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Abstract 
Today’s manufacturing industries aims at reducing time and cost for maintenance 

of the products. As far as data driven approaches are considered for prognostics of 

life of the tool component, different prognostics models have been proposed so far. 

Although these models have aided the advancement of the discipline, they have 

made only a limited contribution to developing an effective machinery health 

prognostic system. One major cost incurred in production industry is the tool cost. 

In the past and even currently, continuous efforts have been made in this field. 

Prognostic which refers to determining the remaining useful life of the component 

play a significant role in bringing down the tool cost. Two most widely used 

approaches in this direction are the analytical physics based model approach and 

data based approach. Former lacks accuracy due to the number of assumptions and 

latter approach varies widely when switching from one model to another or when 

there is a certain variation in dataset which is always a case in a real world problem. 

Recent advances in condition monitoring technologies have given rise to many 

prognostic models for forecasting machinery health based on condition data. So 

there lies a need for more robust and reliable model for prognostics of machine tool 

component. 

Most of the prognostic models are not intuitive as far as their computational strategy 

is considered. The set of logics and rules followed by these models are intuitive 

only to a lower dimensionally cases like 2-dimentional cases. As we switch to 

higher dimensional problem the representation of the problem becomes difficult 

hence it gets less intuitive. One cannot wonder the logics behind the classification 

or regression results proposed by a machine learning models based on a given 

dataset but it is believed they often provide accurate results. There always lies little 

insecurity about the results proposed by given prognostic model. To deal with 

uncertainty in the results proposed by the model we have defined a novel approach 

so that we can get more intuitive results in the prognostics for tool failure life. 

This work presents a novel approach in addressing the above-mentioned challenges. 

In our present novel approach, we have tried many machine learning models on our 

dataset to predict the life of the tool. Also, we have tried to devise a novel approach 

which involves the combination of different machine learning approaches into the 

single model of machine learning.  
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The new novel approach proposed tries to add more confidence to the prediction 

compared to the traditional approaches. .  
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CHAPTER 1. INTRODUCTION 

1.1 BACKGROUND 

Condition monitoring is the process of monitoring a parameter of condition in 

machinery, such that a significant change is indicative of a developing failure. 

It is a major component of Predictive Maintenance. The use of conditional 

monitoring allows maintenance to be scheduled, or other actions to be taken to 

avoid the consequences of failure, before the failure occurs. The center of point 

of discussion will be the tool condition monitoring not entire machinery. 

Operational reliability of the machinery components like cutting tool is of vital 

importance in almost every field of industries majorly including production 

based on machines. Unexpected tool failure not only lead to expensive 

downtime but it also leads to other unwanted situations like safety concerns, 

environment detriment. In some worst cases it also leads to enormous legal 

expenses. Breakdown of machine unexpectedly affects the implementation of 

present advanced production strategies like Just-in-Time (JIT) and Material 

Resource Planning (MRP) leading to waste of operational facilities and 

inventory loss [1]. 

Spending too much time on maintenance related works brings down the 

effective productive hours of the labor employs at the production site. 

Craftsmen spend as little as two hours a day doing actual hands-on work 

activities [2], similarly in the production department, workers waste too much 

time due to unwanted breakdown of tool components. Many organizations due 

to the same reason try to relocate to different parts of the world in search of 

cheaper labor to cut down their production cost to a large extend. It certainly 

brings our concern to one the major problem i.e. how to reduce dependencies 

over these unexpected tool failures. 

Currently, many models have been proposed in the research area of machinery 

fault prognosis. The physics-based models attempt to combine system-specific 

mechanistic knowledge, defect growth formulas and CM data to predict the 

propagation of a fault, whereas the data-driven approaches derive models 

directly from the acquired CM data. After an extensive literature review, several 

limitations of the existing models have been identified. For example, many of 
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the existing models mostly the work found is on the diagnostics of machine tool 

components 

This research is aimed at developing new practical methods for addressing these 

limitations. The rest of this chapter will define diagnostics and prognostics, 

scope of the research, problem of statement and the contribution of this novel 

approach methodology. Finally, a brief overview of the thesis is presented 

 

1.2 DIAGNOSTICS AND PROGNOSTICS 

Diagnosis is the identification of the nature and cause of a certain phenomenon. 

It helps in identifying the surety if something is wrong with given machine. 

Fault detection, isolation, and recovery (FDIR) is a subfield of control 

engineering which concerns itself with monitoring a system, identifying when 

a fault has occurred, and pinpointing the type of fault and its location. Two 

approaches can be distinguished: direct pattern recognition of sensor readings 

that indicate a fault and an analysis of the discrepancy between the sensor 

readings and expected values, derived from some model. In the latter case, it is 

typical that a fault is said to be detected if the discrepancy or residual goes above 

a certain threshold. It is then the task of fault isolation to categorize the type of 

fault and its location in the machinery. Machine fault diagnosis is a field of 

mechanical engineering concerned with finding faults arising in machines. A 

particularly well-developed part of it applies specifically to rotating machinery, 

one of the most common types encountered. To identify the most probable faults 

leading to failure, many methods are used for data collection, including 

vibration monitoring, thermal imaging, oil particle analysis, etc. A machinery 

prognostic is the forecast of the remaining operational life, future condition, or 

probability of reliable operation of an equipment based on the acquired 

condition monitoring data. Prognostics [4] is an engineering discipline focused 

on predicting the time at which a system or a component will no longer perform 

its intended function.[5]  This lack of performance is most often a failure beyond 

which the system can no longer be used to meet desired performance. The 

predicted time then becomes the remaining useful life (RUL), which is an 

important concept in decision making for contingency mitigation. Prognostics 

predict the future performance of a component by assessing the extent of 
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deviation or degradation of a system from its expected normal operating 

conditions. The science of prognostics is based on the analysis of failure modes, 

detection of early signs of wear and aging, and fault conditions. An effective 

prognostics solution is implemented when there is sound knowledge of the 

failure mechanisms that are likely to cause the degradations leading to eventual 

failures in the system. It is therefore necessary to have initial information on the 

possible failures (including the site, mode, cause and mechanism) in a product. 

Such knowledge is important to identify the system parameters that are to be 

monitored. 

The notation of prognosis has been addressed widely in the literatures by 

various authors. Prognosis research is done in areas such as, mechanical systems 

(e.g., rail transport, automotive, and aircraft), power systems (e.g., 

fossil-fuelled power plants), and continuous-time production processes (e.g. 

chemical and petrochemical plants, and pulp and paper mills) where structural 

durability and operational reliability are critical, also prognosis work found to 

be high in Department of Defence (DOD), including Navy, Air Force, Army 

and DARPA, is approaching development of prognosis architectures and 

technologies in different ways [6]. Prognosis results are used for proactive 

decisions about preventive actions with the economic goal of maximizing the 

service life of replaceable and serviceable components while minimizing 

operational risk [7], as main concept of prognosis is to measure the remaining 

useful life of a component. 

 

1.3 TOOL CONDITION MONITORING 

The tool condition monitoring of the end milling tool is a very complicated 

process and it involves errors at various stages. The data which is processed for 

the analysis possess lot of trouble because of signals generation at a very high 

sampling rate, also the noises attached with the parent signals further increases 

the problem of signal analysis. Whenever carrying out a certain tool condition 

monitoring based on some sort of signal monitoring like vibration, force, 

acoustic signals, it is very much necessary to have enough data to comment 

upon the inherent characteristic trend hidden inside the data. We have number 

of monitoring system which aims at monitoring the state of the tool health based 
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on the past data but mostly lacks in updating the models on a regular basis. 

Before starting any of the signal monitoring techniques for any tool or 

machinery one must spend a considerable time to justify the type of signals 

which have potential to govern the state of tool with considerable amount of 

confidence. The vibration, force and acoustic signals gave quiet promising 

results because of its high relevance from the source of failure in our case of 

monitoring condition of end milling tool. The dynamometer signals can be of 

great importance as they can provide a three-dimensional view of the machining 

process (x, y and z-axis). Also, the dynamometer could detect which part of the 

tool is the most deteriorated since most of the wear in the tool affects the forces 

exerted by the tool in multiple directions. The current sensor gave the same 

results as the dynamometer and because of their high correlation value; these 

two sensors can be used to validate their respective results. The accelerometer 

signal was very difficult to filter and it was prone to error. 

 

1.4 SENSOR IMPORTANCE AND DATA COLLECTION 

 

Figure 1      Vibration fault identification trend [8] 

Among all the signal monitoring features for machine health prognostics 

vibration data, is a kind of signal which is widely used for prognostics. In Fig 1 

it is clearly depicting that machine operator experienced based identification of 

the failure leave very less or no time for taking any preventive action to avoid 

the failure of the machine. So, the more reliable source is some machine learning 

model which proves to be more sensitive compared to the visual or human heard 

indemnification of the fault. In most of the failures the identification made by 
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such signal monitoring techniques allows considerable time to fix up the issue 

before the actual break occurs which might to other consequences like increase 

in labor cost, production cost, downtime etc.  This brings up to the question to 

what extent these prediction models are reliable. Various research has been 

carried out in this area identifying the search of better and more reliable 

extracted features devoid of unnecessary noises Wide variety of techniques have 

been proposed in past using various signal processing techniques utilizing 

analysis in both frequency domain and time domain of number of signals 

extracted from machine running in the present state. These techniques are 

intuitive only to the person who is expert of this field but to the real operating 

manager or worked of real machines these complex procedures are very tough 

to comprehend. The present world of Artificial Intelligence (AI) is trying to 

bring down these complexities to a lower level and also claiming to give more 

reliable outcomes compared to prediction models based on traditional signal 

processing techniques. But in this case the actual working of these AI based 

models is not known even by experts. It is just the black box computation but 

the past results has shown the results based on these models proves to be very 

reliable in most cases but still lacks the sufficient degree of confidence backing 

up these predictions. 

