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Synopsis

Introduction

Since the pioneering work of Anderson on localization of electronic wave function

in disordered media, eigenvector localization has become a fascinating and active

area of research [1]. In his original paper, Anderson argued that disorder introduced

in the diagonal elements of a Hamiltonian matrix will lead to localization of the

electronic wave function. Later this theory successfully explained the phenomenon

of metal-insulator transition. Then after, the phenomenon of localization has been

studied in various systems such as random regular graph (RRG) [8], Cayley tree

[9], and random networks [10] [11] and it still remains an active field of research.

Moreover, there exist systems with many interacting units that behave very unusu-

ally, and it becomes difficult to control or predict the system, such as the human

brain and the world economy. These systems can be better understood in the frame-

work of networks. A network consists of nodes and links. The nodes correspond

to the elements of a system and links represent the interactions between these el-

ements. Eigenvector localization serves well in understanding and getting insight

into various structural and dynamical properties of networks. For instance, it was

found that if the eigenvector corresponding to the largest eigenvalue is localized

and the infection rate is slightly higher than the threshold, then the disease will be

localized on only a finite set of vertices [19]. In [20], it was shown that perturba-

tion propagation in ecological networks weakened due to the localization behavior

of principal eigenvectors. Further, [21] it was postulated that the stability of the

system from the external shock would depend upon the localization behavior of the

eigenvector corresponding to the lowest eigenvalue of the connectivity matrix.

Though most of the work on localization in networks focuses on the localization

properties of the principal eigenvector. However, sporadic investigations indicate

that non-principal eigenvalues and associated eigenvectors of the adjacency matri-
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ces of networks contribute to the transient dynamics [24, 25]. Moreover, local-

ization properties of non-principal eigenvectors have also found its application in

characterizing or identifying community [26, 27]. Thus, it is equally important

to know about the localization properties of non-principal eigenvectors. In fact,

few attempts have already been made to study the localization properties of non-

principal eigenvectors. Quantum diffusion of a particle localized at an initial site on

small-world networks was demonstrated to have its diffusion time being associated

with the participation ratio and it is higher for the case of regular networks than

that of the networks with the shorter path length [15]. In [28], it was shown that

Anderson-like transition could be obtained in complex networks without a diago-

nal disorder and one just has to tune the clustering coefficient. Also, using spectral

statistics, localization transition was studied for ER random network, Cayley tree,

and Barabasi-Albert scale-free networks [29].

In this thesis, we explored the localization properties of the eigenvectors of small-

world networks constructed using the Watts and Strogatz algorithm [35] as follows.

Starting from a regular network where each node is connected with its k nearest

neighbors, the connections are rewired randomly with a probability pr. For the in-

termediate rewiring probability, the network undergoes the small-world transition

characterized by high clustering and low path-length. We select the small-world

model networks as the rewiring parameter quantifying randomness allows us to in-

vestigate localization arising due to increasing disorder in topology. By disorder

in topology, we mean heterogeneity in the connections among nodes. Further, this

setup also allows us to investigate the effect of the interplay of diagonal disorder and

randomness quantified by pr on localization. In the last part of the thesis, we study

the origin of localization in hypergraphs. The motivation to include the hypergraph

in the study is due to the fact that networks are restricted to pair-wise interactions

but many real-world systems entail simultaneous interactions between more than

two nodes popularly known as higher-order interactions [112]. These systems can

be better understood in the framework of hypergraphs which consists of hyperedges

accounting for the multi-body interactions.
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Objectives

• To understand localization induced due to topological disorder.

• To study the interplay of diagonal disorder and randomness on localization.

• To find out the origin of localization in hypergraph.

Theoretical Framework

A network denoted by G = {V, E} consists of set of nodes and interaction links. The

set of nodes are represented by V = {v1, v2, v3,. . . , vN} and links by E = {e1, e2, e3,. . . , eM}

where N and M are size of V and E respectively. Mathematically, a network can

be represented by its adjacency matrix A whose elements are defined as Aij = 1

if node i and j are connected and 0 otherwise. The eigenvalues of the adjacency

matrix A are denoted by {λ1, λ2, λ3, . . . , λN} where λ1 ≥ λ2 ≥. . .≥ λN and the

corresponding orthonormal eigenvectors as {x1,x2,x3, . . . ,xN}. Localization of

an eigenvector means that a few entries of the eigenvector have much higher values

compared to the others. We quantify localization of the xj eigenvectors by measur-

ing the inverse participation ratio (IPR) denoted as Yxj
. The IPR of an eigenvector

xj is defined as [19]

Yxj
=

N∑
i=1

(xi)
4
j , (1)

where (xi)j is the ith component of the normalized eigenvectors xj with j ∈ {1, 2, 3 . . . , N}.

The most delocalized eigenvector xj will have all its components equal, i.e., (xi)j =
1√
N

, with IPR value being 1/N . Whereas, for the most localized eigenvector, only

one component of the eigenvector will be non-zero, and the normalization condition

of the eigenvectors ensures that the non-zero component should be equal to unity.

Thus the value of IPR for the most localized eigenvector is equal to 1. It is also

worth noting that there may exist fluctuations in the IPR values for a given state xj

for different realizations of the network for a given rewiring probability. However,

it is not possible that λj remain the same for all the random realizations of network,
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Figure 1: IPR of the eigenvectors plotted as a function of the corresponding eigen-
values for various values of the rewiring probability. The dashed green lines plotted
at 0.0005 and 0.0015 correspond to the minimum possible value of the IPR (1/N )
and the random matrix predicted value for the maximum delocalized state (3/N ).
Here, N = 2000 and ⟨k⟩ = 20 are kept fixed for all the networks.

as in that case we would have simply added all the IPR’s for λj for the different

realizations and divided it by the number of realizations which would have been an

ideal case. However, in absence of that, for the robustness of the results, we con-

sider a small width dλ around λ and average all the IPR values corresponding to

those λ values which fall inside this small width denoted by (Yxj
(λ)).

Further, we hire the distribution of ratio of consecutive eigenvalue spacing (eigen-

value ratio statistics) from Random matrix theory (RMT) to study localization prop-

erties of eigenvectors. Following Ref. [44], the ratio of consecutive eigenvalue spac-

ing is defined here as

ri =
min(si+1, si)

max(si+1, si)
(2)

where si = λi+1−λi is the spacing between eigenvalues λi+1 and λi with i ∈

(1, 2, 3 . . . N − 1). Also, one can verify that 0 < ri < 1. The distribution func-
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Figure 2: Plot of ∆Dq as a function of rewiring probability pr for q = 2 (•) , 5 (■)
and 10 (▲) respectively. (a) λ ≈ 1.271 (b) λ ≈ 1.371. These are the eigenvalues
from the central regime.

tion (P (r)) approximating GOE statistics is given as

P (r) ∼ 54/8× (r + r2)

(1 + r + r2)5/2
(3)

and the theoretical average value of r for GOE and Poisson statistics has been esti-

mated to be equal to 0.53 and 0.38, respectively, with the distribution function for

Poisson statistics is given by

P (r) ∼ 2

(1 + r)2
(4)

Summary of work done

Localization induced due to topological disorder

This chapter explores the localization properties of eigenvectors induced due to

topological disorder. First, we characterize the eigenvalue spectrum into differ-

ent regimes as shown in Fig. 1. he central part (λ−TR ≤ λ ≤ λ+TR) of the spec-

trum consists of critical eigenvectors having IPR of the order of 10−3. This is the

most localized part of the eigenvalue spectrum. Further, Yxj
(λ) has U-shape for

the smaller eigenvalues (λ < λ−TR) while it remains almost constant for the higher

ix
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Figure 3: Plot of ⟨r⟩ as a function of diagonal disorder (w) for various rewiring
probabilities. ◦, □, △, ∗ and + symbols are used for N = 2000, 4000, 8000, 16000
and 32000 respectively with ⟨k⟩ = 20. (a) pr = 0.001 (b) pr = 0.005 (c) pr = 0.01
(d) pr = 0.05 (e) pr = 0.1 (f) pr = 1. Vertical lines represent the crossing point of
⟨r⟩ for different N .

eigenvalues(λ > λ+TR) forming the tail part of the spectra. Using the multifrac-

tal analysis, we find that there exists no significant change in the eigenvalue (λ+TR)

separating the central regime and the mixed regime. Additionally, we notice no sig-

nificant change in λ+TR with an increase in N , i.e. for N → ∞, λ+TR(N ) ∼ O(1).

Further, we demonstrated that the rewiring procedure can be divided into two do-

mains. For small rewiring, pr ≤ 0.01, with an increase in the random connections,

there exists a continuous enhancement in the localization of the eigenvectors corre-

sponding to the central regime, while for the higher rewiring probability pr ≥ 0.01,

eigenvectors gradually lose their degree of localization (Fig. 2). Interestingly, this

change in the behavior of the eigenvectors takes place at the onset of the small-

world transition possibly arising due to the fact that for pr ≤ 0.01, there exists a

decrease in the characteristics path length (r) co-existing with a high clustering co-

efficient (CC = 3/4). It is well known that a higher clustering drives localization of

the eigenvectors. On the other hand, for pr ≥ 0.01, there exists a significant decrease

in CC with r being small, eigenvectors undergo a continuous decrease in the degree

x
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Figure 4: (Color online) S as a function of t for various model networks when
random walker starts from a randomly chosen node with probability 1; (a) small-
world networks, (b) assortative ER networks, and (c) disassortative ER networks.
Here, (a) N = 1000 and ⟨k⟩ = 10 and (b)-(c) N = 2000 and ⟨k⟩ = 8. Arrow
indicate position where S hits the steady state.

of localization with an increase in randomness in connections.

Interplay of diagonal disorder and randomness on localization

In this chapter, we introduce diagonal disorder in the adjacency matrix of the small-

world networks. Thus, we study the effect of interplay of diagonal disorder and

randomness on localization. Diagonal disorders in complex networks, i.e self-loops

in the graph representation, may represent various intrinsic properties of the nodes,

and depending upon the system under consideration, they may carry different phys-

ical meanings. In this part of the thesis, we adopt Random matrix theory (RMT),

first originated in nuclear physics and later found its application in different areas

of Physics. We found that upon increasing diagonal disorder, eigenvectors go from

the delocalized to a localized state captured by the gradual transition of eigenvalue

ratio statistics from GOE to Poisson statistics (Fig. 3). Moreover, the more random

a network is, the more resilient it is to diagonal disorder on inducing localization.

Further, we relate the localization transition to the transient dynamics of the max-

imal entropy random walker. The lower the wc (for fixed N and ⟨k⟩), the higher

time is taken by the walker to reach the steady-state (Fig. 4). We argued that when

the walker has reached the steady-state, the probability of finding it on all the nodes

becomes finite. For small τ , the walker would be able to access all the nodes in a
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Figure 5: (Color online) Schematic diagram of hypergraph model used in the paper.
One pair-wise link, Ep = {1, 8} and One hyperedge, Eh = {1, 3, 7} are added
into the ring lattice with size N = 10. The pair-wise links are colored in green and
hyperedge with sky-blue enclosing the involved nodes.

sufficiently shorter time, and thus it requires a high value of the diagonal disorder

strength to make the network localized. On the other hand, for sufficiently longer τ ,

probability of finding the walker remains finite on a few nodes, and consequently, a

low wc would be enough to make it localized.

Origin of localization in hypergraph

A hypergraph is a generalization of a network which is capable of capturing higher-

order interactions. It consists of nodes and hyperedges; a hyperedge connects d

nodes at a time where d ≥ 2. We generate the hypergraph in this work as follows.

First, a ring lattice is constructed in which each node is connected to its nearest

neighbors on both sides. We then randomly choose d nodes uniformly from all the

existing nodes. If already there is no hyperedge comprising of the chosen d nodes,

we add a hyperedge consisting of these d nodes. For simplicity we restrict for d = 3,

for each iteration. Next, we add pair-wise links by choosing d = 2 nodes uniformly

and randomly from the existing nodes as illustrated in Fig. 5 for ten nodes. A

xii
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Figure 6: (Color online) Average IPR (Yxj
(λ)) (black), kh(λ) (red), kp(λ) (blue),

k̂h(λ)(red-dashed), k̂p(λ) (blue-dashed) against λ for various γ > 1. The corre-
sponding higher-order degree distribution and pair-wise degree distribution are also
plotted in last two rows. The green-dashed and brown-dashed lines are at ⟨kh⟩ and
⟨kp⟩ on y axis. The size of the hypergraph, N = 2000 and Mh = 500 remain fixed
for all γ values with 40 random realizations.

hypergraph can be represented by its Laplacian matrix LH . The generalized degree

of a node i in the hypergraph is given by kHi which can be further decomposed

into kHi = khi + kpi where khi and kpi are the contributions from the higher-order

and the pair-wise links, respectively. Similarly, the average degree, ⟨k⟩ =
∑

i k
H
i

N
,

can be decomposed as ⟨k⟩ = ⟨k⟩h + ⟨k⟩p where ⟨k⟩h =
∑

i k
h
i

N
and ⟨k⟩p =

∑
i k

p
i

N
.

Also, it is important to note that if a node, say i, gets 1 additional pair-wise links

and 1 higher-order links, its degree will be increased by 1 and 4 from the pair-wise

and higher-order links, respectively. To provide an equal opportunity to the pair-

wise and higher-order links for steering localization on a given node, we introduce

the total number of pair-wise links 4 times greater than the higher-order links, i.e.,

Mp = 4 ×Mh for khi = kpi . Next, we define a parameter γ = Mp

4×Mh to measure

relative contribution for both the types of the links. Thus, if γ > 1 then kpi < khi ; if

γ < 1 then kpi > khi holds.

We define following physical quantities, kh(λ), kp(λ), k̂h(λ), k̂p(λ). For any eigen-

xiii



vector xj , these quantities can be calculated as the following.

khxj
: higher-order degree of the node io with the maximum component in |(xi)j|,

i.e., (xio)j = max{|(x1)j|, |(x2)j|, . . . |(xN)j|}

kpxj
: pair-wise degree of the node io with the maximum component in |(xi)j| i.e.

(xio)j = max{|(x1)j|, |(x2)j|, . . . |(xN)j|}

k̂hxj
: higher-order degree expectation value of eigenvector, defined as

∑N
i=1(xi)

2
jk

h
i .

k̂pxj
: pair-wise degree expectation value of eigenvector, defined as

∑N
i=1(xi)

2
jk

p
i .

All these physical quantities are averaged over λ and λ + dλ and we obtain kh(λ),

kp(λ), k̂h(λ) k̂p(λ).

We have investigated the interplay of higher-order and pair-wise links in instigating

the localization of the eigenvectors of the hypergraphs. We find that for γ ≤ 1, there

is no impact of pair-wise links on eigenvector localization. For γ > 1, we find that

with increasing γ, the degree of the localization of the eigenvectors corresponding

to the smaller eigenvalues increases. Also, the role of higher-order links is not

significant as compared to the pair-wise links in inducing localization for smaller

eigenvalues. Whereas, for larger eigenvalues, the higher-order links play a crucial

role in instigating localization despite the fact that the number of nodes with high

higher-order degree (kh) remains very small for all the γ values (Fig. 6).

Conclusion

In this thesis, we have explored the localization properties of eigenvectors of com-

plex networks. Specifically, we focus on the small-world networks and hypergraph.

First, without introducing the diagonal disorder, we investigated localization aris-

ing due to disorder in topology. we argued that distorting the initial regular network

topology by rewiring a few connections does not lead to localization of the eigenvec-

tors. Instead, it drives them toward the critical states with 0.4 < D2 < 0.90. Further,

we find that before the onset of the small-world transition, increasing the topologi-

cal disorder leads to an enhancement in the eigenvectors localization, whereas just

after the onset, the eigenvectors show a gradual decrease in the localization. We

xiv



then introduce diagonal disorder in the adjacency matrix and found that there exists

a gradual transition from delocalized to localized states captured by the eigenvalue

ratio statistics. The critical disorder (wc) required to procure the Poisson statistics

increases with the randomness in the network architecture. We then relate critical

disorder with the time taken by the maximum entropy random walker to reach the

steady-state. Finally, we discuss the origin of localization in hypergraph.

Keywords : Network Science, complex networks, eigenvector localization.
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Introduction

Chapter 1

Introduction

1.1 Overview and historical perspective

The phenomena of localization is still an active area of research after its discov-

ery in the 1950s by Philip Anderson [1]. In his seminal paper, Anderson showed

that if the diagonal disorder of the Hamiltonian matrix of the tight-binding model

(d = 3) exceeds some threshold then it would lead to the localization of the elec-

tronic wave function. For d ≤ 2, any finite disorder can turn all eigenvectors into

localized states. Later this theory was successful in explaining the metal-insulator

transition. Then, in the subsequent years, localization was explored in many sys-

tems with disorder originating not only from the diagonal elements of the underly-

ing matrix but also from the off-diagonal terms or both [2] [3] [4]. Furthermore,

localization in systems where disorder originates from randomness in their geom-

etry is also studied in many works leading to extensive research on localization in

topologically disordered systems [5] [6]. Also, in the 1990s, Power-law banded

matrix (PLBM) was introduced [7] whose matrix elements decreased in a power-

law fashion. Later almost two decades, PLBM was studied rigorously in terms of
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localization-delocalization transition. In the latest development, there has been a

keen interest among the researcher to investigate localization transition in systems

having d → ∞ such as random regular graph (RRG) [8], Cayley tree [9] and ran-

dom networks [10] [11].

