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Abstract

Dark matter, Neutrino mass and Baryon asymmetric universe can only be

explained by beyond Standard Model physics. We have been investigating

the combined models for all three problems and concerned energy scales. Our

main focus is on the inert doublet model with heavy Majorana neutrinos to

explain dark matter, neutrino mass and baryon asymmetry simultaneously at

TeV scales. Also, we have been investigating the flavor structure of Yukawa

couplings to satisfy neutrino oscillation data.



.

8



Table of contents

List of Figures iii

1 Introduction 1

1.1 Matter-Antimatter Asymmetry . . . . . . . . . . . . . . . . . 1

1.1.1 Evidence of Asymmetry . . . . . . . . . . . . . . . . . 2

1.1.2 Measurements of Asymmetry . . . . . . . . . . . . . . 2

1.1.3 Basic Elements for Baryogenesis . . . . . . . . . . . . . 3

1.2 Neutrino Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Unified Models of Dark Matter, Neutrino Mass and Matter-

Antimatter Asymmetry 10

2.1 Leptogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Toy Model for Leptogenesis . . . . . . . . . . . . . . . 11

2.1.2 The Boltzmann Equation . . . . . . . . . . . . . . . . 13

2.2 Combined Models for NM, BAU and DM . . . . . . . . . . . . 14

2.2.1 Two Sector Leptogenesis . . . . . . . . . . . . . . . . . 15

2.2.2 WIMPy Baryogenesis . . . . . . . . . . . . . . . . . . . 17

2.2.3 Asymmetric Dark Matter from higher dimensional op-

erators . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Bounds on RH Neutrino Mass from Thermal Leptogenesis . . 18

3 Dark Matter and Leptogenesis in the Inert Doublet Model 20

3.1 Inert Doublet Model . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Neutrino Masses . . . . . . . . . . . . . . . . . . . . . 25

i



3.1.3 Baryon asymmetry . . . . . . . . . . . . . . . . . . . . 26

4 Discussion and Future Scope 28

Bibliography 30

ii



List of Figures

1.1 The power spectrum of CMB anisotropies as a function of the

multipole moment l [5]. . . . . . . . . . . . . . . . . . . . . . . 3

2.1 L-violating interaction [8]. . . . . . . . . . . . . . . . . . . . . 11

2.2 Diagrams contributing to CP asymmetry[8]. . . . . . . . . . . 12

2.3 Plot of N1 number density with final NB−L number density vs.
MN1

T
along with other parameters [8]. . . . . . . . . . . . . . . 14

2.4 Two sector Leptogenesis [9]. . . . . . . . . . . . . . . . . . . . 15

2.5 Feynman diagrams of processes which transfer the lepton asym-

metry between the two sectors [9]. . . . . . . . . . . . . . . . . 17

2.6 WIMPy Baryogenesis [10]. . . . . . . . . . . . . . . . . . . . . 18

3.1 Feynman diagrams involved in leptogenesis with inert Higgs

H2 [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Feynman diagram for generation of neutrino mass at loop level

[15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



.

iv



Chapter 1

Introduction

1.1 Matter-Antimatter Asymmetry

Recent developments in cosmology has enhanced our knowledge of the uni-

verse. But on other hand, it has introduced many other challenges to the

basic understanding of laws of nature. The Standard Cosmological Model of

the universe tells that dominant contents of the universe are still dark and

mysterious to our present knowledge.

However, ordinary matter which makes barely 4% of the universe has

been well understood by a combined model of fundamental theories so far.

This model is known as the Big Bang Theory. It offers a good explanation

for evolution of universe into what we see today. Despite of that it fails to

explain the absence of antimatter in visible universe, which is observed in day

to day experience and in high precision cosmological measurements as well.

In this section we will briefly discuss the matter-antimatter asymmetry

of the universe, its evidences and ideas to resolve this problem. Since the

ordinay matter is made of baryons, the problem is usually referred to as

Baryon Asymmetric Universe (BAU). The parameter of this asymmetry is

given as ratio of density of total baryons to photons i.e.,

ηB =
nB − nB̄

nγ
. (1.1)
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1.1.1 Evidence of Asymmetry

The evidence that the universe is entirely lacking of antimatter comes from

different observations.

• In our everyday life, the absence of matter-antimatter annihilations in-

dicates that there is no antimatter on the earth. Also beyond the earth,

successful space missions are in favor that in nearby space, abundance

of antimatter is negligible.

• The measurement of cosmic rays and its products at the top of the

atomsphere provides sample of contents of entire galaxy and distant

galaxies as well. However, the measurements of antiprotons to proton

ratio[1] have been consistent with the fact that antiprotons are the

secondary products of interaction of primary cosmic rays as p̄
p
∼ 10−4.

• The presence of intra-cluster gas clouds (as known by X-ray emission)

indicates that antibaryon cannot exist in galaxy cluster. Also the ab-

sence of strong γ-ray fluxes from particle-antiparticle annihilations is

an evidence of non-existence of antimatter.

1.1.2 Measurements of Asymmetry

There are two indirect probes that give consistent estimate of total baryon

density of the the universe as follows

• CMB Anisotropy: The Cosmic Microwave Background (CMB), the

relic radiation from last scattering surface is an important source of in-

formation on early universe. It is almost isotropic throughout the space,

however it has some small temperature anisotropies. These anisotropies

of the cosmic microwave background radiation are usually analyzed in

terms of special harmonics as given below

∆T

T
=
∑
l,m

almYlm(θ, φ). (1.2)

The power spectrum of anisotropies are measured in terms of

Cl = l(l + 1)〈| alm |2〉. (1.3)
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Figure 1.1: The power spectrum of CMB anisotropies as a function of the

multipole moment l [5].

The amount of these anistropies depends on baryon density as illus-

trated in Figure (1.1). The best fit for WMAP (Wilkinson Microwave

Anisotropy Probe)[2] data is for ΩB ∼ 0.046 which corresponds to the

baryon to photon ratio ηB ∼ 10−10.