The data collected by a number of sensors is the backbone of any model which 

is generated latter on for diagnostics or prognostic purposes. The present data 

collection techniques are not much advanced that they arrange data as per their 

utility to a specific section. So this disorganized collection of data finally poses 

difficulty to the data analyst team in extracting the valuable information out of 

that data. It not only results in improper utilization of resources but also lead 

waste of time during the preprocessing of data. In most of the cased the more 

closely governing features are often being ignored because of improper 

handling of data. In our present research we try to present a new novel approach 

to divide the data collection technique to specific classes which ease the analysis 

process of the data collected. 
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1.5 PROBLEM STATEMENT 

Before arriving at the exact problem statement lets first try to understand the 

most widely used term ‘Data’. Data is defined as the facts and statistics collected 

together for reference or analysis. Everything around us from your presence to 

your absence at work, our meal eating time, sleeping time etc can be 

documented and this record is nothing but the data. Any information collected 

from the specific system has the potential to be interpreted in some valuable 

information. Let’s take the example of a turbine plant, numbers of sensors are 

installed to monitor the various components health status but here lies the major 

drawback in terms of data collection techniques. It is a usual tradition that data 

collected is not always well labeled based on the specific state of the machine. 

At one it ease the data collection process but latter on it leads to number of 

difficulties in terms of it is analysis. Data analysis team further spends much of 

their time in sorting the data though the same process of sorting the data to 

specific group or class could be done right the data collection step which is the 

first steps towards data analysis. 

The proper collection of data specific group not only helps in easy prior 

classification of data but it also contributes to the improved accuracy of models 

which are based on these models. In addition to the improved accuracy it also 

make them more reliable because models generated are most likely based on 

features which shows most of the variance lowering the scope of noise 

contributed features included in the model. 

 

1.6 ORIGINALITY AND CONTRIBUTION 

Specifically talking about the cutting tools, the working mechanism of these 

tools used in machining have been proposed from tons of models, each model 

backed up with number of assumptions making them less reliable to state the 

actual working conditions in practical conditions. Later on simulation based 

methods were introduced which ease the visualization capability of the system 

to see post working conditions of the tool under the given working conditions. 

Unfortunately, these simulations methods need to have a backbone to work with 

which is nothing but the same analytical proposed models. Hence these 

simulation methods also carry inaccuracies along with them inherited by the 
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analytical methods. In the recent past years machine learning models are been 

used extensively which monitors and analyses the tool working conditions and 

state the condition of tool in future. On one end these models are quite accurate 

but cannot be relied blindly. There not a single universal model which will fit 

the all type of problems. One model may work well with a given data extracted 

from tool’s past states but the same model may not work with another. This puts 

the analyst under dilemma that which model to use whose results can be trusted 

with considerable reliability. 

To deal with this problem of lack of reliability in the results proposed by various 

algorithms we try to come up with a novel approach to state the prognostics 

results for tool condition in a more appealing way. The level of risk involved 

due to the failure of tool varies continuously from the beginning till the end of 

its life. We try to present the results for tool prognostics in the groups of 

conservative and non-conservative approaches so depending on the level of risk 

involved at the given state, the operator can decide which results he has to go 

along. In addition to this we also try to present the methodology to group the 

data as per their category right at first step of data processing which is data 

collection. It helps in building the model more robust as the data in the given 

group become denser quantitatively. The results of predictions also helps in 

grouping of the data to the specific class it belongs. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 BACKGROUND 

The increase in awareness regarding the need to optimize manufacturing 

process efficiency has led to a great deal of research aimed at machine tool 

condition monitoring. The applications of tool condition monitoring techniques 

to the detection of cutting tool wear and breakage during the milling process. 

Established approaches to the problem are considered and their application to 

the next generation of monitoring systems is discussed. Two approaches are 

identified as being key to the industrial application of operational tool 

monitoring systems. Multiple sensor systems, which use a wide range of sensors 

with an increasing level of intelligence, are providing long-term benefits, 

particularly in the field of tool wear monitoring. Such systems are being 

developed by many researchers in this area. The second approach integrates the 

control signals used by the machine controller into a process monitoring system 

which is capable of detecting tool breakage. Findings in literature have shown 

that both these approaches can be of major benefit. It is finally argued that a 

combination of these approaches still lacks in providing ultimate robust systems 

which can operate in an industrial environment. 

Accurate tool condition monitoring (TCM) is essential for the development of 

fully automated milling processes. The complexity of milling processes 

continues to complicate the implementation of TCM. The review strictly 

considers the state-of-the-art methods which are employed for conducting 

TCM in milling processes. Under the review we are following some of the 

extreme important key components of Tool Condition Monitoring (TCM) 

namely sensors, feature extraction, monitoring different models used  for the 

categorization of cutting tool states in the decision-making process and 

predicting the life of the tool by implementing the prognostic models. In 

addition, the primary strengths and weaknesses of current practices are 

presented for these three components. Finally, this chapter concludes with a list 

of recommendations which can take the research in Tool Condition Monitoring 

(TCM) to the new level. 
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2.2 ANATOMY OF END MILLING TOOL 

 

Figure 2      Basic Geometry of the end milling tool [9] 

End milling tool has high resemblance with the drill bits but it actually differs 

many aspects. Figure 2 shows the main components of the end milling tool. 

More detailed components of end milling tool will be shown in the latter part of 

this chapter. An end mill is a type of milling cutter or a cutting tool used in 

industrial milling applications. It is distinguished from the drill bit in many 

aspects like its application, geometry, and manufacture. While a drill bit can 

only cut in the axial direction, a milling bit can generally cut in all directions, 

though some cannot cut axially. Several broad categories of end milling tools 

exist, such as center-cutting versus non-center-cutting (whether the mill can 

take plunging cuts); and categorization by number of flutes; by helix angle; by 

material; and by coating material. Each category may be further divided by 

specific application and special geometry. End mills feature many different 

dimensions that can be listed in a tool description. It is important to understand 

how each dimension can impact tool selection, and how even small choices can 

make all the difference when the tool is in motion. 

 

2.2.1 Flutes 

Flutes are the easiest part of the end mill to recognize. These are the deep 

spiraled grooves in the tool that allow for chip formation and evacuation. Flutes 
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are the part of the anatomy that allows the end mill to cut on its edge. One 

consideration that must be made during tool selection is flute count. Lower the 

flute count, the larger the flute valley – the empty space between cutting edges. 

This void affects tool strength, but also allows for larger chips with heavier 

depths of cut, ideal for soft or gummy materials like aluminum. When 

machining harder materials such as steel, tool strength becomes a larger factor, 

and higher flute counts are often utilized. 

2.2.2 Profile 

The profile refers to the shape of the cutting end of the tool. It is typically one 

of three options: square, corner radius, and ball. 

a) Square Profile: Square profile tooling features flutes with sharp corners 

that are squared off at a 90° angle. In our experiment we have used this 

tool as the experiment demands the wear out of the tool and with this 

given profile of end milling tool it ease the process of wear out of the 

tool. 

b) Corner Radius: This type of tooling breaks up a sharp corner with a 

radius form. This rounding helps distribute cutting forces more evenly 

across the corner, helping to prevent wear or chipping while prolonging 

functional tool life. A tool with larger radii can also be referred to as 

“bull nose”. 

c) Ball Profile: This type of tooling features flutes with no flat bottom, 

rounded off at the end creating a “ball nose” at the tip of the tool. 

 

2.2.3 Helix angle 

The helix angle of a tool is measured by the angle formed between the centerline 

of the tool and a straight line tangent along the cutting edge. A higher helix 

angle used for finishing (45°, for example) wraps around the tool faster and 

makes for a more aggressive cut. A lower helix angle (35°) wraps slower and 

would have a stronger cutting edge, optimized for the toughest roughing 

applications. 

A moderate helix angle of 40° would result in a tool able to perform basic 

roughing, slotting, and finishing operations with good results. Implementing a 

helix angle that varies slightly between flutes is a technique used to combat 
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chatter in some high-performance tooling. A variable helix creates irregular 

timing between cuts, and can dampen reverberations that could otherwise lead 

to chatter. 

2.2.4 Pitch 

Pitch is the degree of radial separation between the cutting edges at a given point 

along the length of cut, most visible on the end of the end mill. Using a 4-flute 

tool with an even pitch as an example, each flute would be separated by 90°. 

 

Figure 3         Pitch in the End Milling tool  [9] 

Similar to a variable helix, variable pitch tools have non-constant flute spacing, 

which helps to break up harmonics and reduce chatter. The spacing can be minor 

but still able to achieve the desired effect. Using a 4-flute tool with variable 

pitch as an example, the flutes could be spaced at 90.5 degrees, 88.2 degrees, 

90.3 degrees, and 91 degrees (totaling 360°). 