Moreover, there exist systems with many interacting units that behave very un-

usually, and it becomes difficult to control or predict the system, such as the human

brain and the world economy. There have been various attempts to characterize

such complex systems, such as sensitivity to the initial conditions [12], involve-

ment of non-linearity in mathematical modeling [13], pattern formation, [14], etc.

The Complex network is one of the theoretical approaches or tools available in

complexity science to study complex systems and has seen tremendous growth in

the last two decades. Complex networks can be represented by their adjacency and

laplacian matrices. Further, spectra (eigenvectors and eigenvalues) of the adjacency

matrix and the laplacian matrix of networks provide important insight into several

structural and dynamical processes on networks [15–18]. Most important ques-

tions concerning structural and dynamical properties include; (1) During disease

spreading, which sets of nodes are more affected or how fast disease can be spread

in the entire networks? [19] (2) In perturbation propagation, whether perturbation

remains confined to the source node or gets to the distant nodes? [20] (3) In an

external shock, how resilient or stable could a network be [21]? (4) In information

spreading, it is important to know what structural properties of networks relate to

the disparate temporal dynamic ? [22, 23] Eigenvector localization serves well in

understanding or dealing with such questions. For instance, it was found that if

the eigenvector corresponding to the largest eigenvalue is localized and the infec-

tion rate is slightly higher than the threshold, then the disease will be localized on

only a finite set of vertices [19]. In [20], it was shown that perturbation propaga-

tion in ecological networks weakened due to the localization behavior of principal

eigenvectors. Further, [21] it was postulated that the stability of the system from

the external shock would depend upon the localization behavior of the eigenvector

corresponding to the lowest eigenvalue of the connectivity matrix.

2
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Though most of the works around spectra focus on the extremal eigenvalues

and corresponding eigenvectors, sporadic investigations indicate that non-principal

eigenvalues and associated eigenvectors of the adjacency matrices of networks con-

tribute to the transient dynamics [24, 25]. Moreover, localization properties of non-

principal eigenvectors have also found its application in characterizing or identify-

ing community structures [26, 27]. Furthermore, few attempts have been made to

investigate Anderson-like transition in complex networks. For example, [28], it was

shown that Anderson-like transition could be obtained in complex networks with-

out a diagonal disorder and one just has to tune the clustering coefficient. Also,

using spectral statistics, localization transition was studied for ER random network,

Cayley tree, and scale-free networks [29]. In this thesis, we attempt to understand

three questions. (1) Localization induced due to disorder in topology, (2) Interplay

of diagonal disorder and randomness on localization and (3) Origin of localization

in hypergraph.

1.2 Networks and its basic properties

A network denoted by G = {V, E} consists of set of nodes and interaction links. The

set of nodes are represented by V = {v1, v2, v3,. . . , vN} and links by E = {e1, e2, e3,. . . , eM}

where N and M are size of V and E respectively. Mathematically, a network can

be represented by its adjacency matrix A whose elements are defined as Aij = 1 if

node i and j are connected and 0 otherwise.

1.2.1 Structural properties

Degree: The degree of a vertex vi in a graph G is number of vertex adjacent to vi

and is denoted as ki =
∑n

j=1 aij .

Degree sequence: The degree sequence of a graph G is the list of degrees of all

vertices with repetition allowed.

Average degree: The average degree of the network is simply average number of

edges per node and is denoted by ⟨k⟩ = 1
n

∑n
i=1 ki.

Degree distribution: The degree distribution of a network, P (k), is the frequency

3
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count of the occurrence of each degree.

Clustering Coefficient: The clustering coefficient [30, 31] of node i Ci is defined

as the ratio of the number of edges between its neighbors and the maximum possible

number of edges that could exist between the neighbors. Mathematically, it can be

calculated as

Ci =
2ni

ki(ki − 1)
where ki denotes the degree of node i, and ni is the number of edges between the ki

neighbors of node i. The average clustering coefficient of a graph G consisting of

N nodes is calculated as,

⟨CC⟩ = 1

N

N∑
i=1

Ci

Degree-degree correlation: The degree-degree correlation capture the relationship

between node’s degrees and tells how nodes with different degree tend to connect

with each other. It is measured by the Pearson correlation coefficient as [32]

rdeg−deg =
[m−1

∑m
i=1 jiki]− [m−1

∑m
i=1

1
2
(ji + ki)]

2

[m−1
∑m

i=1
1
2
(j2i + k2i )]− [m−1

∑m
i=1

1
2
(ji + ki)]2

where m is the total number of edges in the network and ji, ki are the degrees of

nodes with ith edge and rdeg−deg value varies in between −1 to 1. When nodes with

a high degree tend to connect with similar high degree nodes, the network is known

as an assortative network with rdeg−deg > 0. On the other hand, if high-degree

nodes prefer to connect with low-degree nodes then the network is referred to as a

disassortative network with rdeg−deg < 0.

1.2.2 Spectral properties

The eigenvalues and eigenvectors of a network is termed as spectra. The eigen-

values of the adjacency matrix A are denoted by {λ1, λ2, λ3, . . . , λN} where λ1 ≥

λ2 ≥. . .≥ λN and the corresponding orthonormal eigenvectors as {x1,x2,x3, . . . ,xN}.

For an undirected network, the adjacency matrix of the network, A is a real sym-

metric matrix and thus all the eigenvalues are real. The eigenvectors of A are

orthonormal to each other and forms a basis. The largest eigenvalue λ1 satis-

fies ⟨k⟩ ≤ λ1 ≤ kmax where kmax is the largest degree of the networks. Also
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λ1 ≤
(2M(N−1)

N

) 1
2 , where M,N are the number of edges and nodes in the graph,

respectively. If G is connected, then χ(G) ≤ 1 + λ1(G), where χ(G) is the chro-

matic number of G [33]. The chromatic number χ(G) of graph G is the minimum

number of colors required to color the vertices such that adjacent vertices get dis-

tinct colors. Also, along with λ1, other eigenvalues of A implicate the following

information about the structure of graph G.

1. λ21 + λ22 + · · ·+ λ2N = 2M.

2.
∑

i,j,i̸=j λiλj = −M .

3. λ31 + λ32 + · · ·+ λ3N = 6|T |,

where T is the set of all the cycles of length 3 in G (also referred as triangles). In

general, the number of closed walks of length k in G equals
∑N

i λ
k
i . A walk of

length k in a graph G is a sequence of vertices (v1, v2, . . . , vk+1) such that there is

an edge vi ∼ vi+1 for i = 1, 2, . . . , k. The walk is closed if v1 = vk+1.

1.3 Model Networks

Most real-world networks can be grouped into several classes of networks and each

network is characterized by definite structural or topological properties. Most of

these properties include degree distributions, clustering, assortativity, and shortest

paths. The ER random network is the oldest of all the network model and was

theoretically investigated by Erdős and Rényi in the late 1950s depict many fasci-

nating phenomena including the transition to the formation of a giant cluster with

an increase in the probability of connecting nodes [34]. Despite the tremendous

theoretical success of the ER random network model, it was not considered to im-

itate real-world networks due to its limitation to capture properties like high clus-

tering and power-law degree distribution abundantly found in a diverse range of

real-world systems. Watts and Strogatz in their landmark paper [35] introduced the

small-world network model which generates networks having a very high clustering

coefficient, as that of a regular lattice, and average shortest path length, like that of
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the ER random networks, two properties readily witnessed in networks representing

many real-world complex systems [36–38]. In the subsequent year, the scale-free

network was discovered by Barabási that has power-law degree distribution as op-

posed to the Poisson degree distribution of random graphs [39]. In the following, we

briefly discuss the rules to generate these model networks and their basic properties.

1.3.1 ER random networks

ER random networks are constructed using the ER model [34] as follows. Starting

with N nodes, each pair of the nodes is connected with a probability p = ⟨k⟩/N .

The degree distribution of ER random networks follows a binomial distribution.

1.3.2 Small-world networks

We construct small-world networks using the Watts and Strogatz algorithm [35] as

follows. Starting with a 1D lattice in which all the nodes have an equal degree,

we rewire each edge of the network with a probability pr avoiding multiple loops

and self-connections. This procedure of the rewiring allows to transform a regular

network with pr = 0, to random network with pr = 1. In the intermediate pr values,

the network manifests the small-world behavior which is quantified by a very high

clustering coefficient and a very small average shortest path length [35].

1.3.3 Scale-free networks

Scale-free networks are constructed using BA preferential attachment method [39]

in which each node prefers to connect with the existing higher degree nodes. Start-

ing with a network with m0 nodes, we start adding a new node at each time step

having m connections such that m ≤ m0. The new nodes can be connected to any

existing node and to incorporate preferential attachment, the probability of it get-

ting connected to the ith nodes is proportional to ki where ki is the degree of the ith

node. Thus, after t time steps, the network will have t +m0 nodes and mt edges.

The network evolves into a scale-free network with degree distribution following

power law, that is, P (k) ∼ k−γ where γ = 3.
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1.4 Technique and Methods

1.4.1 Inverse participation ratio

By localization of the eigenvector, it is meant that few entries of the eigenvector

have a very high value compared with the other entries. On the other hand, in the

case of delocalized eigenvector, all the entries have almost equal value. We quantify

localization of the xj eigenvectors by measuring the inverse participation ratio (IPR)

denoted as Yxj
. The IPR of an eigenvector xj is defined as [19]

Yxj
=

N∑
i=1

(xi)
4
j (1.1)

where (xi)j is the ith component of the normalized eigenvectors xj with j ∈ {1, 2, 3 . . . , N}.

The most delocalized eigenvector xj will have all its components equal, i.e., (xi)j =
1√
N

, with IPR value being 1/N . Whereas, for the most localized eigenvector, only

one component of the eigenvector will be non-zero, and the normalization condition

of the eigenvectors ensures that the non-zero component should be equal to unity.

Thus the value of IPR for the most localized eigenvector is equal to 1. It is also

worth noting that there may exist fluctuations in the IPR values for a given state xj

for different network realizations. Thus, one has to take the ensemble average of

IPR to know the localized or delocalized nature of given eigenvector. However, it

is not possible that λj and corresponding xj remain the same for different random

realizations of the network, as in that case, one would have simply added all the

IPR’s for xj of corresponding λj for the different realizations and divided it by the

number of realization which would have been an ideal case. However, in absence

of that, we consider a small width dλ around λj and average all the IPR values cor-

responding to those λj which fall inside this small width [40]. Note that, even after

the calculation of IPR, one can not guarantee if the given eigenvector is localized or

not and one has to do a scaling analysis of IPR. For this, one has to calculate Yxj
(λ)

for different network sizes and obtain the scaling parameter as

Yxj
(λ) ∼ N−α (1.2)

If Yxj
(λ) does not depend upon system size, i.e. α = 0, then the corresponding

7
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eigenvectors are localized. On the other hand, if the Yxj
(λ) scale inversely with

system size ( α = 1), then the corresponding eigenvectors are delocalized. If 0 <

α < 1, then the eigenvectors are neither localized nor delocalized.

1.4.2 Multifractality in eigenvector localization

Further, in the seminal paper of Wegner [41] it was found that at the criticality, the

generalized IPRs (GIPR) defined as χq =
∑N

i=1 xi
2q shows an anomalous scaling

with the system size N , i.e., ⟨χq⟩ ∝ N−τ(q), where −τ(q) = (q − 1)×Dq. For the

localized eigenvectors, ⟨χq⟩ ∝ N0, and for the completely delocalized eigenvectors

⟨χq⟩ ∝ N−d(q−1) where d is the dimension of the system. However, if the eigen-

vector corresponds to the critical state, Dq becomes non-linear function of q and

therefore the scaling is described by many exponents Dq indicating that a critical

eigenvector depicts multifractal behavior. We use the standard box-counting method

as described in [42] for the multifractal analysis. Let us consider an eigenvector xj

whose components are represented as (x1)j, (x2)j . . . (xN)j . We then divide the N

sites into NL number of boxes with each box having the size l. The box probability

µk(l) of the kth box of the size l is defined as

µk(l) =
kl∑

i=(k−1)l+1

(xi)
2
j . (1.3)

The qth moment of the box probability is thus

χq =
∑
k

µq
k(l) ∼ l−τ(q), (1.4)

In the above equation, if the scaling exponent τ(q) is a linear function of the

parameter q, it corresponds to the mono-fractal behavior, and for the nonlinear re-

lation, it indicates the multifractal property of the eigenvector.

Note that, apart from the box-counting method there exists an alternative method

widely used in the localization theory through multifractal analysis. In this method,

instead of varying the length of the box (l), the system size (N ) is varied by keeping

the value of l = 1 fixed. One usually first calculates χq and observes its scaling with

the linear size of the system L i.e. χq ∼ L−τ(q). This is also equivalent to χq ∼

N−δ(q) where N = Ld and δ(q) = τ(q)/d. The linear size of a network is defined

8



CHAPTER 1. INTRODUCTION 1.5. THESIS OVERVIEW

as its diameter which is the longest of the shortest path between all the pairs of

nodes. Thus, approaching the problem through this method will require varying the

network size to a very large value which becomes computationally very exhaustive.

1.4.3 Eigenvalue ratio statistics

The eigenvalue ratio statistics is known to be very useful to identify localized and

delocalized eigenvectors. The eigenvalue ratio statistics corresponding to the lo-

calized eigenvectors is known to depict the Poisson statistics, while for delocalized

eigenvectors, it is known to manifest the GOE statistics [43]. Following Ref. [44],

the ratio of consecutive eigenvalue spacing is defined here as

ri =
min(si+1, si)

max(si+1, si)
(1.5)

where si = λi+1−λi is the spacing between eigenvalues λi+1 and λi with i ∈

(1, 2, 3 . . . N − 1). Also, one can verify that 0 < ri < 1. Ref. [44] provides

only numerical estimation of P (r) for the GOE distribution, and discussions on the

other two symmetry classes (GUE and GSE) were lacking. This gap was filled in

Ref. [45] where an exact distribution function of r was derived which was not re-

stricted only to GOE but includes GUE and GSE classes as well. The distribution

function (P (r)) approximating GOE statistics is given as

P (r) ∼ 54/8× (r + r2)

(1 + r + r2)5/2
(1.6)

and the theoretical average value of r for GOE and Poisson statistics has been esti-

mated to be equal to 0.53 and 0.38, respectively, with the distribution function for

Poisson statistics is given by

P (r) ∼ 2

(1 + r)2
(1.7)

1.5 Thesis Overview

We have divided our study on localization into three parts. In the first part (chapter

2), we have studied the localization of eigenvectors induced due to the topological

disorder. By topological disorder, we mean heterogeneity in the degrees of nodes.

Starting with initial 1D lattice where each node have same number of neighbors,

we rewire the links with some probability pr where 0 < pr ≤ 1. Thus, this setup

9
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will allow us to investigate localization instigated due to increasing disorder in the

topology. In this part of the thesis, we hire multi-fractal technique already very

popularly used in condensed matter physics to study localization. Here, we char-

acterized the eigenvalue spectrum into different regimes based on their localization

characteristics. The central part of the eigenvalue spectrum depicts strong multi-

fractal features with a wide range of Dq while the tail part shows Dq → 1. We

found that for initial rewiring probability, increasing pr enhances the strength of

multi-fractality while after some threshold strength of multi-fractality shows a de-

creasing trend with the increase in pr. Further, we emphasized that distorting the

initial regular topology (1D lattice) topology by rewiring few connections does not

lead to localization of the eigenvectors, instead, it drives them toward the critical

states i.e. neither localized nor delocalized.

In the second part of the thesis (chapter 3), along with distorting the initial 1D

lattice, we also introduce diagonal disorder in the adjacency matrix. Thus, rewiring

parameter pr quantifying randomness allows us to investigate the effect of the inter-

play of diagonal disorder and randomness on localization. The motivation behind

this work is that most of the work including the original anderson tight-binding

model considered only the nearest neighbor’s interactions while there exist many

real-world systems where the constituent elements are connected randomly and also

include long range connections. Thus, it would be fascinating to probe the effect of

randomness along with diagonal disorder on localization. In this part of the thesis,

we adopt Random matrix theory (RMT) which first originated in nuclear physics

and later found its application in different areas of Physics. We found that upon

increasing diagonal disorder, eigenvectors go from the delocalized to localized state

captured by the gradual transition of eigenvalue ratio statistics from GOE to Pois-

son statistics. Moreover, the more random a network is, the more resilient it is

toward diagonal disorder on inducing localization. Further in this chapter, we relate

the localization transition to the transient dynamics of the maximal entropy random

walker.

In the third part of the thesis (chapter 4), we study localization in hypergraphs.

10
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The motivation to include the hypergraph in the study is due to the fact that networks

are restricted to pair-wise interactions but many real-world systems entail simulta-

neous interactions between more than two nodes popularly known as higher-order

interactions. These systems can be better understood in the framework of hyper-

graphs which consists of hyperedges accounting for the multi-body interactions.

By defining a single parameter γ on a single node, we find that for γ ≤ 1, there is

no impact of pair-wise links on eigenvector localization. For γ > 1, even though the

total number of higher-order links is very less as compared with the pair-wise links,

higher-order links play a crucial role in instigating localization of the eigenvectors

for the larger eigenvalues. On the other hand, for the smaller eigenvalues, pair-wise

links play a significant role than the higher-order links in steering localization.

Finally, chapter 5 summarizes the thesis and also discusses the intriguing con-

clusion of future interests as an extension of the investigation explored in the thesis.

