
Einstein Maxwell Dilaton
Solution for (2+1) dimensions

M.Sc. Thesis

By
Pragya Singh

Discipline Of Physics
INDIAN INSTITUTE OF TECHNOLOGY INDORE

June 2018



Einstein Maxwell Dilaton
Solution for (2+1) dimensions

A Thesis

Submitted in partial fulfillment of the
requirements for the award of the degree

of
Master of Science

by
Pragya Singh

Discipline of Physics
INDIAN INSTITUTE OF TECHNOLOGY INDORE

June 2018





When forced to summarise the general theory

of relativity in one sentence: Time and space

and gravitation have no separate existence from

matter.

Albert Einstein





Acknowledgement

Firstly, I would like to express my sincere thanks to my guide

Dr. Manavendra Mahato for the continuous support in cal-

culation and related research, for his patience, motivation,

and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis.

Besides my advisor, I would like to thank my PSPC

members Dr. Raghunath Sahoo and Prof. Subhendu Rak-

shit for their insightful comments and encouragement, and

also for the hard question which widen my research from

various perspectives.

I am immensely thankful to Mr. Sudip Nashkar, Mr.

Maharshi Dhada and Mr. Pramod Sharma for their stimu-

lating discussions and encouragement.

Last but not the least, I would like to thank my family-

my parents and to my brother for supporting me spiritually

throughout writing this thesis and my life in general.

I certainly acknowledge the facilities and resources provided

to us by the Indian Institute of Technology Indore.

Pragya Singh

MSc, Final Year

Discipline of Physics

IIT Indore

i





Abstract

de Sitter space is a solution of Einstein equation with pos-

itive cosmological constant that models the expanding uni-

verse. This thesis presents an elementary discussion on de

Sitter space-time and its coordinates.The first two chapter

describes the Einstein equation and its solution. A brief re-

view of literature is given in the third chapter and work done

is presented in next chapter

We’ve obtained and analysed an exact solution to Einstein

Maxwell Dilaton gravity that contains a scalar field coupled

to gravity in minimal way and a potential that depends solely

on scalar field. The solution contains a charged black hole

with regular horizon. The Komar integrals and various graphs

are presented in order to give further insight of the work

done. The project assumes familiarity with the basics of

general relativity and differential geometry, we’ve tried our

level best to present in lucid manner.

This thesis aims to give a detailed explanation of the mo-

tivation for the objective of the project, research done, chal-

lenges faced, novelty of the program used and the impres-

sive results obtained.
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Chapter 1

Introduction

General Relativity - shining achievement of modern physics

that describes gravity in terms of rigorous mathematics. It

was formulated out of philosophical questions, like why freely

falling observer doesn’t experience gravity?, but within few

years it gained enormous attention. Before stepping into

one of the solution of Einstein equation, we briefly define

the terms used in it.

1.1 Einstein Equation

Curvature of space time gives a very intuitive idea of what a

force is. According to Einstein, space and time are inextrica-

bly linked together and can get distorted by massive objects.

In layman’s language "mass tells space time how to curve,

and space time tells mass how to move."

Rµν+Rgµν = 8πGT µν

(1.1)

It is a set of 10 non linear highly coupled differential equa-

tion that can be reduced to 6 by using Bianchi Identities.

Hereµ andν are indices that run from 0 to 3. The term in the

left is called Einstein Tensor and it describes the curvature

of space-time whose effects we experience in our daily life

and term on the right is Stress Energy Tensor that tells ev-

erything about massive object- mass, energy, momentum,

pressure etc.(12)
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1.1.1 Metric and Christoffel Symbol

Metric is covariant, second degree, symmetric tensor on a

differentiable manifold. It captures all the geometric struc-

ture of spacetime and is given as a bilinear form on tangent

space Tp M defined on a Manifold M . Mathematically, its a

map from tangent space to a real number. If we have two

tangent vectors u and v at a given point in the Manifold M,

then metric is

gµν : Tp M ×Tp M → R

gµν is metric tensor that computes distance between any

two points.

Christoffel symbol defines how the covariant vector changes

from point to point. On parallel transporting a vector on

curved spacetime, we come up with this additional factor.(11)

It is given as:

Γa
bc = 1

2 g ad
(
gbd ,c + gcd ,b − gbc,d

)
With proper choice of coordinate transformation we can get

rid of these factors, hence they are not tensors. Christoffel

symbols provides a representation for the metric connec-

tion of Riemannian Geometry in terms of coordinates of the

mainfold.

1.1.2 Riemann curvature tensor

It is one of the basic mathematical tool in theory of relativity

that assigns tensor to every point, and measures how paral-

lel translation of a vector differs if we go in direction 1 and

then in direction 2 or vice versa.The magnitude of space-

time curvature is expressed in terms of Riemann curvature

tensor.(11; 7)

It is given as:

Rρσµν = δµΓρσν−δνΓρµσ+ΓρµλΓλνσ−Γ
ρ

νλ
Γλµσ

(1.2)

where Γ is Christoffel symbol.
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1.1.3 Ricci Tensor and Ricci Scalar

Contraction of Riemann tensor gives Ricci tensor.On further

contracting Ricci tensor we get Ricci scalar.

Rρ
µρν = Rµν (1.3)

R = gµνRµν (1.4)

If we parallel propagate along a geodesics, evolution of vol-

ume is measured by Ricci tensor, i.e. it measures how geodesics

tends to get rarer or denser around a point in a given di-

rection. Sphere has positive curvature because its geodesic

converges.

Ricci scalar gives the amount by which a small volume

deviates from the same amount of volume taken in Euclidean

space. Being a scalar, it is coordinate invariant. If Ricci

scalar is positive, then volume we are working with will be

smaller than that in Euclidean space and curvature will de-

crease with increase in r, like in sphere.(11)

If Ricci Scalar is negative, curvature will increase with

increase in r, like in bowl. If Ricci scalar is zero then we can

have flat space time.

