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Abstract

This dissertation presents an improved empirical wavelet transform (EWT) for the
time-frequency (TF) representation of non-stationary signals. Though the EWT
method has been shown its effectiveness in some applications, it becomes difficult
to analyze some non-stationary signals due to its improper segmentation in the
frequency domain. Spectral analysis using the Fourier transform is a powerful tech-
nique for stationary time series where the characteristics of the signal do not change
with time. For non-stationary time series like modulated signals, the spectral content
changes with time and hence time-averaged amplitude spectrum may be found using
Fourier transform. There are serval TF domain based methods available for analy-
sis of non-stationary signals namely short-time Fourier transform (STFT), wavelet
transform(WT), Wigner-Ville distribution (WVD), and Hilbert-Huang transform
(HHT). The features can be extracted in TF domain for the classification of non-
stationary signals. There are other methods namely, tunable-Q wavelet transform
(TWQT), empirical mode decomposition (EMD), and variational mode decomposi-
tion (VMD). The conventional wavelet based method rely on pre-fixed basis func-
tions to analyze the signals, hence are considered to be rigid or non-adaptive. How-
ever, the non-adaptive methods find difficulty in analyzing physical signals due to
the existence of closely spaced frequency components.

In this dissertation existing EWT has been enhanced using Fourier-Bessel series
expansion (FBSE) in order to obtain improved TF representation of non-stationary
signals. The FBSE uses Bessel functions as bases, which are non-stationary in
nature. This makes FBSE suitable for analysis of signal with time-varying param-
eters. There are certain advantages of the FBSE spectrum representation. It has
been observed that FBSE spectrum has compact representation as compared to
conventional Fourier representation. Secondly, FBSE spectrum avoids windowing
for spectral representation. We have used the FBSE method for the spectral repre-
sentation of the analyzed multi-component signals with good frequency resolution.
The scale-space based boundary detection method has been applied for the accu-
rate estimation of boundary frequencies in the FBSE based spectrum of the signal.
After that, wavelet based filter banks have been generated in order to decompose
non-stationary multi-component signals into narrow-band components. Finally, the
normalized Hilbert transform has been applied to the estimation of amplitude en-
velope and instantaneous frequency functions from the narrow-band components
and the TF representation of the analyzed non-stationary signal is obtained. We
have applied our proposed method for the TF representation of multi-component
synthetic signals and real electroencephalogram (EEG) signals.

The proposed method has provided better TF representation as compared to
existing EWT method and HHT method, especially when analyzed signal possesses
closely spaced frequency components and of short time duration.
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Chapter 1

Introduction

This chapter provides a framework for signal processing i.e. operating in some

fashion on a signal to extract some useful information. For example, whenever we

hear a sound, our ears and auditory pathways connected to the brain process the

sound to extract the information. Thus, the signal is processed by a system. In the

example mentioned before, the system is biological in nature. Signal processing can

also be defined as an art of representing, transforming, analysing, and manipulating

signals. It deals with a wide range of signals, from speech and audio signals to

images and video signals, and many others. Signal processing techniques have been

found very useful in diverse applications such as speech enhancement [1, 2], image

denoising [3, 4], speech analysis [5], digital audio coding [6], image compression [7, 8],

radar signal processing [9, 10], and digital communications [11].

1.1 Background and motivation

The objective of typical real-world signal processing application is to explore the be-

havior of recorded signals [12], and then extract useful information from the signal

by transforming it. This technique improves our understanding of the information

contained in this signal. The traditional way to analyse a signal is in either time

domain analysis or frequency domain analysis. The time domain records system pa-
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rameters versus time [13]. Analyses of a signal in the time domain make it difficult

to provide any information about the distribution of energy over different frequen-

cies and the frequency variations over time [14]. On the other hand, using frequency

domain analysis [15], the information about the frequency content of the signal can

be easily extracted and analysed. However, the problem with frequency domain

analysis is the difficulty to recognize the occurrence of these frequency components

with time. An accurate spectrum analysis of such signals cannot be accomplished by

the simple use of traditional time-domain representations such as correlation meth-

ods or frequency-domain representations based on the Fourier transform. Rather,

it requires the use of analysis methods that do not assume any condition of station-

arity, as does classical spectrum analysis based on the Fourier transform. For such

signals, the concept of time-frequency distributions (TFDs) [16, 17, 18, 19], has been

introduced.

