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                                ABSTRACT 

This thesis describes the detailed investigation towards the synthesis of 

highly substituted carbazole derivatives and γ-carboline in a metal- free 

one-pot approach. Initially a general introduction for the synthesis of 

carbazoles and γ-carboline with historical background has been 

described. Next, towards our synthetic goals a detailed mechanistic as 

well as synthetic study has been accomplished for the synthesis of alknyl 

substituted carbazole derivatives via a Michael-Henry-aromatization 

sequential reaction of methyl 2-(3-formyl-1H-indol-2-yl)acetate with 

(E)-(2-nitrobut-1-en-3-yne-1,4-diyl)dibenzene. An extensive effort led 

us to the undesired methyl 3-nitro-2-aryl-9H-carbazole-1-carboxylate 

derivatives, instead of formation of alknyl substituted carbazole 

derivatives. Moreover, this thesis also contains a metal-free one-pot 

approach for the synthesis of γ- carboline through the reaction of ethyl 

(E)-2-(3-(2-nitrovinyl)-1H-indol-2-yl)acetate with benzaldehyde and 

ammonium acetate. 
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CHAPTER 1 

 

1. INTRODUCTION 

This chapter highlights some of the biologically important heterocyclic 

compounds in the field of organic chemistry. 

In the first part, background, synthesis, importance, classification of 

heterocyclic compounds and biological interesting compounds has been 

discussed briefly. 

1.1 Heterocyclic compounds 

A heterocyclic compound is one that contains a ring made up of more 

than one kind of atom[1-4]. In many of the cyclic compounds that we have 

studied so far benzene, naphthalene, cyclohexanol, cyclopentadiene the 

rings are made up of only of carbon atoms; such compounds are called 

homocyclic compounds. But there are also rings containing, in addition 

to carbon, other kinds of atoms, most commonly nitrogen, oxygen, or 

Sulphur; such compounds are called heterocyclic compounds. 

Many natural drugs such as papaverine, quinine, atropine, procaine, 

reserpine, and morphine are heterocycles. Almost all the compounds we 

known as synthetic drugs are heterocycles. Some dyes (e.g. mauveine), 

luminophores, (e.g. acridine orange), pesticides (e.g. diazion) and 

herbicides (e.g. paraquat) are also heterocyclic in nature. Heterocycles 

containing carbazole moiety also exhibits biological activity [5-11]. 

In the biological world, heterocyclic compounds are everywhere. 

Carbohydrates are heterocyclic; so are chlorophyll and heme, which 

make leaves green and blood red and bring life to plants and animals. 

Heterocycles form the sites of reaction in many enzymes and 

coenzymes. Heredity comes down, ultimately, to the particular sequence 

of attachment of a half-dozen heterocyclic rings to the long chains of 

nucleic acids.  
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1.2 Carbazole Compounds 

Carbazole is a heterocyclic aromatic organic compound. It has a tricyclic 

structure, consisting of two six membered benzene rings fused on either 

side of a five membered nitrogen containing ring. Alternatively, this 

compound can be considered as extension of indole moiety where one 

benzene ring is fused onto 2-3 positions of indole ring. Conventionally, 

the nomenclature has been assigned for carbazoles by denoting tricyclic 

carbazole ring system as A, B and C, and the numbering starts from ring 

A as shown in Figure 1. Carbazole was first isolated in 1872, almost 150 

years ago, by Graebe and Glaser from the anthracene fraction of coal tar 

distillate [12-14]. 

 

Figure 1. Structure of 9H- carbazole 

Carbazole is a conjugated unit that has interesting optical and electronic 

properties such as its photoconductivity and photorefractivity. These 

moieties also exhibited a broad spectrum of therapeutic activities such 

as anti-bacterial, anti-fungal, anti-cancer, anti-HIV, anti-diabetes, anti-

inflammatory etc. They also have many useful applications in materials 

science. e.g. in organic light emitting diodes (OLED), photovoltaic cells, 

field effect transistors. 

