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Abstract 

            Cancer is the second savage cause of deaths worldwide. Currently, 

finding a cure to such a deadly disease is a matter of concern. 

Antimitotic compounds provide promising solution to the 

aforementioned problem. The primary aim of antimitotic 

compounds is to interfere with the polymerization of tubulin 

components of microtubules. This results in hindrance of cell 

division, an essential process of cell life cycle, leading to apoptosis. 

Therefore, inhibiting tubulin polymerization directly leads to cell 

death, which makes them crucial targets by cytotoxic compounds. 

Tubulysin family of natural products is one such example of those 

prominent antimitotic compounds, isolated from myxobacteria 

culture extracts. Due to their commendable cytotoxic activity, 

tubulysins have become a center of attraction for research in the 

field of chemotherapy.  

            Structurally, tubulysins are tetrapeptides consisting of four unusual 

amino acids, N-methyl pipecolic acid (Mep), isoleucine (Ile), 

tubuvaline (Tuv) and tubutyrosine (Tut) or tubuphenylalanine (Tup). 

Among these, pipecolic acid is an interesting fragment to analyze 

since tubulysin family of compounds bind to tubulin protein 

primarily through pipecolic acid and it is least tolerant to 

modifications. All these factors provide a growing opportunity for 

discovering new and better methodologies for synthesis of pipecolic 

acid. 

            In this work, we have reported two different synthetic routes which 

might be used for the gram scale synthesis of pipecolic acid. We 

started our synthesis using naturally occurring L-serine as the chiral 

source and successfully synthesized advanced intermediates which 

can be used for furnishing the final target pipecolic acid in future. 



vi 
 

All the intermediates are well characterized using various 

spectroscopic techniques.  
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                                                                        Chapter 1 

 

Introduction 

1.1 General introduction 

Cancer, being one of the most deadly diseases in the world, is 

responsible for millions of deaths per year. In 2012, 14.1 million new 

cancer cases, 8.2 million cancer deaths and 32.6 million people living with 

cancer have been reported worldwide [1]. With 1.1 million new cancer 

cases estimated every year, India burdened the world with 7.8% of new 

total cancer cases and 8.33% of global cancer deaths [2]. 

Cancer occurs when cells grow abnormally in an uncontrolled 

manner. Unlike normal cells, cancerous cells multiply in a haphazard way 

forming lumps and tumors, which can spread to other parts of the body. 

1.2 Treatment of cancer 

Anticancer drugs are used for cancer treatment; however cancer 

develops resistance and is defiant [3]. Anticancer drugs can either be 

isolated from natural sources or can be synthesized in laboratories. 

Disrupting micro tubular assembly plays a major role in anticancer 

therapy. Microtubules are of utter importance for sustenance of cellular 

life. They play a crucial role in cell division, which make them an alluring 

target for anticancer drugs. 

Natural products such as taxol or tubulysin target microtubules, 

mechanistically inhibit depolymerization of microtubules or 

polymerization of tubulin-building blocks respectively and induces 

apoptosis in cells [4, 5]. Microtubules consist of α and β-tubulins 

heterodimers that undergo both polymerization and depolymerization in a 

process called polymerization dynamics as shown in figure 1 [6]. 
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Therefore, microtubule targeting drugs can be classified into two 

categories: one that stabilize microtubule assembly (e.g. paclitaxel) and 

other that destabilize microtubule assembly (e.g. tubulysins). 

 

 Figure 1. Polymerization dynamics of microtubules 

1.3 Tubulysins as potent anticancer drugs 

        Tubulysins were reported for the first time in the year 2000. Isolated 

from myxobacterial cultures [7], tubulysins are indispensable cytotoxic 

compounds that act by inhibiting tubulin polymerization process leading 

to apoptosis [8]. Tubulysin family of natural products show commendable 

cytostatic activity against several mammalian cells with IC50 values in 

nano to picomolar range [7, 9]. 

        In addition to their outstanding antitumor activity, tubulysins and 

their analogues exhibit dynamic activity against several multidrug resistant 

carcinoma cell lines [10]. Surprisingly, they are 20 to 10000-fold more 

cytotoxic than clinically approved anticancer drugs such as epothilone, 

vinblastine and paclitaxel [11, 12].
 