 

2.2.5 LITERATURE REVIEW 

Milling is a machining process which is very common and efficient cutting 

operation. A typical end milling tool that uses a end milling cutter with one or 

more teeth to intermittently cut work pieces into flat surfaces, grooves, threads, 

and many geometrically complex components. Highly efficient milling 

processes are suitable for mass production, and have been employed widely in 

industrial manufacturing. Cutting tools are considered to be the primary 

component of the milling process [10], and tool breakage is a major reason of 

unscheduled stoppage in industrial settings employing milling. Tool breakage 
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is generally the result of an accumulation of tool damage over time, and has 

negative indirect (time loss) and direct (capital) effects. In terms of these effects, 

tool failure accounts for 7–20% of total milling-machine downtime [11, 12], 

and the costs of tools and tool changes account for 3–12% of the total processing 

cost [13]. In an effort to limit the indirect effects of tool breakage, milling tools 

employed in industrial milling processes are replaced prior to breakage. 

However, conventional tool replacement strategies employ uniform time 

periods that are determined by the subjective experience of operators. Such 

strategies inevitably result in either the early replacement of workable tools, 

which increases tools costs and downtime, or the late replacement of worn tools, 

which results in lower work piece quality and increased production costs [14]. 

In fact, research [15, 16] has determined that only 50–80% of the effective life 

of milling tools is typically used. As such, monitoring the varying conditions of 

milling tools over time to facilitate a timely detection of tool damage is critical 

for limiting the indirect effects of tool breakage while maximizing the usable 

life of milling tools. Thus, tool condition monitoring (TCM) systems have been 

developed to generate better work piece surface quality and extend tool life by 

diagnosing cutting tool deficiencies using appropriate signal processing and 

pattern recognition techniques. An accurate and reliable TCM system can 

reduce costs by 10–40% by reducing downtime and maximizing the usable life 

of milling tools [16, 17]. The application of TCM in milling processes has been 

studied for over 30 years, and has been based on two types of methods: direct 

monitoring and indirect monitoring. Direct monitoring methods employ optical 

equipment and machine vision technology to directly monitor tool condition. 

For example, optical microscopes are used to capture tool images and the tool 

condition is evaluated with image analysis technology [18]. Direct methods are 

advantageous because they do not affect the machining process and offer high 

recognition accuracy under ideal conditions. However, direct methods are 

generally unsuitable for manufacturing settings because (1) the high expense of 

the required equipment and software can unacceptably increase manufacturing 

costs, and (2) the recognition accuracy is easily disturbed by the presence of 

cutting fluid and cutting chips on tool surfaces [19, 20]. Therefore, indirect 

monitoring methods, which estimate tool condition based on an analysis of 

signals derived from one or more sensors, have been widely adopted in 
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manufacturing settings. These signals can be representative of numerous 

characteristics, such as cutting force, vibration, motor current and acoustic 

emission (AE). The signal analysis conducted seeks to extract significant 

features from a signal that are indicative of tool condition, and includes 

numerous methods, such as those based on the time domain, frequency domain, 

wavelet transform (WT), empirical mode decomposition (EMD), and multi-

domain analysis. Finally, the cutting tool condition could be evaluated with 

extracted feature parameters based on one certain pattern recognition method, 

such as artificial neural network (ANN), hidden Markov model (HMM), and 

support vector machine (SVM). Compared with direct methods, indirect 

methods are less expensive and more adaptable to practical applications. 

Indirect TCM is data-driven, and can be divided into the three phases illustrated 

in Fig. 1: model training, model testing and online monitoring. The model 

training phase consists of three modules: setting up the sensor configuration, 

feature extraction, and monitoring model. The sensor configuration module 

provides a sensor signal, the feature extraction module extracts features in the 

sensor signal that are related to tool condition (e.g., wear, damage, and 

breakage), and the monitoring model module builds a decision support model 

for online monitoring. The online monitoring phase consists of three modules: 

online sensor monitoring and decision making. 

 

Figure 4       Basic process flow of tool condition monitoring (TCM) in milling processes [21] 
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The sensor configuration employed during online monitoring is based on that 

employed during the model training phase, and is generally equivalent. 

However, if the sensor configuration is altered (it is possible when using 

multiple sensors initially), the online monitoring phase will not consider 

irrelevant sensors when evaluating tool condition. In the decision-making 

module, the sensor signals are firstly subjected to an equivalent feature 

extraction as that employed during the model training phase, and then the 

cutting tool condition can be evaluated in real time based on the trained 

monitoring model obtained during the model training phase. 

 

2.3 SENSOR SIGNALS 

1. Cutting forces 

During milling processes, tools wear increases surface roughness, and leads to 

a corresponding increase in cutting force. Many studies [10, 22–24] have 

demonstrated that the cutting force is very sensitive to changes in tool condition, 

and can therefore accurately estimate the tool state. For example, Wang et al. 

[25] determined that the cutting force signal is the most stable and reliable signal 

among commonly employed sensor signals that are closely related to tool wear. 

Huang et al. [26] employed a piezoelectric dynamometer to monitor the tool 

state of an end milling operation according to cutting force. Bulent et al. [27] 

adopted a rotary dynamometer to capture the cutting forces in three dimensions 

and the torque of the drive moment on a rotating tool. However, cutting force 

sensors are difficult to apply in industrial environments because their physical 

properties limit the physical size of a workpiece, which is not appropriate when 

milling medium and large workpieces [28]. In addition, Koike et al. [29] 

established that cutting force monitoring interferes with the motion control of 

the spindle and stage in a milling machine, and reduces its rigidity. Moreover, 

the expense of commercial dynamometers can unacceptably increase 

manufacturing costs [30, 31]. 

 

2. Vibration 

Vibration sensors are widely employed in TCM because they are inexpensive, 

easy to install, and provide a similar periodic signal shape to that of the cutting 
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force [32–34]. Besmir et al. [35] established that low levels of vibration are 

generated with sharp cutting tools, while the levels of vibration increase with 

increasing deterioration in the tool condition. Numerous studies have 

demonstrated the feasibility of adopting vibration signals for TCM in milling 

processes 

[36–37]. For example, Hsieh et al. [38] demonstrated that the spindle vibration 

acceleration signal can distinguish different tool conditions during micro-

milling when used in conjunction with appropriate feature extraction and 

classifiers. Madhusudana et al. [39] installed a tri-axial integrated electronic 

piezoelectric (IEPE) accelerometer on the spindle housing to capture the spindle 

vibration acceleration signal during face milling. Gao et al. [40] achieved 

positive tool condition diagnostic accuracy by adopting a laser vibrometer to 

acquire the vibration displacement of a tool holder. However, the characteristics 

of milling processes limit the accuracy of TCM employing vibration signals. 

First, vibrations are generated during machine operation even when the tool is 

not engaged in cutting, as during an air-cut operation. In fact, effectively 

distinguishing between entity-cut and air-cut operations remains an open 

challenge. Second, vibration signals are difficult to filter, and are therefore 

prone to providing erroneous data [35]. Finally, the position of sensor 

installation and the use of cutting fluid can affect the vibration signal [20]. 

 

3. Acoustics 

Sensors based on AE are particularly suitable for conducting TCM in milling 

processes because the resulting signals are not mechanically disturbed, have a 

superior sensitivity to the those of cutting force and vibration signals, and 

propagate at a frequency much greater than the characteristic frequency caused 

by cutting, which reduces interference 

[43–44]. A study conducted by Vetrichelvan et al. [2] demonstrated that the AE 

signals obtained from sensors located on the top surface of the tool holder can 

effectively monitor crater wear. Mathew et al. [45] conducted experiments with 

1-tooth, 2-tooth, and 3-tooth milling cutters, and demonstrated that AE signals 

exhibit marked responses to changes in tool condition such as tool breakage and 

tool chipping. Ren et al. [46] established that AE signals are easily recorded, 

and provide very rapid responses to changing conditions in the contact between 
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the tool and workpiece; thus, AE sensors are well suited for TCM in micro-

milling processes. However, intermittent cutting during milling processes 

results in AE signal spikes when individual teeth enter or exit the workpiece, 

which complicates the analysis of AE signals [28]. In addition, AE sensors are 

highly sensitive to environmental noise [47], which increases the difficulty of 

extracting valid signal feature information. 

 

2.4 SUMMARY 

Monitoring changing tool conditions in the milling process is exceedingly 

complicated owing to the influence of many factors, such as the cutting 

conditions, work piece material, and environmental parameters involved in 

specific milling processes (e.g., face milling or end milling). This challenge has 

so far interfered with the development of a general reference model for TCM 

appropriate for all milling processes. Although much progress has been made 

in TCM research for milling processes, the following important questions 

remain open, and require further study. 

1. There should be specific TCM models for specific milling conditions 

because the characteristic of each type of milling like end milling, face 

milling etc are very different from one another. 

2. The configuration of sensor for signal monitoring should be carefully 

handled as the accuracy during the monitoring of the signals affect the 

data set hence the developed model based on that data lacks in accuracy 

as well. 

3. Use of monitoring models for prognosis rather than diagnosis. 

Predicting the RUL rather than diagnosing tool condition is of particular 

interest in industrial settings because the RUL and failure probability of 

a milling tool are more meaningful than the diagnosis of tool wear. 

4. Application of more advanced AI-based monitoring methods. The AI 

field is rapidly developing, resulting in the emergence of new advanced 

algorithms. 
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2.5 RESEARCH OBJECTIVES 

1. Developing the different machine learning models to identify which 

model works the best for our data set generated from end milling 

machining. 

2. Proposing the novel methodology for data collection techniques aiming 

at keeping the data collected in their distinct groups. 

3. Making use of LSTM for Tool condition monitoring. So far LSTM 

models have been widely used in the field of the speech recognition. I 

have tried to utilize the same for predicting the remaining useful life of 

the tool. 

