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ABSTRACT

Biometric-based user identification and authentication systems have gained popularity

over the traditional password-based schemes wherein the user must remember the secret

information. Moreover, fingerprint biometric systems have received wide acceptance in gov-

ernment offices, academic institutions, and industrial applications due to their affordable

cost, user convenience, and high accuracy. However, these systems become vulnerable to

various threats due to the diverse components involved in the system. The work in this thesis

is an attempt to explore the security aspect of fingerprint biometric systems. Initially, a six-

teen attack point-based threat model for a match-in-database fingerprint biometric system is

proposed and compared with four existing models. The model depicted all probable threats

to the system and its description provided the countermeasures for each attack scenario. The

model is further employed to categorise the attacks into eight classes based on the vulnerable

components. The main contribution of the dissertation focuses on the MasterPrint vulner-

ability. A MasterPrint is a partial fingerprint identifying at least 4% distinct subjects from

the enrolled user’s database. In simple words, a MasterPrint illustrates a non-unique user

identification by the system. As latent fingerprints collected from crime spots are usually

partial, we experimented on a latent fingerprint dataset to investigate the possibility of La-

tent MasterPrint. The results revealed that Latent MasterPrint do exist.

As the MasterPrint vulnerability has proved to be a significant threat to the fingerprint

biometric system, our main contribution in this thesis aims to mitigate the vulnerability

through novel minutiae-based feature extraction approaches. We considered MasterPrint

vulnerability an identification problem and experimented with the proposed methods us-

ing open-set and closed-set identification scenarios. The work in this thesis presented two

schemes and compared the results with six existing methods on five standard fingerprint

datasets. The idea to disallow tolerance during feature comparison delivered satisfactory

results for both approaches. The first method addressed the vulnerability by creating an

eight-axes coordinate system around a reference minutia and extracting local features over

binarized and thinned partial fingerprint images. Here, each minutia is represented as a

seventeen-element integer-valued feature vector. A similarity score computation metric suit-

able for strict feature vector comparison is also introduced. The results showed about 92%

accuracy while generating only 2.25% MasterPrints. In the second approach, three minutiae-

based geometric constructs are formed to create a six-element integer-valued feature vector.

i



The method resulted in an identification accuracy of around 97% while generating merely

0.01% MasterPrints. Further, the second approach is investigated using 16 diverse combi-

nations of thresholding and thinning approaches to study the impact of preprocessing tech-

niques on its identification rate and percentage of MasterPrint generated using five bench-

mark fingerprint datasets. The observations proved that the thresholding and thinning meth-

ods substantially influence the accuracy and other crucial parameters. It also confirmed that

every thresholding and thinning method from the literature may not be suitable for high-

security applications, such as anonymous user identification using partial fingerprint.

ii
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Chapter 1

Introduction

The term “biometrics” is derived from two Greek words bios meaning “life” and metron

meaning “measurement” [5]. Thus, we can deduce that a biometric system collects and anal-

yses biological data employing science and technology. The personal traits are challenging

to forge, misplace, and share. Hence, the biometric systems are preferred over token-based

security schemes, e.g., ID cards, keys, etc., and knowledge-based authentication methods,

e.g., PIN, password, etc. [6]. These systems are widely utilised for individual recognition.

The terms, recognition and authentication, are used in generic sense for verification and

identification while referring to a biometric system. A typical scenario of verification and

identification process is shown in Figure 1.1. The system administrator enrols at least three

samples of the same finger of a user to improve the system accuracy. In this scenario, we as-

sume that the template database contains N templates corresponding to m users, m < N . In

the case of verification, the user, Uk, submits his biometric data, U i
k, where k ∈ {1, 2, . . . ,m}

and i denotes the input fingerprint, to the sensing device and reveals his identity to the sys-

tem. The system extracts features from the data to create an encrypted template, T i
k. The

template comparison module fetches the enrolled templates corresponding to the claimed

user, T d
k , where d denotes the database template, and compares it with T i

k to decide the

acceptance or rejection of the claim. However, the identification system accepts the input

biometric data from an anonymous user and creates a template, T i. The comparison module

fetches every enrolled template from the database and compares it with T i. As a result, the

identity of a user, Uk, corresponding to the enrolled template possessing maximum similar

features with T i, becomes the unknown user’s identity.
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Figure 1.1: Biometric system application for (a) user verification, and (b) user
identification.

Biometric systems accept various physiological traits, such as palmprint, fingerprint,

face, iris, ear, etc., and behavioural characteristics, such as signature, gait, voice, stroke,

etc., for individual recognition. However, fingerprint biometric systems (FBS) gained wide

acceptance for commercial applications due to user convenience, high accuracy, and afford-

able cost. The fingerprint biometric systems are extensively used for access control, user

authentication and authorisation in military, government, industry, and academic institutions.

Hence, it becomes imperative to analyse these systems from security perspective. Therefore,

the work in this thesis revolves around identifying security threats and vulnerabilities to FBS

and uncovering possible ways to mitigate them. In the initial work from this thesis, a com-

prehensive threat model comprising sixteen vulnerable attack points to a match-in-database

fingerprint biometric system is proposed. In September 2017, the investigations on the partial

fingerprint identification system exposed the MasterPrint vulnerability [7]. A partial finger-

print fortuitously identifying at least 4% unique subjects enrolled with the system was termed

a MasterPrint. Latent fingerprints are lifted from surfaces of objects that are inadvertently

touched or handled by a person [8]. A latent MasterPrint is referred to a latent fingerprint that

identifies at least 4% distinct subjects from a database storing fingerprints of past offenders.
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Further work in this thesis is focused on mitigating the recently reported MasterPrint vulner-

ability, investigating the chances of generating Latent MasterPrint, and studying the impact

of fingerprint preprocessing approaches towards addressing the MasterPrint vulnerability.

The organisation of this chapter is as follows. The necessity for investigating and ad-

dressing security concerns of FBS are discussed in Section 1.1. The motivation of the work

in this thesis follows in Section 1.2. Subsequently, Section 1.3 states the objectives of the

research carried out in this thesis. Section 1.4 highlights the major contributions made in

this thesis. Finally, organisation of the thesis is given in Section 1.5.

1.1 Necessity of investigating FBS security

Fingerprint biometric systems are the most successful commercial products employed by

various industries, universities, government, and military organisations worldwide. The

other modalities, such as the face, iris, voice, palmprint, etc., have several drawbacks. The

disadvantages of these systems include higher implementation costs, comparatively lower

accuracy, and more user assistance. Moreover, the judicial systems consider latent finger-

prints as supportive evidence. Therefore, academic researchers and forensic investigators

rigorously study automatic fingerprint identification systems (AFIS).

Furthermore, other biometric modalities contain large-sized templates, so their response

time is usually higher than the fingerprint biometric systems. Hence, other traits are less

preferred for authentication involving large enrolled templates. Moreover, as fingerprint

systems occupy the largest market share, a probable threat to these systems may incur a

tremendous financial loss. We thus deduced that investigating various security aspects of

fingerprint biometric systems will be more impactful, as it would affect a larger community.

1.2 Motivations

The research accomplished in this thesis work is motivated by the following observations

from the literature:
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• The latest threat model for a biometric system appeared in 2008. However, researchers

presented several potential threats and attacks on these systems during the last decade,

such as side-channel attacks, which remained missing from existing threat models. As

the system has evolved, essential components, such as a template generation module,

became an integral part of the system. However, they did not appear in the earlier threat

models. Hence, we require a thorough analysis and examination of the fingerprint

biometric system to pinpoint each vulnerable component and identify every probable

threat to them.

• Recent investigations unveiled the MasterPrint vulnerability for a partial fingerprint

identification system. The study proved that a MasterPrint could benefit an adversary

to mount a wolf attack and disclose the identity of several enrolled users.

• As the latent fingerprints are mostly partial, there exist chances of observing a similar

threat using latent fingerprint, i.e., Latent MasterPrint. The investigations in this di-

rection could motivate the forensic agencies to cross-check their existing AFIS against

robustness towards MasterPrint vulnerability.

• The biometric systems usually apply preprocessing techniques to the sensed data.

Hence, it becomes imperative to study the impact of these methods on the system

accuracy and towards addressing the MasterPrint vulnerability.

The above mentioned points motivated us to perform a comprehensive security analysis

of the match-in-database fingerprint biometric system, investigate the possibility of Latent

MasterPrint, examine the impact of preprocessing approaches on the overall system perfor-

mance while addressing the MasterPrint vulnerability, and provide solutions to address the

MasterPrint vulnerability.

1.3 Objectives

Based on the motivation stated above, the objectives pursued in this thesis is as follows.

• Performing an in-depth study of fingerprint biometric system security. The task in-

volves introducing a threat model depicting every vulnerable component as a potential
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attack point with its respective threats.

• Experimenting with Multi-sensor Optical And Latent Fingerprint (MOLF)

Database [9] to study the possibility of Latent MasterPrint generation utilising a stan-

dard algorithm for feature extraction and matching.

• Introducing novel local feature-based schemes to identify partial fingerprints uniquely

that simultaneously alleviates the MasterPrint generation. We will use minutiae-based

features for partial fingerprint identification and addressing the vulnerability. Further,

the performance of the proposed approaches will be evaluated using standard finger-

print datasets, and the results will be compared against existing approaches from the

literature.

• Evaluating the impact of various thresholding and thinning approaches during the

preprocessing stage towards MasterPrint generation and identification accuracy. The

experimental setup will employ four well-known thresholding and thinning methods

from the literature.

1.4 Contributions of the thesis

This section presents the significant contributions of the research work on the security as-

sessment of fingerprint biometric systems and introducing novel methods to mitigate the

MasterPrint vulnerability. A graphical overview of the contributions made in this thesis is

shown in Figure 1.2. A brief description of these contributions is as below.

1.4.1 Threat modeling of fingerprint biometric system

A threat model represents the system from an adversary’s perspective to locate the structural

vulnerabilities and probable threats to break the system security. We introduce a comprehen-

sive threat model for the match-in-database fingerprint biometric system comprising sixteen

attack points (AP). The proposed model highlights the existing and potential threats to six

components and ten communication links between them. The model includes the template

protection techniques module and the biometric system controlled application which were
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Figure 1.2: Graphical overview of the contributions made in this thesis

missing in the existing models. The description of the model includes the countermeasures

to strengthen the security of the biometric system. The extension of the threat model com-

prises classifying the system threats into eight classes to facilitate securing multiple APs with

a fewer mitigation techniques.

1.4.2 Latent MasterPrint: a case study

The investigation to study the possibility of Latent MasterPrint is still an open problem.

Hence, in our subsequent work, we employ a latent fingerprint dataset under a closed-set

identification environment to detect minutiae using the MINDTCT algorithm and perform

matching using the BOZORTH3 algorithm. The experiments target assessing Latent Mas-

terPrint generation and identification accuracy at various thresholds.

1.4.3 MasterPrint mitigation using minutiae-based coordinate system

In the first attempt towards MasterPrint mitigation, we create an eight-axes coordinate system

around a reference minutia. The feature extraction in this case consists of the intensity-shift
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over each axis in a binarized fingerprint image, and the intensity-factor over each axis in

a thinned fingerprint image. The proposed method outperforms existing approaches and

proved robust against MasterPrint vulnerability.

1.4.4 MasterPrint mitigation using minutiae geometry

In another attempt to further improve the identification rate and reduce MasterPrint gen-

eration compared to the first approach, we have presented a novel method to address the

MasterPrint vulnerability. In this case, we employ geometric constructs involving minu-

tiae as its vertices to create an integer-valued feature vector. The approach delivered better

identification accuracy and significantly reduced MasterPrints.

1.4.5 Investigating the impact of preprocessing approaches on the per-

formance of partial fingerprint identification systems

As fingerprint identification systems comprises several independent components having ded-

icated functions, it will be unfair to label the comparison module as the only component re-

sponsible for generating MasterPrints. We have experimented with various thresholding and

thinning approaches in our subsequent task to analyse their effect on the system accuracy

and percentage of MasterPrints generated in minutiae geometry-based approach.

1.4.6 Biometric-based secure authentication for IoT-enabled devices

and applications

This work provided a broad review of the current scenario of Internet-of-Things (IoT) tech-

nology. It covered various types of IoT devices, and services and presented differences

between them in terms of their functionalities. This work also mentioned the security issues

in these devices and suggested various corrective and mitigation steps against any probable

threats to such system. The study also addressed the need for a highly secure authentication

mechanism like a biometric system to authorise and authenticate an individual. It emphasised
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the benefits of employing a fingerprint-based biometric system in an IoT infrastructure.

1.5 Organisation of the thesis

This thesis comprises seven chapters including this introductory chapter. The flow diagram

of the chapters is depicted in Figure 1.3. The description of the thesis organisation is as

follows.

Chapter 2: Background

This chapter briefly introduces existing threat models and presents the proposed threat model

comprising sixteen attack points. It further includes classifying various system threats into

eight classes to facilitate the system designer with countermeasures for similar threats at

different locations within the system.

Chapter 3: Threat Analysis of Fingerprint Biometric system

The third chapter introduces the recently researched MasterPrint vulnerability as an alarming

threat to the partial fingerprint biometric system. As the latent fingerprints are mostly partial,

we further investigate the possibility of Latent MasterPrint.

Chapter 4: MasterPrint Mitigation Using Minutiae-based Coordinate

System

The fourth chapter presents a minutiae-based approach for addressing the MasterPrint vul-

nerability. The experimental setup consists of partial datasets cropped from five standard

fingerprint datasets. The results of the proposed method are compared with existing five

schemes.
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Chapter 5: MasterPrint Mitigation Employing Minutiae Geometry

The content of this chapter is another attempt to thwart the MasterPrint vulnerability. We

have used minutiae geometry to create a novel feature vector which solved our primary aim

of addressing the MasterPrint vulnerability and delivered high identification accuracy. The

results of the proposed approach are compared with existing six methods.
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Chapter 6: Impact of Preprocessing Approaches on the Performance of

Partial Fingerprint Identification System

This chapter includes the experiments conducted using the method introduced in the fifth

chapter to assess the impact of various combinations of thresholding and thinning approaches

towards evaluating the identification accuracy and addressing the MasterPrint vulnerability.

Chapter 7: Conclusions and Future Work

This chapter concludes our work on the security aspects of the fingerprint biometric systems

and the MasterPrint vulnerability. We further provide future research directions to extend the

work presented in this thesis.

Appendix A: Biometric-based Secure Authentication for IoT Enabled

Devices and Applications

This work mentioned the security issues in IoT-enabled devices and applications and sug-

gested various corrective and mitigation steps against any probable threats to such system.

The study also addressed the need for a highly secure authentication mechanism, such as a

biometric system to authorise and authenticate an individual. It emphasised the benefits of

employing a fingerprint-based biometric system in an IoT infrastructure.
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Chapter 2

Background

Biometric systems utilise personal traits, such as fingerprint, face, iris, palmprint etc., of

an individual for authorisation and person identification. The system stores the features

extracted from these traits in encrypted format as a template. These systems typically com-

prises a sensor to capture the personal traits, a feature extractor, a matcher module, and a tem-

plate storage device. The biometric systems are broadly categorised as match-in-database

(MiD) or match-on-server (MoS) and match-on-device (MoD) systems. The main difference

between them is the location where templates are being stored. In the case of MoS systems,

a remote server contains the template database. However, MoD systems require a dedicated

chip on a smart card to store the user’s biometric template. These systems can be further cat-

egorised as template-on-card (ToC), match-on-card (MoC), and system-on-card (SoC). In

case of ToC, the smart card contains only the encrypted template. The MoC system contains

user template and the matching component on the smart card. However, SoC is a complete

biometric system on the smart card, wherein the encrypted template, matching component,

and the biometric sensor for collecting the live fingerprint are present on the smart card itself.

As MiD biometric systems are widely used due to user convenience compared to MoD sys-

tems this chapter briefly describes MiD systems, and various existing threat models to them.

Furthermore, it discusses the MasterPrint vulnerability associated with the partial fingerprint

identification systems

The organisation of this chapter is as follows. The chapter can be roughly divided into

three parts. The first part provides a detailed description of MiD fingerprint biometric system

in Section 2.1. The second part presents existing threat models to generic biometric systems

11
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and discusses the MasterPrint vulnerability in the third part. The Ratha et al. model appears

in Section 2.2.1. The Fishbone model follows in Section 2.2.2. A description of the Nagar

et al. model features in Section 2.2.3. Further, Section 2.2.4 explains the Bartlow and Cukic

framework. The details about the MasterPrint vulnerability comes under Section 2.3. Finally,

Section 2.4 provides the chapter summary.

2.1 Fingerprint Biometric System

A fingerprint biometric system utilises digital imaging techniques for fingerprint acquisition,

storage, and user verification or identification requiring minimal human efforts. These sys-

tems use unique, obscure, and permanent patterns from the biometric data to confirm the

user identity. The primary motive behind administering these systems is to provide non-

repudiable authentication [10]. Over the past two decades, biometric systems have become

the first choice application as a trusted mechanism for various organisations, including the

financial and health sector, education, government offices, military and border security appli-

cations, etc. [6]. The consumer industry has witnessed a significant increase in implement-

ing biometric authentication to replace traditional password-based schemes for electronic

equipment, such as, smart doors, smartphones, access control measures, tablets, etc. These

systems also enable controlling frauds in government schemes, reminding vaccination sched-

ules, tracking missing children, etc. [11].

Typical components of a fingerprint biometric system are depicted in Figure 2.1. The

fingerprint image is captured when the user touches the biometric sensor with his finger. The

quality of the sensed finger depends on various environmental and physiological factors, in-

cluding the pressure exerted by the user, sweat or dryness on the finger, cut or injured finger

portion, etc. Hence, usually, an image enhancement module is employed to improve the fin-

gerprint quality and facilitate accurate feature extraction. The binarization process involves

converting the grayscale fingerprint into a black and white image. A sample binarized finger-

print image is shown in Figure 2.2. The dark lines form the ridges, whereas the intermediate

white portion are termed as valleys. The point where two ridges emerge or terminate is the

most commonly employed and accepted feature known as a minutia [6]. The fingerprint

12
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Figure 2.1: Components of a typical fingerprint biometric system

Figure 2.2: A typical fingerprint pattern showing ridges, valleys, and minutia.

also possesses other features such as core, delta, an island, a lake, etc. These features are

categorised as local and global. A typical fingerprint often exhibits the local features in large

quantity, such as minutiae. The global fingerprint features comprise singular point, core, and

delta. The NIST Fingerprint Image Quality (NFIQ) level is a standard metric to measure the

quality of a fingerprint image [12]. The “NFIQ value” ranges from 1−5, where a fingerprint

with an NFIQ value of 5 indicates a poor-quality image.

Typically a biometric template possesses encrypted information essential for comparison

with an input fingerprint template, i.e., it does not include details about the original finger-

print. The ISO/IEC JTC1/SC37 standardisation has provided three formats for fingerprint

templates, namely minutiae-template, pattern-template, and image-template [2]. The minu-

tiae coordinates, orientation, and types, such as ridge bifurcation and ridge ending, are stored

in a minutiae template. The encrypted information about the ridge patterns, such as loop, arc,

whorl, etc., comprises the contents of a pattern template. However, the unadapted output of

a sensing device, such as, the fingerprint impression in its scrambled format is stored as an

image template. The adversary must be refrained from predicting or reverse-engineering

13
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the original biometric features, ridge patterns or their close replica through the encrypted

templates [13]. Thus, it is presumed that the template generation module operates as a “one-

way” scheme, such that, retrieving actual fingerprint details from the encrypted templates is

practically infeasible [14].

The properties to be satisfied by a protected and secure biometric template are as follows:

[10]:

1. It ensures that any attempt to produce the actual biometric data is practically infeasible,

2. It safeguards user privacy,

3. It guarantees marginal variation in similarity score due to acquisition fault or environ-

mental factors,

4. It prohibits the reuse of a secured template at several biometric controlled applications

without the user’s consent.

Typically, the fingerprint biometric system operates in two phases, namely, enrollment

and authentication. It can function as a verification or identification system during the au-

thentication phase. A generic procedure employed during the enrollment and authentication

phase of a match-in-database fingerprint biometric system is depicted in Figure 2.3. The

enrollment procedure is usually carried out under the supervision of a system administra-

tor. The biometric sensor captures the finger impression. The system then applies image

enhancement techniques to the sensed fingerprint pattern to facilitate accurate feature ex-

traction in the subsequent stage. The binarization technique creates a black and white ridge

pattern, whereas the thinning procedure reduces these patterns to single-pixel width to initi-

ate minutiae detection. The template generation module utilises minutiae-based features to

construct a secured and scrambled template. The system administrator completes the enroll-

ment process by assigning a unique user identity against the stored template. These templates

are stored in a remote database server and retrieved during the verification and identification

phase.

The template database in Figure 2.3 stores p templates for n subjects. In general, the sys-

tem administrator enrols a finger two to four times for user convenience during the authen-

tication phase. There are s templates per subject stored in the database. Thus, the database
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Figure 2.3: A typical minutiae feature-based match-in-database fingerprint bio-
metric system with enrollment phase, authentication scenario, and identification
scenario. The system is assumed to possess p templates corresponding to n subject
and s samples per subject are collected during enrollment phase, i.e., p = s× n.

comprises a total of p = s × n templates. During the verification phase, the user claims

his identity, u, while submitting the finger to the sensor. The system retrieves s templates

belonging to the claimed identity, i.e., tu1 , t
u
2 , . . . , t

u
s , to verify the claim. The similarity score

between these templates is used to decide if the claim is true or false. However, the identifi-

cation system accepts the fingerprint of an unknown user to determine his identity based on

the comparison with each stored template, i.e., t1, t2, . . . , tp. The system assigns the identity

of the stored template to the unknown user that generates the highest similarity score with

the live fingerprint.

The fingerprint samples of a finger acquired at multiple instances are not always same.

Hence, the comparison module allows tolerance while matching the templates. However,

the system may not consistently deliver accurate results due to intrinsic limitations, human
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Figure 2.4: Error distribution curves depicting genuine and imposter distributions
for a biometric system

error, or environmental factors [15]. The system is thus prone to several errors that reduce

its accuracy. A false match or false acceptance error occurs when the system confirms the

identity of a non-enrolled individual. A false match rate (FMR) or false accept rate (FAR)

is defined as the percentage of instances when the system accepted an intruder. A false non-

match or false reject instance involves rejecting the claim of an enrolled user. A false non-

match rate (FNMR) or false rejection rate (FRR) is defined as the percentage of instances

when the system rejected a registered user. The system threshold determines the FAR and

FRR. Typically, an organisation requiring a biometric system for high-security applications

will set a high threshold so that the false acceptance would be a rare instance. However,

an administrator at a customer service centre or a staff attendance application would lower

the threshold for the convenience of enrolled users. The typical range of FAR and FRR

applicable to high-security fingerprint recognition systems is 10−6 and 10−4, respectively

[16].

Figure 2.4 shows the FAR and FRR as a function of the system threshold. Impostor

distribution represents the spread of matching scores for non-enrolled users. Genuine distri-
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bution defines the spread of matching scores for enrolled users. The point where the curves

for these distributions intersect is termed as crossover error rate (CER) or equal-error rate

(EER). It reflects the accuracy of a biometric system in general. The figure showed that FAR

and FRR arise due to system limitations, such as false acceptance and false rejection. If

the system threshold is increased from EER, the FMR reduces whereas the FRR increases.

On the other hand, if the system threshold is decreased from EER, FRR reduces and FMR

increases.

2.1.1 Security Vulnerabilities in fingerprint biometric system

Biometric systems are extensively employed in academia, industry, government, and mili-

tary applications due to their reliability over pass-code and password-based security mech-

anisms. However, each component in a biometric system is vulnerable to multiple security

threats of varying intensity. Li et al. [17] used reconstructed fingerprints for demonstrating

a successful presentation attack. The authors utilised the minutiae points to reconstruct the

full fingerprints. Initially, a binary ridge pattern having a ridge flow similar to the original

fingerprint was created. The reconstruction of the continuous phase was carried out by elim-

inating the spirals from the phase image derived from the ridge pattern. Finally, a phase

refinement process was introduced to diminish the artefacts observed due to intervals in the

recreated phase image. The demonstration also showed that the biometric systems employing

amplitude and frequency (AM-FM) modulated fingerprint models are susceptible to the pre-

sentation attack through reconstructed fingerprints. Rozsa et al. [18] illustrated the synthesis

of fingerprint minutiae templates using a genetic algorithm attack. The authors analysed

the impact of synthesised minutiae templates on the security and privacy aspects of specific

fingerprint authentication schemes by studying the patterns of high similarity scores. The

system was designed to attack through the communication channel. It successfully mounted

an offline attack on Minutia Cylinder-Code (MCC) [19] and Protected Minutia Cylinder-

Code (PMCC) [20] systems through MCC SDK v1.4 [21].

Pashalidis [22] presented simulated annealing attack that produced synthesised, gummy,

ISO/IEC standard agreeable minutiae templates. These templates resemble and match with
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specific unknown target fingerprints. Vicinity-based matching algorithms initially divide the

fingerprints into several regions and compute the similarity score over these regions. The

paper demonstrated the construction of a minutiae template which are expected to be most

effective against systems that employ vicinity-based matching algorithms, such as Protected

Minutiae Cylinder Code (PMCC) scheme. The fuzzy vault scheme uses cryptographic op-

erations to secure the biometric templates [23]. However, investigations confirmed that a

template created by employing the fuzzy vault scheme could be unlocked using the correla-

tion attack [24]. The adversary in the attack scenario collects two fuzzy vaults assuming that

they are encrypted using the same biometric data. The correlation analysis of these two tem-

plates reveal the protected information from the vaults. In another investigation, the vaults

implemented by employing three distinct schemes were found vulnerable to brute-force at-

tack [25].

In September 2017, the investigations on the partial fingerprint identification system ex-

posed the MasterPrint vulnerability [7]. A partial fingerprint fortuitously identifying at least

4% unique subjects enrolled with the system was termed a MasterPrint. It was demonstrated

that the vulnerability facilitates mounting a wolf attack on these systems. In this attack, the

identity of a large percentage of enrolled users can be revealed by employing a dictionary

of the top five MasterPrints that identify maximum number of distinct subjects. The work

presented in this thesis provides mitigation schemes to address the MasterPrint vulnerability.

2.2 Existing threat models for biometric system

Threat modelling involves locating vulnerable components within a system and identifying

potential structural defects and threats, or prioritising the needfulness of desirable security

precautions. The literature on the biometric system shows that the threats and vulnerabilities

to these systems were extensively studied until 2008. The literature comprises four threat

models presented for a generic biometric system. The following subsections describe these

models in detail. The models depict the vulnerable components of the system assuming that

the adversary is well-equipped to access these components for mounting specific attacks.
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2.2.1 Ratha et al. model

Ratha et al. [1] proposed the first model in 2001 locating eight vulnerable information access

points as shown in Figure 2.5. The model provides a generic view of the system with single

attack at each vulnerable point. The adversary exploits these sensitive system components to

mount a specific attack, characterised as Type 1 to Type 8.

• Type 1 attack : According to the model, sensing devices possess Type 1 threats through

spoofing, false biometric submission, and residual attacks. In the case of residual

attack, the adversary accesses the system’s main memory to collect the temporarily

stored template and recreates the original fingerprint to mount a presentation attack at

the sensor. The potential attack includes presenting fake biometrics to the sensor. The

adversary acquires the biometrics of an enrolled user to access the system using his

dummy physical finger.

Figure 2.5: Ratha et al. model [1]: The dashed arrows indicate the access point of
information for mounting a specific type of attack
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• Type 2 attack : The possibility of replaying a previously captured biometric data

through the communication link connecting the sensing device and the feature ex-

traction component is designated as Type 2 attack. The attacker uses the previously

collected digitised biometric data bypassing the sensor to mount such an attack. Mas-

querading is an example of a Type 2 attack.

• Type 3 attack : The model shows the possibility of overriding the output of the feature

extraction module as Type 3 attack. A Trojan horse executing in the feature extraction

component is exercised to mount such attacks. The adversary replaces the feature ex-

traction module output with his chosen feature set. The adversary targets the software

or firmware of the biometric system to execute a Trojan horse attack [26]. A Trojan

horse is a malicious code that stays hidden or idle once implanted and can be triggered

to activate its malicious behaviour at a given time in the future. Once triggered, the

Trojan can delete, copy, or modify the data from the targeted system component.

• Type 4 attack : The adversary targeting the communication channel connecting the

feature extraction and the matcher module to modify the feature vector is termed a

Type 4 attack. The probability of success for a Type 4 attack is marginal as these two

modules are commonly implemented as a single component. The attacker can use the

channel to mount brute-force and hill-climbing attack as a Type 4 threat to the system.

• Type 5 attack : The model shows an attempt of overriding the output of the matcher

module as Type 5 attack. The similarity score computed by the matcher module can

be manipulated using a Trojan Horse executing on it.

• Type 6 attack : A Type 6 attack includes unauthorised access of the template database

records. The attacker attempts unauthorised access to the remote template database

through an external compromised system to fraudulently steal, delete, modify, substi-

tute, and reconstitute the stored templates. The adversary exploits a bug in the database

software, log information on the disk, information in cache, or primary memory to

mount a direct or indirect attack on the database. Further, the adversary explores the

possibility of template database leakage, gathers the leaked templates, and replays

them to get authorised.
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• Type 7 attack : The threat of modifying the template data in transit over the com-

munication link connecting the template database and the matcher module is labelled

as Type 7 attack. An attacker eavesdropping on the channel manages to collect the

templates under transmission. These templates or their altered copies are utilised in

mounting a replay attack on the matcher module.

• Type 8 attack : In the case of a Type 8 attack, the attacker tries to override the system

decision. The intruder circumvents all system components to influence the decision

while mounting such attacks. Hence, a successful Type 8 attack proves that there

is no effectiveness in providing excellent countermeasures to secure earlier system

components.

Ratha et al. [1] model is a generic and simplistic model that specified eight components

and a few threats to these components. However, it did not mention the link between the

feature extraction module and the template database as a part of the enrollment process. The

feature extractor follows the template generation module wherein the encrypted templates

are produced. The template generation module is also missing in the model.

2.2.2 The fishbone model

In 2008, Jain et al. [2] presented a cause and effect based fishbone model. The model de-

picting various causes leading to the vulnerabilities is shown in Figure 2.6. The oval shaped

boxes in the figure represent the causes of system faults. The arrows denote the effects, i.e.,

possible attacks due to these causes.