Impressive biological activity coupled 
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with their natural scarcity has spurred research in exploring new routes for 

synthesis of tubulysins and their structurally modified analogs. 

        On the structural aspects, tubulysins are linear tetrapeptides 

comprising of four amino acids: D-N-methyl pipecolic acid (Mep), L-

isoleucine (Ile), tubuvaline (Tuv), which is itself is based on two 

condensed amino acids and tubutyrosine (Tut) or tubuphenylalanine (Tup) 

as shown in figure 2. In addition, an unusual tertiary amide N, O-acetal 

ester is present in the most active tubulysins [12]. 

 

Figure 2. Structure of tubulysin family of natural products 

Table 1. Structure of tubulysin family of natural products 

Tubulysin R1 R2 R3 

A CH2PhOH C(O)CH3 CH2OC(O)CH2CH(CH3)2 

B CH2PhOH C(O)CH3 CH2OC(O)CH2CH2CH3 

C CH2PhOH C(O)CH3 CH2OC(O)CH2CH3 

D CH2Ph C(O)CH3 CH2OC(O)CH2CH(CH3)2 

E CH2Ph C(O)CH3 CH2OC(O)CH2CH2CH3 

F CH2Ph C(O)CH3 CH2OC(O)CH2CH3 

G CH2PhOH C(O)CH3 CH2OC(O)CH=C(CH3)2 

H CH2Ph C(O)CH3 CH2OC(O)CH3 

I CH2PhOH C(O)CH3 CH2OC(O)CH3 

U CH2Ph C(O)CH3 H 
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        Tubulysins belong to a class of anticancer drugs called vinca domain 

ligands. These are the mictrotubule inhibitors which bind to the 

longitudinal interface formed by two tubulin heterodimers. On binding, 

tubulysins cause two tubulin subunits to bend and twist slightly. The 

aftermath of this binding and twisting leads to conformational shift of 

consecutive α,β-tubulins heterodimer from a linear to curved form 

resulting in microtubule disassembly [13]. 

1.4 Pipecolic acid: an integral fragment of tubulysins 

        Pipecolic acid, being least tolerant to modifications, is an interesting 

molecule of research. The tertiary amine present in the left domain of 

tubulysin structure plays an inevitable role in its binding with vinca 

domain of tubulin protein. This amino acid residue snuggly fits into the 

narrowest channel between two tubulin subunits and utilize its backbone 

to interact with the other parts of tubulin protein. 

        The basic nitrogen present in the ring forms hydrogen bonding with 

oxygen of Asp179 of β subunit of tubulin protein. Several studies have 

shown that even trivial modifications in its structure can bring loss to the 

biological activity [14]. 

        Dorin et al. studied various transformations in pipecolic acid structure 

and its effects on biological activities. Their research concluded that R- 

configuration on the chiral center in the ring is a requisite for its proper 

orientation in the vinca domain. Moreover, replacement of methyl group 

with acyl or any other groups proved to be detrimental to its activity [15]. 

        Another report by Nicolaou and coworkers highlighted significant 

loss in potency on replacement of pipecolic acid moiety with its five 

membered proline counterpart, thus, providing strict evidence for the 

requirement of pipecolic acid binding site within the tubulin receptor [16]. 

  



5 
 

  Chapter 2       

                                                                                                                                                  

Review of past work 

2.1    Literature review 

         Prior studies have reported various synthetic routes for pipecolic acid 

and its substituted derivatives. Pal et al. synthesized pipecolic acid via 

photocatalytic redox process using α-amino acid as the chiral source [17]. 

Nazabadioko and coworkers reported a chemoenzymatic process to obtain 

enantiopure pipecolic acid in good yields [18]. Ring closing metathesis 

has also been exploited for synthesizing pipecolic acid and their 

derivatives [19]. Recently, a short and facile synthesis has been reported 

for synthesis of pipecolic acid and derivatives using stereoselective aldol 

reaction [20]. 

        C-3 substituted pipecolic acid derivatives are also reported via 

asymmetric induction using imine and β-amino alcohol as precursors [21, 

22].
 
In addition to this, interesting desymmetrization reactions have been 

used for the synthesis of C-4 substituted derivatives, e.g., 4-

hydroxypipecolic acid, which is an important substrate for preparation of 

substituted pipecolic acids [23].
 