4. Generalizing the prognostic methodology for any new machine. 
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CHAPTER 3. PERFORMANCE EVALUATION OF 

VARIOUS MACHINE LEARNING MODELS 

3.1 INTRODUCTION 

Machine learning is an idea to learn from examples and experiences, without 

being explicitly programmed. Instead of writing code, you feed data to the 

genetic algorithm, and it builds logic based on the data given. Broadly there are 

three types of Machine learning Algorithms: [48] 

a) Supervised Learning: This algorithm consists of a target / outcome variable 

(or dependent variable) which is to be predicted from a given set of predictors 

(independent variables). Using these set of variables, we generate a function 

that map inputs to desired outputs. The training process continues until the 

model achieves a desired level of accuracy on the training data. Examples of 

Supervised Learning: Regression, Decision Tree, Random Forest, Logistic 

Regression etc. 

Artificial neural network: An ANN is based on a collection of connected units 

or nodes called artificial neurons which loosely model the neurons in a 

biological brain. Each connection, like the synapses in a biological brain, can 

transmit a signal from one artificial neuron to another. An artificial neuron that 

receives a signal can process it and then signal additional artificial neurons 

connected to it. 

b) Unsupervised Learning: 

In this algorithm, we do not have any target or outcome variable to predict / 

estimate.  It is used for clustering population in different groups. Examples of 

Unsupervised Learning: K-means. 

c) Reinforcement Learning: 

Using this algorithm, the machine is trained to make specific decisions. It trains 

itself continually using trial and error. This machine learns from past experience 

and tries to capture the best possible knowledge 

to make accurate business decisions. Example of Reinforcement Learning: 

Markov Decision Process. 

As the part of this chapter our discussion will be limited to supervised learning 

algorithms. For optimization of various machine learning models I have tried to 

optimized the number of hyper parameters of various machine learning models 
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as universal approximation methods states that any machine learning models 

can represent the wide variety of functions when they are given the approximate 

value to the hyper parameters. 

 

3.2 DEEP NEURAL NETWORKS 

Neural networks can be recurrent or feed forward. Feed forward networks are 

the one that do not have any loops in their graph and can be organized in layers. 

If there are "many" layers, then we say that the network is deep. 

How many layers does a network should have in order to qualify as deep? There 

is no definite answer to this (it's a bit like asking how many grains make a heap), 

but usually having two or more hidden layers counts as deep. In contrast, a 

network with only a single hidden layer is conventionally called "shallow". 

Informally, "deep" suggests that the network is tough to handle. 

As the part of this thesis we restrict our discussion to neural network having 

only one hidden layer and optimization of model is tried by varying the number 

of nodes in that hidden layer. 

 

3.2.1 RECURRENT NEURAL NETWORK 

Recurrent neural network are formally known as RNN. As name suggests they 

uses recursion in a small network of few layers and maintains a hidden state that 

is being reused in every recursion. Like other deep learning models, RNN has 

layers, learnable parameters (weights), a loss function, and optimization 

algorithm like SGD, etc. (hyper parameter). However the RNN network is 

reused several times with hidden state and either with previous recursion output, 

or a new input instance, or nothing. The number of recursions depends on the 

hidden state as well as the provided input. This way of forward computation, 

large deep executions can be done with few layers and their hidden states. A 

recurrent neural network can be thought of as multiple copies of the same 

network, each passing a message to a successor. 
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Figure 5       An unrolled recurrent neural network. [49] 

3.2.2 LONG SHORT TERM MEMORY NETWORK (LSTM) 

LSTM is a very special kind of recurrent neural network which works, for most 

of the tasks it performs much better than the standard version of traditional 

RNN. LSTM network finds its huge valuable importance in the field of word 

recognition or prediction. For example, consider a language model trying to 

predict the next word based on the previous ones. If we are trying to predict the 

last word in “the clouds are in the sky,” we don’t need any further context – it’s 

pretty obvious the next word is going to be sky. In such cases, where the gap 

between the relevant information and the place that it’s needed is small, LSTMs 

can learn to use the past information. I have tried to use this same unique feature 

of LSTM and use it to our advantage to predict the RUL of cutting tool based 

on its past state. The further details about the LSTM models will be discussed 

in the latter chapter during its implementation on our end milling data set 

3.2.3 EXPERIMENT DETAILS 

Milling operation is chosen is this research. EMCO MILL E350 CNC three-axis 

high-speed vertical milling machine is utilized as the test bed. Normal 

degradation of end milling cutting tool (Figure 7, 8) is carried out to study the 

degradation behavior of the cutting tool. A high speed steel 6 mm milling tool 

is chosen for analysis. Experiment was carried out for a range of operating 

conditions which was used by varying feed, depth of cut and speed. The work 

piece used is of mild steel (figure 8, 10) of dimension 165mm x 100mm. 
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Figure 6        End milling tool 6mm utilized 

in experiment 

 

Figure 7       flute of end milling positioned 

at 90 degree 

 

Figure 8       Mild steel plate (165mm X 

100mm) 

 

Figure 9       Mild steel plate after 

machining 

3.2.4 BASIC ARCHITECTURE OF MACHINE LEARNING 

MODELS 

 

Figure 10        Data acquisition 

The signals for force, vibration, and acoustics are constantly monitored 

throughout the experiment. The data collected for each cut is processed for 

extracting the number of statistical features to approximate distribution of each 

signal during each cut precisely. Every data point consists of two parts: first is 

number of features, second is the label i.e. remaining useful life (RUL) of the 

component. RUL is defined as the number of cuts a given tool can make for a 
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given operating condition each cut refers to transversing the tool over mild steel 

for a length of 1320 mm at the fixed operating conditions. 

3.2.5 Data Processing 

Machine learning algorithms learn from data. It is critical that you feed them 

the right data for the problem you want to solve. Even if you have good data, 

you need to make sure that it is in a useful scale, format and even those 

meaningful features are included. This step is very crucial in machine learning 

as it helps in the more consistent and better results. Cleaning data is the 

removal or fixing of missing data. There may be data instances that are 

incomplete and do not carry the data you believe you need to address the 

problem. These instances may need to be removed. Additionally, there may be 

sensitive information in some of the attributes and these attributes may need to 

be removed from the data entirely. Data preparation is a large subject that can 

involve a lot of iterations, exploration and analysis. Getting good at data 

preparation will make you a master at machine learning. There are number of 

statistical features which are calculated to comment upon the feature 

importance like Pearson’s coefficient, Anova, LDA, chi-square etc. the value 

of pearson coeeficient lies between 1 and -1. 

 

3.2.6 Machine learning models 

A brief discussion on a number of machine learning models is carried in this 

section. Python as a tool is utilized for implementing the various machine 

learning models. Every model is presented in a very stepwise manner stating 

the commands executed in python as well. 

Each of the model is trained on the basis of first four tool data and tested on 

the last two tool data. 

 

3.3 REGRESSION MODELS 

Results for each of the model is discussed in the following section of the 

chapter and the corresponding detailed program code for same can be found in 

the appendices. 

3.3.1 Logistic Regression 

Multiple Linear Regression model 
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Check Appendix A for entire code 

The results obtained after fitting the multiple linear regression model is as 

follows: 

 

Figure 11      Multiple Linear Regression Results 

The root mean square recorded for the same is 144.25 

Table 1      Optimization for Multiple Linear Regression model 

 

The most optimum value is obtained at PCA equal to 3 which reduced the 

RMSE value from 144.25 to 14.68. 

The results obtained after fitting the multiple linear regression model along 

with PCA is as follows: 

S. No. PCA components Root Mean Square Error

1 1 14.80352153

2 2 14.74470065

3 3 14.68492943

4 4 14.68940348

5 5 16.75085931

6 6 16.77168749

7 7 16.72766364

8 8 16.70004986

9 9 16.54790075
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Figure 12      Multiple Linear Regression with PCA Results 

As the scatter plot between actual RUL and predicted RUL is not resembling 

the ideal 45-degree line hence there is a scope to improve over our approach 

with the help of other algorithms. 

Polynomial Linear Regression model 

Check Appendix B for entire code 

 

The governing equation for polynomial linear regression model is shown 

above. The given equation is still called linear because of the presence of 

constants. Each of the constant present above is linearly independent of each 

other. 

Table 2      Optimization for Multiple Linear Regression model 

 

The results obtained reveal the nonexistence of nonlinear relationship between 

the data points due to the same reason the error goes exceedingly high with the 

increase in the degree of the polynomial. 

S. No. Input matrix features DegreeRMSE

1 1 149.64

2 2 4397

3 3 9734

4 4 7244
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Table 3       Optimization for Polynomial Linear Regression model with PCA 

 

The RMSE value decreased by only a minor amount with help of polynomial 

linear regression method with PCA. 

3.3.2 Decision Tree Regression 

Check Appendix C for entire code 

Classification and Regression Trees or CART for short is a term. It is one of 

its unique type regression model which predicts values in steps. The results 

obtained after fitting the decision tree regression model with and without PCA 

is the figures below: 

 

Figure 13     Decision Tree Regression without PCA 

S.N0 Degree of input vector Principle component RMSE

1 1 1 14.80352153

2 1 2 14.74470065

3 1 3 14.68492943

4 1 4 14.68940348

5 1 5 16.7508593

6 1 6 16.77168746

40 2 1 13.7677071

41 2 2 13.83365406

42 2 3 15.70710413

43 2 4 15.65754061

44 2 5 15.69225961

45 2 6 15.61645184

79 3 1 13.6471629

80 3 2 13.78975036

81 3 3 13.47260456

82 3 4 13.39405344

83 3 5 13.6580942

84 3 6 13.65983337
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3.3.3 Random Forest Regression 

Check Appendix D for entire code. 

