of Service

(QoS) guarantee in cloud computing provides it with a major competitive advan-

tage over other prevalent peer technologies. Enormous storage, featured security

through hybrid cloud, and supporting innovations in internet-of-everything, all

sum up to the dominance of Cloud over contemporary technologies. The capa-

bilities of provisioning and accessing resources on-demand enables its effective

application in urbanization, automation, green / smart initiatives, governance

and many more. The adoption of cloud in business or industry is gaining mo-

mentum as a result. Active research is being conducted for overcoming the

challenges in the optimization and maximizing the domain of functionalities in

1.1 Cloud Computing Economics 3

Cloud environments [8].

1.1 Cloud Computing Economics

The cloud computing technology implies that all the aspects of computation and

their application is rendered as services from peers in the multi-tier cloud archi-

tecture [9]. Along with IT based development methodologies, it also includes

marketing, security accounting and other allied aspects of technology which is

now provided as a service to the clients. Thus it involves commercial as well

as technical aspects of realization. The ultimate users are the most important

but equally are the providers in the service. The technical issues pertaining to

the cloud services are being studied under various streams of research [10]. But

to actually attain the essence or potential of the Cloud, considerable effort to

bridge the expectations of clients and the providers economically is required.

As data, application, or any computing resource is outsourced, the economics

will be governed by the service ultimately delivered [11]. This is done by moni-

toring the decisive parameters of the service and evaluating whether the service

delivered is as per the contract or not. Accordingly, a penalty or penalties are

imposed in case(s) of non-compliance with the terms. Cloud computing eco-

nomics further includes optimisation in resource allocation, and pricing offered

to the cloud consumer [12]. Cloud computing leads to a mapping and subse-

quent assignment between consumers’ requirements and providers’ resources

and therefore an equilibrium needs to be established so as to make it a ‘win-

win’ situation for both. The contract between the cloud consumer and the cloud

provider is termed as a Service Level Agreement.

1.1 Cloud Computing Economics 4

1.1.1 Service Level Agreement

Service Level Agreement (SLA) is a legal contract between a service provider

and a service consumer that contains the consumer’s requirements and the as-

surance to deliver services under specified conditions from the provider [13].

The SLA therefore comprises a set of mandatory terms, that need to be fulfilled

to continue services further. It assures the consumer on the Quality of Service

(QoS) to be delivered and lays down regulation for imposition of penalty in case

of violation of service terms. "Cheaper, Faster and Better" technology deliver-

ance is the aim of all technologies and and cloud computing is no exception.

It has almost clinched the first two [10], and to achieve the third, the goal of

Cloud computing is to facilitate Information Technology (IT) in delivering as

many services as possible to consumers, business or otherwise, wishing to use

IT as a service. Procuring better Cloud services requires monitoring services

in a manner so as to maximize the profit of cloud providers and minimize the

cost of cloud consumers. A well formatted and managed SLA is a necessary

requirement for effectively monitoring the services rendered. This is owing to

the fact that the SLA document holds information on all crucial and decisive

elements of the cloud services. There are several established SLA frameworks

for Web-Services such as WS-Agreement [14],Web-Service Level Agreement

(WSLA) [15], SLAng [16] and Web-Service Offering Language (WSOL) [17].

These frameworks mainly differ from each other in the language adopted for

implementation, parameters considered, manner of imposing constraints, and

adopted life cycle. web-services and Cloud computing both follow service ori-

ented architecture and as a result there are several points of commonality be-

tween their respective SLAs [18]. Due to diversity in deployment models of

Cloud computing services (e.g. SaaS, PaaS and IaaS), however, several addi-

tional parameters need to be considered. The issue with finding an appropriate

1.1 Cloud Computing Economics 5

SLA framework for the Cloud is that existing frameworks are either specific

to web-service, are under development, or lack important features of the SLA

life cycle [19] such as SLA negotiation. Most SLA frameworks used for web-

services are also static in nature. Such existing static SLA templates are unable

to cope with the diversity of Cloud applications [13]. In addition to this, most

frameworks are limited to incorporate the cost and performance analysis and do

not take into account important non-functional requirements such as risk, trust,

interoperability, reliability and green computing [20].

1.1.2 Agent-based Cloud Resource Provisioning

Organisations, in general, expect to control their public and private cloud ser-

vices as seamlessly as they control their respective in-house systems and soft-

ware [21]. Today, cloud computing is an indistinguishable part of enterprise IT

and therefore it is imperative that there be an established and tested approach

to plan, choose, deploy, administer, and optimise the performance of cloud ser-

vices. The consumer is perplexed by the increasing assortment of specialised

cloud services provided by different public cloud providers [22]. To add to this,

increasing competition demands that organisations maintain multiple services

from varied providers [22] and, as a result, they have to deal with different in-

terfacing, accounting, security, Service Level Agreement (SLA), licensing and

support. The complexity to manage all this can be overwhelming for IT depart-

ments. These complexities lead to the emergence of cloud-service brokerages

(CSBs), which act as intermediaries, helping add value for users by provid-

ing intermediation, aggregation and arbitrage [22]. The Cloud itself is said to

have infinite computing capabilities [9], and therefore the existence of cloud

brokerage can be questioned. The broker emphasises upon discovery, negotia-

tion, arbitrage and composition of cloud services furnished by different cloud

1.1 Cloud Computing Economics 6

providers, primarily to mitigate the complications in handling multiple clouds.

On the other hand, providers insist on the core functionality provided by them

and for provision of additional features they adopt cloud bursting and cloud in-

teroperability [23].

Gartner [24] recommends three variations in cloud service broker. 1) Inter-

mediation broker facilitates a cloud consumer by augmenting additional features

to an existing service provided by a cloud service provider (CSP). 2) An aggre-

gation broker furnishes a common platform that abstracts multiple services pro-

vided by different cloud providers. In this case service allocation is static and

so the cost remains fixed through the service period. 3) A cloud arbitrage bro-

ker is quite similar to an aggregation broker with the exception that allocation

of services is dynamic. Dynamic allocation takes an opportunistic approach in

which a scheduler is triggered to reschedule service allocation depending upon

requirements [25]. Here, the cost is fluctuating as the rescheduling leads to

allocation of new providers with different rates. In today’s scenario most bro-

kers provide an environment to bring leading public, as well as private cloud

providers onto a common platform. For example, RightScale [26] facilitates

a consumer by bringing the computer, network and storage services of public

clouds (e.g. Amazon Web Service, Google, HP cloud) as well as the services

provided by private clouds (e.g. OpenStack, CloudStack and VmWare vSphere)

together as a portfolio of cloud services. This way the cloud service broker fur-

nishes an extensive set of management capabilities that cover all facets of cloud

usage over multiple clouds, with many more features and offerings than pro-

vided by specific public or private cloud providers. In addition to handling the

management of the processes, the foremost priority of the broker is to address

the challenge of selecting an appropriate cloud provider [27]. This is because

the diverse cloud market comprises innumerable cloud providers each of whom

provides assorted services and this leaves a cloud consumer in a perplexed and

1.1 Cloud Computing Economics 7

confused state. Another factor that makes the study of cloud service brokerage

a promising direction of research is the notion that organisations are increas-

ingly adopting a hybrid strategy for cloud computing to fully realise its benefits

without compromising on control [28]. The integration required by these hybrid

models at the process, infrastructure, and network levels is addressed compre-

hensively by cloud service brokers.

1.1.3 Dynamic Pricing

Various factors drive the success of cloud computing such as pay-as-you-go,

on-demand virtual resources, elasticity, multi-tenancy pooled resources, and

economy of scale [29]. As computing needs are delivered from a distributed

infrastructure that can be shared by multiple tenants, economies of scale have

considerably reduced the cost than that of owned infrastructure. In support of

this were the findings of a case study that considered a 13-year life cycle where

the total cost of establishing and maintaining a cloud environment was only

33% of that incurred for traditional, non-virtualised infrastructure [30]. Further,

a cloud computing approach provides freedom to small enterprises for starting

a venture with very little capital. Also, from the dimension of a cloud service

broker, which takes into account several factors in the selection of a provider for

a resource request, perhaps the most important factor influencing the decision is

the price. It is clear, therefore, that proper pricing is very crucial to sustaining

cloud computing. The notion of accessing computing resources as and when re-

quired, without owning them and only paying for what is used, is the foundation

of cloud computing [31].

1.2 Problem Statement and Objectives 8

1.2 Problem Statement and Objectives

This focus of this thesis is on the following:

To design and develop an appropriate SLA template, algorithms, and tech-

niques to help cloud consumers be assured of the best Quality of Service (QoS)

with minimum expenditure, high performance levels, and optimum utility of

agent based cloud service provisioning to handle dynamism and variations as-

sociated with SLAs and available resources.

A quick survey of the publicly available Cloud SLAs shows that an industry-

wide accepted standard SLA for Cloud services does not exist. Disparities

in Cloud providers’ SLAs and issues related to Cloud failures have led to the

conclusion that public Cloud SLAs in their current form are of little value to

consumers. This has resulted in the need for a proper SLA and hence an appro-

priately designed SLA template is expected to improve the trust levels of con-

sumers and allow Cloud Computing environments to achieve their full utility

potential. There exist several pricing models [29] in literature viz. pay-as-you-

go, subscription-based, usage-based, dynamic, auction-based pricing, real-time

pricing. The one feature, however, that makes cloud computing more challeng-

ing from other implementations is its volatility wherein new features are added

to existing technology almost every other day and it is not common for service

providers to initiate new start-ups on a regular basis [32]. There are several dy-

namic pricing models in existence that attempt to effectively address this volatil-

ity [33]. They, however, do not have provisions to check the price hike beyond

a certain limit, something that is crucial in an environment of outsourcing. This

needs to be done whilst simultaneously assuring an optimised cost. In cloud

computing, where computing resources are outsourced and are charged as per

the pricing model, even a small margin in unit price has the potential to make a

1.2 Problem Statement and Objectives 9

considerable difference in the overall billed amount.

In such dynamic Cloud environments, the major issues that need to be ad-

dressed are as follows:

[1] How to deal with the constraints of a static SLA?

[2] Can terms like trust, risk, reliability, availability, and interoperability be
defined precisely in order to ensure appropriate monitoring?

[3] How to map customer requests with different QoS parameters for re-
sources to different offerings by cloud service providers?

[4] Can additional demand be accommodated, without adversely affecting
already accepted requests using distributed and heterogeneous resources
that are vulnerable to intermittent performance issues

[5] Can past performance of a cloud service provider be taken into account
before allocating the same to cloud consumers?

[6] How to aggregate the requirements of different cloud consumers in order
to have considerable negotiation with cloud providers?

[7] Can a parameter be defined to measure the compatibility of one service
provider with another service provider for facilitating migration?

[8] How can dynamic pricing be facilitated in a cloud computing environ-
ment?

1.2.1 Challenges and Requirements

Cloud computing is a paradigm shift from distributed computing and delivers

heterogeneous resources as a utility through variable pricing models and perfor-

mance, with provisions to scale through rapid elasticity and on-demand access

[34]. Different cloud consumers may have different requirements in terms of

infrastructure, platform, or any other computing capability all or some of which

can change as and when required. This dynamism in requirements poses several

1.2 Problem Statement and Objectives 10

challenges to the cloud service provider in the management of resources. Re-

sources should be utilized to their maximum whilst generating maximum profit

and simultaneously maintaining a reservoir so as to appropriately fulfill any ad-

ditional requirements of cloud consumers.

Looking at this from the perspective of consumers, their data and/or appli-

cation is outsourced at provider’s end. Also, service monitoring and billing is

done by the provider. Further, the parameters that contribute to QoS are some-

what difficult to measure and hence to prove non-delivery of a certain service

when such an eventuality arises. In such a scenario, consumers have minimum

control over the provisions and policies of cloud computing all of which are

provider-centric. It is felt, therefore, that policies governing cloud computing

and its effective provisions should be tilted a little more towards the consumer as

well. This requires a properly framed SLA that can adapt to dynamic consumer

requirements and should pose clear and comprehensive definitions of QoS pa-

rameters to be delivered.

Even if the requirements articulated above are fulfilled, there remain signif-

icant factors that could potentially impede the efficient utilization of resources.

Cloud computing is normally looked upon as possessing infinite computing ca-

pacity and hence it is imperative that providers maintain surplus resources to

fulfill demand as and when it arises. However, if net profit is to be maximized,

it is ill advised that the provider keep a resource(s) idle. To make such a model

commercially viable and keep customers interested, providers need to provide

slashed price offerings. Consumers, on the other hand, would significantly ben-

efit from this price drop and would be able to reduce their overall costs. There-

fore, a scheduling algorithm is required that can dynamically allocate resources

while taking care of the consumer’s QoS requirements. This algorithm should

actively take the previous performance of the cloud provider into account to

1.2 Problem Statement and Objectives 11

ensure that the required performance is delivered. Further, as consumers have

different priorities for different QoS parameters the algorithm should have fa-

cilities to associate appropriate weights to parameters before selecting the cloud

service provider.

As discussed above, the aim of cloud providers is to maximize their profits

and in doing this, they drop the prices of offerings to a considerable extent with

the hope of utilizing resources sitting idle. On the other hand, as the demand of

a certain resource starts to increase, its price starts going up manifold sometimes

as much as 13 times [35]. Therefore, a pricing model is the need of the hour to

facilitate cloud consumers in availing the benefits of both static as well as dy-

namic pricing. In summary, we identified four objectives to align the consumer

centric approach that can prove to be a win-win situation to cloud providers as

well:

[1] To put together an SLA framework that will address the dynamic nature of
cloud services and its monitoring. The focus will be on the identification
of different parameters to be considered in the SLA framework, the design
of a uniform SLA framework that can be followed in the whole market,
and on the evaluation of SLA parameters at run-time.

[2] To quantify terms like trust, risk, interoperability, availability, reliability
in the context of cloud computing.

[3] To define an architecture for cloud service brokers that will incorporate
SLA-based resource provisioning algorithms and will take into consid-
eration providers’ past performance, consumers’ priority (weight) for a
performance attribute, and mechanisms to check the feasibility for migra-
tion.

[4] To design a dynamic pricing algorithm for cloud service brokers to benefit
from variable resource pricing alongside with the benefits of fixed pricing.

1.3 Proposed Solution 12

1.3 Proposed Solution

As discussed above, cloud services are diverse in nature and the entire control

of the process lies with the cloud provider. Further, choosing one cloud provider

from several providing similar functionality is non-trivial. We propose the fol-

lowing solution, therefore, to assure the consumer of an appropriate level of

QoS and to help choose the best service provider from the ones available for a

certain functionality

This thesis proposes an SLA template and formal definitions of the parame-

ters that determine the QoS in Cloud computing. The template facilitates effec-

tive Cloud service monitoring, as it handles issues such as dynamic SLA, multi-

level SLA, and automatic synchronization with a monitoring tool. Further, as

documentation is an integral part of IT and its development, the template also

serves as a document for future reference. In addition to this, using the formal

definitions proposed, compliance with the minimum service requirement can be

checked effectively.

Another dimension in cloud computing is cloud service brokering. A cloud

service broker facilitates the selection of appropriate cloud providers whilst

meeting the requirements of cloud consumers. The existing cloud consumer

may demand dynamic resource allocation to take advantage of competition or

avail new offerings by certain provider and may not want to stick with a sin-

gle provider. This thesis proposes a cloud brokering architecture consisting of

an aggregator, a scheduler, a quantifier, a profile manager, and a cloud service

provider module. This architecture follows the proposed algorithm that first ag-

gregates the requirements of all registered consumers, performs the process of

negotiation with different cloud providers and decides on allocation of different

consumers’ request to different cloud provider. The scheduler makes considera-

1.4 Contributions 13

tion about past performance of cloud provider, consumers’ weight for a specific

quality parameter and migration compatibility.

The above scenario includes a scheduler that schedules the allocation of

cloud offerings to consumers based on their requirements. Pricing is one of

the most important factors in such allocation. Also, cloud providers offer spot

pricing i.e. resource pricing at reduced prices for certain duration. The duration

may be as small as 1 hour or it can last upto as long as one year. It ultimately

depends upon demand. This thesis, therefore, also proposes a pricing model

for cloud brokers where the idea is to introduce a pricing scheme comprising a

price range instead of just a fixed price. This price range will have a minimum

price and a maximum price, which denotes the lower bound and upper bound of

the amount that can be charged to the consumer respectively. The charged price

will, therefore, always be within this range. The proposed algorithm for pric-

ing variation makes a consistent effort to ensure that the average price always

remains lower than the fixed price for the same set of resources.

1.4 Contributions

The research in this thesis makes the following contributions towards under-

standing and advancing the SLA framework and resource management for cloud

service brokers with the intent of creating a consumer-centric environment:

[1] The thesis provides a comprehensive structure of the SLA and a clear def-
inition of all involved quality parameters. It discusses the existing SLA
framework of web-services, Grid computing and Utility computing sys-
tems to identify the SLA realization in legacy systems and challenges with
respect to the field of cloud computing. The survey would not only help
researchers understand the primary design factors and issues that are still
outstanding and crucial but also provides insights for proper implementa-
tion of SLA terms with respect to the cloud environment. The provided

1.5 Organization 14

detailed definition of the quality parameters will help in the design and
implementation of more practical and enhanced SLA. Further, the defini-
tion of quality parameters is well documented in publications to facilitate
comprehensive comparison and proper implementation.

[2] The thesis proposes a cloud brokering architecture and scheduling al-
gorithms for cloud service brokers to effectively utilize the spot pricing
offerings and to provide freedom to consumers on the choice of cloud
provider through dynamic allocation. The algorithm helps cloud con-
sumers in minimizing the cost by allocating resources to more profitable
providers while minimizing the SLA violations for existing customers. It
schedules the resource allocation using the MINOS solver where require-
ments and offerings are expressed in AMPL. It also utilizes the multi-
criteria decision making approach for various scenarios that include vary-
ing load, budget, contract length, service initiation time, and performance
degradation.

[3] The thesis proposes a novel dynamic pricing model considering cloud re-
source brokers that proves to be a win-win situation for all the stakehold-
ers including the cloud consumer, cloud provider, and the cloud resource
broker. The consumers’ requirements driven resource provisioning algo-
rithm discussed above utilizes this pricing model. The algorithm used in
the pricing model calculates the pricing band having a low and high pivot
value. Subsequently, the scheduler makes consistent efforts to keep the
offered price within the price range and ultimately to profit the consumer
by keeping the average price less than the fixed price while passing on the
benefits of the fixed price as well.

[4] The thesis provides details of an implementation of the above pricing
model in an environment of Sensor Network as a Service (SNaaS).

1.5 Organization

The rest of the thesis is organized as follows. Chapter 2 details about the back-

ground and related work with respect to thesis. Next, Chapter 3 presents SLA

framework that can be used for cloud computing environment. It also provides

detailed definition about the quality parameters to facilitate precise monitoring

and interpretation. Chapter 4 proposes cloud brokering architecture and algo-

1.5 Organization 15

rithm for dynamic resource allocation breaking the barriers of static allocation.

Chapter 5 details about the proposed pricing model which facilitates dynamic

pricing by offering a pricing band. Chapter 6 concludes and provides directions

for future work.

Chapter 2

Background and Related Work

In this chapter, in Section 2.1, we discuss work related to SLAs with respect to

existing technologies that are the foundation for cloud computing. These tech-

nologies include Grid Computing, Utility Computing, Service Oriented Archi-

tecture, and possible variations in SLA such as multi-level and federated SLAs.

There is a significant literature on SLA wherein varied types of SLAs have been

proposed for these technologies. Literature also identifies the complexities in

adapting existing SLAs in their original form for cloud computing owing to its

diverse model.

In Section 2.2, related work with reference to cloud brokering architecture is

discussed. It starts with analysing the principle of brokering for (i) Grid broker-

ing (ii) Web services brokering (iii) Cloud computing brokering. As the broker-

ing architecture of existing technologies is well proven and tested, the related

work is presented with respect to these brokering architectures. Later, applica-

bility of these architectures with respect to the cloud environment is analysed.

Finally, in Section 2.3, we provide an overview of related work with respect

to dynamic pricing for the cloud brokering architecture. Cloud pricing schemes

are mainly classified as fixed pricing scheme, dynamic pricing scheme, and hy-

brid pricing. Among these, fixed pricing scheme is the one adapted by default

and is always compared with other approaches. Therefore, related work on

cloud pricing schemes is classified into (i) Dynamic pricing (ii) Hybrid pricing.