• Big Bang Nucleosynthesis: The primordial abundances of light el-

ements like He-4, He-3, Deuterium, Li-6, Li-7 etc. have been explained

by Big Bang Nucleosynthesis (BBN) very successfully. The key param-

eter for determining the abundance of light elements from BBN is the

baryon to photon ratio. The astrophysical observations suggest that

ηB ∼ 6.10−10[3], which is consistent with CMB measurements.

1.1.3 Basic Elements for Baryogenesis

The Big Bang should have produced equal amounts of matter and antimatter

as to preserve the assumption of neutral universe. Therefore, to produce a

baryon asymmetric universe from a baryon symmetric universe, we must have

3



some physical assumptions which differentiate between matter and antimat-

ter. There are three necessary ingredients to produce a BAU.

• Baryon Number Violation- Provided the fact that the universe was

symmetric intially, there must be a violation of baryon number to pro-

duce BAU.

• C and CP violation- The conservation of C and CP ensures that

particles and antiparticles will behave in identical way in interactions.

So, despite of having a B-nonconserving interaction, there will not be

any final asymmetry unless both C and CP are violated. As under

conserved C and CP , B-violating interaction will produce baryons and

antibaryons at same rate resulting in net zero baryon number.

Channel Branching ratio B

X → qq r 2/3

X → q̄l 1− r −1/3

X̄ → q̄q̄ r̄ −2/3

X̄ → ql̄ 1− r̄ 1/3

– Decay of X is B-violating.

– ∆Btotal = r − r̄, i.e., to produce a final non-zero baryon number

r 6= r̄ → C and CP violation.

• Out of Equilibrium Condition- In equilibrium the phase space

density of baryons and antibaryons will be identical i.e., nB − nB̄ = 0.

The above conditions are known as Sakharov Conditions [4]. This problem

is not explained by Standard Model (SM) as it treats matter and antimatter

in same way and there is no B-violating interaction possible in SM. All these

conditions were firstly implemented in GUT (Grand Unified Theory). In

GUTs quarks and leptons are unified in the same irreducible presentations,

therefore Baryon number violation occurs naturally as baryons can decay

to leptons. Also due to unified representation there exists many possible

complex phases to produce sufficient amount of CP violation. And at last
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out of equilibrium condition is achieved by slow decay rates of heavy gauge

bosons. However, in GUTs to produce sufficient BAU requires high reheating

temperatures which leads to over production of relics. Also it is hard to test

GUTs in colliders as the scale is MGUT ∼ 1016 GeV.

In SM baryon number(B) and lepton number(L) are accidental sym-

metries so it not possible to violate them at tree level. However, a non-

perturbative process, named as “sphaleron” process, can violate (B +L) but

conserve (B − L). Hence instead of directly producing baryon asymmetry

we can at first produce lepton asymmetry to get BAU. We will be using this

basic mechanism in our further work.

1.2 Neutrino Mass

In standard model, neutrinos are classified in terms of their leptonic flavor.

These flavor eigenstates were supposed to have zero mixing as they form

orthonormal basis for weak interactions of SM neutrinos. In late 1960’s, neu-

trino oscillation was first observed by Ray Davis in Homestake experiments.

After that, there were a number of experiments in favor of neutrino oscilla-

tions. Neutrino oscillations indicate that neutrinos have non-zero mixing and

finite mass which was not in the case with SM. Since the mass eigenstates and

flavor eigenstates are not same, one set can be written as the superposition

of other set of eigenstates.

να =
∑
i

Uαiνi (1.4)

where να and νi are the flavor and mass eigenstates respectively. The matrix

U is Pontecorvo-Maki-Nakagawa-Sakata(PMNS) matrix, which is parameter-

ized by three mixing angles and one phase angle.

U =


c12c13 s12c13 s13e

−iδCP

−s12c13 − c12s23s13e
iδCP c12c13 − s12s23s13e

iδCP s23c13

s12s13 − c12c23s13e
iδCP −c12s13 − s12c23s13e

iδCP c23c13

(1.5)

where sij and cij are sin θij and cos θij respectively. The values of mixing

angles and CP phase have been measured, which fits the neutrino oscillation
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data at best so far [5].

θ12 = 33.62◦+0.78◦

−0.76◦ , θ23 = 47.2◦+1.9◦

−3.9◦ , θ13 = 8.54◦+0.15◦

−0.15◦ , δCP = 234◦+43◦

−31◦ .

(1.6)

Many extensions of standard models can explain the neutrino mass, though

these models are yet to be verified.

In SM, masses are generated via Higgs mechanism. We can construct two

types of mass for fermions - Dirac mass and Majorana mass. To construct

Dirac mass term two independent chiral fields ψR and ψL with their conjugates

are required. All fermions in SM have Dirac masses except neutrino. Since

neutrinos do not have such chiral fields, we can not construct Dirac masses for

them as there are only left-handed neutrinos and right-handed anti-neutrinos.

However we can construct Majorana masses for neutrinos with (ν̄cLνL).

But this term is not invariant under weak isospin symmetry. Therefore it is

not possible to construct neutrino mass in SM.

However the See-Saw models attempt to evade this problem. There are

three types of such models. We have reviewed one of them called Type-I

see-saw. In Type-I see-saw SM is extended by three right-handed singlet

neutrinos. These right-handed neutrinos interact with left-handed neutrinos

to generate masses. Also right-handed neutrinos are singlet under SU(3)C ×

SU(2)L, therefore they do not interact via weak interactions as they have

zero weak isospins.