• Intrinsic failure comprises the system errors accountable for an individual’s false ac-

ceptance or rejection. A user placing an inappropriate or partial finger at the sensor

produces variations in intra-user feature extraction. Hence, significant deviations in

the registered user’s input and stored features stimulate false rejection. The matcher

limitations include false acceptance and false rejection. The sensor may capture partial

fingerprint due to environmental factors and improper finger placement at the sensing

device leading to intrinsic failures in the biometric systems.
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Figure 2.6: The fishbone model [2]. The blocks denote the processing phases of
a biometric system that are vulnerable targets in this model. The possible attacks
are mentioned on the arrows.

• Administration cause represents a dishonest staff, such as a system administrator, act-

ing on behalf of an adversary. A traitorous system administrator may cooperate with

an intruder to perform exception abuse or an enrollment fraud. Exception abuse is

an emergency service provided to the enrolled users to facilitate system access in the

case of a denial-of-service attack or repeated rejection due to system limitations. The

vengeful administrator may enrol the adversary with the system to carry out illicit ac-

tivities for financial benefit. The insider attacks can cause severe financial damage to

an organisation since a system administrator knows the system internals.

• The system vulnerabilities arising as consequences of authentication or an insecure en-

rollment process comprise insecure processing causes. In the case of a function creep

scenario, the adversary retrieves the enrolled user’s template through database leakage

or intercepting over the communication channel and performs a cross-comparison of

their biometric features. Additionally, such illegally accessed templates can be reused
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for other biometric controlled applications such as banking and passport services. The

adversary mounts a hill-climbing attack to create a fake fingerprint template that gen-

erates a similarity score more than the system threshold. He uses these templates for

replay attack to access the system under the identity of an enrolled user.

• The biometric template secrecy relates to the biometric overtness. The adversary

utilises the biometrics of an enrolled user collected from public places to create an

artificial or a gummy finger mould. Usually, clay, plastic, wood glue, or gelatin mate-

rials are used for such practices [27]. These moulds are exercised to mount a spoofing

attack. The spoofed fingerprints are presented to the biometric sensor to access the

system with the identity of an existing enrolled user.

2.2.3 Nagar et al. model

Nagar et al. model [2] is an extension of the fishbone model as shown in Figure 2.7. The

model depicts the factors giving rise to threat opportunities for the adversary. The factors

are specified near the dotted ovals, and their vulnerabilities leading to possible attacks are

displayed inside the ovals. The rectangles in the figure refer to primary constituents of the

biometric system under consideration.

• The adversary exploits the insecure infrastructure, such as the communication chan-

nel, to access sensitive data. The non-secure processing and the infrastructure factors

in the fishbone model are merged in this category. The threats arising from non-secure

infrastructure include replay attack, hill-climbing attack, and Trojan horse attack. The

feature extraction and comparison module are vulnerable to Trojan horse attack. The

adversary replaces the feature extraction module output with his chosen feature set and

targets the software or firmware of the biometric system to execute a Trojan horse at-

tack [26]. A Trojan horse is a malicious code that stays hidden or idle once implanted

and can be triggered to activate its malicious behaviour at a given time in the future.

Once triggered, the Trojan can delete, copy, or modify the data from the targeted sys-

tem component.

• The threat involving the overtness of biometrics includes utilising publicly available
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Figure 2.7: Nagar et al. model [2]

information about an individual’s biometrics, such as, face image cropped from pho-

tos on the Internet, finger impressions left on various surfaces, voice captured during a

telephonic conversation, etc. The adversary targets the input device to mount a spoof-

ing attack or coercion as a potential threat under the overtness of biometrics.

• Intrinsic failure comprises the system constraints authorising a non-registered user by

false acceptance. The system threshold primarily decides the authenticity of every

user trying to access the system. The system administrator of an organisation with

thousands of employees may set the system threshold to a low value and provide an

opportunity to an outsider having marginally similar features with an enrolled user’s

fingerprint template to enter the premises.

• A disloyal employee can exploit administrative privileges to harm the organisation.

The administrator cooperates with an adversary in collusion, enrollment fraud, and

mounting a spoofing attack.
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2.2.4 Bartlow and Cukic framework

In 1996, Wayman suggested classifying a biometric system as a composition of five basic

subsystems according to their application [28]. These subsystems include data collection,

transmission, signal processing, storage, and decision. Figure 2.8 depicts the Bartlow and

Cukic framework [29] [26] specifically considering the technical testing of biometric de-

vices as an extended version of Ratha et al. model and Wayman’s subsystem architecture.

The framework consists of three modules shown in dark grey colour and identified more

than twenty vulnerable potential attack points. According to Wayman’s suggestion, it fur-

ther categorises the system management module into five subsystems shown in large oval

boxes. The arrows indicate the vulnerable points within the subsystems and modules. The

vulnerabilities across the system management module can be described as follows.

• The administrative observation/system management module consists of a deceitful sys-

tem administrator. The arrows originating from this module represent the potential at-

tack points targeted at different components by the administrator. An adversary seek-

ing cooperation from an administrator to attack the data collection module is desig-

nated as attack points 1 and 2. However, the attacker manipulates the decision through

attack points 18 and 20. An attempt by the corrupt administrator to carry out false

enrollment is denoted as an attack point 19.

• The IT environment subsystem comprises operating systems and database manage-

ment systems interacting with the biometric system. A potential threat from these

applications is designated as attack point 3. An intruder can execute malicious code or

illegally invade the system through these system components.

• The biometric subsystem comprises the data transmission between the internal compo-

nents and their vulnerabilities. The data collection module is responsible for collecting

and presenting user biometric data. The input device capturing the biometric data is

accountable for attack points 4, 5, and 6. The adversary can mount replay, masquer-

ade, and spoofing attacks on the data collection module. The transmission module

compresses and transmits the biometric data. This module is susceptible to parallel
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Figure 2.8: Bartlow and Cukic framework. The numbers (1 − 20) represent po-
tential attack points. The biometric system is divided into three modules, namely,
biometric subsystem module, IT environment module, and administrative obser-
vation/system management module. The biometric subsystem module is divided
into five subsystem, namely, data collection, signal processing, decision, trans-
mission, and storage subsystem.

sessions, masquerade attacks, and replay attacks through attack points 7, 8, 9, 10, and

11. The attacker eavesdropping on the communication channel gathers the data for

mounting a brute-force attack, hill-climbing attack, and replay attack.

Attack points 12 and 14 are vulnerable to Trojan horse attacks targeting the quality control

and feature extraction modules, respectively. The adversary can use a bad quality image
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to execute a hill-climbing and brute-force attack at attack point 13. The similarity scores

collected by mounting a hill-climbing attack at the comparison module facilitate the con-

struction of the fingerprint image. The adversary may generate several enhanced fingerprint

images by applying image enhancement techniques on a poor quality image and employ

them in a brute-force attack.

The threats at attack point 15 represent the data interception during transmission between

the decision and the comparison module. The attack points 16 and 17 report acquiring tem-

plate data from an insecure database and replaying on the comparison module. An attacker

targeting to override the outcome of a decision module with the assistance of a system ad-

ministrator is depicted as attack point 20. The model presented potential threats as attack

points at various components within the biometric system. However, it did not suggest the

strategies for implementing security schemes for these systems [30]. Therefore, the model

appears as a benchmark for validating and testing the effectiveness of security techniques.

2.3 The MasterPrint vulnerability

The system administrator usually seeks at least ten partial fingerprint samples from a user

to improve the system accuracy and ensure unique user identification. However, the system

responds with a decisive match to every comparison between the input and stored template

that generates the similarity score above the system threshold. Moreover, the uniqueness of

a partial fingerprint has not been affirmed yet as in the case of the full fingerprint. Hence, the

system replies with positive decisions for several stored templates belonging to diverse sub-

jects. The scenario thus triggers a non-unique user identification through a partial fingerprint

as a potential system vulnerability.

Roy et al. [7] investigated the partial fingerprint identification system and discovered

that, as expected, the system does not perform unique user identification. The authors coined

the term MasterPrint for a partial fingerprint that can identify at least 4% distinct subjects

enrolled with the system. A MasterPrint was defined in correlation to a random guess of

a 4-digit PIN. The term implies that a MasterPrint should possess similarity with at least

4% enrolled users, where 4% denotes the average chance of guessing a random 4-digit PIN.
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Figure 2.9: A MasterPrint scenario: Assuming that the system is enrolled with
100 subjects, S1, S2, . . ., S100. Here, s is the similarity score between input partial
fingerprint and database template, t is the system threshold.

A sample scenario depicting a probable MasterPrint is shown in Figure 2.9. The system is

enrolled with 100 subjects, S1, S2, . . ., S100. The given input partial fingerprint shows a

similarity score, s, above the system threshold, t, for more than 4% of the enrolled subjects.

Hence, it becomes a MasterPrint for this identification system.

2.3.1 MasterPrint Existence Hypothesis

The MasterPrint existence hypothesis states that the probability of observing MasterPrint in

the partial fingerprint dataset is higher than in the full fingerprint dataset. Suppose there

are N subjects whose J fingers are to be enrolled such that K samples per finger should

be registered for high accuracy. The full fingerprint dataset, F i
jk, is represented as F =

{F i
jk|i ∈ {1, . . . , N}, j ∈ {1, . . . , J}, k ∈ {1, . . . , K}}. Each fingerprint from F i

jk has

dimension W × H . Let NG represent the number of full fingerprints per subject, and NT

denote the total full fingerprints. Thus, NG = J ×K and NT = N ×NG.

Biometric devices with small sensors often capture partial fingerprints of an individual.

Suppose each full fingerprint is trimmed into L partial fingerprints with dimension w × h

such that w < W and h < H . Thus, the partial fingerprint dataset, PF i
jkl, is increased L

times and represented as F ′ = {PF i
jkl|i ∈ {1, . . . , N}, j ∈ {1, . . . , J}, k ∈ {1, . . . , K}, l ∈

{1, . . . , L}}. However, the L fold increase in the dataset size adds the count of imposter

and genuine scores for every input fingerprint under the all-versus-all comparison. Con-
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sequently, the likelihood of observing chameleons showing high imposter similarity scores

may increase significantly, leading to false matches.

2.3.1.1 Hypothesis

Let P (MP ⊂ F) and P (MP ⊂ F ′) be the likelihood of observing MasterPrint (MP ) in F

and F ′, respectively. The null hypothesis is stated as:

H0 : P (MP ⊂ F) ≥ P (MP ⊂ F ′) (2.1)

Thus, the hypothesis holds only if H0 is rejected.

2.3.1.2 Hypothesis test

The hypothesis test was conducted on FVC 2002 DB1_A dataset comprising 800 full fin-

gerprints belonging to 100 users with eight samples per subject. A partial fingerprint dataset

of dimension w × h was created by cropping the full fingerprint dataset. A 50% overlap

between adjacent partial fingerprints was ensured while cropping. Moreover, the window

size was set similar to the Apple Touch ID, i.e., 150× 150. On average, the resultant dataset

comprised ten partial fingerprints for each full fingerprint.

The full and partial fingerprints possessing a minimum of ten minutiae were exercised

during comparison. The partial fingerprint matching was carried out using the VeriFinger 6.1

SDK. The full fingerprint dataset results showed 0.1% average false match rate (FMR) and

99.18% average true match rate (TMR) while generating 0.125% MasterPrints. However,

14.63% MasterPrints were observed for the partial fingerprint dataset. The t-test was applied

to these results to strengthen the hypothesis further. The observed p-value was less than

2.2 × 10−16 when the expected confidence level was 0.05. The empirical p-value was ≪

0.5. So, H0 can be rejected. The results thus confirm the alternative hypothesis that the

probability of MasterPrints in partial fingerprint datasets is higher than in the full fingerprint

dataset.
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2.3.2 MasterPrint generation

Roy et al. [7] explored two methods of MasterPrint generation. The methods were termed as

Sampled MasterPrints (SAMPs) and Synthetic MasterPrints (SYMPs). These methods were

designed for fingerprint authentication systems employing minutiae-oriented features.

2.3.2.1 Sampled MasterPrint generation

The SAMPs were selected from real fingerprint datasets. In this case, the MasterPrints were

sampled from a fixed-sized training dataset. Imposter Match Rate (IMR) represents the count

of false matches while a fingerprint is compared with other finger images, i.e., imposters. The

IMR is computed for every candidate fingerprint. Let S((χ), (i, j, k, l)) denote the similarity

score between χ and F i
jkl and θ be the system threshold. The IMR(χ) is defined as,

IMR(χ) =
1

(N − 1) · L ·NG

∑
∀i,j,k,l

ϕ((χ), (i, j, k, l))

where,

ϕ((χ), (i, j, k, l)) =


1 if S((χ), (i, j, k, l)) > θ

0 otherwise
(2.2)

The fingerprints producing maximum IMRs were selected as SAMPs. However, the

IMRs of these SAMPs may be affected when applied to other fingerprint datasets due to

variations in fingerprints captured from various sensors, noise, and quality of images. The

existence of SAMPs in a given dataset is not always possible. Hence, the feasibility of

constructing synthetic MasterPrints from SAMPs was explored.
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2.3.2.2 Synthetic MasterPrint generation

The goal behind creating SYMPs was to maximise the IMR of SAMPs that generates better

MasterPrints artificially from training over a fingerprint dataset. Let Σ denote all SAMPs,

and ω represent a candidate MasterPrint such that ω ∈ Σ. The aim is to obtain SYMP, ω′,

from Σ that maximises the objective function given below,

ω′ = argmax
ω∈Σ

{IMR(ω)} (2.3)

As probing over the entire search space is challenging, a local search is preferred to find

the solution. Synthetic fingerprints generated using a hill-climbing attack have a high prob-

ability of being falsely accepted by the fingerprint matcher [31]. Hence, the hill-climbing

attack was utilised for SYMP generation using SAMPs as the initial seed. In a hill-climbing

attack scenario, a synthetic minutiae template is generated randomly and submitted to the

fingerprint matcher [32]. The similarity score is collected to alter the template iteratively un-

til a specific condition is accomplished. During the SYMP generation process, the SAMPs

are modified such that the minutiae location and orientation are changed, or the minutiae

count is decreased or increased. The IMR value drives this process as stated in equation 2.3.

The average count of minutiae in a partial fingerprint is often low, i.e., 20 minutiae on av-

erage [33]. Hence, to ensure that the minutiae count in SYMPs is not lowered further, a lower

bound is set on the number of minutiae in SYMPs. The modified minutiae template replaces

the current template only if its IMR is improved. Thus, during the “hill-climbing” process,

the IMR increases gradually. The SAMP undergoes modification until the predetermined

maximum IMR is achieved or it completes all the iterations.

2.3.3 Experimental results

The experimentation was performed in two scenarios: image-level comparisons and finger-

level comparisons. In the case of image-level comparisons, the best SAMPs were employed

for “all-versus-all” matching. However, during finger-level comparisons, selected SAMPs
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and their corresponding SYMPs were used in attacking the enrolled subjects from the test

set. The datasets employed in the investigations comprise the fingerprint of a single finger

per subject. Hence, the terms “finger” and “subject” are used interchangeably in this chapter.

The value of IMR defines the accuracy of an attack using a MasterPrint.

Consider f distinct fingers and i samples collected per finger. The dataset size d is defined

as d = f × i. Suppose a given MasterPrint is matched with p images that belong to q fin-

gers. The image-level comparison considers the count of images matched by a MasterPrint.

However, the finger-level comparison checks the count of fingers successfully matched by

a MasterPrint. Thus, the image-level and finger-level comparison results for the mentioned

example will be p and q, respectively.

2.3.3.1 Image-level comparison

An adversary mounting a dictionary attack using MasterPrint will try a set of predetermined

fingerprints. Hence, a fingerprint dictionary comprising MasterPrint that ensures a gradual

increase in the chances of matching a large number of target fingerprints is required. The dic-

tionary of MasterPrint formed by independent SAMP selection consists of the five sampled

MasterPrints corresponding to the partial fingerprint having the highest IMRs. Sequential

SAMP selection is another approach for creating the dictionary. Initially, the partial finger-

print showing the highest IMR was chosen. The selected MasterPrint and all the partial

fingerprints identified by it were omitted from the dataset to create a new training set. The

IMR of each partial fingerprint in the new dataset was computed, and the fingerprint with the

highest IMR was chosen as the second element of the dictionary. A similar approach was

repeated until five partial fingerprints were selected for the dictionary.

2.3.3.2 Finger-level comparison

The finger-level comparison represents the scenario of replicating a dictionary attack where

the adversary is unaware of the fingerprint dataset. In this case, a MasterPrint is compared

with multiple templates of partial or full fingerprints, and a match is declared for every

instance when the imposter match score is higher than the predefined threshold.
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2.3.4 Result analysis

Roy et al. [7] studied the partial fingerprint identification by employing a 150 × 150 pixel

partial fingerprint dataset cropped from standard FVC2002 DB1_A and FingerPass DB7 ca-

pacitive partial dataset. A partial fingerprint possessing at least ten minutiae was considered

during the research. The commercial fingerprint identification software, VeriFinger 6.1 SDK,

was used for user identification from partial fingerprint. As an unexpected result, the SDK

produced 14.63% MasterPrints from the FVC dataset. The study further revealed a dictio-

nary of the top five MasterPrints identified 65.2% users from the FVC dataset. Hence, a

probable wolf attack through a dictionary of MasterPrints was another alarming concern ex-

posed during the research. The authors also proved that a hill-climbing attack could facilitate

the synthetic MasterPrint generation. The important outcome from this work is summarised

as follows:

1. The results confirmed the possibility of a dictionary attack involving meticulously se-

lected MasterPrint with high accuracy. The MasterPrints can be sampled from an ex-

isting dataset or may be developed synthetically by employing a hill-climbing attack.

The likelihood of MasterPrints from the partial fingerprint dataset and their attack ac-

curacy is significantly higher than in the full fingerprint datasets.

2. Consider a scenario involving a dictionary of five MasterPrints from a partial finger-

print dataset and allowing at most five authentication attempts. In this process, 26.46%

enrolled users in the FingerPass DB7 dataset and 65.20% enrolled users in the FVC

dataset were attacked successfully. However, the attack accuracy deviated consider-

ably with the change in FMR value and the count of samples per finger.

3. The investigation demonstrated that the attack accuracy involving sampled Master-

Prints could be improved using synthetic MasterPrints created by applying a hill-

climbing approach. The observation showed that the average increase in the accuracy

on the FingerPass dataset was ≈ 4%, whereas on the FVC dataset was ≈ 3%.

4. The study on minutiae distribution of chosen MasterPrints indicated that upper delta

points within the fingerprints form the high minutiae activity area. Cao et al. [34]
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reported that such minutiae often possess low discriminative power leading to a high

probability of matching with an imposter.

5. The results showed that the number of distinct subjects identified by a MasterPrint

could be high even if it matches a small percentage of partial fingerprints. The risk

increases as multiple samples are enrolled per finger for each subject. This observation

implies that the type and number of partial fingerprint templates must be selected with

prudence to lower the chances of matching an imposter [32].

2.3.5 Potential threats due to MasterPrints

An enrolled user may hurriedly submit a fingertip or incomplete portion of the enrolled fin-

ger at the biometric input sensor. The input device exposed to the external environment

may not be able to capture a full fingerprint impression due to small sensor size. In such

cases, a partial fingerprint is captured and compared with the enrolled templates. An ad-

versary discovering a biometric system vulnerable to MasterPrints can exploit the system

controlled application in several ways. As the MasterPrint acts like a master key, the ad-

versary conducts illegal activities for personal benefit or harm others. A robber may use a

MasterPrint to unlock a smart home security application. The automated teller machines

(ATMs) accept user fingerprints and PINs for improved security while authorising a trans-

action. However, an innocent person may unknowingly share his partial impression with a

criminal who successfully gathered other credentials for his stolen credit or debit card. As

a result, the person’s partial fingerprint acts as a MasterPrint to empower an illegal financial

transaction to withdraw money from the victim’s bank account. Thus, a presentation attack

employing a MasterPrint has a high success probability at a biometric-based access control

application.

Bontrager et al. [35] presented two approaches for synthetic MasterPrint generation em-

ploying a Generative Adversarial Network (GAN). The approach created image-level Mas-

terPrints, which produced complete images capable of mounting a successful dictionary at-

tack on the biometric system. Further, Roy et al. [36] demonstrated using evolutionary search

algorithms for synthetic MasterPrint generation with minimum parameter tuning. The au-
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thors were able to generate highly accurate MasterPrints capable of attacking unknown sub-

jects. A dictionary of the top five such MasterPrints successfully attacked 84% of users in

the FVC dataset. Thus, creating a fake, synthetic MasterPrint is feasible.

Smartphone vendors usually save manufacturing costs or reduce design complexity by

offering small sensing areas to capture the user’s fingerprint as an authentication mechanism

and provide access to the device. However, as these small-sized sensors are expected to

capture the partial fingerprint of a user, the MasterPrint vulnerability poses a severe security

threat to such devices. Synthetic MasterPrint further increases the chances of being a victim

of a presentation attack through these artificially generated and highly precise MasterPrints.

A vengeful individual may leave behind a synthesised MasterPrint that matches an innocent

person at a crime site to escape from being caught or entrap the innocent person. The judi-

ciary accepts forensic reports on fingerprint matching as supportive evidence instead of any

conclusive evidence from planting MasterPrint. However, a MasterPrint can be exploited by

a criminal to strengthen the evidence against an innocent. Moreover, IoT devices have been

in high demand recently. The smart devices vendors provide security features in IoT infras-

tructure by employing a small sensor-based fingerprint biometric authentication procedure.

However, a MasterPrint can be effectively exploited in breaking these smart devices. In a

nutshell, any device providing partial fingerprint-based identification and potentially vulner-

able to MasterPrints can be targeted by the adversary. Hence, research efforts to alleviate the

MasterPrint vulnerability has become essential to ensure consumers trust these applications.

2.3.6 Future research direction on MasterPrint vulnerability

The investigations on MasterPrint vulnerability confirmed that such MasterPrints could be

generated by employing feature and image-level synthesis [36]. Further, Bontrager et al. [35]

termed DeepMasterPrint to those MasterPrints generated by employing a complete image-

level synthesis method. The authors utilised the latent variable evolution technique to create

DeepMasterPrints from partial fingerprint images. The work by Roy et al. [7] opened up

several research directions which can be summarised as below,

1. exploring the effect of the distribution of partial fingerprints on the accuracy of attacks
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using MasterPrints,

2. improving the methods of synthetic MasterPrint generation,

3. constructing digital artefacts by applying image-level modifications to create physical

artefacts for utilising in mounting a spoofing attack [37].

2.3.6.1 Addressing MasterPrint vulnerability

The authors advised viewing the MasterPrint vulnerability from a broader perspective for

developing an accurate and reliable user identification system employing partial fingerprints.

Some of the suggestions in this direction are summarised as below,

1. designing and developing robust anti-spoofing techniques [37],

2. precisely choosing the samples and characteristics of partial fingerprints during enroll-

ment [38],

3. improving small-sized sensor resolution to promote extracting highly discriminative

features [39],

4. developing novel feature extractor and matcher modules that employ minutiae and

ridge texture features [40],

5. developing robust and efficient fusion techniques that integrate the information from

several partial fingerprints of a user [41], [42].

Roy et al. [43] introduced a template selection scheme to alleviate MasterPrint vulnera-

bility. The approach applies the maximum coverage (MC-K) algorithm to represent a finger

by choosing appropriate partial fingerprint templates with minimal parameter tuning. The

authors evaluated the performance of the approach on FVC 2002 DB1_A and the FingerPass

DB7 datasets utilising a commercial fingerprint matcher. The results proved the resilience of

the scheme towards MasterPrint generation. The method reduced the MasterPrint generation

by 8% and 6% in the FingerPass DB7 and FVC dataset at 0.1% false match rate (FMR),

respectively.
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2.4 Summary of the chapter

The chapter initially provided the details about the fingerprint biometric system, discussed

the identification and verification scenarios and types of errors, and reported recently in-

vestigated attacks on these systems. The chapter also presented existing threat models to

a biometric system. The MasterPrint vulnerability and potential threats to a partial finger-

print identification system due to the existence of MasterPrints were discussed in detail. The

chapter thus provided the background to the work presented in the subsequent chapters of

the thesis.

37



Chapter 3

Threat Analysis of Fingerprint Biometric

System

In the previous chapter, mechanisms about existing threat models to generic biometric sys-

tems were presented. As these models were proposed more than a decade ago, they do

not comprise recently investigated threats, such as the MasterPrint vulnerability exploited

to mount a presentation attack. Moreover, several other attacks targeted against different

components of these systems have been demonstrated and investigated since the year, 2018,

when the recent threat model was presented. The study and analysis of these threats and vul-

nerabilities have not been reported. The details about every attack at a vulnerable point are

missing in the description of the existing models. Moreover, the literature on these models

do not comprise countermeasures and does not illustrate the internal components of the mod-

els. In this chapter, we propose a comprehensive threat model uncovering vulnerable system

components and potential attacks on a match-in-database fingerprint biometric system. Sub-

sequently, we conduct a case study to investigate the possibility of Latent MasterPrint.

The organisation of the chapter is as follow. Section 3.1 presents the proposed threat

model. We discuss the attack scenarios at sixteen attack points for the match-in-database

fingerprint biometric system and present countermeasures to thwart such attacks in Section

3.1.1. Subsequently, we perform the threat analysis in Section 3.1.2. Section 3.2 presents

the case study on investigating the possibility of Latent MasterPrint. Section 3.3 summarises

the chapter.
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3.1 Proposed threat model for MiD FBS

We can attribute the probable attacks to the design perspectives of the system that do not

consider the potential threats during product development. We introduce our model in Figure

3.1, which demonstrate sixteen attack points (AP). The system components are depicted as

closed shapes. The arrow connecting the components shows the output of one component

as input to the next component over a communication medium. The dashed lines show the

potential attacks at the respective vulnerable points. The numbers denote a possible attack

point (AP).

The main contributions of the proposed threat model are as follows.

1. The model introduces the template protection techniques module and demonstrates

its threats. Even though the module is an integral component in modern biometric

systems it was missing in existing threat models. The module is vulnerable to side-

channel attack as depicted in Figure 3.1.

Figure 3.1: The proposed threat model: vulnerabilities and attacks on different
components of a match-in-database fingerprint biometric system controlled appli-
cation, for example, a cash dispenser machine.
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2. The model depicts the side-channel attack at the vulnerable components of the biomet-

ric system. The existing models did not mention an attempt of a side-channel attack

on the system components such as template protection techniques module and com-

parison module. The attacks are used to extract secret information, such as encryption

key, from a vulnerable system component.

3. The model further reports an instance of an adversary intercepting the encrypted tem-

plate over the communication channel connecting the template protection techniques

module and the template database during enrollment. The enrollment stage does not

require the matcher module as it creates the template and stores it in the database.

However, existing models did not show the link connecting the template protection

techniques module and the template database. The proposed model depicted this con-

nection as AP 7 in Figure 3.1.

4. The model shows two possibilities to mount a denial-of-service (DoS) attack, a case

that is not present in previous models. The adversary can destroy the sensing instru-

ment or the application controlled by the biometric system to mount a DoS attack. The

DoS possibilities were lacking in existing models.

5. The model shows the comparison module as a software or hardware component and

pinpoints possible attacks in both the cases. The earlier models considered software-

based comparison module and highlighted the threats to which it is vulnerable. How-

ever, as hardware-based comparison modules are also employed in biometric applica-

tion, the proposed model showed the vulnerabilities to software and hardware-based

comparison module.

3.1.1 Attack scenarios and countermeasures

The biometric system threats are broadly classified as direct attacks and indirect attacks [44].

A direct attack involves utilising the publicly available system components to either access

the system or damage the system to mount a DoS attack [45]. The indirect attacks assume

the adversary to have knowledge and expertise in biometric systems [46]. The vulnerable
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system components and the insecure communication channels provide multiple opportunities

to such an adversary. The following subsections consider each attack point (AP) separately

to explain the threat model.

3.1.1.1 AP 1 (Attacks through biometric input device)

We categorise an attempt to break the system security as adversary attacks and insider at-

tacks, i.e., administrative frauds. The adversary attacks comprise latent print reactivation,

spoofing attacks, fake physical biometric presentation, altered fingerprint submission, and a

wolf attack using MasterPrints. The adversary lifts the latent fingerprint left behind by an

individual at public places and creates a dummy fingerprint. In a spoofing attack, the attacker

manages to access and reverse engineer the stored template to construct an artificial spoofed

fingerprint and uses it at the sensing device. Alternatively, the adversary collects and analy-

ses the similarity score for an existing fingerprint and alters the fingerprint until it is accepted

by the biometric system. Matsumoto et al. [47] demonstrated that eleven different fingerprint

recognition systems accepted artificial fingers. The adversary benefiting an exception abuse

and false enrollment are some examples of administrative fraud. The adversary exploits the

emergency authentication facility provided to enrolled users to access the system under ex-

ception abuse with the help of an existing employee. However, a system administrator may

perform a fake enrollment of the adversary into the system and grant essential privileges to

perform financial frauds. Figure 3.2 shows various techniques employed by an attacker to

spoof a legitimate user’s finger. In a cooperative method, an individual assists in constructing

a synthetic imprint of his fingerprint. The adversary uses plaster or dental impression mate-

rial to make a direct mould of a legitimate user [3]. The non-cooperative methods involve

creating artificial fingerprints using the impressions left on the surface at public places.

Galbally et al. [48] evaluated fingerprint verification systems for vulnerability against

a direct attack using fake fingertips created from minutia templates. The biometric sys-

tem adopts an anti-spoofing scheme shown in Figure 3.3 to thwart a spoofing attack. The

hardware-based anti-spoofing solutions are costly since they require adding a new hardware

component to the biometric sensor. Additionally, the newly added hardware component may

leak confidential biometric information to an attacker. Hence, hardware-based anti-spoofing

countermeasures are seldom preferred. A spoofed and live fingerprint can be distinguished
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Figure 3.2: Methods employed for creating artificial fingerprints [3]

Figure 3.3: Anti-spoofing approaches [3].

using a method to identify and locate pores on it [49]. The method uses a single fingerprint

image to detect multiple static features comprising pore spacing. The liveness score was

utilised to classify a fingerprint as fake or live. The approaches to detect a live fingerprint

utilises local quality features [50], local texture features [51], and gradient-based texture

features [52].