2.1 SLA in Web Technologies 17

2.1 SLA in Web Technologies

Cloud computing can be considered to be built upon the basic concept of Web

services [9]. Grid computing [30] is also looked upon as an intellectual kin of

Cloud computing and Utility computing [36] and serve as its backbone. We,

therefore, classify literature survey on SLA templates into (i) Grid SLA (ii)

Web Services SLA and (iii) Utility computing SLA. As SLA related issues for

the Cloud are still evolving, the background may be prepared for SLA pertaining

to Grids and Service Oriented Architecture (SOA). In the following portion, we

survey existing SLA frameworks [37], followed by the scope of defining new

SLAs in the context of Cloud scenarios.

Andrieux et al. 2007 [14] of the Open Grid Forum, define a language and a

protocol for advertising the capabilities of service providers and creating agree-

ments based on templates, as well as for monitoring agreement compliance at

runtime known as WS-Agreement. It extends the classical service discovery, and

usage model like Universal Description, Discovery and Integration (UDDI) as

it allows service consumers to not only discover and use services, but also to

dynamically negotiate the quality of the service provided. Initially, negotiation

mechanisms were not available but with WS-Agreement around, the same can

be utilised in all five steps of the SLA life cycle. It may be noted, however, that

the scope is limited to the Grid and Web services only.

Keller et al. 2003 [15] describe a framework for specifying and monitoring Ser-

vice Level Agreements for Web Services known as Web Service Level Agree-

ment (WSLA). The WSLA framework comprises a flexible and extensible lan-

guage based on an XML schema and a run time architecture consisting of sev-

eral SLA monitoring services that can be outsourced to third parties to ensure

maximum objectivity. WSLA enables customers and providers to unambigu-

2.1 SLA in Web Technologies 18

ously define a wide variety of SLAs, specify the SLA parameters, the manner

in which they are measured, and relate them to managed resource instrumenta-

tions. Upon receipt of an SLA specification, the WSLA monitoring services are

automatically configured to enforce the SLA. XML provides substantial flexibil-

ity to define inter and intra organisational SLA parameters to WSLA. However,

it lacks facilities to support multi-level SLA.

Lamanna et al. 2003 [16] present a language (SLAng) to generate SLAs for Ap-

plication Service Provision (ASP) scenarios, where a client submits a request

to a service, the service processes the request and sends a response back to the

network. SLAng classifies requirements in two parts: Generic requirements

and ASP requirements. SLAng semantics are defined using EMOF, a modelling

language similar to UML. Models increase the understandability of QoS param-

eters. Also, the presence of SLA elements imposes constraints on the possible

behaviour observed in the model. Constraints in SLAng are described using the

Object Constraint Language (OCL). Although SLAng has the advantage of im-

plementation using a modelling language, it cannot be used in practice because

it is under development, is not suitable for multi-level SLAs, and has limited

parameters under consideration.

Koller et al. 2009 [38] explain autonomous QoS management through a proxy-

like approach. As the execution is based on WS-Agreement, SLAs can be op-

pressed to define certain QoS parameters that a service has to maintain during

its communication with a particular customer. However, the approach is limited

for use with Web services only.

Linlin et al. 2010 [39] introduce an SLA management system for Utility com-

puting services. The architecture comprises layers in the SLA management that

examines and verifies resource allocation.

2.2 Cloud Brokering Architecture 19

The SLA@SOI project [40] has a vision for a business-ready service oriented

infrastructure and documents an SLA enabled reference architecture benefiting

both new and existing service oriented Cloud infrastructures. A language is also

developed under the project known as SLA*, which provides a domain indepen-

dent syntax for machine readable SLAs. SLA* deals with services in general

and is not specific to any technology availing the concept of services. Also, it is

language independent.

Brandic et al. [41] present a methodology for adaptive generation of SLA tem-

plates. Thereby, providing a way for SLA management where differences be-

tween two SLAs can be bridged and mapping rules can be defined. This is

helpful when a service consumer meets a provider dynamically and on demand.

However, they do not consider mapping of monitored metrics to the agreed upon

SLA.

RBSLA [40] is a language based on RuleML. RuleML is based on XML and is a

standardisation initiative with the goal of creating an open, provider-independent

approach for establishing web rules. With this, SLAs can be implemented in a

machine readable format which after feeding into a rule engine is used to mon-

itor the agreement performance during runtime and automatically executes the

contractual rules.

2.2 Cloud Brokering Architecture

Web services are at the core of cloud computing [18]. Also, Grid computing [30]

is widely regarded as its intellectual kin. Therefore, we classify related work on

brokering architecture into (i) Grid brokering (ii) Web services brokering (iii)

Cloud computing brokering. Since the cloud brokering concept is still evolving,

the background is prepared with brokering architectures pertaining to the Grid

2.2 Cloud Brokering Architecture 20

and Web Services. This is followed by consideration of existing work on cloud

service brokering.

2.2.1 Grid resource brokering

Grid resource brokering was conceived with the idea of scheduling techniques

evaluation for the multiple grid scenario by Rodero et al. [42]. In this scenario,

a selection policy known as ’bestBrokerRank’ is proposed that uses resource

aggregates as first and ’broker average bounded slowdown’ as the other variant.

Their results prove that the assignment of scheduling responsibilities to under-

lying scheduling layers adequately balances the performance between different

grid systems.

Another aspect of brokering that deals with optimal assignment of jobs to

resources in grid computing [43] shows that the scheduling problem is not only

NP-hard but also non-approximable. Authors propose heuristics and validate

near-optimal solutions for an extensive range of problem instances.

Leal et al. [44] present a decentralised model to solve the problem of schedul-

ing in federated grids. Each grid infrastructure in this model consists of a meta-

scheduler that individually executes a mapping strategy to meet the makespan

and resource performance objective functions of task scheduling problems. Au-

thors further enhanced their work to address the issues of complex federated

grids in [45]. Some other work related to this includes Assuncao et al. [46]

which furnishes a solution to the resource provisioning problem in multiple grid

environments. For this, the providers’ site consists of queueing-based resource

management systems that maintain availability information. This availability in-

formation is used as an input to make the decision of resource provisioning and

helps in allocation which leads to better performance. Some more work based

2.2 Cloud Brokering Architecture 21

on advance reservation and benchmark based resource selection is proposed by

Elmroth et al. [47]. For more information on grid resource brokers readers may

refer to Abramson et al. [42], Elmroth et al. [23], Zhuk et al. [27] and Krauter

et al. [6].

On the other hand, as interoperability is a prime concern in brokering sub-

stantial work has been done on interoperability of grid systems [48][42][49][50][51].

2.2.2 Web service brokering

A web service is a software system that facilitates interoperable application-

to-application communication over the Internet. The main emphasis in a web-

service brokering architecture is on service composition. McIlraith et al. [52]

propose an agent broker that enables automated web service composition. Work

by Carminati et al. [53] related to web service composition focuses on security

constraints. For this authors propose a broker architecture to frame composite

web services based on the stated security constraints. Some other work related to

this includes Barros et al. [54] which adds a layer in the web service ecosystem

and stresses upon various roles that should be supported by a service broker.

Although the concept of brokers for web services and grid computing envi-

ronments can be considered for the cloud at a broad level, the diversity of the

cloud environment means that considerable changes and modifications need to

be done before actual implementation.

2.2.3 Cloud computing brokering

The work most pertinent to our research is that carried out by Tordsson et al.

[55]. In this study, concepts of static deployment across multiple clouds is pro-

2.2 Cloud Brokering Architecture 22

posed through a cloud broker. The proposed cloud broker optimises the place-

ment of virtual infrastructure across multiple clouds and also provides a com-

mon interface to deploy and manage infrastructure components. For experimen-

tal evaluation, a few selected VM placemenet plans are deployed over Amazon

EC2 and the performance of the infrastructure is analysed post optimisation.

The Embarrassingly Distributed benchmark from NAS Grid Benchmarks(NGB)

[56] is used to measure the performance of various instance types. Further en-

hancement to this work is proposed in Simarro et al. [57] where the deployment

across multiple clouds is done dynamically rather than statically. Although the

authors have carried out extensive work to address the significance of the cloud

broker model in cloud computing, assuring optimisation in scheduling, abstract-

ing the deployment and management of the virtual infrastructure, these studies

have several limitations. First, these scheduling algorithms consider only one

consumer at a time and prepare the deployment plan by finalising the number of

VMs to be deployed. Although this gives freedom to the consumer for selecting

the scheduling algorithm but at the cost of benefits that can be achieved through

resource aggregation. Further, in none of the existing research endeavours are

non-functional attributes considered which are very important to further opti-

mise the allocation [58]. In order to overcome this, we include weight attributes

corresponding to each non-functional attribute. Moreover, the past performance

of cloud service providers is also ignored in most work while taking scheduling

decisions.

Another related research stream pertains to the architecture of federated

cloud computing, where Rochwerger et al. [59] propose a pool of infinite IT

resources created through an alliance of cloud providers while retaining tech-

nological and business management freedom. Sim et al. [32] provide a Service

Oriented Architecture (SOA) perspective on cloud service brokering where the

authors introduce an agent based search engine Cloudle, for cloud service dis-

2.3 Cloud Broker Pricing 23

covery.

Some more work that primarily focuses on cost optimisation in cloud schedul-

ing includes Nakai [60], Bossche et al. [28], Elmroth et al. [61], Sangho et al.

[11], Leitner et al. [62] and Chaisiri et al. [63].

To the best of our knowledge the approach proposed in this thesis does not

match any of the existing methodologies. However, we have chosen certain

concepts from the basic Multiple-Criteria Decision Making approach (MCDM).

2.3 Cloud Broker Pricing

Cloud computing is a promising technology [5] but is still said to be in an evolv-

ing state [8], therefore, new ventures concerning its provision emerge at regular

intervals. Also, because of its competitive nature, companies keep announcing

attractive offerings to attract as many consumer as possible. However, sticking

to a fixed pricing scheme in such an evolving and competitive market limits the

consumer from availing the benefits of cloud computing and its various offers.

Hence, use of dynamic pricing helps in conforming to the continually changing

market. It facilitates maximum revenue generation by properly adjusting price

with respect to demand and appropriate utilisation of resources. Currently, most

cloud service providers have adopted fixed pricing schemes [7] except Ama-

zon spot pricing [31]. Providers with fixed pricing schemes promote allocation

strategies such as on-demand and reserved instances, while Amazon provides

spot instances in addition to other allocation strategies. However, spot instance

resources can be interrupted at any time and claimed back by Amazon, resulting

in losses if the application running is not able to handle the interrupt.

Again, as the cloud computing concept is still evolving, the description is

2.3 Cloud Broker Pricing 24

prepared with pricing schemes pertaining to Grid and Web Services. This de-

scription is followed by taking into consideration existing work on cloud pricing

schemes.

2.3.1 Dynamic pricing

Various economic models corresponding to grid computing are compared by

Buyya et. al. [64]. This comparison is done between a flat fee system, a us-

age duration system, subscription system, and demand pricing. In yet another

work by [65] a system for scheduling resources is proposed with varying QoS

using a resource broker. In this, the QoS acts as the decision maker for schedul-

ing resources. [66] propose an algorithm for pricing Grid resources utilisng the

idea of the commodity market. The proposed approach improves upon Smale’s

method to identify a price equilibrium in the grid market. Another study carried

out by [67] introduces a pricing information service architecture for the grid in

which a general pricing scheme denoted as quadruple is used. Dynamic pric-

ing is estimated using this quadruple on the basis of the quantity of resources

requested, time, quality class, and user profile. Further, the pricing scheme is

expressed as an XML to easily link it with service level agreements. [3] present

an autonomic variable pricing scheme for utility computing with an advance

reservation system through which users are assured of the required resources

in advance whilst being aware of the exact expenses. As the pricing scheme is

autonomic, it self-adjusts the pricing parameters based on demand and supply.

Another work related to variable pricing that makes use of the financial option

theory and Moore’s law is proposed by [7]. The primary emphasis on the calcu-

lation of variable prices is to incorporate the age of resource, quality of service,

and the contract period. [68] explore variable pricing in cloud computing with a

view of the continuous double auction and introduce an ongoing reverse auction.

2.3 Cloud Broker Pricing 25

Some recent work carried out by [69] proposes a dynamic pricing mechanism

that provides a complete overview on cloud offerings. The pricing mechanism

is a multi-agent, multi-auction based system that helps cloud service consumers

to select appropriate providers.

Another aspect of the dynamic pricing scheme is pricing decisions for mul-

tiple resource types which is computationally an NP-complete problem. [70]

proposes a pricing scheme that makes use of the VCG mechanism for allocating

multiple resources in a dynamic environment. This scheme proves to be viable

as compared to traditional as well as combinatorial auctions.

Some other work with concern for dynamic cloud pricing schemes is [25].

Also, [29] provides a comprehensive survey of the various pricing schemes pro-

posed for cloud computing. A review of research on cloud computing pricing

and markets is included in [12]. Here, subsequent to reviewing numerous re-

search endeavours, the authors establish a framework on how cloud economics

research should proceed.

Some other work that deals specifically with cloud pricing but not necessar-

ily with dynamic cloud pricing is included in [71][72][73].

2.3.2 Hybrid pricing

The hybrid pricing model makes an attempt to provide a diversified model that

incorporates advantages of both the fixed price model and pay-per-use model.

This way the hybrid pricing model utilises fixed pricing in normal conditions

and maximises benefits by executing tasks through a pay-per-use system as and

when good offerings are available. The hybrid pricing model proves best for

massive and lengthy projects with unsettled objectives in the beginning. Apart

from several benefits for the consumer, it also gives the cloud service provider a

2.3 Cloud Broker Pricing 26

more controlled infrastructure with shared liability in financial terms.

For information services, the hybrid pricing model is presented as a two-part

tariff pricing system in [74] that examines the optimality of the pricing schemes

adopted by a provider under varying conditions. The considerations made for

taking a decision on a particular pricing scheme is on the basis of consumer

behaviour, on whether the consumers are homogeneous consumers or heteroge-

neous consumers. Further, the sensitivity of optimal pricing schemes is analysed

with respect to marginal costs and monitoring costs. Overall, efforts are made

to help providers choose the best pricing model on the basis of consumer type

(homogeneous or heterogeneous) and on the basis of trends between marginal

and monitoring cost.

[75] look at hybrid pricing schemes from a different perspective. The au-

thors examine the effectiveness of the hybrid pricing model for a cloud service

provider where the fixed pricing scheme is combined with spot-instance pric-

ing. The difference introduced here is in its outlook towards cloud services as

a damaged perspective where spot-instances can be claimed any time through

an interrupt. The decision support model proposed in this work helps a cloud

provider decide whether the hybrid pricing scheme is suitable or not. Yet an-

other study done in [76] proves that the hybrid pricing model is more efficient

than the subscription pricing and pay-per-use pricing.

Other related systems that help cloud service consumers compare cloud

providers on the basis of factors included the pricing model adopted are [35][77][78][79]

2.4 Summary 27

2.4 Summary

This chapter sets the stage for a more detailed description of the procedures and

techniques presented in this thesis. We first briefly discuss SLAs with respect to

existing web technologies and its suitability with respect to the cloud computing

environment. The discussion on quality attributes was imperative because they

play a central role in the service monitoring used to check the compliance with

SLA terms and conditions. The related work section on cloud brokering archi-

tecture gave us a perspective on the existing approaches to brokering systems

and their suitability for cloud environment. Finally, work related to dynamic

pricing explored and established the road-map for the remainder of the thesis.

Chapter 3

Service Level Agreement in Cloud Computing

Cloud computing promises to be the next era of computing where the emphasis

is on accessing various services of computing as a utility and paying only as

per use, without investing heavily in IT. In Cloud computing, the Service Level

Agreement (SLA) is a part of a legal contract between the service provider and

the service consumer. The SLA stipulates the consumer requirements and the

provider’s promise to deliver certain services under certain specified conditions,

and thus comprises a set of mandatory terms, that need to be fulfilled to continue

the services further [80]. It assures the consumer about the Quality of Service

(QoS) that will be delivered, its monitoring and imposition of penalty in case

of violation of service terms. However, a quick survey of the publicly avail-

able Cloud SLAs shows that an industry-wide accepted standard SLA for Cloud

services does not exist. Disparities in Cloud provider’s SLAs and high-profile

issues related to Cloud failures have led to the conclusion that public Cloud

SLAs in their current form are of little value to customers. This generates the

need for a proper SLA and hence an appropriately designed SLA template will

increase the trust of consumers and allow the Cloud to reach its full potential.

There are a few well-established SLA frameworks for Web services such as WS-

Agreement [14], Web Service Level Agreement (WSLA) [15], SLAng [16] and

Web Service Offering Language (WSOL) [17]. All these frameworks differ in

the language adapted for implementation, parameters considered, the manner in

which constraints are imposed, and adapted life cycle. As both Web services

and Cloud computing follow service oriented architecture, they share several

29

points in their SLAs. However, due to the diversity in deployment models of

Cloud computing services (e.g. SaaS, PaaS and IaaS) several additional param-

eters need to be considered. Most existing frameworks are either specific to

Web services, are under development, or lack certain important features of the

SLA life cycle [80] like SLA negotiation. Moreover, there is a big difference

between the services provided by Web services and those by the Cloud. Hence,

existing static SLA templates are unable to cope with the diversity of Cloud ap-

plications. In addition to this, it is trivial in the sense that it is only limited to the

cost and performance (QoS) analysis and does not take into account of several

non-functional requirements such as risk, trust, interoperability, reliability, and

green computing [20].

In this work, parameters exclusive to Cloud SLA are identified and defined for-

mally. These parameters are ingrained into the proposed SLA template. Spe-

cially mentioned in this chapter are parameters such as availability, interoper-

ability, reliability, and trust so as to facilitate the Cloud consumer before avail-

ing services provided by a particular Cloud provider.

This chapter intends to propose an SLA template and a formal definition of

parameters that describe the QoS of Cloud computing. Using these formal def-

initions, compliance with minimum service requirement can be checked com-

petently. The template facilitates effective Cloud service monitoring as it incor-

porates issues such as dynamic SLA, multi-level SLA, and automatic synchro-

nisation with the monitoring tool. Further, as documentation is an integral part

of IT and its development the template acts as a document for future reference.

This is an initial attempt in the direction of ongoing research related to defining

a complete template for Cloud SLA and the mathematical interpretation that de-

fines the effective use of SLA in Cloud service monitoring to ensure QoS.

This chapter is organized as follows: the next section specifies the problems in

3.1 Need for SLA in Cloud Computing 30

existing SLA templates that motivate the need for exclusive SLA templates for

Cloud computing. Clear definitions of parameters such as availability, interop-

erability, reliability, and trust with respect to cloud SLA are provided in Secion

3.2. Section ?? details our approach towards the solution of the problems in

existing SLA templates. Section 3.4 includes an analysis on the pros and cons

of CSLAT. Section 3.5 summarises the chapter.

3.1 Need for SLA in Cloud Computing

There are lots of SLA templates for technologies with concepts similar to those

of Cloud computing such as Web services, Grid and Utility computing. Majority

of the templates of related technologies are either specific to those technologies,

are under development, or several features of the SLA life cycle that would be

required for the cloud. Indeed, these SLA templates cannot be adopted in their

original form in the context of Cloud computing. Table 3.1 gives a comparison

of three technologies namely Cloud computing, Grid computing and Web ser-

vices. This comparison shows that there is a big difference between the services

provided by Web services and the Cloud. A Web service is an application that

exposes a function accessible using standard Web technologies and that adheres

to Web services standards. This means, Web service is only a small concept

within one of the service models [81] of Cloud computing known as SaaS. In

a similar manner, differences exist between Grid computing and the Cloud as

well. These differences are mainly related to service models, multi-level SLA,

virtual organisation, task size, scalability and more. Hence, existing SLA tem-

plates are unable to cope with the diversity of Cloud applications. Also, they are

restricted to performing cost and performance (QoS) analysis and do not take

into account several non-functional requirements such as risk, trust, and green

3.2 Our Work 31

computing. All this contributes to the need for a separate SLA template for

Cloud computing.

3.2 Our Work

Owing to differences in their underlying implementation, the SLAs adopted by

technologies similar to Cloud computing cannot be directly used for the same in

their original form. Such adoption would limit the features and parameters that

need to be present in a Cloud SLA. Also, to cater to the change in technology

domain and time, several new features need to be incorporated. For example,

with the wide adoption of Cloud computing trust should be an integral part of

the SLA. This section enlists key parameters to be included in the Cloud SLA

and provides their formal definition with respect to the Cloud. Four specifica-

tions namely availability, interoperability, reliability, and trust related to Cloud

services are being taken up in this work. Further, a template CSLAT is proposed

which incorporates these parameters and attempts to bridge the gap between

existing SLA templates and the requirements. In addition to this concerns that

should be addressed in a Cloud SLA are summarised.