The RMSE value decreased considerably, after proper optimization of all 

possible hyperparameters the best RMSE. value obtained is equal to 6.57. 

The results degraded after applying the PCA as in the case of decision tree 

regression. 

 

Figure 15     Random Forest Regression Results 

Figure 14      Decision Tree Regression with PCA 
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3.3.4 DEEP LEARNING MODELS 

After obtaining some benchmark values with the basic machine learning 

models now let’s try to improve your results with the help of some deep neural 

networks. 

3.3.4.1 Artificial Neural Network 

Keras is a powerful easy-to-use Python library for developing and evaluating 

deep learning models. It wraps the efficient numerical computation libraries 

Theano and TensorFlow and allows you to define and train neural network 

models in a few short lines of code. We have particularly worked on 

TensorFlow as one of the backend library for all our deep learning models. 

The best result obtained after optimizing a number of hyperparameters is 

shown in the table below. The RMSE value achieved in the most optimized 

model is recorded as 12.46. 

Table 4       Optimization parameters for artificial neural network 

 

 

Figure 16      Artificial Neural Network Results 

The results obtained from the deep neural network are not much improved 

compared to the conventional algorithms. Now we will try to fit a new 

Parameters Value 

Neurons in first layer 16 

Neurons in second layer 17 

Batch size 40 

Epochs 500 

RMSE 12.46 
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algorithm which belongs to the same class of deep neural network known as 

recurrent neural network. 

 

3.3.4.2 Long Short Term Memory (LSTM) 

When we arrange our calendar for the day, we prioritize our appointments 

right? If in case we need to make some space for anything important we know 

which meeting could be canceled to accommodate a possible meeting. 

Turns out that an RNN doesn’t do so. In order to add a new information, it 

transforms the existing information completely by applying a function. 

Because of this, the entire information is modified, on the whole, i. e. there is 

no consideration for ‘important’ information and ‘not so important’ 

information. 

LSTMs on the other hand, make small modifications to the information by 

multiplications and additions. With LSTMs, the information flows through a 

mechanism known as cell states. This way, LSTMs can selectively remember 

or forget things. The information at a cell state has three different 

dependencies. These dependencies are taken care by forget gate, output gate 

and input gate. Let’s understand the basic architecture of a LSTM cell 

involving the mathematical operation occurring on each cell. 

 

Figure 17       LSTM cell, cell state [50] 

The key to LSTMs is the cell state, the horizontal line running through the top 

of the diagram.The cell state is kind of like a conveyor belt. It runs straight 

down the entire chain, with only some minor linear interactions. It’s very easy 

for information to just flow along it unchanged. 
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Figure 18      Figure 19: LSTM Forget Gate [50] 

The LSTM does have the ability to remove or add information to the cell state, 

carefully regulated by structures called gates. Gates are a way to optionally let 

information through. They are composed out of a sigmoid neural net layer and 

a pointwise multiplication operation. 

 

Figure 19        LSTM cell, Input cell [50] 

The next step is to decide what new information we’re going to store in the 

cell state. This has two parts. First, a sigmoid layer called the “input gate 

layer” decides which values we’ll update. Next, a tanh layer creates a vector of 

new candidate values, C~
t, that could be added to the state. 

 

Figure 20       LSTM cell, updating the information [50] 

It’s now time to update the old cell state, Ct−1, into the new cell state Ct. The 

previous steps already decided what to do, we just need to do it. 
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Figure 21      LSTM cell, Decision Step [50] 

Results for LSTM 

Several hyperparameters were optimized for LSTM model and most optimized 

results were obtained for following configuration. 

Table 5      Optimization for LSTM model 

 

 

Figure 22      LSTM Results 

Best configuration  
No. of layers 1 

LSTM nodes 5 

Batch Size 3 

No. of epochs 980 

RMSE 2.0455 
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3.4 SUMMARY 

After implementing many regression models on given data set we reached to a 

conclusion different machine learning models results in varying results. Hence 

one cannot rely on given machine learning models for a given data set. We 

need to have some additional information along with the results predicted so 

that we can rely on the results of RUL predicted by a given model to a higher 

accuracy level. This brings us to the advent of our new approach regarding 

predicting the RUL discussed in the next chapter.  
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CHAPTER 4. DEVELOPING A NOVEL 

PROGNOSTIC MODEL 

4.1 INTRODUCTION 

Every prognostic model end results greatly depend on number of factors; one 

important factor is the data set which is input to the model. Due to the same 

reason data preprocessing step is the integral part of the prognostic model 

generation.  More labelled and organized data often lead to the generation of 

better model. When we talk about any machine learning based models aiming 

to predict the Remaining Useful Life (RUL) we must know all model are 

wrong as they deviate from actual results in some or other way but some 

models are useful. Due to this inherent inaccuracy of the models we try to 

propose a novel methodology which aims to provide increase the reliability of 

resulting model and helps in storing the data in more organized fashion which 

further helps in improving the accuracy of the model and reducing the 

computational time. 

 

4.2 EXPERIMENTAL SETUP 

Milling operation is chosen is this research. EMCO MILL E350 CNC three-

axis high-speed vertical milling machine is utilized as the test bed. Normal 

degradation of end milling cutting tool (Figure 7, 8) is carried out to study the 

degradation behavior of the cutting tool. A high-speed steel 6 mm milling tool 

is chosen for analysis. Experiment was carried out for a range of operating 

conditions which was used by varying feed, depth of cut and speed. The work 

piece used is of mild steel (figure 8, 10) of dimension 165mm x 100mm. 

Six end milling tools run to failure data was generated for the following 

operating condition shown in table. During the machining, force, vibration and 

acoustic signal were constantly monitored during every cut of machining the 

mild steel plate for length of cut equal to 1320. The table below shows the 

brief summary of collecting along with the operating conditions: 

E1 – Operating conditions 

feed=250mm, speed=1050rpm, depth of cut=0.20 
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Table 6     Summary of tools in E1 operating condition 

 

E2 – Operating conditions 

feed=250mm, speed=1300rpm, depth of cut=0.35 

Table 7       Summary of tools in E2 operating condition 

 

E3 – Operating conditions 

feed=350mm, speed=1050rpm, depth of cut=0.20 

Table 8     Summary of tools in E3 operating condition 

 

E4 – Operating conditions 

feed=350mm, speed=1300rpm, depth of cut=0.20 

Cutter Time (Cuts) Failure Modes 

1 27 Breakage 

2 70 Worn Out 

3 39 Breakage 

4 40 Breakage 

5 40 Breakage 

6 21 Breakage 

 

Cutter Time (Cuts) Failure Modes 

1 30 Worn Out 

2 21 Breakage 

3 16 Breakage 

4 16 Breakage 

5 19 Breakage 

6 31 Worn Out 

 

Cutter Time (Cuts) Failure Modes 

1 16 Breakage 

2 20 Breakage 

3 26 Breakage 

4 23 Worn Out 

5 19 Breakage 

6 30 Worn Out 
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Table 9     Summary of tools in E4 operating condition 

 

E5 – Operating conditions(force data only) 

feed=300mm, speed=1000rpm, depth of cut=0.25 

Table 10    Summary of tools in E5 operating condition 

 

 

4.3 EXTRACTION OF FEATURES 

Data collected for each sensor during machining is collected at a high frequency 

of 2000 hz. This makes sure that at the data collection step we should not miss 

out any important information in terms of varying signal signature trend during 

the machining process. Once machining is completed for every cut the data 

corresponded to every cut is reduced to data points for simplified processing of 

data. Number of different features were extracted from the data collected 

corresponding to each cut. Most of the features extracted are mean, standard 

deviation, kurtosis, range etc. Calculating these range of features helps in 

approximation the true distribution of signals which were generated during the 

process. In addition to that it helps in reducing the size of the dataset which 

further helps in saving the computational time during model generation. 

 

Cutter Time (Cuts) Failure Modes 

1 22 Worn Out 

2 18 Breakage 

3 42 Worn Out 

4 37 Breakage 

5 30 Breakage 

6 29 Breakage 

 

Cutter Time (Cuts) Failure Modes

1 66 Worn Out

2 63 Worn Out

3 35 Breakage

4 47 Breakage

5 71 Worn Out

6 52 Worn Out + Breakage
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4.4 NOVEL MODEL APPROACH 

Six end milling tools were used in machining the mild steel plate till their end 

of life for each operating condition. Unlike the traditional machine learning 

model, we are not diving the data into two sets of training and testing despite 

we use data for training our Machine Learning (ML) model in a step wise 

manner as shown by the detailed description in figure. Every tool has a 

stochastic behavior in terms of its failure. Sensor signals captured for one failure 

mode may be different than the other. Prognostic models aim at predicting these 

failures due to different modes of failure well in advance before the actual 

failure. But if the model which is trained on data consisting of multiple failure 

modes leads to inaccuracies in the resulting models. As data corresponding to 

each failure mode acts like noise for data belonging to other failure mode. 