1.2 The need for non-stationary signal processing

methods

Non-stationary signal analysis methods are focused to model the inherent time-

varying characteristics of the analyzed signals recorded in various fields of science and

engineering. Moreover, the real-life complicated biological signals [20, 21, 22, 23, 24],

finance signals [25], and civil structure vibration signals [26, 27], are highly non-

stationary in nature. These signals usually vary with time and require adequate

analysis based on their information content. Thus, there is a need to describe

how the spectral content of a signal changes with time. In contrast with the time

and frequency domains for signal analysis, time-frequency (TF) techniques allow

us to analyze the signal in both time and frequency domains. This means that

TF techniques show changes of the signals frequency components with respect to

time, yielding a potentially more revealing picture of the temporal localization of

2



a signal’s spectral components [28]. To overcome the limitations of analysis in the

time domain alone or in the frequency domain, a number of TF domain based non-

stationary signal analysis methods have been introduced.

1.3 Types of non-stationary signal analysis method

There are serval TF domain based methods available for non-stationary signal anal-

ysis in the literature, namely short-time Fourier transform (STFT) [29], wavelet

transform (WT) [30], Wigner-Ville distribution (WVD) [31], and Hilbert-Huang

transform (HHT) [32]. The features can be extracted in TF domain for the clas-

sification of non-stationary signals [33]. The STFT provides TF representation of

non-stationary signals based on moving window concept. But, the use of fixed mov-

ing window imposes a trade off between time and frequency resolutions in TF plane.

In order to overcome the limitations of STFT, the WT was proposed for the efficient

TF representation of non-stationary signals.

The WT uses pre-fixed basis functions and decomposes signals into different os-

cillatory levels with the transient characteristics of the analyzed signals retained

[34]. However, due to predefined filter banks, WT fails to decompose signals ac-

cording to the presence of information content. Therefore, it is difficult to de-

termine instantaneous amplitude (IA) and instantaneous frequency (IF) functions

from the decomposed components corresponding to actual mono-component sig-

nals. The wavelet packet transforms [35, 36], was proposed in order to enhance

signal adaptability. However, this approach is still limited by the use of prefixed

basis functions. In [37], authors proposed tunable-Q wavelet transform (TQWT)

for the analysis of non-stationary signals. In TQWT method, the Q factor of the

wavelet transform can be tuned in accordance with the oscillatory nature of the

signal. In [38], authors proposed identification of epileptic seizures from scalp elec-

troencephalogram (EEG) signals based on TQWT. The proposed method clearly

detects the epileptic seizure events in scalp EEG records. In [39], authors proposed

3



synchrosqueezed wavelet transform as the combination of WT and reallocation meth-

ods. This method achieved better TF resolution as compared to conventional WT.

In [40], authors proposed a parametrization technique to design joint time-frequency

optimized discrete-time biorthogonal wavelet bases. In [41], authors introduced vari-

ational mode decomposition (VMD) method which decomposes a real valued signal

into the finite number of components. The VMD method has been found suitable

for analysing non-stationary signals and applied in [42], for instantaneous voiced

and non-voiced detection from speech signals and in [43], for speech enhancement.

Majority of the existing methods rely on pre-fixed basis functions to analyze the

signals and hence are considered to be rigid or non-adaptive. However, the non-

adaptive methods face difficulty in analysing physical signals due to the presence

of closely spaced frequency components. In the HHT based TF representation [32],

empirical mode decomposition (EMD) method adaptively decomposes analyzed sig-

nals into amplitude and frequency modulated components known as intrinsic mode

functions (IMFs). Later, the Hilbert transform (HT) was applied in each of the IMF

for the estimation of IA and IF functions and TF representation was generated. In

[45], authors cancelled the occurrences of riding waves from the empirically decom-

posed frequency modulation (FM) parts of the IMFs. However, the EMD method

suffers from mode mixing problem and thus, IF functions cannot be effectively esti-

mated. In [46], authors proposed adaptive Fourier decomposition method in order to

decompose non-stationary signals into a number of Fourier intrinsic band functions

and provided time-frequency-energy distribution of the analyzed signals. In [47],

authors introduced swarm decomposition based on fosters rules of biological swarms

for the analysis of non-stationary signals. The method achieved good performance

in extracting the components from the analyzed signals. In [48, 49, 50], TF represen-

tation was proposed using improved eigenvalue decomposition of the Hankel matrix

together with HT for the analysis of non-stationary signals. In [51, 52, 53, 54], au-

thors proposed eigenvalue decomposition for the analysis of electromyogram (EMG)

signal, coronary artery disease (CAD) identification, baseline wander and power line
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interference removal from electrocadioram (ECG) signals. TF representation using

WVD is highly affected by the presence of cross-terms between the signal compo-

nents [55, 56]. This puts a major limitation towards the efficient estimation of IFs

of the analyzed signals in multi-component situation.