Carbazoles have been studied for their unique electrical, electrochemical 

and optical-physical properties in the past decades. This kind of 

materials are typical hole transporting unit due to the electron donating 

character and can be easily modified with electron transport units in 

different position. It is believed that carbazole compounds have great 

promise as photoelectric functional materials for their photo physical 

and fluorescent properties in the blue light region. 
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Some structures of biologically active carbazole compounds. 

 

Figure 2. Examples of biologically active carbazole compounds. 

Carbazomycins are important class of antibiotics with a carbazole 

framework. Carbazomycins A and B inhibit the growth of 

phytopathogenic fungi and have antibacterial and anti-yeast activities 

and Murrayafoline A, exhibited strong fungicidal activity.              

1.3 γ-Carboline 

Pyrido[4,3-b]indole is tricyclic ring structure consist of pyridine ring 

that is fused to an indole skeleton with molecular formula C11H8N2 and 

commonly known as γ- carboline. The γ-carboline skeleton has been 

identified as a superior scaffold structure for their potential biological 

activity, namely as antipsychotic and antitumor agents. Over the years, 

this tricyclic aza-scaffold has been attracting a considerable interest in 

medicinal and synthetic organic chemistry due to it’s a broad spectrum 

of biological activities such as anti-cancer, antibiotic, antipsychotic, 

anti-Alzheimer, antihistamine and anti-inflammatory activity [15-17]. 

 

Figure 3. Representative structure of γ-carboline (pyrido[4,3-b]indole) 

The synthesis of γ-carboline and its derivatives is always a delight for 

the medicinal chemist due to their indispensable biological importance. 
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1.4 Review of Past work  

In 2009, Roberto A.Rossi and his coworkers reported synthesis of 

carbazoles by Intramolecular arylation of diarylamide anions in 

moderate to very good yields. 

 

Scheme 1. Synthesis of substituted 9H- carbazoles 

They synthesized substituted 9H- carbazoles by the photostimulated 

substitution reaction with diarylamines. 

In 2006, Robin B.Bedford and his coworkers synthesized N-H carbazole 

from 2-Chloroanilines via consecutive amination and C-H activation [18].  

 

Scheme 2. Synthesis of N-H carbazole 

In 2005, Adam W.Freeman coworkers synthesized carbazoles from 

reductive cyclization of 2- Nitrobiphenyls using triphenyl phosphine [19]. 

 

Scheme 3. Synthesis of carbazoles from reductive cyclization of 2- 

Nitrobiphenyls  
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In 2016, Masahiro Muira and his coworkers synthesized carbazoles by 

copper- catalyzed Intramolecular C-H/N-H coupling [20]. 

 

Scheme 4. Synthesis of carbazoles by copper- catalyzed intramolecular 

C-H/N-H coupling  

1.5 Objective of the thesis 

As we observed in review and past work, different methodologies have 

been used for the synthesis of substituted carbazoles. Various methods, 

among them the most common involve the palladium catalyst, 

intramolecular arylation of diarylamide anions, annulations of arynes 

with 2-haloacetamides, reductive cyclization of 2- Nitrobiphenyls using 

triphenyl phosphine, the domino N-H/C-H bond activation reaction of 

anilines with dihaloarenes, etc. were used for the synthesis of carbazole 

derivatives [21-25]. 

Transition metals (Cu, Pt, Au, Rh etc) were also used for the synthesis 

of carbazole derivatives. 

However, many of these reactions have drawbacks like these reactions 

involve transition metal catalysis, harsh conditions, harmful side 

products. So, we developed a metal free methodology for the synthesis 

of carbazole compounds.  

1.6 Present work  

This work aims to synthesized compound methyl 2-phenyl-3-

(phenylethynyl)-9H-carbazole-1-carboxylate (4a) via a base catalyzed 

Michael–Henry–aromatisation sequential processes. Therefore we 

performed reaction between methyl 2-(3-formyl-1H-indol-2-yl)acetate 
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(1a) and (E)-(2-nitrobut-1-en-3-yne-1,4-diyl)dibenzene (2a) using 

DABCO. But surprisingly the reaction didn’t generate the expected 

compound methyl 2-phenyl-3-(phenylethynyl)-9H-carbazole-1-

carboxylate (4a). Instead of that, methyl 3-nitro-2-phenyl-9H-carbazole-

1-carboxylate (3aa) compound has been obtained. 