3.1.1.2 AP 2 (Attack on biometric input device)

Denial-of-Service (DoS) attack is the most optimal and least complex way to destroy the

entire biometric-controlled application. A novice person can damage the biometric sensing

device and prohibit enrolled users from accessing the system. Usually, the input device is

kept in an open environment as it must be accessible to the users. Hence, security personnel

or CCTV camera can be deployed to monitor such attempts. Also, the vendors can employ
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rugged devices that can tolerate an attempt of physical damage.

3.1.1.3 AP 3 (Attacks through communication channel connecting input device)

In a hill-climbing attack, the adversary obtains adequate information about the system mod-

ules to learn the attack success probability. A dictionary-based guessing attack is a sophisti-

cated brute-force attack. In this case, the attacker chooses only those fingerprints with a high

acceptance rate. Ratha et al. [53] provided the correlation between the matches that occurred

for various brute-force attempts. In a replay or false data injection attack, an attacker circum-

vents the scanner, and uses an existing digital image of a legitimate user to get authorised

and access the system.

A time-out-lock-out policy allows a specific number of unsuccessful attempts in a short

duration and locks the biometric system for a random time span. An encrypted communica-

tion channel that disallows traffic from any other source is a primary measure to deal with

the hill-climbing attack. Coding techniques, such as Slepian–Wolf coding, superposition

coding, and universal channel coding, can be applied to secure the channel and stop reverse-

engineering the traffic over the communication medium. Transferring digital data, such as

files, over a secure connection in a computer network to ensure protection against snooping

is termed Transfer Encryption [54]. Secure communication protocols including SSL (Secure

Socket Layer), TLS (Transport Layer Security), SSH (Secure Socket Shell), HTTPS (Hy-

per Text Transfer Protocol over SSL/TLS) transfer encrypted data over the communication

channel.

3.1.1.4 AP 4 (Attacks on feature extraction module)

The adversary replaces the feature extraction module output with his chosen feature set. The

adversary targets the software or firmware of the biometric system to execute a Trojan horse

attack [26]. A Trojan horse is a malicious code that stays hidden or idle once implanted and

can be triggered to activate its malicious behaviour at a later time. Once triggered, the Trojan

can delete, copy, or modify the data from the target system component. Figure 3.4 shows a

scenario of a Trojan horse attack.

Trojan horse attacks can be repelled using a trusted biometric system (TBS) comprising

various modules that perform mutual authentication, and thus are physically and logically
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Figure 3.4: The feature extraction module as a target of a Trojan Horse attack [4]

bound together. The manufacturers can use code-signing, light-weight digital signature al-

gorithms, such as, WalnutDSA [55] or Mave to ensure the integrity of the executable code.

Specialised tamper-resistant hardware, such as, IBM 4758, iButton, Dallas 5002, etc., pro-

hibits alteration of the module functionalities through enforcing secure software execution.

3.1.1.5 AP 5 (Attacks through outgoing communication channel connecting the fea-

ture extraction module)

The adversary uses the communication link leaving the feature extraction module to inject

fake or altered data into the system. The feature extraction module holds the features in

its primary memory before forwarding it to the template generation module. A technically

sound attacker can access the features for a legitimate user and replay it at a later instance

to access the system. The stolen features also facilitate mounting a hill-climbing attack to

create a synthesised feature vector.

The system implementing a challenge-response technique detects an attack involving a

synthesised feature vector. The biometric template retrieved from database usually resides

in cache or main memory even after the comparison with input fingerprint template which

can be reused by the adversary as residual to get authorised with the identity of an enrolled

individual. The system memory must be flushed immediately after the feature extraction

and comparison process to prevent reuse of residual. The feature extraction and template
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generation module should be blended together, i.e., they should be implemented as a single

component, to avoid leaking confidential information through the communication channel

between them.

3.1.1.6 AP 6 (Attack on template protection techniques module)

The biometric system generates a secure digital template by applying cryptographic tech-

niques, such as cancelable biometrics and biometric cryptosystem on the feature set retrieved

by the feature extraction module [56]. The attacker targets the template protection techniques

module to extract information related to the secret key used in the encryption algorithm.

Side-channel attack is a class of techniques that target a specific circuit implementation on a

technology platform to recover the secret key of the cryptosystem [57]. In these attacks, the

adversary exploits the information leakage, through power consumption patterns, execution

time variations, or the electromagnetic waves as a side-channel to recover the secret key [58].

Electromagnetic side-channel attacks involve exploiting the correlation between intermedi-

ate data dependent on the secret key and variations in electromagnetic emanations [59].

The system designers must address the power analysis attacks while designing a prac-

ticable cryptosystem as the information leakage is from the implementation aspect. The

masking techniques provides a defensive mechanism against side-channel attacks [56]. The

masking scheme generates a random variable r to protect secret information x. Instead of

directly working on x, the scheme manipulates the masked data x′ = x ⊕ r and r indepen-

dently. Eventually, the scheme thwarts any first-order attack as every intermediate variable

possesses a uniform distribution [60]. Integrated Circuits (ICs) with an active shield are in-

tended to avoid side-channel leakages. The cryptographic algorithm implementation wherein

all computations consume same power and use an equal number of clock cycles mitigates

the side-channel threat. Yang et al. [61] introduced a robust fingerprint matching technique

which guards the system against side-channel attacks.

3.1.1.7 AP 7 (Attacks through a communication channel connecting the template pro-

tection techniques module and the template database)

The attacker targets the communication channel between the template protection techniques

module and the template database for data injection and intercepting the encrypted templates.
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The link is explicitly utilised during the enrollment process. Hence, the attacker replays the

intercepted template to get authorised as a legitimate system user.

A secure and encrypted communication channel that reveals no confidential information

even after reverse engineering ensures that the system remains shielded against any attempt

of eavesdropping and replaying. The system must implement a secure communication pro-

tocol that supports confidentiality and content-integrity protection.

3.1.1.8 AP 8 (Attacks on template database)

The attacker attempts unauthorised access to the remote template database through an ex-

ternal compromised system to fraudulently steal, delete, modify, substitute, and reconstitute

the stored templates. The adversary exploits a bug in the database software, log information

on the disk, or information in cache or primary memory to mount a direct or indirect attack

on the database. The illegitimately modified templates are utilised in a replay attack on the

system. Ross et al. [62] demonstrated the feasibility of an iterative hill-climbing attack to

facilitate the fingerprint reconstruction process.

Li et al. [63] proposed a data hiding-based privacy protection scheme that ensures the

impracticality of revealing confidential information from an encrypted template. The feasi-

bility of a fingerprint reconstruction can be diminished by creating encrypted minutiae-based

templates instead of stored minutiae-based. The countermeasures to alleviate intrusion at-

tacks on the template database includes server hardening, i.e., enhancing the server security

against potential vulnerabilities, database access control schemes, signing stored templates,

storing encrypted templates, and using Match-on-Card technology.

3.1.1.9 AP 9 (Attacks through communication channel connecting template protec-

tion techniques module and comparison module)

The attacker targets the communication medium connecting the template protection tech-

niques module and the comparison module to control the system parameters, such as system

threshold, to enforce false acceptance. The adversary uses the channel to inject a synthe-

sised feature vector as inputs to the comparison module. The communication link is also

vulnerable to a hill-climbing attack for generating a synthetic template acceptable by the

system. In this scenario, the attacker collects the similarity score for a random fingerprint
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presented to the biometric system and alters it iteratively until the system accepts it. Usu-

ally, the adversary alters the minutiae in the fingerprint. The link is also exposed to fake

biometric submission at the comparison module. Here, the adversary targets the biometric

systems that perform image level comparison. An image collected by intercepting over the

communication channel can be reused at the comparison module to access the system.

An attempt of code tampering and alteration can be detected and prevented by adopting

code signing techniques. Oorschot et al. [64] and Chang et al. [65] explored the software

code protection schemes against unauthorised access and modifications. The software in-

tegrity verification can be performed by applying the self-hashing technique [66]. Martinez-

Diaz et al. [67] introduced a score quantization approach to lower the chances of succeeding

in a hill-climbing attack. The robust digital defence mechanisms are helpful against an at-

tempt of a fake biometric submission at the comparison module [26].

3.1.1.10 AP 10 (Attacks through communication channel connecting template

database and comparison module)

An unguarded communication channel between the template database and comparison mod-

ule is primarily utilised to intercept the stored templates. The attacker uses the captured

templates to mount a replay attack later, either at the same link or some other vulnerable

communication channel within the system.

The preventive measures to thwart any attempt to access the communication channel

includes implementing a secure, robust, and encrypted communication medium within the

system.

3.1.1.11 AP 11 (Attacks on comparison module)

The comparison module in the biometric system can be a hardware or software component

susceptible to side-channel attacks and Trojan horse attack. The adversary may also override

the comparison module to suppress its built-in functionality. Galbally et al. [58] demon-

strated that a higher similarity score on average consumes more time. Berthier et al. [68]

analysed the potential side-channel leakages of a hardware fingerprint biometric compari-

son module. Their observations confirmed a shifting drop in power consumption for diverse

minutiae angles.
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The system designers should digitally sign a software-based comparison module. Mask-

ing and designing ICs with an active shield prevent confidential information leakage through

side channels on a hardware-based comparison module [69]. Most of the higher-standard

CC EAL cards, including NXP SmartMX family, have mitigation against side-channel at-

tacks [70].

3.1.1.12 AP 12 (Attacks through communication channel connecting comparison

module and decision module)

The attacker uses a vulnerable communication channel between the comparison and decision

modules to replace the computed similarity score with an injected acceptable score to get

authenticated. The system designers should implement a challenge-response strategy as a

mutual authentication mechanism to detect a fraudulently injected similarity score into the

communication channel. Some of the examples of such challenge response strategy include

Challenge-Handshake Authentication Protocol (CHAP) and Open Authentication (OATH)

Challenge-Response Algorithm (OCRA).

3.1.1.13 AP 13 (Attack on decision module)

The adversary targets the decision module to override its conclusion. The act initiates re-

jecting each submitted fingerprint leading to a DoS attack. In another instance, the system

accepts the fingerprint of a non-enrolled individual. The mitigation approaches include de-

tecting decision module code tampering through code signing and digital signature.

3.1.1.14 AP 14 (Zero-effort attack (false match))

A zero-effort attack due to the system limitation of a false match illustrates the benefit gained

by an adversary, i.e., the adversary puts in zero efforts and gets authenticated due to false

match and low system threshold. In general, a system whose threshold is set to a lower value

is vulnerable to the attack. The existence of inter-class variations and limited individuality

in biometric characteristics lead to a zero-effort attack [2].

He et al. [71] presented a robust fingerprint matching approach that uses multiple pa-

rameters to decide the similarity between two templates and alleviates a potential zero-effort
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attack. Some other strategies that employ a fusion of local, global, and minutiae-based hy-

brid features to lower the risk of zero-effort attack includes a hybrid fingerprint matcher [72],

an orientation-based minutia descriptor [73], minutiae and texture features-based fingerprint

matcher [74], and an orientation-based minutia descriptor-based matcher [75].

3.1.1.15 AP 15 (Zero-effort attack (false non-match))

Another form of a zero-effort attack or Z-attack on the biometric system creates inconve-

nience to the enrolled users. In this scenario, the system rejects legitimate users due to a

false non-match and forces them to resubmit their finger at the sensor repeatedly. In general,

a system whose threshold is set to a higher value is vulnerable to such attack.

Poh et al. [76] demonstrated that a symmetric matcher that combines the similarity score

and liveness score mitigates a zero-effort attack. The authors presented a classification

scheme employing attack-specific characteristics to mitigate zero-effort and nonzero-effort

impostor attacks such as spoofing attacks. The realisation of the scheme using the combi-

nation of a Gaussian Copula-based Bayesian classifier and linear classifiers outperformed

the SVM-based baseline classifier. Zhang et al. [77] introduced the similarity histogram ap-

proach (SHA), as a global fingerprint alignment method that alleviates the possibility of a

false match. Initially, the local similarity matrix is calculated using minutiae features and as-

sociated ridge patterns from the fingerprints under comparison. Subsequently, the approach

utilises the similarity matrix to construct similarity histograms of transformation parameters.

Finally, a statistical method was employed to obtain the optimal transformation parameters.

3.1.1.16 AP 16 (Attacks on biometric controlled application)

The biometric system controlled applications have the input device exposed to the external

environment. The attacker damages the sensing device to mount a DoS attack. In another

instance, the application server is bombarded with fake authentication requests such that the

server becomes inaccessible for valid access requests [32]. The organisation should install

robust sensing instruments with tampering alarms to detect a DoS attack by damaging the

input device. A secure communication channel prevents fake data from illicitly entering the

system.
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3.1.2 Discussion

A comparative analysis of the proposed threat model and the existing threat models is shown

in Table 3.1. Ratha et al. model [53] is a generic model that lacked details about specific

attacks on the system components. Fishbone model [2] depicted the reasons that result in

system failure. However, some threats, such as presentation attacks, may not lead to system

failure but can allow an imposter to access the application. The model did not highlight such

vulnerabilities and threats. Nagar et al. model [2] does not pinpoint side-channel attacks

that can disclose secret information through insecure hardware and software components.

Bartlow and Cukic framework [29] [26] presented several vulnerable components in the bio-

metric application, but failed to illustrate the methodology for designing security techniques

for the biometric system. The proposed model in this thesis addresses the limitations of pre-

vious models, presents an exhaustive security analysis depicting sixteen attack points, and

provides various countermeasures to mitigate them. Therefore, the proposed model acts as a

benchmark while designing a novel match-in-database biometric system.

The proposed model introduces the template protection techniques module, and demon-

strates its threats. Even though the module is an integral component in modern authentica-

tion systems, it was not mentioned in the existing threat models. The side-channel attacks are

used to extract secret information, such as encryption keys, from a vulnerable system compo-

nent. However, previous models does not mention these threats. The proposed model shows

the side-channel attack on the template protection techniques and the comparison module as

depicted in Figure 3.1. It reports an instance of an adversary intercepting the encrypted tem-

plate over the communication channel connecting the template protection techniques module

and the template database during enrollment.

The enrollment stage does not require the matcher module as it creates the template and

stores it in the database. However, existing models did not show the link connecting the tem-

plate protection techniques module and the template database. The proposed model shows

this connection as AP 7 in Figure 3.1. The model demonstrates two possibilities to mount

a denial-of-service (DoS) attack that does not exist in previous models. The adversary can

malfunction the sensing instrument, or the application controlled by the biometric system to

mount a DoS attack. The DoS possibilities were lacking in existing models. The proposed
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Table 3.1: Comparison of the proposed and existing threat models.

Threat
model

Founding
criteria Categorisation Pros Cons

Ratha et al.
model [53]

(2001)

Access
point of

information

8 vulnerable
points resulting

in 8 types of
attacks

Provides attacks
on major

components of
biometric system

A general model
without details of
specific attacks

e.g.
administrative

frauds

Bartlow
and Cukic
framework
[29] [26]
(2005)

Wayman’s
subsystem

architecture

3 modules with
20 potential
attack points

Specify details
about the internal
components of a
generic biometric

system and its
vulnerabilities

Does not propose
the methodology
to design security

techniques for
biometric system

Fishbone
model [2]

(2008)

Cause and
effect

5 causes leading
to biometric

system failure

Useful while
designing
biometric
security

techniques

Only shows
reasons leading

to biometric
system failure

Nagar et al.
model [2]

(2008)

Cause and
effect

similar to
Fishbone

model

Major
vulnerabilities

and their 4
underlying

causes

Addresses
administrative

loopholes along
with other major

attacks

Side-channel
attack scenarios

are missing

Proposed
threat
model
(2020)

Existing
and

probable
attacks

7 components
with 16 probable

attack points

Can be treated as
a reference

model while
designing a
match-in-
database

biometric system
for any modality

The model can be
extended for

smart-card-based
biometric
systems

model showed the comparison module as a software or hardware component and pinpointed

possible attacks in both scenarios. The earlier models considered software-based compari-

son modules and highlighted the threats to them. However, as hardware-based comparison

modules are also employed in the biometric application, the proposed model showed the

vulnerabilities of software and hardware-based comparison module.

The proposed and existing threat models provided theoretical and practical vulnerabili-

ties associated with biometric systems. The mitigation approaches to secure the system from
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various types of threats were also discussed. However, there is a necessity for a common plat-

form wherein a newly built biometric system can be rigorously evaluated and tested against

probable threats. El-Abed et al. [78] introduced Security EvaBio as an online tool employ-

ing a quantitative-based security assessment method to evaluate the security of a biometric

system. The authors additionally provided a common vulnerabilities and threats database for

biometric systems to assess a newly designed biometric system.

3.1.3 Threat analysis

The proposed threat model in Figure 3.1 depicted probable threats at multiple attack points,

such as replay attacks at AP 3, AP 9, and AP 10. It is important to determine the intensity

of a probable attack, and design countermeasures to provide maximum resilience against

such attacks to the system. Hence, the attack points and potential threats are classified into

eight classes to facilitate system designers in building a robust biometric system accepting

any modality. The threat analysis of a match-in-database fingerprint biometric system intro-

ducing eight classes is shown in Table 3.2. The threats were analysed such that each class

specifies similar attacks applicable to different components. The treats are categorised as

high, low, and moderate, based on the intensity of damage and ease of execution. The com-

ponents classified under high-risk factors may be most vulnerable with minimal efforts from

the adversary, or a successful attack on such elements may create substantial damage to the

system, such as system failure. As the biometric system input device and an application

controlled by the biometric system are usually monitored by CCTV or security personnel,

mounting a DoS attack through physically damaging these components is less probable, and

hence is categorised as a low-risk factor. The proposed threat model depicted in Figure 3.1

shows sixteen attack points, vulnerable to diverse types of attacks. This work results into a

unified representative model providing the threats, countermeasures, and existing literature

to further explore the system’s security aspects. The summary of the proposed threat model

including the targeted components at each attack point, potential threats to these components,

and suggested countermeasures are presented in Table 3.3. The table shows that the commu-

nication channel suffers from maximum attack cases. Moreover, administrative frauds via
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AP 1 and DoS through AP 16 are less likely to be mitigated using technological solutions.

Implementing feature extraction and template protection technique module into a single unit

can reduce the vulnerable components in the system. As the template database is maintained

at a different location than the biometric input device, securing the template database and

the links connecting to it can alleviate real-world threats to the system. The table provides

a complete representation of various threats and countermeasures at each vulnerable attack

point. The table forms the foundation in exploring the biometric security domain.

Table 3.2: Threat analysis of a match-in-database fingerprint biometric system.
AP stands for Attack Point.

At-

tack

cate-

gory

Vulnerable components Probable attacks AP
Risk

factor

Class I

Biometric system input

device, an application

controlled by a biometric

system

Denial-of-service attack
AP 2,

AP 16
Low

Class

II
Biometric input sensor

Spoofing attack, altered

finger, fake fingerprint

submission

AP 1 High

Class

III

Communication channel

connecting various

components within the

input device

Data interception, false

data injection, replay

attack, hill-climbing

attack, brute-force attack

AP 3,

AP 5,

AP 9,

AP 12

Moder-

ate

Class

IV

Communication channel

connecting remote template

database

Data interception, false

data inject, replay attack

AP 7,

AP 10
High
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Class

V

Feature extraction module,

software-based template

protection techniques or

comparison module,

decision module

Override specific

module, Trojan horse

attack

AP 4,

AP 6,

AP 11,

AP 13

Moder-

ate

Class

VI

Hardware-based template

protection techniques and

comparison module

Side-channel attack,

reuse-of-residual

AP 6,

AP 11

Moder-

ate

Class

VII
Remote template database

Unauthorised access

through an external

compromised system,

steal, delete, modify,

substitute, reconstruct

templates

AP 8 High

Class

VIII
Other than aforementioned

Administrative frauds,

zero-effort attacks

AP 1,

AP 14,

AP 15

High

Table 3.3: Biometric system attack summary with reference to Figure 3.1. AP
stands for Attack Point.

AP
Targeted component Possible attack Countermeasures

Refer-

ences

1
Through the

biometric sensor

Adversary attacks

and administrative

frauds

Liveness detection,

anti-spoofing

techniques,

challenge/ response,

separation of

privileges

[79],

[46],

[80], [3],

[81], [50]

2
On the biometric

input device

Denial-of-service

(DoS) attack
Rugged devices [26], [2]
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3

Through

communication

channel connecting

biometric input

device

Hill-climbing

attack, brute-force

attack, dictionary

attack, replay

attack, fingerprint

image intercept

Time-out-lock-out

policy, time-stamp,

one-time password,

digital signature,

liveness detection,

encryption

[2], [67]

4
Feature extraction

module

Trojan horse attack,

override feature

extraction module

Code signing, a

Trusted Biometric

System, specialised

tamper-resistant

hardware

[2]

5

Through outgoing

communication

channel connecting

feature extraction

module

False data inject,

reuse-of-residuals

Challenge-response

based system,

disposable Feature

Extractors (FE)

[26], [82]

6
Template protection

techniques module

Side-channel

attacks

Masking, designing

ICs with active

shield

[83], [69]

7

Communication

channel between

template protection

techniques module &

template database

Template intercept,

data inject

Time-out-lock-out

policy, time-stamp,

one-time password,

digital signature,

liveness detection,

encryption

[84]
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8 Template database

Unauthorised

access through

external

compromised

system, steal,

delete, modify,

substitute template

Server hardening,

database access

controls, digitally

signing templates,

template encryption,

storing template on

card

[2], [5],

[85]

9

Communication

channel between

template protection

module &

comparison module

Alter system

parameters,

synthesised feature

vector,

hill-climbing

attack, brute-force

attack, fake digital

biometric, replay

attack

Time-out-lock-out

policy, time-stamp,

one-time password,

digital signature,

liveness detection,

encryption

[86], [87]

10

Communication

channel between

template database

and comparison

module

Replay attack,

intercept stored

template

Utilise time-stamps

or Time-to-live

(TTL) tag

[26]

11 Comparison module

Override

comparison

module,

side-channel attack,

Trojan horse

Masking, designing

ICs with active

shield, code signing

[83], [61]

12

Communication

channel between

comparison module

& decision module

Modify score

Mutual

authentication

between comparison

& decision module

[2]
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13 Decision module Override decision Code signing [26]

14

Communication

channel between

decision module &

biometric application

Zero-effort attack

(false match)

Design robust

comparison module
[87], [88]

15

Communication

channel between

decision module &

biometric application

Zero-effort attack

(false non-match)

Design robust

comparison module
[88]

16

On biometric

controlled application

(e.g. cash dispenser)

DoS attack

CCTV monitoring,

deploy security

guards

[2], [26]

3.2 Latent MasterPrint: a case study

The finger imprints fortuitously left behind at a crime location are referred to as latent fin-

gerprints. Forensics agencies exercise latent fingerprints to investigate a probable suspect.

Latent fingerprints are usually partial, and lack clarity in ridge patterns [89]. Hence, an au-

tomated fingerprint identification system (AFIS) is employed to acquire, process and analyse

these blurry and distorted fingerprints. An overview of different steps involved in a latent fin-

gerprint identification system is shown in Figure 3.5. Forensic investigators visit the crime

scene to locate latent fingerprints on various surfaces. Sweat formed on the finger, and oil

secreted from the pores result in a latent fingerprint. The experts utilise different powders

according to the surface material to enhance such prints [90]. Due to distorted and low fea-

ture clarity, they are often preprocessed to improve the quality. Yoon et al. [91] suggested a

metric latent fingerprint image quality (LFIQ) to distinguish the quality of latent fingerprints.

The parameters related to ridges and minutiae are analysed to determine the LFIQ.

The latent fingerprints lifted from a crime scene are segmented as foreground and back-

ground for identification of ridge patterns. The segmentation process includes normaliza-
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Figure 3.5: Overview of various steps involved in a latent fingerprint identification
system.

tion, orientation and ridge frequency estimation to rebuild discontinuous ridges and curve

patterns [92]. Moreover, methods such as Canny Edge Detection, Laplacian, and Gaussian

Low Pass filters are used to enhance the latent fingerprint quality. Fingerprint ridges are gen-

erally categorised using 17 characteristic features [90]. Among them, level 2 features include

the minutiae. Latent fingerprints usually show up with a significantly low count of minutiae

compared to rolled or plain fingerprints due to their poor quality and small area. The average

number of minutiae observed in NIST Special Database 27 (NIST SD27) [93] images is 21

and 106 for latent fingerprints, and corresponding rolled prints, respectively [94]. Due to low

minutiae count observed in latent fingerprints, most techniques for latent fingerprint identi-

fication use correlation-based or non-minutiae feature-based matching [95]. However, Krish

et al. [96] introduced an approach based on extended minutiae types. The results showed

improved accuracy when integrated with the existing minutiae-based methods.

As the judiciary accepts forensic reports on fingerprint matching as supportive evidence,

the AFIS must produce accurate results to ensure that the system conclusion does not er-

roneously strengthen fabricated evidence. However, as latent fingerprints are partial and

possess unclear ridge patterns, it is essential to investigate the possibility of a latent finger-

print acting like a MasterPrint. Latent impressions lifted from a crime scene are usually

compared against a fingerprint database comprising paper-based inked fingerprints or fin-
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gerprints captured conventionally using AFIS from criminals and suspects. The term Latent

MasterPrint is referred to a latent fingerprint that identifies at least 4% distinct subjects from

such a database storing fingerprints of past offenders. The investigation on the prospects of

a Latent MasterPrint is presented in the following subsections.

3.2.1 Experimental setup

The experiments were conducted under a closed-set identification setup assuming that every

input has a matching fingerprint in the database. In the identification test, each input latent

fingerprint is compared with every other stored template from the dataset, and the similarity

score for each comparison is computed [97]. A correct detect and identify (CDI) represents

that the highest score corresponds to a sample from the actual subject. However, a false

alarm (FA) shows that the highest score belongs to the sample from some other subject. The

rejected latent fingerprints showed a similarity score less than the system threshold. Let C,F ,

and R denote the CDI count, FA count, and the rejected latent fingerprint count. Assuming

that the system is enrolled withK latent fingerprints, such thatK = C+F+R, the detect and

identification rate (DIR), false alarm rate (FAR), and rejection rate (RR) were computed as:

DIR = C
K × 100, FAR = F

K × 100, and RR = R
K × 100.

In addition to DIR, FAR, and RR, the percentage of Latent MasterPrint generated and

the maximum number of subjects identified by a Latent MasterPrint were also recorded. The

identification tests were conducted for threshold value 0, 5, 15, 25, 35 and 45. A cumu-

lative matching characteristic (CMC) curve shows the DIR for each threshold at different

ranks [98]. The identification test results were utilised to plot the CMC curves. Ideally, if n

subjects were enrolled with a system, the rank-n identification rate should be 100%. Hence,

the best approach reaches 100% DIR at the earliest, i.e., at lower ranks. The experiments

were conducted using the Multisensor Optical, and Latent Fingerprint (MOLF) DB4 dataset

comprising 4400 latent fingerprints cropped from simultaneous prints from 100 subjects [9].

The volunteers deposited their simultaneous latent fingerprints on a ceramic tile during the

dataset preparation. Fingerprints were then directly captured using the camera apparatus.

The camera setup consisted of a USB-programmable UEye camera with a capture size of
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Figure 3.6: Sample latent fingerprint images from MOLF DB4 dataset.

3840× 2748 pixels. It has a 0.5-inch CMOS sensor and captures at a maximum rate of three

frames per second. The latent fingerprint images from the MOLF DB4 dataset were em-

ployed during the experiment without applying any pre-processing, i.e., enhancement tech-

niques. Figure 3.6 illustrates sample latent fingerprint images from the MOLF DB4 dataset.

It was important to employ a combination of minutiae detection and minutiae comparing al-

gorithms that are tuned and blended to deliver high matching accuracy. The NIST Biometric

Image Software (NBIS) is a standardised software that includes the MINDTCT algorithm to

detect minutiae and the BOZORTH3 algorithm to perform minutiae matching [99]. Hence,

these algorithms were utilised during the experiments.

3.2.2 Result analysis

The results for the identification test at various thresholds on the MOLF DB4 dataset are

shown in Table 3.4. The results show that 64% − 84% Latent MasterPrints were generated

up to a threshold of 15. A Latent MasterPrint at each threshold up to 15 identified every

subject from the dataset. The DIR and FAR under these scenarios were observed between
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Table 3.4: Results on MOLF DB4 dataset for various thresholds. DIR = Detect
and Identification Rate, FAR = False Alarm Rate, RR = Rejection Rate, MPs =
percentage of Latent MasterPrints generated, LMPs = Maximum no. of subjects
identified by a Latent MasterPrint at a given threshold.

Threshold DIR FAR RR MPs LMPs
0 38.2% 48.94% 12.86% 87.14% 100
5 38% 49.02% 12.98% 85.89% 100
15 36.4% 41.96% 21.64% 64.23% 100
25 31.4% 27.3% 41.3% 7.86% 91
35 26.8% 5.09% 68.11% 0.16% 47
45 21.4% 0.6% 78% 0.04% 13
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Figure 3.7: CMC plot: Rank-10 performance on MOLF DB4 dataset at various
thresholds

36 − 38% and 40 − 50%, respectively. The DIR decreased moderately as the threshold

was raised. However, the percentage of Latent MasterPrints generated and the maximum

number of subjects identified by a Latent MasterPrint reduced significantly while increasing

the threshold. At a threshold of 15, no Latent MasterPrint has been observed, and the DIR

reduced to a mere 18.1% while rejecting the remaining latent fingerprints. The dataset pos-

sesses more than 96% latent fingerprints having an NBIS Fingerprint Image Quality (NFIQ)

score of 5, i.e., the worst quality images [100]. Due to the poor quality of a large portion of

the latent fingerprints in the dataset, NBIS showed high error rates in terms of FAR and RR.

The CMC curves at various thresholds for the MOLF DB4 dataset is shown in Figure

3.7. The rank-10 performance at the lower thresholds was above 75%, wherein about 13%

of latent fingerprints were rejected by the NBIS. With an increasing threshold, the DIR was
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reduced below 22%. Moreover, there was no significant improvement in the DIR at higher

ranks above the threshold of 25. The results imply that at higher thresholds, the rejection

rate crosses 75% as we achieve zero Latent MasterPrint generation. The investigation thus

demonstrated the possibility of Latent MasterPrint. It also confirmed that future research on

Latent fingerprint identification must include the latent MasterPrint as a metric to ascertain

the robustness of a novel latent fingerprint identification approach. This work thus proved

the significance of designing resilient methods to mitigate Latent MasterPrint vulnerability.