3.2.1 Availability

Availability is a major concerns for organisations that have resources on the

Cloud. Without a high value of availability of resources on the Cloud, the ad-

vantages associated with a Cloud environment are lost. Despite advancements

in technology several outages in recent years have occurred and these point to

the fact that we cannot possibly ignore such lapses. Hence, for proper growth of

Cloud computing as an industry, one of the motives should be to provide maxi-

3.2 Our Work 32

Consideration Cloud Comput-
ing Grid Computing Web Services

Computing
Standalone or
Parallel

Parallel Standalone

Type of Ser-
vice

SaaS, PaaS and
IaaS

Usually infras-
tructure

B2B Service

SLA Yes Limited Yes
Multi-level
SLA

Yes No No

Protocols
TCP/IP, SOAP,
REST

MPI, MPI-CHG,
GIS, GRAM

SOAP, REST

Virtualization Yes Limited No
Virtual Orga-
nization

No Yes No

Interoperability Limited Yes Yes

Different Ser-
vice Models

Yes
Mostly related
to infrastructure
needs

Mostly B2B, end
user is not in-
volved

Resource Han-
dling

Centralized as
well as dis-
tributed

Distributed Centralized

Task Size

Depends on
service models.
Varies from small
to large

Single Large Small

Scalable Full Limited No
Multi-tenancy Yes Yes No

Application
SME and interac-
tive applications

HPC
Limited to B2B
for data retrieval

Standardization No Yes Yes

Software De-
pendency

Independent
Application do-
main dependent
software

Independent

Platform
Service model
dependent

Grid compliant
software is must

Independent

Operating
System

Hypervisor run-
ning multiple
OS

Standard OS Standard OS

Failure Man-
agement

Strong (VMs can
be migrated)

Limited Limited

User Friendli-
ness

High Low
As B2B, so no in-
teraction with end
user

Security Required
Required only
from non-users

Almost secure

Table 3.1: Comparison of cloud computing, grid computing and web-services

3.2 Our Work 33

mum possible availability without compromising on the quality of service.

Availability is the probability that the system under consideration is operating as

required when requested for use. In other words, availability depicts the proba-

bility that a system does not fail or undergo repair action when needed. Based

on this definition, availability can be thought of as a function of reliability. How-

ever, along with reliability, maintainability (ease of maintenance) of the system

should also be taken into consideration to assess availability. This signifies that

we should also consider the downtime of the system for estimation of availabil-

ity. Based on the downtime considered for analysis, availability is classified as

[82]:

• Point Availability: Probability that the system is available at time t.

• Average Availability: Fraction of time during a specified period that the
system is available.

• Steady State Availability: The steady state availability is the limit of the
availability function as time tends to infinity.

• Operational Availability: Similar to availability but also includes the var-
ious downtimes such as administrative downtime, scheduled maintenance
downtime, and logistics downtime.

Of all the variations defined, point availability is appropriate for use in Cloud

computing for real time systems or critical transactions where availability at a

particular point in time is very important. Moreover, using the point availability

function other availability values such as average availability and steady state

availability can also be determined.

In the following portion, we discuss existing approaches to predict availability

of Cloud services followed by our proposed approach.

A popular method to predict availability is availability trace. In this, the ap-

proach is to look for patterns in historical data for predicting the availability of

3.2 Our Work 34

a particular host. Such patterns are observed using visualization software such

as Pajé [83]. Subsequently, clustering algorithms such as k-means are used to

separate hosts with different patterns. For determining similarity between hosts

and centroids two binary vectors are used that measure the fraction of unequal

values in each dimension. Later, a bit vector is used that gives a good and accu-

rate summary of the availability of a large fraction of hosts over time detecting

existing daily and weekly patterns. These patterns are usually repeated over sev-

eral weeks with marginal variations. It is expected, therefore, that the patterns

detected by the bit vector are repeated in the near future.

Another approach used for finding patterns in historical data is the Jaccard Index

based prediction approach [84]. This approach utilises lazy learning algorithms

and searches for the best match in a sequence pattern in historical data in order

to predict the availability of a particular machine in the system.

Such approaches can be applied over environments such as Volunteer comput-

ing and Grid computing as in both cases resources are shared by participating

users voluntarily and hence historical patterns can be identified to predict the

availability of a particular host in future. However, as Cloud computing is a

commercialised aspect where servers are up for deriving profit, predicting avail-

ability in the same manner as that for Grid and Volunteer computing may not

yield correct results.

We propose an approach to predict availability based on available resources and

utilising probability distributions. In our approach, we consider the following

factors:

• n: Number of operating units in system

• η: Number of standby units

• λi: Failure rate of ith unit

• µi: Repair rate of ith unit

3.2 Our Work 35

Availability Server Platform Application CPU Network

IaaS Required Not Required Not Required Required Required
PaaS Required Required Not Required Required Required
SaaS Required Required Required Required Required

Table 3.2: Availability considerations of various components under cloud envi-
ronment

• m(u): Repair probability distribution function

• tr: Mean time in which failed units are replaced by standby unit

If we consider the Cloud as a system, then availability mainly depends on the

availability of its components such as infrastructure (servers), CPU, platform,

application, and network availability. Here, dependency of a specific compo-

nent for predicting the availability of the Cloud will vary for three service mod-

els [Table 3.2]. As these components are connected in series the availability

corresponding to a specific service model [85] is given by Equation (3.1):

As(t) =
n∏
i=1

Ai(t) (3.1)

where, As(t) is the availability of service model, Ai(t) is availability of ith com-

ponent of service model.

Calculation of availability of individual component of Cloud can be done using

Markov model. Initially, states of the component needs to be defined which is

known as state space (S).

S = [s0, s1,, sη] (3.2)

η the number of standby units decides the number of states in S. Once the states

are identified, a state diagram can be drawn using the information on the failure

rate (λi) and repair rate(µi) [86]. Besides this, the failure rate and repair rate

3.2 Our Work 36

are functions of time and will vary according to the failure rate probability dis-

tribution and the repair rate probability distribution function, respectively. The

exponential, Paneto, Weibull probability distribution functions [85] can be used

for this purpose. Here, the assumption made is that probability that a system is

in a given state is only dependent on its immediate proceeding state.

P (st|st−1,, s1) = P (st|st−1) (3.3)

Figure 3.1: State transition diagram

Fig. 3.1 symbolises the state diagram of η nodes (states). Each node repre-

sents one state among many possible states of the system. For example, node s0

represents a successful state when everything is operational without fail and

node sη represents a fail state which signifies the end of Markov’s process.

States from s1 to sη−1 are also considered as successful states with a differ-

ence that in these states a few of the standby units are operational. Failure rate

λi is marked to each branch of the transition path signifying failure, that results

in a change in state. Repair rate (µi) can also be plotted in the same manner

as that of failure rate. These rates are considered as transition probabilities and

hence denoted as

q(x, y) = P (st+1 = x|st = y) for x, y ∈ S (3.4)

These transaction probabilities are combined to form a matrix {q(s, s’)} known

3.2 Our Work 37

Transition s0 s1 s2 sη

s0 -λ1 λ1 0 0
s1 µ1 -(µ1 + λ2) λ2 0
s2 0 µ2 - () 0
...

...
...

...
...

...
sη 0 0 0 -µη

Table 3.3: Transition kernel [q(s, s’)]

as the transition kernel [Table 3.3]. In this matrix the element (si, sj) is the

transition rate from state si to state sj , where si 6= sj . For si = sj the element

is a negative value of the summation of all the other values of the row [85]. To

express distribution of availability among possible states at time t, a vector can

be defined as

π(t) = [Ps0(t), Ps1(t),, Psη(t)] (3.5)

where, Ps0(t) is the probability of the component to be in state s0 at time t. For

example, suppose at time unit 1 system availability is 100%. As state s0 signifies

that system is fully operational without any fail, so probability of system being

in state s0 is 1. This can be represented as

π(1) = [1, 0, 0,, 0] (3.6)

Therefore,

π(2) = π(1) ∗ q (3.7)

Finally, after generalizing the equation (3.7), availability at time unit t can be

specified as

π(t) = π(1) ∗ qt−1 (3.8)

Above equation gives distribution of availability at various states. So the avail-

ability of component can be expressed as a sum of the probabilities of states

3.2 Our Work 38

considered as successful, that is,

Ai(t) =

η−1∑
i=0

P (si(t)) (3.9)

3.2.2 Interoperability

In Cloud computing, two or more heterogeneous Clouds having differences in

implementation or configuration are said to be interoperable if they interact in

a manner so that workload migration can be achieved in a seamless manner as

if they are parts of the same system. Interoperability has different meanings in

different service models. For IaaS [Fig. 3.2] it corresponds to migration of

workload by administering the diversity in the virtualization platform, storage

model and network model. While PaaS interoperability manages heterogeneity

in middleware services, database management, capacity provisioning, applica-

tion development platform, user authentication, and other functionalities. For

example, a user with an application deployed on a Google apps engine seeks

the execution of some code specific to IIS on Windows Azure. Finally, Inter-

operability in SaaS seems less beneficial in comparison to IaaS and PaaS. For

example, inclusion of Wiki maps in Google docs can be achieved using an API

or Web Service, so there rarely arises a need for interoperability in SaaS. An-

other reason for the need for interoperability in Cloud computing is that Cloud

consumers can take advantage of seamless switching between private and public

Clouds as and when needed depending on the business requirement. This may

be due to a need to expand or shrink the resources capacity or for cost effective-

ness. Interoperability will also facilitate putting certain resources on one Cloud

and the rest on another. Again, portability can be achieved once the standards

for interoperability get defined. Besides this, interoperability will lead to use

of the same server images, management tools, and other software from various

3.2 Our Work 39

Figure 3.2: Interoperability in IaaS

Cloud computing providers.

NIST has defined use cases for Cloud computing as a part of their efforts related

to standards for data portability, Cloud interoperability, security, and manage-

ment [87]. Out of these, Cloud interoperability use cases are defined as follows:

• Copy data objects between Cloud-providers: This use case consists of a
Cloud consumer, Cloud provider x and Cloud provider y as actors. As
a precondition the Cloud consumer is supposed to have registered with
both Cloud providers. After successful completion of the authentication
process, the Cloud consumer can copy data objects to the directory at
Cloud provider y using the interface provided by Cloud provider x.

• Dynamic operation dispatch to IaaS Clouds: This use case emphases on
execution of workload dynamically to any Cloud provider among n Cloud
providers. Selection of a specific Cloud provider is done on the basis of
results obtained after running the test workload on each Cloud provider.

• Cloud burst from data center to Cloud: This use case is responsible to

3.2 Our Work 40

expand or shrink the resources dynamically based on the requirements of
Cloud consumers. This is achieved through hiring and releasing resources
from the Cloud by a Cloud management broker which is responsible to
monitor the occurrence of threshold either at the upper limit or the lower
limit.

• Migrate a queuing-based application: Numerous queues are required at
run-time for an application to be operational. This use case facilitates
migration of these queues from one provider to another. A Cloud man-
agement broker facilitates this migration.

• Migrate (fully-stopped) VMs from one Cloud provider to another: A
Cloud management broker prepares a configuration list based on the con-
figuration at that instance and transfers it to Cloud provider say x. Cloud
provider x will translate the list as per the resources available.

With reference to the above mentioned use cases, we aim to define a few

parameters and an approach to measure interoperability of a Cloud service. It

may be noted that the standards for interoperability have been identified by the

Distributed Management Task Force (DMTF) [88], National Institute of Stan-

dards and Technology (NIST) [87], IEEE [89]. The foundation work as laid

down by the above references proves to be a template for the exact interpreta-

tion of interoperability in Cloud computing. Also, the framework for Enterprise

Interoperability [90] proposed by the ”European Committee for Standardiza-

tion(CEN)", is taken as a reference. In this work, an attempt is made to measure

Cloud computing interoperability from a maturity point of view. The approach

is based on defining the maturity levels of a system, which can be considered

as a milestone having different degrees of interoperability. The maturity model

will help Cloud providers understand the present level of Cloud interoperability

and hence to set the priorities in order to improve upon the same. It also con-

forms to ’Standard for Intercloud Interoperability and Federation’ (SIIF) [89],

which is currently under the standardization process.

In order to quantify interoperability, first a Maturity Model for Cloud Interop-

3.2 Our Work 41

erability (MMCI) is proposed. Next, the levels corresponding to these maturity

models are defined, and finally values corresponding to levels are quantified.

Interoperability quantification will be different for different service models of

the Cloud. As IaaS is the service model that will be benefited most with stan-

dardisation in interoperability, efforts made in this section are for IaaS only.

However, a similar approach can be applied to other service models [22] with

slight modifications.

i) Defining the maturity model: A Maturity model is a framework used to
benchmark the stages of a system evolution. The maturity model for cloud
interoperability (MMCI) consists of 3 dimensions defined as follows.

• Interoperability concerns: In this dimension different concerns of Cloud
such as service, process, data, and business are addressed.

• Interoperability barriers: Through this dimension, barriers to achieve
interoperability are pointed out. These barriers fall under three cate-
gories as technical, organisational, and conceptual.

• Interoperability levels: This represents various maturity levels of com-
petence to address interoperability barriers corresponding to a con-
cern. Different maturity levels will deliver different degrees of com-
petence to the consumer with respect to system or process.

Interoperability concerns and barriers correspond to the problem space of
the maturity model, while interoperability level corresponds to the solution
space. MMCI defines levels of maturity for Cloud interoperability [Table
3.4] and can be assumed as a three dimensional matrix M(c, b, l), where
dimension c corresponds to concern, b for barrier and l for level in interop-
erability.

Levels defined in Table 3.4 give maturity in interoperability of a Cloud with
Level 0 being not interoperable to Level 5 being fully interoperable. Level
1 assures that the modelling part to achieve interoperability is done. While
Level 2 confirms the readiness of infrastructure to adapt to interoperability.
Levels 3 to 5 provide different degrees of interoperability, where Level 3
delivers partial interoperability within the alliance of a few companies in
which only some of the services of IaaS are interoperable. Level 4 promises
full interoperability in alliance with a few companies, and Level 5 denotes
full interoperability with any heterogeneous Cloud.

3.2 Our Work 42

Maturity Level Description
Level 5 : Complete interoper-
ability

complies to international standards

Level 4 : Alliance bound full
interoperability

Full featured interoperable in alliance

Level 3 : Alliance bound par-
tially interoperable

Few services interoperable only in al-
liance

Level 2 : Ready
Exhibits preparedness of infrastructure
to interoperate

Level 1 : Defined Model for interoperability is prepared

Level 0 : Non interoperable
Isolated infrastructure, not able to in-
teroperate

Table 3.4: Maturity levels of cloud interoperability

ii) Associate interoperability barriers with interoperability concerns: By defin-
ing maturity levels, the dimension corresponding to the interoperability ap-
proach is outlined. In this step, these maturity levels will be associated
with the other two dimensions [Table 3.5]. The two dimensional view [Ta-
ble 3.5], represents the interoperability concern (c) to be followed in order
to overcome the interoperability barrier (b) existing on the other dimension.
Further, this two dimensional view is for a particular maturity level (l) and
hence completing the three dimensional framework.

Here, standards are defined corresponding to each dimension of the matrix
and will signify the threshold that needs to be followed in order to achieve
that interoperability level. For example, it may be stated that to maintain a
maturity level 5 for the interoperability barrier ’Technical’ under the con-
cern ’Service’, the Cloud provider should support n number of virtualiza-
tion platforms and should be compatible to d number of data formats.

iii) Quantify values for maturity level framework: Evaluation of the Cloud
provider is done based on the services provided by the Cloud provider
when the consumer avails the interoperability. Let Rcb represent the rat-
ings obtained after the evaluation of the cth concern and the bth barrier.
This rating can be calculated by following the rating scale of LISI (Levels
of Information System Interoperability) [91]. Finally, to check whether the
xth maturity level is achieved by the provider or not, a mean of different

3.2 Our Work 43

XXXXXXXXXXXXConcern
Barrier

Technical Conceptual Organizational

Service

Infrastructure
following in-
ternational
standards

Fully adaptive
service modeling

Interoperable
with any Provider

Process

Platform in-
dependent,
adaptable tools
for process
engineering

On demand ser-
vice modeling

Real time mon-
itoring of pro-
cesses

Data
Data exchange
using XML,
SOAP

Robust data
model

Standard and
adaptive data
management
rules

Business
Fully automated
and aligned with
IT

Business model
to interoperate
with any Cloud

Maximum
support for
automation

Table 3.5: Two dimensional view of solution space

ratings obtained is taken, which leads to equation (3.10).

Lx =
1

n ∗m

n,m∑
c,b=1

Rcb (3.10)

where, m is the number of interoperability barriers to evaluate, n counts
the number of interoperability concerns. Lx is said to have achieved the
maturity level x ifLx ≥B, and B is the benchmark or standard value already
decided. For example Lx ≥ 0.6 to achieve maturity level x.

3.2.3 Reliability

In general, reliability can be defined as the probability that the system under

consideration will behave in an expected manner, for a specified time duration

or at a particular instance, when used under the stated operating conditions.

Reliability, in Cloud computing is one of the primary concerns addressed by

3.2 Our Work 44

almost every provider’s SLA. However, Cloud providers have different perspec-

tives for its definition (in terms of uptime, availability, or resilience), distinct

ways to measure (servers, networks, and virtual platforms), considering dis-

parate time intervals and providing widely varying guarantee terms (resolution

time, response time) [87]. This ambiguity leaves customers at risk and so the

reliability definition should be made very specifically [92].

In this section, we propose an approach to identify different parameters in order

Figure 3.3: Cloud computing management system

to estimate the reliability of a Cloud service. A service-oriented architecture of

a Cloud computing system is shown in Fig. 3.3, which is also a typical repre-

sentation of most present Cloud service systems. There is a Cloud Management

System (CMS) that is composed of a set of servers (either centralized or dis-

tributed). When a user requests a certain given Cloud service, the request is

queued into a request queue. The CMS scheduler then spool a request from the

queue and schedule the service to a server based on the availability information

from the "Resource Manager". First we analyze the different type of failure fol-

lowed by our approach to predict reliability.

Failures in Cloud computing systems: There are a variety of types of failures

3.2 Our Work 45

that may affect the success/reliability of a Cloud service, including overflow,

timeout, data resource missing, computing resource missing, software failure,

database failure, hardware failure, and network failure. In the following, we

state all these failures in brief.

Overflow: The request queue should have a limitation on the maximal number

of requests waiting in the queue. Otherwise, new requests have to wait for too

long a time in the queue, which could make the timeout failures much more

dominant. Therefore, if the queue is full when a new job request arrives, it is

simply dropped and the used is unable to get service, which is called an overflow

failure.

Timeout: The Cloud service usually has its due time set by the user or the service

protocol. If the waiting time of the request in the queue is over the due time, the

timeout failure occurs. As a result, those timeout requests will be dropped from

the queue so that other following requests should not be affected.

Software failure: The subtasks are actually software programs running on dif-

ferent computing resources, which contain software faults.

Database failure: The database that stores the required data resources may also

fail, causing that the subtasks when running cannot access the required data.

Hardware failure: The computing resources and data resources in general have

hardware (e.g. servers) which may also fail.

Network failure: When subtasks access remote data, the communication chan-

nels may be broken either physically or logically, which causes the network

failure, especially for those long time transmissions of large datasets.

All the above mentioned failures can be classified into two groups as follows:

i) Request stage failures: Overflow and timeout failures.

3.2 Our Work 46

ii) Execution stage failures: Software failure, database failure, hardware fail-
ure, and network failure.

The failures in Group (i) may occur before the job request is successfully

assigned to computing/data resources; on the other hand, the failures in Group

(ii) may occur after the job request has been successfully assigned and during

the execution of subtasks. The modeling of Cloud service reliability can be sep-

arated in two parts: modeling the reliability at the request stage and modeling

the reliability at the execution stage.

Request stage reliability:We consider the following parameters.

Capacity of the request queue (N): It is the maximal number of requests that the

request queue can hold. Also, we assume that the arrival of submissions of job

requests follow a Poisson process with the arrival rate λ, that is, P(x:λ) = λx.eλ

x
.

We define this probability P(x:λ) as λa for brevity.

Due time for a service (Td): It is the allowed time spent from the submission of

a job request to the completion of the job.

Mean service time (µ): There are multiple scheduled servers to serve the re-

quests. We consider that all these scheduled servers are homogeneous with

similar structures, schemes and equipments. Let us consider that total S ho-

mogeneous scheduled servers are running simultaneously to serve the requests.