        On top of this, polysubstituted pipecolic acid derivatives have been 

synthesized via an intramolecular reaction between an iminium ion and an 

allylsilane moieties with complete control on diastereoselectivity [24].  

        Numerous work have been directed towards the synthesis of mono or 

polysubstituted pipecolic acid derivatives. Nonetheless, enantioenriched 

synthesis of such compounds remains a center of interest for chemists. 
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2.2   Objective of thesis 

        In this work, we have reported new synthetic route for the synthesis 

of pipecolic acid which might exhibit high efficacy for gram scale 

synthesis of pipecolic acid. It is a ten step total synthesis starting from L-

serine aminoacid as the chiral source.  
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Chapter 3 

 

Experimental Section 

3.1 General Information and methods 

        All moisture sensitive reactions were conducted in oven-dried 

glassware under a nitrogen or argon atmosphere. Analytical thin-layer 

chromatography (TLC) was performed on SiO2 60 F-254 plates. 

Visualization was accomplished by UV irradiation at 254 nm or by 

staining with any one of the following reagents: iodine, ninhydrin or 

KMnO4. All compounds were purified by column chromatography which 

was performed using 100-200 m or 230–400 m mesh silica gel. 

Distilled hexane and distilled ethyl acetate were used as eluents in column 

chromatography. All reagents were purchased from commercial suppliers 

and used without further purification unless otherwise stated. Solvents 

were distilled using suitable drying agents under nitrogen atmosphere. IR 

spectra were recorded using an Agilent FTIR spectrophotometer. 
1
H and 

13
C NMR were recorded by using Bruker AV 400 MHz NMR 

spectrometer with TMS as internal reference. Deuterated solvents like 

CDCl3, D2O were used as solvents for preparing NMR samples. Mass data 

were recorded on Bruker micro TOF-Q II by positive and negative mode 

electrospray ionization method. 

3.2 Drying of solvents 

Various common organic solvents employed for carrying out reactions 

were dried using drying agents such as CaH2, P2O5, MgSO4 and Na2SO4. 
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3.2.1 Drying of THF 

        Required amount of THF was taken in a round bottom flask. Sodium 

wire and benzophenone were added to the same flask. The mixture was 

heated at reflux until the solvent turned deep blue in colour. This indicates 

that the solvent is completely dry and moisture free. After cooling down 

the flask to room temperature, required amount of THF was distilled off 

and collected in another round bottom flask containing flame dried 4Å 

molecular sieves. 

3.2.2 Drying of DCM/ACN 

        Required amount of DCM/ ACN was taken in a round bottom flask. 

A pinch of CaH2 was added to the same flask and was stirred overnight. 

Finally, the solvent was distilled off under reflux conditions and collected 

in another round bottom flask containing flame dried 4Å molecular sieves. 

3.2.3 Drying of methanol/ethanol 

        Required amount of methanol/ ethanol (50−100 ml) was taken in a 

round bottom flask. Magnesium turnings (250 mg) and iodine (25 mg) 

were added to the same flask. The mixture was heated to reflux until all of 

the magnesium had reacted. After cooling down the flask to room 

temperature, the solvent was distilled off and collected in another round 

bottom flask containing flame dried 4Å molecular sieves. 

3.2.4 Drying of DMF 

        Required amount of DMF was taken in a round bottom flask. A pinch 

of CaH2 was added to the same flask and was stirred overnight. Finally, 

the solvent was distilled off via vacuum distillation under reflux 

conditions and collected in another round bottom flask containing flame 

dried 4Å molecular sieves. 
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3.3 Synthesis of (R)-N-(1-((tert-butyldiphenylsilyl)oxy)-3-

hydroxypropan-2-yl-4-methylbenzenesulfonamide 8 

3.3.1 Synthesis of methyl L-serinate hydrochloride 11 

 

        Thionyl chloride (0.67 mL, 9.41 mmol) was added dropwise to a 

suspension of L-serine (1.0 g, 9.51 mmol) in methanol (15 mL). The 

solution was heated at reflux with stirring for 5 h and then cooled to 

ambient temperature. The solvent was removed under reduced pressure to 

afford methyl L-serinate hydrochloride (1.47 g, 99%) as brown solid, 

which was used in the next step without further purification. TLC: Rf 0.1 

(1:20, MeOH/CH2Cl2). IR (neat): 3348 (O−H), 2922 (C−H), 1747 (C=O), 

1591 (N−H), 1247 (C−N), 1092 (C−O) cm
-1

. 
1
H NMR (D2O, 400 MHz) δ: 