3.3 Summary of the chapter

This chapter introduced the proposed threat model depicting sixteen attack points as poten-

tial threats to a match-in database fingerprint biometric system. The model was comprehen-

sively examined by pinpointing various threats and respective countermeasures. The chapter

included a comparative analysis of the proposed and existing threat models and the organ-

isation of system threats into eight classes. Further, as latent fingerprints are partial and

possess distorted ridge structure, an investigation was carried out to explore the prospect of

Latent MasterPrint. The results using the MOLF dataset and NBIS generating 87.14% La-

tent MasterPrints without any threshold and 0.04% Latent MasterPrints at a threshold of 45

confirmed that Latent MasterPrints exist. This work motivates to carry out future research in

developing a novel and accurate latent fingerprint identification technique that mitigates the

Latent MasterPrint.
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Chapter 4

MasterPrint Mitigation Using

Minutiae-based Coordinate System

Roy et al. [7] deduced that enrolling the same finger multiple times and accepting an input

partial fingerprint that shows a similarity score above the threshold for any of the enrolled

templates facilitates the MasterPrint generation. Due to environmental factors and user ig-

norance, multiple samples of the same finger often vary. Hence, image preprocessing using

binarization and thinning are employed to produce nearly similar fingerprints. However, pre-

cisely similar minutiae positions over these fingerprints can not be guaranteed. Therefore,

minutiae-based fingerprint biometric systems usually accept approximately comparable fea-

tures within a tolerance range, δ, between the two fingerprints. In addition, these systems

eventually result in a high probability of MasterPrints generation. Hence, the authors sug-

gested a better partial fingerprint matcher to mitigate the MasterPrint vulnerability. In this

regard, this chapter addresses the MasterPrint vulnerability by proposing a novel partial fin-

gerprint identification method that extracts minutiae-oriented local features from binarized

and thinned partial fingerprint images over eight axes emerging from a reference minutia.

The chapter introduces a metric to compute the similarity score between the input and en-

rolled templates. The features are compared without considering any tolerance to reduce the

chances of MasterPrint.

The main highlights of the work in this chapter are as follows,

1. Presenting a comparative analysis of existing partial fingerprint recognition systems.
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2. Building a novel feature vector that represents a minutia uniquely.

3. Introducing a similarity score computation metric for minutiae-based fingerprint bio-

metric system.

4. Experimentations on five benchmark fingerprint datasets, namely, the standard

FVC2002 DB1_A [101], FVC2002 DB2_A [101], CrossMatch Sample DB dataset

from NeuroTechnology [102], NIST Special Databases 302 (sd302b and sd302d)

[103], to show the robustness of the approach towards reducing MasterPrint gener-

ation.

The contents of this chapter are organised as follows. Initially, Section 4.1 provides

a glimpse of various approaches employed in partial fingerprint recognition. Section 4.2 is

dedicated to the description of various steps involved in the proposed partial fingerprint iden-

tification method. The experimental setup and experimental results are presented in Section

4.3 and Section 4.4, respectively. The discussion and the significance of the experimental

results are shown in Section 4.5. Finally, Section 4.6 summarises the chapter.

4.1 Partial fingerprint recognition: a glimpse

A partial fingerprint recognition system performs matching in three ways. It can be compared

with another partial fingerprint template, a full fingerprint template, or a template created by

employing image fusion techniques over several partial fingerprints [104]. Usually, small

sensors from smartphones capture about 3 − 5 minutiae on average [105]. Hence, smart-

phones such as Samsung Galaxy versions and iPhones employ texture-based approaches for

partial fingerprint matching to ensure instantaneous and highly accurate results. Kumar et

al. [106] proposed a level-zero feature-based method for contact-less fingerprint identifi-

cation, which has potential application in partial fingerprint identification on smartphones.

The fusion of several images involves an alignment of influential information from diverse

sources using mathematical modelling practices for generating a single complete image

[107]. The existing approaches performing partial-to-partial template comparison includes

support vector machine-based method [108], minutiae-triplet-based approach [109], finger-
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print alignment-based method [110], etc. Partial-to-full fingerprint template comparison was

performed in the convex hull-based method [111], checkerboard sampling method [112], and

minutiae-oriented localised secondary features-based approach [113], etc.

Jea et al. [111] employed minutiae and its secondary features to create convex-hull for

local feature extraction. Zeng et al. [114] proposed residual network (ResNet) to extract fea-

tures from a partial fingerprint. Mil’shtein et al. [115] employed line scan algorithm (LSA)

over 2D fingerprint images for partial fingerprint matching. Zhang et al. [116] proposed a

partial fingerprint recognition method utilising low-level minutia and high-level global fea-

tures. Bae et al. [117] used minutiae and image segmentation during feature extraction pro-

cess. The feature comparison was performed using feature-weighted block scoring, segment-

based rotation matching, and segmented matching. Aravindan et al. [118] utilised the scale-

invariant feature transform (SIFT) algorithm and wavelet transformed fingerprint image to

recognise a partial fingerprint. The experiments comprised partial-to-partial and partial-to-

full fingerprint matching. Ramírez et al. [119] introduced the computational geometry-based

fingerprint verification method. The approach uses global features from the Delaunay Trian-

gulation formed using minutiae over the entire fingerprint. A comparative analysis of various

partial fingerprint recognition approaches from the literature is presented in Table 4.1.

Table 4.1: Partial fingerprint recognition : summary of existing approaches.

References

Base for

fingerprint

recognition

Approach/

Method

employed

Comparison

type
Dataset used

Jea et

al. [113]

(2004)

Localised

secondary

features are

generated from

minutiae

Brute-force,

and secondary

feature

matching

Partial-to-full

fingerprint

FVC2002 DB1

database
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Jea et

al. [111]

(2005)

Minutiae and

secondary

features

generated from

minutiae

Convex

hull-based

method, MCF

technique

Partial-to-full

fingerprint

FVC 2002 DB1

and DB2

databases

Chen et

al. [120]

(2007)

Level 3 features

namely, dots

and incipients

A commercial

minutiae-based

matcher Neu-

rotechnology

VeriFinger 4.2

Partial to full

fingerprint
NIST SD30

Gang Fang

et al. [121]

(2007)

Minutiae and

representative

ridge points

BOZORTH and

the compound

minutiae (or

k-minutiae)

matcher

Partial-to-

partial and

partial-to-full

fingerprint

FVC2002 DB1

and DB3

datasets

Mil’shtein

et al. [115]

(2008)

Converts a 3D

object like a

finger into a 2D

image with

minimal

distortion

Spaced

frequency

transformation

algorithm

(SFTA) and

line scan

algorithm

(LSA)

Partial-to-

partial and

partial-to-full

Database of

150 partial

fingerprints

Vi-

jayaprasad

et al. [108]

(2010)

Minutiae

Global

minutiae

matching and

support vector

machine

(SVM)

Partial-to-

partial

fingerprint

FVC 2002

database
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Arada et

al. [112]

(2012)

Checkerboard

sampling

method

Artificial neural

network (ANN)

Partial-to-full

fingerprint

FVC2004

DB1_A

Chang et

al. [122]

(2012)

Minutiae

Triangular

matching

scheme

Partial-to-

partial

fingerprint

FVC database

Gao [123]

(2012)

Constructing

subtemplates

from

minutiae-sparse

multiple partial

fingerprints

Subtemplate

matching

schemes

Subtemplates-

to-

supertemplates

matching

CASIA DBv5

Chen et

al. [124]

(2013)

Fusion of the

minutiae

matching score

and the

fingerprint area

Modified SVM

Fusion of

partial-to-

partial

fingerprint

FVC2002 DB1

and DB2, and

the THU

database

Zanganeh

et al. [125]

(2014)

Comparing

pixel-wise

correlation

coefficient

Fisher

transform

Correlation of

regions created

by dividing

full-fingerprint

images

FVC2002 DB1

Zanganeh

et al. [110]

(2015)

Partial

fingerprint

alignment

Fisher

transformation

technique

Partial-to-

partial

fingerprint

FVC 2002 DB1

dataset

Zhou et

al. [126]

(2016)

Local minutiae

triplet features

Fuzzy-based

fusion scheme

Partial-to-

partial

fingerprint

FVC 2000

DB2a, FVC

2002 DB1a,

and NIST SD

14
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Ramírez

Flores et

al. [119]

(2016)

Minutiae-based

connected

graph

composed of

triangles

Delaunay

triangulation

Full image

matching

FVC2002

databases

Lee et

al. [104]

(2017)

Minutiae and

ridge shape

features

Minutiae

matching and

ridge-feature-

matching

Partial-to-

partial

fingerprint

FVC2002,

FVC2004 and

BERC (self-

constructed)

databases

Aravindan

et al. [118]

(2017)

Wavelet

transformed

fingerprint

image

SIFT algorithm

Partial-to-full

and partial-to-

partial

fingerprint

MESCEF,

FVC2002 and

CASIA

database

Qin et

al. [127]

(2017)

Partial

fingerprint

alignment

Phase-only

correlation and

deep

convolutional

neural network

(CNN)

Partial-to-

partial

fingerprint

FVC2000,

FVC2002,

FVC2004,

FingerPass

DB7, in-house

partial

fingerprint

database

Bae et

al. [117]

(2018)

Minutiae,

image

segmentation

Segment-based

rotation

matching,

segmented

matching,

feature-

weighted block

scoring

Full image

matching,

Segmented area

matching

Database

acquired by the

capacitive

fingerprint

sensor for the

latest mobile

device
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Boujnah et

al. [128]

(2018)

Redefined

characteristics

of minutiae

Euclidean

distance

between feature

vectors from

different partial

fingerprints

Partial-to-

partial

fingerprint

POLYU HRF

database and

FVC 2004

database

Kho-

dadoust et

al. [109]

(2018)

Minutiae

triplets, and

orientation field

(OF)

Indexing

algorithms

Partial-to-

partial

fingerprint

FVC 2000,

2002, 2004 and

NIST SD4,

SD14

Zeng et

al. [114]

(2019)

Residual

network

(ResNet)

Deep learning

Partial-to-

partial

fingerprint

NIST-DB4 and

self-built

(NCUT-FR)

dataset

Zhang et

al. [116]

(2019)

High-level

global feature

and low-level

minutia feature

Combined

global

matching and

minutiae-based

matching

Partial-to-

partial

fingerprint

FVC 2000,

2002, 2004,

2006, and

in-house

dataset

Deshpande

et al. [129]

(2020)

Local minutiae

arrangements

(MA)

Delaunay

triangulation

CNNAI, a

convolutional

neural network

(CNN)

matching

model

FVC2004 and

NIST SD27

fingerprint

datasets
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4.2 Proposed approach

The existing approaches for partial fingerprint recognition discussed in the previous section

were mostly experimented under verification scenario. However, MasterPrint vulnerability is

associated with identification systems and none of these methods was evaluated for Master-

Print generation. The flowchart for partial fingerprint-based MasterPrint identification using

the proposed method is presented in Figure 4.1. Each partial fingerprint passes through seven

stages during the enrollment stage. Initially, the region of interest is detected from the input

partial fingerprint. The gray-scale images for the same finger on multiple instances produced

by the sensing devices often vary. Hence, an image binarization process is applied to ren-

der several fingerprints of an individual appear similar. An adaptive thresholding approach

carries out the binarization process. Minutiae-based feature extraction is more accurate in a

thinned image. Therefore, a binarized image is thinned to extract local features near a minu-

tia. Zhang-Suen thinning algorithm [130] is applied for the thinning operation. A sample

partial gray-scale fingerprint image and its binarized and thinned version is shown in Figure

4.2.

The conventional metric, Crossing Number (CN ) [131], detects minutiae in the thinned

image. As full fingerprints are cropped to create the partial dataset for the experiments, the

pixels near the image boundary emerge as false minutiae, i.e. as a ridge ending. Moreover,

incorrect binarization and thinning operations introduce additional false minutiae. Hence,

it is essential to eliminate such spurious minutiae for an improved identification rate. Kim

et al. [132] algorithm is used to detect and remove false minutiae. The algorithm employs

ridge flow, connectivity, ridge orientation, and distance between minutiae as the underlying

parameters for post-processing the detected minutiae. It detects and removes five types of

false minutiae, namely, short ridge, hole, triangle, broken ridge, and bridge [132].

The orientation for the true minutiae detected in the recent step is found using the in-

put partial fingerprint image. The feature extraction process involves creating an eight-axes

coordinate system in the binarized and thinned image around each true minutia. The ridge-to-

valley and valley-to-ridge transitions are denoted as r ⇌ v. The count of r ⇌ v transitions

over an axis in a binarized image is termed as intensity-shift, IS. The valley-to-valley tran-
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Yes

Fetch Tj
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Access IRi

Figure 4.1: Flowchart for partial fingerprint-based MasterPrint identification. The
enrollment phase takes a partial fingerprint, P ID

i as input, and enrols the template
Ti and corresponding user identifier, T ID

i . The database contains k templates for
n users such that i ∈ {1, 2, . . . , k}, ID ∈ {1, 2, . . . , n}, and k > n. The dotted
arrow originating from the template database denotes the start of the identification
phase. The system threshold is set at Th, and the MasterPrint count (MPC) is
initialised to zero. Initially, Ti and Tj corresponds to the first template in the
database, λg and γg represents the number of good quality minutiae in Ti and Tj ,
respectively, and si,j represents the similarity score between Ti and Tj .

(a) Gray-scale image (b) Binarized image (c) Thinned image

untouched 

sensor 

surface

untouched 

sensor 

surface

untouched 

sensor 

surface

Figure 4.2: Sample gray-scale partial fingerprint, its binarized and thinned ver-
sion. The white portion indicates the sensor surface left untouched by the finger.

sitions are termed as v → v. The count of v → v transitions over an axis in a thinned image

is termed as intensity-factor, IF . A successful feature extraction labels a given minutia as

good quality minutiae. A feature template, T , comprises the feature vectors correspond-
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ing to the true minutiae in a partial fingerprint. If the ith partial fingerprint to be enrolled

with the system belongs to a user with the identifier as ID, it is represented as P ID
i , and its

feature template is denoted as Ti. The flowchart in Figure 4.1 assumes that k partial finger-

prints belonging to n subjects are enrolled into the template database. The database contains

multiple feature templates generated from different samples of each subject. Hence, in the

experimental setup k is greater than n, i.e., k > n.

An all-versus-all comparison of the enrolled feature templates is performed during the

identification phase. The feature templates possessing less than ten good quality minutiae

are not considered for comparison. A template, Ti, undergoes comparison with every other

template, Tj , to compute a similarity score, si,j between them. An identification record,

IRi, corresponding to each Ti is maintained to store the user identifier, T ID
j , for Tj and the

score si,j . If si,j is greater than the system threshold, Th, such entry is recorded in IRi.

Furthermore, IRi is assessed to verify if Ti identified at least 4% distinct subjects. If so, the

MasterPrint count, MPC, in the MasterPrint record, MR, is incremented to mark it as a

MasterPrint. The subsequent subsections explain the feature extraction, template generation

processes, and similarity score computation method.

4.2.1 Feature extraction from binarized fingerprint

The feature template comprises local features extracted in eight directions around a ref-

erence minutia to ensure a distinctive feature vector for every minutia. Hence, a local

region is created using an eight-axes coordinate system around a reference minutia to fa-

cilitate local feature extraction. The proposed eight-axes coordinate system for a true

minutia, m, coloured red at the centre in a binarized image is shown in Figure 4.3. The

figure showed a red coloured reference minutia, m, at the center and the proposed in-

tensity matrix over each axis surrounding the reference pixel, C, and its adjacent pixels,

Cni
∈ {0, 1}, i ∈ {1, 2, . . . , 8}, along axis, axi, i ∈ {1, 2, . . . , 8}, respectively. Each axis

around a reference minutia in a binarized image is traversed to measure the intensity-shift,

ISi, i ∈ {1, 2, . . . , 8}, over axis, axi, i ∈ {1, 2, . . . , 8}, respectively. The intensity-shifts are

initialized as, ISi = 0, i ∈ {1, 2, . . . , 8}.
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Cs
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ax5
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Figure 4.3: The eight-axes coordinate system corresponding to a reference minu-
tia, m, marked in red at the center. Each square represents a pixel in the binarized
fingerprint image. The intensity matrix over each axis surrounding the reference
pixel, C, employed during feature extraction depicts Cni

, i ∈ {1, 2, . . . , 8} as the
current neighbor along axis axi, i ∈ {1, 2, . . . , 8}, respectively. Further, Cp and
Cs shows the preceding and succeeding pixels while traversing along a given axis
starting from m.

While traversing away from the reference minutia along any axis and reaching a reference

pixel, C, the recently observed pixel position is marked as Cp. In contrast, the pixel at the

following location in the same path is marked as Cs. The IS value for a reference minutia

on each axis is incremented for every occurrence of r ⇌ v transition. It was observed that

such instances occur whenever the RHS of equation (4.1) evaluates to σ = 0 and ω = 1.

(σ, ω) = (Cp ⊕ C) + (Cp ⊕ Cs) (4.1)
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Figure 4.4: Sample binarized fingerprint image to illustrate the feature extraction.
The minutia is red, the eight-axes coordinate system around the minutia are green
and yellow. The yellow pixels show the axis passing over a ridge whereas the
green pixels show the axis passing over a valley. The black squares are the bi-
narized ridges. The table on the right side show the computation according to
equation 4.1 for a reference pixel, C, on the respective axis. As only the green
coloured values for σ and ω in the table satisfy the condition demonstrating r ⇌ v
transition, the value of IS1 and IS3 will be incremented.

where, C, Cp, Cs ∈ {0, 1}, ⊕ indicates a XOR operation, and + denotes 1-bit binary

addition returning sum, σ, and carry, ω. A sample binarized image illustrating the instances

of incrementing the IS is shown in Figure 4.4. The red coloured minutia is centered at

the green and yellow coloured eight-axes coordinate system. The part of axis crossing a

binarized ridge, i.e., black region, is coloured yellow. The part of axis crossing a valley

region is coloured green. The yellow, black, and red pixels have an intensity bit value of 0.

The green and white pixels possess an intensity bit value of 1. The table on the right part of

Figure 4.4 illustrates the computation using equation 4.1 for the reference pixel, C, over the

respective axis. The values for σ and ω coloured green satisfies the condition demonstrating

r ⇌ v transition. However, the red coloured entries from the table does not satisfy the

condition indicating no possibility of r ⇌ v transition. Hence, the values of IS for these

axes will not be updated. Hence, the value for IS1 and IS3 will be incremented.
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4.2.2 Feature extraction from thinned fingerprint

The thinned fingerprint image contains single pixel ridges, as shown in Figure 4.5. Each

axis around a reference minutia in the thinned image is traversed away from the minutia

to measure the intensity-factor, IF i, i ∈ {1, 2, . . . , 8}, along axis, axi, i ∈ {1, 2, . . . , 8},

respectively. The intensity-factors are initialised as, IF i = 0, i ∈ {1, 2, . . . , 8}. The value

of IF over each axis in a thinned image is incremented for every instance of v → v transition.

The observations showed that these transitions occur whenever the RHS of equation (4.2),

(4.3), (4.4), (4.5) and (4.6) evaluates to σ = 0 and ω = 1.

(σ, ω) = (Cp ⊕ C) + (C ⊕ Cs) (4.2)

(σ, ω) = (Cp ⊕ Cn7) + (Cn5 ⊕ C) (4.3)

(σ, ω) = (Cp ⊕ Cn1) + (Cn7 ⊕ C) (4.4)

(σ, ω) = (Cp ⊕ Cn1) + (Cn3 ⊕ C) (4.5)

(σ, ω) = (Cp ⊕ Cn5) + (Cn3 ⊕ C) (4.6)

where, C, Cp, Cs, Cn1 , Cn3 , Cn5 , Cn7 ∈ {0, 1}, ⊕ denotes a XOR operation and +

indicates 1-bit binary addition returning sum, σ, and carry, ω. The equation 4.2 holds for

all eight-axes. Further, the intensity-factors, IF2, IF4, IF6, and IF8 over the diagonal axes,

ax2, ax4, ax6, and ax8, are also incremented using equation (4.3), (4.4), (4.5), and (4.6),

respectively.

A sample intensity matrix over a single-pixel ridge in a thinned image illustrating the

feature extraction, IF , is shown in Figure 4.5. A square denotes a single pixel. The minutia

and the eight-axes coordinate system around the minutia are coloured red. A thinned ridge

having an intensity bit value of 0 is denoted with green colour. The valley region having

an intensity bit value of 1 is shown as white squares. The blue circled numbers indicate the

equations whose condition on σ and ω evaluates to true, illustrating v → v transition. Hence,

the value of IF over the respective axis will be incremented.

In a certain instance, we may reach the image boundary before finishing the lth iteration
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Figure 4.5: Sample intensity matrix for a thinned, i.e., possessing single-pixel
ridge, fingerprint image to illustrate the feature extraction, IF . The minutia is
red, the eight-axes coordinate system around the minutia are coloured red. The
green squares are the thinned ridges. The algorithm will increment the IF on each
axis as at least one equation from 4.2−4.6 satisfies the condition on σ and ω. The
numbers in blue circles show the equations for which the condition on σ and ω
becomes true, demonstrating v → v transition.

while traversing a given axis in the binarized and thinned image. The IS and IF value over

such axis is marked as −1, indicating incomplete feature extraction. The value of l, which

produced feature vectors with a minimum value of −1 for IS and IF in a feature template,

was decided empirically. The observations from Peralta et al. [133] were used to set the

value of l = 13 indicating the limit for traversing an axis to measure ISi, i ∈ {1, 2, . . . , 8}

and IFi, i ∈ {1, 2, . . . , 8}.
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4.2.3 Template generation

A feature vector representing the IS and IF is created for each true minutia. The feature

template comprises feature vectors for every true minutia in a partial fingerprint. A true

minutia should be positioned at least 13 pixels within the partial fingerprint image to extract

non-negative values for IS and IF . A true minutia near the image boundary does not facili-

tate complete feature extraction in eight directions. Hence, such minutiae are termed as bad

quality. A minutia quality, φ, is computed using equation (4.7).

φ =


1 , if

(
8∑

i=1

| ISi| −
8∑

i=1

ISi

)
= 0

0 , otherwise

(4.7)

The value φ = 1 indicates a good quality minutia, i.e., having positive values over each

axis in binarized and thinned image. A partial fingerprint template possessing less than ten

good quality minutiae is discarded from comparison in the identification phase. The feature

vector, V , for a true minutia in the partial fingerprint is represented as,

V = (φ, b1, b2, . . . , b8, t1, t2, . . . , t8)

where, φ ∈ {0, 1} indicates the minutia quality. The elements bi, i ∈ {1, 2, . . . , 8} and

ti, i ∈ {1, 2, . . . , 8} corresponds to the IS and IF along the eight-axes in the binarized and

thinned image traversed in anti-clockwise direction, respectively. The feature template, T ,

is denoted as, T = (V1,V2, . . . ,Vλt)
′, where λt is the number of true minutiae in the partial

fingerprint and ′ indicates the transpose. The dimension of feature template, T , is λt × 17.

The minutia orientation, θ, is used to decide the axis in a binarized and thinned image

whose IS and IF measures occupy b1 and t1 in the feature vector, respectively. The subse-

quent axes in anti-clockwise direction are followed to replace b2, b3, . . ., b8 and t2, t3, . . . ,t8

with their respective IS and IF measures. Table 4.2 shows the range of minutia orientation,
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Table 4.2: Relation between minutia orientation (θ) and the axis selected for b1
and t1.

Range for θ Axis for b1 and t1
>=338° and <=22° ax1

[23° - 67°] ax2

[68° - 112°] ax3

[113° - 157°] ax4

[158° - 202°] ax5

[203° - 247°] ax6

[248° - 292°] ax7

[293° - 337°] ax8

θ, to determine the first axis whose IS and IF values will replace b1 and t1 during feature

vector formation, respectively. Suppose the orientation of a reference minutia m is 200°. The

initial member in the feature vector representing b1 and t1 will be the IS and IF over axis

ax5, i.e., IS5 and IF 5, respectively. The following members in the feature vector will be

over the axis ax6, ax7, ax8, ax1, ax2, ax3, and ax4. Suppose, in another attempt the finger

orientation varies by 60° resulting a new orientation of 260°. Now, the first member in the

feature vector, i.e., b1 and t1, will be the IS and IF over axis ax7, i.e., IS7 and IF 7, respec-

tively. And, the subsequent members in the feature vector will be over the axis ax8, ax1,

ax2, ax3, ax4, ax5, and ax6. This strategy ensured similar feature vectors in both scenarios.

Hence, the proposed approach produces a rotation-invariant feature vector that is adaptable

to the changes in the orientation.

Suppose Vp is a feature vector for pth true minutia within an input template Ti and Vq
is a feature vector for qth true minutia within the database template Tj . The feature vectors

Vp and Vq are comparable provided they both possess good quality. The condition to decide

the comparability of Vp and Vq is given as, Vp q Vq, if φp == 1 and φq == 1, where the

notation q reads is comparable.

4.2.4 Similarity score computation

Suppose mi and mj denotes the minutiae count in the input and database templates under

comparison, respectively. Let, the count of minutiae matched between them is denoted as,
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mm, i.e., possessing minutiae-based features within tolerance limits. The two most widely

used similarity score between these templates are given by equation (4.8) [111] and (4.9)

[134].

s1 =
m2

m

mi ×mj

(4.8)

s2 =
2×mm

mi +mj

(4.9)

The conventional way to compute a similarity score between two templates allows tol-

erance, e.g. |θ − θ
′ | ≤ α, where α is the tolerance accepted while comparing the minutiae

orientation. However, our proposed approach addresses the MasterPrint vulnerability by

implementing zero-tolerance during comparison, i.e., requiring exact feature vectors. The

analysis showed that, on average, most partial fingerprints possess 10− 15 minutiae. Conse-

quently, imposing an exact match will result in a single-digit minutiae count matching among

these templates. Hence, a metric was required to produce a high score for a low matched

minutiae count during the comparison to avoid a substantial percentage of the dataset being

rejected even at a low threshold value. The existing similarity score computing methods

from equation (4.8) and (4.9) generated a low similarity score even when sufficient number

of minutiae have matched. Hence, a new metric was employed to compute the similarity

score that is necessary and sufficient for producing comparatively high similarity score when

small count of minutiae matches between input and database template.

Suppose an input template, Ti, contains λt true minutiae feature vectors among which

λg feature vectors contain good quality minutiae, i.e., λg ≤ λt. Similarly, a database tem-

plate, Tj , contains γt true minutiae feature vectors among which γg feature vectors con-

tain good quality minutiae, i.e., γg ≤ γt. The input template is represented as Ti =

(Vi1 ,Vi2 , . . . ,Viλt )
′ and the database template is represented as Tj = (Vj1 ,Vj2 , . . . ,Vjγt )

′.

Let Vp, p ∈ {i1, i2, . . . , iλg}, and Vq, q ∈ {j1, j2, . . . , jγg}, be feature vectors representing

good quality minutia from the input and database templates under comparison, respectively,
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Figure 4.6: Comparison of various similarity score computing metrics. The input
template possesses 12 good quality minutiae, and there are 20, 30, 40, and 50 good
quality minutiae in database templates for (a), (b), (c), and (d) plots, respectively.
If all 12 feature vectors from the input template are equivalent with feature vectors
from the database template, the score is approximately close to 1. However, only
the similarity score metric si,j generates a reasonably acceptable score compared
to s1 and s2.

such that Vp ∈ Ti and Vq ∈ Tj. The feature vectors are considered equivalent, if Vp−Vq = O,

where O is a zero vector. The number of equivalent vectors is denoted by C as,

C =

min(λg ,γg)∑
r=1

Xr

where, Xr ∈ {0, 1}, r ∈ {1, 2, . . . ,min(λg, γg)}. The value Xr = 1 signifies the exis-

tence of a pair of equivalent vectors between Ti and Tj . The similarity score, si,j , between

Ti and Tj is then computed as,
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si,j =
1

2

(
C
λg

+
C
γg

)
(4.10)

The similarity scores computed by employing s1, s2, and si,j , are shown in red, blue,

and green color in Figure 4.6, respectively. In each plot an input template contains 12 good

quality minutiae. However, the database template for (a), (b), (c), and (d) plots comprises

20, 30, 40, and 50 good quality minutiae, respectively. The metric, si,j generated a high

score compared to existing schemes. For instance, if all 12 feature vectors from the input

template are equivalent with the feature vectors from the database template, the expected

score should be near to 1. However, only si,j generated reasonably acceptable higher score

values as compared to score values of s1 and s2. The remaining plots also depict similar

observations.

4.2.5 Algorithm for partial fingerprint-based MasterPrint identifica-

tion

The steps discussed above for the partial fingerprint-based MasterPrint identification are

summarised in Algorithm 1. The algorithm accepts partial fingerprints from a dataset as

an input and returns the MasterPrint record (MR) containing MasterPrint Count (MPC) as

an output. The algorithm works in two phases, namely, enrollment and identification. The

enrollment of every partial fingerprint is carried out by the first foreach statement at step

number 1. However, the second foreach statement at step number 14 compares each en-

rolled template with every other stored template during the identification process. Initially,

preprocessing and true minutiae detection is done till step number 8. The feature extrac-

tion is performed for every true minutia in a partial fingerprint under consideration using the

foreach statement at step number 9. The function features(tm, thin, bin, θ) on step num-

ber 10 utilises binarized and thinned partial fingerprint image and returns a feature vector

corresponding to each true minutia, tm, within the image. The feature vector comprises the

minutia quality followed by the intensity shift, IS, and intensity factor, IF , values. Before
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Algorithm 1: Algorithm for MasterPrint identification
Input: Partial fingerprint, P ID

i , i ∈ {1, 2, . . . , k}, and threshold, Th,
ID ∈ {1, 2, . . . , n}

Output: MasterPrint record, MR, containing MasterPrint count MPC
1 foreach i ∈ {1, 2, . . . , k} do
2 im ← read(P ID

i ) // read an image

3 roi← regionOfInterest(im) // get region of interest

4 bin← binarization(im) // perform binarization

5 thin← thinning(bin) // apply thinning on binarized image

6 minu← detectMinutiae(thin) // minutiae detection

7 trueminu ← removeMinu(minu, im, roi) // remove false minutiae

8 θ ← getOrientation(trueminu) // get minutiae orientation

9 foreach tm in trueminu do
10 [φ, IS, IF ]← features(tm, thin, bin, θ) // extract features

11 [Ti, T
ID
i ] = generateTemplate(φ, IS, IF ) // template generation

12 dbT ← [Ti, T
ID
i ] // store in database (dbT)

13 MPC ← 0 // initialise MasterPrint count (MPC) to zero

14 foreach i ∈ {1, 2, . . . , k} do
15 λg ← countGoodMinutia(Ti) // count good quality minutiae

16 if λg ≥ 10 then
17 IRi ← ∅ // create null identification record (IRi) for Ti

18 foreach j ∈ {1, 2, . . . , k} do
19 γg ← countGoodMinutia(Tj) // count good quality minutiae

20 if γg ≥ 10 and i ̸= j then
21 si,j ← computeScore(Ti, Tj) // compute score using eq.4.10

22 if si,j ≥ Th then
23 IRi ← (T ID

j , si,j) // make entry in IRi

24 if countUniqueID(IRi) ≥ (4× n/100) then
25 MPC ←MPC + 1 // increment MPC in MR

26 return MR

starting the identification phase, the MasterPrint count, MPC, is set to zero at step number

13. The foreach statement at step number 18 compares the feature vector corresponding to

good quality minutiae from input and database templates. The if statement at step number

24 confirms if the input template under comparison identified 4% distinct subjects from the

database and increments the MasterPrint record, MR, if the condition evaluates to True.