 

Scheme 5. Proposed synthetic route for the synthesis of alknyl 

substituted carbazoles. 
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Chapter 2 

2. Experimental section 

2.1 Materials and Methods 

All reactions were carried out under air and monitored by TLC using 

Merck 60 F254 pre coated silica gel plates (0.25 mm thickness) and the 

products were visualized by UV detection. Flash chromatography was 

carried out with silica gel (200-300 mesh). FT-IR spectra were recorded 

on a Bruker Tensor-27 spectrometer. 1H and 13C NMR spectra were 

recorded on a Bruker Avance (III) 400 MHz spectrometer. Data for 1H 

NMR are reported as a chemical shift (δ ppm), multiplicity (s = singlet, 

d = doublet, q = quartet, m = multiplet), coupling constant J (Hz), 

integration, and assignment, data for 13C are reported as a chemical shift. 

High resolutions mass spectral analyses (HRMS) were carried out using 

ESI-TOF-MS. Compounds were named by using Chem Draw Ultra 12.0 

and ACD NMR. 

2.2 Procedure of starting material: (E)-(2-nitrobut-1-en-3-

yne-1,4-diyl)dibenzene (1b) 

 

 

 

 

 

 

Figure 4. Structure of (E)-(2-nitrobut-1-en-3-yne-1,4-

diyl)dibenzene. 

 Aldehyde (10.0 mmol), nitromethane (20.0 mmol) and      ammonium 

acetate (6 mmol) were added to 7 mL of glacial acetic acid. The resulting 

solution was refluxed for 4 h and then poured into ice water and 

extracted with CH2Cl2 (3×20 mL). The extract was washed with brine, 

dried over Na2SO4, filtered and evaporated under reduced pressure. The 

residue was purified by silica gel column chromatography using ethyl 

acetate and hexane as eluent. 
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Scheme 6.  Synthesis of nitro styrene 

General procedure for the preparation of 1-(2-Bromo -2-

nitrovinyl) benzene 

To a stirred solution of β- nitrostyrene (2 g, 0.013 mol) in CHCl3 (10 

mL) was added a solution of Br2 (1 mL) in CHCl3 (10 mL) at rt over 5 

min; the mixture was refluxed for 35 min. The temperature was 

decreased to 8 °C and solution of Et3N (5.6 mL, 0.04 mol) in CHCl3 (50 

mL) was added dropwise over 30 min. The mixture was maintained for 

15 min and poured into a mixture of CHCl3 (10 mL) and H2O (400 mL). 

The organic layer was washed with H2O (400 mL) and brine (2×250 

mL) and dried over Na2SO4. The solvent was removed in vacuo and the 

residue was recrystallized (EtOH). 

 

 
Scheme 7. Synthesis of α-Bromo Nitrostyrene 

 General procedure for electron deficient conjugated 1,3-enynes  

To a solution of alkyne (5.2 mmol) in toluene (2 mL) was added Copper 

(I) iodide (2.0 mol%) and the reaction mixture was stirred at ambient 

temperature for 15 min. Meanwhile, a solution of β- bromo- nitro alkene 

(4.38 mmol) in toluene (2 mL) was added and the reaction mixture was 

stirred for 15 min. Now Pd(PPh3)2Cl2 (2.5 mol%) was added in one 

portion followed by N-methyl morpholine (17.5 mmol) over 1 min. The 

reaction mixture was slowly warmed to 50-60 °C and the progress of 

this reaction was monitored by TLC analysis. It was cooled to ambient 
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temperature and diluted with CH2Cl2 and filtered. The organic layer was 

concentrated under reduced pressure and crude product was purified by 

silica gel column chromatography using ethyl acetate and hexane as 

eluent to give pure electron deficient conjugated 1,3 enynes. 