The Lagrangian will contain mass terms given as

LM =
1

2

 νL

νR
c

T mL mD

mD mR

 νL

νR
c


where, (νL, ν

c
R) is a Weyl spinor containing left-handed SM neutrinos and

right-handed sterile neutrinos, and mD is Dirac mass, mL is Majorana mass

for left-handed neutrinos and mR is Majorana mass for right-handed neutri-

nos. A very interesting case is mD � mR, and mL=0 since Majorana mass for

left-handed neutrino is forbidden. We obtain the eigenvalues of mass matrix

:

| m1 |'
m2

D

mR

, m2 ' mR. (1.7)
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Hence one of the mass eigenstates is as heavy as mR and other one is

light because its mass is supressed by a small ratio mD/mR. This is the

well known see-saw mechanism of neutrino mass as the heaviness of one is

responsible for lightness of other. The explanation of smallness of neutrino

masses is given by this mechanism. The neutrino masses are supposed to be

a mixed state of these two mass eigenstates. The see-saw models are very

important to produce BAU as they play a viable role in leptogenesis which

we will be discussing later.

1.3 Dark Matter

The motivation for existence of dark matter comes from mainly a few power-

ful astrophysical observations. The most famous evidence that suggests that

there are non-luminous matter in our universe is the anomalous galactic rota-

tion curves. To reproduce the curve, a large amount of mass is required other

than that which are visible to us. The other evidence, which comes from

the CMB power spectrum favors that five-sixths of total matter interacts

significantly with ordinary matter by only gravitational interactions.

At first it was thought that dark matter is some non-luminous astronom-

ical object referred to as MACHOs (MAssive Compact Halo Objects). But

two collaborations, MACHO and EROS looking into galactic halo by gravita-

tional microlensing, concluded that MACHOs can not make up 100% of the

galactic halo.

So the paradigm of dark matter shifted to heavy elementary particles. The

current paradigm for explaining dark matter is WIMPs (Weakly Interacting

Massive Particles). WIMPs with masses ≥ 102 GeV can explain the DM

relic density. This theoretical speculation is broadly known as the ‘WIMP

miracle’. The Boltzmann equation for number density of dark matter particle

say χ is [6]

dY

dx
=
−1

x2

s(mχ)

H(mχ)
〈σannv〉(Y 2 − Y 2

0 ), (1.8)

where Y = nχ/s, s(mχ) = g∗m
3
χ/x

3 is entropy density, H(mχ) = g∗π
2m4

χ/90M2
Plx

4

is the Hubble parameter, x = mχ/T , equilibrium yield Y0 = 0.145x3/2e−x and
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〈σannv〉 is annihilation cross section. One can analytically solve the equa-

tion(1.8) by further simplification with a new variable defined as

y =
s(mχ)

H(mχ)
〈σannv〉Y. (1.9)

The Boltzmann equation will look like

dy

dx
=
−1

x2
(y2 − y2

0) (1.10)

where, y0 = 0.192g
−1/2
∗ MPlmχx

3/2e−x. Since for x < xf , the dark matter will

be in equilibrium, hence Y tracks Y0 and for x > xf , Y >> Y0 as Y0 drops

as e−x, where xf = mχ/Tf corresponds to freeze-out temperature for dark

matter. These assumptions give a simple solution to equation (1.8)[6]

y(∞) ∼ xf . (1.11)

The value of xf can be found assuming that at x = xf , Y0 ∼ Y (∞) as after

this point dark matter interactions are out of equilibrium,

0.192g−1/2
∗ MPlmχx

3/2
f e−xf ≈ xf (1.12)

and hence

xf ≈ 24 +
mχ

100 GeV
. (1.13)

The abundance of any particle species (say i) is defined as

Ωi =
ρi
s

s0

ρc
, (1.14)

where s0 = 2890 cm−3 is current entropy density of the universe, ρ ≈ 4.4∗10−6

GeV cm−3.

Using the solution of the Boltzmann equation in equation (1.14)

Ωχh
2 ∼ g1/2

∗ xf
1.12 ∗ 10−10GeV2

〈σann〉
(1.15)

where h ∼ 0.65. Since the relic density of dark matter is Ωχh
2 ∼ 0.12, it gives

〈σannv〉 ∼ 10−9GeV−2. (1.16)

If we take the annihilation cross section 〈σannv〉 = πα2/m2
χ, where α = 1/137,

it gives mχ ∼ 300 GeV, which provides an interesting scenario in the light of

collider searches.
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The hypothesis of dark matter particles helps us in understanding many

other problems related to baryon acoustic oscillation, red shift distortions etc.

However we have null results in direct, indirect, as well as collider searches of

WIMPs till now.
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Chapter 2

Unified Models of Dark Matter,

Neutrino Mass and

Matter-Antimatter Asymmetry

The existence of dark matter, neutrino masses and matter-antimatter asym-

metry, all three problems are beyond the scope of the standard model of

particle physics. The see-saw mechanism to generate neutrino mass gives rise

to a lepton violating term which can solve the problem of matter-antimatter

asymmetry. Also the densities of dark matter and baryons are of the same

order i.e.,

ΩDM ∼ 5ΩB, (2.1)

which suggests that dark matter and baryonic matter can have same origin.

Hence, it is possible that these problems can be explained by a single combined

model.

2.1 Leptogenesis

Leptogenesis [7] is a mechanism which connects the cosmological matter-

antimatter asymmetry with the neutrino properties. In a see-saw model,

the extension of SM with three right-handed neutrinos gives rise to lepton

number violating interactions. Also, complex Yukawa couplings can produce

a finite CP asymmetry. Therefore, the Sakharov’s conditions can be satisfied
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Figure 2.1: L-violating interaction [8].

by the decay of see-saw partners of light neutrinos in leptogenesis. At last

the asymmetry produced in lepton sector can be transferred to baryon sector

via sphaleron process as

∆B =
8

28
∆(B − L). (2.2)

2.1.1 Toy Model for Leptogenesis

For better understanding of underlying concepts, one can simplify the lepto-

genesis by following assumptions

• The lepton asymmetry is produced in only one leptonic flavor.