11
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2
Localization induced due to disor-
der in topology

Chapter 2

Localization induced due to disorder
in topology

2.1 Introduction

Since the pioneering work of Anderson on localization of electronic wave func-

tion in disordered media, eigenvector localization has become a fascinating and an

active area of research [1]. In his original paper, Anderson argued that disorder in-

troduced in the diagonal elements of a Hamiltonian matrix will lead to localization

of the electronic wave function. Later this theory successfully explained the phe-

nomenon of metal-insulator transition. The theory of Anderson localization found

its application in almost all the areas of physics including condensed matter physics

[46], chaos [47], photonics [48], etc. Additionally, the phenomenon of localization-

delocalization transition has been investigated for different systems such as random

banded matrix [49], power-law random banded matrix (PRBM) [7], vibration in

glasses [50], percolation systems [51], etc. Most of these studies concentrated in

analyzing an impact of the diagonal and off-diagonal disorder on the localization

properties. Further, there exist systems in which disorder is originated from random-
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ness in their geometry, leading to extensive research on localization in topologically

disorder systems [52, 53].

Many complex systems can be described as graphs or networks consisting of

nodes and links. The nodes correspond to the elements of a system and links rep-

resent the interactions between these elements. Various network models have been

proposed to capture and mimic properties of real-world complex systems, among

which Erdös-Renyi random network [54], scale-free network [39], and small-world

network [35] models have been the most popular ones. The small-world networks

are characterized by high clustering coefficient and small characteristic path length

arising due to the topological disorder or random distributions of the connections

in an originally regular network. The real-world systems exhibiting topological dis-

order are ramified fractals, percolation networks, polymers [55–57], etc. Other ex-

amples of real-world complex systems depicting the small-world characteristics in-

clude brain network [37] and ecological network [38]. Here, we construct small-

world networks using the Watts and Strogatz algorithm [35] as follows. Starting

from a regular network where each node is connected with its k nearest neighbors,

the connections are rewired randomly with a probability pr. For the intermediate

rewiring probability, the network undergoes the small-world transition character-

ized by high clustering and low path-length.

Further, several dynamical processes on networks can be better understood by

spectra of the corresponding adjacency and Laplacian matrices. For example, the

small-world network as a quantum model has been studied in terms of localization-

delocalization transition of the spectra of underlying adjacency matrices [58]. Us-

ing the level statistics, it was shown that the small-world networks having diago-

nal disorder and rewired links with different values of coupling constant manifest

localization-delocalization transition at a critical rewiring probability. Furthermore,

quantum diffusion of a particle localized at an initial site on small-world networks

was demonstrated to have its diffusion time being associated with the participation

ratio and higher for the case of regular networks than that of the networks with the

shorter path-length [15]. Further, quantum transport modeled by continuous-time
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quantum walk (CTQW) in small-world networks has also been investigated [16];

however, here the small-world model was a bit different than the one proposed by

Watts and Strogatz in [35]; additional bonds were added to a ring lattice to make it

a small-world network. It was argued that adding a large number of bonds leads to

suppression of the transition probability of CTQW which is just opposite to its clas-

sical counterpart, i.e., continuous-time random walk where adding shortcuts leads

to an enhancement of the transition probability.

Furthermore, an understanding to the localization behavior of the principal eigen-

vector (PEV) provides insight into the propagation of perturbation in the underly-

ing mutualistic ecological networks and [20], disease spreading [19]. Ref. [59] has

shown that for the scale-free networks, the PEV localization relates to the power-law

exponent. Note that, though PEV provides insight into various dynamical processes

in the corresponding networks, other eigenvectors have also been discussed to af-

fect the dynamics on the networks drastically [60]. For example, network activities,

discussed in [61], can be better hypothesized by having an understanding of the lo-

calization behavior of the central part of the eigenvalue spectrum which is discussed

later in this chapter.

This chapter investigates localization properties of eigenvectors of the adjacency

matrix considering the entire eigenvalue spectrum of the small-world networks due

to the presence of disorder in the network’s topology arising due to random rewiring

of the links to the originally regular network structure. We emphasize that unlike

the original Anderson tight-binding model having diagonal disorder and nearest-

neighbor interactions, we do not introduce diagonal disorder and rather consider

long-range connections. We probe the localization properties of the entire eigen-

value spectrum since the existence of even a fraction of delocalized eigenvectors

has been shown to impart crucial changes in the behavior of the corresponding sys-

tem [60]. Using multi-fractal technique, we find that the central part of the eigen-

value spectrum is characterized by strong multifractality whereas the tail part of the

spectrum have Dq → 1. Further, before the onset of the small-world transition, an

increase in the random connections leads to an enhancement in the eigenvectors lo-
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calization, whereas just after the onset, the eigenvectors show a gradual decrease in

the localization. The idea of the multifractal system was first introduced by Man-

delbrot [62] which later found its application in various different areas of real-world

complex systems such as stock market data [63], foreign exchange data [64], time-

series data of sunspots [65], traffic [66], air pollution [67], heartbeat dynamics, [68],

etc.

2.2 Theoretical framework

A network denoted by G = {V, E} consists of set of nodes and interaction links. The

set of nodes are represented by V = {v1, v2, v3,. . . , vN} and links by E = {e1, e2, e3,. . . , eM}

where N and M are size of V and E respectively. Mathematically, a network can

be represented by its adjacency matrix A whose elements are defined as Aij = 1

if node i and j are connected and 0 otherwise. Further, here we consider simple

network without any self-loop or multiple connections. The eigenvalues of the ad-

jacency matrix A are denoted by {λ1, λ2, λ3, . . . , λN} where λ1 ≥ λ2 ≥. . .≥ λN

and the corresponding orthonormal eigenvectors as {x1,x2,x3, . . . ,xN}. Starting

with a regular network in which all the nodes have an equal degree, we rewire each

edge of the network with a probability pr. This procedure of the rewiring allows

to transform a regular network with pr = 0, to a random network with pr = 1.

In the intermediate pr values, network manifests the small-world behavior which

is quantified by a very high clustering coefficient and a very small average shortest

path length [35]. We would also like to divulge important topological properties of

the network capturing various topological transitions upon links rewiring. First, the

initial regular network (pr = 0) has periodic boundary condition and each node is

connected to its (k/2) nearest neighbours on each side of it. Let the shortest distance

between any given pair of the nodes i and j be denoted by ri,j and thus the average

shortest path length of the network would be r =
∑

i ̸=j ri,j/N(N − 1). For pr = 0, r

scales like r ∼ N/2k which leads to its Hausdorff dimension being equal to 1. The

Hausdorff dimension d can be determined by the scaling of r with the network size

N , defined as r ∼ N1/d. When the initial regular network is perturbed, for pr <
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0.01, the networks have finite dimensions i.e r grows as r ∼ Nγ where 0 < γ < 1.

For pr = 0.001, fitting r ∼ Nγ yields γ ≈ 0.27 and d ≈ 3.7. Upon an increase in the

rewiring probability which leads to occurrence of the small-world transition for pr

≥ 0.01, r scales like r ∼ lnN which makes the network having infinite dimension

[69].

We investigate the localization property of the eigenvectors as the network un-

dergoes from the regular structure to a random one. Localization of an eigenvector

means that a few entries of the eigenvector have much higher values compared to

the others. We quantify localization of the xj eigenvectors by measuring the inverse

participation ratio (IPR) denoted as Yxj
. The IPR of an eigenvector xj is defined as

[19]

Yxj
=

N∑
i=1

(xi)
4
j , (2.1)

where (xi)j is the ith component of the normalized eigenvectors xj with j ∈ {1, 2, 3 . . . , N}.

The most delocalized eigenvector xj will have all its components equal, i.e., (xi)j =
1√
N

, with IPR value being 1/N . Whereas, for the most localized eigenvector, only

one component of the eigenvector will be non-zero, and the normalization condition

of the eigenvectors ensures that the non-zero component should be equal to unity.

Thus the value of IPR for the most localized eigenvector is equal to 1. It is also

worth noting that there may exist fluctuations in the IPR values for a given state xj

for different realizations of the network for a given rewiring probability. However,

it is not possible that λj remain the same for all the random realizations of network,

as in that case we would have simply added all the IPR’s for λj for the different

realizations and divided it by the number of realizations which would have been an

ideal case. However, in absence of that, for the robustness of the results, we consider

a small width dλ around λ and average all the IPR values corresponding to those λ

values which fall inside this small width [40]. We further elaborate the averaging

process for discrete eigenvalue spectrum. Let λR = {λ1,λ2, . . . ,λN×R} such that

λ1 ≤ λ2 ≤. . .≤ λN×R is a set of eigenvalues of a network for all R random realiza-

tions where N × R is the size of λR. The corresponding eigenvector set of the λR

are denoted by xR = {x1,x2,x3, . . . ,xN×R}. We then divide λR for a given value
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Figure 2.1: IPR of the eigenvectors plotted as a function of the corresponding eigen-
values for various values of the rewiring probability. The dashed green lines plotted
at 0.0005 and 0.0015 correspond to the minimum possible value of the IPR (1/N )
and the random matrix predicted value for the maximum delocalized state (3/N ).
Here, N = 2000 and ⟨k⟩ = 20 are kept fixed for all the networks.

of dλ into further m subsets where m = (λN×R − λ1)/dλ. For each λj ⊂ λR and

the corresponding eigenvectors xj ⊂ xR, ∀j = 1, 2,. . . ,m; λj = {λ1, λ2,. . . , λlj}

and corresponding eigenvector xj = {x1,x2,x3, . . . ,xlj} where lj is the size of jth

subset such that
∑m

j=1 l
j = N × R with a constraint that λlj − λ1j ≤ dλ for each

subset, the corresponding set of IPRs for xj will be {Yx1 , Yx2 ,. . . , Yx
lj
}. Hence, the

average IPR (Yxj
(λ)) for each subset xj can be calculated as

∑lj

i=1 Yxi

lj
where λ is

central value for each subset i.e. λ + dλ
2

= λlj and λ - dλ
2

= λ1j . Here, we have taken,

N = 2000, m = 200 and R = 50 for each rewiring probability. All the physical

quantities follow the same averaging procedure in this chapter.

Further, in the seminal paper of Wegner [41] it was found that at the criticality,

the generalized IPRs (GIPR) defined as χq =
∑N

i=1 xi
2q shows an anomalous scal-
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ing with the system size N , i.e., ⟨χq⟩ ∝ N−τ(q), where −τ(q) = (q − 1)×Dq. For

the localized eigenvectors, ⟨χq⟩ ∝ N0, and for the completely delocalized eigen-

vectors ⟨χq⟩ ∝ N−d(q−1) where d is the dimension of the system. However, if the

eigenvector corresponds to the critical state, Dq becomes non-linear function of q

and therefore the scaling is described by many exponents Dq indicating that a crit-

ical eigenvector depicts multifractal behavior. We use the standard box-counting

method as described in [42] for the multifractal analysis. Let us consider an eigen-

vector xj whose components are represented as (x1)j, (x2)j . . . (xN)j . We then di-

vide the N sites into NL number of boxes with each box having the size l. The box

probability µk(l) of the kth box of the size l is defined as

µk(l) =
kl∑

i=(k−1)l+1

(xi)
2
j . (2.2)

The qth moment of the box probability is thus

χq =
∑
k

µq
k(l) ∼ l−τ(q), (2.3)

In the above equation, if the scaling exponent τ(q) is a linear function of the

parameter q, it corresponds to the mono-fractal behavior, and for the nonlinear re-

lation, it indicates the multifractal property of the eigenvector.

Note that, apart from the box-counting method there exists an alternative method

widely used in the localization theory through multifractal analysis. In this method,

instead of varying the length of the box (l), the system size (N ) is varied by keeping

the value of l = 1 fixed. One usually first calculates χq and observes its scaling with

the linear size of the system L i.e. χq ∼ L−τ(q). This is also equivalent to χq ∼

N−δ(q) where N = Ld and δ(q) = τ(q)/d. The linear size of a network is defined

as its diameter which is the longest of the shortest path between all the pairs of

nodes. Thus, approaching the problem through this method will require varying the

network size to a very large value which becomes computationally very exhaustive.

We prefer the box-counting method in our analysis instead of the above described

method. Nevertheless, both methods will yield the same results.
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Figure 2.2: The generalized fractal dimension Dq plotted as a function of the ex-
ponent q for the eigenvector xj corresponding to λ+TR, λ

+
TR−1, λ

+
TR+1 for various

rewiring probabilities pr. The −−− , ×, ⋄ are for λ+TR, λ
+
TR+1, λ

+
TR−1, respectively.

2.3 Results

We analyze the localization properties of the eigenvectors of the adjacency matrix

of networks with the variation of pr. Rewiring of the connections affects two major

structural properties of the network: clustering coefficient (CC) and average short-

est path-length (r). For small values of the rewiring probability (pr < 0.01), CC

remains at a very high value whereas r shows a drastic drop and attains a very low

value. For pr ≥ 0.01, there is no further change in r as it has already attained a very

low value but CC starts decreasing. Note that a higher clustering is known to drive

localization whereas a smaller path-length is believed to support delocalization [70]

[71]. Thus, to understand the contrasting impact of these two structural properties

on the eigenvector localization, we first characterize the eigenvalue spectrum into

different regimes based on the localization properties of the corresponding eigen-
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Figure 2.3: Plot of ∆Dq as a function of rewiring probability pr for q = 2 (•) , 5 (■)
and 10 (▲) respectively. (a) λ ≈ 1.271 (b) λ ≈ 1.371. These are the eigenvalues
from the central regime.

vectors. The central part (λ−TR ≤ λ ≤ λ+TR) of the spectrum consists of critical

eigenvectors having IPR of the order of 10−3. This is the most localized part of

the eigenvalue spectrum. Further, Yxj
(λ) has U-shape for the smaller eigenvalues

(λ < λ−TR) while it remains almost constant for the higher eigenvalues (λ > λ+TR)

forming the tail part of the spectra. The eigenvalues λ−TR and λ+TR separate the cen-

tral part from the smaller and the larger eigenvalues, respectively. We refer to the

central regime as a critical state regime, since here all the eigenvectors are at the

critical state identified using the multifractal analysis. Both sides of the central part

are referred to as the mixed state as in this regime both the delocalized eigenvector

(with IPR ∼ 10−3) and critical states eigenvector (with IPR ∼ 10−4) co-exist. Using

the multifractal analysis, we first determine λ+TR for various values of the rewiring

probability. This will help us to know the nature of the change in the width of the

central part (critical states regime) with the change in the rewiring probability. We

then analyze the change in the degree of localization of eigenvectors with the change

in the rewiring probability.

Calculation of λ+
TR: Figure 2.1 plots Yxj

(λ) as a function of λ for various val-

ues of the rewiring probabilities. All the different regimes, critical and the mixed can

easily be identified from the Figure 2.1 . First, we discuss the impact of rewiring on
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the value of λ+TR, which helps us to further understand the change in the width of the

central part (critical states regime) with the variation in pr. To achieve this, we an-

alyze the multifractal behavior of a few eigenvectors separating the critical regime

with the mixed regime corresponding to the higher eigenvalue, i.e., xj correspond-

ing to λ+TR, λ+TR+1, and λ+TR−1. Here, λ+TR+1 and λ+TR−1 refer the eigenvalues just

after and before λ+TR, respectively such that λ+TR−1 < λ+TR < λ+TR+1 relation holds.

The eigenvectors xj corresponding to λ+TR+1 are delocalized, hence we expect them

having Dq → 1 ; whereas λ+TR−1 lies on the critical regime and therefore should

have a multifractal property. Figure 2.2 plots Dq as a function of q for the eigen-

vector xj corresponding to λ+TR, λ
+
TR+1 and λ+TR−1 for different values of pr. For

0.001 ≤ pr ≤ 0.05, xj corresponding to λ+TR, λ
+
TR−1 show the multifractal char-

acteristics accompanied by a wide range of the generalized multifractals dimension

values, while for xj corresponding to λ+TR+1 have Dq → 1 ∀ q > 0. Note that, for a

completely delocalized eigenvectors, Dq = 1, as in the case of principal eigenvector

(PEV) of regular network (pr = 0). Otherwise, for slight variations in the values

of eigenvector’s components (delocalized eigenvectors), Dq → 1. We find that λ+TR

for various values of the rewiring probability lies in the range 2.03 ≤ λ+TR ≤ 3.34,

i.e., there exists no significant change in the value of λ+TR with the change in the

rewiring probability for a fixed value of network parameters such as size N and the

average degree k and hence the width of the central part remains almost fixed. We

furthermore notice that λ+TR for various values of the rewiring probability always

remains equal to the boundary of the bulk part of the eigenvalue density (ρ(λ)) and

the tail part of the eigenvalue density. Since the radius of the bulk part of the eigen-

values largely depends on the network’s parameters [72], it is not surprising that the

value of λ+TR remains almost the same. The tail part of the eigenvalue spectrum has

a very low value of probability density. Mathematically, this means that, ρ(λ+TR+ ϵ)

→ 0 and ρ(λ+TR − ϵ) → δ where δ > ϵ and ϵ ≪ 1. This can be easily understood

with the following argument. The eigenvalue spacing λi+1−λi ≪ ξ for λ < λ+TR

whereas for λ > λ+TR, λi+1−λi > ζ where ζ > ξ and ξ ≪ 1. It has been argued that

the eigenvalue spectra corresponding to the localized states is continuous while that
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Figure 2.4: The correlation dimension D2 and IPRs of the eigenvectors are plot-
ted as a function of the corresponding eigenvalues for the following four different
rewiring probabilities: (a)-(b) pr = 0.001; (c)-(d) pr = 0.0021; (e)-(f) pr = 0.01;
and (g)-(h) pr = 0.05.

of the eigenvalue spectra of the delocalized states is discrete [73]. Thus, λ+TR is the

eigenvalue separating the central regime of high IPR values from the regime of low

IPR values. Additionally, it also separates the bulk part from the tail of the density of

the eigenvalues. Therefore, these calculations of eigenvalues separating the regime

of higher IPR values with lower IPR values are in agreement with the previously

known conjecture on localization. More interestingly, the methodology followed

here provides the exact value of the eigenvalue separating the critical regime and

mixed regime. After pr ≥ 0.05, as randomness increases further, it is difficult to

divide the spectrum into different regimes based on the localization properties of

eigenvectors and all the three regimes start coinciding with each other (Figure 2.1).