1.1.4 Stress Energy Tensor

A scalar can be associated to an element of n-dimensional

volume with the help of density.If normal four vector n gives

the orientation of surface in space time then element of three

volume is n∆V. So we conclude that mass density transforms

as a 00-component of rank 2 tensor. Energy and momen-

tum density are sources of distortion in same time.To asso-

ciate a four vector ∆pα to n∆V, we need two indices Tαβ,

such that

∆ pα = Tαβnβ∆V

The second rank tensor Tαβ is called Stress Energy tensor.(7;
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11) In order to have a physical interpretation, lets consider

an inertial frame in flat space time and three dimensional

volume ∆V, along time like slice.

If nα = (1,0,0,0) is the normal along three dimensional

volume which is at rest then components of stress energy

tensor are:

T 00 is energy density

T 0i is the energy flux in the i-direction;

T i 0 is the momentum density in the i-direction;

T i j is force per unit area with normal in j direction(7).

So, Einstein equation tells mass warps the space and warped

space acts like a moving mass.

The left hand side of Einstein equation tells how the cur-

vature is changing while travelling along a vector and term

containing gµν tells how measurements are affected. Right

hand side of the EFE tells what physical quantities govern

those changes.
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Chapter 2

Solution of Einstein

Equation

Einstein Field Equation (EFE) depends on dynamics of mat-

ter and energy which is related to gravitational field. It de-

pends upon on us what type of solution one is looking for.

For a weak field limit dynamics of matter can be evaluated

using Newtonian laws and result of stress energy tensor can

be plugged in the EFE. For an exact solution stress energy

tensor and metric should go side by side along with con-

tinuity equation.For (3+1) dimension, these equations are

not enough as we have to calculate 20 unknowns from 14

equation. One heads more into seas of problem if there are

internal degrees of freedom. In order to simplify the prob-

lem, we usually take approximation like:

Tαβ = 0 for vaccum

Tαβ = ρuaub for non interacting dust

2.1 Schwarzschild Solution to Einstein’s

Equation

It is one of the simplest solution of EFE with no matter and

most number of symmetries.This solution holds for empty

space around a spherically symmetric source of curvature,

with assumption that cosmological constant, electric charge,

angular momentum all are zero.(14) The line element for
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the Schwarzchild geometry is given by:

d s2 =−(1−2GM/c2r )c2d t 2 + (1−2GM/c2r )−1dr 2

+ r 2(dθ2 + si n2θdφ2) (2.1)

Schwarzchild’s metric has following properties(11) :

1. Time independent : metric is independent of t thus

there is a killing vector associated with it.

ξα = (1,0,0,0)

2. Spherically symmetric : metric is independent of φ.

For S2 it will have three killing vectors that preserves angular

momentum Lx , Ly and Lz , which is given as:

ηα = (0,0,0,1)

Killing vector tells there’s conservation law associated with

these parameters –

ξα gives law of conservation of energy .

ηα gives law of conservation of angular momentum

3. Mass M and coordinate r : Coordinate r is not radius

but is related to the area of 2-dimensional sphere by:

r = (A/4π)1/2 (2.2)

Mass M is total mass of source of curvature. The geometry

away is independent of how the mass is radially distributed.

4. The metric blows off at r = 2GM/c2 and r = 0. These

two points act as singular points. We can find true singular-

ity by using Ricci scalar because it being scalar is coordinate

invariant . On solving Schwarzschild metric we get

Rabcd Rabcd = 48G2M 2

r 6
(2.3)

This gives that r = 0 is the true singularity and the other

one rs = 2GM/c2 arises because of choice of the coordinate.rs

is known as Schwarzschild radius which is the characteristic
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length scale for curvature in Schwarzschild geometry.(16; 7;

4) With mere change of coordinates one can get rid of coor-

dinate singularity.

2.2 Reissner-Nordstrom Solution to Ein-

stein’s equation

Reissner Nordstrom (R.N.) solution of Einstein field

equation describes a geometry around a charged, spheri-

cally symmetric black hole. Even though charged black hole

can never exist because it will be neutralise as soon as it

comes in the vicinity of matter, it has been a fascinating

topic among physicist.(4; 5)

For no charge metric should turn to Schwarzschild met-

ric and the behaviour at asymptotically far away should be

that of flat space. Both of these condition are followed by

the solution given by Reissner and Nordstorm.

Consider an Einstein-Maxwell action:(Hartman)∫
d 4x

p−g [R −FµνFµν] (2.4)

Equation of motion are;

Rµν− 1
2 gµνR =−1

4 gµνFαβFαβ+FµρFρ

∇µFµν = 0

The solution for the above set of equation is given by-

d s2 =− f (r )d t 2 + 1

f (r )
dr 2 + r 2dΩ2 (2.5)

where f (r ) = 1− 2M
r + Q2

r 2

which is obtained by assuming that the vector poten-

tial is a function of radial coordinate. Using this the electric

field component in the radial direction is given as;

Ftr = Q
r 2

7



Komar Mass and Komar Charge have been discussed in

the upcoming chapters. On using the same calculation one

can show that M and Q are mass and charge of the black

hole respectively.(16)

The key features of RN metric is obtained by comparing Q

and M.

Roots of f(r) are

r± = M ±
√

M 2 −Q2

• For Q≤ M, f(r) will be positive for r≥ r+ and r≤ r− and

negative in between the two roots. This swapping na-

ture will give us a coordinate horizon. One can get rid

of this horizon by choosing proper coordinate.

• For Q≥ M, f(r) will always be positive that is t remains

timelike and r remains spacelike. At r = 0 metric blows

off, and since we don’t have any event horizon the sin-

gularity is not hidden. Hence at r = 0 we have a naked

singularity.(7)

r+ is called event horizon and r− is called Cauchy hori-

zon. Physicist for studying black hole thermodynamics and

other black hole related event always take consider;

M >Q > 0

Two reason related to this choice are;

• In order to follow the Cosmic Censorship principle

given Penrose which states that all singularities need

to be hidden from an observer at infinity by the event

horizon of black hole.