 

Scheme 8. Synthesis of electron deficient conjugated 1,3-enynes  

2.3 Synthesis of methyl 2-(3-formyl-1H-indol-2-yl)acetate 

(2b):      

 

 

 

 

 

Figure 5. Structure of  methyl 2-(3-formyl-1H-indol-2-yl)acetate :      

Indoline (10.0 mmol) was added to 30-40 mL of methanol at 0 °C. After 

10-15 min, Na2WO4 (2.0 mmol) was added to the resulting solution 

followed by the addition of H2O2 (~10 mL). The mixture was stirred for 

15 min. After that, (30 mmol, 4.0 g) K2CO3 was added in the reaction 

mixture. Again reaction mixture was stirred for 10-15 minutes followed 

by the addition of dimethyl sulphate (25.0 mmol). The organic layer was 

washed with H2O (400 mL) and brine (2×250 mL) and dried over 

Na2SO4. The solvent was removed in vacuo and the residue was 

recrystallized (EtOH). Crude product was purified by silica gel column 

chromatography using ethyl acetate and hexane as eluent to give pure 

product.  
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Scheme 9. Synthesis of 1-methoxy-1H-indole 

2.5 mL DMF was taken in round bottom flask followed by the addition 

of POCl3 (12.4 mmol) dropwise. The reaction mixture was stirred for 

15-20 minutes. The reaction condition was maintained at 0 °C. After 15-

20 minute, 9.52 mmol of 1-methoxy-1H-indole was added to the 

resulting reaction mixture. After completion of the reaction, reaction 

mixture was neutralized by NaOH (2M) solution. The organic layer was 

washed with H2O (400 mL) and brine (2×250 mL) and dried over 

Na2SO4. The solvent was removed in vacuo and the residue was 

recrystallized (EtOH). Crude product was purified by silica gel column 

chromatography using ethyl acetate and hexane as eluent to give pure 

product.  

 
Scheme 10. Synthesis of 1-methoxy-1H-indole-3-carbaldehyde 

 

 Sodium (1.05 g) was dissolved in dry MeOH in argon atmosphere at 0 

°C and waited until all the sodium was dissolved. Once it dissolved, 

dimethyl malonate was added dropwise. The reaction mixture was 

stirred for 15 min. Then 1-methoxy -1H-indole-3-carbaldehyde (3.6 g) 

was added dropwise dissolving in MeOH. Then after 10-15 min, it was 

kept for reflux at 80 °C until starting material was fully consumed. After 

completion of the reaction, methanol was evaporated and the reaction 

mixture was neutralized by 2N HCl. The organic layer was washed with 

H2O (400 mL) and brine (2×250 mL) and dried over Na2SO4. The 

solvent was removed in vacuo and the residue was recrystallized 

(EtOH). Crude product was purified by silica gel column 
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chromatography using ethyl acetate and hexane as eluent to give pure 

product.  

 

 
Scheme 11.  Synthesis of methyl 2-(3-formyl-1H-indol-2-yl)acetate 

 

2.4 Synthesis of starting material methyl (E)-2-(3-(2-

nitrovinyl)-1H-indol-2-yl)acetate (3b):  

 

 

 

 

 

 

Figure 6. Structure of (E)-2-(3-(2-nitrovinyl)-1H-indol-2-yl)acetate:  

 

(E)-N,N-dimethyl-2-nitroethen-1-amine (2.75 mmol), CH2Cl2 (5 mL), 

DCM (1 mL) were dissolved in round bottom flask and cooled at 0°C. 

After 10-15 min, 2.5 mmol of ethyl 2-(1H-indol-2-yl)acetate was added 

in the reaction mixture. The reaction mixture was stirred for 1 hr 

maintaining the reaction condition at 0 °C. The organic layer was 

washed with H2O (400 mL) and brine (2×250 mL) and dried over 

Na2SO4. The solvent was removed in vacuo and the residue was 

recrystallized (EtOH). The organic layer was concentrated under 

reduced pressure and crude product was purified by silica gel column 

chromatography using ethyl acetate and hexane as eluent to give pure 

product.  