Additionally, it can be seen that Dq for xj corresponding to λ+TR, λ
+
TR+1 and λ+TR−1

starts coinciding with each other (Figure 2.2).

Change in the localization properties with pr: We next discuss the impact of

rewiring on the degree of localization of the eigenvectors. Specifically, we focus

on the eigenvectors belonging to the central regime as this part of the spectrum un-

dergoes the localization-delocalization transition with the increase in the rewiring
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probability. The other eigenvectors lying outside the central regime do not witness

a significant change in their localization properties. For pr = 0.001, the eigenvectors

which are nearer to the band edge, i.e. xj corresponding to λ+TR, λ+TR−1 are charac-

terized by strong multifractality having a wide range of the generalized multifractal

dimensions. On the other hand, the eigenvectors inside the band are characterized

by weak multifractality satisfying Dq = 1 − βq ∀ q > 0 and β ≪ 1. The weak

multifractality means that the eigenvectors corresponding to the critical state are

close towards the extended states which are analogous to Anderson transition in

d = 2 + ϵ with ϵ ≪ 1 dimension. Furthermore, a strong multifractality means that

the corresponding eigenvectors are more inclined towards the localization which is

similar to the conventional Anderson transition in d ≫ 1 dimensions [74]. As the

rewiring probability is increased further, for 0.001 < pr ≤ 0.05, we do not find

any significant change in the multifractal characteristics of the eigenvectors lying at

the band edge. However, the eigenvectors lying inside the band are now described

by the strong multifractal characteristics. To demonstrate the change in the strength

of multifractality of the eigenvectors with the variation in pr, we calculate the de-

cay in Dq with respect to q. For this, we define ∆Dq = D0 − Dq. Note that, D0

= d (in our case: d = 1) irrespective of the nature of the eigenvector. Hence,

∆Dq provides a correct measure to compare the decay in Dq with respect to q in

turn providing insight into the strength of multifractality. Thus, we use ∆Dq as a

measure of the degree of localization. Figure 2.3 plots ∆Dq as a function of pr for

two different eigenvalues from the central part. Figure 2.3 demonstrates that as the

rewiring probability increases, ∆Dq manifests an increase until the onset of small-

world transition (pr ≈ 0.01). Thereafter, it shows a decrease for a further increase

in the pr values till pr = 1 . The increase in ∆Dq for the initial pr values indicates

that there exists an increase in the multifractal characteristics indicating an enhance-

ment in the degree of localization with the increase in the rewiring probability. Thus,

based on the effect of rewiring of the connections on the localization properties of

the eigenvectors, pr can be divided into two domains. First, 0.001 < pr ≤ 0.01

where an increase in the rewiring probability leads to an increase in the degree of
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localization of eigenvectors; while for 0.01 ≤ pr ≤ 1, eigenvectors undergo a con-

tinuous decrease in the localization. Moreover, the transition takes place exactly at

the onset of the small-world transition. This can be further explained by the follow-

ing. For 0 < pr ≤ 0.01, the average clustering coefficient of the network remains

constant at CC = 3/4, while the average shortest path drops down drastically. It

is a common belief that a shorter r supports diffusion whereas a higher clustering

is known to drive toward the localization transition [70]. Therefore, there exists

an interplay of these two structural quantities in deciding the localization proper-

ties of the eigenvectors. For pr ≤ 0.01, a high number of triangles accounted for

localization, whereas for pr ≥ 0.01, there exists a significant decrease in the CC

with r being small, and thereby leading to decrease in the degree of localization

of eigenvectors. We would like to stress that distorting the initial regular network

by rewiring a few connections (for pr being very small) does not cause localization

of the eigenvectors, rather they reach the critical states detected by the calculation

correlation dimension (D2).

The correlation dimension (D2) of the eigenvectors provides insight into the

scaling of the IPRs. For the localized eigenvectors, D2 → 0, while D2 → 1 for the

completely delocalized eigenvector. On the other hand, if 0 < D2 < 1, the eigen-

vector is said to be at the critical state. Therefore, we next calculate the correlation
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dimension of the eigenvectors for various values of pr. Figure 2.4 presents results

of D2 and IPR for the eigenvectors as a function of the corresponding eigenval-

ues for four different pr values. The plot clearly depicts that there exists a sharp

change in D2 at a point which separates the central and the delocalized regime.

For λ > λ+TR, D2 > 0.94 for all the values of the rewiring probability indicating

delocalized eigenvector. However, at the critical point, which separates the critical

and the mixed regimes, the values of D2 is different for the different pr values. For

pr = 0.001, 0.002, 0.01 and 0.05, the values of D2 are equal to 0.53, 0.66, 0.66 and

0.72, respectively. The range 0.4 < D2 < 0.90 for the eigenvectors in the critical

regime clearly suggests that though they reach at the critical state arising due to the

links rewiring, they do not get completely localized (D2 → 0). Further, the value

of D2 at λ+TR is the minimum for the entire spectrum. Thus, the eigenvectors at the

boundary of the central part are the most localized in the spectrum for the values of

the initial rewiring probabilities.

IPR Statistics: So far, we have discussed the impact of rewiring on the local-

ization properties of the eigenvectors when IPR and other physical measures of

eigenvectors are being averaged over in the small eigenvalue window. However,

an analysis of the IPR statistics can provide us with further information about the

system. For instance, in the case of the power-law random banded matrix (PRBM),

it was found that at the critical point of the localization-delocalization transition,

the width and the shape of the distribution of the logarithm of IPR do not change

with the system size, or we can say that it is scale invariant [75]. We calculate the

distribution function of IPR for various rewiring probabilities for different system

sizes. Figure 2.5 shows that, for pr = 0.001, ρ(ln(Yxj
)) remains invariant with the

change in the network size as neither its shape nor its width changes with N . For

pr ≥ 0.001 the distribution function ρ(ln(Yxj
)) witness a continuous decrease in the

width with an increase in N (Figure 2.5). Thus, we can infer that, pr = 0.001 is the

critical rewiring probability for the localization-delocalization transition.

Impact of variation in average degree (k) on Dq: In this section, we discuss

the impact of average degree k on Dq. Note that the largest eigenvalue of network
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pr = 0.001 (b) pr = 0.005 (c) pr = 0.01 (d) pr = 0.05 (e) pr = 0.1 (f) pr = 1. In all the
cases , λ ≈ 0 is considered and Dq is average over all the eigenvectors belonging to
dλ = 0.25 as described in Sec. Methods.

is bounded with the largest degree kmax [72]. Moreover, for a random network λ1

≈ [1 + o(1)]k, where o(1) means a function that converges to 0 [76]. Thus, varying

k may affect the eigenvalue spectrum drastically even for the fixed network size.

Here, we have considered three sets of k = 10, 15, 20 with N = 2000 being fixed.

First we calculate the value of λ+TR for k = 10 and 15. For such a small change in the

average degree though leads to notable changes in λ1, there exist no such significant

impact of k on λ+TR.

We next probe the impact of k on Dq for various values of the rewiring proba-

bilities. We witness no significant changes in the nature of Dq for the tail part of the

eigenvalue spectrum (λ > λ+TR) with the change in the average degree. However,

for the central regime, a decrease in the average degree leads to an increase in the

strength of the multifractality of the eigenvectors as depicted in Figure2.6. As we
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have already discussed that the strength of the multifractality of eigenvectors indi-

cates the degree of localization. Thus, decreasing the average degree suggests an

enhancement in the degree of eigenvector localization.

Effect of Finite Size: It is well known that critical phenomena are accurately

defined only in the thermodynamics limit i.e., N → ∞. Further, the multifractal-

ity of the eigenvectors might be due to the finite size of the system, which may

not exist at the infinite size limit. Hence, one needs to be careful regarding the

critical point. Nevertheless, Dq certainly reveals the tendency towards a more lo-

calized or a more delocalized behavior of a given eigenvector. Therefore, we have
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calculated Dq for various system sizes to check the impact of the finite-size effect

in our analysis. Figure 2.7, is a plot of Dq for the eigenvalues lying in the central

regime for various different values of the rewiring probability as the network size

varied from 2000 to 20000. It is evident from the Figure 2.7 (a,b) there is no sig-

nificant change in Dq as the network size is changed from 2000 to 20000. This is

also supported by Figure 2.5 (a), where the distribution ρ(ln(Yxj
)) remains to scale

invariant and thus gives rise to the unique fractal dimension Dq. However, there

exists a slight change between Dq at N = 2000 and Dq at N = 20000 in the case

of pr = 0.01 [Figure 2.7 (c)] though Dq gets saturated after N = 8000. However,

we do find a significant change in Dq with a change in the network size in the case

of pr = 0.05 though it still keeps showing the multifractal characteristics. Thus, we

see that change in the value of Dq by varying N increases with an increase in the

rewiring probability which appears very intriguing. One of the possible reasons for

the larger fluctuations in Figure 2.7 (d) could be the higher rewiring probability as

for a given rewiring probability, the number of the rewired links (Nr) on average

equals to (N × pr × k)/2. Thus, for Figure 2.7 (d), Nr equals to 103 and 104 for

N = 2000 and 20000, respectively. This difference is very high as compared with

that of the smaller rewiring probabilities leading to higher changes in the network

topology with higher N . Note that fluctuation of D2 for a critical eigenvector of the

power-law random banded matrix (PRBM) with system size was also reported and

investigated in [77].

2.4 Discussion and Conclusion

We have investigated the localization behavior of the eigenvectors of the small-

world networks. First, we characterize the eigenvalue spectrum into different regimes.

The central regime corresponds to the critical state eigenvectors and the mixed

regime where we found delocalized eigenvectors along with some critical states

eigenvectors. Using the multifractal analysis, we find that there exists no significant

change in the eigenvalue (λ+TR) separating the central regime and the mixed regime.

Additionally, we notice no significant change in λ+TR with an increase in N , i.e. for
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N → ∞, λ+TR(N ) ∼ O(1). Further, we demonstrated that the rewiring procedure

can be divided into two domains. For small rewiring, pr ≤ 0.01, with an increase

in the random connections, there exists a continuous enhancement in the localiza-

tion of the eigenvectors corresponding to the central regime, while for the higher

rewiring probability pr ≥ 0.01, eigenvectors gradually lose their degree of local-

ization. Interestingly, this change in the behavior of the eigenvectors takes place

at the onset of the small-world transition possibly arising due to the fact that for

pr ≤ 0.01, there exists a decrease in the characteristics path length (r) co-existing

with a high clustering coefficient (CC = 3/4). It is well known that a higher clus-

tering drives localization of the eigenvectors. On the other hand, for pr ≥ 0.01,

there exists a significant decrease in CC with r being small, eigenvectors undergo

continuous decrease in the degree of localization with an increase in randomness

in connections for pr ≥ 0.01. We would also like to emphasize here that distort-

ing the initial regular network topology by rewiring a few connections does not

lead to localization of the eigenvectors, instead, it drives them toward the critical

states with 0.4 < D2 < 0.90. Further, it requires very few rewiring of connections,

i.e., a small amount of randomness from the regular structure to achieve the crit-

ical states which we have captured here using the IPR statistics. The probability

density function of the logarithm of IPR remains the scale-invariant for the critical

rewiring probability corresponding to the transition. Our work can be useful to un-

derstand various dynamical processes occurring on the small-world networks. For

instance, in [61], epilepsy in small-world neural networks was investigated and it

was argued that network activities depend on the proportion of long-distance con-

nections. For this particular example, for a small, intermediate, and high proportion

of long-distance connections, the network activity was shown to behave as normal,

seizure and bursts, respectively. Normal activity was characterized by a low popula-

tion of firing rates neurons. The Seizure activity was characterized by significantly

higher population firing rates while burst activity in the network was characterized

by higher firing rates which rise and fall rapidly. A spontaneous active potential in

one neuron was shown to lead to the activity in neurons having a common post-
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postsynaptic target. Thus, once a wave got initiated, it could give rise to new waves

of activity in other regions through long-distance connections. In this chapter, we

have shown that for a small proportion of long distance connections (pr < 0.01),

eigenvectors are more localized as compared to those for higher pr values. Thus, it

suggests that the probability that if a wave has been initiated will generate another

wave through long-distance connections is less since it dies out at the local region

perhaps due to constructive interference making this region behave normal. On the

other hand, for the intermediate proportion of long distance connections ( 0.01 ≤ pr

< 0.1), the eigenvectors are less localized as compared to those at the small rewiring

probability thus there is a finite probability that if a wave is initiated can initiate new

waves through the long-distance connections which may lead to seizure. Finally, at

higher rewiring probability eigenvectors are again least localized which can lead to

burst activity in the network.
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Chapter 3

Interplay of diagonal disorder and ran-
domness on localization

3.1 Introduction

In chapter 2, we studied the localization induced due to disorder in topology but we

didn’t introduce diagonal disorder in the adjacency matrix. In this chapter, along

with distorting the initial regular topology, we introduce diagonal disorder in the

adjacency matrix. Thus, rewiring parameter pr quantifying randomness allows us

to investigate the effect of the interplay of diagonal disorder and randomness caused

by the occurrence of ones in off-diagonal elements representing pair-wise connec-

tions on localization. We hire eigenvalue ratio statistics of random matrix theory

(RMT) to investigate the localization-delocalization transition upon increasing the

strength of diagonal disorder. RMT first came conceived during the 1950s when

E. Wigner envisioned that the complex Hermitian operator of heavy nuclei could

be replaced by random matrices whose elements are chosen randomly from some

distribution [78]. He and others proposed that the statistical properties of the eigen-

value spectrum of random matrices should mimic the original system under consid-
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eration without any detailed knowledge of the structure and show universality with

the appropriate symmetry class of the system. There exist exactly three symmetry

classes; Gaussian orthogonal ensemble (GOE) for real, Gaussian unitary ensem-

ble (GUE) for complex, and Gaussian symplectic ensemble (GSE) for quaternionic

random numbers. The GOE matrices remain invariant under orthogonal transfor-

mation, i.e., A→ Q−1AQ for any orthogonal matrix Q. Correspondingly, the other

two symmetry classes remain invariant under unitary and symplectic transforma-

tions, respectively. Random matrix theory (RMT) found its application in different

areas of research; statistical physics [79], quantum chaos [80], and condensed mat-

ter physics [81]. For example, in tight binding models, it is used to characterize

localized and delocalized states [81]. In quantum systems, RMT is often used to

identify if the system is integrable, chaotic, or a mixture of both of them [80].

In the RMT framework, one usually compares the spectral fluctuation of the

system with those predicted by RMT [82]. The nearest neighbor level spacings, de-

fined as the difference between the consecutive eigenvalues of the given operator, is

the most accepted spectral measure. However, to compare the spectral fluctuations,

one needs to unfold the original eigenvalues to separate the smooth global part and

fluctuating local part (system dependent), and then spacings are calculated on the

unfolded eigenvalues [83]. Usually, unfolding procedures are not unique and non-

trivial, which can lead to misleading statistical results [84, 85]. For instance, in the

case of the Bose-Hubbard model at considerable interaction strength, the density

of states is not a smooth function of energy, and it becomes non-trivial to separate

them into the smooth global part and fluctuating local part [86]. Oganesyan and

Huse solved this impediment of unfolding by introducing a new measure called the

ratio of consecutive eigenvalue spacings (r), independent of the local density of

states and hence requiring no unfolding [44]. Additionally, it is easy to compute it

with a lower computational cost.

Moreover, RMT has been extensively used in network science to capture phase

transition and study various phenomena. For example, using spectral statistics, lo-

calization transition was studied for ER random network, Cayley tree, and Barabasi-
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Albert scale-free networks [29]. The value of critical disorder as a function of aver-

age degree for Anderson transition was calculated for these model networks using

the distribution of eigenvalue spacings. Further, to obtain a clear Anderson transi-

tion, a low value of the average degree as a threshold was proposed, above which

no clear Anderson transition could occur for any of these networks. However, the

absence of a transition could also be attributed to the small size of the considered

networks. In Ref. [28], using the level statistics, it was shown that Anderson-like

transition can be obtained in complex networks without a diagonal disorder and

just by tuning the clustering coefficient. In Ref. [87], RMT was applied on random

geometric graphs (RGG), and it was found that as a deterministic connection pa-

rameter increases, eigenvalue spacing shows a gradual transition from the Poisson

to the GOE statistics. Also, spectral analyses have been carried out for random net-

works with an expected degree and β-skeleton graphs [88, 89]. Further, Ref. [90]

has shown the universality of nearest neighbors spacing distribution (P (s)) with

network size by calculating the Brody parameter for random networks. However,

it did not investigate the impact of variation in the strength of diagonal disorder on

spectral properties of complex networks.