• The mass spectrum of right-handed neutrinos is hierarchical i.e., MN1 <<

MN2,3 .

• Thermal production of N1.

The Lagrangian for leptogenesis will be

L = LSM − h1jN̄1`jφ− (M1/2)N̄1
cN1. (2.3)

The relevant processes to satisfy the Sakharov conditions are as follows

• Lepton number violation: The decay of right-handed neutrinos into

lepton and Higgs violates the lepton number by ∆L = 1 (Figure (2.1)).

The decay width of right-handed neutrinos Ni at tree level is given as

ΓDi =
(hh†)iiMi

8π
. (2.4)

For non-degenerate masses of heavy right-handed neutrinos, only de-

cay of the least massive one (say N1) will be relevant for leptogenesis.

The asymmetry produced by N2,3 will be erased by N1 as for T > M1

interactions are in equilibrium.
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Figure 2.2: Diagrams contributing to CP asymmetry[8].

• CP violation: The CP asymmetry parameter is defined as

εi =
ΓDi − Γ̄Di
ΓDi + Γ̄Di

, (2.5)

where ΓDi = ΣαΓ(Ni → lαφ
†) is decay width and Γ̄Di = ΣαΓ(Ni → l̄αφ)

is inverse decay width of Ni.

The decay of N1 is not CP invariant as the interference between tree-

level and one-loop level diagrams (as shown in Figure (2.2)) is non-zero.

For M1 << M2,3 the amount of CP asymmetry is calculated by inte-

grating out the N2,3,

ε1 = − 3

16π

M1

(hh†)11〈φ〉2
Im(h∗mνh

†), (2.6)

where 〈φ〉 = 174GeV, is vacuum expectation value of SM higgs and

mν is mass matrix of SM neutrinos. In a basis where heavy mneutrino

masses are diagonalized,

ε1 = − 3

16π

1

(hh†)11

∑
i=2,3

Im[(hh†)1i
2
]
M1

Mi

. (2.7)

• Out of equilibrium: The expansion of universe provides the out of

equilibrium conditions. For a decay width small compared to the Hub-

ble parameter i.e., ΓDi(T ) < H(T ) at T ∼ Mi, the heavy neutrinos

are out of thermal equilibrium, otherwise they are in thermal equilib-

rium. The convenient parameter to describe when the decays are out

of equilibrium is,

Ki =
ΓDi(T = 0)

H(T = Mi)
=

m̃

m∗
, (2.8)

where, m̃ is effective neutrino mass and m∗ is equilibrium neutrino mass.

For M1 being the least massive, K1 = 1 will be the boundary between

two phases which is equivalent to condition m̃ = m∗. It is obvious that

for K1 < 1 decay of N1 will be out of equilibrium and vice versa.
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2.1.2 The Boltzmann Equation

In the simplest form of leptogenesis only the lightest right-handed neutrino

decay contributes to lepton asymmetry and hence baryon asymmetry. Also

we do not consider the flavor pattern of neutrinos.

The Boltzmann equations for unflavored leptogenesis are

dNN1

dz
= −D(NN1 −N

eq
N1

), (2.9)

dNB−L

dz
= −εD(NN1 −N

eq
N1

)−WIDNB−L. (2.10)

In the equations (2.9) and (2.10), NN1 is the density of N1, N eq
N1

is equilibrium

density of N1, NB−L is density of asymmetry (B − L), and z = M1/T , D

accounts for decays which contribute to L-asymmetry.

D(z) =
ΓD1(z)

Hz
=

ΓD1

Hz
〈1
γ
〉. (2.11)

WID is the washout term which is contributed only by inverse decays, as

scattering processes will cease for K << 1:

WID =
ΓID(z)

Hz
=

ΓD1(z)

Hz

N eq
N1

N eq
l

. (2.12)

Solution to equation (2.10) is

NB−L(z) = N i
B−Le

∫ z
zi
WID(z′)dz′ − 3

4
ε1κ(z). (2.13)

The first term in (2.13) is proportional to initial abundance of (B−L) asym-

metry along with an exponentially decaying factor. This accounts for washout

effects. The second term in (2.13) describes the portion of (B − L) asym-

metry produced from decay of N1 itself. κ(z) is called efficiency factor as it

measures the efficiency of decays to produce (B − L) asymmetry and given

by

κ(z) =
4

3

∫ z

zi

D(NN1 −N
eq
N1

)e
∫ z
z′WID(z′′)dz′′dz′. (2.14)

By substituting 〈 1
γ
〉 = K1(z)

K2(z)
, which is thermally averaged dilation factor in

equations (2.11) and (2.12) and using them in (2.14), we get

κ(z) ' 4

3
(N i

N1
−NN1(z)), (2.15)

13



Figure 2.3: Plot of N1 number density with final NB−L number density vs.
MN1

T
along with other parameters [8].

where NN i
1

is initial abundance of N1. For z =∞, NN1(z) = 0 which implies

κ(z) = 4
3
N i
N1

. Since efficiency factor is proportional to initial abundance of

N1, therefore if N i
N1

= 0, no asymmetry will be produced.

In simplest case, when there is some initial abundance one can easily see

the evolution of NN1 and NB−L as well [8].

In Figure(2.3) we have reproduced the results for the unflavored leptoge-

nesis [8]. The amount of Baryon asymmetry is given by

∆B =
8

28
∆ (B − L) . (2.16)

In above plot ∆(B−L) = 9.602×10−11 which implies that ∆B = 3.44∗10−11

can said to be consistent with observations. Hence, leptogenesis can be very

successful for explaining BAU. However the only problem with Leptogenesis

is that its scale is very high > 1010 GeV which is not desirable from both

experimental as well as theoretical point of view which we will discuss in last

section of this chapter.

2.2 Combined Models for NM, BAU and DM

Leptogenesis describes a potential resolution to BAU and NM qualitatively.