• Not much is known about the naked singularity, and

its hard to predict a model in a day or two.

Second, if there were a naked singularity, then physics

outside the black hole depends on the UV (since the naked

singularity can spit out visible very heavy particles), and we

should not trust our effective theory anyway. We can divide

the metric in three regions;

Reg i on1 : r+ < r <∞

8



Reg i on2 : r− < r < r+

Reg i on3 : 0 < r < r−

For a particle crossing the event horizon from region 1 to

region 2, an observer far away from the geometry of black

hole would think him to be redshifted. However the falling

observer takes finite time to reach the horizon.

Inside region 2 particles move in the direction of de-

creasing r. On reaching the region 3 r switches back to

spacelike coordinate and hence we are saved from being hit

by the singularity. One can continue moving in the direc-

tion of singularity or can move in the direction of increasing

r. Again on reaching region 2 r swaps its nature but with re-

versed direction.(7)
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Chapter 3

Literature Survey

3.0.1 What is de Sitter Space

de Sitter space is the maximally symmetric vacuum solu-

tion of Einstein’s field equations with a positive cosmolog-

ical constant λ. It may be realised as a hyper surface de-

scribed by the equation;(15; 3)

−X 2
0 +X 2

1 +X 2
2 + ....+X 2

d = r 2 (3.1)

in flat (d+1) Minkowski Space. Here r is de Sitter radius. The

isometry group of de Sitter space is the Lorentz group O(1,

n), and such embedding preserves the isometry group.(9)

For an empty space with positive cosmological constant,

Einstein equation is given as;

Gab +λgab = 0 (3.2)

λ= (d −2)(d −1)

2r 2
(3.3)

The solution of this equation describes the de sitter

space for an empty universe.

3.1 Coordinates in de Sitter Space

Various coordinate system helps in giving different insight

to the geometry of de Sitter Space. The choice of coordinate

system depends on the problem we are working at.(15; 9; 12)
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3.1.1 Global coordinate

It covers entire dS space. The spatial section starts at τ →
∞, then shrinks to finite size at τ =0 and then grows again to

finite size as τ→ ∞. It is given by;

X0 = si nhτ

Xi = wi coshτ

where;

ω1 = cosθ1

ω2 = si nθ1cosθ2

.

.

.

ωd = si nθ1...si nθd−2si nθd−1

such that line element becomes;

d s2
2 =−dτ2 + (cosh2τ)dΩ2

d−1

Using global coordinates one can prove that de Sitter

space time is geodesically complete, that is the affine pa-

rameter of any geodesic passing through any point can be

extended to reach arbitrary value. This implies de Sitter

space is a non-stationary space time.

3.1.2 Conformal Coordinates

It is related to global coordinate via;

coshτ= 1
cosT

This coordinate system helps in visualising that de Sitter

space is conformally flat space time with line element;

d s2
2 = 1

cos2T

(−dT 2 +dΩ2
d−1

)
This coordinate system tells no single observer can access

the entire space time. A classical observer sitting on the

south pole will never be able to observe anything beyond

the diagonal line stretching from the north pole at I- to the

south pole at I+, and he can only send message to a part

12



stretching from south pole at I- to north pole at I+. The

highlighted portion represents a casual diamond where an

observer sitting at south can observe as well as send mes-

sage.

Figure 3.1: Penrose diagram for dSd .(15)
North pole and South pole are time like lines and each
point in interior represents a Sd−2

3.1.3 Static Coordinate

Figure 3.2: Spatial slicing in Static coordinate(12)

The spatial sections of static coordinates represents equator

in some global coordinate system. It covers two separate

parts of dS and the grey line represents the boundaries of

13



static coordinate. The coordinate system is generated by

taking;

X0 =
p

1− r 2si nht

Xi = rωi where 1 ≤ i ≤ d −1

Xd =
p

1− r 2cosht

whre ωi is the same as defined in Global coordinate such

that line element;

d s2 =−(1− r 2)d t 2 + dr 2

(1−r 2)
+ r 2dΩ2

d−2

It has axial as well as time translational symmetries. The

timelike killing vector can only be used to define a sensible

time evolution in the southern diamond of de Sitter space

as in northern diamond it points towards past infinity. Since

we can’t boost the past the like cone, static coordinate cov-

ers only half of de sitter space. And since all the spatial sec-

tion meet at a point we expect a coordinate singularity at

that point.

3.2 Embedding in Minkowski space

de Sitter space can be viewed as a sub manifold of gener-

alised Minkowski space of one higher dimension.(12; 9)

Figure 3.3: dS2 embedded in M3(9)

Let us consider a Minkowski space in 4+1 dimensional

space, such that line element is given as;

14



−X 2
0 +X 2

1 +X 2
2 +X 2

3 +X 2
4 = l 2

If we take the form of Xi ’s as;

X0 =
p

l 2 − r 2si nh( t
l )

X1 =
p

l 2 − r 2cosh( t
l )

X2 = r cosθ

X3 = r cosφsi nθ

X4 = r si nφsi nθ

If we take the derivative of following transformation and

substitute in (4+1) dimensional Minkowski space, we get;

ds2 =−(1− r 2

l 2 )d t 2 + dr 2

(1− r 2

l2 )
+ r 2

(
dθ2 + si n2θdφ2

)
which is (3+1) dimensional de Sitter space time in static

coordinate. Hence dS is a hyperboloid embedded in one

higher dimension Minkowski space.

3.3 Direction of time in de Sitter Space

From conformal coordinates it was clear that a quadrant

space is available to an observer sitting at south pole to

receive and observe something.(9) Let us suppose we are

working on a slice of global coordinate (elliptic de sitter

space), denoted by dS/A, where A is a map containing iden-

tity and antipodal transformation (XA → -XA). An observer

not constrained with speed of light can appreciate the en-

tire de Sitter space time.

Let us consider the part of dS which was not observable to

south pole observer is observable to an antipodal observer.