4.22 (t, 1H, J = 4.0 Hz), 4.05 (dd, 1H, J = 4.0 Hz, 12.0 Hz), 3.95 (dd, 1H, 

J = 4.0 Hz, 12.0 Hz), 3.79 (s, 3H); 
13

C NMR (D2O, 100 MHz) δ: 168.91, 

59.20, 54.67, 53.66. MS (ESI) m/z (M+H)
+
 Calculated for C4H9NO3: 

120.0655; Observed: 120.0632. 

3.3.2 Synthesis of methyl O-(tert-butyldiphenylsilyl)-L-serinate 10 

 

       To a suspension of methyl L-serinate hydrochloride (100 mg, 0.64 

mmol) in THF (2 mL), was added Et3N (0.26 mL, 1.92 mmol) under inert 

atmosphere. After cooling to 0 °C, DMAP (0.73 mg, 0.006 mmol) was 

added as solid and TBDPSCl (0.17 mL, 0.67 mmol) was added via glass 
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syringe to the same flask. The solution was warmed to room temperature 

and stirred for 16 h. The reaction mixture was filtered off and washed with 

EtOAc (3 × 10 mL). The filtrate was concentrated to give yellow crude 

oil, which was purified through column chromatography using 20% ethyl 

acetate and hexane. Column was neutralized using 0.5 mL Et3N in 100 mL 

hexane. The pure compound was obtained as yellow oil (170 mg, 75%). 

TLC: Rf 0.48 (100% EtOAc). IR (neat): 3365 (N−H), 2933 (C−H), 1746 

(C=O), 1680 (N−H), 1430 (C=C), 1217 (C−N), 1108 (C−O), 700 (=C−H) 

cm
-1

. 
1
H NMR (CDCl3, 400 MHz) δ: 7.65−7.62 (m, 4H), 7.45−7.37 (m, 

6H), 3.99 (dd, 1H, J = 4.0 Hz, 8.0 Hz), 3.89 (dd, 1H, J = 4.0 Hz, 12.0 Hz), 

3.71 (s, 3H), 3.56 (t, 1H, J = 8.0 Hz), 1.04 (s, 9H); 
13

C NMR (CDCl3, 100 

MHz) δ: 173.50, 134.53, 134.51, 132.06, 132.01, 128.78, 126.73, 126.70, 

65.15, 55.38, 50.96, 25.69, 18.25. MS (ESI) m/z (M+Na)
+
 Calculated for 

C20H27NO3Si: 380.1652; Observed: 380.1796. 

3.3.3 Synthesis of methyl O-(tert-butyldiphenylsilyl)-N-tosyl-L-serinate 

9  

 

        4Å molecular sieves were flame dried in a 50 mL two neck round 

bottom flask under reduced pressure for about 15 minutes. After cooling 

down the flask to room temperature, tosyl chloride (138.6 mg, 0.727 

mmol) was added as solid to the flask containing MS and CH3CN (5 ml) 

was added to the reaction flask followed by addition of Et3N (0.19 mL, 

1.39 mmol). The suspension was stirred for 10 minutes and a solution of 

10 (200 mg, 0.55 mmol) in CH3CN (2 mL) was added to the reaction 

mixture. The progress of reaction was monitored by TLC. After complete 

consumption of 10, the reaction mixture was quenched by adding 2−5 mL 

of water and extracted with EtOAc (3 × 20 mL). The organic layer was 
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dried over anhydrous Na2SO4, filtered and concentrated under reduced 