There have been many independent models for dark matter as well. For
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Figure 2.4: Two sector Leptogenesis [9].

example, as we have already discussed, Weakly Interacting Massive Particles

(WIMP) is one of them.

However, there are many alternatives which connect dark matter with

baryon asymmetry and neutrino mass.

2.2.1 Two Sector Leptogenesis

Two sector leptogenesis is a simple extension of leptogenesis model with chiral

fermion χ and a scalar φχ which represents dark sector. In this model, which

is also referred as Asymmetric Dark Matter(ADM), asymmetry is produced

in both sectors simultaneously by the decay of heavy neutrinos [9].

The Yukawa Lagrangian for two sector leptogenesis is

−L ⊃ hiN̄i`φ+ λiN̄iχφχ. (2.17)

The key points of this model are as follows

• It is assumed that l, χ and Ni’s are charged under an approximate

global lepton symmetry with charges +1,+1 and −1 respectively.

• χ gets mass through Dirac mass term mχχχ̄ with a fermion χ̄ which is

oppositely charged under the approximate symmetry.

• Dark matter is stable as mχ < mφχ .

• The Ni’s are hierarchical, decay of lightest right-handed neutrino i.e.,

N1 produces asymmetry in both sectors simultaneously.

• The symmetric part in both sectors i.e., lepton and dark sectors are

annihilated, which only leaves lepton asymmetry and asymmetric dark

matter.
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CP asymmetry

The amount of CP asymmetries produced in the decay of N1 are

εχ '
M1

M2

1

16π(h2
1 + λ2

1)

[
2λ2

1|λ2|2 sin 2ψχ + λ1λ2h1|h2| sin(ψl + ψχ)
]
, (2.18)

εl '
M1

M2

1

16π(h2
1 + λ2

1)

[
2h2

1|h2|2 sin 2ψl + λ1λ2h1|h2| sin(ψl + ψχ)
]
, (2.19)

where h1, λ1 are real and positive but h2 = |h2|eiψl and λ2 = |λ2|eiψχ . The

ratio of asymmetries for some specific phases can be given as

εl
εχ
' h1|h2|
λ1|λ2|

. (2.20)

It is obvious from equation (2.20) that the asymmetry produced in both

sectors are not the same.

The Boltzmann equation for evolution of densities are given as

sH1

z

dYN1

dz
= −γD

(
YN1

YN1

eq − 1

)
+ (2↔ 2 processes), (2.21)

sH1

z

dY∆χ

dz
= γD

(
εχ

(
YN1

YN1

eq − 1

)
− Y∆χ

Yχ
eqBrχ

)
+ (2↔ 2 processes), (2.22)

sH1

z

dY∆`

dz
= γD

(
ε`

(
YN1

YN1

eq − 1

)
− Y∆`

Y`
eqBr`

)
+ (2↔ 2 processes), (2.23)

where YN1=n1/s, z = M1/T , γD = m3
N1
K1(z)/z, Y eq

N1
= 3

8
z2K2(z), Brχ

and Brl are branching ratios of respective decay channels. The first equation

explains the N1 abundance due to decays and inverse decays. The second and

third equations describe the evolution of asymmetry in respective sectors.

The first term is source of asymmetry and is proportional to ε’s and the

second term takes care of inverse decays. The 2 ↔ 2 processes as shown in

Figure (2.5), describe the scattering processes which can transfer one sector’s

asymmetry to the other.

The washouts are negligible if Γ2
1/M1H1 << 1 and N1 have initial abun-

dance. If YN1(0) = 0, then there will be negative asymmetry at z << 1 as the

inverse decays will be more effective than decays. Hence the positive asymme-

try produced at z > 1 can be cancelled completely. But a small asymmetry
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Figure 2.5: Feynman diagrams of processes which transfer the lepton asym-

metry between the two sectors [9].

survives because of the fact that washouts are different at different z. The

efficiency coefficients are estimated as (where j = l, χ)

ηj '
Γ2

1

H2
1

Brj. (2.24)

The asymptotic solution to Boltzmann equations are

Y ∞∆χ = ηχεχY
eq
N1

,

and Y ∞∆` = η`ε`Y
eq
N1

.

Now using equation (2.1), it can be easily seen that

mDMnDM = 5mbnb

mDM = 5mb
ε`
εχ

η`
ηχ
. (2.25)

Therefore, depending on branching fractions and washout regimes one can get

a wide range of masses unlike other ADM models. In two sector leptogenesis

the masses for dark matter can vary from a keV to 10 TeV [9].

2.2.2 WIMPy Baryogenesis

In this model both dark sector and baryons have common origin of asymmetry

[10]. Here, the Sakharov’s conditions are satisfied by annihilation of WIMPs

to SM baryon and some exotic particles (say exotic baryons) (Figure (2.6)).

The SM baryon and exotic particle are oppositely charged under a U(1) gauge

symmetry. Hence, the annihilations create asymmetry in both sectors but

preserve the global symmetry.
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Figure 2.6: WIMPy Baryogenesis [10].

To generate the sufficient asymmetry the inverse annihilations i.e., washout

processes must be suppressed. The kinematical condition for that is given as

mDM 6 mexoticbaryon 6 2mDM.

Solving boltzmann equations we get

Y∆B = εYχ(xwashout)− Yχ(∞),

i.e., to get the required baryon asymmetry, washout must freeze out before

WIMP anihilations.

2.2.3 Asymmetric Dark Matter from higher dimensional

operators

In this model asymmetry generated in one sector at high temperatures and

later on transferred to other sector by some higher dimensional operators[11].

The interactions responsible for transfer of asymmetry freeze out and fix the

relic density of dark matter. In ADM, the number densities of dark matter

and baryons are of same order i.e., nDM ∼ nb. Therefore to explain dark

matter relic density mDM ' 5mb i.e., mDM ' 5 GeV.