If we start at one end of equator by assigning a forward

time vector at that point, the antipodal observer will reverse

the time direction vector. On going around the equator, we

reach a point where time orientation can’t be defined. It can

go in either forward or backward direction, hence we can’t

talk about global time coordinate.

Consider two observers; Antipodal observer " superman"

and another normal observable "common man". If normal

15



observable sends a video which superman is receiving, su-

perman will first watch it first being played in reverse direc-

tion and then in forward direction. This can even help in

showing that assigning local coordinate can violate causal-

ity.

Figure 3.4: Situation on assigning global time coordinate

3.4 Einstein Maxwell Dilaton gravity

A particle of a scalar field , that couples to the gravity is

known as dilaton. Einstein Maxwell dilaton theory is the

simplest low effective theory that arises when scalar field

couples to gauge field. It generalises the Einstein Maxwell

theory by adding a kinetic term from dilaton and also few

coupling terms.(6; 17; 2) The presence of dilaton has given a

new insight in this field. Dilaton has enriched the physics

of the solutions to the field equations compared to the

Reissner-Nordström solution, which is the charged black

hole solution of the Einstein-Maxwell theory.

3.4.1 General form of Einstein Maxwell Dilaton

The general form of Einstein Maxwell dilaton action for

(2+1)dimensions is given as(13);

S = ∫
d 3x

p−g
(
R −2∂µφ∂µφ−W (φ)FµνFµν−V (φ)

)
which is for some dilaton φ. W (φ) is usually an ex-

ponential function of the dilaton field and V (φ) is self

16



interacting potential. The form of the field strength is given

as;

Fµν= ∂µAν−∂νAµ

We are taking 16πG = 1. The equation of motion obtained

after perturbing the action are as follows:

for metric

Rµν = 2∂µφ∂νφ− 1
2 gµνW (φ)FρσFρσ+

2W(φ)FµρFρ
ν + 1

2 gµνV (φ)

for dilaton

∇µ(∂µφ)− 1

4

W (φ)

φ
FµνFµν− 1

4

∂V

∂φ
= 0

for gauge field

∇µ
(
W (φ)Fµν = 0

The first Einstein Maxwell dilaton solution was presented

by Gary Gibbons in 1982 for electric as well as magnetic

charges, and was known as dyonic solution. Later a series

of solutions came for (2+1) and other higher dimensions.

3.4.2 Why (2+1) dimensions ?

Study of black hole physics in lower dimension is easier and

can give us a deeper insight in framing physics for higher

dimension. A/dS CFT correspondence states that there lies

a dual between quantum gravity on A(dS) space and a Eu-

clidean conformal field theory for lower dimensional space-

times (2; 6).

The first study of three dimensional black hole, as a

result of Einstein’s theory of relativity was done by Bana-

dos, Teitelboim and Zanelli, and the solution is commonly

known as BTZ black hole. After the discovery of first BTZ

black hole there is a flood of different types of black holes

for (2+1)dimensions.
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3.4.3 Centaur Geometry

Centaur geometry is one of the solution of Einstein Maxwell

dilaton gravity with a specific class of potential for dilaton.

It can be considered as thermal state in putative quantum

mechanics dual to AdS that evolved with global Hamilto-

nian.

Centaur geometry is asymptotically AdS but flows in inte-

rior to static patch of de Sitter space.(1) Such type of geom-

etry is essential because:

1. Applying Holographic principle to dS is not possible

beacuse static patch in de sitter doesn’t have aysmp-

totically spatial boundary.

2. AdS has its own distinguished feature like " a symmet-

ric box with a boundary" that will help in removing IR

effects.

With the help of such geometries we are able to deal with

the interior of static patch and interpret them in terms of

putative quantum mechanical dual to asymptotically AdS

geometry.

18



Chapter 4

Charged Black Hole with

scalar hair in (2+1)

dimensions

In this thesis, we aim to study black hole solution of an Ein-

stein Maxwell gravity with minimally coupled scalar field in

(2+1) dimensions. Black hole solution comprising gravity

coupled to a scalar field is known as hairy black hole. We

start with an action in which scalar couples to gravity in a

minimal way and it also couples to itself via a self interact-

ing potential V(φ). We started with the following action:

S =
∫ p−g d 3x(R − gµν∇µφ∇νφ−2V (φ)− 1

4
FµνFµν) (4.1)

where Fµν = ∂µAν−∂νAµ

On perturbing it with respect to gµν and using the trace re-

versal technique we get;

Rµν− gµν∇ρφ∇ρφ+2∇µφ∇νφ−2gµνV (φ)−

1

4
gµνFρσFρσ+FµρFρ

ν = 0 (4.2)

On perturbing it with respect to φ and Aµ, we get;

1p−g
∂µ(

p−g∂µφ)− ∂V

∂φ
= 0 (4.3)
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∂ν(
p−g Fµν) = 0 (4.4)

We aim to obtain a static, symmetric solution so we take

ansatz of the following form;

d s2 =− f (r )d t 2 + dr 2

f (r )
+ y2(r )d z2 (4.5)

where coordinate ranges from −∞≤ t ≤ ∞, r≥0 and −π≤ z

≤ π Let us consider that Aµand φ are function of radial co-

ordinate only. Using equation (4.4) and above assumption

Maxwell’s field can be given by choosing another ansatz,

Aµ = F (r )d t (4.6)

such that;

Ftr = - Q
y(r ) ,

where Q is a constant that will be related to Komar charge

in later section.

Using above ansatz we can write below the equation of

motion by substituting the value of Rµν obtained using

mathematica. Christoffel symbol having non zero values

and Rµν are mentioned in the Appendix A.

f f ′y ′

2y
+ f f ′′

2
+ f 2(φ′)2 +2 f (V )+ f Q2

2y2
= 0 (4.7)

− f ′y ′

2 f y
− y ′′

y
− f ′′

2 f
+ (φ′)2 − 2V

f
− Q2

2 f y2
= 0 (4.8)

− f ′y ′

y
− f y ′′

y
− f (φ′)2 −2V + Q2

2y2
= 0 (4.9)

y ′ f φ′

y
+ f ′φ′+ f φ′′− dV

dφ
= 0 (4.10)

In the above set of equation f(r) has been written as f for

simplicity. On adding (4.7) and (4.8)∗ f 2(r ), we get a relation

between φ and y(r), which is given as

(φ′)2 = y ′′

2y
(4.11)
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On substituting (4.11) in (4.9) we get a constraint equation,

i.e. equation independent of derivative of second order.