During our experiment we try to generate as many prognostic models as the 

number of failure mode. It is assumed that tool undergoes a different failure 

mode if the Machine Learning (ML) model based on past tools histories fails to 

predict the life of the tool accurately. So, for every tool we can have predictions 

generated from multiple prognostic models. Further these predictions about tool 

life are grouped into conservative approach or non-conservative approach. This 

freedom completely lies on the user end which value he/she want to rely on as 

per the current working condition and amount of risk involved at that time of 

machining. It is believed during the initial stage of machining the operator will 

prefer to go for the non-conservative and during the later part giving preference 

to conservative results as the risk involved towards the failure of tool increases 

at the end. 

 

4.5 RANDOM FOREST REGRESSION 

Random Forest is a flexible, easy to use machine learning algorithm that 

produces, even without hyper-parameter tuning, a great result most of the 

time. It is also one of the most used algorithms, because it’s simplicity and the 

fact that it can be used for both classification and regression tasks. Due to the 

same reason to present this novel approach I have used random forest model 

for both classification and regression. Random forest builds multiple decision 

trees and merges them together to get a more accurate and stable prediction. 
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With a few exceptions a random-forest classifier has all the hyperparameters 

of a decision-tree classifier and all the hyperparameters of a bagging classifier, 

to control the ensemble itself. Instead of building a bagging-classifier and 

passing it into a decision-tree-classifier, you can just use the random-forest 

classifier class, which is more convenient and optimized for decision trees. 

The random-forest algorithm brings extra randomness into the model, when it 

is growing the trees. Instead of searching for the best feature while splitting a 

node, it searches for the best feature among a random subset of features. This 

process creates a wide diversity, which generally results in a better model. 

Therefore, when you are growing a tree in random forest, only a random 

subset of the features is considered for splitting a node. You can even make 

trees more random, by using random thresholds on top of it, for each feature 

rather than searching for the best possible thresholds (like a normal decision 

tree does).  
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4.6 ARCHITECTURE OF PROPOSED PROGNOSTIC 

MODEL 

 

Figure 23    Flow Chart depicting the process step of novel prognostic approach 
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4.7 RESULTS AND CONCLUSION 

Table 11     Results for E1 operating conditions 
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4.7.1 Result analysis for table 10 

• Predicting RUL for tool 2: The first model is trained as per the data 

of tool 1. The Root Mean Square (RMSE) results were obtained while 

predicting the life of tool 2. A very high value of RMSE value is 

obtained while predicting the Remaining Useful Life (RUL)of tool 2. 

At this stage based on the higher values of RMSE we assume that tool 

2 belongs to a different class or in other words it undergoes a different 

failure mode compared to the failure mode of tool 1. 

• Predicting RUL for tool 3: RUL of tool 3 is predicted based on two 

models i.e. M1 model (trained on tool 1 data) and M2 model (trained 

on tool 2 data). The results obtained have lower value of RMSE 

corresponding to M1 model. For further analysis of predicting models. 

Tool 3 is grouped among tool 1. Hence, subsequent predictions based 

on model M1 will be trained on combined data of tool 1 and tool 3. 

• Predicting RUL for tool 4: Prediction for tool 3 showed significantly 

improved results based on model M1. The possible reason for 

improved results can be increase in the number of data points hence 

obtaining the better predicting model. 

• Predicting RUL for tool 5: Based on model 1 which has data 

corresponding to tool 1,2 and 3 showed very good results registering 

the minimum RMSE value of 1.829. for prediction of subsequent tool 

model M1 data is updated like above cases. 

• Predicting RUL for tool 6: Model M1 showed better results compared 

to model 2. But despite of increase number of data points the predicted 

RMSE is more compared to predictions made for tool 4. The possible 

reason for deviation is due to variation in failure mode of two tools. 

• Overall analysis: At the end tool 1,3,4 and 5 are grouped in class 1 

and tool 2 is grouped in class 2. Now comparing with table 6 data, we 

have actually grouped the data as per their failure modes. Lets apply 

the same approach on another data set for different operating 

conditions. Using multiple models for prediction gives us the option of 

considering conservative approach or non-conservative approach based 

on the criticality of the operation at that instant.   
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Table 12     Results for E2 operating conditions 
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4.7.2 Result analysis for table 11 

• Predicting RUL for tool 2: The first model is trained as per the data 

of tool 1. Higher values of RMSE values was recorded while 

predicting the Remaining Useful Life (RUL).Hence we group tool 2 in 

a new class. 

• Predicting RUL for tool 3: RUL of tool 3 is predicted based on two 

models i.e. M1 model (trained on tool 1 data) and M2 model (trained 

on tool 2 data). The results obtained have lower value of RMSE 

corresponding to M2 model. For further analysis of predicting models. 

Tool 3 is grouped among tool 2. Hence, subsequent predictions based 

on model M1 will be trained on combined data of tool 2 and tool 3. 

• Predicting RUL for tool 4: Prediction for tool 4 showed better results 

for model 2 compared to model 1. The RMSE values in first half and 

second half of tool life remained very close to each other which 

signifies the stability of model in both the stages. 

• Predicting RUL for tool 5: Based on model 2 which has data 

corresponding to tool 2,3 and 4 showed very good results giving the 

minimum RMSE value of 1.47. 

• Predicting RUL for tool 6: Model M1 showed better results 

compared to model 2. Hence tool 6 is classified to class 1 

• Overall analysis: At the end tool 1 and 6 are grouped in class 1 and 

tools 2, 3, 4, 5 are grouped in class 2. The table 7 showed that tools 1 

and 6 failed due to breakage hence as per our approach we have 

classified the models correctly based on their failure. Also obtained the 

improved RMSE value because of better collection of data in a 

grouped manner.   
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Table 13      Results for E3 operating conditions 
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4.7.3 Result analysis for table 12 

The present case the operating condition is comparatively different from 

earlier cases due to higher magnitude of feed. In each of the case the RMSE 

value obtained has a smaller magnitude. Despite the combination of both types 

of failures like in the case of E1 and E2, model failed to classify them to 

different groups of classes. The average life of tool in this group is only 22.33 

with a standard deviation of 4.64. The possible reason for this may be the 

closeness in mode of failures in both the cases. As the life of the tool is nearly 

same in both the cases the model fails to classify them as separate group. 

Practically a worn-out tool should have a relatively higher life compared to 

breakage failure. In this present case we have four breakage case and 2 worn 

out each having nearly same life hence all have been grouped in same class. 
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Table 14      Results for E4 operating conditions 
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4.7.4 Result analysis for table 13 

• Predicting RUL for tool 2: The first model is trained as per the data 

of tool 1. lower values of RMSE values was recorded while predicting 

the Remaining Useful Life (RUL).Hence we group tool 1 in the same 

class. 

• Predicting RUL for tool 3: As no classes has been formed so far the 

predicted values of RUL are based on class 1 only. The results 

obtained have higher value of RMSE. Because of the higher magnitude 

of RMSE values for the predicted RUL, tool 3 is grouped into the new 

class hence further tool’s life will be predicted based on two models. 

• Predicting RUL for tool 4: Prediction for tool 4 showed better results 

for model 2 compared to model 1. The RMSE values in first half and 

second half of tool life remained very close to each other which 

signifies the stability of model in both the stages. 

• Predicting RUL for tool 5: Tool 5 predicted values for RUL do not 

show much difference in RUL of both the predicted models. The 

predicted values by M2 model were more close to the actual model 

hence it has been grouped to class 2. 

• Predicting RUL for tool 6: Model M1 showed better results 

compared to model 2. Hence tool 6 is classified to class 1 

Overall analysis: At the end tool 1 and 2 are grouped in class 1 and tools 3, 4, 

5 and 6 are grouped in class 2. The table 9 showed that tools 1 and 3 failed due 

to worn-out, while other tools are grouped in breakage. The tool 3 is 

incorrectly classified tool 1 had life of 22 cuts while tool 3 had life of 42 cuts. 

The deviation in the results is possible due to this large magnitude of 

difference in life of both the tools.  
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Table 15    Results for E5 operating conditions(force data) 
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4.7.5 Result analysis for table 14 

• Predicting RUL for tool 2: The model was based on tool 1 data, the 

predictions made for tool 2 were better predicted in the second half of 

life of the tool. The average RMSE value for tool life is on lower hence 

tool 2 has been group to class 1 which was earlier consisting of tool 1 

only. 

• Predicting RUL for tool 3: at this stage we have only one class model 

M1, hence predictions were made only based on model M1. The 

predicted values for life of the tool 3 deviate too much from its actual 

life. This can be verified from the RMSE values obtained which went 

over 20. 

• Predicting RUL for tool 4: The prediction made for tool 4 was based 

on two models i.e., M1 and M2. The RMSE value obtained from either 

model is having a high magnitude. But comparatively lower magnitude 

of RMSE value is obtained by model M2 hence tool 4 is grouped in class 

2 

• Predicting RUL for tool 5: The predicted values obtained by model M2 

deviated by large magnitude. So compared to model M2 and 

conventional model results the model M1 predicted the RUL quiet well 

showing less deviation from the actual life of the tool. 

• Predicting RUL for tool 6: Compared to conventional model and 

model M1, the predictions made by model M2 are far better showing a 

lower magnitude of RMSE values. 

Overall analysis: At the end of our analysis the we got two classes. Class 1 

consists of tools1,2 and 5 and class 2 consists of tools 3, 4, 6. As per the table 

10 the tools 1,2 and 5 are the cases of worn-out and as per our model they have 

been grouped in the same class. Rest of the tools have been grouped in another 

class. The last tool has mixed information about its mode of failure.  

The tool 6 has its life comparable to the tools belonging to the case of breakage. 