2.3 Bounds on RH Neutrino Mass from Ther-

mal Leptogenesis

In any leptogenesis model, the amount of final asymmetry produced is always

proportional to CP asymmetry,

nB−L
s

= εη
neqNi
s
, (2.26)
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where Ni is right-handed neutrino whose decay is producing the asymmetry

and η 6 1 is the efficiency factor which is a model dependent parameter. In

thermal leptogenesis, where Ni’s are produced by scattering in thermal bath,

the equilibrium density is estimated as neqNi/s ∼ 0.4/g∗, where g∗ ' 230 is

number of propagating states in thermal bath.

The amount of CP asymmetry produced in leptogenesis with MN1 <<

MN2,3 is given as

ε1 =
−3

8π

MN1

〈φ〉2
1

[hνh
†
ν ]11

Im([hνMνh
†
ν ]). (2.27)

In see-saw mechanism the most general Yukawa coupling is given as,

hν =
1

〈φ〉
D√MRD

√
mU

†, (2.28)

where R is an orthogonal matrix, U is PMNS matrix and D√A = +
√
DA

where D is a diagonal matrix,

DM = diag(MN1 ,MN2 ,MN3), (2.29)

Dm = diag(m1,m2,m3) = U †MνU. (2.30)

Now, substituting all these expressions in equation (2.27) and using the

orthogonality condition for matrix R, we get

ε1 6
3

8π

MN1

〈φ〉2
(m3 −m1). (2.31)

From equation (2.26) and equation (2.31), we get

M >
8π

3
η

(
nB−L
neqN1

〈φ〉2

(m3 −m1)

)
. (2.32)

Since nB−L/s ∼ 10−10 and (m3 − m1) ∼
√

∆m2
atm which have value in the

range 0.4–0.8 eV, we get a lower bound on MN1 > 109 GeV. This bound is well

known in literature as ‘Davidson Ibarra bound’ [12] on masses of right-handed

neutrinos.

However, for thermal production of right-handed neutrinos, the reheat

temperature must be larger than MN1 which is not favorable by various cos-

mological models as it gives rise to the problem of overproduction of grav-

itinos. Also very high masses are out of scope of present and near future

experiments. To relax the bound on masses, one can use non-thermal or reso-

nant leptogenesis mechanism which can successfully explain leptogenesis with

masses of order of TeV.
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Chapter 3

Dark Matter and Leptogenesis

in the Inert Doublet Model

As we know, in the SM Higgs resides in a SU(2) doublet and a particular

vacuum is chosen after symmetry breaking. A widely used parameter ρ is an

important check for SM Higgs isospin and is defined as

ρ =
m2
W

m2
Z cos2 θW

, (3.1)

where mW and mZ are masses of W and Z bosons respectively and θW is

Weinberg angle. For SM, at leading order ρ = 1 which perfectly agrees with

experimental value ρ = 0.9998+0.0008
−0.0005. However besides of Higgs doublet, SM

can be extended with more multiplets. Say φk are Higgs multiplets with weak

isospins Ik and vacuum expectation values vk. Then at the tree level ρ is given

by,

ρ =

∑
k

[
Ik(Ik + 1)− Ik3

]
v2
k

2
∑

k(I
k
3 )v2

k

. (3.2)

The equation (3.2) implies that ρ = 1 for any number of Higgs doublets.

Therefore, one can extend SM with any number of doublets in principle.

In this chapter, we will investigate the possibilty that whether the exten-

sion of SM with inert Higgs doublet is a good choice to build combined model

for dark matter and leptogenesis.
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Figure 3.1: Feynman diagrams involved in leptogenesis with inert Higgs H2

[13].

3.1 Inert Doublet Model

The Inert Doublet Model(IDM) is a very simple extension of SM by three

right-handed neutrinos and one doublet which is an inert Higgs doublet. To

have a stable dark matter an additional Z2 symmetry has been introduced

under which new particles have odd parity and SM particles have even par-

ity. This forbids the generation of neutrino mass at tree level as the terms

containing right-handed neutrino, left-handed neutrino and SM Higgs is not

allowed at tree level.

The Lagrangian for model is [16]

L = LSM + (Dµη)†(Dµη)− V (φ, η)− Mi

2
N̄iN

c
i − (hαiN̄iη

†`α + h.c.), (3.3)

where φ is SM Higgs doublet and η is an inert Higgs doublet with

V (φ, η) = m2
φφ
†φ+m2

ηη
†η + λ1(φ†φ)2 + λ2(η†η)2 + λ3(φ†φ)(η†η)

+λ4(η†φ)(φ†η) + [
λ5

2
(φ†η)2 + h.c.]. (3.4)

The key points of model can be summarized as follows

• The mass spectrum of right-handed neutrinos Ni’s is assumed as MN1 <

MN2 < MN3 .

• Unlike Leptogenesis, here interactions of Majorana neutrinos are medi-

ated by inert Higgs say H2 instead of SM Higgs. Therefore, the decay

process Ni → H2 + lα will be lepton number violating process with

∆L = 1 for each decay (Figure (3.1)).
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• The lightest component of inert doublet η (say H2) will be the stable

dark matter.

• The quartic couplings will play an important role in dark matter relic

density as the components of η can effectively coannihilate via quartic

interactions.

• Neutrino masses are generated at the loop level.

• The source of CP violation and out of equilibrium conditions will be

same as it was in leptogenesis, provided SM Higgs is replaced by the

inert Higgs.