Consistency of equation is checked by expressing the

derivative of constraint equation as a linear combination of

(4.7) and(4.8).

Since (4.10) contains derivative of V we can use con-

straint equation to evaluate V (φ). V can be replaced by us-

ing constraint equation and either of two equation (4.7) and

(4.8) can be replaced by (4.11), such that we are left with two

equations for three parameters viz. f(r), y(r) and φ. There-

fore we have a choice of assuming a form of one out of three

unknown parameters. In order to give a concrete form to

scalar field we can solve differential equation (4.11) by as-

suming a form of y(r), which we chose to be;

y(r ) = exp(φ2) (4.12)

Most of the literature(6; 17; 2) works with the linear form of

y(r), we thought of taking it in given form in order to know

the extent till which solution can vary and obtained results

were quite good. Solving for φ then gives;

φ=−i*erf−1
(

2ip
π

(c1r + c1c2)
)

Using the power series expansion of error function and

choosing c2 = 0, we get;

φ= c1r − c3
1r 3

6
(4.13)

To obtain the form of f(r) and V(φ) we use the four equation

of motion. Substituting the value ofφ and y(r) and on doing

the required mathematics we get a differential equation for

f(r) which is given as,

3 f ′′φφ′+11 f ′(φ′)2 +3 f ′φφ′′+ f ′′′

2
+12 f φ′φ′′+8 f φ(φ′)3 = 0

(4.14)

The equation for f(r) turned out to be third order, non ho-

mogeneous differential equation. From (4.13) it is clear that

kinetic term will keep on increasing with the increase in r.

Kinetic part will shoot to infinity at r →∞, if and only if is
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is heavily influenced by external source. To avoid any exter-

nal source we solved f(r) in steps first for small r and then

for large r. Only the form of f(r) is shown for large r, further

section deals with small r only.

For small r;

Equation (4.14) is bit tedious to solve by ordinary differen-

tial equation solving method. To ease our problem we use

series solution method and assume the solution of f(r) as;

f (r ) =
6∑

n=0
anr n + (

6∑
n=0

bnr n)log r (4.15)

Using DSolve in mathematica we find that all b’s turn out to

be zero and truncating the result up to sixth order, we get;

f (r ) = a0 +a1r +a2r 2 − 11

3
c2

1 a1r 3 + (
1

3
c4

1 a0 − 7

3
c2

1 a2)r 4+

41

6
c4

1 a1r 5 + (c4
1 a2 −80c6

1 a0 +560c4
1 a2)r 6

180
(4.16)

and potential V(φ) is given by substituting the value of f(r),

φ and y(r ) in (4.10) to get,

V (φ) = 1

1440

(
−4a2

(
90−360c2

1r 2 +930c4
1r 4 +10003c6

1r 6−

5764c8
1r 8 +835c10

1 r 10
)
+5c2

1

(
−3a1r

(
−96+

352c2
1r 2 +4026c4

1r 4 −2450c6
1r 6 +369c8

1r 8
)

+8a0

(
−36+18c2

1r 2+3c4
1r 4+124c6

1r 6−70c8
1r 8+10c10

1 r 10
)))

(4.17)

Obtained expression for V looks little complicated, in order

to simplify it we take a0 = a2 = c1 = 1 and a1 = 0, and then

a plot of V(φ) is drawn w.r.t r. We will see in further section

that why we chose a1 = 0.
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Figure 4.1: Plot of V(φ) vs r

For large r;

We take a new coordinate that is related to old coordi-

nate via,

u = 1
r

This helps us in interpreting the same case for small u. Sub-

stituting this in (4.14) leaves us in a big trouble since u starts

to appear in denominator as well as. We define a new pa-

rameter "h" which is related to f(r) via;

f(u)=eh(u)

With further more changes we obtained an ugly looking

form of f, which is given as

f (r ) = exp

(
1

48c5
1

(−8232c1

r
− 1680c3

1

r 2
−792c5

1log
1

r
)

)

cos

(
1

48c5
1

(
764718+1261815c2

1r 2 −1200c4
1r 4−

4800c6
1r 6 +80c8

1r 8
))

(4.18)

The set of equation defined from (4.12)-(4.18) forms an

approximate solution to the system defined by the action in

(4.1), which is different from the literature survey done on

(2+1) dimensional black hole.

23



Stress tensor should vanish at boundary for physical so-

lution hence we take r → 0 as going towards boundary. For

a very trivial case with a0 = a1 = a2 = c1 = 0, we get;

f (r ) = 1 y(r ) = 1

i.e. an asymptotically flat space solution. We tried to obtain

an expression for horizon but the behaviour of φ at large r

didn’t help us. To get a value of horizon radius, we solved the

problem numerically using NDSolve technique in mathe-

matica. Largest root of f(r) for which curvature invariants

viz Kretschmann scalar Rabcd Rabcd , Ricci scalar and RabRab

give finite result is interpreted as horizon. To check whether

the horizon is coordinate singularity , naked or a real singu-

larity, we find numerically the values of curvature invariant

at horizon. For our case we have finite results that means a

coordinate singularity.

NDSolve technique is based on Runge Kutta Method, that

gives an iterative solution when initial condition is known

at one end but has to be evaluated at the other boundary.

Figure 4.2: Plot of f(r) vs r

We confined our calculation to small r and in order to

solve numerically the upper range of r was set to 10. On

solving it we got a horizon at 9.9876, where above described

parameter gave finite results.