 
Scheme 12.  Synthesis of ethyl (Z)-2-(3-(2-nitrovinyl)-1H-indol-2-

yl)acetate. 
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2.5 Procedure for synthesis of compound 3aa: 

0.1 mmol of methyl 2-(3-formyl-1H-indol-2-yl)acetate (1a) and 0.12 

mmol of (E)-(2-nitrobut-1-en-3-yne-1,4-diyl)dibenzene (2a) were taken 

in round bottom flask. Then 0.5 mL THF was added followed by the 

addition of DABCO (0.3 eq). The reaction condition was maintained at 

60 °C. After the completion of the reaction, solvent was evaporated. The 

organic layer was concentrated under reduced pressure and crude 

product was purified by silica gel column chromatography using ethyl 

acetate and hexane (1:9) as eluent to give pure product. Same procedure 

was followed for the synthesis of following compounds (3aa-3ag). 

2.6 Procedure for synthesis of ethyl (E)-2-(3-(2-

nitrovinyl)-1H-indol-2-yl)acetate (5a) 

 

 

Scheme 13. Synthesis of ethyl (E)-2-(3-(2-nitrovinyl)-1H-indol-2-

yl)acetate. 

0.1 mmol of ethyl (E)-2-(3-(2-nitrovinyl)-1H-indol-2-yl)acetate, 0.12 

mmol of benzaldehyde, 0.2 mmol of ammonium acetate were added in 

a round bottom flask. After that 10 mL DMSO was added to the reaction 

mixture at rt. After the completion of the reaction, brine solution was 

added to the reaction mixture. The organic layer was washed with H2O 

(400 mL) and dried over Na2SO4. The solvent was removed in vacuo 

and the residue was recrystallized (EtOH). The organic layer was 

concentrated under reduced pressure and crude product was purified by 

silica gel column chromatography using ethyl acetate and hexane as 

eluent to give pure product.  
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Scheme 14. Synthesis of carbazole 

 

All the products were fully characterized by their corresponding 

spectroscopic data (1H and 13C NMR and HRMS). 

1. Methyl 3-nitro-2-phenyl-9H-carbazole-1-carboxylate 

(3aa): light yellow solid; yield 76%; 1H NMR 

(400 MHz, CDCl3) δ 10.0 (s, 1H), 8.72 (s, 1H), 

8.12-8.14 (d, J = 7.8 Hz, 1H), 7.56-7.56 (m, 

2H), 7.37-7.41 (m, 4H), 7.27-7.29 (m, 2H), 3.55 (s, 3H) ppm; 13C NMR 

(100 MHz, CDCl3) δ 167.6, 143.7, 141.4, 140.6, 137.0, 135.4, 128.5, 

128.2, 127.8, 123.3, 122.2, 121.4, 120.1, 112.7, 111.8, 52.2; HRMS 

(ESI) m/z calcd for C20H14N2O4[M+H]+  347.1026, found 347.1098.  

2. Methyl 3-nitro-2-(p-tolyl)-9H-carbazole-1-carboxylate 

(3ab): light yellow solid; yield 68% ; 

1H NMR (400 MHz, CDCl3) δ 9.95 (s, 

1H), 8.68 (s, 1H), 8.12 (d, J= 7.52 Hz, 

1H) ,7.55(s, 1H), 7.37-7.37 (m, 2H), 7.15-7.22 (m, 5H), 3.59 (s, 3H), 

2.42 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3) δ 143.7, 141.4, 140.6, 