Here, we study the localization-delocalization transition with the increasing

strength of the diagonal disorder in the adjacency matrix In Anderson’s model [1],

the diagonal disorder in the Hamiltonian matrices depicts the onsite potential of

different sites. Diagonal disorders in complex networks, i.e self-loops in the graph

representation, may represent various intrinsic properties of the nodes, and depend-

ing upon the system under consideration, they may carry different physical mean-

ings. For example, in the case of excitatory dynamics of photosynthesis molecules,

the diagonal disorder corresponds to the excitation energies of pigment molecules

in different protein environments or imperfect fabrication of the structures [91–93].

In an economic model with nodes representing firms and links representing interac-

tions between firms in terms of their production, the diagonal disorder corresponds

to the productivity of each firm [21]. Another example is optical systems where

diagonal disorder is akin to variations in the refractive indices of the optical fibers,
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and connections represent the random position of the fibers [94–96].

Further, note that the term ’distribution of the ratios of consecutive eigenvalue

spacing’ and ’eigenvalue ratio statistics’ will mean the same in this chapter and be

used interchangeably. The eigenvalue ratio follows GOE statistics for all the model

networks, namely small-world, ER random, and dis(assortative) ER networks. We

show that upon increasing the strength of the diagonal disorder in the adjacency

matrix of a network, the eigenvalue ratio statistics gradually depicts a transition

from the GOE to the Poisson statistics. However, for small-world networks, the

critical disorder needed to obtain the Poisson statistics increases with an increase in

the value of the rewiring probability. Additionally, we probe the impact of degree-

degree correlation or (dis)assortative degree mixing of networks on eigenvalue ratio

statistics. We further relate the critical disorder required to obtain the Poisson statis-

tics with the transient dynamics of a random walker.

The chapter is organized as follows. Sec. 4.2 consists of definitions of eigen-

value spacing ratio, construction of model networks, and measure of localization.

Secs. 4.4 and 4.5 contain results about the effect of the interplay of disorder and

randomness on the eigenvalue ratio statistics for various model networks. Sec. 4.6

relates the critical disorder which is required to obtain the GOE to Poisson transi-

tion with the dynamics of the maximally entropy random walker. Finally, Sec. 3.4

concludes the chapter.

3.2 Methods and Techniques

A network denoted by G = {V,E} consists of set of nodes and links. The set of nodes

is represented by V = {v1, v2, v3, . . . , vN} and links with E = {e1, e2, e3, . . . , eM}

where N and M are sizes of V and E respectively. Mathematically, a network can

be represented by its adjacency matrix A whose elements are defined as Aij = 1

if node i and j are connected and 0 otherwise. The eigenvalues of the adjacency

matrix A are denoted by {λ1, λ2, λ3, . . . , λN} where λ1 ≥ λ2 ≥. . .≥ λN .

We perturbed the adjacency matrix (A) by adding a diagonal matrix. The new

adjacency matrix becomes A′ = A+D, where D is a diagonal matrix added to the
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original adjacency matrix. The diagonal elements of D i.e. Dii are random num-

bers drawn uniformly from a box distribution between (−w,w) with a width 2w.

We probe the effect of the impact of an increase in the diagonal strength (2w) on the

eigenvalue ratio statistics. The eigenvalue ratio statistics is known to be very use-

ful to identify localized and delocalized eigenvectors. Localization of eigenvectors

means that few eigenvector entries take very high values compared with the other

entries. On the other hand, in the case of delocalized eigenvector, all the entries

take almost an equal value. Further, the eigenvalue ratio statistics corresponding

to the localized eigenvectors is known to depict the Poisson statistics, while for

delocalized eigenvectors, it is known to manifest the GOE statistics [43].

Ratio of eigenvalue spacing: Following Ref. [44], the ratio of consecutive eigen-

value spacing is defined here as

ri =
min(si+1, si)

max(si+1, si)
(3.1)

where si = λi+1−λi is the spacing between eigenvalues λi+1 and λi with i ∈

(1, 2, 3 . . . N − 1). Also, one can verify that 0 < ri < 1. Ref. [44] provides

only numerical estimation of P (r) for the GOE distribution, and discussions on the

other two symmetry classes (GUE and GSE) were lacking. This gap was filled in

Ref. [45] where an exact distribution function of r was derived which was not re-

stricted only to GOE but includes GUE and GSE classes as well. The distribution

function (P (r)) approximating GOE statistics is given as

P (r) ∼ 54/8× (r + r2)

(1 + r + r2)5/2
(3.2)

and the theoretical average value of r for GOE and Poisson statistics has been esti-

mated to be equal to 0.53 and 0.38, respectively, with the distribution function for

Poisson statistics is given by

P (r) ∼ 2

(1 + r)2
(3.3)
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Figure 3.1: (Color online) Distribution of ratio of consecutive eigenvalue spacing
for various rewiring probabilities. Black line (dashed) indicates distribution func-
tion for GOE statistics and red stairs indicate the data. Here, we have considered
N = 2000 and ⟨k⟩ = 20 with 20 network realizations. (a) pr = 0.001 (b) pr = 0.002
(c) pr = 0.005 (d) pr = 0.01 (e) pr = 0.02 (f) pr = 0.05 (g) pr = 0.1 (h) pr = 0.5 (i) pr
= 1.

3.3 Results

3.3.1 Eigenvalue ratio statistics of Small-World Networks

We first analyze the eigenvalue ratio statistics for the small-world networks gener-

ated using the Watts and Strogatz algorithm. Starting with a 1D lattice, links are

rewired with a probability pr such that 0 ≤ pr ≤ 1. For some intermediate rewiring

probabilities, the network undergoes the small-world transition characterized by a

high clustering and a shorter average path-length. We numerically diagonalize the

adjacency matrix to obtain its eigenvalues. We focus on the eigenvalues on the cen-

tral part of the spectrum more precisely, inside the width dλ ≈ 1.5 on both sides

of λ ≈ 0, a usual practice while analyzing the eigenvalues statistics to localization
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transition. We wish to emphasize here that a slight increase or decrease in the width

does not affect the results which is discussed later. It is evident from Fig. 3.1 that

P (r) fits very well with the exact form of the GOE statistics (Eq. (3.2)) for all the

values of the rewiring probability. We then calculate the average value of r numeri-

cally using Simpson’s rule, which comes out to be around 0.52 for all pr values and

thus validate the GOE statistics. We would also like to mention here that a similar

observation was found through the distribution of eigenvalue spacings in Ref. [97].

The authors had shown a change in the Brody parameter (β) value with the rewiring

probability, finally leading to the GOE transition at the onset of the small-world

transition. However, in [97], authors had considered the entire eigenvalue spectrum

to depict the GOE transition, whereas the present study focuses only on the central

part of the eigenvalue spectrum which shows the GOE statistics for all pr values.

Disorder vs. randomness: Let us now discuss results when the diagonal disorder

is introduced in the adjacency matrix. An increase in w leads to a gradual transition

from the GOE to the Poisson statistics, as depicted in Fig. 3.2. However, the critical

disorder wc required to achieve this transition increases with the increase in the

value of pr. The change in ⟨r⟩ with a change in w for various values of pr and N

is plotted in Fig. 3.3. ⟨r⟩ changes its value from ⟨r⟩ ≈ 0.52 for w = 0 to ⟨r⟩ ≈

0.38 for w = wc. However, the value of wc increases with an increase in pr. In fact,

for higher rewiring probabilities, pr(≥ 0.1), it requires a much higher value of wc.

To obtain exact wc, finite-size scaling analysis (FSS) would be required since the

critical phenomenon is defined only in the thermodynamic limit (N → ∞). The

crossing point of the order parameter should remain the same with a change in the

system size [81, 98]. However, as argued in [99], for d → ∞ (l ∼ ln(N)), finite-

size scaling analysis is nontrivial for many systems, for example, random regular or

tree-like graphs, and one does not witness any crossing point. The order parameter

⟨r⟩ for such cases keeps drifting towards the Poisson statistics with increasing N .

Since for small-world networks, d → ∞, we are not performing any FSS analysis
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Figure 3.2: (Color online) Distribution of ratio of consecutive eigenvalue spacing
of adjacency matrices having diagonal disorder drawn from uniform distribution of
width 2w for different values of pr. Black (dashed) and violet (dashed-dotted) lines,
respectively indicate GOE and Poisson distribution function. Here, N = 2000 and
⟨k⟩ = 20 with 20 network realizations and 40 disorder realizations. (a) pr = 0.001
(b) pr = 0.01 (c) pr = 0.1 (d) pr = 1

as it would require networks with very large sizes as done in [100]. Nevertheless,

we present the results for N ≤ 32000, demonstrating a similar trend as in Fig. 3.3.

Further, rewiring affects the adjacency matrix of the initial 1D lattice (pr = 0)

in two ways. First, there is a distortion in the diagonal band, and second is the

random addition of ones in the off-diagonal entries. Thus, we perform the following

experiments to get an insight into which one of these two plays a role in changing

the eigenvalue ratio statistics. First, we keep the diagonal band undisturbed and

randomly add ones in the off-diagonal entries with a probability p. In this case,

the eigenvalue ratio statistics keeps depicting the GOE statistics irrespective of the
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Figure 3.3: (Color online) Plot of ⟨r⟩ as a function of diagonal disorder (w) for
various rewiring probabilities. ◦, □, △, ∗ and + symbols are used for N =
2000, 4000, 8000, 16000 and 32000 respectively with ⟨k⟩ = 20. (a) pr = 0.001
(b) pr = 0.005 (c) pr = 0.01 (d) pr = 0.05 (e) pr = 0.1 (f) pr = 1. Vertical lines
represent crossing point of ⟨r⟩ for different N

probability p and the strength of the diagonal disorder (Fig. 3.4). Here, results are

shown only for one value of the diagonal disorder, but the same results for higher

diagonal disorder strength have been obtained (see SM).

In the second experiment, we omit the ones from the diagonal band uniformly

with the probability p and investigate its impact on the eigenvalue ratio statistics.

Distorting the diagonal band with a small probability (p = 0.001) leads to a change

from the GOE statistics for a small disorder strength. In fact, for p = 0.1, even a

very small value of w leads to the Poisson statistics (Fig. 3.5). The above observa-

tion could be useful to explain the reason behind the increase in the critical value of

disorder (wc) with the increase in pr. Small pr values yield small distortions in the

diagonal band of the adjacency matrix accompanied by a few filling up of ones in

the off-diagonal entries. This setup leads to the Poisson statistics for a small wc as
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Figure 3.4: (Color online) Distribution of ratio of consecutive eigenvalue spacing
with w = 20 from uniform distribution of width 2w for various probabilities of
adding 1s in off diagonal entries of the adjacency matrix of 1D lattice. Black
(dashed) and violet (dashed-dotted) lines, respectively indicate distribution func-
tion from Eq. (3.2) and (3.3) respectively. Here, N = 1000 and ⟨k⟩ = 20 with 20
network realizations and 40 disorder realizations. (a) p = 0.1 (b) p = 0.2

omitting ones even with a small probability leads to the Poisson statistics. When

rewiring probability is increased, though there is a distortion of the diagonal band,

sufficient ones have also been randomly distributed in the off-diagonal entries driv-

ing to the GOE statistics and thus higher wc is required.

Impact of change in dλ: Since we consider the eigenvalues in the central part of

the eigenvalue spectrum, specifically those lying in the dλ width around the zero

eigenvalue, let us discuss the rationale behind taking such an approach and an im-

pact of dλ on the results. First, the middle part of the spectrum is appreciably

occupied, and the spacings become similar with different network sizes and thus

help to reduce the finite-size effect to some extent [101]. On the other hand, at the

edges of a spectrum, the eigenvalues are not smooth for smallerN , but forN → ∞,

the eigenvalues spectrum becomes continuous, and thus the finite-size effect is more

prominent. Second, to choose appropriate dλ, one has to pick an interval which is

statistically sound and at the same time does not mix localized or delocalized eigen-
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Figure 3.5: (Color online) Distribution of ratio of consecutive eigenvalue spacing
with diagonal disorder from uniform distribution of width 2w for various proba-
bilities of deleting 1s from diagonal band of the adjacency matrix of 1D lattice.
◦ and ▷ are used for w = 1 and w = 4 respectively. Black (dashed) and violet
(dashed-dotted) lines, respectively indicate distribution function from Eq. (3.2) and
(3.3) respectively. Here, N = 1000 and ⟨k⟩ = 20 with 20 network realizations and
40 disorder realizations. (a) p = 0.001 (b) p = 0.01 (c) p = 0.1

vectors for different values of w [102]. Fig. 3.6 reflects that for 0.25 ≤ dλ ≤ 3,

a slight increase or decrease in the width does not have any noticeable impact on

the value of ⟨r⟩ (for a given w) for all pr values. However, for dλ ≈ 0.10, changes

in ⟨r⟩ with respect to other dλ values can be witnessed for higher rewiring proba-

bilities (pr ≥ 0.1) (Fig. 3.6[c][d]). It is also important to note that as w increases,

there is a shortfall in the number of eigenvalues that are close to zero. In fact, we

find that for the network parameters considered here, for w > 70, even 104 random

realizations yield a total number of eigenvalues in the order of 103 for dλ ≈ 0.10.

Thus, it is convenient to take 0.25 ≤ dλ ≤ 3, in which ⟨r⟩ remains statistically

sound for the same number of realizations for different dλ values. Additionally,

we checked using other measures like inverse participation ratio (not shown) that

localized-delocalized eigenvectors do not mix in this range. We further add that a

decrease in the value of ⟨k⟩ for a given N may yield a quantitatively different im-

pact for dλ, and there could be a larger number of eigenvalues in a given width dλ.
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Figure 3.6: (Color online) Plot of ⟨r⟩ as a function of diagonal disorder (w) and
also with dλ for various rewiring probabilities. ◦, ∗, □, ♢ and + are used for dλ
≈ 0.10, 0.25, 0.50, 1.50 and 3 respectively. Here, N = 2000 and ⟨k⟩ = 20. (a)
pr = 0.001 (b) pr = 0.01 (c) pr = 0.1 (d) pr = 1

Impact of average degree: We further probe the impact of average degree on the

statistics of ratios of consecutive eigenvalue spacings. Note that the largest eigen-

value of the network is bound with the largest degree kmax [103]. Moreover, for

a random network λ1 ≈ ⟨k⟩. Thus, varying ⟨k⟩ may affect the eigenvalue spec-

trum drastically even for fixed network size. In our analyses, we have considered,

⟨k⟩ = 6, 10, and 20 with N = 2000 being fixed. It is also worth noting that a

decrease in the average degree may affect the probability (pc) at which small-world

transition occurs. However, we notice that reducing ⟨k⟩ from 20 to 10 does not

affect pc and it remains equal to 0.01. Fig. 3.7 illustrates the change in ⟨r⟩ when

⟨k⟩ is varied. It is apparent from the figure that when ⟨k⟩ is decreased, the critical

disorder (wc) required to procure the transition also decreases for all the values of

the rewiring probabilities.
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Figure 3.7: (Color online) Plot of ⟨r⟩ as a function of diagonal disorder (w) and also
with average degree ⟨k⟩ for various rewiring probabilities. ◦, ▷ and □ are used for
⟨k⟩ = 20, 10 and 6 respectively. Here, N = 2000. (a) pr = 0.001 (b) pr = 0.01 (c)
pr = 0.1 (d) pr = 1

3.3.2 Eigenvalue ratio statistics of ER random networks

We now extend the investigation to ER random networks.ER random networks are

constructed using ER model [34] as follows. Starting with N nodes and average

degree ⟨k⟩, each pair of the nodes is connected with a probability p = ⟨k⟩/N . The

degree distribution of ER random networks follows a binomial distribution. It is

also worth noting that small-world random networks with pr = 1 and ER random

networks are slightly different in the sense that while the former has fixed links

with different realizations, it may change in the latter. Additionally, the small-world

random network (pr = 1) retains the initial regular structure (pr = 0) as its memory

and degree distribution follow a normal distribution with a peak at ⟨k⟩ and small

variance. On the contrary, in ER random network, though the degree distribution

peak stays around ⟨k⟩, the variance is larger than the small-world random networks.
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Figure 3.8: (Color online) Distribution of ratio of consecutive eigenvalue spacing
for ER random network. Black (dashed) and violet (dashed-dotted) lines, respec-
tively indicate GOE and Poisson distribution from Eq. (3.2) and (3.3) respectively.
N = 2000 and ⟨k⟩ = 8 with 20 network and 40 disorder realizations.

It is evident from Fig. 3.8 that, similar to small-world networks, the eigenvalue

ratio statistics of ER random networks depict GOE to the Poisson transition with an

increase in the diagonal disorder.

Assortative-disassortative networks: The degree-degree correlation is one of

the key characteristics of real-world networks [32]. In many real-world networks,

like social networks, a node with a high degree tends to connect with similar high

degree nodes, commonly known as assortative networks [104]. This characteristic

of networks is known as assortativity or assortative mixing. On the other hand, in

biological and technological networks, high degree nodes prefer to connect with
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Figure 3.9: (Color online) ⟨r⟩ is plotted as a function of w. (a) Assortative ER
networks (b) Disassortative ER networks. Here, we have considered N = 2000 and
⟨k⟩ = 8 with 20 network and 40 disorder realizations.

the nodes having a low degree, referred to as disassortative networks, and the prop-

erty is known as disassortativity or disassortative mixing [105]. To incorporate

assortative or disassortative mixing in the original ER random network, we use the

reshuffling algorithm [106]. The degree of (dis)assortativity is quantified by the

Pearson (degree-degree) correlation coefficient, denoted as ra where −1 ≤ ra ≤ 1.