The solution has 4 parameter viz a0, a1, a2 and c1. Each of
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these parameters are independent and can be interpreted

in terms of physically measurable quantities.

Figure 4.3: Plot of c1 Vs horizon Radius

Komar Charge

The electric current associated to the electromagnetic field

tensor Fµν is conserved, so we can associate an electric

charges to spacelike surface Σby ;

QK omar =− 1

4π

∫
∂Σ

d d−2xηµ
p
ασνFµν (4.19)

where ∂Σ is the boundary of Σ at spatial infinity. αi j is the

induced metric on ∂Σ and σν is the outward pointing unit

normal to ∂Σ.

For our case:

ηµ = (π
−1
2 ,0,0)

σν = (0,π
1
2 ,0)

p
α= y(r )
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which gives the value of Komar charge as;

QK omar = Q
2

Komar Mass

Using the above analogy we can define Komar Mass since

we have time like killing vector which can give rise to en-

ergy/ mass.(10; 16)

MK omar = 1

4πG

∫
d d−2xηµσν∇µξν|r ı∞

= 1

4πG

∫ π

−π
d z

f ′′(r )

2
y(r )

= a2

2G

(4.20)

Thus a2 can be interpreted in terms of mass.

From expression of φ and V(φ) we get;

φ= c1r − c3
1 r 3

6

φ′ = c1 for r→0

Thus c1 can be interpreted in terms of first derivative of our

scalar field.

Similarly for r→0 we get;

V (φ) = 1
1440 (−360a2 −288a0)

Out of four parameters, three are somehow related to mass,

scalar field and potential but a1 never comes into picture. In

order to know whether a1 is really a physical parameter we

changed it, keeping other parameters fixed and found there

is no change in graphs. So a1 can be taken to zero and we

are left with three parameters.
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Figure 4.4: Plot of f(r) vs r for a0 = 0

Figure 4.5: Plot of f(r) vs r for a1 = 0

Figure 4.6: Plot of f(r) vs r for a2 = 0
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Figure 4.7: Plot of f(r) vs r for c1 = 0

From above plot we see a1 can be interpreted in terms of

translation factor which can be absorbed by reparametriza-

tion of coordinate r. As changing a1 doesn’t lead us any-

where but a small change in rest of the parameters can end

up giving a drastic change. Let us consider a form of V as;

V =V0 +V1r 2 +V2r 4 + ...

It is symmetric about r. On varying r from r to r + r0 we get

linear terms in V.

V ′ =V0 +V1r 2
0 + (2r0V1)+V1r 2 + ...

We can choose value of r0 such that linear term vanishes.

Similarly for (4.17) we can choose value of a1 in order to

simplify the expression. For simplicity we have chosen a1 =
0.
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4.1 Results and Discussion

In this thesis we have obtained and analysed a solution for

Einstein Maxwell Dilaton theory in (2+1) dimensions, in

which scalar is coupled to gravity in minimal way and is also

coupled to itself via a self interacting potential. The solution

is static and spherically symmetric. From above calculation

few results can be drawn which is listed below:

• In order to obtain a physical solution we worked for

small r limit where stress tensor vanishes. For r → 0

and a0 = a1 = a2 = c1 = 0 we obtained a flat space so-

lution.

• With proper choice of parameter a0, a1, a2andc1 for

r → 0 limit we can get a constant value of potential.

Depending upon the sign of constant we can call our

solution to be asymptotically de Sitter or asymptoti-

cally Anti de Sitter space solution.

• In order to characterise the solution asymptotically

far away we used NDSolve technique based on Runge

Kutta method in Mathematica. For largest root of f(r),

curvature invariants viz. Kretschmann Scalar, Ricci

Scalar and RabRab were calculated and finite result

saved us from violating the Cosmic Censorship prin-

ciple.

• Charge and Mass associated with the black hole are

calculated using the Komar integrals. Fortunately

charge came out to be constant and out of four pa-

rameters a2 could be physically interpreted as the

mass of the black hole.

• In process of interpreting the remaining free parame-

ters we came to know that a1 is nothing but a trans-

lation factor. And for the sake of convenience we can

take it to be zero. With this assumption a simplified

form of V is obtained. Plot of V Vs r showed that we

have an attracting potential.

• c12 can be interpreted as Kinetic energy of scalar field

at boundary.
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4.2 Conclusion and Future Scope

We started by coupling gravity to scalar and Maxwell field

and found a static, spherically charged, massive black hole.

The novelty of work lies in the value of V that can help in

giving various solution depending upon the choice of the

parameters. A positive value Of V can help us in studying

the de Sitter universe whereas negative value of V can help

us in studying certain gauge related theories.

It was shown that the horizon radius decays expo-

nentially with c1. We calculated the mass and charge of

Einstein Maxwell using Komar integral and interpreted the

four parameters a0, a1, a2,c1 in terms of physical quantities.

We have used ND solve technique to find the numerical

value of horizon in a given range. In future we can find a

better way to know the expression of horizon radius and

based on it we can work on Black hole thermodynamics.

We can extend our work for higher dimension and can

study the dynamics of de sitter space or anti de sitter space

time and study its vacuum properties and properties of

wave propagating in it.

We can also analyse the stability of Einstein Maxwell

black hole using the heat capacity and can find whether it

undergoes any phase transition.
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Chapter 5

Appendix

5.1 Appendix A

This is a mathematica notebook that one can use for evalu-

ating Christoffel symbol, Ricci tensor, Riemann tensor and

Einstein Tensor.

First dimension of spacetime is set.We are working in 2+1

dimension so we will take n=3 whenever required.