The service time to complete one request by each scheduled server is assumed

to follow probability distribution function which can be decided analyzing the

past data of the service. With the above mentioned consideration, we model the

request queue as the Markov process, and a schematic of the Markov modeling

of the request queue is shown in Fig. 3.4. In Fig. 3.4, state n (n = 0, 1,, N)

represents the number of requests in the queue. Note that, the transition proba-

bility from state n to state to state n+1 is λa for (n = 0, 1,, N-1). However, at

state N, the arrival of a new request will make the request queue overflow, so the

3.2 Our Work 47

request is dropped and the queue still stays at state N. Now, with the probability

µr that a service will be completed by a schedule server within the due time Td,

there is a state change, which is proportional to the number of services currently

run by the service schedulers. In other words, if n≤S, then n requests can be

immediately served by the S schedule servers, so the departure rate of any one

request is equal to nµr. If n>S, only S requests are being simultaneously served

by schedule servers, so the departure rate is Sµr. Let, qn denotes the steady-state

Figure 3.4: Markov model for the request queue in CMS

probability of the system at any state n (n = 0, 1,, N). In order to calculate

the values of qn, we have to solve the following equalities:

For n = 0 or 1: λaq0 = µrq1 (3.11)

For n = 1 to S-1: λaqi−1 + (i+ 1)µrqi+1 = λaqi + i.µrqi (3.12)

For n = S to N-1: λaqi−1 + Sµrqi+1 = λaqi + Sµrqi (3.13)

For i = N: λaqN−1 = SµrqN (3.14)

Since, the system will be at any one state, at any instant, we have

N∑
i=0

qi = 1 (3.15)

3.2 Our Work 48

We can solve these equations to determine the values of qi (i = 0, 1,, N)

Probability that overflow failure will not occur is

N−1∑
i=0

qi (3.16)

Now, considering the service time of a schedule server follows the Probability

Distribution function say P(t), we have the probability that a job in a state will

be serviced within a due time is

Pr(t ≤ Td) =

∫ Td

0

P (t) dt (3.17)

Therefore, probability of non occurrence of timeout or overflow is

RStage1 =
N−1∑
i=0

qi ∗
∫ Td

0

P (t) dt (3.18)

This RStage1 denotes the reliability at the request stage.

Execution stage reliability: The execution stage failure occurs because any of

the elements, that is, hardware, software, database, software, communication

link may encounter faults. Thus, every element has its own failure rate. We may

note that in the operational phase of software, there will be no modifications

made on the software source code, thus the software failure rate is a constant

[93]. For hardware having electronic parts, a constant failure rate is normally

observed in the operational phase as well. If λi denotes the failure rate of any

ith element, then the reliability of the element, if it runs for a τi time is given by

[85].

Ri = e−λi·τi (3.19)

In order to calculate the execution time of the different type of elements em-

3.2 Our Work 49

ployed in the Cloud service, we consider the characteristics for each, as men-

tioned in Table 3.6. Given the above specifications, we can calculate the exe-

Element Parameter

Hardware
Processing speed: πi (in Million instructions per
second)

Software Workload: ωj (Number of instructions)

Data resource
Amount of data download/upload: αk (in Mega
bytes)

Communication Bandwidth: βm (in bits per second)

Table 3.6: Characterization of different elements involved in a cloud service

cution time in each as mentioned in Table 3.7 Knowing the failure probabilities

Element Execution time
Software τi(software) = Software workload

Processing speed = ωi
πj

(when ith software is running on jth hardware)
Communication τi(communication) = Amount of data

bandwidth = αj
βi

(when mth communication link is transmitting on ith

data resource)
Hardware τi(hardware) =

∑
j

τj(software)+
∑
k

τk(communication)

(running jth software and kth communication link)
Data resource τi =

∑
j

τj(communication)

(working time of data resource includes total commu-
nication time the resource is utilized)

Table 3.7: Calculation of time component in different element

for each component in a service, we can calculate the execution stage reliability

as shown in the equation given below.

RStage2 =
∏
∀i

e−λiτi (3.20)

Finally, if a Cloud service needs to be successfully completed, both request stage

and execution stage should be reliable. After we derive the reliability for both

3.2 Our Work 50

stages, we can hereby combine the reliability of two stages to get the reliability

of the service as

RService = RStage1 ·RStage2 (3.21)

3.2.4 Trust

For strategic IT decisions, firms increasingly believe in outsourcing, and many

forms of outsourcing require serious management efforts for ensuring success.

Two forms of inter-organizational governance, formal control and relational

have been used to examine the management of IT outsourcing relationships [94].

Studies have proven that these two modes are complementary and formal con-

trol mechanism can influence the relational governance in a Cloud environment.

Here, SLA acts as a proxy for formal control. Trust and commitment in turn

positively influence relational outcomes that would contribute to outsourcing

success [95].

In other words, SLAs provide an administrative architecture and relational gov-

ernance addresses how the information exchange between Cloud provider and

Cloud consumer promotes shared understanding of task environments.

This work attempts to precisely define trust in the context of Cloud services. As

trust is fuzzy and dynamic in nature, so it can be apparently quantified using

fuzzy logic. This is because using fuzzy theory, uncertainty and imprecision

can be handled comprehensively. Efforts are made to quantify trust using fuzzy

comprehensive evaluation, which are explained as follows.

We propose a Fuzzy logic approach to realize the trust, and the steps to calculate

the trust are as follows.

i) Define Fuzzy factor set (F) and Quality factor set (Q): Different factors that
will contribute towards the quantification of trust on Cloud provider can be

3.2 Our Work 51

grouped to form a set. Considering fuzzy factor set F = {u1, u2, u3,, um}.
Here, uj represents jth factor which can be used to quantify trust on Cloud
provider. In terms of Cloud these factor can be performance cost trade-off,
conflict resolution, billing, adaption to newer technology, past experience
and market reputation. To assess the quality achieved in uj set can be de-
fined as Quality factor set(Q) = {poor, fair, good, excellent}, which corre-
sponds to the interval of [[0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1)]. Also,
in general set Q can be considered as {q1, q2, q3, ..., qn}.

ii) Establish comprehensive evaluation matrix M: For each uj , fij represents
degree of membership of uj to qi (i=0, 1, 2,, n). The result obtained will
corresponds to judgment for single fuzzy factor fi = (fi1, fi2, fi3,, fin)
The set of judgment of all fuzzy factors will create a judgment matrix M as

M =


f11 f12f1n
f21 f22f2n
. . .
fm1 fm2fmn


fij denotes subjection of ith Cloud provider to jth grade.

iii) Determine weight set

Different fuzzy factor will have different contribution to calculate trust on
Cloud provider. This will also depend on the benchmark decided by Cloud
consumer. Thus, weight set of fuzzy factors can be given as, WF = (w1, w2,
w3, wm).

iv) Establish comprehensive evaluation matrix (B)

B = WF∗M =
(
w1 w2wm

)

f11 f12 f1n
f21 f22 f2n
...

...
...

fm1 fm2 fmn

 =
(
b1 b2bn

)

v) Calculation of trust

According to maximum subjection principle [96] interval [c, d] can be
formed which correspond to Max(b1, b2,......, bn)

T = c + (d - c) * bj

3.3 CSLAT: A Template for Cloud SLA 52

Next, for realization of trust value calculated, terminologies such as ’Credit’

and ’Reputation’ are defined. Credit and reputation are the dynamic expression

of trust [97].

• Credit (C): Evaluation result of Cloud consumer on Cloud provider based
on some behavior information after intercommunication between them.

• Reputation (R): Trust degree of a Cloud consumer on a Cloud provider
based on credit values of several factors.

Following equation will result in values of credit and reputation

C = S ∗ T (3.22)

R =
n∑
i=1

(Wi × Ci) where
n∑
i=1

Wi = 1 (3.23)

Here, T indicates Trust value, S signifies Satisfaction degree of Cloud consumer

on Cloud provider in intercommunication considering S ∈ [0,1], n denotes num-

ber of Cloud consumers, Ci being Credit value of ith time and Wi gives weight

of Ci for computing reputation. The value of C will be calculated at regular

intervals, and based on this the Reputation of Cloud provider will change. Also,

the weight of Credit will vary based on the time, when the value get calculated.

3.3 CSLAT: A Template for Cloud SLA

An SLA template, we term it as CSLAT has been proposed as shown in Fig.

3.5. This template has provision to include all the parameters which are defined

and quantified in section 4. In the following, we briefly state the different com-

ponents in CSLAT. Definition of parameters will be included in Purpose section

and the quantification can be used to define service level objectives.

3.3 CSLAT: A Template for Cloud SLA 53

Figure 3.5: Proposed cloud SLA template (CSLAT)

• Purpose: It gives the definition of the services being provided. This level
details Cloud services to which SLA will be applicable. It contains type
of service, operations involved to provide the service, signature of opera-
tions, various SLA parameters that will be monitored, schedule of moni-
toring and the way services will be accessed by the consumer. For exam-
ple, basic definition of reliability (different factors to have an assessment
of reliability), and how parameters will be retrieved (API or direct access)
etc. This part significantly distinguish CSLAT from other SLA template.

• Stakeholders: This level describes the stakeholders involved in manage-
ment of Cloud services. This involves signatory stakeholders as well as
the supporting stakeholders that are brought into the SLA to act on behalf
of service provider or customer but cannot be held liable on the grounds
of this SLA. These supporting stakeholders can be used for measurement
service, condition evaluation service or management service. For exam-
ple, third party organization appointed for monitoring the compliance.
Also, one role can be assigned to multiple supporting parties.

• Scope: It provides the description of the domains in which SLA is valid.
For example, in SaaS environment, the scope of SLA may only be limited
to upgrades of non-system software.

• Service level objectives: It guarantees service level with respect to the
SLA parameters defined in the section Purpose. Starting with definition
of liability group, evaluation methodology, and definition of violation of
various parameters it proceeds with action that can be taken, post action
measures, reconciliation mechanism in case of conflict and numerous re-
port types for peculiar purpose.

3.3 CSLAT: A Template for Cloud SLA 54

◦ Service Level Indicator: It is a metric that tracks SLA parameters
defined in Purpose section. Actions such as definition of value to be
calculated, selection of calculation type, time period, threshold and
degree to which user can penetrate to get more information, can be
performed. For example, detailed definition of reliability specifying
how it should be speculated, calculated as probability on daily basis
or as and when needed having a range of 0-1 with threshold of 0.98.
Also, the extent of penetration in case of IaaS will be limited to
infrastructure without any consideration for software reliability.

◦ Measurement: Here, various metrics from which SLA parameter
will be measured is given. Also, clear definition about how SLA
parameters are measured using these metrics is provided. For each
metric, in turn, it is described either how it is measured (by prob-
ing or intercepting client invocations), or how it is aggregated from
other low level metrics (by applying mean, median etc. on low level
metrics). All or a subset of SLA parameters can be measured from
inside or outside the service provider’s domain.

◦ Violation: Values obtained from measurement level are forwarded
to some stakeholder who can be a third party as well, for condition
evaluation. Comparison of these values is done against values com-
mitted in SLA. It also contains the details as to whom and how signal
is to be propagated in case of violation [98]. For example, measure-
ment observed of reliability less than 0.98 will lead to violation of
SLA.

◦ Action and Reconciliation: It contains the actions to be taken on re-
ceipt of a notification that a term of SLA has been violated. This
action may vary depending on the type of system providing the ser-
vice. Process of reconciliation is also specified in case of conflict
between provider and consumer’s statistics.

• States: This level consists of possible states of service level agreement.
For example, active state corresponds that SLA is operational while ter-
minated SLA signifies that SLA is not applicable either due to completion
of duration or because of some other reason.

• Exclusion: This defines the domains not covered under the SLA. For
example, there may be condition in SLA where scheduled maintenance is
excluded from the measurements and will not be considered for penalty.

• Administration: This category defines the service level objectives met
through resource broker.

3.3 CSLAT: A Template for Cloud SLA 55

CSLAT implementation

This SLA template can be cast in Java classes after identifying their state, iden-

tity, and behavior [Fig. 3.6]. Interaction between these levels can be incorpo-

rated in methods. This adaptation will have the advantage that it provides lan-

guage independence and interoperability. Java Architecture for XML Binding

(JAXB) can be used to convert Java objects to/from XML files. Such conver-

sion is known as Marshalling and Demarshalling [Fig. 3.6]. More precisely,

Figure 3.6: Conversion of Java class to XML

the issue of ’automatic synchronization of SLA’ is taken care of by the use of

XML and triggers. As XML is text based and is platform neutral language, SLA

parameter values specified in XML can be automatically read by the Cloud mon-

itoring tool [99]. Triggers can also be used to handle synchronization.

Multi-level SLA environments can also be addressed with the use of XML with

some extra effort, where the compliance checking mechanism with Cloud ser-

vice providers down the hierarchy is required. For example, if provider A is hir-

ing services from provider B then A will have a compliance checking mechanism

with B on whether B is able to provide the services promised to the consumer. In

this compliance checking mechanism appropriate relationships of various SLA

parameters can be identified.

3.4 CSLAT utilization 56

3.4 CSLAT utilization

We present a template for Cloud SLA which imbibes all the essential features

of the Cloud. Additionally, certain key SLA parameters are also included in

detail in it. This detailing includes the metrics to be considered for evaluating

SLA parameters. Further definition is also provided of how a metric value is

computed or composed of using other low level metrics (mj , j=1, 2, ...n) [Fig.

3.7]. For this computation, a function (f(x)) is defined for a metric(y) that can use

other metrics as operands (xi). For example reliability of a service is computed

Figure 3.7: Mapping of low level metrics to SLA parameter

from metrics such as reliability of network, infrastructure, and software. These

metrics are further computed from other low level metrics. Definition of these

parameters and CSLAT can be cumulatively used to monitor Cloud services and

hence to measure QoS parameters [Fig. 3.8]. At a broad level, monitoring

and QoS evaluation using CSLAT is composed of two blocks, assessment block

and evaluation block. The assessment block is composed of Cloud management

and Cloud measurement services. While the evaluation block is responsible for

checking the compliance, reconciliation, and report generation. The process

3.4 CSLAT utilization 57

Figure 3.8: Monitoring with proposed CSLAT

adopted using these blocks is as follows:

• SLA structure and Library Definition: After taking the SLA document as
input the assessment block processes it in the SLA structure and library
definition section. Here the integrity and correctness of the SLA docu-
ment is verified. As XML is at the base of CSLAT, this step creates a tree
structure of tags and values.

• SLA parser: The SLA parser parses the SLA and generates the token.
These tokens can be used for various purpose such as finding performance
parameters and their values to comply, procedure for reconciliation.

• Metric derivation: Generated tokens are processed in metric derivation
block and performance metrics are identified out of tokens. Different re-
source metrics are identified, along with the relation on how these re-
source metrics are computed to have business metrics.

• Metric macro expansion: A Metric macro definition is a definition of a set
of substantially related metrics such that this definition can be reused mul-
tiple times for different resource metrics. This definition is made to avoid

3.5 Summary 58

defining the whole measurement structure multiple times. In this step,
macro definitions are identified and expanded as per specification given
in the SLA structure. These identified tokens are passed as a collection of
metrics to the metric macro execution section of the Cloud measurement
service block. Related metrics are categorized here to form a group so
that they are treated in similar way.

• Metric measurement: Once the correlation between the resource metric
and the business metric is determined, the monitoring tool can start mea-
suring the values of metrics corresponding to different services.

• Evaluate QoS: Values obtained corresponding to different metrics during
the measurement step can be used to calculate QoS as per the conversion
rules defined in section 4 for different parameters.

• Conformance index Extraction: The evaluation block receives the results
of QoS evaluation in the form of a tree data structure. This section extracts
the threshold values of the QoS parameters.

• Conformance/Violation Check: Compliance is checked at regular inter-
val on the basis of the conformance index extracted. Based on the result
of comparison appropriate action is taken. The process of reconciliation
starts in the case of conflict between the opinion of the provider and con-
sumer on certain SLA terms. The report generation section takes the data
and generates different reports needed. Based on the values of differ-
ent performance parameters, the trust risk evaluation block periodically
calculates the values of trust, risk, and green assessment parameters cor-
responding to a Cloud provider.

3.5 Summary

Quality of Service (QoS) is an important concern in Cloud computing based ser-

vice provisioning. Service Level Agreement (SLA) has been adjudged as a very

important artifact to ensure QoS of Cloud services. However, the existing SLA

templates are not good enough to manage several issues related to QoS. This

work attempts to bridge this gap and proposes an SLA template that we call CS-

LAT. The proposed CSLAT includes several parameters related to availability,

3.5 Summary 59

interoperability, reliability, and trust that are treated as the keys to ensure QoS.

How these metrics are calculated given a Cloud service between customers and

providers is also enunciated in detail in this work. Further, an implementation

approach for the SLA template has been proposed that has facilities to overcome

the lacunae of a heterogeneous environment. In addition this, a framework for

a Cloud service monitoring tool based on CSLAT is also provided. The CSLAT

based monitoring tool extracts different parameter values from CSLAT and uses

these as input to the Cloud service monitoring activities. It also updates the pa-

rameter values from time to time, thus making CSLAT a dynamic SLA. There

is ongoing research focused at developing a Cloud monitoring tool based on

CSLAT.

Chapter 4

Cloud Brokering Architecture

This chapter presents the architecture and scheduling algorithms for a cloud ser-

vice broker to effectively minimise the cost for a cloud consumer by provision-

ing dynamic assignment and providing the freedom to enlarge market share by

accepting more user requests whilst minimising the SLA violations for existing

customers. Subsequently, an extensive evaluation study is conducted to anal-

yse which algorithm best suits a scenario to achieve the SaaS (Software-as-a-

Service) providers’ objectives. Simulation results demonstrate that our proposed

algorithms provide substantial improvement (up to 40% cost savings) over ref-

erence ones across all ranges of variation in QoS parameters. Organisations

expect to control their public and private cloud services with the same compe-

tence as they control in-house systems and software. Today, as cloud computing

is an indistinguishable part of enterprise IT, it requires emphasis on the right

approach to plan, choose, deploy, administer and optimise the performance of

cloud services. Also, the consumer is perplexed by the increasing assortment of

specialised cloud services provided by different public cloud providers. To add

further, increasing competition demands organisations to maintain multiple ser-

vices from multiple providers and, as a result, different interfacing, accounting,

security, Service Level Agreement (SLA), licensing and support requirements.

The complexity to manage all this can be overwhelming for IT departments.

These complexities lead to the emergence of cloud-service brokerages (CSBs),

which act as intermediaries, helping add value for users by providing interme-

diation, aggregation and arbitrage [100].

61

Th cloud itself is said to have infinite computing capabilities [9], and there-

fore the existence of cloud brokerage can be questioned. Brokers emphasise

upon discovery, negotiation, arbitrage, and composition of cloud services fur-

nished by different cloud providers, primarily to mitigate the complications in

handling multiple cloud offerings from various providers. The providers, on

the other hand, insist upon the core functionality provided by them and for pro-

viding additional features they adopts cloud bursting and cloud interoperability.

Figure 4.1 illustrates the three possible broker deployments [100]. Intermedi-

ation broker facilitates a cloud consumer by augmenting additional features to

an existing service provided by a cloud service provider (CSP). An aggregation

broker furnishes a common platform that abstracts multiple services provided

by different cloud providers. In this case allocation is static and therefore the

cost remains fixed through the service period. The third deployment, the cloud

arbitrage broker is similar to the aggregation broker with a variation that service

allocation is dynamic. Dynamic allocation follows an opportunistic approach,

in which the scheduler is triggered to reschedule the allocation at the appropriate

opportunity. Here, the cost is fluctuating as rescheduling may lead to allocation

of a new provider(s) with different rates.

Figure 4.1: Cloud service broker

In today’s scenario most existing brokers provide an environment to bring

leading public as well as private cloud providers onto a common platform. For

62

example, RightScale [26] facilitates a consumer to bring the computer, network,

and storage services of public clouds (e.g. Amazon Web Service, Google, HP

cloud etc.) as well as private clouds (e.g. OpenStack, CloudStack and VmWare

vSphere) into a portfolio of cloud services. In this way, a cloud service broker

furnishes an extensive set of management capabilities that cover all facets of

cloud usage across multiple clouds, with many more features and offerings than

provided by specific public or private cloud providers. Besides handling man-

agement in the processes or otherwise, the foremost priority is to address the

challenge of selecting an appropriate cloud provider. This is because the diverse

cloud market has innumerable cloud providers that provide services with similar

functionalities and this leaves a cloud consumer in a perplexed state.

Another factor that justifies cloud service brokerage as a promising research

direction is the notion that organisations are increasingly adopting a hybrid strat-

egy for cloud computing to realise its benefits without compromising on control.

The integration required by these hybrid models at the process, infrastructure,

and network levels can be addressed comprehensively by cloud service brokers

[21].

The key contributions of this chapter are:

• Introduction of an architecture for cloud broker that facilitates a cloud
consumer in selecting an appropriate service provider based on the func-
tional domain and non-functional requirements of the desired cloud ser-
vice.