pressure using rotatory evaporator. The crude mixture was purified by 

column chromatography using 15% ethyl acetate and hexane. The pure 

product was obtained as white solid (258 mg, 90%). TLC: Rf 0.48 (1:10 

EtOAc/hexane). IR (neat): 3332 (N−H), 2959 (C−H), 1740 (C=O), 1596 

(N−H), 1431(C=C), 1345 (N−S=O), 1253 (C−N), 1163 (S=O), 1092 

(C−O), 705 (=C−H) cm
-1

. 
1
H NMR (CDCl3, 400 MHz) δ: 7.71 (d, 2H, J = 

8.0 Hz), 7.58 (t, 4H, J = 8.0 Hz), 7.46−7.34 (m, 6H), 7.27−7.25 (m, 2H), 

5.45 (d, 1H, J = 8.0 Hz, NH), 4.06−4.02 ( m, 1H), 3.97 (dd, 1H, J = 4.0 

Hz, 8.0 Hz), 3.83 ( dd, 1H, J = 4.0 Hz, 12.0 Hz), 3.55 (s, 3H), 2.41 (s, 3H), 

1.00 (s, 9H); 
13

C NMR (CDCl3, 100 MHz) δ: 170.10, 143.58, 137.08, 

135.49, 132.54, 132.51, 129.94, 129.64, 127.82, 127.78, 127.14, 65.18, 

57.45, 52.48, 26.64, 21.54, 19.21. MS (ESI) m/z (M+Na)
+
 Calculated for 

C27H33NO5SSi: 534.1741; Observed: 534.1915. 

3.3.4 Synthesis of (R)-N-(1-((tert-butyldiphenylsilyl)oxy)-3-

hydroxypropan-2-yl-4-methylbenzenesulfonamide 8 

 

        9 (300 mg, 0.586 mmol) was dissolved in dry THF (5 mL) and dry 

ethanol (5 mL) in a 50 mL two neck round bottom flask under inert 

atmosphere. After cooling the flask to 0 °C, NaBH4 (88.67 mg, 2.34 

mmol) was added portion-wise to the reaction flask. After stirring the 

reaction at room temperature for 1 h, the flask was fitted with double 

surface reflux condenser and heated to reflux for 8−9 h. After the 

completion of reaction, the pH of the reaction mixture was adjusted to 7.0 

using 0.5 N HCl (5 mL) and the aqueous layer was extracted with EtOAc 

(3 × 20 mL). The organic layer was dried over anhydrous Na2SO4, filtered 

and the solvent was evaporated under reduced pressure. The residue was 
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purified over silica gel column chromatography by using 20% ethyl 

acetate and hexane to afford white solid of 8 (170 mg, 60%). TLC: Rf  0.24 

(1:5 EtOAc/hexane). IR (neat): 3511 (O−H), 3283 (N−H), 2932 (C−H), 

1598 (N−H), 1428 (C=C), 1330 (N−S=O), 1159 (S=O), 1084 (C−O), 701 

(=C−H) cm
-1

.  
1
H NMR (CDCl3, 400 MHz) δ: 7.70 (d, 2H, J = 8.0 Hz), 

7.55−7.52 (m, 4H), 7.46−7.43 (m, 2H), 7.39−7.35 (m, 2H), 7.24 (d, 2H, J 

= 8.0 Hz), 5.08 (d, 1H, J = 8.0 Hz, NH), 3.72−3.63 (m, 2H), 3.56−3.50 (m, 

2H), 3.32−-3.27 (m, 1H), 2.40 (s, 3H), 1.96−1.94 (m, 1H, OH), 1.02(s, 

9H); 
13

C NMR (CDCl3, 100 MHz) δ: 143.55, 137.27, 135.47, 135.46, 

132.51, 132.48, 130.08, 130.05, 129.77, 127.92, 127.89, 127.09, 63.32, 

62.49, 55.77, 26.83, 21.55, 21.53, 19.17. MS (ESI) m/z (M+Na)
+
 

Calculated for C26H33NO4SSi: 506.1792; Observed: 506.2003. 

3.4 Synthesis of methyl (S)-1-tosylaziridine-2-carboxylate 14 

3.4.1 Synthesis of methyl tosyl-L-serinate 13 

 

        To a suspension of 11 (200 mg, 1.285 mmol) in dry CH2Cl2 (2 mL) at 

0 °C, Et3N (0.89 mL, 6.425 mmol) and a solution of tosyl chloride (367.38 

mg, 1.92 mmol) in dry CH2Cl2 (3 mL) were added. After stirring the 

reaction mixture for 6 h at 0 °C, the white precipitate was filtered off 

under suction and the filtrate was evaporated under reduced pressure to 

yield a white solid. The solid was then dissolved in EtOAc (20 mL) and 

washed with NaHCO3 (10 mL), citric acid (10% w/v, 10 mL) and H2O (10 

mL). The organic layer was dried over anhydrous Na2SO4, filtered and 

concentrated under reduced pressure. The crude mixture was purified by 

column chromatography using 20% ethyl acetate and hexane. The pure 

product 13 was obtained as white solid (204 mg, 58%). TLC: Rf 0.65 (1:20 
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MeOH/ CH2Cl2). IR (neat): 3495 (O−H), 3273 (N−H), 2956 (C−H), 1748 