137.0, 135.4, 128.5, 128.2, 127.7, 123.3, 122.2, 121.4, 121.0, 120.0, 

112.7, 111.8, 52.2, 21.3; HRMS (ESI) m/z calcd for 

C21H16N2O4[M+Na]+  361.1183, 361.1185.  
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3. Methyl 2-(4-methoxyphenyl)-3-nitro-9H-carbazole-1-

carboxylate (3ac) : light yellow solid; 

yield 72%; 1H NMR (400 MHz, CDCl3) δ 

10.0 (s, 1H), 8.71 (s, 1H), 8.13 (d, J= 7.76 

Hz,1H), 7.57-7.57 (m, 2H), 7.49 (s, 1H), 7.38-7.39 (m, 1H), 7.19 (d, J= 

8.04 Hz,1H), 6.92-6.94 (m, 1H), 3.96 (s, 3H), 3.64 (s ,3H) ppm; 13C 

NMR (100 MHz, CDCl3) δ 167.1, 141.1, 140.3, 133.2, 128.4, 128.0, 

123.2, 121.8, 121.2, 120.7, 119.8, 112.4, 111.5, 110.7, 55.9, 52.1; 

HRMS (ESI) m/z calcd for C18H12N2O5[M+H]+  337.0819, found 

337.0825 . 

4. Methyl 2-(furan-2-yl)-3-nitro-9H-carbazole-1-

carboxylate (3ad): light yellow solid; 

yield 74%; 1H NMR (400 MHz, CDCl3) ): δ 

10.02 (s, 1H), 8.73 (s, 1H), 8.12-8.12 (m, 

1H), 7.56-7.59 (m, 3H), 7.38 (s,1H), 6.53-6.53 (m, 1H), 6.43-6.43 (s, 

1H), 3.78 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3) δ 146.6, 142.7, 

140.9, 140.5, 128.3, 124.1, 123.5, 121.7, 121.3, 120.9, 119.8, 113.1, 

111.5, 111.1, 109.7, 52.6   ; HRMS (ESI) m/z calcd for 

C21H16N2O5[M+H]+  377.1132, found 377.1138 .  

5. Methyl 2-(4-chlorophenyl)-3-nitro-9H-carbazole-1-

carboxylate (3ae): light yellow solid; 

yield 80%; δ 10.07 (s, 1H), 8.74 (s, 1H), 

8.12 (d, J= 8 Hz,1H), 7.57-7.58 (m, 2H), 

7.36-7.40 (m, 3H), 7.21-7,23 (d, J= 8.2 Hz,2H), 3.60 (s, 3H) ppm; 13C 
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NMR (100 MHz, CDCl3) δ 167.0, 143.2, 141.2, 140.3, 135.2, 133.8, 

133.5, 129.6, 128.0, 127.7, 123.2, 121.8, 121.2, 120.7, 119.9, 111.5, 

52.0; HRMS (ESI) m/z calcd for C20H14ClN2O4[M+H]+  381.0637, 

found 381.0644 

6. Methyl-2-(2,5-dimethoxyphenyl)-9H-carbazole-1-

carboxylate (3af) : light yellow solid; 

yield 75%; 1H NMR (400 MHz, CDCl3) δ  

9.97 (s, 1H), 8.77 (s, 1H), 8.10 (d, J= 7.5 

Hz, 1H), 7.54-7.54 (s, 2H), 7.35 (s, 1H), 

6.90-6.90 (m, 2H), 6.69 (s, 1H), 3.77 (s, 3H), 3.70 (s, 3H), 3.61 (s, 3H); 

13C NMR (100 MHz, CDCl3) δ  167.6, 153.6, 151.0, 143.5, 141.7, 140.6, 

131.9, 128.1, 127.4, 123.3, 122.3, 121.3, 121.0, 120.4, 115.6, 113.8, 

111.7, 111.4, 56.3, 55.8, 52.3; HRMS (ESI) m/z calcd for 

C22H19NO4[M+H]+  362.1387, found 362.1392  

7. Methyl 2-(4-(benzyloxy)-3-methoxyphenyl)-3-nitro-9H-

carbazole-1-carboxylate 

(3ag) : light yellow solid; yield 

68%; δ 9.94 (s, 1H), 8.65 (s, 1H), 

8.10-8.12 (d, J= 7.8 Hz ppm), 7.55-7.56 (m, 2H), 7.48 (d, J= 7.28 Hz, 

2H), 7.35-7.40 (m, 3H), 7.31-7.34 (m, 1H), 5.20 (d, J= 6 Hz, 2H), 3.87 

(s, 3H), 3.54 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3) δ 167.8, 149.2, 