• The architecture’s focus on the dynamic mapping of cloud consumer’s
requirements with a provider’s resources enables the cloud consumer to
derive the maximum benefits from the diverse cloud market and newly
introduced services.

• Taking into consideration the cloud provider’s past performance further
improves the quality of selection of the cloud provider. Also, it incen-
tivises the cloud provider to provide the best services so as to strongly
contend in successive assignments.

4.1 Broker Architecture 63

• To provide one more level of customisation in the description of required
cloud services we associate weight attribute to each non-functional re-
quirement. This way the cloud consumer is able to assign priorities the
non-functional requirements.

• Provisioning a migratability index helps cloud consumers assign a com-
patibility factor to cloud providers while migrating from one cloud to an-
other cloud. This becomes crucial during reassignments.

4.1 Broker Architecture

Figure 4.2: Cloud broker architecture

This architecture aims at relieving the cloud consumer from hassles such as

selection of appropriate cloud providers, standards and abstractions, automation

and orchestration, governance and policies, and cost management.

This work presents a cloud broker architecture (Figure 4.2) consisting of a

service definition document, aggregator, scheduler, CSP manager, quantifier,

and profile manager.

Every consumer participating at time t demands virtual resources to CSB

through a service definition document. The service definition document com-

prises the virtual infrastructure requirements (e.g. Intel Xeon Processors 2.5

4.1 Broker Architecture 64

GHz), optimisation principle (e.g. total infrastructure cost), constraints (e.g.

types of Virtual Machine(VM)), migratability index, and quality parameters

with their weight attributes. Migratability index is a measure in fractions that

gives the number of cloud service providers among all available to which work-

load can be migrated to in a manner seamless to the extent that they seem to be

part of the same system. The weight attributes enable users to express their pri-

orities for quality (non-functional) attributes (e.g. reliability, availability). More

details on these aspects are included in section 4.2.

Figure 4.3: Cloud service aggregation

While requesting virtual resources different consumers have different re-

quirements. Amongst these differences in requirements, there are quite a few

consumers whose requirements are common and these can be bundled to obtain

resources a in composed form. The aggregator module is introduced to provide

this bundling of resources. Aggregation of resources helps in further negoti-

ations with the provider. Moreover, it reduces the overhead as the number of

providers to be managed becomes smaller. Figure 4.3 illustrates the function-

ing of an aggregator. As input, it accepts the service definition document from

various consumers. Next, it converts the consumers′ configuration to an inter-

mediate configuration and aggregates similar looking configurations. Finally,

the intermediate configuration is mapped to various providers′ terminology. Al-

gorithm 1 presents the algorithm for aggregation of resources.

4.1 Broker Architecture 65

Algorithm 1: AGGREGATION gives the cloud resources in aggregated
form

Input: Finite sets C,R, P and S of integers
Output: ra[][] as Resources in aggregated form mapped to providers

1 for every consumer cεC do
2 for every resource set(requested by consumer) rεR do
3 type← check_category(r)
4 Based on type decide a pool pj ε P to merge the resource
5 Aggr_Req[pj]← Aggr_Req[pj] + 1

6 for every provider sεS do
7 for every pool pεP do
8 m← mapping(s, p)
9 ra[p][m]=Aggr_Req[p]

10 return ra[][]

Let C, R, P, and S be the list of consumers, type of resource configuration

requested by consumers, intermediate pool specific to each resource type, and

list of providers’ respectively. check_category() function checks the category

(intermediate resource configuration) in which the required configuration falls

and then aggregated to the pool corresponding to the identified category. All ag-

gregated pools of different resource configurations, are passed as an argument

to the mapping() function which returns the corresponding terminology specific

to the service provider. This way, the algorithm returns the two dimensional ar-

ray having the configuration corresponding to the combination of providers and

resource pool. This array provides the configurations available with different

service providers corresponding to requests made by various consumers. The

aggregated resource information is passed to the scheduler for the allocation of

specific providers based on the scheduling criteria.

The cloud broker allocates a provider to a consumer in a dynamic manner.

This implies that the scheduler assigns an appropriate provider to a consumer

based on computing needs, constraints, and other requirements articulated by

4.1 Broker Architecture 66

the consumer. This decision is also based on the provider’s information ob-

tained through the profile manager. However, at a later point in time, the broker

may again include the consumer to contend for reassignment pertaining to some

trigger condition communicated by the provider profile manager. The trigger

condition could be the introduction of a new provider in the domain of the con-

sumer, or the addition of new services by existing provider(s). The scheduling

algorithm, therefore, runs repeatedly in order to derive maximum benefits from

the diverse cloud market, variations in offerings, and to cope up with the chang-

ing requirements of the consumer.

The CSP manager accepts the results of the scheduling algorithm and is re-

sponsible for deploying virtual machine (VM) templates of the consumer to the

destined cloud provider. This can be done with the help of the cloud and virtu-

alisation APIs such as Apache jclouds [101], which is an open source Apache

toolkit written in Java and provides multi-cloud integration. jclouds libraries

serve as a layer that abstracts the implementation of heterogeneous clouds where

each cloud has a different interface. On successful deployment of all VMs cor-

responding to a consumer, the CSP manager provides IP addresses to cloud

consumers for further communication with the provider. This facilitates the

consumer to have a homogeneous perspective of the resources to work on in a

seamless manner without getting into the details of their allotment to different

clouds.

The quantifier provides the consumer’s assessment of the provider based on

constraints (e.g. reliability, performance, cost). The assessments are expressed

as a real number in the [0, 1] interval, where a low value corresponds to a less

desirable provider. This assessment plays a vital role in scheduling decisions

and changes over time on the basis of the weight allocated by the consumer and

the historical behaviour of the provider. The detailed workings of the quantifier

4.2 Cloud Scheduler 67

and its sub-components are further discussed in section 4.2.

The profile of the consumers and providers are maintained by the profile

manager. Within the provider’s profile, information such as contextual data (e.g.

location), migratability index, resources offered with their pricing, available re-

sources, allocated resources, and ranking of providers is managed. While, the

consumer’s profile consists of contextual information, requested resources with

their constraints, weights of non-functional requirements, allocated resources,

billing history, and different logs. The profile manager regularly updates the

profiles by periodically gathering information from providers and consumers.

Further, the pricing of resources is decided either statically or dynamically.

In dynamic pricing, a price band is given to the consumer within which the price

is to be charged based on the assignment and reassignment of the providers.

Such variable pricing is preferable for volatile services (e.g., in offshore out-

sourcing with varying resource requirements). In this case, assignment of a

provider is transparent to the consumer and the profits made due to reassign-

ment belong to consumer. In a static pricing scheme, a fixed price is given to

consumer that is approximately the average of the band expected in the case of

dynamic pricing. In static pricing, the assignment is not known to the consumer

and the profits are enjoyed by the broker only.

4.2 Cloud Scheduler

The main task of a cloud broker is to decide on the mapping of consumer’s

requirements with the provider’s resources in a manner that the objectives of

the consumer are met. Selection of an appropriate provider is the first step to-

wards the goal of achieving desirable performance, therefore, the assignment

should be done as per the preferences of the consumer. Further, to make the

4.2 Cloud Scheduler 68

assignments more relevant, temporal evolution of the providers′ performance

should also be taken into account. This is done to incorporate the fact that the

provider′s performance changes over time. However, estimating temporal evo-

lution of the provider′s performance is usually complex, as this requires dealing

with diverse and fuzzy criteria such as application performance, availability,

reliability, interoperability, security. This estimation is addressed by making

it a dynamic decision making problem. We have, therefore, tried to address

the scheduling problem taking a dynamic Multiple Criteria Decision Making

(MCDM) approach [102].

However, even a dynamic MCDM approach does not take into account the

possibility of planning for more than one consumer. To address this issue, rank-

ings of providers are initially obtained using the dynamic MCDM approach

[Figure 4.4]. These rankings are later provided as input to a linear function to

handle many-to-many relationship between providers and consumers. This lin-

ear function is maximised during each scheduling exercise to address the chal-

lenge of assigning providers’ resources to consumers for maximum satisfaction.

We define the linear function with the following terms:

Considering,

• consumer cj , j = 1,2,.....m

• provider pi i = 1,2,......n

• consumer’s demand dj , j = 1,2,.....m

• provider′s rating at time t: r(t)i

• number of instances assigned to ith provider to jth consumer: xij

In such case, the total satisfaction of consumer Sj with respect to assignment

4.2 Cloud Scheduler 69

Figure 4.4: Provider rating calculation process

to a provider can be written as:

n∑
i=1

r
(t)
i xij (4.1)

From (4.1), following linear program is defined which maximizes the satisfac-

tion of all consumers participating at time t

maximize
m∑
j=1

Sj (4.2)

subject to
n∑
i=1

xij = dj j=1,....,m (4.3)

Now, for calculation of providers’ rating (r(t)i) corresponding to a consumer,

which acts as a parameter in linear program (4.2), we consider the scenario in

which a consumer is to be assigned one or more provider. The assignment needs

to be done in a manner such that it satisfies all the constraints imposed by the

consumer with maximum satisfaction levels. Figure 4.4 outlines the method

for calculating the providers’ ratings. Here, at time t, each provider is assessed

by the consumer based on constraint set C(t) having k constraints. Assessed

4.2 Cloud Scheduler 70

evaluation of providers is given by the vector e(t)i

e
(t)
i = {e1,, ek} (4.4)

where, ek specifies the assessment of provider corresponding to constraint ck

from set C(t). Further, in connection with classic MCDM method, a constraint

significance factor(fk) is defined that signifies the preference of consumer cor-

responding to each constraint. The constraint significance factor must satisfy

the condition
k∑
j=1

fj = 1 (4.5)

Now, in order to give a cumulative evaluation of each provider on the basis of

all constraints a vector-valued aggregation function is defined as

f1 : [0, 1]
k → [0, 1] (4.6)

This aggregation function maps value of k constraints to a single value expressed

as a real number in the [0,1] interval. Also, it fulfills condition f1(ei(m)))=0,

where ei(m)=0 when m ranges from 1 to k. Similarly, the condition f1(ei(m))=1,

where ei(m)=1 when i ranges from 1 to k should also be satisfied.

In classic MCDM, there is no consideration of historical record about the

cumulative rating of the provider [103]. However, because of diversity in ser-

vices of cloud computing, adding a provision of historical cumulative rating will

further aid convenience in the selection of appropriate cloud provider. This way,

cloud consumer may opt to include the past cumulative rating of the provider,

in the calculation of final rating. For this, the history set is defined as

H(0) = φ and H(t) ⊆ P (t) ∪H(t−1) (4.7)

4.3 Experimental Setup 71

Here, introduction of new provider will certainly lack any history and for sub-

sequent evaluations, history set will comprise of past ratings of the provider.

Eventually, to obtain the provider’s final rating, another aggregation function f2

is introduced. Here, f2 aggregates the current rating and historical set and his-

torical set. As history set will comprise of past ratings of the provider, so both

being of same domain the aggregation function for f2 can be as simple as aver-

age function. Other aggregate functions that can be used for f2 are conjunctive

and disjunctive.

r
(t)
i = f2(r

(t−1)
i , e

(t)
i) (4.8)

4.3 Experimental Setup

This section comprises the evaluation of the proposed brokering architecture.

The evaluation is primarily focused on analysing the feasibility of the proposed

architecture. A prototype is developed to support the evaluation process. The

prototype comprises two major modules: a scheduling module and a VM pro-

curement module. The scheduling module corresponds to the scheduler part

and the VM procurement module corresponds to the CSP manager part of the

proposed broker architecture. For implementing the scheduling module, we re-

lied on the modeling tool AMPL [104] which integrates different components

required in optimisation of linear programming problem. The reason for using

AMPL is that it integrates and extends the expressive abilities of the existing op-

timisation modelling systems [105][106]. We have developed an AMPL model

which represents the linear programming problem (Equation 4.2) to be solved.

Similarly, the data given by the consumer as input is also modelled. This data

model along with the AMPL model is taken as an input in the AMPL Java API

4.3 Experimental Setup 72

to estimate the optimal solution. For implementing the VM procurement mod-

ule, we customized VM libraries for emulating real world CSPs. Also, we made

use of Java v8 APIs, virtualisation APIs, and Linux bash scripts for getting the

VMs to become operational. On successful completion of the VM procurement

process, VM details (OS information, IP address, login credentials) are reported

back to the broker which in-turn are reported to the respective consumer. This

intermediation of broker facilitates logging the provided details for future rank-

ing of individual CSPs.

Figure 4.5 is the prototype of the evaluation process. The Requiremen-

tXML document consists of a list of aggregated resources having details related

to resource requirements of all consumers. The ResourceXML document, on

the other hand, consists of a list specifying the offerings from various cloud

providers. These XML documents along with the AMPL model of [Equa-

tion 4.2] acts as an input to the modelling tool AMPL. With this tool, we use

MINOS as the solver to solve the AMPL model. Further, using the AMPL API

for Java the output is updated in an XML file, AssignmentXML, which triggers

the VM procurement process.

Figure 4.5: Cloud broker prototype

The experimentation is carried out in a restricted laboratory environment.

For cloud service providers, we have used 3 physical servers [2 servers with In-

tel core i7 processor, 16 GB RAM, 1 TB HDD; and 1 server with Intel Xeon E5

4.4 Results 73

family processor, 64 GB RAM, 2 TB HDD] and 1 virtual server [2 cores of Intel

core i7 processor, 4 GB RAM, 250 GB HDD]. These servers are equipped with

a cloud-in-a-box environment to enable cloud functionality. In our work, we are

primarily emphasizing upon Infrastructure-as-a-Service(IaaS). Further, to en-

able the virtualization layer, servers are equipped with a Xen Server v 6.2.0. For

cloud service consumers, 7 desktop clients [Intel core i3 processor, 4 GB RAM,

250 GB HDD] are considered. Further, the broker architecture is deployed on

an isolated machine (Intel core i5 processor, 6 GB RAM, 512 GB HDD). A

dedicated network is established for cloud service consumers, broker and cloud

service providers.

4.4 Results

In our experimentation, we evaluate the scheduling strategies discussed in the

earlier part of the chapter. The initial focus is on the aggregation algorithm,

and subsequently the emphasis is on scheduling the requests to the best possible

providers. Thereafter, based on the results of the scheduling algorithm VM

procurement is done.

The data model of the scheduler module specified in earlier sections models

the details provided in the service definition document of the proposed architec-

ture. It also models the information provided on the provider’s offerings, along

with the provider’s ratings maintained by the broker. Table 4.1 gives the output

of the AMPL modeling tool. It includes information on the mapping between

the provider’s resources and the allocated consumer including the number of

instances allocated. For example, in order to satisfy the requirement of 17 in-

stances of consumer C5, 8 instances should be allocated by provider P1 and the

remaining 9 instances should be allocated by provider P3. Updation of these

4.4 Results 74

Provider Consumer No. of Instances

P1 C2 0
P1 C3 0
P1 C5 8
P1 C7 6
P2 C1 0
P2 C2 12
P2 C3 6
P2 C4 4
P2 C5 0
P2 C7 4
P3 C1 9
P3 C4 0
P3 C5 9
P3 C6 11

Table 4.1: MINOS solver output for an iteration

details in the AssignmentXML document triggers the execution of the VM pro-

curement module. Next, figure 4.6 gives the cost comparison of assignment

done through broker with that done randomly by consumer. Cost is estimated

assuming 1500 hrs. of usage during one year. In random assignment, consumers

make the selection of provider by their own. For performance evaluation, re-

Figure 4.6: Cost comparison of broker and random assignment

sponse time is measured. It is the total time consumed from the moment when

the request to up the VM is made, till the time when the VM details of allocated

4.5 Summary 75

VM is received. Although the difference is very small, however this may be

because the experimentation is performed on intranet and when the server load

is minimal.

Figure 4.7: Comparison of response time

4.5 Summary

In this chapter, we present a brokering architecture for a cloud computing en-

vironment that gives freedom to the cloud consumer to customise the require-

ments to a finer lever of granularity. This is achieved through the introduction of

weight attributes corresponding to non-functional attributes and by taking into

consideration the providers’ performance in the assignment. This leads to an

appropriate selection of providers for consumers on the basis of constraints and

domain requirements. With these features, consumers can concentrate on the

application without having detailed knowledge of cloud providers and leaving

the technical aspects of cloud infrastructure on the broker. Moreover, the as-

signment proves to be cost effective for cloud consumers with the broker very

much like big client for cloud provider. Incorporation of the migratability index

measures the extent to which versatility in cloud providers is achieved. Finally,

resources in an aggregated form help in negotiating with the cloud providers.

Now, we discuss enhancements to the model that are possible to further im-

4.5 Summary 76

prove the assignment. In this study we treat all consumers in an equal manner.

However in a real world scenario, certain consumers may have heavier require-

ments and for longer durations, whereas others may have fewer requirements

for shorter durations. Moreover, certain consumers may more frequently avail

the services whereas others may use it only once. Hence, there is a possibility to

categorise consumers in groups (prime, regular, irregular, new) and then make

the assignments. Here, the challenge is to provide maximum benefits to prime

consumers, with a strategy to attract new consumers while keeping the profit

of brokers in check. This is an interesting direction to augment the proposed

architecture.

Other interesting directions for future study include exploring the differ-

ences that may arise in Service Level Agreements (SLA) with the introduction

of a cloud broker. As of now consumers directly interact with the provider and

there is one-to-one SLA between them. However, bringing in the cloud bro-

ker adds one more layer between the two. Several possible variations may crop

up because of this, such as the broker may only be responsible for providing a

common interface to the consumer, leaving the issues of the SLA to the con-

sumer side only. In other cases, the broker may be made solely responsible for

the consumer exhibiting the case similar to that of a provider-consumer relation.

Although this scenario is somewhat similar to multi-level SLA [80], with a vari-

ation that here we are addressing the depth in levels whereas in cloud brokering

we will be dealing more in breadth.

Chapter 5

Dynamic Cloud Broker Pricing Model

Cloud computing is a resource delivery and usage model that facilitates on-

demand access to a shared pool of computing resources (e.g., services, applica-

tion, platform, computing infrastructure) that are considered to scale infinitely.

These computing resources are provided as a service or utility and are treated as

a commodity that can be traded using a pricing model [5]. Further, one among

three aspects that prove to be the identity for cloud computing is its metering

capability [2]. This capability facilitates a measure of the service so that com-

puting resources can be monitored and billed as per usage.

Various factors drive the success of cloud computing such as pay-as-you-

go, on-demand virtual resources, elasticity, multi-tenancy pooled resources, and

economy of scale. As computing needs are delivered from a distributed infras-

tructure that can be shared by multiple tenants, economies of scale have con-

siderably reduced the cost than that of owned infrastructure. In support of this,

based on a case study that considered a 13-year life cycle, the total cost of estab-

lishing and maintaining a cloud environment was only 33% of that incurred for

traditional, non-virtualized infrastructure [107]. Further, this gives freedom to

small enterprises for starting a venture with least capital. Also, for yet another

dimension of cloud computing i.e. cloud service broker, where several factors

affect the selection of a provider for a resource request, the price is a prime

element in the decision [108].

By all this, it is revealed that pricing is very crucial in the concept of cloud

computing. Rather, it would not be wrong to say that pricing is very much at

78

Table 5.1: Spot instances Vs on-demand instances pricing

Region: US East (N. Virginia), OS: Linux/UNIX
Bid Price: 50% On-Demand,VCPU (min): 1

Instance Type vCPU Memory
GiB Savings

t1.micro 1 0.613 84%
m3.medium 1 3.75 84%
m3.xlarge 4 15 84%
m3.2xlarge 8 30 81%
m1.small 1 1.7 63%
m1.xlarge 4 15 67%
m2.xlarge 2 17.1 91%
m2.4xlarge 8 68.4 89%

the core of advent of the concept of cloud computing. This level of importance

accorded to pricing is owing to the possibility of accessing computing resources

as and when required, without owning the same and only by paying for used

resources. This is the foundation of cloud computing [2]. In addition to this,

attractive offerings extended by Cloud Service Providers (CSPs) such as Ama-

zon spot instances may result in up to 90% reduction in EC2 instance price.

Table 5.1 lists the statistics of Amazon spot bid advisor and this gives us an idea

about the savings of spot instances over on-demand instances. Based on the

suggestions of spot bid advisor the savings range from 63% to 91% for different

instances of EC2. The endeavour of the cloud computing industry, therefore,

should lie around the question of whether the resources required are for a few

hours or for a long time. In this quest, efforts are made to introduce a pricing

model for a cloud broker, which is dynamic in nature.