For most assortative network ra will be closer to 1 while for most disassortative net-

work, ra will be close to −1. Note that the probability distribution of eigenvalues

(spectral density) changes drastically with the change in ra [107]. Thus, it would be

interesting to probe eigenvalue ratio statistics for the (dis)assortative ER network.

We considered N = 2000 and ⟨k⟩ = 8 in our analyses. The average degree is

kept at this small value to ensure GOE to Poisson transition for a finite value of w

otherwise, for larger ⟨k⟩, w will be far-reaching. First, we study the distribution of

the ratio of consecutive eigenvalue spacing without the diagonal disorder in the ad-

jacency matrix. We find that it follows GOE statistics irrespective of the value of ra.

We next introduce diagonal disorder in the adjacency matrix and study eigenvalue

ratio statistics. We find that if the degree of assortativity (0 ≤ ra ≤ 1) is increased,

though there is no significant change in wc, ⟨r⟩ shows slightly lesser values as com-

pared with the corresponding less assortative networks (Fig. 3.9 [a]). On the other

47



CHAPTER 3. INTERPLAY OF DIAGONAL DISORDER AND RANDOMNESS ON LOCALIZATION 3.3. RESULTS

hand, with an increasing degree of disassortativity (−1 ≤ ra < 0), we do not find

its effects on eigenvalue ratio statistics (Fig. 3.9 [b]). It is important to note here that

increasing the degree of assortativity leads to a decrease in the randomness, as dis-

cussed in [107]. Moreover, changing the degree of disassortativity does not affect

the randomness in networks, which is also reflected in our analysis as for any w,

⟨r⟩ remains the same with a change in ra. We want to stress here that randomness

induced in small-world networks upon links rewiring is more notable as compared

with that brought upon by the (dis)assortative mixing in the ER network [107, 108].

Hence, variation in wc as a function of pr is more significant.

3.3.3 Maximal entropy random walk (MERW)

Localization of eigenvectors of the adjacency and Laplacian matrices is known to

influence various dynamical processes on the corresponding networks. For exam-

ple, localization of the principal eigenvector of an adjacency matrix is known to

play a pivotal role in disease spreading [19], perturbation propagation in ecologi-

cal networks [20], etc. However, the exact underlying mechanism remains elusive,

particularly such understandings for the non-principal eigenvalues and eigenvectors

are missing. Though most of the spectral investigations have revolved around the

principal eigenvectors and the corresponding eigenvalue, sporadic investigations in-

dicate that non-principal eigenvectors and associated eigenvalues of the adjacency

matrices of networks contribute to the transient relaxation dynamics [24, 25].

This section studies dynamics of maximal entropy random walker (MERW) in

various model networks. It then relates its dynamics with the localization (Poisson

statistics) and delocalization (GOE statistics) properties of the underlying model

networks. MERW was first introduced in [109] where it was argued that MERW

localizes in a few nodes, which is not with the case of generic random walk (GRW).

To begin with, we first discuss a general framework for the maximal entropy random

walk. Let us consider a random walker hopping from node to node on a connected,

undirected, unweighted graph G = {V,E}. At each time step, a walker sitting at

any node, say i, jump to its neighboring node j with a probability Pij indicating
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the probability of jumping of the random walker from the node i to the node j

independent of the previous history. Note that, Pij = 0, if Aij = 0, since a walker

can jump to its neighbouring nodes only. The elements of the transition matrix P

can be determined as,

Pij =
Aij

λ1

ψj

ψi

(3.4)

where λ1 is the largest eigenvalue of the corresponding adjacency matrix and

ψj and ψi, respectively, are the jth and ith components of the normalized princi-

pal eigenvector. The Perron-Frobenius theorem states that all the elements of the

principal eigenvector have the same sign, so that Pij ≥ 0. Also, one can easily

see that for each node i,
∑

j Pij = 1. One quantity of interest is probability of

finding the walker at any node i at a time t denoted as pi(t). One can easily com-

pute pi(t + 1) =
∑

j pj(t)Pji. After a time t, pi(t) will reach to a steady state,

p∗i =
∑

j p
∗
jPji. One of the most important properties of MERW is that for a given

length t and a pair of the end points, say, walker started from node io and ends at

it, all trajectories are equiprobable which is not the case of generic random walk-

ers. For a generic random walk (GRW), Pij =
Aij

ki
where ki is the degree of the ith

node. Note that in GRW, trajectories for given length t and given endpoints io, it,

are not equiprobable. Let p⃗(t) = {p1(t), p2(t), p3(t),. . . , pN(t)} be the probability

distribution of a random walker on a given network. For a given initial probabil-

ity distribution of the walker on the graph, (p⃗(0)) and transition matrix P , one can

easily compute the probability distribution of the walker at any time t as,

p⃗(t) = p⃗(0)P t (3.5)

Next, we consider the Shannon entropy S of the walker at each time step t, as

S(t) = −
∑
i

pi(t)ln(pi(t)) (3.6)

Note that, S → 0, if the walker is sitting at one node only, say, io; pio = 1 and pi = 0

for all the other nodes. On the other hand, if the probability of finding the walker is

equal at each node, pi = 1/N , S → ln(N). Thus, 0 ≤ S ≤ ln(N). Also, in large

time t, S(t) will reach to the steady state, and S(t+1) = S(t) ≈ c, where c is some

constant. In the steady state, probability of finding the walker at different nodes

does not change with time. We denote τ be the time taken by the walker to reach
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Figure 3.10: (Color online) S as a function of t for various model networks when
initial condition is homogeneous distribution, (a) Small-world networks, (b) assor-
tative ER networks, and (c) disassortative ER networks. Here, (a) N = 1000 and
⟨k⟩ = 10 and (b)-(c) N = 2000 and ⟨k⟩ = 8. Arrow indicate position where S hits
the steady state.

the steady state starting from a given initial condition. We evolve the random walker

following MERW transition matrix on the following model networks; small-world,

ER random, and (dis)assortative ER networks. We choose two initial conditions to

avoid any predilection in our analysis. (1) In the first case, we choose homogeneous

probability distribution for the walker, i.e., the probability of finding the walker at

each node is equal to 1/N at t = 0. We then evolve the walker for a sufficiently

long time until it reaches the steady state and calculate S for each time step. (2)

We randomly choose a node, say i0, which acts as the starting point for the random

walker with a probability 1.

We first discuss the results for small-world networks. As discussed in the previ-

ous section that the critical disorder (wc) required to procure the Poisson statistics

shows an increase with an increase in the value of pr. Figs. 3.10(a), and 3.11(a)

represent the entropy of the random walker against time t for different values of

pr of small-world networks. The time τ after which the random walker reaches

the steady state, i.e., S → c for t > τ decreases with the increase in pr for both

cases of the initial conditions. Thus, τ ∝ 1/wc. This is a crucial observation that

may provide important insight into the localization of the random walker. When the

walker starts from a randomly chosen node, say io, for smaller t, the probability of
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Figure 3.11: (Color online) S as a function of t for various model networks when
a random walker starts from a randomly chosen node with probability 1; (a) small-
world networks, (b) assortative ER networks, and (c) disassortative ER networks.
Other parameters are same as Fig. 10.

finding the walker is finite only for the nodes which are neighbors of i0. However,

for larger t, there is a finite probability of finding the walker on any node. Further,

for t ≥ τ , pi > 0 ∀i ∈ {1, 2, 3 . . . , N} and does not change with time. Next, for

smaller values of the rewiring probability, τ is very high, and thus even after a larger

t, the probability of finding the walker on most of the nodes remains pi → 0. On

the contrary, for higher values of the rewiring probability, τ is very small. Hence,

the probability of finding the walker on all the nodes of the network becomes finite

even for a shorter t. Therefore, the probability of finding the walker being finite for

all the nodes (for small t), we would need a higher disorder strength to localize it on

a limited set of the nodes, as is the case for the high pr values. On the other hand, if

the probability of finding the walker remains nonzero only for the few nodes even

after a long time, a low diagonal disorder strength would be enough to localize the

walker as it still remains in the purview of a few nodes, which is the case of small

pr values.

We further extend this analyses to the (dis)assortative ER networks. As apparent

from Figs. 3.10 (b) and 3.11 (b), the value of τ increases with assortativity which

is consistent with the earlier observation of τ ∝ 1/wc. Further, for disassortative

networks, as discussed earlier, there exists no visible effect of disassortativity (−1 ≤

ra < 0) on the eigenvalue ratio statistics (Fig. 3.9[b]). From Figs. 3.10 [c], 3.11 [c],
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it is visible that the change in the value of τ remains insignificant as ⟨r⟩ is unchanged

with the change in value of ra for disassortative networks.

3.4 Conclusion

To conclude, we studied the eigenvalue ratio statistics of various model networks.

For the small-world networks, we find that as the strength of diagonal disorder in-

creases, the eigenvalue ratio distribution depicts a gradual transition from the GOE

to the Poisson statistics. However, the critical disorder (wc) required to obtain the

transition increases with the increase in the value of the rewiring probability. Thus,

higher wc is required to obtain GOE to Poisson transition when randomness in the

network increases. Next, we analyzed the impact of change in the network’s aver-

age degree on the eigenvalue ratio statistics. As expected, a decrease in the average

degree leads to a decrease in the value of the critical disorder required to induce

Poisson statistics. Next, we extend our analysis to the ER random networks. In

this case, also, we found the gradual transition of GOE to Poisson statistics upon

the introduction of diagonal disorder. Finally, to check the effect of degree-degree

correlation, we perform (dis)assortative mixing in the original ER random network.

Interestingly, we find that an increase in the degree of assortativity leads to a slight

decrease in the value of ⟨r⟩ for a given w. On the other hand, when the degree

of disassortativity increases, there is no noticeable impact on the eigenvalue ratio

statistics. Further, we relate the value of the critical disorder (wc) with the time

taken by the maximal entropy random walker to reach to the steady state. The

lower the wc (for fixed N and ⟨k⟩), the higher time is taken by the walker to reach

the steady state. Further, we argued that when the walker has reached the steady

state, the probability of finding it on all the nodes becomes finite. For small τ , the

walker would be able to access all the nodes in a sufficiently shorter time, and thus

it requires a high value of the diagonal disorder strength to make the network local-

ized. On the other hand, for sufficiently longer τ , probability of finding the walker

remains finite on a few nodes, and consequently, a low wc would be enough to

make it localized. Additionally, we have shown the localization of maximal entropy
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random walker on fewer nodes with increasing strength of diagonal disorder in the

adjacency matrix and the same trend is found which is obtained from the eigenvalue

ratio statistics.

Few previous studies have investigated the implications of extremal eigenvec-

tors localization of adjacency matrices of networks for various dynamical behavior

of the corresponding system. For example, in [19], it was shown that if the infection

rate is slightly higher than the threshold and the principal eigenvector is localized,

the disease will be localized on a finite set of vertices. Also, recently in [21], the

importance of localization of eigenvector corresponding to λmin was discussed. The

authors argued that the stability of the system will depend on the localization nature

of the eigenvector corresponding to λmin. Furthermore, importance of the spread

of the bulk part of the eigenvalues spectrum with an increase in the diagonal dis-

order for steering localization behavior of eigenvector corresponding to λmin was

also argued by the authors. Additionally, in [26, 27], communities in real-world

networks were characterized/identified using RMT and properties of highly local-

ized eigenvectors. However, the exact applications of non-principal eigenvalues and

corresponding eigenvectors is still missing in the network science literature except

that they are known to be contributing in transient dynamics. In this work, we an-

alyze the localization-delocalization transition using the eigenvalue ratio statistics

and its implications for the maximally entropy random walkers. The eigenvalue

ratio statistics is already a popular technique in condensed matter research for cap-

turing the localization-delocalization transition in various systems and in regular

graphs. We anticipate that the eigenvalue ratio statistics has the same scope in net-

work science and can be used to capture or quantify different phase transitions, as

well as to get insight into various dynamical processes like disease spreading, ran-

dom walker, evolutionary dynamics, etc. We further expect that our work can be

applied to the systems having diagonal disorders, such as [21, 110, 111] which can

be characterized by the underlying network structure.
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4
Origin of localization in hyper-
graphs

Chapter 4

Origin of localization in hypergraphs

4.1 Introduction

In the last two chapters, we studied the localization properties of eigenvectors of

small-world networks with and without diagonal disorder in the adjacency matrix

having only binary interactions. However, with the increasing accumulation of data,

it has been realized that often real-world interactions occur among more than two

nodes at a time, while the network theory is best described for the binary relation-

ship between nodes [112]. Thus, the inefficacy of networks to model many-body in-

teractions compelled researchers to look beyond the realm of pair-wise interactions

and develop appropriate higher-order models. The two most popular approaches

for modeling higher-order interactions are hyper-graphs [113, 114] and simplicial

complexes[115–117] .

Hypergraphs, capturing higher-order interactions, provide a more generalized

model for real-world complex systems. A hypergraph consists of nodes and hy-

peredges; a hyperedge connects d nodes at a time where typically d ≥ 2. The

size of the hyperedges of a hypergraph may differ, but if all the hyperedges consist
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of the same number of nodes d, it is referred to as d−uniform hypergraph. Thus,

a 2−uniform hypergraph would correspond to conventional graphs. Hypergraphs

have been successfully used to model various real-world interactions such as biolog-

ical [118, 119], social [120, 121], evolutionary dynamics [122, 123], etc. A simpli-

cial complex is a special type of hypergraph which is closed under the subset opera-

tion. A simplicial complex not only consists of nodes and links but also incorporates

structures of higher-order dimensions, like triangles, tetrahedrons, etc. Accordingly,

a k−simplex describes simultaneous interactions between k+1 nodes forming a set

I = {v1, v2, v3, . . . vk+1}. Thus, 1−simplex corresponds to pair-wise interactions

with I = {v1, v2}, 2−simplex would mean triangles with I = {v1, v2, v3} and so

on. A fundamental difference between modeling many-body interactions with the

hypergraphs and simplicial complexes is that a k−simplex subsumes all the possible

k − 1 dimensions simplices which is not true with the former.

The spectra of Laplacian matrices are known to affect various dynamical pro-

cesses on networks. For example, spectra of the Laplacian matrices are related to the

diffusion and other spreading phenomena on networks [124]. The ratio of the largest

to the first non-zero eigenvalue of a Laplacian matrix helps in determining the sta-

bility of generalized synchronization in the coupled dynamical system [125, 126].

Further, Refs. [127–129], highlight the existence of relationships among topologi-

cal, spectral, and dynamical properties of networks. In addition to the eigenvalues,

eigenvectors of the Laplacian matrices have also been shown to be useful in pro-

viding insight into various structural and dynamical properties of the corresponding

systems. In particular, localization of the Laplacian eigenvectors is useful in char-

acterizing or identifying community structures [26, 27], stability of system against

external shocks [21], network-turing patterns, [130, 131] etc.

Here, we consider hypergraphs as a higher-order model to probe the localiza-

tion properties of eigenvectors. We study hypergraphs instead of simplicial com-

plexes as the latter involves complicated combinatorics, and thus the applications

are limited to the lower-order dimensions simplexes such as triangles and tetrahe-

drons [132]. On the other hand, in the case of hypergraphs, the information of
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Figure 4.1: (Color online) Schematic diagram representing hypergraphs and cor-
responding weighted pair-wise projection. Different sizes of the hyperedges are
shaped (colored) differently, blue solid circles correspond to for size 3 and pink
open circles are for size 2. In the weighted projection, links are weighted according
to the size of the hyperedge and the number of the hyperedges containing both the
nodes involved.

higher-order structures is installed in a matrix form with the dimension equal to

the number of nodes. Further, hypergraphs allow handling heterogeneous sizes of

the hyperedges more efficiently than the simplicial complexes. Recent work on hy-

pergraphs includes random walks [132, 135], social contagion [133, 134], synchro-

nization [136–138], evolutionary dynamics [122, 123], etc. Most of these works,

revolving around hypergraphs, focus on projecting hypergraphs into their weighted

pair-wise networks (Fig. 4.1), and thereupon comparing structural and dynamical

properties between the hypergraphs and the projected pair-wise networks. In this

work, we take a slightly different approach, and instead of projecting a hypergraph

into a corresponding pair-wise network, for each node, we consider contributions

from the higher-order and pair-wise interactions and compare these contributions in

steering localization of the eigenvectors of hypergraph Laplacians.

The chapter is organized as follows. Sec. 4.2 consists of definitions of the Lapla-

cian matrices of hypergraphs. Sec. 4.3 introduces the hypergraph model. Sec. 4.4

discusses the methodology and techniques involved. Sec. 4.5 contain results about

the impacts of the interplay of pair-wise and higher-order links on eigenvector lo-

calization. Finally, Sec. 4.6 concludes the study.

57



CHAPTER 4. ORIGIN OF LOCALIZATION IN HYPERGRAPHS 4.2. LAPLACIAN MATRIX

4.2 Laplacian Matrix

A hypergraph denoted by H = {V, EH} consists of set of nodes and hyperedges.