Inp: n = 3

Out: 3

Inp: coord = {t, r, x}

Out: {t,r,x}

Inp: metric = {{-f[r], 0, 0}, {0, 1
f [r ] , 0}, {0, 0, (y[r])2}}

Out : {{− f [r ],0,0}, {0, 1
f [r ] ,0}, {0,0, y[r ]2}}

Christoffel Symbols

Inp : a f f i ne = Si mpli f y[Table[( 1
2 ) ∗

Sum[(i nver semetr i c[[i , s]])∗(D[metr i c[[s, j ]],coor d [[k]]]+
D[metr i c[[s,k]],coor d [[ j ]]]−D[metr i c[[ j ,k]],coor d [[s]]]),

{s,1,n}], {i ,1,n}, { j ,1,n}, {k,1,n}]]

Inp : l i st a f f i ne = Table[I f [UnsameQ[a f f i ne[[i , j ,k]],0],

{ToStr i ng [Γ][i , j ,k]], a f f i ne[[i , j ,k]]}], {i ,1,n}, { j ,1,n}, {k,1,n}]

Inp : Tabl eFor m[Par ti t i on[Del eteC ases[F l at ten[l i st a f f i ne],

Nul l ],2],TableSpaci ng → {2,2}]
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Here D is for partial derivative, Sum is for summing over

dummy indices and Table is used to tabulate the result.

Out:

Γ[1,1,2] f ′(r )
2 f (r )

Γ[1,2,1] f ′(r )
2 f (r )

Γ[2,1,1] 1
2 f (r ) f ′(r )

Γ[2,2,2] − f ′(r )
2 f (r )

Γ[3,2,3] y ′(r )
y(r )

Γ[3,3,2] y ′(r )
y(r )

Γ[2,3,3] − f (r )y(r )y ′(r )

Riemann Tensor

Inp : r i emann = Si mpli f y[Tabl e[D[a f f i ne[[i , j , l ]],coor d [[k]]]−

D[a f f i ne[[i , j ,k]],coor d [[l ]]]+Sum[a f f i ne[[s, j , l ]]a f f i ne[[i ,k, s]]−

a f f i ne[[s, j ,k]]a f f i ne[[i , l , s]], {s,1,n}], {i ,1,n}, { j ,1,n}, {k,1,n},

{l ,1,n}]]

Inp : l i str i emann := Tabl e[I f [UnsameQ[r i emann[[i , j ,k, l ]],0],

{ToStr i ng [R[i , j ,k, l ]],r i emann[[i , j ,k, l ]]}], {i ,1,n}, { j ,1,n}, {k,1,n},

{l ,1,k −1}]

Inp : TableFor m[Par ti t i on[Del eteC ases[F l at ten[l i str i emann],

Nul l ],2],Tabl eSpaci ng → {2,2}]

Out :
R[1,2,2,1] f ′′(r )

2 f (r )

R[1,3,3,1] 1
2 y(r )y ′(r ) f (r )
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R[2,1,2,1] 1
2 f (r ) f ′′(r )

R[2,3,3,2] 1
2 y(r )

(
f ′(r )y ′(r )+2 f (r )y ′′(r )

)
R[3,1,3,1] f (r ) f ′(r )y ′(r )

2y(r )

R[3,2,3,2] − f ′(r )y ′(r )+2 f (r )y ′′(r )
2 f (r )y(r )

Ricci Tensor

Inp : r i cci = Si mpli f y[Table[Sum[r i emann[[i , j , i , l ]],

{i ,1,n}], { j ,1,n}, {l ,1,n}]]

Inp : l i str i cci = Table[I f [UnsameQ[r i cci [[ j , l ]],0],

{ToStr i ng [R[ j , l ]],r i cci [[ j , l ]]}], { j ,1,n}, {l ,1, j }]

Inp : Tabl eFor m[Par ti t i on[Del eteC ases[F l at ten[l i str i cci ],

Nul l ],2],Tabl eSpaci ng → {2,2}]

Out :
R[1,1] f (r )

2y(r )

(
f ′(r )y ′(r )+ y(r ) f ′′(r )

)
R[2,2] − f ′(r )y ′(r )+y(r ) f ′′(r )+2 f (r )y ′′(r )

2 f (r )y(r )

R[3,3] − y(r )
(

f ′(r )y ′(r )+ f (r )y ′′(r )
)

Ricci Scalar

Inp : scal ar = Si mpli f y[Sum[i nver semetr i c[[i , j ]]

r i cci [[i , j ]], {i ,1,n}, { j ,1,n}]]

Out : −2 f ′(r )y ′(r )+y(r ) f ′′(r )+2 f (r )y ′′(r )
y(r )

Einstein Tensor

Inp : ei nstei n := ei nstei n = Si mpli f y[r i cci−(1/2)scal ar∗
metr i c]

Inp : l i stei nstei n = Table[I f [UnsameQ[ei nstei n[[ j , l ]],0],

{ToStr i ng [G[ j , l ]],ei nstei n[[ j , l ]]}], { j ,1,n}, {l ,1, j }]
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Inp : TableFor m[Par ti t i on[Del eteC ases[F l at ten[l i stei nstei n],

Nul l ],2],Tabl eSpaci ng → {2,2}]

Out :

G[1,1] − f (r )( f ′(r )y ′(r )+2 f (r )y ′′(r )
2y(r )

G[2,2] f ′(r )y ′(r )
2 f (r )y(r )

G[3,3] 1
2 y2(r ) f ′′(r )

This program is written by Leonard Parker, University of Wisconsin.
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5.2 Appendix B

This program was used by us to solve the differential equa-

tion using series solution method.