Although there exist several pricing models [29] in literature viz. pay-as-

you-go, subscription-based, usage-based dynamic, auction-based pricing, real-

time pricing, the features that make cloud computing different from other imple-

mentations are its volatility wherein new features are added to existing technol-

79

ogy by the day, and the regularity with which new start-ups on cloud provision

keep coming up. Several dynamic pricing models exist that tend to take the ad-

vantage of this volatility. They lack, however, a sense of security where price

hike beyond a limit is not permissible and which is also crucial in the case of

outsourcing. Otherwise also, the assurance of optimised cost is necessary. In

cloud computing, where computing resources are outsourced and are charged as

per the pricing model, even a small margin in unit price creates a considerable

difference in the overall billed amount.

In this work, we attempt to define a dynamic pricing model for cloud bro-

kers along the idea of introducing a pricing scheme wherein the broker provides

a price range to the consumer instead of a fixed price. This price range has a

minimum price and a maximum price that denotes the lower bound and upper

bound of the amount that can be charged to the consumer respectively. The

charged price, therefore, always remains within this range. The proposed al-

gorithm for pricing variation makes a consistent effort to maintain the average

price lower than the fixed price for the same set of resources.

The contributions of this work are:

• A new dimension of dynamic pricing in cloud computing is proposed that
estimates a pricing band to be offered to the consumer. Using this price
band, cloud brokers may optimise the cost corresponding to the desired
performance. Also, the consumer will be able to take advantage of the
diverse and competitive cloud market while keeping the overhead of in-
teroperability and migration restricted to the cloud broker.

• An estimated price band assures the consumer on the upper price limit to
be charged, and hence promotes the concept of dynamic pricing.

• Taking into consideration the pricing history, the demand for resources,
the supply of resources, the QoS for the calculation of variable parts of
the pricing makes the band estimation more precise.

• Adoption of advanced reservation allows cloud service brokers to opti-
mise the cost further for the consumer.

5.1 Motivation 80

This chapter is organized as follows. The next section describes the motiva-

tion behind proposing the pricing model. In Section 5.2, the pricing model for

the cloud brokering architecture is presented. Further, Section 5.3 comprises an

evaluation of the proposed pricing model. Section 5.4 includes an analysis of

the pros and cons of the proposed pricing model and has directions for future

research. Section 5.5 summarises the chapter.

5.1 Motivation

This scenario describes a situation with a few cloud service providers, cloud

service consumers, and a broker. Initially, lets consider four cloud providers

CP1-CP4 offering cloud services under the IaaS service model. The delivered

services differ in their characteristics, quality levels, billing, geographical lo-

cation of servers. On the consumer end, there are three cloud service con-

sumers CC1-CC3 with requirements for cloud service. CC1 has a consistent

and heavy requirement of cloud services, whereas CC2 needs to use cloud re-

sources occasionally, CC3 requires a unique service accessible through a single

provider. The consumers are unaware about the workings of cloud technology

and providers. Therefore, CC1 opts for a fixed priced yearly subscription from

CP2, CC2 opts for a pay-per-use scheme from CP1, and CC3 opts for the annual

subscription scheme for a service that is only catered to by provider CP3. After

a few months a new provider CP5 is introduced and offers attractive pricing for

competitive services. One of the existing providers CP4, meanwhile launches

the service that was only provided by CP3 at an aggressive price with the lat-

est infrastructure. In spite of the new and attractive offers, CC1 is unable to

switch to another provider as it has a subscription for a full year. Even with

CC2 having opted for a pay-per-use subscription, it fails to take advantage of

5.1 Motivation 81

the introduction of provider CP5 and its attractive offerings owing to lack of

awareness of migration technology. Also, CC1 has witnessed an entire quarter

where the billed amount was almost quintuple of the normal as the demand was

very high during that period. Moreover, CC3, in spite of not being fully satisfied

with the services of CP3 at the given price is forced to remain with the provider

as it is not sure about the future pricing that will be proposed by CP4. Further,

as CP4 has recently launched its service, a consumer will not be sure about the

levels of QoS delivered. At the provider end, providers may have to incur a loss

owing to fixed pricing with the demand being low.

The described scenario clearly exhibits that in spite of several benefits, the

pay-per-use model or dynamic model can result in heavy billing owing to change

in demand. Also, consumers avoid getting into migration overhead mainly ow-

ing to lack of automation. All this leads to the requirement of a service that

could dynamically manage resource allocation with dynamic pricing and pro-

vide an assurance on the maximum price charged. Dynamic resource allocation

can be facilitated with dynamic pricing that would allow consumers to derive

benefits from the diverse and volatile cloud computing market. Further, to as-

sure the consumer on the maximum price charged, this service should estimate

a pricing band corresponding to the cloud consumer’s resource requirements,

desired QoS levels, the present demand for resources, the supply of required re-

sources, and historical pricing. This pricing band would denote the range within

which the price of the resource will vary during the tenure. The service should

make a consistent effort to bring the average price below the fixed price. The

proposed approach will, thus, help the consumers (CC1-CC4) in the following

manner.

• Exposure to newly introduced providers and services.

5.2 Cloud Broker Pricing Model 82

• Pricing band provides an assurance to the consumer about the limits at
which the resource will be charged. Therefore, proper limits will sub-
stantiate the order as well as ensure an adequate margin of profit to the
provider.

• Also, the overhead involved in migrating resources will be taken care of
by a cloud broker as and when required.

5.2 Cloud Broker Pricing Model

Cloud computing constitutes a paradigm shift in Information Technology as it

assures greater efficiency and scalability at more economical prices. Hence,

adoption of cloud computing may prove to be beneficial for a firm in various

aspects. This benefit implies no further issues related to heavy infrastructure

configuration, complex server deployments, and troubleshooting applications

hosted on local infrastructure. It is, however, apparent that things are not as

easy as they seem in cloud computing, and there remain several challenges in

deploying cloud solutions. The cloud service provider may also face problems

of fluctuating demand which may render the resources idle or at the other ex-

treme may prove insufficient to fulfil demands. Furthermore, newly introduced

cloud service providers often struggle to secure the confidence of consumers as

the latter usually prefer established service providers. From the perspective of

cloud consumers, an issue with companies planning to move their infrastruc-

ture to cloud computing is that they are initially unaware and novice about the

field and have trouble in opting for the best provider that would conform to their

needs. Complicated pricing, complex combinations of infrastructure configura-

tion, variations in final billing due to bandwidth usage and other charges, and

several other issues leaves the cloud service consumer confused and perplexed.

In such situations, a cloud broker offering dynamic pricing can prove to

5.2 Cloud Broker Pricing Model 83

Figure 5.1: Cloud broker pricing model

5.2 Cloud Broker Pricing Model 84

be a viable solution. The risk associated with fluctuation in dynamic pricing,

however, cannot be ignored. This means that if a consumer relies on dynamic

pricing with the hope of benefitting from market fluctuations and on the contrary

the price gets hiked due to massive demands then the consumer will have incur

considerable losses. Some capping is therefore required at both ends of the pric-

ing band i.e. there should a lower bound and an upper bound on the prices. This

delimitation will ensure that the provider will receive a minimum amount and

simultaneously will assure that a consumer is insulated from spikes in prices be-

yond a certain limit. Accordingly, we propose the Cloud Broker Pricing Model

(CBPM), a pricing model for the cloud broker (Figure 5.1). CBPM aims at in-

troducing a pricing band to cloud consumers in order to assure the consumer

about a minimum and maximum price values that will be charged correspond-

ing to requested resources. Once a cloud consumer agrees to the contract, the

cloud broker will manage the allocation of computing resources to appropriate

cloud providers based on the requirements and constraints placed by the cloud

consumer. The allocation to the provider will be transparent to the consumer;

however, the control will not be there with the consumer to select a particular

cloud provider.

Providers also form an important component of CBPM, so as to publicise

their computing resources. A unique id is assigned to the computing resources

listed by a provider. Here, the prices of resources need to be maintained by

the cloud provider and the provider may increase or decrease the price based

on demand and availability of resources. Subsequently, the resources are ready

to be assigned to cloud consumers if they suffice the latter’s resource require-

ments. CBPM then executes an algorithm to assign the listed resources to the

cloud consumers, which as its output gives an allocation matrix comprising the

resources mapped to the corresponding cloud consumer. Cloud brokers then

share the unique id of the resource with the consumer using which consumers

5.2 Cloud Broker Pricing Model 85

get access to the respective resource(s). The CBPM system is compatible with

prominent cloud providers such as Amazon EC2, Google Compute Engine, and

Microsoft Azure and hence the proposed model can be easily deployed with

VMs of these service providers.

Apart from the algorithm that decides the allocation of a provider’s resource

to a consumer, CBPM also provides a user interface (UI) that can be used by

the cloud provider and the cloud consumer. An authentication mechanism is

incorporated to verify the identity of providers and consumers. Cloud providers

can enlist their resources with proper descriptions along with the price. On the

other hand, cloud consumers can use the CBPM interface to specify required

resources, non-functional requirements, duration, and the basic Service Level

Agreement (SLA) requirements. CBPM logs the allocation details and perfor-

mance parameters which help the providers and consumers to track the alloca-

tion history, accounting details, current allocations, request status, SLA compli-

ance, and usage statistics. Hence, in CBPM we have tried to find an assignment

that fulfils the requirements of the consumer in the best possible manner as per

the situation.

5.2.1 Basic Model

The goal of CBPM is to facilitate allocation of services offered by the cloud

provider to a cloud consumer in a manner so as to optimise the total cost borne

by the cloud consumer. For this, a pricing band is offered to the cloud consumer

having lower and upper limits within which the resource is charged. Therefore,

to get a final optimised price, reallocation needs to done as and when required.

This work introduces a pricing model (Figure 5.1) composed of modules

such as demand-supply monitoring, consumer profile, quality class, historical

5.2 Cloud Broker Pricing Model 86

pricing, pricing band calculator and subscription module.

As specified, the idea of the pricing model is to propose a pricing band to the

cloud consumer corresponding to resources requested. Later, the pricing model

will make a consistent effort to optimise the price charged by grabbing the op-

portunity raised by other providers and migrating to these provider resources.

Therefore, assuming Pvl and Pvh be the lower limit and upper limit of the vari-

able pricing band offered to a consumer c for the resource set R (Figure 5.3).

Further, assuming Pij is the price charged to a consumer i by a provider j, where

the consumer i utilises the resources of m different providers during the contract

period (Figure 5.2). Then the price charged to consumer i can be given by (5.1)

Pa =
m∑
j=1

Pij (5.1)

Where, Pa is the average price to be borne by the consumer if opted for

pricing band. On the provider end, let Pf be the fixed price charged by provider

j, if consumer i prefers fixed pricing instead of variable pricing. Provider j is the

preferable provider at time t0 i.e. the time when the contract period starts. So,

under such circumstances the objective of CBPM will be to make a consistent

effort to achieve the following relation (5.2):

Pa < Pf (5.2)

Therefore, the lower limit and the upper limit defined by CBPM can be

assumed as follows:
Pvl = Pf − c1

Pvh = Pf + c2

(5.3)

Here, c1, c2 denotes the marginal cost needed to maintain the limits. In a few

5.2 Cloud Broker Pricing Model 87

situations, c1 can have the same value as c2.

The following function provides an outline on the estimation of the limits

Pvl and Pvh:

P ← f(N, T,Q,C,R,H) (5.4)

Here, P is the tuple (Pvl, Pvh), N number of resources requested, T time of

subscription, Q expected quality levels, C user category, R general pricing for

required resources and H is the pricing history. The variable N represents the

number of resources required by the consumer. The time T helps in reserving

resources and is also articulated as vector comprising: tc as current time, ts as

start time and td as duration. The quality desired Q defines the expected QoS

levels. Users are also divided into different categories based on the required

resources, time of contract, loyalty etc., and is expressed by C. The variable R,

denotes the fixed pricing for the required resources. Finally, H portrays an array

having the price history of the resources.

Figure 5.2: Dynamic pricing

5.2 Cloud Broker Pricing Model 88

Algorithm 2: MIGRATIONDECISION

Input: Finite sets C,Q,D, S and H of integers
Output: Migrates resources to other cloud provider if found favorable

1 while True do
2 if trigger condition is true then
3 for every consumer cεC having condition triggered do
4 m← re-execute allocation algorithm
5 p← calc_migration(m)
6 d← compare(p, e)
7 if d < 1 then
8 migrate
9 else

10 continue

Figure 5.3: Pricing limits

5.2.2 Pricing Band Estimation

Cloud resources are in demand over time by different cloud consumers through

cloud resource brokers. Cloud resource brokers offer a price band to the con-

sumer for the resources requested. The price band ensures that the charged price

is within certain limits and not beyond. On acceptance, cloud brokers make con-

tinuous efforts to maintain the average price below the fixed price. This is done

by grabbing new offerings from providers at lower prices and migrating the VMs

to them.

Let, Tk be the time for which the consumer have requested the resource k.

5.2 Cloud Broker Pricing Model 89

The algorithm plans to avail the services from the service providers (s, s+1, . . . ,

s+d) and hence Tk is given by:

Tk ← {ts, ts+1,, ts+d} (5.5)

While offering a price band, the cloud resource broker emphasises on dynamic

pricing. The dynamism in price offered by cloud service providers is looked

upon as an advantage to reduce the prices charged over required duration. Ac-

cording to [109] the relation between price and demand with respect to time is

expressed using the following stochastic demand function:

D (t, p, ξ) (5.6)

In equation [5.6], ξ is the margin of error. Further, with a demand function D

it is assumed that the function returns the demand determined by price. This

demand is used as the factor to multiply with the price and determines the final

price.

In case of static pricing, as the price is fixed over the full duration of the con-

tract, the price is optimised only once. Corresponding to time t, user category

u and quality class q, the following optimisation problem is solved to optimise

the price for the static pricing model:

maximize
T∑
t=1

U∑
u=1

Q∑
q=1

(D (t, p, ξ)) (5.7)

Whereas for dynamic pricing, the price may change even after allocation of the

resources. Therefore, apart from the time, there can be several other factors that

affect the price and hence the demand function needs to be modified. Utilizing

the variables of function f described in 5.4 the demand function can be written

5.3 Evaluation 90

as:

D (n, t, q, c, r, h) (5.8)

As the demand function is considered to be the factor for obtaining final price,

the variation in price at different time intervals can be predicted by utilizing

equation [5.8]. Hence, the limits Pvl and Pvh can be given as follows:

Pvl = min
∀t∈T

p ∗Dt

Pvh = max
∀t∈T

p ∗Dt

(5.9)

Now, the cloud resource broker offers these limits to the consumer and for the

whole contract period, the price charged to the consumer ranges between the

limits. The broker derives profit in case some provider offers resources below

Pvl. The consumer, on the other hand, benefits if the dynamic pricing goes

below Pvh. Here, efforts are made to anticipate the boundary within which the

dynamic pricing may fluctuate and not on maximising the revenue of the cloud

resource broker.

5.3 Evaluation

In this section, the experimental setup for the proposed pricing model is de-

scribed. The experimentation is primarily aimed at evaluating the practicality

of the pricing model CBPM. A prototype is developed to support the evaluation

process. Primarily, the prototype consists of two important modules: Price band

calculator module and VM manager module. The price band calculator module

is responsible for calculating the price band corresponding to the consumer’s

requirements while the VM manager module corresponds to the deployment

agent. For the simulation of the price band calculator module, the time duration

5.3 Evaluation 91

Table 5.2: Values of demand factor

Time
(Days)

(1)

Demand Factor (D)
Historical Data
(Last 60 days)

(2)

Historical Data
(Last 30 days)

(3)
Start 1 1
10 1.47 0.82
20 0.22 1.27
30 1.28 0.76
40 0.75 0.7
50 0.67 1.11
60 0.9 0.62

Table 5.3: Limits assigned for different demand factor

Demand Factor
(Last 60 days)

Demand Factor
(Last 30 days)

Pvl Pvh Pvl Pvh
0.0026 0.02 0.009 0.016

for demand analysis is considered to be ten days. The demand factor is calcu-

lated using the demand function and by utilising this demand factor the values

of Pvl and Pvh are observed [Table 5.3]. Different requirements lead to differ-

ent values of demand factor at different time instances. For example, only after

changing the duration of historical data, the change in demand factor can be

seen as described in column 3) of Table 5.2. The range for the factor of demand

analysis is taken from 0.2 to 3.0. The assumption made here is that the demand

can be as low as 20 percent of the demand at time ts i.e. the start time, and it

can go up to 300 percent at the other end.

Further, for actual values of price change corresponding to the period for

which the values of Pvl and Pvh are calculated, Amazon EC2 spot pricing is

utilized [Figure 5.4]. The pricing considered is for 60 days on Linux/UNIX

machine with t1.micro configuration situated in us-east-1c region. For the whole

tenure under consideration, the price ranged from $0.003/hr to $0.005/hr.

5.3 Evaluation 92

Figure 5.4: Amazon EC2 spot pricing

However, the same instance of Amazon EC2, if considered for fixed price

would have cost $0.013/hr. A comparison of dynamic pricing when limits are

offered and that of fixed pricing is given in Figure 5.5.

It can be observed that dynamic pricing model CBPM performs extraordi-

narily well in the scenario considered. Particularly, it proves to be a win-win

situation for both providers as well as the consumer. For example, consider-

ing the case of demand factor when last 30 days historical data was considered

the lower limit came out to be $0.009. This means that at least $0.009 will

be charged irrespective of the price charged by the provider. As the spot price

charged for the observed duration range from $0.003 to $0.005, so broker is

getting a considerable margin per hour. On the other side, it is assured that the

maximum price charged in any circumstances is $0.016 per hour. This safe-

guards a consumer against sudden surge such as [35], where Amazon EC2 spot

request volatility hits $1000/hr. Further, Figure 5.6 shows the percentage gain

by adoption of CBPM and it can be observed that as the number of days are

increasing the performance of CBPM is improving.

5.4 Discussion and Analysis 93

0 10 20 30 40 50 60
0.000

0.005

0.010

0.015

0.020

0.025

Number of Days

C
os

t[
$/

hr
]

Fixed Price
CBPM

Figure 5.5: Effective pricing at different instances

With this elementary evaluation, it can be observed that the idea of proposing

a pricing band instead of relying merely on dynamic pricing is favorable for all

the stakeholders participating in the cloud market.

5.4 Discussion and Analysis

One of the main characteristics that drives the competition among CSPs is pric-

ing. Several enterprises that use cloud computing are involved in price battles

by reducing prices on a regular basis. This reduction in price is not only be-

cause of cuts in the cost of basic infrastructure, but it is also an endeavour at

stake acquisition, and to even express the provider’s aggression to other CSPs.

To define an appropriate price based on the present market situation, however,

a suitable mechanism for pricing is required. This is where an effective and

appropriate pricing model is required. Pricing models are a means to maintain

the balance between the consumer’s QoS requirements, price, and the service

provider’s cost and operational productivity.

5.4 Discussion and Analysis 94

10 20 30 40 50

65

70

75

Number of days

%
ga

in
co

m
pa

re
d

to
fix

ed
pr

ic
in

g

CBPM

Figure 5.6: Percentage gain by adoption of CBPM

Cloud computing started with the pay-per-use pricing model, where the user

is charged solely on the basis of actual usage such as $x for an instance/hour.

The pay-per-use model is realised in cloud computing through pooled, shared,

scalable infrastructure, and multi-tenant services. The main reason for the pop-

ularity of this model is that it provides cost-benefit along with agility. More re-

cently several CSPs have moved to alternative pricing models such as subscription-

based pricing, sustained-use pricing, and spot pricing. All these pricing models

can be broadly classified into two categories i.e. static pricing models and dy-

namic pricing models. An example of dynamic pricing is Amazon EC2 spot

instances. Using these instances, consumers can bid on idle EC2 instances.

Spot instances can be utilised to lower the operational costs for batch-processing

tasks and tasks that do not need persistent resource availability. Hence, con-

sumers as well as providers benefit from this hybrid strategy of using the spot

instances when found idle and allotted instances otherwise. Consumers can op-

timise the price by running their tasks during non-rush hours, and providers can

increase their revenue by reducing the price and facilitate improved utilisation

of resources. However, one serious problem with spot instances is that Amazon

5.4 Discussion and Analysis 95

EC2 reclaims the resource in between in case the spot price surges above the bid

price to allocate it to a different consumer.