147.9, 144.0, 141.3, 140.6, 137.1, 134.7, 129.9, 128.6, 128.1, 127.9, 

127.5, 123.1, 122.2, 121.4, 121.1, 121.0, 119.7, 113.5, 113.0, 112.7, 
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111.7, 71.1, 56.2, 52.2 ; HRMS (ESI) m/z calcd for C28H20N2O6[M+H]+  

483.1551, found 483.1556  

8. Ethyl 3-phenyl-5H-pyrido[4,3-b]indole-4-carboxylate 

(5a) : light yellow solid; yield 70%; 1H 

NMR (400 MHz, CDCl3) δ  ppm; 13C 

NMR (100 MHz, CDCl3) δ 9.84 (s, 1H), 

9.25 (s, 1H), 8.05-8.07  (d, J= 7.8 Hz, 1H), 7.43-7.45 (m, 4H), 7.31-7.34 

(m, 3H), 7.23-7.28 (m, 2H), 4.6 (q, J= 7.28 Hz, 3H) ppm 13C NMR (100 

MHz, CDCl3) δ  168.1, 157.1, 145.3, 143.6, 142.1, 140.0, 129.1, 129.0, 

127.9, 127.8, 127.5, 121.5, 121.1, 120.9, 119.8, 111.5, 61.1, 13.4 ppm; 

HRMS (ESI) m/z calcd for C20H16N2O2[M+H]+  317.1285, found 

317.1289 .  
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CHAPTER 3 

3. Results and Discussion 

Screening of solvent and catalyst 

3.1 Initially, we began our study with a model reaction between methyl 

2-(3-formyl-1H-indol-2-yl)acetate (1a) with (E)-(2-nitrobut-1-en-3-

yne-1,4-diyl)dibenzene (2a) for the screening of catalysts and reaction 

conditions. 

Scheme 15. Synthesis of methyl 3-nitro-2-phenyl-9H-carbazole-1-

carboxylate. 

Table 2. Reactions conditions optimization 

 

Entry Catalyst Solvent T/h Temp 

(0C) 

Yield 

(%) 

1. DABCO THF 9  60 76 

2. DABCO Toluene 9 60 65 

3. DABCO MeCN 9 60 70 

4. DABCO MeOH 9 60 68 

5. Et3N THF 9 60 62 

6. DBU THF 9 60 64 

7. Hünig’s 

base 

THF 9 60 70 
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In the beginning, the reaction was performed in THF in the presence of 

catalyst DABCO for 9 h at 60 °C. In this, we obtained 76% yield of the 

desired product. 

This result motivates us to investigate the above reaction with several 

organic solvents. Then, we used toluene at 60 °C and stirred for 9h. In 

this we observed that reaction didn’t occur properly and we obtained 

65% yield of the desired product. After that, we tried for some other 

solvents like methanol, acetonitrile, etc. Among all these, we analyzed 

that THF is the best solvent for the target reaction as we obtained better 

yield in the case of THF. Moving ahead, we also used different catalyst 

Et3N, DBU, Hünig’s base. The best result was found in DABCO with 

THF as solvent, maintaining the reaction conditions at 60 °C for 9h with 

almost 78% yield.  