Inp: p[r] = c1r − c3
1 r 3

6

Out : c1r − c3
1 r 3

6

Inp : f n = Sum[a[i ]r i , {i ,0,7}]+Log [r ]Sum[b[i ]r i , {i ,0,7}]

Inp : f ′′[r ]p[r ]D[p[r ], {r ,1}]+ f ′[r ](D[p[r ], {r ,1}])2 +
f ′[r ]D[p[r ], {r ,2}]p[r ]+4/3 f ′[r ](D[p[r ], {r ,1}])2 +
8/3 f [r ]D[p[r ], {r ,1}]D[p[r ], {r ,2}]+ f ′′′[r ]/6+
4/3(2p[r ](D[p[r ], {r ,1}])3 f [r ]+ f ′[r ](D[p[r ], {r ,1}])2 +
f [r ]D[p[r ], {r ,1}]D[p[r ], {r ,2}])

Out :
Due to complicated result its better to check the answer in

mathematica notebook itself. One can simplify the expres-

sion by using the //Simplify syntax

Inp:Solve[Coefficient[eqn, r−3] == 0]

Out: {{b[0]→ 0}}

Inp : Soluti on = %[[1]]

This will store the result in Append To

Inp : Sol ve[Coe f f i ci ent [eqn,r−2] == 0]

Out : {{b[1] → 0}}

Inp : AppendTo[Soluti on,%[[1]][[1]]]

Out : {b[0] → 0,b[1] → 0}

Same procedure is followed till r−1 and value of coefficient

are stored in the Append To.
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Inp : eqn1 =Coe f f i ci ent [eqn,Log [r ]]//Si mpli f y

this will comment out the coefficient of log r

For result use mathematica notebook as the expression is

little lengthy.

Inp : Sol ve[{eqn1/.{r → 0}} == 0]/.Soluti on

Out : {{b[3] → 0}}

Inp : AppendTo[Soluti on,%[[1]][[1]]]

Out : {b[0] → 0,b[1] → 0,b[2] → 0,b[3] → 0}

Inp : Sol ve[exp1 == 0]/.Soluti on

Inp : AppendTo[Soluti on,%[[1]][[1]]]

Out : {b[0] → 0,b[1] → 0,b[2] → 0,b[3] → 0, a[3] →−11
3 c12a[1]}

Same procedure is followed with increasing power of r and

every time solution is stored in Append To

Inp : AppendTo[Soluti on,%[[1]][[1]]]

Out : {b[0] → 0,b[1] → 0,b[2] → 0,b[3] → 0,

a[3] →−11
3 )c12a[1],b[4] → 0,0 → 4

13 (c14a[0]−
7c12a[2]−3a[4]),b[5] → 0,b[6] → 0,b[7] → 0,

0 → 2/47(205c14a[1]−30a[5])}

The result is used in the chapter 4 for solving the differential

equation for small r.

All b’s turn out to zero. a[0], a[1] and a[2] are independent

parameters and rest of the a’s can be expressed as their lin-

ear combination.

a[3] =−11
3 c12a[1]

a[4] = 1
3

(
c14a[0]−7c12a[2]

)
a[5] = 41

6 c14a[1]

38



Bibliography

[1] Anninos, D. and Hofman, D. M. (2018). Infrared real-

ization of dS2 in AdS2. Classical and Quantum Gravity,

35(8):85003.

[2] Bañados, M., Teitelboim, C., and Zanelli, J. (1992). Black

hole in three-dimensional spacetime. Physical Review

Letters, 69(13):1849–1851.

[3] Birrell, N. D. N. D. and Davies P. C. W. (Paul Charles

William), . (1984). Quantum fields in curved space. Cam-

bridge : Cambridge University Press, 1st pbk. e edition.

[4] Carroll, S. M. (2004). Spacetime and Geometry: An In-

troduction to General Relativity.

[5] Christopher, H. M. (2012). Lecture XXV: Reissner-

Nordstrøm black holes. PhD thesis, California Institute

of Technology.

[6] Dehghani, M. (2017). Thermodynamics of (2+1)-

dimensional black holes in Einstein-Maxwell-dilaton

gravity. Physical Review D, 96(4):44014.

[7] Hartle, J. B. and Traschen, J. (2005). Gravity: An intro-

duction to Einstein’s general relativity. Physics Today.

[Hartman] Hartman, T. Lectures on quantum gravity and

black holes.

[9] Hartong, J. (2004). On problems in de Sitter spacetime

physics. Master’s thesis, Groningen U.

[10] Kastor, D. (2008). Komar Integrals in Higher (and

Lower) Derivative Gravity. Class. Quant. Grav., 25:175007.

39



[11] Loveridge, L. C. (2004). Physical and geometric inter-

pretations of the Riemann tensor, Ricci tensor, and scalar

curvature.

[12] Ripken, A. (2013). Coordinate systems in De Sitter

spacetime. Radboud University Nijmegen, (Radboud

Honours Academy).

[13] Santos, P. E. D. G. (2017). Einstein-Maxwell-dilaton

theory: Black holes, wormholes, and applications to

AdS/CMT. PhD thesis, Universidade Estadual Paulista.

[14] SPCS Summer Institute (2014). Lecture 9:

Schwarzschild solution. PhD thesis, Stanford University.

[15] Spradlin, M., Strominger, A., and Volovich, A. (2001).

Les Houches lectures on de Sitter space. In Unity from

duality: Gravity, gauge theory and strings. Proceedings,

NATO Advanced Study Institute, Euro Summer School,

76th session, Les Houches, France, July 30-August 31,

2001, pages 423–453.

[16] Wald, R. M. (1984). General Relativity.

[17] Xu, W. and Zhao, L. (2013). Charged black hole with

a scalar hair in (2 + 1) dimensions. Physical Review D,

87(12):124008.

40


	Acknowledgement
	Abstract
	Introduction
	Einstein Equation
	Metric and Christoffel Symbol
	Riemann curvature tensor
	Ricci Tensor and Ricci Scalar
	Stress Energy Tensor


	Solution of Einstein Equation
	Schwarzschild Solution to Einstein's Equation
	Reissner-Nordstrom Solution to Einstein's equation

	Literature Survey
	What is de Sitter Space
	Coordinates in de Sitter Space
	Global coordinate
	Conformal Coordinates
	Static Coordinate

	Embedding in Minkowski space
	Direction of time in de Sitter Space
	Einstein Maxwell Dilaton gravity
	General form of Einstein Maxwell Dilaton
	Why (2+1) dimensions ?
	Centaur Geometry


	Charged Black Hole with scalar hair in (2+1) dimensions
	Results and Discussion
	Conclusion and Future Scope

	Appendix
	Appendix A
	Appendix B
	Bibliography