Finally, the MR is assessed to compute the percentage of MasterPrint generated.

82



CHAPTER 4. MASTERPRINT MITIGATION USING MINUTIAE-BASED COORDINATE SYSTEM

Table 4.3: Summary of the cropped, 150×150 px, partial fingerprint datasets used
in the experiments.

Dataset
FVC2002
DB1_A

FVC2002
DB2_A

Cross-
Match

NIST
sd302b

NIST
sd302d

Sensor
technology

Optical
sensor

Optical
sensor

Optical
sensor

Touch-free Touch-free

Full
fingerprints

800 800 408 920 800

Total subjects 100 100 51 92 100
Samples per

subjects
8 8 8 10 8

Image
resolution

500 dpi 569 dpi 500 ppi 1000 dpi 500 dpi

Dataset size 2133 1323 1996 1602 1304

4.3 Experimental setup

Five full fingerprint datasets, namely, the standard FVC2002 DB1_A [101], FVC2002

DB2_A [101], CrossMatch Sample DB dataset from NeuroTechnology [102], NIST Spe-

cial Databases 302 (sd302b and sd302d) [103] were cropped to create partial datasets of

150 × 150 pixels having 50% overlap between adjacent partial fingerprints. Partial finger-

prints cropped from the boundary of the original fingerprint may not contain ridges or contain

a tiny ridge pattern with less than ten minutiae. Such partial fingerprints were discarded as

they did not fulfil the minimum criteria to participate in the experiment. Hence, the final

dataset size employed in the investigations vary. The fingerprint dataset details used during

the experiment are provided in Table 4.3.

The average memory space required for storing the partial fingerprint dataset templates

was between 2.5− 3.5 KB. A desktop system with 64-bit Ubuntu 20.04.3 LTS (Focal Fossa)

operating system having 64 GB internal memory (RAM) and Intel® Xeon(R) CPU E5−1620

v3 @ 3.50 GHz×8 processor was used to perform the experiments employing the MATLAB

R2020a computing software.
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4.3.1 Existing approaches under comparison

Research on fingerprint identification is relatively less explored compared to verification

[133]. Moreover, user identification through partial fingerprint by comparison against thou-

sands of stored templates is rarely reported in the literature. Five diverse existing methods

were selected to assess the performance of the proposed approach. The subsequent para-

graphs justify employing a particular approach in the experiments.

The NIST Biometric Image Software (NBIS) [99] is the standard software distribution

for fingerprint biometric recognition. It has demonstrated high accuracy and is extensively

used to evaluate novel approaches, mostly under verification scenarios. However, it was

seldom explored for partial fingerprint identification. Hence, NBIS was exercised for iden-

tifying partial fingerprints and investigating its effectiveness in addressing the MasterPrint

vulnerability.

The baseline minutiae matching (BMM) approach is widely accepted as a classical

method of fingerprint minutiae matching [118]. The approach stores a minutia as its lo-

cation coordinates, (x, y), and orientation, θ. A pair of minutiae, mi and mj , are reported as

matched, if their spatial distance, s ≤ r0, and the direction difference, d ≤ h0, where r0 and

h0 denote the tolerance values for spatial distance, s, and direction difference, d. The BMM

approach was employed to analyse the impact of tolerance on MasterPrint generation.

As the proposed approach uses local features, it was essential to compare its results

against an existing method solely based on local features. The Speeded-Up Robust Features

(SURF) scheme acts as a local feature detector and descriptor, and is favourably used in com-

puter vision applications [135]. Recently, Kuban et al. [136] amended the original scheme

to extend it for fingerprint recognition. The modified SURF method was employed in the

investigation to evaluate its accuracy in identifying an individual from a partial fingerprint.

Lee et al. [104] introduced minutiae and ridge shape features (RSF) based partial finger-

print recognition method. The method demonstrated higher matching accuracy compared

to earlier methods, such as Minutia Cylinder-Code (MCC) [19], representative ridge point

(RRP) [137], Histogram of Oriented Gradients (HoG) based matcher [138], and Accelerated-

KAZE (A-KAZE) based matcher [139], etc. However, the RSF approach was not explored in

analysis with MasterPrint. As the RSF approach outperformed the existing four approaches
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used in the original paper, it was used in the experiments as the best among those compared.

Roy et al. [7] employed commercial VeriFinger SDK by Neurotechnology while inves-

tigating the MasterPrint vulnerability. The original work considered only two fingerprint

datasets. The VeriFinger SDK software was experimented with five benchmark datasets, and

its performance was evaluated on various parameters, such as DIR, FAR, and the percentage

of MasterPrint generated.

4.3.2 Experimental protocols and tests

During the investigation, the MasterPrint vulnerability is considered as an identification

problem and a closed-set and open-set identification set-up is followed. In the case of a

closed-set scenario, we assume that a person’s template already exists in the database. How-

ever, there is no such assurance in the latter case wherein the system determines the identity

of an unknown user by comparing an input fingerprint with every enrolled template. A

watch-list task or application is an example of an open-set identification. A biometric sys-

tem at a railway station compares the fingerprint of every passenger against a database of

criminals or missing individuals. Identification systems often function as an open-set iden-

tification task. However, researchers use closed-set identification to evaluate the results of a

method as it forms a sound criterion to verify general strengths & weaknesses [97].

In the identification test, each input fingerprint is compared with every other stored tem-

plate from the dataset, and the similarity score for each comparison is computed [97]. A

correct detect and identify (CDI) indicates that the highest score corresponds to a sample

from the actual subject. However, a false alarm (FA) shows that the highest score belongs

to the sample from some other subject. The rejected fingerprints showed a similarity score

less than the system threshold. Let C, F , and R denote the CDI count, FA count, and the

rejected fingerprint count, respectively. Assuming that the system is enrolled with K finger-

prints, such that K = C + F +R, the detect and identification rate (DIR), false alarm rate

(FAR), and rejection rate (RR) were computed as DIR = C
K × 100, FAR = F

K × 100, and

RR = R
K × 100.

In addition to DIR, FAR, and RR, the percentage of MasterPrint generated and the min-
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imum and the maximum number of subjects identified by a MasterPrint were also recorded.

An ideal approach suitable for practical use should produce a negligible MasterPrint at a

higher identification rate and low FAR.

A cumulative matching characteristic (CMC) curve depicts the rank-k DIR for an iden-

tification system [98]. The CMC curves used the data from the identification test results for

each dataset. If the system is enrolled with k subjects, the rank-k identification rate should

be 100%. The partial dataset is cropped, and at least ten good-quality minutiae are required

to participate in the experiments. Hence, every partial fingerprint may not have its matching

partial fingerprint from the same subject in the database. Thus, the rank-k DIR may not

achieve 100% DIR, as expected.

If an approach generates MasterPrints, another experiment, zero MasterPrint detection

test was conducted by setting a threshold, Thz, where no MasterPrint were observed, and

the DIR and FAR were computed. Further, Thz was split into ten intermediate, equidistant

thresholds to conduct more experiments, and DIR and FAR at each threshold was computed.

The statistics from the zero MasterPrint detection test were employed to plot the watchlist

receiver operating characteristics (ROC) or an identification ROC. The ideal and practical

identification system shows minor variations in the DIR and FAR for the given scenario.

4.4 Experimental results

The result analysis is presented in four subsections to report the best and worst-performing

methods under various criteria on each dataset. The following subsections analyse the results

and plots for the tests conducted in the experiments.

4.4.1 Identification test performance

The performance of various approaches on four evaluation criteria during the identifica-

tion test conducted on each partial dataset is shown in Table 4.4. The results for the best-

performing method on each parameter are marked in boldface. The proposed method out-

performed other approaches on every parameter except the FAR. It showed above 90% DIR
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Table 4.4: Results for the identification test on various partial datasets. The bold-
faced values correspond to the best performing approach on a given dataset for
each criteria.

Evaluation
Criteria Approach DB1_A DB2_A

Cross
Match sd302b sd302d

Detect &
Identification

Rate
(DIR) (%)

BMM 37.22 38.47 29.81 3.37 18.71
VeriFinger 83.97 81.18 37.53 0.75 32.9

NBIS 87.25 72.49 33.87 16.73 22.62
SURF 0.09 1.97 3.51 1.87 2.22
RSF 8.53 8.92 4.91 3.87 2.68

Proposed 91.8 84.96 86.07 88.76 92.33

False
Alarm
Rate

(FAR) (%)

BMM 62.45 61.53 64.28 96.5 80.6
VeriFinger 0.19 0.23 0.35 0.44 0.92

NBIS 10.74 11.56 4.71 71.72 8.36
SURF 99.91 98.03 92.59 98.13 97.78
RSF 91.14 91.08 30.47 92.2 29.14

Proposed 8.2 15.04 13.83 9.86 7.67

MasterPrints
generated

(percentage) (%)

BMM 99.67 100 94.09 99.88 99.31
VeriFinger 84.15 81.78 37.68 1.06 33.74

NBIS 97.98 84.05 33.58 88.45 30.98
SURF 100 100 96.09 100 100
RSF 99.67 100 35.47 96.07 31.83

Proposed 2.25 1.74 1.45 0.37 0.54

No. of subjects
identified by
a MasterPrint
(min, max)

BMM (98, 98) (87, 88) (46, 47) (83, 86) (84, 87)
VeriFinger (85, 97) (78, 84) (39, 42) (15, 16) (63, 70)

NBIS (43, 98) (25, 84) (18, 45) (42, 80) (8, 67)
SURF (17, 98) (60, 88) (38, 46) (39, 86) (75, 87)
RSF (95, 98) (82, 88) (38, 44) (77, 86) (51, 70)

Proposed (5,9) (5,8) (5,8) (5,9) (5,6)

on two datasets, namely DB1_A and sd302d, and 85− 90% DIR on the remaining datasets.

VeriFinger requires higher count of minutiae from partial fingerprints for enrollment. As

partial fingerprints missed larger potion of full fingerprints, VeriFinger could not enroll a

large portion from the three datasets, namely CrossMatch, sd302b, and sd302d, and offered

the lowest FAR on each dataset. The SURF-based scheme produced the worst DIR and FAR

while creating a MasterPrint from almost every partial fingerprint. The BMM method iden-

tified maximum enrolled subjects with a MasterPrint. The RSF showed poor performance

on almost every parameter. NBIS generated more than 66% MasterPrint, on average. The

average DIR delivered by the proposed method was 88.8%. The proposed method falsely

identified 10.9% partial fingerprints, on an average. However, the major difference the pro-
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Table 4.5: Results for zero MasterPrint detection test on various partial datasets.
The results for the best-performing method on each parameter are marked in bold-
face.

Evaluation
Criteria Approach DB1_A DB2_A

Cross
Match sd302b sd302d

Detect &
Identification

Rate
(DIR) (%)

BMM 0.19 12.55 0 0 0
VeriFinger 83.83 80.88 36.87 0.62 32.44

NBIS 53.12 50.04 26.85 3.81 17.64
SURF 0 0 0.2 0.37 0.31
RSF 0.8 0.91 1.8 0.62 0.92

Proposed 81.43 65 52.2 44.26 67.48

False
Alarm
Rate

(FAR) (%)

BMM 0.89 5.52 0 0.31 0
VeriFinger 0 0.08 0 0.06 0.38

NBIS 0 0.38 0.15 1.87 0
SURF 4.36 23.58 14.53 22.91 20.09
RSF 4.08 6.27 5.91 13.86 6.67

Proposed 2.06 4.46 1.85 0.81 3.3

posed method had shown was on the percentage of MasterPrint generated. It generated the

lowest, i.e., 1.27% MasterPrint, on average.

4.4.2 Zero MasterPrint detection test performance

The DIR and FAR of various approaches in the zero MasterPrint detection test is shown

in Table 4.5. The results corresponding to the best-performing method are in boldface. The

proposed method demonstrated the highest DIR on CrossMatch, sd302b, and sd302d dataset.

The commercial VeriFinger SDK produced the lowest FAR on each dataset and high DIR on

the DB1_A and DB2_A dataset. NBIS delivered marginal FAR but failed to identify even

55% partial fingerprints from any dataset. The SURF and RSF-based methods accurately

identified less than 1% and 2% partial fingerprints from each dataset, respectively. The

BMM method rejected more than 98% partial fingerprints from most datasets.

4.4.3 CMC and Watchlist ROC curve performance

The CMC plots depicting the DIR at various ranks by each method in the experimentation is

illustrated on the left-side portion in Figure 4.7, 4.8, 4.9, 4.10, and 4.11. The best approach
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Figure 4.7: CMC curve for rank-10 identification and Watchlist ROC for the DIR
and FAR performance of various approaches on CrossMatch Sample DB partial
dataset.

is expected to achieve 100% identification rate at the earliest, i.e., at lower ranks. Hence, the

CMC plots showed rank-10 performance of each method under consideration. The proposed

method delivered the highest average rank-10 DIR, i.e., 90.74%, followed by 76.36% for the

BMM method. However, the RSF and SURF-based approach showed the lowest average

rank-10 DIR of 25.28% and 17.04%, respectively. Moreover, NBIS and VeriFinger achieved

above 83% and 81% accuracy on the FVC datasets, respectively. The Watchlist ROC plots

depicting variation in DIR versus FAR on each dataset by every method during the experi-

mentation are illustrated on the right-side portion in Figure 4.7, 4.8, 4.9, 4.10, and 4.11. The

observations showed that in most plots, the DIR for the BMM, SURF, and the RSF method

declines drastically and reaches below 10%. However, the DIR varies insignificantly in the

case of the remaining three approaches.

4.5 Discussion

This section provides a discussion over the performance of each approach on various pa-

rameters of the experiments. The results analysis from the previous section showed that the

proposed method produced an average rank-10 DIR of 90.74%. Hence, it can be deduced
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Figure 4.8: CMC curve for rank-10 identification and Watchlist ROC for the DIR
and FAR performance of various approaches on FVC2002 DB1_A partial dataset.
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Figure 4.9: CMC curve for rank-10 identification and Watchlist ROC for the DIR
and FAR performance of various approaches on FVC2002 DB2_A partial dataset.

that the proposed method identifies an individual with a partial fingerprint more accurately

than other methods. Moreover, it generated 1.27% of MasterPrints on average, which is a

significantly smaller percentage. The results correspond to experiments while identifying the

lowest average number of distinct users, i.e., 8, from each dataset. Therefore, the proposed

method emerges appropriate for IoT-based home appliances, smart devices, etc.
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Figure 4.10: CMC curve for rank-10 identification and Watchlist ROC for the DIR
and FAR performance of various approaches on NIST sd302b partial datasets.
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Figure 4.11: CMC curve for rank-10 identification and Watchlist ROC for the DIR
and FAR performance of various approaches on NIST sd302d partial dataset.

Lee et al. [104] termed the concave and convex ridge patterns as fixed-size ridge shape

features, RSFs. However, due to the small-sized partial fingerprints employed in our exper-

iments, these RSFs were missing in a large portion of each dataset. Therefore, the RSF ap-

proach delivered higher RR on every dataset. The approach extracted RSFs over gray-scale

partial fingerprints and employed a weighting factor, λ, (0 ≤ λ ≤ 1) during the match-
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ing stage. These two steps triggered generation of large MasterPrints for the method. The

proposed approach extracted local features within a small region around a minutia, applied

preprocessing steps, and enforced strict matching to overcome the limitations of the RSF

method.

NBIS is solely minutiae-based and is considered a robust approach for full fingerprint

verification. The accuracy of NBIS depends on the number of minutiae detected within

a fingerprint. Due to fewer minutiae observed in partial fingerprints, its RR was impacted

significantly. However, its marginal FAR demonstrated that it is highly accurate in fingerprint

verification. The proposed method extracts an integer-valued feature vector within a small

region around a reference minutia. Hence, it rejected a small percentage of each dataset

compared to NBIS.

VeriFinger SDK requires a large portion of a fingerprint to extract minutiae-based fea-

tures. Its accuracy reduces if a small number of minutiae are detected in a fingerprint. The

SDK rejected a substantial percentage of partial fingerprints during the enrollment phase,

raising an exception as “Extraction failed: BadObject”. Consequently, VeriFinger SDK

demonstrated a high RR and low DIR on most datasets. However, the marginal FAR dur-

ing the identification test and zeroed FAR in the zero MasterPrint detection test reflected its

robustness as a successful commercial product in the market.

The preprocessing stage in the proposed approach comprising the binarization and thin-

ning operation ensured that the local features seldom deviate between different samples of

a finger. As the feature vectors for a finger rarely vary, the method achieved an improved

identification rate. However, the modified SURF-based method failed to accurately extract

the essential local feature descriptor at interest points from a partial dataset during the exper-

iments. These local features were similar to other partial fingerprints due to non-uniqueness.

Consequently, the DIR for the modified SURF-based method reduced immensely and even-

tually produced a large number of MasterPrints.

The proposed method imposed strict feature vector matching to ensure high identifica-

tion accuracy and low chances of MasterPrint generation. The results demonstrated that the

BMM approach rejected a small portion of the fingerprints from each dataset. However,

the method detected similar features between samples from different subjects in the dataset.

Moreover, the BMM method accepts a tolerance while feature matching. As a result, it gen-
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erates similarity scores for slightly similar fingerprints from distinct subjects. The approach

employs minutiae location and orientation as its features, which are more likely to match

other subjects’ partial fingerprints, if tolerance is accepted. Hence, it is evident that the pri-

mary reason behind the method’s poor DIR, high FAR, and huge MasterPrint generation lies

in allowing tolerance during the matching stage.

4.6 Summary of the chapter

This chapter presented a novel minutiae-based MasterPrint mitigation method and intro-

duced a similarity score computation metric. The approach extracted local features around

a reference minutia in eight directions to create a unique feature vector and performed a

zero-tolerance feature vector comparison. The method was experimented on partial finger-

print datasets cropped from five benchmark fingerprint datasets, and its results were com-

pared with five existing methods, namely, NIST Biometric Image Software (NBIS), base-

line minutiae matching (BMM) approach, modified Speeded-Up Robust Features (SURF)

scheme, Ridge Shape Features (RSF) based method, and VeriFinger SDK. The proposed

method demonstrated a high identification rate and generated insignificant MasterPrints on

each dataset. The proposed method has achieved an average accuracy of 88.78% and gen-

erated on an average 1.27% MasterPrints. Thus, it is evident that MasterPrint vulnerability

can be reduced with a local feature-based partial fingerprint identification scheme with strict

feature matching.
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Chapter 5

MasterPrint Mitigation Employing

Minutiae Geometry

The investigation in the previous chapter ascertained that a minutiae-based local-feature ex-

traction method delivers high identification accuracy and generates an insignificant count of

MasterPrints from cropped partial fingerprint datasets. However, the feature extraction was

carried out within a 27×27 pixel-wide square around a reference minutia. In another attempt

to further improve the identification rate, and reduce the percentage of MasterPrint generated

in the previous method, this chapter employs minutiae geometry to build a unique feature

vector corresponding to every minutia in a partial fingerprint. The approach requires ex-

act feature vectors during the comparison. The experiments used partial fingerprint datasets

cropped from five benchmark fingerprint datasets, namely, FVC2002 DB1_A, FVC2002

DB2_A, CrossMatch Sample DB dataset from NeuroTechnology, NIST Special Databases

302 (sd302b and sd302d), and the results of the proposed method were compared against

six existing methods, namely, NIST Biometric Image Software (NBIS), baseline minutiae

matching (BMM) approach, modified Speeded-Up Robust Features (SURF) scheme, Ridge

Shape Features (RSF) based method, Combination of Nearest Neighbor Arrangement Index-

ing (CNNAI)-based method, and VeriFinger SDK.

The main highlights of the work in this chapter are as follows,

1. Constructing a novel feature vector for the distinctive representation of a minutia,

2. Studying the partial fingerprint identification to investigate MasterPrint generation.
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The contents of this chapter are organised as follows. Initially, Section 5.1 describes

various steps involved in the proposed partial fingerprint identification method. The experi-

mental setup, including the fingerprint dataset details and other existing methods employed

in the experiments, is discussed in Section 5.2. Further, the experimental results on various

parameters and plots are presented in Section 5.3. The discussion and the significance of

the experimental results are provided in Section 5.4. Finally, Section 5.5 summarises the

chapter.

5.1 Proposed approach

The proposed method for MasterPrint identification from partial fingerprint dataset is shown

in Figure 5.1. The flowchart is divided into enrollment and identification phases. A partial

fingerprint undergoes binarization, thinning, minutiae detection, and template generation

stages in the enrollment phase. The template database stores the encrypted partial fingerprint

templates. The ith partial fingerprint corresponding to a user having identifier as ID is

denoted as P ID
i . Ti denotes the feature template for P ID

i . The system is enrolled with k

partial fingerprints for n distinct subjects. The template database stores multiple templates

associated with each subject. Hence, in the experimentation k is greater than n, i.e., k > n.

In the identification phase, a partial fingerprint template, Ti, is compared with every

other template, Tj , from the database, i.e., the system performs comparison in all-versus-all

manner. For every comparison between Ti and Tj , a similarity score, si,j , is computed. The

system maintains an identification record, IRi, for every Ti. An entry in IRi comprises Ti,

Tj , and si,j , where si,j must be greater than the system threshold, Th. Once the comparison

between Ti with every other Tj in the database is finished, its IRi is assessed to determine if

Ti identified at least 4% distinct subjects enrolled with the system. If so, the system labels

it as a MasterPrint by incrementing the MasterPrint count, MPC, in the MasterPrint record,

MR. Finally, the MR is assessed to get the percentage of MasterPrints generated during

the experiment. The details about the feature extraction, feature vector formation, and the

similarity score computation are provided in the following sections.
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Figure 5.1: Flowchart for partial fingerprint-based MasterPrint identification. The
enrollment phase takes a partial fingerprint, P ID

i as input and enrols the template
Ti and corresponding user identifier, T ID

i . The database contains k templates for
n users such that i ∈ {1, 2, . . . , k}, ID ∈ {1, 2, . . . , n}, and k > n. The dotted
arrow originating from the template database denotes the start of the identification
phase. The system threshold is set at Th, and the MasterPrint count (MPC) is
initialised to zero. Initially, Ti and Tj corresponds to the first template in the
database, and si,j represents the similarity score between Ti and Tj .

5.1.1 Preprocessing and minutiae detection

Usually, the gray-scale fingerprints obtained at different instances for the same finger vary

due to moisture or dryness at the fingertip, finger orientation, and variation in pressure ap-

plied while touching the sensor. Hence, a binarization process is usually applied to the gray-

scale fingerprints to render them appear more similar to each other. The proposed approach

performed the binarization of gray-scale partial fingerprints using an adaptive thresholding

method [140]. The performance of the fingerprint matching algorithm highly depends on ac-

curate minutiae detection. As thinned images possess a single-pixel ridge, they are preferred
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for minutiae detection than binarized images. Therefore, the proposed method performs

a thinning operation on the binarized partial fingerprints using Zhang-Suen thinning algo-

rithm [130]. The minutiae detection process on the thinned images is done by computing the

Crossing Number (CN ) [131].

5.1.2 Feature extraction

Each minutia is stored as its (x, y) coordinates within the partial fingerprint. The Euclidean

distance between a reference minutia, m(x, y), and its n adjacent minutiae, m1(x1, y1),

m2(x2, y2), . . ., mn(xn, yn), is maintained and utilised during the feature extraction pro-

cess. The set of tuples, M , represents the x and y coordinates for a reference minutia and its

adjacent minutiae as

M = {(x, y), (x1, y1), (x2, y2), . . . , (xn, yn)} (5.1)

The first minutiae-based geometric construct is a closed curve, ∆, comprising the min-

imal elements from M , such that no other member of M is left outside the boundary of ∆.

An instance of ∆ for n = 3 is shown in Figure 5.2. It is evident that the minimum and the

maximum number of vertices for a given ∆ can be 3 and (n + 1), respectively. Hence, the

cardinality of ∆, η(∆), ranges from 3 ≤ η(∆) ≤ (n + 1). The closed curve, ∆, is revisited

to verify the presence of the reference minutia coordinates as its vertex. The binary-valued

metric, ϱ, indicates whether the reference minutia belongs to the closed curve ∆.

ϱ =


1, if (x, y) ∈ ∆

0, otherwise
(5.2)

A tuple, T , maintains the Euclidean distances between a reference minutia and its every

adjacent minutiae. A minutiae pair corresponding to the smallest Euclidean distance in T is

chosen as the first edge of another minutiae-based construct,∇, comprising non-intersecting
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Figure 5.2: Possible closed curves formed with n = 3 enclosing all the members
of M .

edges. The subsequent edges are added to∇ in ascending Euclidean distances while ensuring

that a new edge does not intersect with the existing edges in ∇. If the n+ 1 minutiae points

are non-collinear, ∇ will possess several triangular shapes. The possible constructions of ∇

formed using n = 3 are shown in Figure 5.3. The count of all possible triangles formed in a∇

construct is denoted as τ . The∇ construct is revisited to find the number of triangles with the

reference minutia, m(x, y), as its vertex. This number is represented as f ∈ {0, 1, 2, . . . , τ}.

The third minutiae-based geometric construct is a non-self-intersecting poly shape or

polygon, ♢. The construct ♢ possesses n + 1 vertices, i.e., it has every member from M

as a vertex. A possible ♢ construct with n = 3 is depicted in Figure 5.4. The construct

shows four vertices, namely, v1(x1, y1), v2(x2, y2), v3(x3, y3), and v4(x4, y4). The Euclidean

distance between two vertices vi and vj is denoted as, lenij , such that, i, j ∈ {1, 2, 3, 4}. The

area, λ, and perimeter, µ, of the ♢ are computed using equation (5.3) and (5.4), respectively

and stored as integer values.

λ =
1

2

 4∑
i=1

(xi × yi+1 − xi+1 × yi)

 ,where x5 = x1 and y5 = y1 (5.3)

µ = len12 + len23 + len34 + len41 (5.4)
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Figure 5.3: Possible non-intersecting constructs with n = 3.

Figure 5.4: A sample non-self-intersecting poly shape or polygon, for n = 3,
connecting every member of M .

The feature vector, υ, corresponding to a reference minutia in the partial fingerprint is

represented as,
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υ = (η(∆), ϱ, τ, f, λ, µ) (5.5)

If a reference minutia, m, and its n adjacent minutiae are collinear, then the feature

vector for m comprises every member of υ as −1. The feature vectors for such minutiae are

discarded during similarity score computation.

5.1.3 Similarity score computation

The comparison between a feature vector υp from the input template, Ti, and a feature vector,

υq, from the database template, Tj , is performed as per equation (5.6), where ω is a binary

variable.

ω =


1 , if υp − υq == O

0 , otherwise
(5.6)

where, O represents a zero vector. Suppose Ti possesses X minutiae, and Tj contains Y

minutiae such that X ≥ 10, Y ≥ 10, and α = min(X ,Y). Then the total count of minutiae

matched, Mm, is calculated using equation (5.7).

Mm =
α∑

i=1

ωi (5.7)

Finally, the similarity score between Ti and Tj is calculated using equation (5.8) [111].

si,j =
Mm

2

X × Y
(5.8)

A partial fingerprint must possess at least ten minutiae to participate in the experiments.
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The proposed method was experimented with different values of adjacent minutiae, n ∈

{3, 4, 5, 6}. The observations from each experiment demonstrated that n = 4 delivered the

best results. Hence, the results used in this chapter correspond to n = 4.

5.2 Experimental setup

Five full fingerprint datasets, namely, the standard FVC2002 DB1_A [101], FVC2002

DB2_A [101], CrossMatch Sample DB dataset from NeuroTechnology [102], NIST Special

Databases 302 (sd302b and sd302d) [103] were cropped to create partial fingerprint datasets

of 150× 150 pixels having 50% overlap between adjacent partial fingerprints. Partial finger-

prints cropped from the boundary of the original fingerprint may lack ridges or possess a tiny

ridge pattern with less than ten minutiae. Such partial fingerprints were discarded as they did

not fulfil the minimum criteria to participate in the experiment. Hence, the final dataset size

employed in the investigations varies. The fingerprint dataset details used during the exper-

iment are provided in Table 5.1. A desktop system with 64-bit Ubuntu 20.04.3 LTS (Focal

Fossa) operating system having 64 GB internal memory (RAM) and Intel® Xeon(R) CPU

E5 − 1620 v3 @ 3.50 GHz ×8 processor was used to perform the experiments employing

the MATLAB R2020a computing software.

Table 5.1: Summary of the cropped, 150×150 px, partial fingerprint datasets used
in the experiments.

Dataset
FVC2002
DB1_A

FVC2002
DB2_A

Cross-
Match

NIST
sd302b

NIST
sd302d

Sensor
technology

Optical
sensor

Optical
sensor

Optical
sensor

Touch-free Touch-free

Full
fingerprints

800 800 408 920 1600

Total subjects 100 100 51 92 200
Samples per

subjects
8 8 8 10 8

Image
resolution

500 dpi 569 dpi 500 ppi 1000 dpi 500 dpi

Cropped
dataset size

3549 2767 2134 2098 2960
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5.2.1 Existing approaches under comparison

Research on fingerprint identification is relatively less explored compared to verification

[133]. Moreover, user identification through partial fingerprint by comparison against thou-

sands of stored templates is rarely reported in the literature. Six diverse existing methods

were selected to assess the performance of the proposed approach. The subsequent para-

graphs justify employing a particular approach in the experiments.

The NIST Biometric Image Software (NBIS) [99] is the standard software distribution for

fingerprint biometric recognition. It has demonstrated high accuracy and is extensively used

to evaluate novel approaches, mostly under verification scenarios. However, it was seldom

explored for partial fingerprint identification. Hence, NBIS was exercised to investigate

identifying partial fingerprints and addressing MasterPrint vulnerability.