This is the possible reason it has been grouped in the class belonging to breakage 

failures.  
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CHAPTER 5. CONCLUSIONS 

5.1 SUMMARY 

The main aim of this thesis was to develop a reliable prognostic model for 

predicting the Remaining Useful Life (RUL) of the tool. The thesis has 

discussed the data driven prognostics approaches for prognostics of the tool life. 

As discussed in the literature review there are number of prognostics models 

have been proposed for predicting the life of the tool based on the past data of 

the tool but still these prognostic models lacks the desired reliability in the 

predictions made by these model. The key role of this thesis is to develop robust 

algorithm capable of producing results which are more reliable. The thesis has 

aimed to fulfill the following objective as per the gaps discussed in the literature 

review 

1. Developing the different machine learning models to identify which 

model works the best for our data set generated from end milling 

machining. 

2. Making use of LSTM for Tool condition monitoring. So far LSTM 

models have been widely used in the field of the speech recognition. We 

have tried to utilize the same for predicting the remaining useful life of 

the tool. 

3. Proposing the novel methodology for data collection techniques aiming 

at keeping the data collected in their distinct groups. 

4. Generalizing the prognostic methodology for any new machine. 

5.2 CONTRIBUTION OF THE THESIS 

Keeping the above objective in mind the following contribution is made as the 

result of this thesis. 

1. Every machine learning algorithm does not work well on all set of data 

without optimization. There are number of hyperparameters which must 

be tuned as per the demand. A given prognostic model may work well 

with given data set but the same prognostic model may not work well 

with the data set obtained as a result from other operating conditions.  

Different data driven approaches were used on the past data set of 

multiple tools which were operated on same operating conditions. It was 
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realized that a varying accuracy is obtained even after trying number of 

methods of optimization for each of the model. 

2. One of the trending machine learning model used in speech recognition 

is Long Short-Term Memory(LSTM). It finds great application due to 

its advantage over other machine learning models due to its capability 

of considering the sequence of data which acts as an advantage for this 

model compared to another conventional model. LSTM is grouped 

among the deep learning models. Artificial neural network(ANN) are 

the most famous model in this group due its diverse applicability in 

number of application. ANN also consider the data as discrete points but 

LSTM outperforms the results compared to ANN by its sequence 

tracking capability. 

3. In our thesis we have tried to propose a novel methodology to keep our 

data in groups. A given failure mode data is grouped into a certain class 

while data corresponding to other failure mode is grouped into another 

class. This segregation of data at the very prior stage helps in improving 

the efficiency of the model to a large extent as model aiming to make 

correct prediction is not misguided by some unimportant data or noise. 

This approach further helps in improving the computational time for 

running a given prognostic model. also it saves lot of time of data analyst 

during the data preprocessing stage of prediction models. The storing of 

data gets handy and data stored is easy to interpret as it is more labelled 

compared to the conventional strategy of storing the data. 

4. The prime demand of data driven approaches is the past data. This is 

often a problem as we must run a machine ideal just for the sake of 

generating data so that some machine learning models could be trained 

based on that data to make predictions. In our methodology we suggest 

a methodology that we should keep our systems ready to fetch the data 

from the machine from the very early stage and processing them. This 

has two objectives to serve. First the data collection for the machine is 

carried out in a more structured form and secondly with time due to the 

aggregation of more and more data better predictions can be made about 

the life the tool. 
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5.3 FUTURE SCOPE 

The prognostics of remaining useful life(RUL) of the machine tool component 

based on machine learning model has wide scope of trying new methodology 

for better results. The work can be extended further by bringing in better and 

robust machine learning models to make predictions. In our approach we have 

introduced our methodology by the help of conventional machine learning 

model though better prediction were obtained by deep learning models during 

the early part of the project. It is believed as per the results of deep learning 

models that we could have obtained better results with the proposed novel 

approach. The reason behind not choosing the deep learning models like LSTM 

for our approach is the difficulty in optimization and higher computational time 

required to arrive at the optimized hyperparameters.  
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APPENDICES 

A. Multiple Linear Regression Model 

# Multiple linear Regression 

#Importing the libraries 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from math import sqrt 

 

#Importing the data set 

import tkinter as tk 

from tkinter import filedialog 

root = tk.Tk() 

root.withdraw() 

file_path = filedialog.askopenfilename() 

print(file_path)  

dataset = pd.read_csv(file_path, index_col=0) 

dataset.head(5) 

 

#Splitting into input and output 

X = dataset.iloc[:, :-1] 

Y = dataset.iloc[:, -1] 

 

X.head(5) 

Y.head(5) 

 

# Choose the spliting Method 

 

# 1. For ordered sequence 

#Split into input and output 

X_train = X.iloc[:176,: ]   #this is stored as matrix 

Y_train = Y.iloc[:176, ]    #this is stored as vector 

X_test = X.iloc[176:, :] 

Y_test = Y.iloc[176:,] 

 

# 2. For shuffuled case 

# Splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3) 
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  #Fitting the model 

from sklearn.linear_model import LinearRegression 

model = LinearRegression() 

model = model.fit(X_train, Y_train) 

 

#Predicting the Test set results 

Y_pred = abs(model.predict(X_test)) 

 

# Applying K-Fold Validation 

from sklearn.model_selection import cross_val_score 

accuracies = cross_val_score(estimator = model, X=X_train, y=Y_train, 

                             cv=10, scoring = 'neg_mean_squared_error') 

         

accuracy_model_rmse = sqrt(abs(accuracies.mean())) 

accuracy_model_rmse 

 

# variances = sqrt(abs(accuracies)) 

list =[] 

for i in range(0, 10 , 1): 

    list.append(sqrt(abs(accuracies[i]))) 

    pass 

std = sum(list)/(len(list)+1) 

std 

 

# Comparing the predicted Results with Actual Results 

#Scatter plot 

plt.scatter(Y_test, Y_pred) 

plt.xlabel("Actual Remaining life(RUL)") 

plt.ylabel("Predicted Remaining useful life(RUL)") 

plt.title("Regression Model Results") 

plt.savefig('Regression Model Results.png') 

plt.show() 

 

# Model Summary 

#RMSE calculation 

from math import sqrt 

from sklearn.metrics import mean_squared_error 

rmse = sqrt(mean_squared_error(Y_pred, Y_test )) 

rmse 
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B. Polynomial Linear Regression Model 

#Importing the libraries 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import time 

 

#Importing the data set 

import tkinter as tk 

from tkinter import filedialog 

root = tk.Tk() 

root.withdraw() 

file_path = filedialog.askopenfilename() 

print(file_path) 

dataset = pd.read_csv(file_path) 

dataset.head(5) 

 

#Splitting into input and output 

X = dataset.iloc[:, :-1] 

Y = dataset.iloc[:, -1] 

#Split into input and output 

X_train = X.iloc[:176,: ]   #this is stored as matrix 

Y_train = Y.iloc[:176, ]    #this is stored as vector 

X_test = X.iloc[176:, :] 

Y_test = Y.iloc[176:,] 

Result =[('Degree of input vector','Principle component','RMSE')] 

for i in range(4, 6, 1): 

    #Transforming X_train and X_test to polynomial expressions  

    from sklearn.preprocessing import PolynomialFeatures 

    poly_reg = PolynomialFeatures(degree=i) 

    X_poly_train =poly_reg.fit_transform(X_train) 

    X_poly_test = poly_reg.fit_transform(X_test) 

     

    for j in range(1, 40, 1): 

         # Appling PCA 

        from sklearn.decomposition import PCA 

        pca = PCA(n_components = j)  # n_compoent is set to none so that we can 

check how varaince is explained by top features extracted 

        X_train = pca.fit_transform(X_poly_train) 

        X_test = pca.fit_transform(X_poly_test) 
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#Fitting the model polynomial model 

from sklearn.linear_model import LinearRegression 

model = LinearRegression() 

model.fit(X_train, Y_train) 

 

#Predicting the Test set results 

Y_pred = abs(model.predict(X_test)) 

 

#RMSE calculation 

from math import sqrt 

from sklearn.metrics import mean_squared_error 

rmse = sqrt(mean_squared_error(Y_pred, Y_test )) 

 

Result.append((i, j, rmse)) 

import pandas as pd 

PCA_results = pd.DataFrame(Result) 

 

#Scatter plot 

plt.scatter(Y_test, Y_pred) 

plt.xlabel("Actual Remaining life(RUL)") 

plt.ylabel("Predicted Remaining useful life(RUL)") 

plt.title("Regression Model Results") 

plt.savefig('Regression Model Results.png') 

plt.show() 
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C. Decision Tree regression 

# Decission tree Regression 

#Importing the libraries 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import xlwt 

from sklearn.decomposition import PCA 

from sklearn.tree import DecisionTreeRegressor 

from math import sqrt 

from sklearn.metrics import mean_squared_error 

 

#Importing the data set 

#Imprt the dataset on which prediction is to be done 

import tkinter as tk 

from tkinter import filedialog 

root = tk.Tk() 

root.withdraw() 

file_path = filedialog.askopenfilename() 

print(file_path) 

dataset = pd.read_csv(file_path) 

dataset.head(5) 

 

#Splitting into input and output 

X = dataset.iloc[:, :-1] 

Y = dataset.iloc[:, -1] 

 

#Split into input and output 

X_train = X.iloc[:176,: ]   #this is stored as matrix 

Y_train = Y.iloc[:176, ]    #this is stored as vector 

X_test = X.iloc[176:, :] 

Y_test = Y.iloc[176:,] 