In [57], empirical wavelet transform (EWT) was proposed for the analysis of

non-stationary signals. In [58], authors present several extensions of EWT approach

to two-dimensional (2D) signals (images). In [59], the authors explored the EWT

method for multivariate signals and EWT based multivariate TF representation

was proposed. It should be noted that EWT is an adaptive decomposition method

which extracts narrow-band frequency components from the analyzed signal based

on the frequency information contained in the signal spectrum. It decomposes sig-

nals with adaptive wavelet based filters after finding the boundary frequencies in the

fast Fourier transform (FFT) based Fourier spectrum. The TF representation based

on EWT can be obtained by applying the HT on the narrow band frequency com-

ponents. However, EWT fails to represent closely spaced frequency components in

the TF plane [60]. Moreover, it is very difficult to estimate the accurate frequency

components for the short duration signals using EWT method due to the use of

Fourier spectrum.

1.4 Contributions in this work

An improved method is desirable in order to encounter the aforementioned short-

comings of the existing EWT method. In this work, the conventional FFT [61, 62],

based Fourier spectrum has been replaced with the spectrum obtained using Fourier-

Bessel series expansion (FBSE). It should be noted that, FBSE coefficients are useful

for the spectral analysis of non-stationary signals due to the non-stationary nature

of Bessel functions bases in the FBSE [63, 64, 65]. We have employed the exist-

ing scale-space based boundary detection method for the spectrum segmentation

purpose. Finally, the normalized Hilbert transform (NHT) [44], based TF repre-
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sentation has been generated for analysing multi-component non-stationary signals.

The proposed method has been applied on synthetically generated multi-component

amplitude modulation (AM) and FM signals as well as on real EEG signals. We have

obtained better TF representation using proposed FBSE-EWT method as compared

to existing EWT and HHT based TF representation for majority of the considered

cases.

1.5 Organization of the thesis

The remaining portions of this dissertation are organized in the following way:

• In chapter 2, EWT method, boundary detection through scale-space represen-

tation, FBSE and NHT are explained. Plot of an arbitrary Bessel basis func-

tion, FFT of the considered basis function, Fourier Bessel (FB) coefficients of

the considered Bessel function, and the FBSE spectrum are presented in this

chapter. Then, the advantage of NHT over HT through plots of IA and IF

using HT and NHT is also presented in this chapter.

• The FBSE based EWT for synthetic multi-component and real EEG signals

analysis is explained in chapter 3. The performane evaluation is explained in

terms of mean square error (MSE) in this chapter.

• TF representation of synthetic multi-component AM signals, multi-component

FM signals and real EEG signals are presented in chapter 4. The performance

of TF representation of the proposed method has been also compared with

HHT and EWT methods.

• Finally, the whole work is concluded in chapter 5. The directions of future

research work are also provided in this chapter.
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Chapter 2

Empirical wavelet transform,

Fourier-Bessel series expansion,

and normalized Hilbert transform

methods

Some previous methods like as EMD [32], used to decompose a signal into a set

of distinct modes. it is useful in many applications besides lacking mathematical

theory. The EMD has three drawbacks, i.e. boundary effect, mode-mixing and stop

criteria. In [57], author presented a new approach to build adaptive wavelets. The

idea behind this method is to extract the different modes from the signal by designing

a suitable wavelet filter bank. This formation leads to a new wavelet transform called

EWT. We have used scale-space based boundary detection method which work on

the concept of local minima [66]. The FFT spectrum has been replaced with FBSE

spectrum for the estimation of optimal boundary frequencies and improved wavelet

based filter bank has been obtained. FBSE uses Bessel functions as basis functions,

which are damped in nature this makes FBSE suitable for non-stationary signal

analysis. We have used NHT for computation of the IA and IF throughout this

work because NHT provides better IF estimation of the considered amplitude and
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frequency modulated (AFM) signal than HT.