3.1.1 Dark Matter

In unitary gauge the SM Higgs is φT = (0, 〈φ〉 + h√
2
) and the inert Higgs

doublet is ηT = (η+,
1√
2
(ηR + iηI)), therefore equation (3.4) can be written as

V (φ, η) =
[
m2
φ

2
+ λ1〈φ〉2

]
(h†h) +

[
m2
η + λ3〈φ〉2

]
η+η−

+1
2

[
m2
η + λ+〈φ〉2

]
η2
R + 1

2

[
m2
η + λ−〈φ〉2

]
η2
I

+
√

2λ1〈φ〉h3 + 1
4

[√
λ1h

2 −
√
λ2(η+η− + η2

R + η2
I )
]2

+1
2
h2
[
η+η−(λ3 +

√
λ1λ2) + η2

R(λ+ +
√
λ1λ2)

]
+

1

2
h2
[
η2
I (λ− +

√
λ1λ2)

]
, (3.5)

where λ± = λ3 + λ4 ± λ5 and masses of component fields of η are Mηc =[
m2
η + λ3〈φ〉2

]
, MηR =

[
m2
η + λ+〈φ〉2

]
, MηI =

[
m2
η + λ−〈φ〉2

]
. It is assumed

that vacuum is stable i.e., V is bounded from below, which suggests

λ1, λ2 > 0; λ3, λ± > −
√
λ1λ2. (3.6)

Since the vacuum expectation value of new doublet η is zero, Z2 is unbroken,

hence the lightest neutral component of η behaves as DM. If ηR is lightest,

we have

MηI ,Mηc > MηR ⇒ λ5 < 0, λ4 + λ5 < 0. (3.7)
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The mass splitting among the component fields of η are given as

MηI −MηR

MηR

' | λ5 | 〈φ〉2

M2
ηR

, (3.8)

Mηc −MηR

MηR

' | λ4 + λ5 | 〈φ〉2

M2
ηR

. (3.9)

Dark Matter abundance

The Boltzmann equation for total density of dark matter i.e., n =
∑

i ni is

given as follows, where i = 1 is for the lightest of dark matter ηR

dn

dx
= −〈σeffv〉(n2 − (neq)2), (3.10)

where x = mi/T , 〈σeffv〉 is averaged effective coannihilation cross-section,

neq = m3
i /(2πx)3/2e−x. The relic abundance is estimated as

ΩηRh
2 ' 1.07 ∗ 109GeV

J(xF )
√
g∗MPl

, (3.11)

where MPl ∼ 1019 GeV is the Planck mass, J(xF ) is given as

J(xF ) =

∫ ∞
xF

〈σeffv〉
x2

dx, (3.12)

where, xF = x(TF ) ∼ 25 which we have seen in equation (1.13). TF is the

freeze-out temperature of DM, and

〈σeffv〉 =
1

g2
eff

4∑
i,j=1

〈σij〉
neqi n

eq
j

(neq1 )2
, (3.13)

where geff is effective number of degrees of freedom and 〈σij〉 = aij + bij〈v2〉

is thermally averaged co-annihilation cross section between species i and j,

which is given in terms of averaged relative velocity. For cold dark matter

〈v2〉 is very small. Therefore, the relic density is dominated by aij which is

given as [15]
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aeff =
A

m2
1

(N11 +N22 + 2N34) +
B

m2
1

(N13 +N14 +N23 +N24)

+
C

m2
1

[
(λ2

+ + λ2
− + 2λ2

3)(N11 +N22) + (2λ5)2(N33 +N44 +N12)
]

+
C

m2
1

[(λ4 + λ5)2(
∑
i=3,4

(N1i +N2i)) + ((λ3 + λ4)2 + 4λ2
3)N34],

where Nij,

Nij =
1

g2
eff

neqi n
eq
j

(neq1 )2
. (3.14)

It is clear from equation(3.14) that the relic density of dark matter gives weak

bounds on quartic coupling but gives no bounds on Yukawa couplings.

However, λ5 is constrained by direct searches of DM. The direct detec-

tion experiments aim to observe low-energy recoils of nuclei induced by in-

teractions with particles of dark matter. After such a recoil the nucleus

will emit energy as, e.g., scintillation light or phonons, which is then de-

tected by sensitive apparatus. The kinematical condition for a interaction

like ηR + Nuclei→ ηI + Nuclei is,

γMηR +MN = EN +MηI , (3.15)

where MN is rest mass of nuclei and EN is the total energy of nuclei after

scattering, γ = 1/
√

1− v2, where v is the velocity of ηR (in units of c). Hence

the equation (3.16) can be written as

MηR −MηI + v2MηR = EN −MN ' Erecoil, (3.16)

where Erecoil is the recoil energy of nuclei. Since ηR is stable dark matter, i.e.,

MηR < MηI . Therefore, an inelastic scattering of DM with nuclei can occur

if the dark matter velocity is

v2
DM >

MηI −MηR

MηR

. (3.17)

If the scattering is mediated by Z boson, the estimated value of mass splitting

for MηI ,MηR >> mZ is [14]

| MηI − MηR |> 110 keV, which gives a bound on λ5

through equation (3.8) for MηR ∼ O(1) TeV

λ5 > 10−5. (3.18)
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Figure 3.2: Feynman diagram for generation of neutrino mass at loop level

[15].

This bound on λ5 plays an important role in neutrino masses as explained in

the following section.

3.1.2 Neutrino Masses

Since Ni’s are odd under Z2, the tree level interaction of Ni and SM Higgs φ

is forbidden. Neutrino masses are generated by one loop diagrams as shown

in Figure (3.2).