The set of nodes are represented by V = {v1, v2, v3,. . . , vN} and hyperedges by EH

= {E1, E2, E3,. . . , EM} where N and M are size of V and EH respectively. Note

that, each hyperedge Eα, ∀α = 1, 2,. . . ,M , will contain a collection of nodes i.e.

Eα ⊂ V . Thus, when |Eα| = 2 for all α, the hypergraph reduces to standard graph.

Mathematically, a hypergraph can be represented by its incidence matrix (eiα)N×M

whose elements are defined as

eiα =

1 vi ∈ Eα

0 otherwise .
(4.1)

One can easily construct, the N × N adjacency matrix for a hypergraph using

Eqn. 4.1, as A = eeT . The entries of the adjacency matrix Aij represents the

number of hyperedges containing both nodes i and j. It is important to note here

that the adjacency matrix is often obtained by setting 0 to the main diagonal. We

would like to further define M ×M hyperedges matrix C = eT e, whose entries

Cαβ represent the number of nodes common between hyperedges Eα and Eβ .

There does not exist a unique way to define the Laplacian matrix, L, of a hyper-

graph [112]. One of the conventional way is as follows; Lij = kiδij − Aij where

ki =
∑N

j=1Aij denotes the number of hyperedges containing the node i. However,

it is not consistent with the full higher-order structures encrypted in the hypergraph.

More specifically, it does not account for the sizes of the hyperedges incident on

a node. Ref. [132] solved this limitation by defining a new Laplacian matrix for a

random walk which is also consistent with the higher-order structures. The transi-

tion probability of the random walker defined in [132] takes care of the size of the

hyperedges involved. More precisely, the Laplacian of the random walk defined in

[132] is as follows

LRW
ij = δij −

kHij∑
i ̸=l k

H
iℓ

, (4.2)

and the entries of KH matrix are given by

kHij =
∑
α

(Cαα − 1)eiαejα = (eĈeT )ij − Aij ∀i ̸= j (4.3)
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Figure 4.2: (Color online) Schematic diagram of hypergraph model used in the
chapter. One pair-wise link, Ep = {1, 8} and One hyperedge, Eh = {1, 3, 7} are
added into the ring lattice with size N = 10. The pair-wise links are colored in
green and hyperedge with sky-blue enclosing the involved nodes.

where Ĉ is a matrix whose diagonal entries coincide with that ofC and other entries

are zero. Using Eqs. 4.2 and 4.3 [135], we construct the combinatorial Laplacian

matrix for the hypergraph, given by

LH = KH −D (4.4)

Here, D is the diagonal matrix whose entries are Dii = kHi =
∑

i ̸=ℓ k
H
iℓ , and zero

otherwise. Note that, in accordance with the earlier convention, kii = 0. The Lapla-

cian matrix is given by Eqn. 4.4 takes into account both the number and size of the

hyperedges incident on the nodes and thus incorporates the higher-order structures

completely. By considering LH as a Laplacian of the hypergraph, here we study the

effect of higher-order structures on steering the eigenvector localization.
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4.3 Model

There are various ways in which a random hypergraph can be constructed [112]. We

generate the hypergraph in this work as follows. First, a ring lattice is constructed

in which each node is connected to its nearest neighbors on both sides. We then

randomly choose d nodes uniformly from all the existing nodes. If already there is

no hyperedge comprising of the chosen d nodes, we add a hyperedge consisting of

these d nodes. we present here the results for d = 3, for each iteration. Next, we add

pair-wise links by choosing d = 2 nodes uniformly and randomly from the existing

nodes. The pair-wise links are added to the model so that an interplay of the higher-

order and pair-wise links on the eigenvector localization can be investigated. The

schematic diagram of the model is illustrated in Fig. 4.2. Note that, a similar model

was also used in [139], but no pair-wise links were added to the original ring lattice.

We would like to further mention here that one can choose an alternate algorithm to

generate the given model as introduced in [140]. In the alternate approach, for each

node, one can choose two other nodes with a probability p, and add hyperedges

containing the nodes under consideration. Similarly, one can add pair-wise links by

associating one node for a given node. Thus, the total number of hyperedges, and

pair-wise links, each, will be equal to pN . However, in one loop only N pair-wise

links can be added for p = 1. To add more pair-wise links one has to again repeat

the entire algorithm. Hence, we use the former algorithm in which the number of

pair-wise links and hyperedges are known from the beginning.

4.4 Methods

As discussed earlier, a hypergraph can be represented by its Laplacian matrix LH .

Let the eigenvalues of the Laplacian matrix denoted by {λ1, λ2, λ3, . . . , λN} where

λ1 ≥ λ2 ≥. . .≥ λN and the corresponding orthonormal eigenvectors as {x1,x2,x3, . . . ,xN}.

The Laplacian matrix is positive semi-definite, i.e.,
∑

i,j L
H
i,jxixj ≥ 0 for any vector

x = (x1, x2, x3, . . . , xN). Therefore, all the eigenvalues of the Laplacian matrix are

positive with one and only one being zero for the connected network. The entries
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of eigenvector corresponding to this zero eigenvalue will be uniformly distributed

(1, 1, . . . , 1)/
√
N . The generalized degree of a node i in the hypergraph is given by

kHi which can be further decomposed into kHi = khi + kpi where khi and kpi are the

contributions from the higher-order and the pair-wise links, respectively. Similarly,

the average degree, ⟨k⟩ =
∑

i k
H
i

N
, can be decomposed as ⟨k⟩ = ⟨k⟩h + ⟨k⟩p where

⟨k⟩h =
∑

i k
h
i

N
and ⟨k⟩p =

∑
i k

p
i

N
. We would like to further define ⟨k⟩ in terms of total

number of the higher-order and pair-wise links as ⟨k⟩ = 2×Mp

N
+ 12×Mh

N
, where Mp

and Mh are total number of the pair-wise edges (d = 2) and the hyperedges (d = 3)

in the hypergraph. Also, it is important to note that if a node, say i, gets 1 additional

pair-wise links and 1 higher-order links, its degree will be increased by 1 and 4 from

the pair-wise and higher-order links, respectively. For example, if we consider the

hypergraph depicted in Fig. 4.2, the first row of KH matrix (i = 1) is the following,

KH
1j = [0, 1, 2, 0, 0, 0, 2, 1, 0, 1]. Notice that, KH

13 = 2, KH
17 = 2 from the hyperedge.

Therefore, kHi = 7 with khi = 4 and kpi = 3. Hence, khi = 4 ×Mh
i , where Mh

i is

the total number of higher-order links incident on the node i. To provide an equal

opportunity to the pair-wise and higher-order links for steering localization on a

given node, we introduce the total number of pair-wise links 4 times greater than

the higher-order links, i.e., Mp = 4×Mh for khi = kpi . Next, we define a parameter

γ = Mp

4×Mh to measure relative contribution for both the types of the links. Thus, if

γ > 1 then kpi < khi ; if γ < 1 then kpi > khi holds.

We study the localization property of the eigenvectors of the hypergraph and an-

alyze the changes in the localization behavior as the pair-wise and the higher-order

links are introduced on the initial ring lattice. Localization of an eigenvector refers

to a state where a few entries of the eigenvector have much higher values com-

pared to the others. Degree of localization of the xth
j eigenvectors can be quantified

by measuring the inverse participation ratio (IPR) denoted as Yxj
. The IPR of an

eigenvector xj is defined as [19]

Yxj
=

N∑
i=1

(xi)
4
j , (4.5)

where (xi)j is the ith component of the normalized eigenvectors xj with j ∈ {1, 2, 3 . . . , N}.

One can easily verify that, for the most delocalized eigenvector all its components
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Figure 4.3: (Color online) Laplacian eigenvalues λi (red dotted line) and node de-
gree ki (blue solid line) of hypergraph against index i arranged in a increasing order
for the γ values. The size of the hypergraph N = 2000 and Mh = 500 remain fixed
for all γ values with 40 random realizations.

should be equal, i.e., (xi)j = 1√
N

, with IPR value being 1/N . Whereas, for the most

localized eigenvector, only one component of the eigenvector will be non-zero, and

consequently IPR will be equal to 1. It is also important to note here that there may

exist fluctuations in the IPR values for a given state xj for different realizations.

However, it is not possible that λj remains the same for all the random realizations,

and one has to be very careful in carrying the averaging. So, for the robustness of

the results, we consider a small width dλ around λ and average all the IPR values

corresponding to those λ values which fall inside this small width [40].

We further elaborate on the averaging procedure for the discrete eigenvalue

spectrum achieved through the numerical calculations as follow. Let λR = {λ1,λ2,

. . . ,λN×R} such that λ1 ≤ λ2 ≤. . .≤ λN×R is a set of eigenvalues of the hypergraph

for all R random realizations where N × R is the size of λR. The corresponding

eigenvector of λR are denoted by xR = {x1,x2,x3, . . . ,xN×R}. We then divide λR

for a given value of dλ into further m subsets where m = (λN×R − λ1)/dλ. For

each λj ⊂ λR and the corresponding eigenvectors xj ⊂ xR, ∀j = 1, 2,. . . ,m;

λj = {λ1, λ2,. . . , λlj} and corresponding eigenvector xj = {x1,x2,x3, . . . ,xlj}
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Figure 4.4: (Color online) The relative deviations of eigenvalues from the higher-
order degrees, δhi and pair-wise degrees, δpi against index i. The hypergraph param-
eters, N = 2000 and Mh = 500, remain fixed for all γ values with 40 random
realizations.

where lj is the size of jth subset such that
∑m

j=1 l
j = N × R with a constraint

that λlj − λ1j ≤ dλ. For each subset, the corresponding set of IPRs for xj will

be {Yx1 , Yx2 ,. . . , Yx
lj
}. Hence, the average IPR (Yxj

(λ)) for each subset xj can be

calculated as
∑lj

i=1 Yxi

lj
where λ is the central value for each subset, i.e., λ + dλ

2
= λlj

and λ - dλ
2

= λ1j . Here, Here, we define few more physical quantities, kh(λ), kp(λ),

k̂h(λ), k̂p(λ) used in the chapter. For any eigenvector xj , these quantities can be

calculated as the following.

khxj
: higher-order degree of the node io with the maximum component in |(xi)j|,

i.e., (xio)j = max{|(x1)j|, |(x2)j|, . . . |(xN)j|}

kpxj
: pair-wise degree of the node io with the maximum component in |(xi)j| i.e.

(xio)j = max{|(x1)j|, |(x2)j|, . . . |(xN)j|}

k̂hxj
: higher-order degree expectation value of eigenvector, defined as

∑N
i=1(xi)

2
jk

h
i .

k̂pxj
: pair-wise degree expectation value of eigenvector, defined as

∑N
i=1(xi)

2
jk

p
i .

All these physical quantities follow the same averaging procedures over λ and

λ+ dλ as described for IPR and we obtain kh(λ), kp(λ), k̂h(λ), k̂p(λ).
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Figure 4.5: (Color online) Average IPR (Yxj
(λ)) (black), kh(λ) (red), kp(λ) (blue),

k̂h(λ)(red-dashed), k̂p(λ) (blue dashed) against λ for various γ < 1. The corre-
sponding higher-order and pair-wise degree distribution are also plotted in last two
rows. The green dashed and brown dashed lines are at ⟨kh⟩ and ⟨kp⟩ on y axis. The
size of the hypergraph, N = 2000 and Mh = 500 remain fixed for all γ values with
40 random realizations.

4.5 Results

We first discuss the degree-eigenvalue correlation of the Laplacian of hypergraphs.

It was shown for pair-wise interactions [141] that the eigenvalues of the Laplacian

matrices have similar distributions as that of the nodes degree. The relative aver-

age deviation between the eigenvalues and degrees of a network can be defined

as ||λ(L)−k||2
||k||2 ≤

√
||k||1
||k||22

, where λ = (λ1, λ2, . . . λN)
T and k = (k1, k2 . . . kN)

T

are the eigenvalue set of the Laplacian matrix and node degree set arranged in

the increasing order, respectively. The ||y||p represents the p-norms of any vec-

tor y = (y1, y2, . . . yn) and is defined as (
∑

i |yi|
p)

1
p . Thus, we see that

√
||k||1
||k||22

≪ 1

which implies that eigenvalue distribution and degree distribution will have similar

nature. Also, it is well known that ⟨k⟩ = ⟨λ⟩. Fig. 4.3 plots the eigenvalues (λi) and

degree (kHi ) of the hypergraph arranged in increasing order with N = 2000 and 40

random realizations for various γ values. A clear degree-eigenvalue correlation can
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Figure 4.6: (Color online) Average IPR (Yxj
(λ)) (black), kh(λ) (red), kp(λ) (blue),

k̂h(λ)(red-dashed), k̂p(λ) (blue-dashed) against λ for various γ > 1. The corre-
sponding higher-order degree distribution and pair-wise degree distribution are also
plotted in last two rows. The green-dashed and brown-dashed lines are at ⟨kh⟩ and
⟨kp⟩ on y axis. The size of the hypergraph, N = 2000 and Mh = 500 remain fixed
for all γ values with 40 random realizations.

be seen similar to the pair-wise networks from the Fig. 4.3.

Next, it is difficult to decompose the eigenvalue λi exactly into λhi + λpi =

f(khi ) + f(khi ), as done for the node degree. Nevertheless, we can put few heuristic

arguments as follows. First, we define δhi =
(|λi−khi |)

λi
and δpi =

(|λi−kpi |)
λi

to ana-

lyze the relative deviations of the eigenvalues from the higher-order and pair-wise

degrees. Fig. 4.4 plots δhi , δpi against i for various γ values. For γ ≤ 1, for the

initial eigenvalues (λ ≤ 6) and index (i ≤ 40000 ), δhi > δpi . Thus, the eigenvalues

are more correlated with the pair-wise degree than that of the higher-order degree.

Thus, λhi < λpi and also khi = 0 for i < 40000 (not shown). For the intermediate

eigenvalues, δhi ≈ δpi and thus λhi ≈ λpi . For the extremal eigenvalues and large

index, we see that δhi ≪ δpi and therefore λpi ≪ λhi . We further mention here that

for the said parameter, i.e., γ < 1, Mh = 500, kpmax = 10 and khmax = 24, and

therefore for the extremal eigenvalues, the higher-order degrees play a governing

role. For 1 < γ ≤ 3, δhi < δpi for the extremal eigenvalues, since kpmax < khmax, for
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1 < γ ≤ 3. However, for γ > 3, δhi > δpi and thus λhi < λpi for entire eigenvalue

spectrum. Next, we discuss the interplay of higher-order and pair-wise links on in-

stigating localization.

For γ < 1: Figs. 4.5 [a][e][i] plot the results for Yxj
(λ) against λ for various

values of γ < 1. The larger eigenvalues in the eigenvalue spectrum (λ > 22) are

localized with Yxj
(λ) → 1. For λ ≤ 22, eigenvalues are relatively less localized

as compared with the larger eigenvalues. It is interesting to note here that, there

exists no change in the nature of the plot with an increase in γ, depicting the in-

efficacy of the pair-wise links on instigating localization. Next, it is visible from

Figs. 4.5 [b][f][j] that kp(λ) remains constant to a value around ⟨kp⟩ for all the

γ values. Further, in [40], it was argued that the localization of a eigenvector is

centred on the node with degree either very low or high, i.e., taking values which

are from the average degree. One can also note that for a completely delocalized

eigenvector, degree expectation value k̂ =
∑N

i=1(xi)
2
jki = (k1+k2+k3...kN )

N
= ⟨k⟩.

However, upon scrutinizing kh(λ) closely, we find that the its behavior is signif-

icantly different from kp(λ). kh(λ) exhibits an increasing trend with the increase

in the eigenvalue, and takes the maximum possible value in the localized region.

Thus, the eigenvectors are localized on the set of the nodes with kh being signifi-

cantly higher than the ⟨kh⟩. Further, in the same plot, kh(λ) and kp(λ) are shown

to be in good approximation with the k̂h(λ) and k̂p(λ) values, respectively. We also

plot the higher-order degree distribution P (kh) and pair-wise degree distribution

P (kp) in Fig. 4.5 [c][d][g][h][k][ℓ]. Few interesting observations are; The number

of nodes with kh > 16, kh > 12, and kh > 8 are only 0.04%, 0.64% and 4%,

respectively and still the eigenvectors are localized on these nodes in the localized

region. All these observations clearly suggest prime role of higher-order degree on

instigating localization, and rather no visible impact of pair-wise links on the same.

For γ > 1: Here, we discuss the localization properties of the eigenvectors

for γ > 1. Figs. 4.6 [a][e][i][m] present the results for Yxj
(λ) as a function of λ

for various values of γ > 1. The extremal part of the eigenvalue spectrum (larger
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Table 4.1: Number of nodes common between the sets No(k
h) and No(k

p). For
N = 2000 and 40 random realizations.

γ = 3 γ = 5 γ = 7.5
No(k

h > 8) 3227 3212 3193
No(k

h > 12) 585 582 611
No(k

h > 16) 78 93 82
No(k

h > 20) 10 7 13
No(k

p > 8) 31509 69698 70494
No(k

p > 12) 3418 582 79400
No(k

p > 16) 125 6698 428561
No(k

p > 20) 2 508 14487
No(k

h > 8) ∩No(k
p > 8) 1286 2806 3168

No(k
h > 12) ∩No(k

p > 12) 31 237 532
No(k

h > 16) ∩No(k
p > 16) 0 7 46

No(k
h > 20) ∩No(k

p > 20) 0 0 1

and smaller eigenvalues) are highly localized with Yxj
(λ) → 1. On the contrary, the

central part of the eigenvalue spectrum are delocalized with 10−3 ≤ Yxj
(λ) < 10−2.