2.1 Empirical wavelet transform

The EWT is an adaptive signal decomposition method which was proposed in [57],

for the analysis of non-stationary signals. In [58], authors present several exten-

sions of EWT approach to two-dimensional (2D) signals (images). The inherent

mechanism of EWT is based on the formation of adaptive wavelet based filters.

These wavelet based filters possess support in the spectrum information location of

the analyzed signal. The obtained sub-band signals after EWT decomposition have

specific center frequencies with compact frequency supports. The EWT method is

summarised in the following steps [57];

1. The FFT method is used to obtain frequency spectrum of the analyzed signal

in the frequency range [0, π].

2. The frequency spectrum is segmented into N number of contiguous segments

using EWT boundary detection method. In this work, we have used scale-

space based boundary detection method [66], in order to find optimal set of

boundary frequencies denoted as ωi. In the next subsection, the scale-space

based boundary detection method is discussed in brief. It should be noted that,

the first and last boundary frequencies are prefixed to 0 and π, respectively.

Thus, EWT boundary detection method is used to find the rest of the N − 1

intermediate boundary frequencies.

3. The empirical scaling and wavelet functions are defined in each segment as

the set of band-pass filters. The idea of construction of Littlewood-Paley and

Meyer’s wavelets is used for the construction of wavelet based filters [30, 57].

The mathematical expressions of empirical scaling function Λi(ω) and wavelet

function Θi(ω) have been presented in Table 2.1. In the table, the function η(ξ, ωi)

is expressed as [57],
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Table 2.1: Mathematical expressions of EWT scaling and wavelet functions.

Functions Mathematical representation

Scaling [57] Λi(ω) =


1, if |ω| ≤ (1− ξ)ωi.
cos
(
πη(ξ,ωi)

2

)
, if (1− ξ)ωi ≤ |ω| ≤ (1 + ξ)ωi.

0, otherwise

Wavelet [57] Θi(ω) =



1,

if (1 + ξ)ωi ≤ |ω| ≤ (1− ξ)ωi+1.

cos
(
πη(ξ,ωi+1)

2

)
,

if (1− ξ)ωi+1 ≤ |ω| ≤ (1 + ξ)ωi+1.

sin
(
πη(ξ,ωi)

2

)
,

if (1− ξ)ωi ≤ |ω| ≤ (1 + ξ)ωi.

0, otherwise.

η(ξ, ωi) = ψ

(
(|ω| − (1− ξ)ωi)

2ξωi

)
(2.1)

where ψ(z) is an arbitrary function defined as [57],

ψ(z) =


0, if z ≤ 0.

and ψ(z) + ψ(1− z) = 1, ∀z ∈ [0 1]

1, if z ≥ 1.

(2.2)

The parameter ξ in Table 2.1 makes sure that empirical wavelets and scaling

function form a tight frame in L2(R). The tight frame condition is expressed as

follows [57]:

ξ < mini

(
ωi+1 − ωi
ωi+1 + ωi

)
(2.3)

Now, the detail and approximation coefficients can be determined by taking the

inner product of the analyzed signal with wavelets and scaling function which are
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expressed as [57],

Vy,Θ(i, t) =

∫
y(τ)Θi(τ − t)dτ (2.4)

Vy,Λ(0, t) =

∫
y(τ)Λ1(τ − t)dτ (2.5)

where Vy,Θ(i, t) denotes the detail coefficients of ith oscillatory level, whereas

Vy,Λ(0, t) denotes the approximation coefficients.

Finally, the reconstructed sub-band signals can be defined as [57],

f0(t) = Vy,Λ(0, t) ? Λ1(t) (2.6)

fi(t) = Vy,Θ(i, t) ?Θi(t) (2.7)

where f0(t) is the approximation subband signal and fi(t) denotes detail subband

signal of ith level. The asterisk symbol denotes convolution operation in eqns (2.6)

and (2.7).

2.2 Boundary detection based on scale-space rep-

resentation

The scale-space representation of a discrete signal x(n) can be obtained by comput-

ing the convolution of the signal with the Gaussian kernel, which is expressed as

[66]

Υ(m, t) =
M∑

n=−M

x(m− n)f(n; t) (2.8)

where,

f(n; t) =
1√
2πt

e
−n2

2t (2.9)

where M = D
√
t + 1 with 3 ≤ D ≤ 6 and t is known as scale parameter.