The baseline minutiae matching (BMM) approach is widely accepted as a classical means

of fingerprint minutiae matching [118]. The approach stores a minutia as its location coor-

dinates, (x, y), and orientation, θ. A pair of minutiae, mi and mj , are reported as matched,

if their spatial distance, s ≤ r0, and the direction difference, d ≤ h0, where r0 and h0 denote

the tolerance values of spatial distance, s, and direction difference, d. BMM approach was

employed to analyse the impact of tolerance on MasterPrint generation.

As the proposed approach uses local features, it was essential to compare its results

against an existing method solely based on local features. The Speeded-Up Robust Features

(SURF) scheme acts as a local feature detector and descriptor and is highly utilised in com-

puter vision applications [135]. Recently, Kuban et al. [136] amended the original scheme

to extend it for fingerprint recognition. The modified SURF method was employed in the

investigation to evaluate its accuracy in identifying an individual from a partial fingerprint.

Lee et al. [104] introduced minutiae and ridge shape features (RSF) based partial finger-

print recognition method. The method demonstrated higher matching accuracy compared

to earlier methods, such as Minutia Cylinder-Code (MCC) [19], representative ridge point

(RRP) [137], HoG-based matcher (HoG) [138], and A-KAZE-based matcher (A-KAZE)

[139], etc. However, the RSF approach was not explored in addressing MasterPrint vulnera-

bility. As the RSF approach outperformed the existing four approaches used in the original

paper, it was considered as the best among those compared in the original experiments.
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Roy et al. [7] employed commercial VeriFinger SDK by Neurotechnology while inves-

tigating the MasterPrint vulnerability. The original work considered only two fingerprint

datasets. The VeriFinger SDK software was experimented with five benchmark datasets,

namely, the standard FVC2002 DB1_A, FVC2002 DB2_A, CrossMatch Sample DB dataset

from NeuroTechnology, NIST Special Databases 302 (sd302b and sd302d), and its perfor-

mance was evaluated on essential parameters, such as DIR, FAR, percentage of MasterPrints

generated, and number of subjects identified by a MasterPrint.

Deshpande et al. [129] developed Combination of Nearest Neighbor Arrangement In-

dexing (CNNAI) as a local minutia-based convolutional neural network (CNN) matching

model. The model uses features from n nearest neighbour minutiae to generate feature

vectors that are rotation-scale invariant. CNNAI performs minutiae detection using a deep

neural-network-based minutiae extractor MINU-EXTRACTNET [141]. The model demon-

strated more than 80% rank-1 identification accuracy on FVC2004 and NIST SD27 latent

fingerprint datasets. CNNAI was exercised as a deep learning-based approach to compare

the results of the proposed method.

5.2.2 Experimental protocols and test

The investigation considered the MasterPrint vulnerability as an identification problem, and

followed a closed-set and open-set identification set-up. In the case of a closed-set scenario,

we assume that a person’s template already exists in the database. However, there is no such

assurance in the latter case wherein the system determines the identity of an unknown user by

comparing an input fingerprint with every enrolled template. A watch-list task or application

is an example of an open-set identification. A biometric system at a railway station compares

the fingerprint of every passenger against a database of criminals or missing individuals.

Identification systems often function as an open-set identification task. However, researchers

experiment under closed-set identification to evaluate and report the results of a method as it

forms a sound criterion to verify general strengths and weaknesses [97].

In the identification test, each input fingerprint is compared with every other stored tem-

plate from the dataset, and the similarity score for each comparison is computed [97]. A
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correct detect and identify (CDI) represents that the highest score corresponds to a sample

from the actual subject. However, a false alarm (FA) shows that the highest score belongs

to the sample from some other subject. The rejected fingerprints showed a similarity score

less than the system threshold. Let C, F , and R denote the CDI count, FA count, and the

rejected fingerprint count. Assuming that the system is enrolled with K fingerprints, such

that K = C+F +R, the detect and identification rate (DIR), false alarm rate (FAR), and re-

jection rate (RR) were computed as, DIR = C
K×100, FAR = F

K×100, and RR = R
K×100.

In addition to DIR, FAR, and RR, the percentage of MasterPrint generated and the minimum

and the maximum number of subjects identified by a MasterPrint were also recorded. An

ideal approach suitable for practical use should produce a negligible MasterPrint at a higher

identification rate and low FAR.

A cumulative matching characteristic (CMC) curve depicts the rank-k DIR for an identi-

fication system [98]. The CMC curves were plotted based on the data from the identification

test results for each dataset. If the system is enrolled with k subjects, the rank-k identifica-

tion rate should be 100%. If an approach generates MasterPrints, another experiment, zero

MasterPrint detection test, was conducted by setting a threshold, Thz, where no Master-

Print were observed, and the DIR and FAR were computed. Furthermore, Thz was split into

ten intermediate, equidistant thresholds to conduct more experiments, and DIR and FAR at

each threshold were computed. The statistics from the zero MasterPrint detection test were

employed to plot the watchlist receiver operating characteristic (ROC) or an identification

ROC. The ideal and practical identification system shows minor variations in the DIR and

FAR for the given scenario.

5.3 Experimental results

The result analysis is presented in four subsections to report the best and worst-performing

methods under various criteria on each dataset. The following subsections analyse the results

and plots for the tests conducted in the experiments.
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5.3.1 Identification test performance

The identification test performance of various approaches on each partial dataset is presented

in Table 5.2. Each method is evaluated on four criteria, namely, DIR, FAR, percentage

of MasterPrints generated, and minimum and maximum number of subjects identifies by

a MasterPrint, for each dataset. The boldfaced values from the table demonstrate the best

results for a given parameter in a dataset. An approach is expected to deliver at least 90%

DIR and generate marginal MasterPrint on the datasets, which identify fewer distinct subjects

enrolled with the system. Any method providing the desired results can be used for practical

purposes to identify a user through a partial fingerprint.

The proposed method showed better results on every parameter, except the FAR. The

DIR for the proposed method on each dataset was above 90%. It generated less than 1%

MasterPrint for three datasets and 1% − 2% MasterPrints for the other two datasets. A

MasterPrint from the proposed method could identify the lowest number of distinct subjects

on each dataset. However, a MasterPrint from the BMM approach on the FVC2002 DB1_A

dataset could identify a minimum of 95 subjects, and the number rises to 100, i.e., identifying

every enrolled user.

The best FAR was demonstrated by the VeriFinger and CNNAI, i.e., up to 0.5% on each

dataset. The SURF-based scheme demonstrated low DIR, average DIR of 1.69%, and high

FAR, average FAR of 98.16%. Moreover, it reported every partial fingerprint from most

datasets as a MasterPrint. A MasterPrint from the SURF, BMM, and RSF methods identified

the maximum distinct subjects from the dataset. The average highest percentage of Mas-

terPrint were produced by the SURF-based method, i.e., 99.09%, followed by 96.52% from

the BMM method. The average lowest percentage of MasterPrint were generated using the

proposed method, i.e., 0.882%.

5.3.2 Zero MasterPrint detection test performance

The results obtained during the zero MasterPrint detection test on each partial dataset are

presented in Table 5.3. Each approach is evaluated on three criteria, DIR, FAR, and RR, on
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Table 5.2: Results for the identification test on various partial datasets. The bold-
faced values correspond to the best performing approach on a given dataset under
each criteria.

Evaluation
Criteria Approach

FVC
2002

DB1_A

FVC
2002

DB2_A

CrossMatch
Sample DB

NIST
sd302b

NIST
sd302d

Detect
and

Identification
Rate

(DIR) (%)

BMM 16.17 14.13 9.33 7.05 9.36
VeriFinger 50.46 38.81 35.1 0.57 14.49

SURF 1.3 0.94 3.8 1.72 0.71
RSF 2.38 2.42 6.89 1.53 1.72
NBIS 30.57 22.05 33.74 9.49 41.96

CNNAI 13.09 9.68 6.8 3.27 17.96
Proposed 93.43 91.69 94.24 97.04 92.64

False
Alarm
Rate

(FAR) (%)

BMM 78.67 83.66 84.21 90.23 89.8
VeriFinger 0.06 0.07 0.19 0.38 0.41

SURF 97.97 99.06 96.2 98.28 99.29
RSF 37.39 27.39 31.02 43.28 34.59
NBIS 9.07 7.77 4.26 35.18 30.88

CNNAI 0.09 0.08 0.03 0.2 0.07
Proposed 6.57 8.31 5.76 2.96 7.36

Percentage
of

MasterPrints
generated (%)

BMM 94.84 97.8 93.53 97.28 99.16
VeriFinger 50.52 38.89 37.57 0.95 14.9

SURF 99.27 100 96.2 100 100
RSF 39.62 29.82 37.91 44.8 36.32
NBIS 39.64 29.82 38 44.6 72.84

CNNAI 13.18 9.76 6.83 3.47 18.03
Proposed 1.04 0.4 0.84 0.1 2.03

Number
of

subjects
identified

by
a MasterPrint
(min, max)

BMM (95, 100) (94, 100) (13, 49) (69, 79) (170, 172)
VeriFinger (73, 96) (78, 84) (39, 42) (15, 16) (63, 70)

SURF (51, 100) (42, 100) (40, 49) (62, 79) (153, 172)
RSF (98, 100) (87, 95) (42, 48) (39, 72) (120, 150)
NBIS (35, 100) (26, 95) (15, 48) (30, 72) (30, 147)

CNNAI (5, 9) (6, 8) (5, 11) (6, 13) (12, 20)
Proposed (5, 6) (5, 6) (5, 9) (5, 5) (10, 11)

every dataset. The best results for each parameter on a given dataset are marked in boldface.

A method demonstrating marginal deviation in the DIR and FAR compared with its iden-

tification test results is considered the robust identification approach. However, a scheme

delivering high RR during the zero MasterPrint detection test is regarded as practically inap-

propriate for identifying a user from thousands of database templates.

The proposed approach delivered the highest average DIR during the test, i.e., 75.15%.
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The lowest FAR on maximum datasets was from the VeriFinger and NBIS schemes. The

SURF and RSF-based methods demonstrated less than 1% DIR on average. However, the

BMM method couldn’t identify a user through the partial fingerprint from any dataset during

the test. The results showed that four methods, namely, the SURF-based, BMM, RSF-based,

and CNNAI, produced low DIR than FAR and above 90% RR on average. The CNNAI

showed, on average, 1.2% less DIR than the identification test performance. However, no

partial fingerprint falsely identified a subject by the CNNAI during the test.

Table 5.3: Results for zero MasterPrint detection test on various partial datasets.
The results for the best performing approach on each criteria are marked in bold-
face.

Evaluation
Criteria Approach

FVC
2002

DB1_A

FVC
2002

DB2_A

CrossMatch
Sample DB

NIST
sd302b

NIST
sd302d

Detect
and

Identification
Rate

(DIR) (%)

BMM − − − − −
VeriFinger 50.38 38.67 34.49 0.48 14.29

SURF 0.17 0.07 − 0.1 0.1
RSF 0.51 0.18 1.78 0.1 0.37
NBIS 15.38 14.53 26.9 3.05 25.71

CNNAI 10.76 8.6 6.2 2.97 16.33
Proposed 76.5 64.87 85.29 83.03 71.05

False
Alarm
Rate

(FAR) (%)

BMM − − − − −
VeriFinger − 0.04 − 0.05 0.17

SURF 9.83 5.89 3.98 5.48 17.33
RSF 4.93 2.17 3.09 6.29 2.7
NBIS 0.08 0.14 0.28 0.38 5.95

CNNAI − − − − −
Proposed 4.54 4.23 5.25 2.76 3.45

Rejection
Rate

(RR) (%)

BMM 100 100 100 100 100
VeriFinger 49.62 61.29 65.51 99.48 85.54

SURF 90 94.04 96.02 94.42 82.57
RSF 94.56 97.65 95.13 93.61 96.93
NBIS 84.53 85.33 72.82 96.57 68.34

CNNAI 89.24 91.4 93.8 97.03 83.67
Proposed 18.96 30.9 9.47 14.2 25.51
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5.3.3 CMC and Watchlist ROC curve performance

The CMC plots depicting the DIR at various ranks by each method in the experimentation

is illustrated on the left-side portion in Figure 5.5, 5.6, 5.7, 5.8, and 5.9. The best approach

is expected to achieve 100% identification rate at the earliest, i.e., at lower ranks. Hence, the

CMC plots showed rank-10 performance of each method under consideration. The proposed

method reached 100% DIR at rank-3 on each partial dataset. The lowest average rank-10

DIR, i.e., less than 20%, was delivered by the RSF, CNNAI, and SURF-based methods on

most datasets. However, VeriFinger and NBIS achieved an average rank-10 identification

rate of 28.08% and 40.88%, respectively.

The Watchlist ROC plots depicting variation in DIR versus FAR on each dataset by every

method during the experimentation are illustrated on the right-side portion in Figure 5.5, 5.6,

5.7, 5.8, and 5.9. A method appropriate for practical implementation shows the curve lying

at the top-left position in the plots [97]. It is apparent from the plots that the curve for the

proposed method occupied the top-left region in every dataset. The plots illustrated that the

DIR for every method except the NBIS and the proposed decreased significantly and reached

less than 10% on most datasets. However, a minor deviation on both the parameters, 0.324%

average change in DIR and 0.2% average change in FAR, was shown by the VeriFinger.
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Figure 5.5: CMC curve for rank-10 identification and Watchlist ROC for the DIR
and FAR performance of CrossMatch Sample DB partial dataset.
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Figure 5.6: CMC curve for rank-10 identification and Watchlist ROC for the DIR
and FAR performance of FVC2002 DB1_A partial dataset.
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Figure 5.7: CMC curve for rank-10 identification and Watchlist ROC for the DIR
and FAR performance of FVC2002 DB2_A partial dataset.

5.4 Discussion

This section provides a discussion over the performance of each approach on various param-

eters of the experiments, DIR, FAR, percentage of MasterPrints generated, and number of

subjects identified by a MasterPrint. The results analysis from the previous section showed
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Figure 5.8: CMC curve for rank-10 identification and Watchlist ROC for the DIR
and FAR performance of NIST sd302b partial dataset.
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Figure 5.9: CMC curve for rank-10 identification and Watchlist ROC for the DIR
and FAR performance of NIST sd302d partial dataset.

that the proposed method produced an average rank-10 DIR of 100%. Hence, it can be be

deduced that the proposed method identifies an individual with a partial fingerprint more ac-

curately than other methods. Moreover, it generated a significantly fewer percentage, 0.1%

on average, of MasterPrints while identifying the lowest average number of distinct users,

i.e., 5, from each dataset. Therefore, the proposed method emerges appropriate for IoT-based
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home appliances, smart devices, etc. Subsequently, we justify the high DIR performance of

the proposed method through a comparative assessment of the other approaches.

Lee et al. [104] termed the concave and convex ridge patterns as fixed-size ridge shape

features, RSFs. However, due to the small-sized partial fingerprints employed in the exper-

iments, these RSFs were missing in a large portion of each dataset. Therefore, the RSF ap-

proach delivered higher RR on every dataset. The approach extracted RSFs over gray-scale

partial fingerprints and employed a weighting factor, λ, (0 ≤ λ ≤ 1) during the match-

ing stage. These two steps triggered the generation of large MasterPrints for the method.

The proposed approach extracted local features within a small region around a minutia, em-

ployed preprocessing steps, and enforced strict matching to overcome the limitations of the

RSF method.

NBIS is solely minutiae-based and is considered a robust approach for full fingerprint

verification. Its accuracy depends on the number of minutiae detected within a fingerprint.

Due to fewer minutiae observed in partial fingerprints, its RR was impacted significantly.

However, its marginal FAR demonstrated that it is highly accurate in fingerprint verification.

The proposed method extracts an integer-valued feature vector within a small region around

a reference minutia which benefited in achieving high identification accuracy compared to

NBIS.

VeriFinger SDK requires a large portion of a fingerprint to extract minutiae-based fea-

tures. Its accuracy reduces if a small number of minutiae are detected in a fingerprint. The

SDK rejected a substantial percentage of partial fingerprints during the enrollment phase,

raising an exception as “Extraction failed: BadObject”. Consequently, VeriFinger SDK

demonstrated a high RR and low DIR on most datasets. However, the marginal FAR dur-

ing the identification test and zeroed FAR in the zero MasterPrint detection test reflected its

robustness as a successful commercial product in the market.

The preprocessing stage in the proposed approach comprising the binarization and thin-

ning operation ensured that the local features seldom deviate between different samples of

a finger. As the feature vectors for a finger rarely vary, the method achieved an improved

identification rate. However, the modified SURF-based method failed to accurately extract

the essential local feature descriptor at interest points from a partial dataset during the exper-

iments. These local features were similar to other partial fingerprints due to non-uniqueness.
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Consequently, the DIR for the modified SURF-based method reduced immensely and even-

tually produced a large number of MasterPrints.

The proposed method imposed strict feature vector matching to ensure high identification

accuracy and lower the chances of MasterPrint generation. The results demonstrated that the

BMM approach rejected a small portion of the fingerprints from each dataset. However, the

method detected similar features, namely, spatial distance and direction difference, between

samples from different subjects in the dataset. Moreover, the BMM method accepts a toler-

ance while feature matching. As a result, it generates similarity scores for slightly similar

fingerprints from distinct subjects. The approach employs minutiae location and orientation

as its features, which, if tolerance is accepted, are more likely to match other subjects’ partial

fingerprints. Hence, it is evident that the primary reason behind the method’s poor DIR, high

FAR, and huge MasterPrint generation lies in allowing tolerance during the matching stage.

Five full fingerprint datasets were cropped to create the partial datasets employed in

the experiments, namely, the standard FVC2002 DB1_A [101], FVC2002 DB2_A [101],

CrossMatch Sample DB dataset from NeuroTechnology [102], NIST Special Databases 302

(sd302b and sd302d) [103]. A partial fingerprint participating in the tests must possess a

minimum of ten minutiae. The remaining partial fingerprints were discarded, leading to the

asymmetrical distribution of samples per subject in each dataset. Consequently, the dataset

partitioning for the train-test split was uneven, resulting in a higher rejection rate. Moreover,

CNN has a drawback in that it is not invariant to rotation and scale [142]. Hence, due to

changes in fingerprint rotation in the partial fingerprint datasets, the CNNAI delivered low

DIR.

For training the CNNAI, around 70% of partial fingerprints were employed, and the

remaining partial fingerprints were tested for matching. A partial fingerprint possesses low

minutiae count. However, MINU-EXTRACTNET couldn’t detect all of them [129]. The

CNNAI model uses the seven nearest minutiae to construct triangular structures designated

as minutiae arrangements (MA). Hence, inaccurate minutiae detection impacted the MA-

based feature extraction in the CNNAI model, and led to low DIR on each partial fingerprint

dataset.
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5.5 Summary of the chapter

The work in this chapter introduced a minutiae geometry-based partial fingerprint identifi-

cation method to alleviate the MasterPrint generation. The experiments comprised partial

fingerprint datasets cropped from five full fingerprint benchmark datasets, and the results

were compared with six existing approaches. The result analysis showed that the proposed

approach achieved up to 97% identification accuracy while generating about 0.1% Master-

Prints. Thus, it can be observed that the local minutiae feature-based partial fingerprint

identification method enforcing strict feature matching can mitigate MasterPrint vulnerabil-

ity while delivering high identification accuracy.

113



Chapter 6

Investigating the Impact of Preprocessing

Approaches on the Performance of

Partial Fingerprint Identification

Systems

The fingerprint sensors often capture a distorted fingerprint image due to variations in pres-

sure exerted by the user, sweat on the fingertip, moisture in the surroundings, etc. Hence,

the quality of the sensed fingerprint is enhanced by employing thresholding and thinning

methods to facilitate minutiae extraction. It is not always satisfactory to enhance an im-

age and achieve better results as sometimes undesirable data may be introduced or critical

information may be lost by using these methods. Moreover, an improper binding of these

methods can adversely introduce false minutiae leading to false matches and a low identifi-

cation rate. Furthermore, the system may be susceptible to MasterPrint generation. In this

regard, this chapter is devoted to investigating the impact of four well-known thresholding

and thinning approaches exercised in Joshi et al. [143] method, discussed in Chapter 5. This

work employs the partial fingerprint datasets used in the original work to study the impact

on identification accuracy and MasterPrint generation.

The contents of this chapter are organised as follows. Initially, Section 6.1 discusses

the various thresholding approaches employed in the investigation. Section 6.2 presents
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various thinning methods used in the experiments. The experimental setup are presented in

Section 6.3. Further, the evaluation metrics and result analysis is given under Section 6.4.

The discussion and the significance of the experimental results are provided in Section 6.5.

Finally, Section 6.6 summarises the chapter.

6.1 Thresholding approaches

Image preprocessing techniques improve an image’s quality thereby preserving its original

contents [144]. However, it is not always useful to enhance an image as, more often, crucial

information may get lost due to such techniques. There is an infinitesimally small probabil-

ity of acquiring exactly similar fingerprints by the biometric system each time a user touches

the biometric sensor. The weather conditions such as, moisture or heat, sweating around

the fingertip, the orientation of the finger, and pressure exerted on the sensor surface are

some of the reasons leading to dissimilar fingerprint samples of the same finger acquired

at different instances. Therefore, thresholding or binarization approaches are generally em-

ployed to produce approximately similar ridge patterns from several samples of the same

finger. These techniques are broadly categorised as global, local, and hybrid methods [145].

The fingerprint biometric researchers and vendors use these techniques for research activi-

ties and consumer products. However, every method may not be beneficial for a biometric

application and the strategies adopted may adversely affect the system accuracy by generat-

ing false minutiae. Consequently, it results in an incorrect and low identification rates and

high MasterPrint generation. Therefore, it is imperative to investigate the impact of various

combinations of preprocessing techniques and examine the system performance.

Shaikh et al. [146] evaluated six binarization methods for performance bench-marking of

various global and local binarization methods towards fingerprint-based biometric recogni-

tion. Their work forms the basis for selecting the thresholding approaches employed in our

experimentation. The thresholding algorithms used during the experiments include iterative

optimal thresholding [144], Otsu’s global image thresholding [147], Niblack local thresh-

olding [148], and Bernsen local image thresholding [149]. The following subsection briefly

discusses these methods.
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6.1.1 Iterative optimal thresholding

The iterative optimal thresholding approach models the image pixels as a histogram gener-

ating normal distributions for the area of interest, i.e., the ridge portion and the background

region, also known as the valley portion [150]. The approach considers the minimum prob-

ability lying between the maxima of two distributions as the initial threshold, Ti. Further,

the method iteratively updates Ti to minimise the segmentation error [144]. The algorithm

considers the value of Ti for which the segmentation error cannot be further minimised as

the optimal threshold, To.

6.1.2 Otsu’s global image thresholding

The approach returns an intensity as a threshold to divide the image pixels as background

and foreground. The algorithm iteratively tries to maximise the inter-class intensity variance

or minimise the intra-class intensity variance [147]. It computes histogram, H(i), with L

bins and probability, p(i), for each intensity, i, within the image. Let t be the threshold under

consideration. The probability of a pixel to be a background pixel, Wb, and foreground pixel,

Wf , is computed as below,

Wb(t) =
t−1∑
i=0

p(i) (6.1)

Wf (t) =
L−1∑
i=t

p(i) (6.2)

The approach then calculates intra-class variance σw as

σ2
w(t) = Wb(t)× σb(t) +Wf (t)× σf (t) (6.3)
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where, σb(t) and σf (t) are the background and foreground gray level variances, respec-

tively. It returns the threshold corresponding to min(σ2
w(t)) as the desired threshold.

6.1.3 Niblack local thresholding

Niblack algorithm is a local thresholding approach [148]. It uses a fixed-sized rectangular

window, w, surrounding a reference pixel, p, and slides the window over the entire image, I .

The window size is application dependent and default value is 15. The approach computes

the local mean, µw, and standard deviation, σw, for the window region [151]. The following

equation decides the local threshold, Tw, for the given window, w.

Tw = µw + (−0.2)× σw (6.4)

Khurshid et al. [152] showed that the approach generates binarization noise in the non-

desired gray region.

6.1.4 Bernsen’s local image thresholding

Bernsen’s approach is another local thresholding method [149]. For a given image, I , the

approach initialises local contrast, l, and neighbourhood window size, w, for instance, l = 15

and w = 3. The algorithm then assigns the lowest and highest gray levels within the window

size w×w as Imin and Imax, respectively. The local threshold, Thl, and the contrast measure,

Cm, are computed using the following equations [149],

Thl =
Imax + Imin

2
(6.5)

Cm = Imax − Imin (6.6)
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If Cm > l, i.e., a non-uniform gray scale image, then the neighbourhood belongs to the

same class, background or foreground. Otherwise, a global thresholding approach decides

the local threshold [153].

6.2 Thinning approaches

A thinning algorithm produces a single-pixel skeletal structure that highlights prominent

features from the original image. In general, a binarized image is employed for the thinning

process to ensure connectivity among various regions within the image. It helps in determin-

ing the topological and metric-based properties to count, measure, and classify relevant fea-

tures. However, local noises in the image easily affect the resultant skeleton [154]. Thinning

algorithms are mainly used for object representation, detection, manipulation, comparison,

tracking, recognition, and compression.

Minutiae are the most widely exercised and accepted features utilised in fingerprint bio-

metric systems [155]. In general, minutiae points are stored as their (x, y) coordinates,

orientation angle, and type, i.e., ridge or bifurcation. Minutiae-based fingerprint biometric

systems employ minutiae correlations within an image during their comparison. Therefore,

locating minutiae most accurately within two samples of the same finger is highly desirable.

A robust thinning approach accepting a correctly binarized fingerprint image can improve

system performance in such circumstances. However, a given thinning approach may also

adversely reduce the recognition accuracy if it detects substantial false minutiae or misses a

large number of true minutiae.

Nazarkevych et al. [156] evaluated the effectiveness of image thinning methods in bio-

metric security systems. The authors analysed Zhang-Suen [157] and Hilditch thinning al-

gorithm [158], among others. Saha et al. [159] presented a comprehensive review of existing

thinning methods and their applications. The authors discussed thinning approaches appli-

cable to fingerprint analysis. The work by Nazarkevych et al. [156] and Saha et al. [159]

encouraged us to experiment with Hilditch thinning algorithm [158] and Stentiford thinning

method [160]. The designers of Saeed et al. [161] algorithm and its modified version by

Tabedzki et al. [162] have claimed these approaches as a universal algorithm for image thin-
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ning. Hence, these two methods were used to verify the claim for their robustness in partial

fingerprint identification. The following subsections briefly explain the thinning methods

used in the investigation.

6.2.1 KMM thinning algorithm

The KMM (Khalid, Mariusz, Marek) approach accepts a binarized image wherein binary 1

represents the dark region to be thinned. Next, it converts the 1’s adjacent to the boundary

0’s and in the open elbow bends into 2 and 3, respectively [163]. The method considers

non-zero positions in the image and figures out the locations, x, having 2, 3, or 4 sticking

neighbours. It changes all such x to 4. A predefined table, Deletion Array, provides the

sum for x that is the probable target for removal. It iteratively eliminates such x, assuring

that the connectivity is intact. Finally, the approach excludes unnecessary 2’s and 3’s until it

produces a single-pixel width thinned image [164].

6.2.2 K3M thinning algorithm

The K3M (Khalid, Marek, Mariusz, Marcin) algorithm is a modified version of KMM [161].

The algorithm iterates over seven phases until it generates a thinned image. These phases

can be summarised as below,

1. Mark boundry pixels, b.

2. Remove b’s with 3 adjacent neighbours.

3. Remove b’s having 3 or 4 adjacent neighbours.

4. Remove b’s with 3, 4, or 5 adjacent neighbours.

5. Remove b’s with 3, 4, 5, or 6 adjacent neighbours.

6. Remove b’s with 3, 4, 5, 6, or 7 adjacent neighbours.

7. Unmark remaining boundary pixels.
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If the current iteration of these seven phases modifies the image, the image undergoes

another iteration over the image comprising the above seven steps. Otherwise, the algorithm

stops resulting in a thinned image [162].

6.2.3 Hilditch thinning algorithm

The Hilditch thinning algorithm has two variants; one uses a 3 × 3 window while the other

uses 4 × 4 window [158]. We have employed the version using the 3 × 3 window and will

discuss the same with reference to the neighbourhood pixel nomenclature shown in Figure

6.1. The algorithm iteratively decides if a pixel P1 should be removed based on the following

five conditions [165],

1. Eliminate P1, if it is a part of the skeleton.

2. Preserve P1, if it lies on the border of a skeleton.

3. Preserve P1, if it is an isolated pixel.

4. If P1 is a connecting pixel, preserve it.

5. Remove P1, if it has at least one neighbour.

The algorithm considers all the above conditions to decide if P1 should be preserved or

eliminated. It finally stops when the recent iteration encounters no pixels for removal.

Figure 6.1: Neighbourhood pixel nomenclature in Hilditch approach.
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6.2.4 Stentiford thinning algorithm

The templates used in the Stentiford method to decide the pixels for removal is shown in

Figure 6.2. It considers only three locations in a reference pixel neighbourhood, marked in

circles. The steps followed in the algorithm are as below [160],

1. Traverse an image left-to-right downwards and locate pixels possessing T1 pattern,

2. If the central pixel at such location is not an endpoint, i.e., last pixel, and have connec-

tivity value [166] as 1, mark it for elimination,

3. Repeat step 1 and 2 for each pixel in the image,

4. Repeat steps 1, 2 and 3 for pattern T2 while traversing upwards left-to-right, for T3

traversing right-to-left upwards, and for T4 traversing downwards right-to-left,

5. Remove the marked pixels,

6. If any pixel was removed in step 4 of the recent iteration, repeat steps 1 to 5 else stop.

6.3 Experimental setup

Joshi et al. [143] proposed a minutiae geometry-based partial fingerprint identification ap-

proach targeted towards MasterPrint mitigation. The method experimented on partial fin-

gerprint datasets cropped from five benchmark full fingerprint datasets delivered up to 97%

Figure 6.2: The templates for deciding pixels for removal in Stentiford approach.
It considers only three locations, marked in circle, for thinning operation.
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accuracy and generated 0.1% MasterPrints. The authors employed adaptive thresholding ap-

proach [140] for binarization and Zhang–Suen thinning algorithm [157] to thin the binarized

partial fingerprints. Minutiae detection was carried out by employing the metric, Crossing

Number [131]. However, inappropriately binarized or thinned fingerprint may generate false

minutiae affecting the system performance. Kim et al. [167] algorithm detects and removes

such false minutiae in our experimentation. It performs post-processing on the detected

minutiae using various parameters, such as, ridge flow, ridge orientation, connectivity, and

distance between minutiae. The algorithm detects and eliminates five different types of false

minutiae, namely broken ridge, bridge, short ridge, hole, and triangle [167].