3.2 Generality of the reaction  

We studied a group of substituted nitro enynes (2a-2g) with methyl 2-

(3-formyl-1H-indol-2-yl)acetates using 30 mol% DABCO as a catalyst 

under our standard conditions. From the table, we concluded that both 

the electron donating (Me, OMe, and OBn) and electron withdrawing 

(Cl, etc.) substituents on aryl ring of nitroenyne reacted smoothly with 

(1a), leading to the formation of substituted carbazoles in moderate to 

good yields. During our investigations, we had noticed that enyne with 

electron withdrawing group on aryl ring reacted slightly faster than 

electron donating group. (2e, 2f) reacted smoothly with substrate (1a) 

providing the desired carbazoles (3ae, 3af) in high yields (75-80%). On 

the other hand, electron donating group on aryl ring (2b, 2g) of nitro 

enyne providing the desired carbazoles (3ab, 3ag) in moderate yields 

(65-68%). 
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Table 3. Generality of the reaction   

 

 

3.3 Mechanism of the reaction 

On the basis of the above results, we proposed the following probable 

mechanism for the formation of carbazoles. In the following step, 

tetrahydrocarbazole is formed via a domino Michael- Henry reaction of 

(1a) with (2a) in the presence of DABCO. Next, an intermediate is 

generated by protonation of secondary hydroxyl group followed by 

dehydration as depicted in scheme 16. Finally, the carbazole is formed 

followed by the elimination of phenyl acetylene. 
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Scheme 16. Mechanism for substituted carbazoles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 
 

CHAPTER 4 

 

4.1 CONCLUSION and SCOPE FOR FUTURE WORK  

A new methodology has been presented for the synthesis of alkynl 

substituted carbazole derivatives via the reaction of methyl 2-(3-formyl-

1H-indol-2-yl)acetate (1a) with (E)-(2-nitrobut-1-en-3-yne-1,4-

diyl)dibenzene (2a) using DABCO in THF. The current protocol 

provides unexpected methyl 3-nitro-2-phenyl-9H-carbazole-1-

carboxylate carbazoles with diverse substitution in good yields. In 

future, this study will help us to design and synthesized new electron 

deficient enyne system for the synthesis of alkynl substituted carbazole 

derivative. 
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Figure 8. 400 MHz 1H NMR spectrum of 3aa in CDCl3. 
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Figure 9. 100 MHz 13C NMR spectrum of 3aa in CDCl3. 

 

 

 

 

 

 

 

 

Figure 10.  HRMS spectrum of 3aa 
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Figure 11.  400 MHz 1H NMR spectrum of 3ab in CDCl3. 
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Figure 12. 100 MHz 13C NMR spectrum of 3ab in CDCl3. 

 

 

 

Figure 13. HRMS spectrum of 3ab 

 

Figure 13. HRMS spectrum of 3ab. 
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Figure 14. 400 MHz 1H NMR spectrum of 3ac in CDCl3. 
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Figure 15. 100 MHz 13C NMR spectrum of 3ac in CDCl3. 
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Figure 16. HRMS spectrum of 3ac. 
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Figure 17. 400 MHz 1H NMR spectrum of 3ad in CDCl3. 
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Figure 18. 100 MHz 13C NMR spectrum of 3ad in CDCl3. 

 

 

 

 

 

 

 

Figure 19. HRMS data of 3ad. 
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Figure 20. 400 MHz 1H NMR spectrum of 3ae in CDCl3. 
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Figure 21. 100 MHz 13C NMR spectrum of 3ae in CDCl3 
 

 

 

 

 

 

 

 

Figure 22. HRMS spectrum of 3ae. 
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Figure 23. 400 MHz 1H NMR spectrum of 3af in CDCl3. 
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Figure 24. 100 MHz 13C NMR spectrum of 3af in CDCl3. 

 

 

 

 

 

 

 

 

Figure 25. HRMS spectrum of 3af. 
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Figure 26.  400 MHz 1H NMR spectrum of 3ag in CDCl3. 
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Figure 27. 100 MHz 13C NMR spectrum of 3ag in CDCl3.

 

 

Figure 28. HRMS Spectrum of 3ag. 
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Figure 29. 400 MHz 1H NMR spectrum of 5a in CDCl3. 
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Figure 30. 100 MHz 13C NMR spectrum of 5a in CDCl3. 

 

 

 

 

 

 

 

Figure 31. HRMS spectrum of 5a. 
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