The elements of mass matrix is given as

Mν
αβ =

∑
i

hαihβi
λ5〈φ〉2

8π2

Mi(
M2

η −M2
i

) (1 +
M2

i(
M2

η −M2
i

) ln
M2

i

M2
η

)
, (3.19)

Mν
αβ =

∑
i

hαihβiΛi , (3.20)

where Λi describes the scale of neutrino mass, M2
η = [m2

η + (λ3 + λ4)〈φ〉2],

since λ5 is very small and mη >> 〈φ〉, the difference in masses of components

of η can be neglected for this analysis. To understand the neutrino mixing

patterns one can assume the flavor pattern of Yukawa couplings as follows

[15]

hei = 0, hµi = hi, hτi = q1hi, (3.21)

he3 = h3, hµ3 = q2h3, hτi = q3h3. (3.22)
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The mass matrix of neutrino will take a simple form as follows

Mν = h2
iΛi


0 0 0

0 1 q1

0 q1 q2
1

+ h3
3Λ3


1 q2 −q3

q2 q2
2 −q2q3

−q3 −q2q3 q2
3

 . (3.23)

For q1, q2, q3 = 1 the PMNS matrix have tribimaximal form

UPMNS =


2√
6

1√
3

0

−1√
6

1√
3

1√
2

1√
6
−1√

3
1√
2

 . (3.24)

In this case one can easily diagonalize the mass matrix and can find the

eigenvalues

mν
1 = 0, mν

2 = h2
iΛi, mν

3 = h2
3Λ3, where i = 1 or 2. (3.25)

Since one of the eigenvalues is zero, one can directly compare the eigenvalues

with
√

∆m2
atm and

√
∆m2

sol. However, the mixing matrix will no longer be

tribimaximal if we consider θ13 to non-zero. Therefore one can numerically

diagonalize the matrix to impose the constraints on qi’s and can predict the

value of θ13. For example, for an arbitrary value of q1 = 0.85, other parameters

are calculated to be (q2, q3) = (−0.27, 2.4) with sin2(2θ13) = 0.085 [15].

3.1.3 Baryon asymmetry

Since the masses ofNi’s are hierarchical, the lightest of right-handed neutrinos

will satisfy the Sakharov’s conditions. The CP symmetry is produced by

interference of one loop level to tree level diagrams (Figure (3.1)). The out

of equilibrium decay of N1 gives the condition ΓDN1
< H(T = MN1), where

ΓDN1
= |h1|2

8π
(1 + q1)2MN1(1−

M2
η

M2
N1

)2 and hence

| h1 |2< 2 ∗ 10−8(1 + q2
1)−1/2

(
MN1

1 TeV

)1/2

. (3.26)

The generated asymmetry can be washed out by inverse decay and 2 ↔ 2

scatterings like ηη → lαlβ and ηl̄α → η†lβ. Hence, for asymmetry to sur-

vive, the washout should freeze out before the freeze out of N1 decay. The
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Boltzmann equations for evolution of densities are given as

dYN1

dz
=

−z
sH(MN1)

(
YN1

Y eq
N1

− 1

)[
γN1
D +

∑
i=2,3

(
γ

(2)
N1Ni

+ γ
(3)
N1Ni

)]
, (3.27)

dYl
dz

=
z

sH(MN1)

[
ε

(
YN1

Y eq
N1

− 1

)
γN1
D −

2Yl
Y eq
l

(
γ

(2)
N + γ

(3)
N

)]
, (3.28)

where z = MN1/T , H(MN1) = 1.66MN1/
√
g∗MPl is Hubble parameter, Yx =

nx/s, s = 0.37g∗T
3 is the entropy density of universe, the equilibrium densities

are Y eq
N1

= 45z2K2(z)/2π4g∗, Y
eq
l = 45/π2g∗. Later, when universe cools down

to the sphaleron decoupling temperature, the asymmetry is transferred to the

baryonic sector,

YB =
−8

28
Yl(zsphl). (3.29)

For a set of values of parameters i.e., q1 = 0.85, (q2, q3) = (−0.27, 2.4),

Mη = 1 TeV, MN1 = 2 TeV, MN2 = 6 TeV, MN3 = 10 TeV, λ5 = 10−5

and (|h1|, |h2|, |h3|) = (3× 10−8, 3.45× 10−3, 1.5× 10−3) as given in [15], the

amount of final baryon asymmetry produced is

YB = 2.7 ∗ 10−12. (3.30)

Hence, the combined solution of dark matter, neutrino mass and baryon asym-

metry in inert doublet model is possible. However, the parameter space has

not been searched completely as we have not taken 2 ↔ 2 processes into

account.
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Chapter 4

Discussion and Future Scope

The combined models are better choice for explaining the dark matter, neu-

trino mass and baryon asymmetric universe as they require a small extension

of standard model. Also the parameters in combined models can be well con-

strained because they need to satisfy the experimental observations for all

three problems simultaneously, this leads to promising parameter space for

experimental searches.

The inert doublet model with three right-handed neutrinos is an interest-

ing framework for both leptogenesis and dark matter. The lightest component

of inert doublet is identified with dark matter, which gives a bound on quartic

couplings leaving the Yukawa couplings to be determined from the conditions

for successful leptogenesis. The neutrino masses are generated at loop level

for a particular flavor structure of Yukawa couplings. In equation (3.24), the

mass matrix is diagonalized for arbitary values of q1 to get the contours of

(q2, q3) and predict the value of θ13. However, one can take a more general

form of Yukawa couplings and diagonalize the mass matrix to get the contours

for parameters instead of some arbitary inputs. For example [18],

he1
p1

=
−2hµ1

q1

= 2hτ1 = 2h1, (4.1)

he2
p2

=
hµ2

q2

= −hτ2 = h2, (4.2)
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which gives the mass matrix of form

Mν = h2
1Λ1


4p2

2 −2p1q1 2p1

−2p1q1 q2
1 −q1

2p1 −q1 1

+ h2
2Λ2


p2

2 p2q2 −p2

p2q2 q2
2 −q2

−p2 −q2 1

 .(4.3)

Hence one can find the diagonalizing matrix for Mν and the values of mixing

angles. By comparing difference of square of eigenvalues with the observed

values of atomspheric neutrinos ∆m2
atm and solar neutrinos ∆m2

sol, one can

get a parameter space for (p1, p2) and (q1, q2).

Also it is obvious from the equation (3.31) that the amount of asymmetry

produced differs by two orders from observed values. To enhance the asym-

metry one can impose degenerate masses to right-handed neutrinos, which

will enhance the CP asymmetry without increasing the washouts [13][19].
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