 

# Making an spread sheet for storing results of parameter optimization 

wb = xlwt.Workbook() 

ws = wb.add_sheet('sheet 1') 

ws.write(0, 0, "S.no") 

ws.write(0, 1, "Degree PCA") 

ws.write(0, 2, "root mean square error") 

count = 1 
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  # Appling PCA 

from sklearn.decomposition import PCA 

from sklearn.tree import DecisionTreeRegressor 

from math import sqrt 

from sklearn.metrics import mean_squared_error 

for degree in range(1, 60, 1): 

    X_train = X.iloc[:176,: ] 

    X_test = X.iloc[176:, :] 

    pca = PCA(n_components = degree) 

    X_train = pca.fit_transform(X_train) 

 

    pca = PCA(n_components = degree) 

    X_train = pca.fit_transform(X_train) 

    X_test = pca.fit_transform(X_test) 

    regressor = DecisionTreeRegressor(random_state = 0) 

    regressor.fit(X_train, Y_train) 

         

    # Making predictions 

    Y_pred = regressor.predict(X_test) 

    rmse = sqrt(mean_squared_error(Y_pred, Y_test )) 

         

    # writing data to excel sheet 

    z = 0 

    ws.write(count, z, count) 

    z += 1 

    ws.write(count, z, degree) 

    z += 1 

    ws.write(count, z, rmse) 

    wb.save('Decission_tree_results.csv') 

    count += 1 

    pass 

 

pca = PCA(n_components = 6) 

X_train = pca.fit_transform(X_train) 

X_test = pca.fit_transform(X_test) 

pca = PCA(n_components = 6) 

X_train = pca.fit_transform(X_train) 

X_test = pca.fit_transform(X_test) 

regressor = DecisionTreeRegressor(random_state = 0) 

regressor.fit(X_train, Y_train) 
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# Making predictions 

Y_pred = regressor.predict(X_test) 

rmse = sqrt(mean_squared_error(Y_pred, Y_test )) 

rmse 

 

# Fitting the decission tree regressor to the training data set 

from sklearn.tree import DecisionTreeRegressor 

regressor = DecisionTreeRegressor(random_state = 0) 

regressor.fit(X_train, Y_train) 

 

#RMSE calculation 

from math import sqrt 

from sklearn.metrics import mean_squared_error 

rmse = sqrt(mean_squared_error(Y_pred, Y_test )) 

rmse 
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D. Random Forest Regression 

  # Random Forest Classification 

 

# Importing the libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

# Importing the data set 

import tkinter as tk 

from tkinter import filedialog 

root = tk.Tk() 

root.withdraw() 

file_path = filedialog.askopenfilename() 

print(file_path) 

dataset = pd.read_csv(file_path, index_col=0) 

dataset.head(5) 

 

# Split the dataset into input and output 

X = dataset.iloc[:, :-1] 

Y = dataset.iloc[:, -1] 

 

#Split into input and output 

X_train = X.iloc[:176,: ]   #this is stored as matrix 

Y_train = Y.iloc[:176, ]    #this is stored as vector 

X_test = X.iloc[176:,:] 

Y_test = Y.iloc[176:,] 

 

X_train = X_train.values 

Y_train = Y_train.values 

X_test = X_test.values  

Y_test = Y_test.values  

 

# Feature Scaling 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 
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  # Fitting tha Random Forest Classification 

from sklearn.ensemble import RandomForestClassifier 

model_class = RandomForestClassifier(n_estimators = 8, criterion = 

'entropy', random_state =0) 

model_class.fit(X_train, Y_train)  

 

# Prediction 

Y_pred = model_class.predict(X_test) 

 

pd.DataFrame(Y_pred).to_csv('random_forest_prediction_results.csv') 

 

# calculate RMSE 

rmse = sqrt(mean_squared_error(Y_pred, Y_test)) 

rmse 
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F. Artificial Neural Network

# Neural Network - Regression Model 

 

# Importing the libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from keras.models import Sequential 

from keras.layers import Dense 

from sklearn.preprocessing import StandardScaler 

 

# Importing the data set 

import tkinter as tk 

from tkinter import filedialog 

root = tk.Tk() 

root.withdraw() 

file_path = filedialog.askopenfilename() 

print(file_path) 

dataset = pd.read_csv(file_path, index_col=0) 

dataset.head(5)   

 

dataset = dataset.values 

 

#Splitting into input and output 

X = dataset[:,:-1] 

Y = dataset[:,-1] 

 

# Splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3) 

 

#Split into input and output 

X_train = X[:176,: ]   #this is stored as matrix 

Y_train = Y[:176, ]    #this is stored as vector 

X_test = X[176:, :] 

Y_test = Y[176:,] 

 

#Feature Scaling   

from sklearn.preprocessing import StandardScaler 

sc_X = StandardScaler() 

X_train = sc_X.fit_transform(X_train) 

X_test = sc_X.transform(X_test) 
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# define base model 

def baseline_model(): 

 # create model 

 model = Sequential() 

 model.add(Dense(34, input_dim=68, kernel_initializer='normal', 

activation='relu')) 

 model.add(Dense(1, kernel_initializer='normal')) 

 # Compile model 

 model.compile(loss='mean_squared_error', optimizer='adam') 

 return model 

  

# fix random seed for reproducibility 

from keras.wrappers.scikit_learn import KerasRegressor 

seed = 7 

np.random.seed(seed) 

# evaluate model with standardized dataset 

estimator = KerasRegressor(build_fn=baseline_model, epochs=200, batch_size=5, 

verbose=0) 

 

from sklearn.model_selection import KFold 

from sklearn.pipeline import Pipeline 

from sklearn.model_selection import cross_val_score 

kfold = KFold(n_splits=10, random_state=seed) 

results = cross_val_score(estimator, X_train, Y_train, cv=kfold) 

print("Results: %.2f (%.2f) MSE" % (results.mean(), results.std())) 

 

# Fitting the ANN to training set 

model.fit(X_train, Y_train, batch_size =10  , nb_epoch =100) 

 

# Prediction 

Y_pred = model.predict(X_test) 

 

#RMSE calculation linear model 

from math import sqrt 

from sklearn.metrics import mean_squared_error 

rmse = sqrt(mean_squared_error(Y_pred, Y_test )) 

rmse 
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LSTM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

# LSTM 

from math import sqrt 

from numpy import concatenate 

import numpy 

from matplotlib import pyplot 

import matplotlib.pyplot as plt 

from pandas import * 

from sklearn.preprocessing import MinMaxScaler, LabelEncoder 

from sklearn.metrics import mean_squared_error 

from keras.models import Sequential 

from keras.layers import Dense, LSTM 

import xlwt 

import os 

import os.path 

from sklearn.model_selection import train_test_split 

# Importing Data Set 

import tkinter as tk 

from tkinter import filedialog 

root = tk.Tk() 

root.withdraw() 

file_path = filedialog.askopenfilename() 

print(file_path) 

dataset = pd.read_csv(file_path) 

dataset.head(5) 

dataset = dataset.values   
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# convert series to supervised learning 

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): 

    n_vars = 1 if type(data) is list else data.shape[1] 

    df = DataFrame(data) 

    cols, names = list(), list() 

    # input sequence (t-n, ... t-1) 

    for i in range(n_in, 0, -1): 

        cols.append(df.shift(i)) 

        names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)] 

    # forecast sequence (t, t+1, ... t+n) 

    for i in range(0, n_out): 

        cols.append(df.shift(-i)) 

        if i == 0: 

            names += [('var%d(t)' % (j + 1)) for j in range(n_vars)] 

        else: 

            names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)] 

    # put it all together 

    agg = concat(cols, axis=1) 

    agg.columns = names 

    # drop rows with NaN values 

    if dropnan: 

        agg.dropna(inplace=True) 

    return agg 

values = dataset.astype('float32') 

 

# Normalize the features 

scaler = MinMaxScaler(feature_range=(0, 1)) 

scaled = scaler.fit_transform(values) 

 

# frame as supervised learning 

reframed = series_to_supervised(scaled, 1, 1)  #last digit is look back 

 

# drop columns we don't want to predict 

list_drop = [] 

y = values.shape[1] 

n_in = 1 

k = n_in*y 

print(k) 

print(k+y) 

print(list) 
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# Setting up excel sheet for data collection 

wb = xlwt.Workbook() 

ws = wb.add_sheet('sheet 1') 

ws.write(0, 0, "S.no") 

ws.write(0, 1, "LSTM_nodes") 

ws.write(0, 2, "batch_size") 

ws.write(0, 3, "epochs") 

ws.write(0, 4, "root mean square error") 

count = 1 

 

for LSTM_node in range(5, 1000, 5): 

    for batch_size in range(10,180,10): 

        for epochs in range(100,500,50): 

 

            # split into train and test sets 

            values = reframed.values 

            # values = np.random.permutation(values) 

            # in case of time series data ...uncmmenting the above 

comment does not make any sence 

            tool_4 = 175 

            train = values[:tool_4, :] 

            test = values[tool_4:238, :] 

 

            # split into input and outputs 

            train_X, train_y = train[:, :-1], train[:, -1] 

            print("train_X", train_X) 

            print("train_y", train_y) 

            test_X, test_y = test[:, :-1], test[:, -1] 

for i in range(y-1): 

    list_drop.append(k+1+i) 

reframed.drop(reframed.columns[list_drop], axis=1, inplace=True) 

print(reframed.head()) 

reframed.to_csv('endmilling_data.csv') 
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