(C=O), 1436 (C=C), 1328 (N−S=O), 1211 (C−N), 1159 (S=O), 1090 

(C−O), 683 (=C−H) cm
-1

. 
1
H NMR (CDCl3, 400 MHz) δ: 7.76 (d, 2H, J = 

8.0 Hz), 7.32 (d, 2H, J = 8.0 Hz), 5.59 (d, 1H, J = 8.0 Hz, NH), 3.99−3.97 

(m, 1H, OH), 3.90−3.89 (m, 2H), 3.63 (s, 3H), 2.43 (s, 3H), 2.27−2.24 (m, 

1H); 
13

C NMR (CDCl3, 100 MHz) δ: 170.21, 143.95, 136.47, 129.81, 

127.24, 63.72, 57.64, 52.96, 21.58. MS (ESI) m/z (M+Na)
+
 Calculated for 

C11H15NO5S: 296.0563; Observed: 296.0621. 

3.4.2 Synthesis of methyl (S)-1-tosylaziridine-2-carboxylate 14 

                              

13 (70 mg, 0.25 mmol) was dissolved in dry THF (1 mL) at 0 °C in 

50 mL two neck round bottom flask. A solution of PPh3 (200 mg, 0.768 

mmol) in dry THF (2 mL) and DIAD (0.15 mL, 0.768 mmol) were added 

via syringe. The resulting mixture was warmed to ambient temperature 

with constant stirring over a period of 15 h. After complete consumption 

of 13, the solvent was evaporated under reduced pressure using rotatory 

evaporator. The mixture was purified by column chromatography using 

20% ethyl acetate and hexane. 14 could not be isolated due to the 

overlapping Rf value of the compound 14 and the reduced by-product of 

DIAD formed during the course of reaction. TLC: Rf 0.33 (1:5 

EtOAc/hexane). 
1
H NMR (CDCl3, 400 MHz) δ: 7.86 (d, 2H, J = 8.0 Hz), 

7.37 (d, 2H, J = 8.0 Hz), 3.74 (s, 3H), 3.36−3.33 (m, 1H), 2.77−2.76 (m, 

1H), 2.57−2.56 (m, 1H), 2.46 (s, 3H).  
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                                                                        Chapter 4 

 

Results and Discussion 

        For designing an efficient route to obtain enantio enriched pipecolic 

acid in gram scale, a simple retrosynthetic analysis is shown in scheme 1. 

 

Scheme 1. Retrosynthetic analysis of pipecolic acid 1 

        According to retrosynthetic analysis, six membered piperidine ring of 

4 can be obtained from N-tosylated alkenol 5 via reduction of double bond 

and subsequent ring closing reaction through the Mitsunobu reaction of 

hydroxyl group with NH group. N-Tosylated alkene 6 can undergo olefin 

metathesis with propenol in presence of Grubb’s catalyst to afford N-

tosylated alkenol 5. Further, a highly strained three membered aziridine 

ring 7, on regioselective ring opening by vinyl Grignard reagent in SN
2
 

fashion can easily afford corresponding amino alkene 6. 

        N-tosylated amino alcohol 8, in presence of a mild base such as Et3N 

and TsCl can easily undergo O-tosylation and yield N-tosylated aziridine 

ring 7 via nucleophilic attack of nitrogen atom on OTs group which acts as 

a better leaving group. Protected amino ester 9 can be reduced using 
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reducing agents such as NaBH4 to afford amino alcohol 8. N-tosylated 

amino ester 9 can easily be obtained from amino ester 10 via simple 

tosylation using TsCl and Et3N as a mild base. O-Silylation of 11 can be 

achieved in presence of a mild base like Et3N and TBDPSCl as the 

protecting group to afford corresponding O-protected product 10 in good 

yield. Naturally occurring L-serine 12 probably acts as the most suitable 

amino acid to furnish methyl L-serinate salt 11.     