Also, as γ increases the eigenvectors corresponding to the smaller eigenvalues get

more localized captured by the IPR value. The nature of the plots is similar to those

of the small-world networks (pair-wise) shown in [40]. Further, we report that the

eigenvectors are localized on the nodes with degree (kHi ) being abnormally high

or low from the average degree (⟨k⟩), which is in consistent with the observations

made in [40, 142].

Next, we discuss the role of pair-wise (kpi ) and higher-order links (khi ) separately

on steering the localization. Figs. 4.6 [b][f][j][n] illustrate the results for kh(λ),

kp(λ), k̂h(λ), k̂p(λ) for various γ values. For γ = 0.25, kp(λ) remains constant

around ⟨kp⟩, but deviates slightly at the extremal part of the eigenvalue spectrum.

On the contrary, kh(λ) manifests an increasing trend with the increase in the eigen-

values and takes large possible values in the localized region of the spectrum. As

γ increases, the pair-wise links also start playing role in driving the localization.

First, the degree of localization of the eigenvectors corresponding to the smaller

eigenvalues enhances. This can be explained as follows. As γ increases, the num-

ber of pair-wise links also increases which in turn leads to an increase in ⟨kp⟩. Thus,

kp(λ) ≪ ⟨kp⟩ for the case of smaller eigenvalues, which consequently intensifies
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Figure 4.7: (Color online) ⟨|xi|⟩ (black), ⟨khi ⟩ (red) and ⟨kpi ⟩ (blue) against index
i for λ belonging to the delocalized region. (a)-(b) λ ≈ 8.5, (c)-(d) λ ≈ 14, (e)-
(f) λ ≈ 12.5, (g)-(h) λ ≈ 23.5, (i)-(j) λ ≈ 18, (k)-(ℓ)λ ≈ 26. The size of the
hypergraph, N = 2000 and Mh = 500 remain fixed for all γ values with 40 random
realizations.

the degree of localization. It is important to note that, ⟨kh⟩ = 3 remains fixed for all

the γ values with the Mh = 500. Therefore, kh(λ) for smaller eigenvalues can not

be much lesser than ⟨kh⟩, therefore suggesting no visible role of higher-order links

in localization for smaller eigenvalues. It is worth mentioning here that a similar

result was obtained for degree-eigenvalue correlation.

Next, we discuss the localization properties of the eigenvectors corresponding

to those large eigenvalues which are highly localized. From the Fig. 4.6[b][f][j][n],

it is visible that for γ ≥ 3, kp(λ) start deviating from ⟨kp⟩, and hence, the pair-wise

links also start participating in instigating localization along with the higher-order

links. Few interesting things to be noted here are; The number of nodes with large

kh values are always very less as compared to the number of nodes with large kp

values for γ ≥ 3 (Fig. 4.6 [c][g][k][o]). Scrutinizing more closely, we witness that

the number of nodes with kh > 8, kh > 12, kh > 16 and kh > 20 are roughly

around 4%, 0.73%, 0.11%, 0.06%, respectively for all γ values. On the other hand.

For γ = 3, the number of nodes with kp > 8 and kp > 12 are 39% and 4.27%,
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Figure 4.8: (Color online) ⟨|xi|⟩ (black), ⟨khi ⟩ (red) and ⟨kpi ⟩ (blue) against index i
for λ belonging to the localized region. (a)-(b) λ ≈ 2, (c)-(d) λ ≈ 33, (e)-(f) λ ≈ 3,
(g)-(h) λ ≈ 36, (i)-(j) λ ≈ 5, (k)-(ℓ)λ ≈ 46. The size of the hypergraph, N = 2000
and Mh = 500 remain fixed for all γ values with 40 random realizations.

respectively. For γ = 5, the number of nodes with kp > 12 and kp > 16 are

41% and 8%, respectively. For γ = 7.5, the number of nodes with kp > 16 and

kp > 20 are 53% and 18%, respectively. Therefore, despite the number of nodes

with large kh being very small, the higher-order links still keep playing very crucial

roles in steering localization for the larger eigenvalues. To get further insight into

the role of higher-order links, we define the following quantities. Let No(k
h > c)

and No(k
p > c) denote the set of nodes with kh > c and kp > c, respectively. We

are interested to find out the number of nodes which are common between these

two sets, i.e., No(k
h > c) ∩ No(k

p > c) (Table 4.1). It is evident from the table

that total number of nodes in No(k
h > c) ∩ No(k

p > c) is less than 50% of the

set No(k
h > c) for all γ values and c > 8. Therefore, the impact of the higher-

order links, over the pair-wise links, in steering localization for larger eigenvalues

is apparent more profoundly, which can be attributed to the increase in ⟨kp⟩ value

with the increase in γ, while ⟨kh⟩ = 3 taking a constant value. Thus, kh(λ) ≫ ⟨kh⟩

for the case of large eigenvalues for all the γ values. On the contrary, though the
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largest pair-wise degree kpmax experience an increase with the increase in γ, at the

same-time ⟨kp⟩ also increases, and hence kh(λ)− ⟨kh⟩ > kp(λ)− ⟨kp⟩. We obtain

the same results are obtained for γ ≤ 15 (not shown).

So far, we have discussed the localization properties of the eigenvectors by us-

ing kh(λ) and kp(λ), and demonstrated that eigenvectors are localized on the node

having the degree abnormally high or low either with respect to ⟨kh⟩ or ⟨kp⟩. Also,

kh(λ) and kp(λ) come in the good approximation with k̂h(λ) and k̂p(λ). However,

it is also important to scrutinize other eigenvector components to obtain the holistic

idea of the localization. For this, we calculate the absolute value of the eigenvector

components |xi|, the higher-order degree of the corresponding node khi , the pair-

wise degree kpi , and average them over λ and λ ± dλ denoted by ⟨|xi|⟩, ⟨khi ⟩ and

⟨kpi ⟩. We consider different regions of the eigenvalue spectrum to calculate ⟨|xi|⟩,

⟨khi ⟩ and ⟨kpi ⟩. For the delocalized region, we consider the λ values where kh(λ)

intersects with k̂h(λ), and kp(λ) intersects with k̂h(λ). For the localized region, we

take λ from the extremal eigenvalues, i.e., smaller and larger eigenvalues. Fig. 4.7

presents the results for ⟨|xi|⟩ arranged in an increasing order, and corresponding

⟨khi ⟩ and ⟨kpi ⟩ for two λ values belonging to the delocalized region for various γ

values. It is clearly visible that max(⟨|xi|⟩) ≪ 1 and most of the ⟨|xi|⟩ are in the

order of 10−2 and 10−3, respectively. It becomes more interesting to look at the

behavior of ⟨khi ⟩ and ⟨kpi ⟩. Both ⟨khi ⟩ and ⟨kpi ⟩ remain constant to values which are

around ⟨kh⟩ and ⟨kp⟩, respectively and thus validating the earlier results. Further,

in Fig. 4.8 plots ⟨|xi|⟩, ⟨khi ⟩ and ⟨kpi ⟩ for λ belonging to the localized region. It is

apparent from that max(⟨|xi|⟩) → 1, and only a few entries are in the order of 10−1

depicting the localized nature of the eigenvectors. Further, for smaller eigenvalues,

⟨khi ⟩ remain fixed to the values which lie in the close vicinity to ⟨kh⟩ ≈ 3± 2 for all

i, however, ⟨kpi ⟩ deviates from ⟨kp⟩ and dips down to a value which is lower than

⟨kp⟩ for the node contributing maximum in ⟨|xi|⟩. For the larger eigenvalues, ⟨khi ⟩

remains constant at around ⟨kh⟩ for the nodes contributing minimal in ⟨|xi|⟩, and

takes value much larger than ⟨kh⟩ for the nodes contributing maximal in ⟨|xi|⟩. On

the other hand, ⟨kpi ⟩ always keeps oscillating around ⟨kp⟩ for all i, and shows a little
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deviation for ⟨kp⟩ for large i. The above observations clearly validate the earlier

obtained result that localization at smaller eigenvalues is instigated by the pair-wise

links, with higher-order links playing a dominant role in inducing localization for

larger eigenvalues.

4.6 Conclusion

To conclude, we have investigated the interplay of higher-order and pair-wise links

in instigating the localization of the eigenvectors of the hypergraphs. We find that

eigenvectors are localized on the set of nodes having degrees very high or low from

the average degree, a result which is in consistent with the earlier known result for

the networks having only pair-wise interactions. Further, by defining a single pa-

rameter γ on a single node, we find that there exists no impact of pair-wise links

on localization for γ ≤ 1. For γ > 1, we find that with increasing γ, the degree

of the localization of the eigenvectors corresponding to the smaller eigenvalues in-

creases. Also, the role of higher-order links is not significant as compared to the

pair-wise links in inducing localization for smaller eigenvalues. This is due to the

fact that ⟨kp⟩ increases with the increase in γ, but ⟨kh⟩ = 3 remains to a fixed value.

Thus, the higher-order degree of a node contributing maximum in the eigenvector,

kh(λ) for smaller eigenvalues is not very small against ⟨kh⟩ for all γ values. On

the contrary, the difference between the pair-wise degree of a node contributing the

maximum in the eigenvector, kp(λ) and ⟨kp⟩ start increasing with the increase in γ.

Ergo, the pair-wise links play a significant role in the eigenvector localization for

smaller eigenvalues. Whereas, for larger eigenvalues, the higher-order links play a

crucial role in instigating localization despite the fact that the number of nodes with

high higher-order degree (kh) remains very small for all the γ values. This can also

be explained in a similar fashion which we adopted for the smaller eigenvalues.

As kh = 3 remains fixed to a constant value for all γ values, the difference be-

tween kh(λ) and ⟨kh⟩ for larger eigenvalues always remain very high, while for the

pair-wise links though the largest pair-wise degree kpmax exhibits an increase with γ,

there exists a simultaneous increase in ⟨kp⟩. Therefore, kh(λ)−⟨kh⟩> kp(λ)−⟨kp⟩
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for larger eigenvalues which in turn indicates importance of the higher-order links

on localization for larger eigenvalues.
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Chapter 5

Conclusion and Future Scope

In this dissertation, we have explored the localization properties of eigenvec-

tor of complex networks. Though most of the work revolving around localization

focus on the extremal eigenvectors. In this thesis, we focus on the localization prop-

erties of the non-principal eigenvectors. Non-principal eigenvalue and eigenvectors

are known to affect transient dynamics in networks. Further, we considered the

small-world networks in our study as the rewiring parameter quantifying random-

ness allows us to investigate the effect of interplay of diagonal disorder along with

topological disorder on localization. In the following, we chapter wise summarize

our work.

5.1 Summary

In Chapter 2, We studied the localization behavior of the eigenvectors of the small-

world networks arising due to topological disorder. First, we characterize the eigen-

value spectrum into different regimes such as critical state regime, mixed state

regime, and delocalized regime. The central regime corresponds to the critical state

eigenvectors and the mixed regime where we found delocalized eigenvectors along
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with some critical states eigenvectors. Using the multifractal analysis, we find that

there exists no significant change in the eigenvalue (λ+TR) separating the central

regime and the mixed regime. Additionally, we notice no significant change in λ+TR

with an increase in N , i.e. for N → ∞, λ+TR(N ) ∼ O(1). Further, we demonstrated

that the rewiring procedure can be divided into two domains. For small rewiring,

pr ≤ 0.01, with an increase in the topological disorder, there exists a continuous

enhancement in the localization of the eigenvectors corresponding to the central

regime, while for the higher rewiring probability, pr ≥ 0.01, eigenvectors gradually

lose their degree of localization. Interestingly, this change in the behavior of the

eigenvectors takes place at the onset of the small-world transition, possibly arising

due to the fact that for pr ≤ 0.01, there exists a decrease in the characteristics path

length (r) co-existing with a high clustering coefficient (CC = 3/4). It is well known

that a higher clustering drives localization of the eigenvectors. On the other hand,

for pr ≥ 0.01, there exists a significant decrease in CC with r being small, eigen-

vectors undergo continuous decrease in the degree of localization with an increase

in randomness in connections (or topological disorder) for pr ≥ 0.01. Further, we

argued that distorting the initial regular network topology by rewiring a few con-

nections does not lead to localization of the eigenvectors. Instead, it drives them

toward the critical states with 0.4 < D2 < 0.90.

Then, in chapter 3, along with topological disorder, we added diagonal disorder

in the adjacency matrix from a uniform distribution of width 2w. In this chap-

ter, we hire eigenvalue ratio statistics of Random matrix theory (RMT) to study

localization-delocalization transition of eigenvectors. We found that as the strength

of diagonal disorder increases, eigenvectors go from the delocalized to the localized

state captured by the gradual transition of eigenvalue ratio statistics from GOE to

Poisson statistics. However, the critical disorder (wc) required to obtain the tran-

sition increases with the increase in the value of the rewiring probability. The

above observations infer that the more random a network is, the more resilient it

is to diagonal disorder on inducing localization. We also extend our analysis to

dis(assortative) ER networks. Interestingly, we find that there is no significant im-
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pact of degree-degree correlation on wc. Further, we relate the value of the critical

disorder (wc) with the time taken by the maximal entropy random walker to reach

the steady state. The lower the wc (for fixed N and ⟨k⟩), the higher time is taken by

the walker to reach the steady state.

Moving forward to chapter 4, we discussed the origin of localization in hyper-

graph. Here, we have investigated the interplay of higher-order and pair-wise links

in instigating the localization of the eigenvectors of the hypergraphs. We find that

eigenvectors are localized on the set of nodes having degrees very high or low from

the average degree, a result which is consistent with the earlier known result for the

networks having only pair-wise interactions. Further, by defining a single param-

eter γ on a single node, we find that there exists no impact of pair-wise links on

localization for γ ≤ 1. For γ > 1, we find that with increasing γ, the degree of the

localization of the eigenvectors corresponding to the smaller eigenvalues increases.

Also, the role of higher-order links is not significant as compared to the pair-wise

links in inducing localization for smaller eigenvalues. On the other hand, for larger

eigenvalues, the higher-order links play a crucial role in instigating localization de-

spite the fact that the number of nodes with high higher-order degree (kh) remains

very small for all the γ values.

5.2 Future direction

• Many real-world systems can be better understood in the framework of mul-

tiplex networks which consist of different layers, and each layer consists of

nodes and links. For example, in social systems, each layer can account for

different kinds of social ties such as those relatives, friends, social network

apps, etc. Additionally, each layer of multiplex networks is connected with

each other via multiplexing strength. It can also be realized in our daily life

experience, where our behavior in one layer affects the interaction in another

layer. Thus, a straight forward extension of our work can be to multiplex

networks. It would also be interesting to investigate the impact of multiplex

strength on the localization properties of the eigenvectors.
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• In this thesis, we have only considered homogeneous networks, and there ex-

ists a vast number of real-world networks having heterogeneous degree dis-

tributions, for example, scale-free. Thus, one interesting future direction is

to extend the present framework for scale-free networks. Also, one can in-

corporate degree-degree correlation in the scale-free network and study their

impact on localization properties of the eigenvectors.

• Further, many real-world systems are also best described as directed net-

works. Thus, the adjacency matrix of such systems becomes non-hermitian.

Thus, the matrix will have both left and right eigenvectors associated with

them. Additionally, a few eigenvalues may become complex also. There-

fore, a thorough investigation of localization in such networks can be a nice

contribution to the localization literature.

• Though small-world networks are very common in a real-world system, there

also exist many real-world systems in which interaction can happen only

at some specific range, thus, imposing restrictions on the range at which

rewiring is possible as defined in [143]. An investigation of the localization

behavior of eigenvectors of such networks could be an interesting problem.

Note that the network model proposed in [143] controls the dimension of the

network (via a range parameter), which plays a vital role in the eigenvector

localization.
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dynamic response of complex networks, Nat. Phys., 9, 230-234 (DOI:
10.1038/nphys2556)

[19] A. V. Goltsev, S. N. Dorogovtsev, J. G. Oliveira and J. F. Mendes (2015),
Localization and spreading of diseases in complex networks, Phys. Rev. Lett.
, 109, 128702 (DOI: /10.1103/PhysRevLett.109.128702)

78



BIBLIOGRAPHY BIBLIOGRAPHY

[20] S. Suweis, J. Grilli, J. R. Banavar, S. Allesina and A. Maritan (2015), Ef-
fect of localization on the stability of mutualistic ecological networks, Nature
communications, 6, 1-7 (DOI: 10.1038/ncomms10179)

[21] J. Moran and J.P. Bouchaud (2019), May’s instability in large economies,
Phys. Rev. E, 100, 032307 (DOI: 10.1103/PhysRevE.100.032307)

[22] R. Chaudhuri, A. Bernacchia and X.J. Wang (2014), A diversity of localized
timescales in network activity, elife, 3, e01239 (DOI: 10.7554/eLife.01239)

[23] B. Barzel and A.L Barabási (2013), Universality in network dynamics, Nat.
Phys., 9, 673-681 (DOI: 10.1038/nphys2741)

[24] E. V. Nimwegen, J.P. Crutchfield and M. Huynen (1999), Neutral evo-
lution of mutational robustness, Proc. Natl. Acad. Sci. U.S.A., 96, 9716
(DOI:doi.org/10.1073/pnas.96.17.9716)
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