The investigation in this chapter aims to study the impact of various combinations of

thresholding and thinning methods in Joshi et al. [143] method towards identification ac-

curacy and percentage of MasterPrint generated. The original papers on these thresholding

and thinning methods have shown satisfactory results. However, the impact of their cross

combinations has not yet been reported. This work does not attempt to comment on a par-

ticular method or ascertain that a specific pair is preferable. Instead, this work evaluates

the robustness of the Joshi et al. [143] method under diverse preprocessing conditions. The

experiments were carried out using Joshi et al. [143] method on the partial datasets used in

the original work. However, instead of adaptive thresholding approach [140] for binariza-

tion and Zhang–Suen thinning algorithm [157] for thinning, 16 combinations of the selected

thresholding and thinning methods were applied. So, there were 80 individual experiments

as a part of this investigation.

The experiments were conducted on a desktop system with 64-bit Ubuntu 20.04.2 LTS

(Focal Fossa) operating system having 64 GB internal memory (RAM) and Intel® Xeon(R)

CPU E5-1620 v3 @ 3.50 GHz×8 processor. The terminology used for various combinations

of thresholding and thinning approaches on different datasets is shown in Table 6.1. We have

followed D_T_S format for each combination, where D refers to the dataset, T specifies a

thresholding approach, and S denotes the thinning approach. The values 1, 2, 3, 4, and 5

for fingerprint dataset indicates CrossMatch Sample DB dataset, FVC 2002 DB1_A dataset,

FVC 2002 DB2_A dataset, NIST sd302b dataset, and NIST sd302d dataset, respectively.

The values 1, 2, 3, and 4 for thresholding approach denotes iterative optimal thresholding,

Otsu’s method, Niblack local thresholding, and Bernsen’s local image thresholding, respec-
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tively. Further, the values 1, 2, 3, and 4 for thinning approach represents KMM thinning

algorithm, K3M thinning algorithm, Hilditch thinning algorithm, and Stentiford thinning

algorithm, respectively. For example, entry 1_1_1 refers to the combination of iterative op-

timal thresholding and KMM thinning algorithm experimented on CrossMatch Sample DB

dataset. Figure 6.3 shows a sample image from CrossMatch Sample DB dataset and its

thinned version from each combination of thresholding and thinning approach as mentioned

in Table 6.1. The thinned image for the same fingerprint generated from different combina-

tions appears significantly diverse. This variation may produce considerable differences in

the identification performance of Joshi et al. [143] method.

Table 6.1: Nomenclature for various combinations of thresholding and thinning
approaches on different datasets. SK1 - KMM thinning algorithm, SK2 - K3M
thinning approach, SK3 - Hilditch thinning algorithm, SK4 - Stentiford thinning
algorithm.

Thresholding
approach

Thinning
approach

CrossMatch
Sample DB

FVC
2002

DB1_A

FVC
2002

DB2_A

NIST
sd302b

NIST
sd302d

Iterative
optimal

thresholding

SK1 1_1_1 2_1_1 3_1_1 4_1_1 5_1_1
SK2 1_1_2 2_1_2 3_1_2 4_1_2 5_1_2
SK3 1_1_3 2_1_3 3_1_3 4_1_3 5_1_3
SK4 1_1_4 2_1_4 3_1_4 4_1_4 5_1_4

Otsu’s
method

SK1 1_2_1 2_2_1 3_2_1 4_2_1 5_2_1
SK2 1_2_2 2_2_2 3_2_2 4_2_2 5_2_2
SK3 1_2_3 2_2_3 3_2_3 4_2_3 5_2_3
SK4 1_2_4 2_2_4 3_2_4 4_2_4 5_2_4

Niblack
local

thresholding

SK1 1_3_1 2_3_1 3_3_1 4_3_1 5_3_1
SK2 1_3_2 2_3_2 3_3_2 4_3_2 5_3_2
SK3 1_3_3 2_3_3 3_3_3 4_3_3 5_3_3
SK4 1_3_4 2_3_4 3_3_4 4_3_4 5_3_4

Bernsen’s
local image
thresholding

SK1 1_4_1 2_4_1 3_4_1 4_4_1 5_4_1
SK2 1_4_2 2_4_2 3_4_2 4_4_2 5_4_2
SK3 1_4_3 2_4_3 3_4_3 4_4_3 5_4_3
SK4 1_4_4 2_4_4 3_4_4 4_4_4 5_4_4
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(a) Sample image

(a1) 1_1_1 (a2) 1_1_2 (a3) 1_1_3 (a4) 1_1_4

(a5) 1_2_1 (a6) 1_2_2 (a7) 1_2_3 (a8) 1_2_4

(a9) 1_3_1 (a10) 1_3_2 (a11) 1_3_3 (a12) 1_3_4

(a13) 1_4_1 (a14) 1_4_2 (a15) 1_4_3 (a16) 1_4_4

Figure 6.3: A sample fingerprint image from the CrossMatch Sample DB dataset
and corresponding thinned images generated from various combinations of thresh-
olding and thinning approaches.
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6.4 Evaluation metrics and result analysis

The MasterPrint vulnerability is a threat to an identification system. Hence, the investigation

in this work followed both closed-set and open-set identification set-up. The investigation in-

volved two tests: an identification test [168] and a zero MasterPrint detection test. During the

identification test, each template was compared with every other template from the dataset,

and the similarity score for each comparison was computed. If the highest score corresponds

to the actual subject sample, it was quoted as a correct detect and identify (CDI). In a false

alarm (FA) scenario, the highest score belongs to some other subjects’ templates. The system

may reject a partial fingerprint due to no similarity with any stored templates. Suppose the

system is enrolled with P partial fingerprints, and C, F , and R denotes the count of CDI,

FA, and rejected partial fingerprints, respectively. The detect and identification rate (DIR),

δ, false alarm rate (FAR), 𭟋, and rejection rate (RR), Υ, are computed as : δ = C
P × 100,

𭟋 = F
P × 100, and Υ = R

P × 100.

An identification system producing lowest MasterPrints at higher DIR and lower FAR

would become ideal for practical use in the fingerprint biometric system. The identifica-

tion test results on each dataset involve computing the DIR, FAR, RR, and the percentage

of MasterPrints generated without setting a predefined threshold. A Cumulative Matching

Characteristic (CMC) curve shows the rank-k performance of an identification system, de-

picting the identification of the correct subject at different ranks [169]. The results from the

identification test make up the data for the CMC curve. Suppose we have k subjects enrolled

with a system. Ideally, the rank-k identification rate should be 100%. The best approach is

expected to reach 100% performance at the earliest. Hence, the CMC plots presented here

showed the DIR performance till rank-10.

For each combination that produced MasterPrints in the identification test, a zero Mas-

terPrint detection test was conducted. In this test, the system threshold was raised gradually

until no MasterPrints are observed. Suppose, τ is the threshold at which no MasterPrints

were observed. The DIR, δ0, at τ is calculated using the formula for δ. A good approach

should show marginal variation between δ and δ0. Subsequently, δ0 is divided into three

intermediate thresholds to compute DIR and FAR at each of these thresholds. The DIR and
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FAR at δ, δ0, and the three intermediate thresholds provides the data to plot the Watchlist

Receiver Operating Characteristic (ROC) curve for each dataset. The curve occupying top-

left region in the Watchlist ROC plot is considered robust as it shows slight variation in DIR

and significant reduction in FAR as the system threshold is increased to accept highly similar

partial fingerprints.

6.4.1 Identification and zero MasterPrint detection test results

The partial fingerprint identification method with different combinations during the prepro-

cessing stage was evaluated for DIR (δ), FAR (𭟋), DIR while generating zero MasterPrints

(δ0), RR (Υ), and the percentage of MasterPrints generated. The results of each combination

of thresholding and thinning approach for the identification and zero MasterPrint detection

test on CrossMatch Sample DB dataset is presented in Table 6.2. The highest DIR observed

was 92.65% by 1_1_3 while producing nearly 10% MasterPrints. The combination 1_2_3

generated more than 21% MasterPrints. The results of each combination of thresholding

and thinning approach for the identification and zero MasterPrint detection test on FVC2002

DB1_A dataset is presented in Table 6.3. Only two combinations, namely, 2_4_2 and 2_4_3

could achieve more than 90% DIR. However, 2_4_2 generated the maximum percentage of

MasterPrints during the experimentation. The results of each combination of thresholding

and thinning approach for the identification and zero MasterPrint detection test on FVC2002

DB2_A dataset is presented in Table 6.4. The combination 3_4_1 delivered more than 93%

DIR, but produced above 16% MasterPrints. The lowest percentage of MasterPrints during

the experiments was around 8% by the combination 3_1_4. The results of each combination

of thresholding and thinning approach for the identification and zero MasterPrint detection

test on NIST sd302b dataset is presented in Table 6.5. Here, three combinations, namely,

4_1_1, 4_2_1, and 4_4_2 achieved above 90% DIR. However, 4_4_2 generated above 18%

MasterPrints. The results of each combination of thresholding and thinning approach for

the identification and zero MasterPrint detection test on NIST sd302d dataset is presented in

Table 6.6. The highest DIR observed here was 92.38% by 5_1_2 while producing 16.81%

MasterPrints.
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Table 6.2: Results on CrossMatch Sample DB dataset. δ0- DIR in zero MasterPrint
generation test, MP- MasterPrints generated in identification test.

Binding approach δ 𭟋 δ0 MP Υ
1_1_1 (%) 84.8 6.6 62.21 4.8 8.6
1_1_2 (%) 77.9 7.7 61.8 7.94 14.4
1_1_3 (%) 92.65 3.8 75.65 9.65 3.55
1_1_4 (%) 90.12 3.86 78.4 9.12 6.02
1_2_1 (%) 80.39 8.26 62.32 8.39 11.35
1_2_2 (%) 81.15 5.34 60.84 15.15 13.51
1_2_3 (%) 91.52 5.7 73.29 21.12 2.78
1_2_4 (%) 91.89 2.45 75.62 12.89 5.66
1_3_1 (%) 79.95 7.95 60.4 9.95 12.1
1_3_2 (%) 70.29 9.41 55.21 6.29 20.3
1_3_3 (%) 84.31 6.34 62.87 8.31 9.35
1_3_4 (%) 80.88 4.46 65.48 8.89 14.66
1_4_1 (%) 87.25 4.55 60.98 17.25 8.2
1_4_2 (%) 68.8 7.12 55.43 18.87 24.08
1_4_3 (%) 89.69 2.61 72.64 9.69 7.7
1_4_4 (%) 92.16 3.06 74.7 9.16 4.78

Table 6.3: Results on FVC2002 DB1_A dataset. δ0- DIR in zero MasterPrint
generation test, MP- MasterPrints generated in identification test.

Binding approach δ 𭟋 δ0 MP Υ
2_1_1 (%) 85.2 4.18 68.7 8.2 10.62
2_1_2 (%) 82.06 6.84 69.57 12.06 11.1
2_1_3 (%) 79.35 2.99 60.58 7.35 17.66
2_1_4 (%) 85.88 5.48 62.74 15.88 8.64
2_2_1 (%) 69.61 2.29 55.49 17.61 28.1
2_2_2 (%) 79.85 5.27 62.74 19.85 14.88
2_2_3 (%) 75.88 3.48 60.8 15.88 20.64
2_2_4 (%) 77.11 8.87 65.71 17.11 14.02
2_3_1 (%) 68.05 3.27 55.96 6.05 28.68
2_3_2 (%) 89.71 4.54 75.21 9.71 5.75
2_3_3 (%) 78.69 8.93 65.84 5.69 12.38
2_3_4 (%) 89.12 7.13 62.09 17.12 3.75
2_4_1 (%) 82.75 6.85 70.75 12.75 10.4
2_4_2 (%) 91.13 6.14 73.25 21.13 2.73
2_4_3 (%) 90.31 4.54 78.09 12.37 5.15
2_4_4 (%) 79.84 4.16 64.86 7.84 16

The entries from Table 6.2--6.6 demonstrated that the DIR ranges between 62%− 93%.

But the average DIR in the original approach was 93.8%. Thus, the DIR performance of the
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Table 6.4: Results on FVC2002 DB2_A dataset. δ0- DIR in zero MasterPrint
generation test, MP- MasterPrints generated in identification test.

Binding approach δ 𭟋 δ0 MP Υ
3_1_1 (%) 81.26 4.06 75.21 9.26 14.68
3_1_2 (%) 81.8 7.41 78.95 10.31 10.79
3_1_3 (%) 85.29 7.21 74 8.29 7.5
3_1_4 (%) 85.05 7.28 62.54 8.05 7.67
3_2_1 (%) 88.53 2.73 60.27 11.53 8.74
3_2_2 (%) 67.33 5.22 51.06 12.5 27.45
3_2_3 (%) 85.05 7.29 71.98 15.05 7.66
3_2_4 (%) 84.31 6.53 62.7 14.31 9.16
3_3_1 (%) 92.16 3.2 80.29 12.16 4.64
3_3_2 (%) 91.79 5.54 76.32 17.79 2.67
3_3_3 (%) 70.51 7.18 62.98 19.51 22.31
3_3_4 (%) 79.26 8.95 59.21 9.26 11.79
3_4_1 (%) 93.32 3.94 80.9 16.32 2.75
3_4_2 (%) 79.51 7.19 60.77 19.51 13.3
3_4_3 (%) 91.67 4.81 74 11.67 3.52
3_4_4 (%) 89.3 6.03 65.74 9.3 4.67

Table 6.5: Results on NIST sd302b dataset. δ0- DIR in zero MasterPrint genera-
tion test, MP- MasterPrints generated in identification test.

Binding approach δ 𭟋 δ0 MP Υ
4_1_1 (%) 92.85 3.37 74.65 4.85 3.78
4_1_2 (%) 85.75 3.65 60.9 9.75 10.6
4_1_3 (%) 65.2 4.07 52.49 15.2 30.73
4_1_4 (%) 62.01 2.94 49.65 6.01 35.05
4_2_1 (%) 91.1 5.11 79.58 9.1 3.79
4_2_2 (%) 81.75 6.61 67.25 13.75 11.64
4_2_3 (%) 62.01 1.83 50.2 12.01 36.16
4_2_4 (%) 62.25 3.08 52.36 12.25 34.67
4_3_1 (%) 74.57 7.41 56.8 11.57 18.02
4_3_2 (%) 74.02 8.53 65.21 22.02 17.45
4_3_3 (%) 84.8 6.88 72.95 8.8 8.32
4_3_4 (%) 88.97 6.33 76.32 18.97 4.7
4_4_1 (%) 81.52 8.97 74.68 15.53 9.51
4_4_2 (%) 90.28 6.29 78.98 18.28 3.43
4_4_3 (%) 78.19 6.83 62.4 17.19 14.98
4_4_4 (%) 83.33 6.26 60.35 13.39 10.41

original method has been reduced by more than 11% on average due to varying combinations

of thresholding and thinning methods. Moreover, the DIR in the zero MasterPrint detection
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Table 6.6: Results on NIST sd302d dataset. δ0- DIR in zero MasterPrint genera-
tion test, MP- MasterPrints generated in identification test.

Binding approach δ 𭟋 δ0 MP Υ
5_1_1 (%) 82.17 6.07 70.25 12.11 11.76
5_1_2 (%) 92.38 6.19 79.28 16.81 1.43
5_1_3 (%) 73.82 2.12 62.47 3.82 24.06
5_1_4 (%) 67.91 2.31 51.64 7.96 29.78
5_2_1 (%) 82.35 7.3 69.4 8.35 10.35
5_2_2 (%) 83.06 8.21 67.24 9.06 8.73
5_2_3 (%) 67.01 2.32 50.85 7.01 30.67
5_2_4 (%) 88.58 6.54 69.4 8.97 4.88
5_3_1 (%) 85.78 7.2 60.36 15.78 7.02
5_3_2 (%) 87.09 5.45 65.32 17.05 7.46
5_3_3 (%) 83.63 7.02 59.21 13.63 9.35
5_3_4 (%) 71.96 3.55 57.39 11.96 24.49
5_4_1 (%) 72.55 8.37 60.9 17.55 19.08
5_4_2 (%) 91.1 5.22 78.35 15.12 3.68
5_4_3 (%) 84.17 5.67 68.21 14.85 10.16
5_4_4 (%) 73.43 8.09 64.85 23.45 18.48

test was also lowered by nearly 10% during the investigation. However, the average FAR

has decreased by 0.6% compared with Joshi et al. [143] work. The average rejection rate

also reduced by 7.16%. The percentage of MasterPrint generated during the investigation

ranges between 3.82% − 23.45%, whereas for the original method, the range lies within

0.1%− 2.03%.

The investigation witnessed a 14 times increase in the percentage of MasterPrints gener-

ated, while the average percentage of MasterPrints generated for the experiments was more

than 11% compared to the original paper. These statistics thus demonstrated that the accu-

racy and MasterPrint mitigation performance of the Joshi et al. [143] method significantly

reduce while using different preprocessing schemes. The entries for DIR (δ), FAR (𭟋), DIR

while generating zero MasterPrint (δ0), RR (Υ), and the percentage of MasterPrints gener-

ated during the investigations ranges between 62.01− 93.32%, 1.83− 9.41%, 50.2− 80.9%,

1.43 − 36.16%, and 3.82 − 23.45%, respectively. Thus, the results from Table 6.2--6.6 for

identification and zero MasterPrint detection test appear diversely distributed for each of the

five parameters under consideration. Furthermore, no binding approach have shown remark-

able results invariably on several datasets. Hence, these performance measures do not form
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a concrete base to attribute any pair, specific thresholding or thinning method as preferable

over others.

6.4.2 CMC and Watchlist ROC curve performance

The CMC and Watchlist ROC curves for each preprocessing combination on individual

datasets are depicted on the left and right portion of Figure 6.4--6.8, respectively. The highest

and average rank-10 DIR achieved during the investigation was 98.6% and 87.35%, respec-

tively. However, the original method achieved 100% DIR on each dataset till rank-2. It also

demonstrated that the DIR did not improve beyond rank-3. In the case of Watchlist ROC

plots, ideally, the curves are expected to deviate marginally for DIR and show significant

variations on FAR. But the plots from Figure 6.4 to Figure 6.8 demonstrated that the iden-

tification rate reduced considerably compared to FAR. Moreover, the average DIR in zero

MasterPrint generation test, δ0, has reduced from 76.14% in the original work to 65.96%

during the investigations. Thus, delivered a degraded accuracy of more than 10%. The

plots thus showed that the average identification accuracy was reduced by more than 12%

when diverse combinations of pre-processing methods were employed in Joshi et al. [143]
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Figure 6.4: Cumulative Matching Characteristic (CMC) curves and Watchlist
ROC plots for CrossMatch Sample DB dataset.
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Figure 6.5: Cumulative Matching Characteristic (CMC) curves and Watchlist
ROC plots for FVC2002 DB1_A dataset.
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Figure 6.6: Cumulative Matching Characteristic (CMC) curves and Watchlist
ROC plots for FVC2002 DB2_A dataset.

work. However, it is not possible to label any single thresholding or thinning method, or

their specific combination as best or worst due to their inconsistent performance in CMC

and Watchlist ROC plots.
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Figure 6.7: Cumulative Matching Characteristic (CMC) curves and Watchlist
ROC plots for NIST sd302b dataset.
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Figure 6.8: Cumulative Matching Characteristic (CMC) curves and Watchlist
ROC plots for NIST sd302d dataset.

6.5 Discussion

The investigation illustrated that the partial fingerprint identification and MasterPrint mitiga-

tion method presented by Joshi et al. [143] delivered low performance on crucial parameters
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when a variety of thresholding and thinning methods were employed in place of the origi-

nal approaches. The combination of Bernsen’s local image thresholding and K3M thinning

algorithm produced above 90% DIR on three datasets, namely, DB1_A, NIST sd302b, and

sd302d. But the approach generated more than 15% MasterPrints during the same experi-

ment. Another binding of Bernsen’s local image thresholding and Hilditch thinning algo-

rithm delivered greater than 90% DIR on FVC datasets while generating more than 11%

MasterPrints. Thus, the DIR and the percentage of MasterPrint generated by various prepro-

cessing combinations on five benchmark datasets showed that no pairing has consistently per-

formed better over the other methods. Moreover, the entries from Table 6.2 to Table 6.6 also

confirm that suggesting a specific thresholding or thinning method as appropriate for partial

fingerprint identification when experimented with given datasets, is not feasible. Based on

the analysis, we deduced that the deviation in the results were contributed by five factors,

namely, the thresholding method, thinning method, false minutiae removal approach, the

sensor type, and the resolution of the fingerprint datasets. Precise thresholding and thinning

of fingerprint ridges are the driving factors for accurate minutiae detection. The literature on

image processing includes several approaches to binarize and thin grayscale images. All the

thinning and thresholding approaches from the literature are incompatible for high-security

applications, such as, anonymous user identification through a fingerprint. Conclusively, the

results confirmed that high-security applications, and user identification systems employing

biometric traits of an individual are greatly influenced by the choices made in the prepro-

cessing stage.

Jabeen and Khan [170] proposed a hybrid algorithm for false minutiae and boundary

elimination. The algorithm removes false minutiae from a thinned binarized fingerprint im-

age arising due to bridges, spikes, and ridge breaks. Xiao and Raafat [171] presented a

false minutiae detection and elimination method. The authors represented false minutiae

using structural and statistical approaches. Kim et al. [167] method for false minutiae re-

moval employed in the experimentation, and other similar approaches used thinned images

for false minutiae detection and elimination. Hence, an inappropriate binarized and thinned

fingerprint image is the agent behind the improper functioning of any false minutiae removal

scheme.

Although there is no lower bound on the count of minutiae matched to decide if the
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fingerprints are matched, some legal procedures accept at least an 8− 17 minutiae match for

evidence [13]. An average minutiae density on a 500 dpi fingerprint is estimated to be 0.246

minutiae/mm2 [172]. Such statistics should be employed to confirm that accurate minutiae

detection and matching was carried out by a novel method proposed in future involving

thresholding and thinning methods in the preprocessing phase. A robust novel fingerprint

identification method should be experimented with fingerprint datasets employing diverse

sensor types. A fingerprint identification system can generate MasterPrints if the fingerprint

preprocessing approaches are not precisely tested on several datasets using different sensors.

As future scope of this work, the feasibility of robust partial fingerprint identification and

MasterPrint mitigation method for poor quality latent fingerprints could be analysed. Also,

studying multiple preprocessing schemes to prove its practicability can also be undertaken.

As experimental results showed that preprocessing methods highly affect an identification

system’s accuracy, the initial goal can be experimenting with different preprocessing and

false minutiae removal approaches on poor quality partial and latent fingerprint datasets ac-

quired using dissimilar sensor types.

6.6 Summary of the chapter

The MasterPrint vulnerability makes a partial fingerprint identification system susceptible

to presentation attacks. This chapter presented an investigation using sixteen combinations

of thresholding and thinning methods on a partial fingerprint identification system to study

their impact on the vital parameters, such as DIR and percentage of MasterPrints generated.

The results demonstrated that the partial fingerprint identification and MasterPrint mitigation

approach had delivered diminished performance that did not match with its original version.

Hence, to prove the robustness and feasibility in practical application of a partial fingerprint

identification system as a high-security person identification or access control system, firstly,

it should be experimented with fingerprint datasets captured from diverse sensor types with

poor and good quality images with varying resolutions.
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Conclusion and Future Scope of Work

MasterPrint vulnerability may not be regarded as a serious threat to conventional or con-

tactless fingerprint biometric systems fingerprints using high-resolution full fingerprints for

high-security applications. However, handheld devices like smartphones with small-size fin-

gerprint sensors and offering less stringent security requirements require coping with security

threats from presentation attacks using MasterPrints. The main objectives of the research in

this thesis include introducing a comprehensive threat model depicting sixteen vulnerable

attack points and addressing the MasterPrint vulnerability. The investigation on the impact

of using various combinations of thresholding and thinning methods demonstrated that Mas-

terPrint generation largely depends on the choice made during the preprocessing step. The

MasterPrint vulnerability in the partial fingerprint identification systems was addressed us-

ing two novel minutiae-based local feature extraction approaches. This chapter provides the

concluding remarks on the work carried out in this thesis. In the beginning, Section 7.1

presents the summary of outcomes from contributing chapters in this thesis. Subsequently,

Section 7.2 highlights the possibilities to further extend the research in future.

7.1 Summary of contributions

This section presents the contributions made through the research work provided in this

thesis. The following subsections give an overview of the outcomes from the thesis chapters.
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7.1.1 The proposed threat model for fingerprint biometric system

The proposed threat model pinpointed sixteen attack points (AP) to highlight the system

components vulnerable to various active and passive threats. The model highlighted various

existing and potential threats to six components and ten communication links between them.

The model depicted the components missing in the existing threat models and classified these

components into eight classes to facilitate the security experts and researchers in addressing

a common threat at multiple locations within the system. The model included the template

protection techniques module and the biometric system controlled application which were

missing in the existing models. The model further provided diverse techniques to thwart the

attacks on the match-in-database fingerprint biometric system. Thus, the description of the

model included the countermeasures to strengthen the security of the biometric system.

7.1.2 Investigating Latent MasterPrint

The MasterPrint vulnerability was studied for a partial fingerprint identification system. La-

tent fingerprints lifted from a crime scene are also mostly partial and possess unclear ridge

patterns. Hence, it was essential to investigate the possibility of Latent MasterPrint. A Latent

MasterPrint could be misused against an innocent. Due to reliance of legislative procedure

on forensic investigation reports, the AFIS must produce accurate results to ensure only of-

fenders get convicted. The experimental results demonstrated that the Latent MasterPrints

exists, and confirmed that addressing MasterPrint vulnerability requires a prompt response

from the research community.

7.1.3 MasterPrint mitigation using minutiae-based coordinate system

A novel minutiae-based eight axes coordinate system was introduced in the first attempt to

address the MasterPrint vulnerability. The feature extraction employed the binarized and

thinned partial fingerprint to create a seventeen element integer-valued unique feature vec-

tor. As strict feature matching was imposed during feature vector comparison, a new scheme
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was introduced for similarity score computation. The results demonstrated that the proposed

approach delivered an 88.78% average identification accuracy while generating 1.27% Mas-

terPrints, on average. The proposed approach thus ensured that accurate user identification

through partial fingerprint is possible while reducing the MasterPrint generation significantly.

7.1.4 MasterPrint mitigation employing minutiae geometry

The second method to mitigate MasterPrint vulnerability local minutiae-based geometric

constructs were formed to create a feature vector representing each minutia uniquely. The

experiments conducted on partial fingerprint datasets cropped from five benchmark full fin-

gerprint datasets proved that local features involving adjacent minutiae alleviate the possibil-

ity of MasterPrint generation. The results demonstrated that the proposed approach delivered

a 97% average identification accuracy while generating 0.1% MasterPrints, on average. The

proposed approach provided high accuracy and generated negligible MasterPrints. Thus, it

is suitable for practical use in IoT-based products requiring user identification.

7.1.5 Impact of preprocessing approaches on MasterPrint generation

Minutiae-based accurate feature extraction usually requires a seamlessly blended combina-

tion of thresholding and thinning methods in the fingerprint preprocessing stage. However,

these methods are implemented independently, and existing literature does not show any ev-

idence of the impact of choosing a diverse combination of these methods. Hence, an investi-

gation involving four thresholding and four thinning approaches was conducted to study the

performance on MasterPrint generation and identification accuracy. The observations proved

that a novel approach must be rigorously tested using different preprocessing techniques to

understand their collective effect on the system performance.
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7.2 Future research directions

As research is a never-ending process, the contributions made in this thesis also has certain

diverse objectives to be explored in future. The following paragraphs provide an insight into

the future scope to extend the outcomes of this thesis.

1. The proposed threat model targeted the match-in-database fingerprint biometric system

vulnerabilities. However, smart-card based biometric systems are gaining popularity

over remote server-based biometric authentication systems. Hence, the proposed threat

model requires an extension towards identifying and addressing threats to template-on-

card (ToC), match-on-card (MoC), and system-on-card (SoC) biometric systems. The

feasibility of presenting a single threat model applicable to a larger class of biometric

systems may be explored in future.

2. The investigation in this thesis confirmed the possibility of Latent MasterPrint. Hence,

devising a novel latent fingerprint identification approach extracting local features can

be a problem statement for future work. The investigations should employ more latent

fingerprint datasets and user-assisted good quality fingerprint datasets to validate the

robustness of the approach.

3. The proposed methods for MasterPrint mitigation is highly dependent on the underly-

ing binarization and thinning methods used in the preprocessing stage. Moreover, the

partial fingerprint dataset was cropped from reasonably good quality full fingerprint

benchmark datasets. Hence, the approaches can be tested in the future by employing

diverse preprocessing methods on poor and latent fingerprint datasets.

4. It is possible to improve the performance of the proposed method further by employ-

ing a neural network and machine learning scheme, such as Generative Adversarial

Networks (GANs), to produce higher quality images. However, a Least Squares Gen-

erative Adversarial Networks (LSGANs) employs least-square error minimisation and

has demonstrated generating better quality images compared to regular GANs [173].

The samples outlying from the decision boundary are penalised by the least-square ap-
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proach and pull them near the decision boundary [174]. Hence, LSGAN can be utilised

in future during the preprocessing phase to improve the overall system performance.
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Appendix A

Biometric-based Secure Authentication

for IoT Enabled Devices and Applications

Smart connected consumer devices employing IoT as the backbone are becoming a part of

our day-to-day life. These products are fascinating to everyone but bear a dark side of becom-

ing a threat to the consumers and the vendors. The users and the smart devices manufacturers

are losing finances as well as confidential data to the adversary mainly due to employing inse-

cure authentication methods. There are several reported incidences of such security breach in

IoT enabled systems. The IoT industry finds it difficult to cope up with the fast developments

and innovations in lightweight protocols, hardware devices, and authentication mechanisms

developed explicitly for IoT based products. Furthermore, they are reluctant to embed these

innovations with a fear that the consumers may not find the new product budget-friendly.