        Earlier, Lothar and coworkers have reported a short and efficient 

synthetic route to furnish optically active N-tosyl aziridines from 2-amino 

alcohols in one pot procedures [25]. In the aforementioned scheme, N-

tosylated amino alcohol 8, obtained via N-protection and subsequent 

reduction of amino ester 10, can serve as a competent substrate to obtain 

desired aziridine ring 7. 

        One of the important chiral sources for the preparation of pipecolic 

acid and derivatives are α-amino acids. Thus we began our synthesis using 

naturally occurring L-serine as the chiral inductor (Scheme 2). L-serine 12 

on reaction with thionyl chloride and methanol gave the corresponding 

methyl serinate salt 11 in excellent yield. The hydrochloride salt 11 was in 

situ neutralized using mild base, Et3N and the alcohol functionality was 

subsequently protected with TBDPSCl to give O-silylated amino alcohol 

10 in good yield. 

        In consecutive two steps, 10 was N-tosylated and ester functionality 

was reduced to corresponding alcohol using NaBH4 as the reducing agent 

to afford N-tosylated amino alcohol 8 in 55−60% yield. The conversion of 

amino alcohol 8 to corresponding aziridine ring 7 proved to be quite 

challenging. We tried to synthesize aziridine ring 7 using TsCl and Et3N 

as mild base. Even after several attempts, our desired product 7 could not 

be obtained possibly due to the steric bulkiness of silyl protecting group 

(Scheme 2). 
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Scheme 2.Synthesis of pipecolic acid 1 from L-serine via aziridine ring 

formation of 7 

        After several unsuccessful attempts to prepare pipecolic acid 1 via 

scheme 2, we turned our attention towards scheme 3 which provides 

another similar route to obtain desired N-tosyl aziridine 7. 

        Accordingly, esterification of serine was easily achieved to give 

corresponding methyl serinate 11 in excellent yield. The methyl ester salt 

11 was in situ neutralized using Et3N as base and simultaneously treated 

with tosyl chloride to furnish N-tosylated ester 13 in 60% yield (Scheme 

3). The resultant N-tosyl ester 13 was subjected to the Mitsunobu reaction 

to provide N-tosylated aziridine 14 in poor yield of 15%. Moreover, we 

couldn’t purify the N-tosylated aziridine 14 because of overlapping Rf of 

the reduced product from DIAD employed during the Mitsunobu reaction. 

The Mitsunobu reaction of 13 will be attempted with other reagents in 

future. 
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Scheme 3. Synthesis of N-tosylaziridine 7 from L-serine via N-

tosylmethylserinol 13 
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Chapter 5 

 

Conclusion and scope of work 

        In this work, we have reported two different synthetic routes to 

synthesize pipecolic acid 1. We started our synthesis using L-serine 12 as 

the chiral source. We have successfully prepared advanced intermediates 

which can be used to achieve the final target, pipecolic acid 1, in future. 

All the intermediates are well characterized using various spectroscopic 

techniques.  
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APPENDIX A 

 

Figure 3. 
1
H NMR spectrum of 11 in D2O 

 

Figure 4. 
13

C NMR spectrum of 11 in D2O 
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Figure 5. 
1
H NMR spectrum of 10 in CDCl3 

 

Figure 6. 
13

C NMR spectrum of 10 in CDCl3 
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Figure 7. 
1
H NMR spectrum of 9 in CDCl3 

 

Figure 8. 
13

C NMR spectrum of 9 in CDCl3 
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Figure 9. 
1
H NMR spectrum of 8 in CDCl3 

 

Figure 10. 
13

C NMR spectrum of 8 in CDCl3 
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Figure 11. 
1
H NMR spectrum of 13 in CDCl3 

 

Figure 12. 
13

C NMR spectrum of 13 in CDCl3 
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Figure 13. 
1
H NMR spectrum of 14 in CDCl3 
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Figure 14. Mass spectrum of 11 in MeOH 
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Figure 15. Mass spectrum of 10 in CHCl3 
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Figure 16. Mass spectrum of 9 in CHCl3 
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Figure 17. Mass spectrum of 8 in CHCl3 

 

 

 

 

 

 



31 
 

Figure 18. Mass spectrum of 13 in CHCl3           
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Figure 19. IR spectrum of 11                      
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Figure 20. IR spectrum of 10 
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Figure 21. IR spectrum of 9 
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Figure 22. IR spectrum of 8 
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