EC2 spot instances deliver the features of an auction through bidding op-

portunities. However, as EC2 spot instances can be claimed back at any mo-

ment, the dynamism offered in pricing is not similar to dynamic pricing of-

fered by other enterprises such as airlines and stock markets. To the best of

our knowledge, apart from Amazon spot instances, till now the concept of dy-

namic pricing in cloud computing is limited to literature and is not offered by

any other provider. Most providers offer one variant or the other of fixed pric-

ing i.e. subscription-based, pay-as-you-go pricing. Further, the implementation

of dynamic pricing in other enterprises, if mapped to cloud computing will not

completely solve the purpose. The reason being that in other enterprises such as

flight booking, the stock market, and hotel booking the purchase is to be made

once and is not recurring. However, in the case of cloud computing even after

finalising on a provider, the charges are recurring and are based on usage. There-

fore, in such cases, looking from the perspective of cloud brokers who have to

maintain a win-win situation for cloud consumers and also for cloud providers,

an extreme or sudden change in rates will bring loss either to the provider or

the consumer. For example, in case the prices are slashed by a large amount,

then the provider may not even be able to retrieve the operational cost. On the

other side, the consumer may have to pay a very high price in case of a steep

price hike. For example, Amazon EC2 spot request volatility hits $100/hr as

compared to $0.05/hr which is the lowest price observed for the same instance

[35]. Hence, to protect cloud service providers and cloud service consumers

from such unexpected losses, the idea of delimiting prices at both the ends is

proposed in this work. The price band offered would ensure balanced revenues

to the provider and moderate charges billed to the consumer. Further, in order

to compensate for the loss to the broker, concepts of advanced reservations can

5.4 Discussion and Analysis 96

be utilised by securing required resources in advance. To have further insight on

advanced reservations the work done by Chaisiri et al. [110] and Yeo et al. [3]

may be referred to.

Figure 5.7: Fixed vs. dynamic pricing

Further, with a view of which pricing model is beneficial for which con-

sumer; several consumers choose a fixed pricing model even though this may

not be the one with the least price. Certain consumers also prefer a pay-per-use

scheme. Also, low usage results in a switch to the pay-per-use model. Con-

sumers inclined towards pay-per-use pricing schemes are more likely to switch

tariffs. Therefore, we conclude that they are not satisfied with their choice: If

they realize their fault in tariff choice, they are ready to switch to another tariff.

Overall, figure [5.8, 5.9] shows the specific areas favorable for cloud consumers

and cloud providers separately, in a plot of time vs. price. Figure [5.7] presents

a particular case to compare the fixed pricing model and dynamic pricing model.

Considering the area under the curve to be divided into three parts, part A de-

picts the area where demand is high; however the variable price is also higher

than the fixed price. While area B characterizes the case where demand is high

but the variable price is lower than fixed price. Finally, area C represents the

portion where demand is low, and the variable price is also lower than fixed

5.4 Discussion and Analysis 97

price.

Figure 5.8: Provider’s benefit and loss

Figure 5.9: Consumer’s benefit and loss

Therefore, brokers should carefully consider decisions on pricing models.

Rapidly switching between pricing models may lead to dissatisfaction of con-

sumers. Hence, an attempt is made in this work to propose a pricing band that

abstracts the core pricing models and presents an environment that exhibits a

win-win situation for both cloud providers and cloud consumers. In the current

scenario, price is not the only factor that drives the decision on resource se-

lection. In general, nowadays consumers are concerned more about the overall

5.4 Discussion and Analysis 98

Table 5.4: Comparison of pricing models

Proposed
Model

Decision
Technique

D
yn

am
ic

A
ss

ig
nm

en
t

R
at

io
na

lit
y

C
on

si
de

ra
tio

n
fo

r
m

ul
tip

le
cl

ou
d

pr
ov

id
er

s

Pr
ic

e
ba

nd
of

fe
ri

ng

R
ea

liz
at

io
n

Remark

Dynamic
(Commodity based)

No No No No No

Proposed dynamic pricing approach
based on commodity approach where
price is determined by demand and
supply.

[74]
Hybrid
(Flat fee/Usage
based)

No Yes No No No
Comparison of fixed pricing, usage
based pricing and two part pricing is
performed.

[25] Dynamic Yes Yes Yes No No
A comparative study of fixed and dy-
namic pricing in federated cloud envi-
ronment.

[72] Dynamic No Yes Yes No No

A cloud banking model is proposed
which contains pricing algorithm in
order to maximize the profit of con-
sumer.

[71] Dynamic
(Genetic Model)

No No No No No
Proposed a genetic algorithmic ap-
proach to offer competitive price based
on demand.

[7] Dynamic No Yes No No No
Financial option theory is adapted for
pricing cloud resources.

[68] Dynamic
(Reverse auction)

No No No No No

Introduced the concept of open mar-
ket for IaaS using Continuous Double
Auction and proposed Continuous Re-
verse Auction.

[111]
Hybrid
(Pay-per-use/
subscription based)

No Yes No No No

Theoretical analysis of economic
model for cloud computing - espe-
cially pay-per-use and subscription
pricing

[3] Dynamic No Yes No No No
Use of advance reservation to imple-
ment autonomic metered pricing.

[75]
Hybrid
(Fixed/Dynamic)

Yes No Yes No No
Hybrid pricing strategy is proposed
which outperforms over spot pricing or
fixed pricing.

[112] Dynamic
(Fuzzy logic)

Yes Yes No No No

Clabacus – A cloud compute commod-
ity model is proposed based on fuzzy
logic and genetic algorithm, using fi-
nancial option theory.

[69] Dynamic Yes Yes Yes No No

Proposed dynamic pricing model
‘Cloud Market Maker’ by utilizing
multi-agent system and auction based
approach.

[113]
Dynamic
(Game theoretic
approach)

Yes Yes No No No

Online system for resource allocation
using ‘Mechanism Design’ a game
theoretic approach. In this, users can
recommend their price and time for
which resources are requested.

CBPM Dynamic Yes Yes Yes Yes No

Dynamic pricing model for cloud bro-
ker, driven by demand and offers a
price range to consumers in order to
assure the maximum price that will be
charged.

5.4 Discussion and Analysis 99

experience. This experience includes performance, post subscription services,

fair billing, and several other factors. Therefore, even when the services are

similar, the overall satisfaction levels vary with providers. To deliver a com-

prehensive solution, the pricing scheme should compulsorily incorporate these

other aspects as well. In this context, the dynamic pricing scheme is preferred

as it takes into account both the service quality and the consumers’ satisfaction.

A comparison of existing pricing models with CBPM is shown in Table

[5.4]. The comparison is in terms of decision techniques, option for dynamic

assignment, rationality for cloud provider as well as consumer, consideration

for multiple providers, price band offerings, and practical exposure of the ap-

proach. The comparison considers the pricing approaches proposed in the field

of cloud computing as well as fields such as grid and utility computing [[66],

[74], [3]]. Existing systems mainly fall under the fixed, dynamic and hybrid

pricing approach category. Also, in dynamic pricing, the main focus of most

systems is on proposing an appropriate price with respect to a single provider

[[71], [7]]. A few systems [[25], [69]] have considered the notion of multiple

providers. However, in order to derive the benefits offered by a competitive en-

vironment of multiple providers, a platform for comparison is required. More-

over, the concept of proposing a price band while offering dynamic pricing has

also not been explored until now. The proposed CBPM Model utilises the QoS,

historical pricing, consumer ratings, and effective demand to offer a price band

to the consumer. Further, consistent efforts are made by CBPM by capturing

the appropriate opportunity and migrating to other providers for optimising the

costs charged to consumer.

5.5 Summary 100

5.5 Summary

In the current scenario, business enterprises are collaborating with cloud providers

to deploy scalable infrastructure with cost and legal negotiation. The concept

of intermediation between service providers and consumers has resulted in the

evolution of a brokerage architecture to participate in cloud economics. This is

primarily due to the competitive market that offers choice of services across a

range of prices for the consumers to choose from. The pricing model is made

dynamic to provide flexibility in the computation of costs of service offered

over the provider's infrastructure. Services are offered under different QoS con-

straints of services and therefore the prices vary accordingly.

We propose the Cloud Broker Pricing Model (CBPM) to facilitate con-

sumers in appropriately choosing a cloud service provider with dynamic pric-

ing and also guaranteeing optimised costs which are less than those available

through traditional approaches. CBPM provides a spectrum of prices with a

price band that assures that any price in the dynamic model will be constrained

within the lower to average pricing values of the traditional approach. The max-

imum prices is fairly proposed that restricts any value to be higher than a certain

limit.

There are a few scenarios in which CBPM may not be as useful as expected.

In the case of very frequent changes in demand for resources, the system may

indulge in consistent migration of VMs, yielding no work but still paying the

cost of migration. As a consequence, the system performance will also down-

grade. Further, there are issues in migration that further exacerbate the situation.

As directions for future research in cloud broker pricing models, we recommend

modelling a robust pricing model capable of managing frequent fluctuations in

demand.

Chapter 6

Conclusion and Future Work

This chapter summarises the relevant contributions made in this thesis achieve.

The highlight of the work includes the definition of attributes to appropriately

express QoS concerns and their inclusion in SLAs; the formulation of an ef-

fective architecture to schedule dynamic assignments of resources through the

concept of broker; the introduction of the idea of a ‘band’ to regulate the prices

offered. This chapter also suggests future directions and scope for further re-

search in the field.

6.1 Summary

Cloud computing has strategic and technical significance in its capability to de-

ploy business as a service. The aim of the research is towards improvement in

customer satisfaction and in maximising resource utilisation for the provider.

The convergence of both perspectives requires digital transformation of enter-

prises whilst complying with business requirements and the ability to provision

applications in a secure and cost effective manner. The cloud provides ‘on-

demand’ access to consumers who are rendered independent of concerns regard-

ing the availability of infrastructure and regarding operational and maintenance

issues. The advantage lies in no upfront cost and a pay-per-use modus-operandi.

Challenges remain, however, in consistently managing and maintaining cloud

computing demands. Another major issue is the monitoring of QoS attributes in

the rendered services. There is a need also to optimally allocate resources so as

6.1 Summary 102

to effectively cater to future demands on resources, and doing all with minimal

pricing.

The procedure followed to accomplish the aim of the research comprised

thorough exploration of the domains of SLA and resource provisioning; there

was specific focus on the state-of-the-art in the concepts of utility and cloud

computing; effort was put on the realisation of a scheduler through brokerage

architecture; and finally application of the techniques for maximising benefits

of the enterprise.

The thesis commences with an elaborate study of the technology and busi-

ness aspects of cloud computing including a comprehensive study of SLAs

specifically for measuring the effectiveness and performance of services. As-

sessment of factors like trust, risk, and power that contribute to the potency of

contemporary SLAs. A runtime monitoring and resource management approach

is the priority of the study in the thesis work. We believe that we have found

appropriate solutions through our approach and these are outlined as followed:

[1] A template for SLAs to manage QoS parameters and support service level
monitoring.

[2] Formalizing attributes for SLAs like trust, reliability, risk, and interoper-
ability.

[3] Formulating an architecture for the cloud broker as an agent based cloud
service provisioning mechanism based on requirements.

[4] Dynamic mapping of providers’ resources with requests of consumers.

[5] Devising a dynamic pricing model for consumers to fix a pay band prior
to assignment with the intent of maintaining fairness, clarity, and being in
a position of advantage in the competitive market.

Chapter 3 discusses our attempts at accomplishing the first and second ob-

jectives. The chapter provides clear and unambiguous definitions of the decisive

6.1 Summary 103

parameters of Cloud computing. It also specifies the mode of inclusion of these

parameters in the SLA. A template, CSLAT, is proposed to manage the same.

The mathematical interpretations and measurements of such parameters are also

suggested in the studies.

The third objective elaborated upon in Chapter 4 is accomplished through

the use of a cloud resource broker that suppresses the monotony of the providers

in the market scenario. The consumers are normally deprived of competitive of-

ferings from various providers. The brokerage mechanism provides a flexible

model for mapping requirements with offerings. An aggregation algorithm is

proposed to aggregate requirements and passing these on to manage the map-

pings through a scheduler that optimises the allocations. This benefits the con-

sumers with the flexibility to switch to new providers with subsidised costs and

the providers in turn benefit through maximised utilisation of their resource. The

fourth objective is an implementation of the broker architecture and comprises

the following:

[1] Service Definition Document

[2] Aggregator

[3] Scheduler

[4] CSP Manager

[5] Quantifier

[6] Profile Manager

The requests are read through a service definition document. The Aggre-

gator makes a composite list of all the categories of resources and maps it to

the requirements collected. The Scheduler does the assignment and allocation

of services to the consumers. Deployment through VMs is handled by the CSP

6.2 Lessons Learned and Significance 104

Manager. The logistics information related to the providers’ offerings and con-

straints of resources is shared with the consumer. The quantifiers actually save

the consumers assessments in this context. Finally, the profiles are managed for

both the stakeholders by the Profile Manager.

The final objective is achieved in Chapter 5 through the CBPM algorithm

that facilitates allocation of services by providers and optimises the cost. The

model comprises modules on demand-supply monitoring, consumer profile, qual-

ity class, historical pricing, price band calculator, and subscription module. The

price band calculator is based on consumers’ requirements. The price band

calculated from this approach ensures a balanced revenue to the provider and

moderate charges billed to the consumer.

6.2 Lessons Learned and Significance

The overall benefits of the proposed methodologies are observed in the imple-

mentation of the CSLAT to make the SLAs dynamic and to ensure that the QoS

of services are monitored on the go. This serves as a platform for Cloud Service

monitoring based on the runtime parameters and to identify decisive metrics that

help evaluate the same. The CSLAT forms an adjoining link between the expec-

tations of consumers and the providers’ offerings, framed in the agreement and

open negotiations between both parties. QoS, which is an important concern is

assigned personalised values based on profiles and gains the confidence of the

customer. The changes in the requirements open different allocation possibili-

ties and the choice can be suggested based on empirical and historical evidence

of the providers’ offerings. This is an open and unbiased monitoring system in

an apparently static SLA. Multi-level SLA environments can also be created to

check compliance with cloud service providers.

6.3 Future Scope and Research Directions 105

The brokering algorithm handles the cloud economics providing relevant

services to the consumers. These algorithms provide service management in

an effective manner with proper selection of providers, standards, abstractions,

automation, orchestration, and cost management. The method estimates pricing

with static and dynamic methods to present flexible pricing modes to the con-

sumer which the latter can avail based on its preferences. The CBPM provides

a spectrum of prices like a band that assures that any price in the proposed

dynamic model is definitely constrained within the lower to average pricing

derived from traditional approaches. These methods are a crucial part of the

strategic enhancement of cloud services in the current scenario.

6.3 Future Scope and Research Directions

In the course of investigating problems in the cloud SLA, brokering and pricing

of applications, dynamic scheduling, dynamic allocation, and dynamic moni-

toring emerged as a consistent requirement in current adoptions. We tried to

address these issues and proposed solutions through our models for some of

these problems. However, there remain open challenges that need appropriate

attention. They serve as important pointers of future research in this domain.

6.3.1 Automation of SLA

An efficient QoS aware CSLAT algorithm is proposed that provides benefits to

both stakeholders. A framework for the automation of the SLA is an important

requirement to formulate the model proposed for heterogeneous environments.

6.3 Future Scope and Research Directions 106

6.3.2 Implementing broker-intervened multi-level dynamic SLA

The design of SLA in our work encapsulates the concepts of quality of service

being maintained by the providers and applies to the services attained at cus-

tomer end. The work however, is delegated to the broker for its implementation.

Through the algorithm of dynamic scheduling of the services, the ultimate aim

of fair pricing and optimal resource allocation is achieved apparently. Com-

bining the algorithms and the strategy of maintaining the quality of services in

SLA, future work in the direction of Multilevel SLA can be drawn.

Ideally multilevel SLA signifies the levels partitioned according to the stake-

holders in the system. We suggest the contributions in writing the multilevel

SLAs. Scope is there for writing well-crafted multilevel SLA based on algo-

rithms proposed in our work.

6.3.3 Machine learning approach for QoS based dynamic pric-

ing

Dynamic pricing is based on QoS attributes known and monitored in advance.

The consumer as well as the provider must be aware of this provision in pricing.

If the prices are derived through alternate non-deterministic methods or manual

fixations the price derivation is ambiguous. A machine learning approach to

identify the significance of individual attributes and assign weights based on

this may help evaluate dynamic pricing when the expectations are varying. The

data generated will be enormous and therefore this approach may lead to an

efficient algorithm for price optimisation in our model.

6.3 Future Scope and Research Directions 107

6.3.4 Migration of VMs

Analysing the need for migration in the absence of significant change in re-

quirements may improving savings substantially by avoiding such unnecessary

migrations. Unnecessary migrations leads to assessment of the availability of

resources frequently and may adversely affect system performance. Migration

policies are therefore imperative.

6.3.5 Enhancing assignment of resources in changing require-

ments

The allocation of resources for customers’ requirements at reduced costs over-

comes the limitations of fixed costs. Dynamic pricing can be explored to max-

imise the profitability of consumers. Novel resource management strategies un-

der dynamically varying constraints are an important need in future.

Bibliography

[1] L. Kleinrock, “A vision for the Internet,” ST Journal of Research, vol. 2,

no. 1, pp. 4–5, 2005.

[2] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-

terson, A. Rabkin, and I. Stoica, “Above the clouds: A Berkeley view of

cloud computing,” Dept. Electrical Engineering and Computer Sciences,

University of California, Berkeley, Rep. UCB/EECS, vol. 28, no. 13, p.

2009, 2009.

[3] C. S. Yeo, S. Venugopal, X. Chu, and R. Buyya, “Autonomic metered

pricing for a utility computing service,” Future Generation Computer

Systems, vol. 26, no. 8, pp. 1368 – 1380, 2010.

[4] D. Technologies, “6 cloud computing trends for 2018,” Nasscom Com-

munity, 2018.

[5] P. Mell and T. Grance, “The NIST definition of cloud computing,” NIST

Letter, 2011.

[6] K. Krauter, R. Buyya, and M. Maheswaran, “A taxonomy and survey of

Grid resource management systems for distributed computing,” Software:

Practice and Experience, vol. 32, no. 2, pp. 135–164, Feb. 2002.

[7] B. Sharma, R. K. Thulasiram, P. Thulasiraman, S. K. Garg, and R. Buyya,

“Pricing cloud compute commodities: A novel financial economic

108

BIBLIOGRAPHY 109

model,” in Proceedings of the 2012 12th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing (CCGrid 2012). Wash-

ington, DC, USA: IEEE Computer Society, 2012, pp. 451–457.

[8] M. Yousif, “A plethora of challenges and opportunities,” IEEE Cloud

Computing, vol. 1, no. 2, pp. 7–12, 2014.

[9] Armbrust et al., “A view of cloud computing,” Communication of

ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. [Online]. Available:

http://doi.acm.org/10.1145/1721654.1721672

[10] Aceto et al., “Cloud monitoring: A survey,” Computer Networks, vol. 57,

no. 9, pp. 2093–2115, 2013.

[11] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot instances

via checkpointing in the Amazon elastic compute cloud,” in IEEE 3rd

International Conference on Cloud Computing (CLOUD)., July 2010, pp.

236–243.

[12] S. Karunakaran, V. Krishnaswamy, and R. P. Sundarraj, Decisions, mod-

els and opportunities in cloud computing economics: A review of re-

search on pricing and markets. Springer International Publishing,

2014, ch. Decisions, Models and Opportunities in Cloud Computing Eco-

nomics: A Review of Research on Pricing and Markets, pp. 85–99.

[13] S. Singh, I. Chana, and R. Buyya, “STAR: SLA-aware autonomic man-

agement of cloud resources,” IEEE Transactions on Cloud Computing,

2017.

[14] Andrieux et al., “Web Services Agreement specification WS-

Agreement,” in Global Grid Forum, vol. 2, 2007.

http://doi.acm.org/10.1145/1721654.1721672

BIBLIOGRAPHY 110

[15] Keller et al., “The WSLA framework: Specifying and monitoring ser-

vice level agreements for web services,” Journal of Network and Systems

Management, vol. 11, no. 1, pp. 57–81, 2003.

[16] Lamanna et al., “SLAng: A language for service level agreements,” The

Ninth IEEE Workshop on Future Trends of Distributed Computing Sys-

tems, 2003., 2003.

[17] Tosic et al., “WSOL-Web service offerings language,” in Web Services,

E-Business, and the Semantic Web. Springer, 2008, pp. 57–67.

[18] D. K. Barry, Web services, service-oriented architectures, and cloud com-

puting: The savvy manager’s guide, M. Kaufmann, Ed. Morgan Kauf-

mann, 2003.

[19] W. Theilmann, R. Yahyapour, and J. Butler, “Multi-level SLA manage-

ment for service-oriented infrastructures,” in Towards a Service-Based

Internet, ser. Lecture Notes in Computer Science, P. Mahonen, K. Pohl,

and T. Priol, Eds. Springer Berlin Heidelberg, 2008, vol. 5377, pp.

324–335.