Smart cities, smart homes, smart cars, smart grids, etc. are gaining attention from various

sections of the society without any knowledge of the vulnerabilities that are associated with

these revolutionary systems. This work considers the IoT system from the perspectives of

a consumer, the vendor, and a researcher to figure out the present scenario, and give future

directions to the authentication related security issues in IoT subsystems.

The device-to-user authentication while accessing connected consumer devices are the

areas in IoT systems that need serious attention from the biometric research community and

the biometric industry. Also, the automated payment system implemented in smart consumer

products poses a threat from malicious attackers. Even though there are alliances to brain-

storm the specific problem and standardization of protocols for IoT infrastructure, there is
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slow growth in incorporating the most secure, and cost-effective solution to the security is-

sues in IoT. We must understand the vulnerabilities and loopholes in IoT infrastructure and

correctly design mitigation techniques to build a robust system. This work provides a precise

investigation of the current scenario to integrate biometric authentication in IoT applications

and systems along with the required techniques to mitigate software and hardware-level vul-

nerabilities in these systems. This work reviews the current research outcomes in this direc-

tion and pinpoints their pros and cons while implementing them into the future IoT products.

It is also required to decide the best biometric modality and its implementation mechanisms

that are convenient and pocket friendly to the consumers. In addition, this work also dis-

cusses various biometric traits from IoT perspective and suggest the best modalities for such

systems.

A.1 Internet-of-Things (IoT) impacting our livelihood

The Internet has played a significant role in recent innovations and advancements in informa-

tion technology. Internet-of-Things are referred to as a network of smart hardware devices

(things) communicating with each other using the Internet to collectively provide specific

functionality for individuals, industries, and organizations. With the advent of numerous IoT

applications, human lives are more comfortable as such applications employ intelligent pro-

grammable consumer products to interact with people around them and amongst themselves.

A few years back, what seemed to be an electronic device has now become a smart device

by employing IoT as a backbone. The present-day world is witnessing the impact of IoT

products and systems on everyday life as humans are increasingly becoming more reliant

on the Internet for routine activities. Some sectors that employ IoT applications comprise

healthcare, infrastructure, agriculture, logistics, manufacturing, automation industries, and

many others [175].

A smart speaker wakes us up with our favorite music in the morning; a smart wristband

keeps the record of our health, and suggests a healthy diet; a smart assistant reminds us

about the daily schedule and appointments; the list continues to grow. With the advent of

smart cities, facilities, such as a smart home, smart grid, smart cars, smart street lights and
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traffic signals, smart meters, and smart TVs, are influencing human lives in some or the other

way. The vendor provides a smart phone app for smart consumer appliances to connect and

control the device conveniently through the Internet. Such devices employ sensors, whereas

the smart phone app performs local analytics. In case the reports of the analytics need to

be shared with multiple parties, the system uses a cloud-based server for analytics. A smart

wristband gives health updates using different sensors to the smart phone applications. In

such cases, local analytics in the application is sufficient. A health monitoring system for

an older person living alone may require the data processing at the cloud server since a

physician, a caretaker, or a relative may be sharing the reports.

The automation and transportation industry extensively uses radio-frequency identifica-

tion (RFID) tags. The tracking of assets, paying toll charges, and managing inventory are

some more application areas of these tags. These tags contain digital information and require

a reader device to collect this information through radio waves. Near-Field-Communication

(NFC) tags offer low-range communication over a low-speed channel. The vendors employ

NFC tags for product labeling and electronic payment purposes. The application of IoT to

the specific field is named accordingly. For instance, industrial IoT (IIoT) [176], Internet

of Medical Things (IoMT) [177], Internet of Battlefield Things (IoBT) [178], Environmen-

tal Internet of Things (EIoT) [179] are some examples of explicit IoT applications. The

IoT based home and consumer appliances include HomePod, HomeKit, Siri, Apple Watch

from Apple Inc., Amazon’s Echo and Alexa, Google’s Nest and Google Home. Figure A.1

provides a glimpse of various IoT-enabled applications and services in diverse areas.

A.2 IoT ecosystem

We should be aware of the functioning inside a typical IoT system to figure out the vul-

nerabilities and threats associated with it. Figure A.2 shows major components in the IoT

ecosystem. The elements and communication channels in the IoT system can be roughly

classified into six categories, namely the environment, the things directly interacting with

the environment, the low-range LAN communication protocols employed for intranet data

transfer, the local control centre, i.e., the IoT gateways, the Internet, the remote servers, and
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Figure A.1: IoT-enabled applications and services

Figure A.2: Major components in the IoT ecosystem

user interfaces.

The things in an IoT ecosystem comprise the hardware-based embedded systems that

listen and respond to their environment. The interface to the environment comprises sen-
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sors (acting like human nerves), RFID tags, controllers, and actuators (acting like human

muscles). In general, sensors exist for capturing physical observable, such as temperature,

ambient light, humidity, dust, fire, motion, smoke, color, water, etc. [180]. These sensors

continuously collect the data for the desired parameter and, send it to the IoT gateway and

the local control system without any delay. Sensors, typically, use LAN protocols for trans-

mitting data. RFID tags use a similar approach to send smart bar-codes embedded on them

through radio frequency technology. An RFID reader can sense, collect, and read the in-

formation from the tag. In both these cases, the communication is one-way. Hence, these

devices are referred to as listeners and transmitters. Furthermore, certain things in the IoT

system intend to respond to the environment based on collected data or the instructions re-

ceived over the Internet termed as actuators and controllers. They act by following the

pre-programmed actions based on the commands received. These devices can only receive

the data through the LAN protocols and usually do not respond to the source of informa-

tion. Such devices are termed as actors. The communication within the local IoT subsystem

among things, gateways, and local control centers use low-range wireless protocols. Some

of these protocols providing low-range communication include Bluetooth, ZigBee, Wi-Fi,

BLE, NFC, etc.

IoT gateways provide the communication link between the local IoT subsystem and the

remote cloud-based servers, user interfaces, and data analytics [181]. These devices can also

employ local data analysis for instant decision making on the incoming data stream from the

sensors. The data analysis and control capabilities of the IoT gateways can sometimes be

shared using an explicit local control centre. Local network management, system diagnos-

tics, device configuration management are some additional functions of IoT gateways and

local control centers. In a typical IoT environment, the remote user authentication and data

analytics servers connect with the IoT infrastructure with the help of the TCP/IP based In-

ternet. The system usually provides a user interface in the form of a web portal, smart phone

application, and alert/alarm application for the customers and the system administrators to

process the raw data, and visualize the data analysis. A dedicated authentication server per-

forms security checks such as user authentication. Some IoT applications such as smart

parking, food ordering, paying toll charges, etc. and periodic subscription-based services

also employ a payment gateway.
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Despite so many features and utilities of IoT systems, such systems also face vulnera-

bilities and threats associated with various components and communication channels in the

entire IoT ecosystem. Experts in multiple applications have reported several incidences of

financial losses due to credit and debit card frauds in recent times [182]. In IoT systems users

also faced threat to data confidentiality and data integrity. Security breaches in IoT other than

financial frauds comprise insecure mobile interface, privacy issues, insecure cloud and web

interfaces, etc. Such threats must be addressed and monitored closely to understand the risk

intensity and accordingly provide mitigation mechanisms against them.

A.3 Classification of IoT-powered applications and services

In the present-day world, a considerable number of IoT-enabled consumer products and ser-

vices are in use. With the emerging evolution of IoT technology, we can find several types

of such devices around us. We classify these smart devices into seven categories based on

their working mechanism, as follows.

1. Sensing only : The sensing only IoT devices consists of sensors located at different

places to collect and send the data to the server. The server stores the data and a

system administrator retrieves the data whenever needed and presents the data in its

original form. Smart cities monitoring temperature, oxygen, humidity, dust, and car-

bon monoxide uses sensor-enabled infrastructure and display the air quality parameter

values periodically to let the citizens know the best and worst colonies in the city.

Health monitoring applications for a bed-ridden patient at home or hospital can also

use sensors to record various health parameters, such as pulse rate, blood pressure,

temperature, and other critical health parameters, and a display device shows varia-

tions in such parameters.

2. Sensing and real-time local analysis : IoT systems wherein the sensors collect data

from the environment and perform real-time analysis of the data at the local gateway

fall under this category. Weather prediction systems employ various sensors to collect

data about temperature, humidity, and other environmental factors, and perform local

data analysis to predict a rainfall, forecast temperature variations in the locality. A
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vehicle maintenance system uses sensors to monitor the condition of critical spare parts

and shares the analysis report of the respective vehicle with driver and maintenance

staff.

3. Sensing and cloud-based data analytics : Occasionally, data analysis can occur at a

centralized cloud server for sensors deployed in a geographically large area, such as a

state or a country. The train track monitoring system uses sensors at a short distance

over the entire tracks in a country. An unexpected event on the tracks may lead to a

major accident or interrupt the rail traffic for a longer duration until the damage gets

repaired. Hence, to divert the trains to an alternate route and stop trains approaching

the faults, cloud-analytics embedded in the system collect the data, and provide reports

to different authorities at the station and onboard train staff based on real-time locations

of trains.

4. Sensing and analysis of data with automated control : The IoT systems can use rule-

based automatic control mechanisms in case of an alarming situation. In smart lighting

and home systems, the actuators play a significant role in responding to the environ-

ment based on rules and instructions according to the underlying algorithm. The elec-

trical appliances switches ON/OFF based on the presence of an individual sensed by

the motion detectors. Consequently, the air conditioning system can adjust the tem-

perature based on the number of individuals present in a room perceived by the CO2

level inside the room.

5. Sensing and analysis of data with manual control : It may not always be possible for

the system itself to deal with every unexpected situation and thus needs manual inter-

vention. The sensors and the analytics can show a damaged node within a network

that needs replacement or repairing urgently. In another scenario, a smart phone app

can also provide an interface to display a probable malicious node and allow the con-

sumer or administrator to either restart the node or stop transmitting the sensed data.

Suppose, the system detects unusual data collected at the gateway or cloud-server, and

the system cannot locate the hacked sensor. In such incidences, the network requires

manual intervention.
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6. Sensing and analysis of data with automatic and manual control : We usually provide

intelligence to the smart devices so that they can respond quickly to certain situations.

But they are still not intelligent enough to differentiate and respond to a more severe

event that is within their capability. Smart cameras installed at the traffic signals can

automatically zoom at the registration numbers of the vehicles of the traffic rule vio-

lators and send images to the server. But in case there is an accident, the traffic police

seating at the control room can control the camera to zoom in at the offender of the

incident than allowing the cameras to operate normally.

7. Smart devices (artificial intelligence (AI) + machine learning (ML) + rule-based and

manual control) : The smart consumer appliance usually embeds the latest hardware

and software technology such as intelligent sensors, artificial intelligence, and machine

learning algorithms to provide state-of-the-art experience to the consumer. These de-

vices learn, adapt, and perform better with increasing consumer interactions. They

can place orders and pay on behalf of the consumer, automatically sense the consumer

mood and play songs accordingly, read the news, receive calls, set reminders, and

many more.

A.4 IoT security breach

Smart TV, printers, smart security cameras are vulnerable to a zero-day attack [183]. Bitde-

fender discovered that the Ring Doorbell cameras from Amazon were allowing hackers to

access a user’s Wi-Fi as well as other devices connected through the Wi-Fi. It was also pos-

sible to mount a distributed denial-of-service (DDoS) attack via Blink XT2 security camera

systems from Amazon [183]. Additionally, the cameras provided access to footage from the

camera and the audio output. Check Point researchers demonstrated that fax machines are

vulnerable to hacking using the fax number and the telephone line [183]. They also illus-

trated the exploitation of a security bug in HP all-in-one printers during a conference [183].

The FBI stated that the camera and microphone integrated into most of the smart TV manu-

facturers could be hacked to control volume and even channels [183]. Researchers also illus-

trated the information leakage based attacks on smart light controlled using infrared [184].
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A news channel in the US reported an incidence of hacking a smart home and a thermo-

stat of a couple [183]. Researchers from academic institutions developed malware to steal

confidential data from a smart phone via a hacked microphone from the device [185]. They

also demonstrated the acoustic side-channel attack on a touch-screen device which unveils

everything a user types. Smart coffee machines possess high-security risks as their vendors

give minimal efforts on its security aspects while designing. The apps for these machines

are vulnerable to reveal information about the consumer’s bank and cards [183]. It is also

observed that LAN printers pose a risk for cyber attacks into the organizations [183]. Re-

searchers hacked the smart speaker, Amazon Echo, during a live demonstration at a security

conference [183]. As per Trend Micro researchers, IoT-based cyber attacks are possible via

Internet-connected gas stations [183].

During a demonstration by the researchers from the University of Central Florida, a Nest

Learning thermostat was hacked within fifteen seconds when the hackers were allowed to ac-

cess the device physically [186]. The hacker then employed the thermostat to expose the Wi-

Fi credentials, spy the consumer, and attack other devices connected with the same wireless

network [186]. It was also possible to geographically track the movement of fitness trackers

by employing a customized Raspberry Pi [186]. Further, experts successfully managed to

send spam and phishing emails using an Internet-connected refrigerator [186]. There was

also an incident of the hacking in-flight entertainment system of an aeroplane [186]. A pro-

fessor reported that a hi-tech train signaling system was prone to hacking, prompting severe

consequences in UK [186]. It was also claimed that more than 0.45 million connected vehi-

cles are vulnerable to intrusion attacks if the attacker gets access to their IP addresses [186].

The insurance firms employing IoT-enabled services and devices possess a high risk of

cyber attacks [187]. More than 34% of the present-day Internet traffic accounts for the cyber

threat. An average financial loss due to IoT related hacks crossed 8 million USD in 2019

[187]. Most of the security breaches reported in the past are the consequences of some

critical misconceptions about IoT security, e.g., constrained IoT things poses no risk to the

system as they transfer unimportant raw data. However, authentication and authorization

mechanisms are sufficient for securing the entire system, and it is enough to employ threat

detection mechanism as a device reset can stop such attempt immediately [187].
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A.5 IoT threat model and mitigation approaches

Wireless Sensor Network (WSN) forms the basis, and the Internet provides the backbone

for any IoT-based smart devices and services. Hence, the vulnerabilities these technologies

exhibit may also apply to the IoT infrastructure. Denial-of-Service (DoS), Hello flooding,

Sybil, and Sinkhole attacks usually target a WSN [188]. The wireless network connecting

the sensors, actuators, IoT gateways in an IoT infrastructure may possess similar risk. The

proprietary protocols employed in such systems may not be secure and robust enough to

resist all the probable existing attacks on the network. A bug in a smart device such as a

web camera and a smart speaker may become a threat to the entire system using the same

infrastructure.

The incidences of IoT security breaches indicate that the IoT enabled consumer appli-

ances, smart devices, and services are still vulnerable to attacks, such as hacking, data in-

terception, etc. As there are several components and communication channels connecting

them, the chances to get exposed to any attack attempt remains high. So, we should identify

all the possibilities for a probable attack and categorize them such that a set of mitigation

techniques can protect and secure the IoT infrastructure. Based on the major components

involved in an IoT ecosystem discussed in Figure A.2, we propose an IoT threat model with

ten vulnerabilities. Figure A.3 shows the proposed threat model, and the naming convention

V1 to V10 depicts the ten vulnerabilities.

The class of threats associated with listeners and transmitters fall under vulnerabilities

V1. The adversaries hack these devices and divert the traffic to the fraudulent server. He may

also inject some malicious contents into the network to harm the infrastructure. A hardware

Trojan is a type of deliberate insertion into hardware design [189]. Usually, an act of a rogue

designer or vendor can lead to such a security breach in the system. He can also mount a

denial-of-service (DoS) attack through the IoT nodes. These memory-constrained devices

are also vulnerable to side-channel attacks. The attacker analyzes computation time and

electric emission to collect confidential information such as encryption key or authentication

secrets. As these constrained devices are usually battery-powered, it is not feasible to provide

additional software or hardware just for security motives.
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Figure A.3: IoT threat model

The possible attacks at nodes that directly interact with the IoT environment, such as

actuators and controllers, fall under vulnerabilities V2. The hacker targets devices, such

as actuators and controllers, responsible for acting on behalf of the user or the automated

control mechanism in the IoT system to perform an unintended activity. The adversary often

employs tools such as oscilloscope, logic analyzer, and ChipWhisperer to figure out the

vulnerabilities in the target node. Usually, such incidences are noticeable, and the attacker

has very little to achieve in the long term except destroying or damaging the components on

the IoT infrastructure. Hence, an intelligent adversary invests least time and effort on such

attempts. However, security experts must give necessary consideration to probable threats at

such nodes.

Typically, the nodes in the IoT infrastructure communicate via technologies, such as Wi-

Fi, fiber, Ethernet, ZigBee, 3G, 4G, Bluetooth LE, etc. We categorize the threats to these

communication media as vulnerabilities V3. The adversary can retrieve secret information

or perform traffic analysis by eavesdropping over the communication medium. Once the

attacker obtains some confidential data, he uses it to mount a replay attack at a later time.

Packet flooding in such LAN is a form of denial-of-service attack. If the hacker succeeds
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in controlling the IoT nodes, he can mount several other attacks, such as man-in-the-middle

(MITM) and Sybil attack, as the entire network will be at his fingertips [190]. Consequently,

he can exploit the vulnerabilities in the communication protocol and the nodes to destroy or

damage the whole system.

In a distributed denial-of-service (DDoS) attack scenario, a set of geographically dis-

persed computers target different nodes within a network infrastructure to ultimately deny

any services to the authorized users. During a Sybil attack in a WSN, the adversary employs

the compromised node to mislead a victim node by presenting multiple identities. The vic-

tim node, in turn, executes the same instruction or operation redundantly. Sniffer instruments

are employed to collect network-related information, communication patterns, physical lo-

cations of various wireless access points, and the protocols used in the network [190]. A

Sinkhole attack targets the network infrastructure in the IoT system. Here, a malicious node

gathers data from its nearby nodes and bypasses all other communication links without any

hint to the system [190].

Usually, the IoT gateways possess high processing power compared to other nodes in

the LAN, which is sufficient enough to execute critical and intensive applications. This

empowerment provides more opportunities for the attacker to succeed in mounting an attack.

IoT gateways located at the intersection of LAN and the Internet vulnerable to software

or hardware level threat becomes an entry point into the entire system. IoT gateways are

susceptible to data leakage and topology disclosure. In data leakage, the adversary manages

to collect the data from the local storage at a node or by diverting the traffic from the victim

node. As every sensor, actuator, and controller device within the network communicates

with the gateway, a malicious gateway can consequently disclose the location and identity

of these nodes. We label the probable attacks at IoT gateways as V4. The attacks targeting

the local control center within an IoT LAN fall under the category of vulnerabilities V5. The

threats to the IoT gateways also apply to the local center. Additionally, they both can be a

possible target of a Trojan horse attempt.

The IoT gateway communicates with various remote servers, cloud-based services, and

user interfaces using the Internet. Even though we have a well-established Internet service

throughout the world, it is still vulnerable to specific risks and so cannot be labeled as fully

secure communication medium. An adversary can execute a DoS attack, man-in-the-middle
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(MiTM) attack, eavesdropping, selective forwarding, Sybil attack, channel congestion, and

collision attack on Internet services [191]. We categorize all such threats through the Internet

traffic under V6.

The service provider and smart product vendor usually provide a user interface for the

consumer and various teams working at the cloud server. Web portals, smart phone apps, and

plug-in for alarm or alert mechanism are a few examples of such interfaces. The vulnerabil-

ities associated with them is categorized as V7. The hacker can use another app or operating

system bug to capture the smart phone screen or read the app data from system memory. An

insecure web application portal or APIs can disclose secret user information or delete some

files.

Almost every IoT application requires data analytics, and the vendors prefer cloud-based

services for the same. But the application, in turn, draws in all the risks associated with

cloud servers to its environment. Several attacks have been mounted on cloud servers, which

comprise flooding attack, cloud malware injection, SQL injection attack, and signature wrap-

ping attack [190]. The adversary tries to control the cloud services by injecting malware, a

malicious service instance, or virtual machine on the cloud. He can also modify the XML

signature commonly employed by cloud servers for ensuring service integrity. A malicious

SQL query code for updating, deleting or reading the database contents also poses a potent

threat to cloud infrastructure. The adversary uses the Internet for mounting a DoS attack on

the cloud through flooding. Such risks to cloud-analytics servers are categorized as V8.

An authentication server in an IoT environment ensures that only authorized individuals

are allowed to access the system resources and services. Usually, these servers are main-

tained separately away from the LAN for security issues. Such remote servers are vulnerable

to leaking the user credentials, false data injection, eavesdropping, record delete or update,

identity theft, password, key or session token disclosure. These types of threats to the remote

authentication server are categorized as vulnerabilities V9.

Smart devices allow consumers to place orders and pay the merchant via smart card

whose credentials are stored at the vendor’s server. The IoT service provider maintains a

payment gateway remotely for providing a secure payment process. The adversary targets

these gateways for performing financial frauds. He intercepts the traffic to such servers to

collect user credentials and utilizes them for his benefits or places unnecessary orders on be-
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half of the smart device. He can also execute DoS, DDoS, false data injection attempts on the

gateway. We classify such threats to the payment gateways under the class of vulnerabilities

V10 in the proposed threat model.

The security mechanisms at different levels in the IoT infrastructure ensure that the sys-

tem components and communication links connecting them are least vulnerable to known

threats. The possibility of building an IoT application or service free from all existing and un-

foreseen risks cannot be guaranteed. However, the best consumer product or system should

be resistant to a large number of most common threats that incurs the least loss in terms of

finances, data, and user privacy. As we can broadly categorize the IoT components into three

categories, namely hardware, software, and communication medium, we present the coun-

termeasures for the IoT system in these categories to enhance the security and thus build a

robust application or service from scratch.

The hardware devices should be tamper-proof and employ code signing to avoid any pos-

sibility of a Trojan horse attack. Hardware security features such as ARM TrustZone ensures

secure data flow within the devices [192]. Designing ICs with active shields protects them

from probable side-channel attacks. An X.509 Digital Certificate should be employed to

identify each node. Subsequently, the communication between the nodes should use HTTPS

or NTLS protocols. Further, each node can verify the identity of every other trusted node.

Additional security measures include embedding a Trusted Platform Module (TPM) device,

usage of a PUF (Physical Unclonable Function), randomize instruction execution cycles,

using lightweight hardware implementation of a cipher, network segmentation, and device

registry.

The strategy to secure the communication channel includes encryption using a hash func-

tion [193]. The authentication mechanism should use message authentication codes (MAC),

digital signatures, and hash functions. A pseudo-random number generator that satisfies a

majority of randomness tests can further enhance the security of communication by gener-

ating asymmetric keys and lower the chance of a replay attack. We can reduce the risk of

most software-based threats by adapting lightweight intrusion detection methods, software-

defined networking (SDN), ensuring software integrity during updates, auditing via log man-

agement for each update. Cloud-based IoT systems should implement homomorphic encryp-

tion and Cloud Access Security Broker (CASB) for providing security and privacy protection
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in cloud-based services. Blockchain technology can also protect against replay attack, ran-

somware, and malware.

The threats to various communication links, software modules, and hardware compo-

nents have different intensities in terms of financial and data loss to the consumer and the

service provider. Smart devices have touched almost every aspect of human life, and subse-

quently, we are inviting their probable dangers into our lives, exposing everything we own.

Since not every consumer is technical savvy, they believe in every news and reviews avail-

able online and form misconceptions. We addressed the possible risks associated with smart

devices and also specified the ways to mitigate them. In today’s digital world, a consumer

excited about smart devices must become smart enough to understand the know-how about

every such device in their possession.

A.6 Biometrics for IoT security

The biometric field has evolved into diverse applications over the past fifty years. The system

that initially gained popularity as a mere verification or identification system found suitable

for various problems. Present day use cases comprising, border security, access control,

forensic investigations, controlling child trafficking, monitoring infant vaccination, channel-

izing government schemes for the underprivileged citizens, home security, university atten-

dance system, banking services such as cash dispenser machines employ biometric systems.

These systems found scope in security and privacy applications along with identity manage-

ment. Present day smart phones, laptops and other handheld devices, smart homes are few

recent examples that incorporate biometric recognition. The researchers are now looking

forward to figuring out the possibility of integrating biometric into IoT-based devices and

systems. Figure A.4 provides a glimpse of biometric-enabled applications.

The advantage of biometric-based user authentication to the IoT system lies in its unique-

ness. The user gets relieved from worries of forgetting his credentials for authentication for

almost a lifetime. In case his biometrics is stolen by some means we have cancellable bio-

metrics which regenerates another authentication data from the same biometric. Since there

are multiple traits that an individual poses, the system can be made more secure by employ-
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Figure A.4: Applications areas of biometric systems

ing a combination of these traits. Also, the template protection mechanisms for storing the

encrypted biometric data on the server assure that the information about the biometric fea-

tures or patterns of a user is entirely confidential. Hence, even if the attacker gets access to

the template, he will find it infeasible to know the biometric details of the owner.

There exists a high possibility to employ biometric-based user authentication for IoT de-

vices and systems. However, as we have multiple characteristics of an individual for unique

identification and authentication, we must decide the most feasible trait for a specific applica-

tion. Facial recognition systems may not differentiate identical twins or in some incidences

even face masks can fool such systems [182], [194]. Since social media has entered into

our everyday life, we are becoming less hesitant to post our and family photos on such plat-

forms. Hence, we should avoid facial authentication for financial transactions or critical

applications. Voice-based authentication may not distinguish a recorded voice and thus fail

to provide the expected level of security. We have modalities such as voice, ear, gait, etc.

which are still in the experimental stage [182].

The fingerprint of an individual is unique, and till date, no record exists for two individ-
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uals with similar fingerprint patterns. Moreover, the research in this domain already crossed

fifty years recently, and we have highly accurate fingerprint biometric systems available in

the market [195]. Additionally, compared to other modalities, the fingerprint biometric sys-

tem requires the least assistance from the user, and it is comfortable to operate even for a

layperson. Hence, being completely mature, efficient, and convenient among all the char-

acteristics, these systems are employed for user identification and authentication systems at

various government, private, and even high-security applications. Fingerprint-based biomet-

ric authentication thus wins the race for being the most suitable and practical option for the

IoT environment.

A cancelable biometric authentication can help in preserving security and privacy for

IoT-based applications [196]. Similarly, the multimodal biometric system proved to render

enhanced security and improved accuracy while authorizing an individual for accessing IoT

network [197]. The biometric-powered anonymous user authentication scheme performing

lightweight operations in IoT infrastructure proves to be efficient [198]. The mechanism is

best suited for smart homes, and it assures that the rest of smart devices inside the house

remain unaffected even if the hacker breaks into the security of the smart home. The user

may choose to use ECG (electrocardiography) as a biometric trait for authentication into the

IoT system [199], [200]. The face recognition approach can provide user authentication on

smart phone devices [201].

A novel combination of system-level obfuscation method along with electrocardiogram

(ECG) and photoplethysmograph (PPG) biometrics solves the issue of unauthorized access

to IoT nodes [202]. The approach also helps in preventing any possibility of tampering and

reverse engineering. The research also shows the use of behavioral biometrics to provide

secure and authorized access to the IoT system components [203], [204]. Also, the keystroke

biometrics has demonstrated promising results when targeted for user authentication [205].

We can employ these approaches, especially for smart phone authentication. Smart health

care system also needs authorized access exclusively by medical practitioners and family

members. The biometric-based system can be a feasible solution in such scenarios [206]. A

bimodal biometric authentication provides enhanced security on smart phone devices [207].

The use of the smart card for storing the biometric template mitigates several attacks asso-

ciated with the templates and requires no additional remote template database server. A sim-
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ilar approach can also help in secure and authorized access to the IoT resources [208], [209].

Additionally, if the system employs a SoC, then most of the vulnerabilities associated with

the biometric system will be eliminated. The consumer would find it convenient to carry his

smartcard and get rid of the several issues related to traditional authentication mechanisms.

Biometric-based access control systems would benefit the vendors and buyers in multiple

folds. Hence, sooner or later, IoT enabled smart devices and services would offer such solu-

tions to the consumers.

The Fast Identity Online (FIDO) Alliance provides solutions for replacing conventional

approaches of identity management (IM) in a more secure, convenient, and feasible man-

ner [210]. The alliance includes more than 200 industry leaders in software and hardware

sectors. Their first framework provides smart devices with a password-free authentication. In

another protocol, the coalition presents a small hardware token for implementing two-factor

authentication. An asymmetric encryption method forms the base for authentication under

both approaches. The Verifiable Credentials (VC) data model proposed by the World Wide

Web Consortium (W3C) is also a similar initiative to identify better user-centric solutions for

the identity ecosystem [211]. These solutions are decentralized digital identity systems and

are presently available for real-time use in smart devices and IoT-based user authentication.

As there is a profound demand for a standard protocol across various consumer products and

services, different market leaders are collaborating with the alliance and incorporating the

strong authentication standards as a security mechanism for multiple products and services

offered by them.

We can employ a fingerprint-based biometric system over other modalities to solve the

problem of user-to-device authentication as well as allowing only authorized individuals to

access the data and services concerning vulnerability V9 from the threat model proposed in

Figure A.3. It is also possible that the consumers appreciate such a move as most of them

might have already used a fingerprint-based biometric system in the past. We are living in a

rapidly progressing world where privacy and security need utmost attention to ensure that the

future generation finds it safe to use any smart devices and services. A fingerprint biometric

system would meet the requirement of the time and become a solution to authentication-

related queries of the industry innovations.
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A.7 Summary of the appendix

We are living in a world of information and communication technology (ICT). The advance-

ments and innovations powered by ICT have made a significant impact on our daily routine.

We are so connected with this new Internet world that people feel uncomfortable if their In-

ternet goes down even for a few minutes. Hence, Internet service providers (ISP) worldwide

are exercising every possible step to provide uninterrupted and high-speed connectivity to

their consumers, even in a remote area. The notion of Internet-of-Things is the outcome

of a sufficiently mature ICT. This work provided a broad review of the current scenario of

Internet-of-Things technology. It covered various types of IoT devices, and services and pre-

sented differences between them in terms of their functionalities. This work also mentioned

the security issues in these devices and suggested various corrective and mitigation steps

against any probable threats to such system. The study also addressed the need for a highly

secure authentication mechanism like a biometric system to authorize and authenticate an

individual. It emphasized the benefits of employing a fingerprint-based biometric system in

an IoT infrastructure. This work provided fine-tuned contents such that the readers under-

stand the significance of every term specific to IoT and biometric systems. In a nutshell, this

work introduced the reader with IoT and biometric system from a security perspective and

encouraged them to address various threats to them.
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