[20] Ferrer et al., “OPTIMIS: A holistic approach to cloud service provision-

ing,” Future Generation Computer Systems, vol. 28, no. 1, pp. 66–77,

2012.

[21] G. Breiter and V. K. Naik, “A framework for controlling and managing

hybrid cloud service integration,” in IEEE International Conference on

Cloud Engineering (IC2E)., March 2013, pp. 217–224.

[22] Buyya et al., “Cloud computing and emerging IT platforms: Vision,

hype, and reality for delivering computing as the 5th utility,” Future Gen-

eration Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.

BIBLIOGRAPHY 111

[23] E. Elmroth and J. Tordsson, “An interoperable, standards-based grid re-

source broker and job submission service,” in First International Confer-

ence on e-Science and Grid Computing, 2005., July 2005, pp. 9 pp.–220.

[24] S. Sundareswaran, A. Squicciarini, and D. Lin, “A brokerage-based ap-

proach for cloud service selection,” in 2012 IEEE Fifth International

Conference on Cloud Computing, 2012, pp. 558–565.

[25] M. Mihailescu and Y. M. Teo, “Dynamic resource pricing on federated

clouds,” in 10th IEEE/ACM International Conference on Cluster, Cloud

and Grid Computing (CCGrid), 2010, pp. 513–517.

[26] T. Clark, “Quantifying the benefits of the rightscale cloud management

platform,” Fact Point Group Whitepaper, funded by Rightscale, 2010.

[27] S. Zhuk, A. Chernykh, A. Avestiyan, S. Gaissaryan, N. Kuzjurin,

A. Pospelov, and D. Grushin, “Comparison of scheduling heuristics for

grid resource broker,” in Proceedings of the Fifth Mexican International

Conference in Computer Science, 2004. ENC 2004., Sept 2004, pp. 388–

392.

[28] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-optimal

scheduling in hybrid iaas clouds for deadline constrained workloads,” in

IEEE 3rd International Conference on Cloud Computing (CLOUD)., July

2010, pp. 228–235.

[29] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad, “Cloud com-

puting pricing models: A survey,” International Journal of Grid & Dis-

tributed Computing, vol. 6, no. 5, pp. 93–106, 2013.

BIBLIOGRAPHY 112

[30] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and Grid com-

puting 360-degree compared,” in Grid Computing Environments Work-

shop, 2008. GCE ’08, Nov 2008, pp. 1–10.

[31] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,

“Deconstructing Amazon EC2 spot instance pricing,” ACM Transactions

on Economics and Computation, vol. 1, no. 3, p. 16, 2013.

[32] K. M. Sim, “Agent-based cloud computing,” IEEE Transactions on Ser-

vices Computing, vol. 5, no. 4, pp. 564–577, Fourth 2015.

[33] Modica et al., “Dynamic re-negotiations of SLA in service composition

scenarios,” in Software Engineering and Advanced Applications, 2007.

IEEE, 2007, pp. 359–366.

[34] J. Sahni and D. P. Vidyarthi, “A cost-effective deadline-constrained dy-

namic scheduling algorithm for scientific workflows in a cloud environ-

ment,” IEEE Transactions on Cloud Computing, vol. 6, no. 1, pp. 2–18,

2018.

[35] Amazon, “Amazon EC2 spot cloud,” http://spotcloud.com/, 2016, [On-

line; accessed 18-January-2016].

[36] Nurmi et al., “Eucalyptus: A technical report on an elastic utility com-

puting architecture linking your programs to useful systems,” in UCSB

TECHNICAL REPORT. Citeseer, 2008.

[37] Jin et al., “Analysis on service level agreement of web services,” HP June,

2002.

[38] Koller et al., “Towards autonomous SLA management using a proxy-like

approach,” Multi-Agent and Grid Systems, vol. 3, no. 3, pp. 313–325,

2007.

http://spotcloud.com/

BIBLIOGRAPHY 113

[39] Wu et al., “Service Level Agreement (SLA) in utility computing sys-

tems,” arXiv preprint arXiv:1010.2881, 2010.

[40] Comuzzi et al., “Establishing and monitoring SLAs in complex service

based systems,” in IEEE International Conference on Service Computing,

ICWS 2009. IEEE, 2009, pp. 783–790.

[41] Brandic et al., “VIESLAF Framework: enabling adaptive and versatile

SLA-management,” Grid Economics and Business Models, pp. 60–73,

2009.

[42] I. Rodero, F. Guim, J. Corbalan, L. Fong, and S. M. Sadjadi, “Grid bro-

ker selection strategies using aggregated resource information,” Future

Generation Computer Systems, vol. 26, no. 1, pp. 72 – 86, 2010.

[43] S. Kumar, K. Dutta, and V. Mookerjee, “Maximizing business value by

optimal assignment of jobs to resources in grid computing,” European

Journal of Operational Research, vol. 194, no. 3, pp. 856 – 872, 2009.

[44] K. Leal, E. Huedo, and I. M. Llorente, “A decentralized model for

scheduling independent tasks in federated Grids,” Future Generation

Computer Systems, vol. 25, no. 8, pp. 840 – 852, 2009.

[45] L. Katia, H. Eduardo, and M. Llorente Ignacio, “Performance-based

scheduling strategies for HTC applications in complex federated grids,”

Concurrency and Computation: Practice and Experience, vol. 22, no. 11,

pp. 1416–1432, 2010.

[46] M. D. de Assunção and R. Buyya, “Performance analysis of allocation

policies for interGrid resource provisioning,” Information and Software

Technology, vol. 51, no. 1, pp. 42 – 55, 2009, special Section - Most Cited

Articles in 2002 and Regular Research Papers.

BIBLIOGRAPHY 114

[47] E. Elmroth and J. Tordsson, “A Grid resource broker supporting advance

reservations and benchmark-based resource selection,” in Applied Paral-

lel Computing. State of the Art in Scientific Computing, ser. Lecture Notes

in Computer Science, J. Dongarra, K. Madsen, and J. Wasniewski, Eds.

Springer Berlin Heidelberg, 2006, vol. 3732, pp. 1061–1070.

[48] M. Dias de Assunção, R. Buyya, and S. Venugopal, “Intergrid: A case

for internetworking islands of Grids,” Concurrent Computing : Practice

and Experience, vol. 20, no. 8, pp. 997–1024, Jun. 2008.

[49] E. Laure, A. Edlund, F. Pacini, P. Buncic, M. Barroso, A. Di Meglio,

F. Prelz, A. Frohner, O. Mulmo, A. Krenek et al., “Programming the Grid

with gLite,” Computational Methods in Science and Technology, vol. 12,

pp. 33–45, 2006.

[50] H. Mohamed and D. Epema, “KOALA: A co-allocating Grid scheduler,”

Concurrency and Computation: Practice and Experience, vol. 20, no. 16,

pp. 1851–1876, 2008.

[51] P. Wieder, J. Seidel, O. Wäldrich, W. Ziegler, and R. Yahyapour, “Us-

ing SLA for resource management and scheduling - A survey,” in Grid

Middleware and Services. Springer US, 2008, pp. 335–347.

[52] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,” IEEE

Intelligent Systems, vol. 16, no. 2, pp. 46–53, 2001.

[53] B. Carminati, E. Ferrari, and P. C. K. Hung, “Security conscious web ser-

vice composition,” in International Conference on Web Services, 2006.

ICWS ’06., Sept 2006, pp. 489–496.

[54] A. Barros and M. Dumas, “The rise of web service ecosystems,” IT Pro-

fessional, vol. 8, no. 5, pp. 31–37, Sept 2006.

BIBLIOGRAPHY 115

[55] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente,

“Cloud brokering mechanisms for optimized placement of virtual

machines across multiple providers,” Future Generation Computer

Systems, vol. 28, no. 2, pp. 358 – 367, 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X11001373

[56] A. Snavely, G. Chun, H. Casanova, R. F. Van der Wijngaart, and M. A.

Frumkin, “Benchmarks for grid computing: a review of ongoing efforts

and future directions,” ACM SIGMETRICS Performance Evaluation Re-

view, vol. 30, no. 4, pp. 27–32, 2003.

[57] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, and I. M.

Llorente, “Scheduling strategies for optimal service deployment across

multiple clouds,” Future Generation Computer Systems, vol. 29, no. 6,

pp. 1431 – 1441, 2013.

[58] A. Srivastava and P. G. Sorenson, “Service selection based on customer

rating of quality of service attributes,” in IEEE International Conference

on Web Services (ICWS), 2010, July 2010, pp. 1–8.

[59] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,

R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda,

W. Emmerich, and F. Galan, “The reservoir model and architecture for

open federated cloud computing,” IBM Journal of Research and Devel-

opment, vol. 53, no. 4, pp. 535–545, Jul. 2009.

[60] J. Nakai, “Pricing Computing Resource: Reading between the lines and

beyond,” NAS-01-010, Tech. Rep., 2002.

[61] E. Elmroth, F. G. Marquez, D. Henriksson, and D. P. Ferrera, “Account-

ing and billing for federated cloud infrastructures,” in Eighth Interna-

http://www.sciencedirect.com/science/article/pii/S0167739X11001373

BIBLIOGRAPHY 116

tional Conference on Grid and Cooperative Computing, 2009. GCC ’09.,

Aug 2009, pp. 268–275.

[62] P. Leitner, W. Hummer, and S. Dustdar, “Cost-based optimization of ser-

vice compositions,” Services Computing, IEEE Transactions on, vol. 6,

no. 2, pp. 239–251, April 2013.

[63] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual machine place-

ment across multiple cloud providers,” in Services Computing Confer-

ence, 2009. APSCC 2009. IEEE Asia-Pacific, Dec 2009, pp. 103–110.

[64] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic models

for resource management and scheduling in Grid computing,” Concur-

rency and Computation: Practice and Experience, vol. 14, pp. 1507–

1542, 2002.

[65] D. Abramson, R. Buyya, and J. Giddy, “A computational economy for

Grid computing and its implementation in the Nimrod-G resource bro-

ker,” Future Generation Computer Systems, vol. 18, pp. 1061–1074, Oct.

2002.

[66] G. Stuer, K. Vanmechelen, and J. Broeckhove, “A commodity market

algorithm for pricing substitutable Grid resources,” Future Generation

Computer Systems, vol. 23, pp. 688 – 701, 2007.

[67] A. Caracas and J. Altmann, “A pricing information service for Grid com-

puting,” in Proceedings of the 5th International Workshop on Middleware

for Grid Computing: Held at the ACM/IFIP/USENIX 8th International

Middleware Conference, ser. MGC ’07. New York, NY, USA: ACM,

2007, pp. 4:1–4:6.

BIBLIOGRAPHY 117

[68] J. Roovers, K. Vanmechelen, and J. Broeckhove, “A reverse auction mar-

ket for cloud resources,” in Proceedings of the 8th International Confer-

ence on Economics of Grids, Clouds, Systems, and Services. Berlin,

Heidelberg: Springer-Verlag, 2012, pp. 32–45.

[69] B. Javed, P. Bloodsworth, R. U. Rasool, K. Munir, and O. Rana, “Cloud

Market Maker: An automated dynamic pricing marketplace for cloud

users,” Future Generation Computer Systems, vol. 54, pp. 52 – 67, 2016.

[70] Y. M. Teo and M. Mihailescu, “A strategy-proof pricing scheme for mul-

tiple resource type allocations,” in International Conference on Parallel

Processing, 2009. ICPP ’09, 2009, pp. 172–179.

[71] M. Macías and J. Guitart, “A genetic model for pricing in cloud comput-

ing markets,” in Proceedings of the 2011 ACM Symposium on Applied

Computing. ACM, 2011, pp. 113–118.

[72] H. Li, J. Liu, and G. Tang, “A pricing algorithm for cloud computing

resources,” in Proceedings of the International Conference on Network

Computing and Information Security (NCIS), vol. 1, May 2011, pp. 69–

73.

[73] C. F. Li, “Cloud computing system management under flat rate pricing,”

Journal of Network and Systems Management, vol. 19, no. 3, pp. 305–

318, 2011.

[74] S.-y. Wu and R. D. Banker, “Best pricing strategy for information ser-

vices,” Journal of the Association for Information Systems, vol. 11, no. 6,

pp. 339–366, 2010.

BIBLIOGRAPHY 118

[75] J. Huang, R. J. Kauffman, and D. Ma, “Pricing strategy for cloud comput-

ing: A damaged services perspective,” Decision Support Systems, vol. 78,

pp. 80 – 92, 2015.

[76] S.-H. Chun, B. S. Choi, Y. W. Ko, and S. H. Hwang, Frontier and inno-

vation in future computing and communications. Springer Netherlands,

2014, ch. The Comparison of Pricing Schemes for Cloud Services, pp.

853–861.

[77] Misc, “Smart cloud broker,” http://www.smartcloudbroker.com/, 2015,

[Online; accessed 03-November-2015].

[78] PlanForCloud, “Planforcloud: Cloud portfolio management,” https://

www.planforcloud.com/, 2015, [Online; accessed 03-November-2015].

[79] Cloudorado, “Cloudorado: Cloud computing comparison engine,” https:

//www.cloudorado.com/, 2015, [Online; accessed 03-November-2015].

[80] Theilmann et al., “A reference architecture for multi-level SLA manage-

ment,” Journal of Internet Engineering, vol. 4, no. 1, 2010.

[81] C. computing use case group, “Cloud computing use case whitepaper,”

Service Level Agreement, 2010.

[82] Sericola and Bruno, “Availability analysis of repairable computer systems

and stationarity detection,” IEEE Transactions on Computers, vol. 48,

no. 11, pp. 1166–1172, 1999.

[83] Schnorr et al., “Visualization and detection of resource usage anomalies

in large scale distributed systems,” Research Report, 2010.

[84] Rahman et al., “Jaccard index based availability prediction in enterprise

grids,” Procedia Computer Science, vol. 1, no. 1, pp. 2707–2716, 2010.

http://www.smartcloudbroker.com/
https://www.planforcloud.com/
https://www.planforcloud.com/
https://www.cloudorado.com/
https://www.cloudorado.com/

BIBLIOGRAPHY 119

[85] E. Charles, An introduction to reliability and maintainability engineering.

McGraw Hill New York, NY, 2010.

[86] D. K. Chow, “Availability of some repairable computer systems,” IEEE

Transactions on Reliability, vol. 24, no. 1, pp. 64–66, 1975.

[87] Hogan et al., “NIST: Cloud computing standards roadmap,” NIST Special

Publication, p. 35, 2011.

[88] Machado et al., “Considerations on the interoperability of and between

cloud computing standards,” in 27th Open Grid Forum (OGF27), G2C-

Net Workshop: From Grid to Cloud Networks, Banff, Canada, 2009.

[89] S. Ortiz, “The problem with cloud-computing standardization,” IEEE

Computer, vol. 44, no. 7, pp. 13–16, 2011.

[90] Chen et al., “Framework for enterprise interoperability,” in Proceedings

of IFAC Workshop EI2N, 2006, pp. 77–88.

[91] D. Group C4ISR, “Levels of Information System Interoperability (LISI),”

C4ISR Letter, 1998.

[92] Dahbur et al., “A survey of risks, threats and vulnerabilities in cloud com-

puting,” in Proceedings of the 2011 International Conference on Intelli-

gent Semantic Web-Services and Applications. ACM, 2011, p. 12.

[93] Goel et al., “Time-dependent error-detection rate model for software re-

liability and other performance measures,” IEEE Transactions on Relia-

bility, vol. 28, no. 3, pp. 206–211, 1979.

[94] Goo et al., “Facilitating relational governance through service level

agreements in IT outsourcing: An application of the commitment-trust

theory,” Decision Support Systems, vol. 46, no. 1, pp. 216–232, 2008.

BIBLIOGRAPHY 120

[95] Mcknight et al., “Trust in a specific technology: An investigation of its

components and measures,” ACM Transactions on Management Informa-

tion Systems (TMIS), vol. 2, no. 2, p. 12, 2011.

[96] Liu et al., “Research and application of sidewall stability prediction

method based on analytic hierarchy process and fuzzy integrative eval-

uation method,” Natural Science, vol. 4, no. 2, pp. 142–147, 2012.

[97] Manchala and W. Daniel, “E-commerce trust metrics and models,” IEEE

Internet Computing, vol. 4, no. 2, pp. 36–44, 2000.

[98] Emeakaroha et al., “Towards autonomic detection of SLA violations in

cloud infrastructures,” Future Generation Computer Systems, vol. 28,

no. 7, pp. 1017–1029, 2012.

[99] Yan et al., “Autonomous service level agreement negotiation for service

composition provision,” Future Generation Computer Systems, vol. 23,

no. 6, pp. 748–759, 2007.

[100] C. Pettey. (2009, July) Consumers need brokers to unlock the potential of

cloud services. [Online]. Available: http://www.gartner.com/newsroom/

id/1064712

[101] A. Vijaya and N. Venkataraman, “A model driven framework for portable

cloud services,” International Journal of Electrical and Computer Engi-

neering (IJECE), vol. 6, pp. 708–716, 04 2016.

[102] G. Campanella and R. A. Ribeiro, “A framework for dynamic multiple-

criteria decision making,” Decision Support Systems, vol. 52, no. 1, pp.

52 – 60, 2011.

http://www.gartner.com/newsroom/id/1064712
http://www.gartner.com/newsroom/id/1064712

BIBLIOGRAPHY 121

[103] T. J. Stewart, “A critical survey on the status of multiple criteria decision

making theory and practice,” Omega, vol. 20, no. 5–6, pp. 569 – 586,

1992.

[104] R. Fourer, D. M. Gay, and B. W. Kernighan, “A modeling language for

mathematical programming,” Management Science, vol. 36, no. 5, pp.

519–554, 1990.

[105] J. Bisschop, AIMMS-Optimization modeling. Lulu. com, 2006.

[106] L. Schrage, Lindo an optimization modeling system/book and macintosh

disk. Boston, MA, United States: Course Technology Press, 1990.

[107] I. Corporation, “Moving to the cloud: Understanding the total cost of

ownership,” Intacct Letter, 2011.

[108] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of

scalable cloud computing environments and the CloudSim toolkit: Chal-

lenges and opportunities,” in International Conference on High Perfor-

mance Computing & Simulation, 2009. HPCS’09. IEEE, 2009, pp. 1–

11.

[109] G. Bitran and R. Caldentey, “An overview of pricing models for rev-

enue management,” Manufacturing and Service Operations Manage-

ment, vol. 5, no. 3, pp. 203–229, 2003.

[110] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provi-

sioning cost in cloud computing,” IEEE Transactions on Services Com-

puting, vol. 5, pp. 164–177, 2012.

[111] S.-H. Chun and B.-S. Choi, “Service models and pricing schemes for

cloud computing,” Cluster Computing, vol. 17, pp. 529–535, 2014.

BIBLIOGRAPHY 122

[112] B. Sharma, R. K. Thulasiram, P. Thulasiraman, and R. Buyya, “Claba-

cus: A risk-adjusted cloud resources pricing model using financial option

theory,” IEEE Transactions on Cloud Computing, vol. 3, pp. 332–344,

2015.

[113] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos, “An online

mechanism for resource allocation and pricing in clouds,” IEEE Transac-

tions on Computers, vol. 65, pp. 1172–1184, 2016.

	ACKNOWLEDGEMENTS
	ABSTRACT
	ABBREVIATIONS
	ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Cloud Computing Economics
	Service Level Agreement
	Agent-based Cloud Resource Provisioning
	Dynamic Pricing

	Problem Statement and Objectives
	Challenges and Requirements

	Proposed Solution
	Contributions
	Organization

	Background and Related Work
	SLA in Web Technologies
	Cloud Brokering Architecture
	Grid resource brokering
	Web service brokering
	Cloud computing brokering

	Cloud Broker Pricing
	Dynamic pricing
	Hybrid pricing

	Summary

	Service Level Agreement in Cloud Computing
	Need for SLA in Cloud Computing
	Our Work
	Availability
	Interoperability
	Reliability
	Trust

	CSLAT: A Template for Cloud SLA
	CSLAT utilization
	Summary

	Cloud Brokering Architecture
	Broker Architecture
	Cloud Scheduler
	Experimental Setup
	Results
	Summary

	Dynamic Cloud Broker Pricing Model
	Motivation
	Cloud Broker Pricing Model
	Basic Model
	Pricing Band Estimation

	Evaluation
	Discussion and Analysis
	Summary

	Conclusion and Future Work
	Summary
	Lessons Learned and Significance
	Future Scope and Research Directions
	Automation of SLA
	Implementing broker-intervened multi-level dynamic SLA
	Machine learning approach for QoS based dynamic pricing
	Migration of VMs
	Enhancing assignment of resources in changing requirements

	Bibliography