It should be noted that, as the scale parameter or scale-step parameter (ρ =
√

t
to

,
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ρ = 1, 2, . . . ρmax) increases, the number of minima decreases in the scale space plane

and no new minima appears. Let the total number of initial minima is denoted by

N0. Thus, each of the initial minima Pi leads to a curve Di in the scale-space plane

of length Ri, where i varies from 1 to N0. The length (integer) Ri is considered

as life time of minima i (not equal to the arc length of Di) and expressed as Ri =

max{ρ/the ith minimum exists}. Using this concept, the meaningful modes are

defined in the histogram, as follows: The support of a meaningful mode should be

delimited by two local minima which lead to two long (greater than a threshold Th)

scale-space curves Di. Therefore, the optimal threshold (Th) should be determined

in order to select the scale-space curves of length higher than threshold value [67].

Finally, the Ostu’s method [68], has been used for determining the threshold value

Th and meaningful modes have been found.

2.3 Fourier-Bessel series expansion

The FBSE uses Bessel functions as bases, which are non-stationary in nature and it

is suitable for analysis of non-stationary signals.

The FBSE of y(n) using zero-order Bessel functions is expressed as follows [69,

70, 71]:

y(n) =
U∑
i=1

CiJ0

(
βin

U

)
, n = 0, 1, . . . , U − 1 (2.10)

where, Ci are known as the Fourier-Bessel (FB) series coefficients of y(n) which

can be expressed as follows [69, 70]:

Ci =
2

U2(J1(βi))2

U∑
i=1

ny(n)J0

(
βin

U

)
(2.11)

where, J0(.) and J1(.) denote zero and first-order Bessel functions, respectively.

The positive roots (in the ascending order) of the zero-order Bessel function (J0(β) =

0) are denoted by βi with i = 1, 2, · · ·U . It should be noted that, order i of the FB
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series coefficients is related to continuous time frequency fi (in Hz) where it has the

peak value, by the following equation [69, 70]:

βi ≈
2πfiU

fs
, where βi ≈ βi−1 + π ≈ iπ (2.12)

In equation (2.12), fs denotes the sampling frequency.

The equation (2.12) can be expressed as [70, 72],

i ≈ 2fiU

fs
(2.13)

Hence, it is clear from equation (2.13) that, i should be varied from 1 to U

(discrete-time signal length) in order to cover the entire bandwidth of the analyzed

discrete-time signal. Thus, FBSE spectrum is the plot of magnitude of the FB

coefficients (|Ci|) versus frequencies (fi).

The spectral representation using FBSE has some advantages over conventional

FFT based spectral representation, such as,

Firstly, FBSE spectrum has compact representation as compared to conventional

Fourier representation [73, 74, 75, 64]. Fig. 2.1(i) presents the plot of an arbitrary

Bessel basis function
(
J0

(
β150n
U

)
, U = 1400

)
with 200 Hz sampling frequency. Fig-

ure 2.1(ii) shows its Fourier spectrum. It can be seen in the figure that Bessel

function has time varying amplitude (decays with time). In [76] authors found that

effective bandwidth of a signal is the contribution from AM bandwidth and FM

bandwidth. Thus, a significant part of the total bandwidth of a Bessel function

arises due to its AM nature. As a result, they have specific center frequency with

finite bandwidth in the FFT spectrum. This is in contrast to sinusoidal basis func-

tions of the Fourier transform, which do not contain AM and represented by spectral

lines only. Fig 2.1(iii) and (iv) show the plots of FBSE coefficients versus their or-

ders and frequencies, respectively. It is clearly visible that the same finite bandwidth

signal is represented by a single coefficient in FBSE domain. On the other side, it is

obvious that a sinusoidal wave which is a basis function in Fourier transform, will
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Figure 2.1: (i) Plot of an arbitrary Bessel basis function (ii) Plot of FFT of the
considered Bessel basis function (iii) Plot of FB coefficients of the considered Bessel
basis function, (iv) Plot of the FBSE spectrum.

be more compactly represented in the FFT domain as compared to FBSE domain

due to similarity of basis function with the analyzed signal. In that scenario, more

FB coefficients are necessary for the representation of sinusoidal signals. However,

real life signals like speech can be represented in terms of amplitude modulated and

frequency modulated (AM-FM) components [77, 78]. Such modelling approach is

useful to represent wide-band signal in terms of narrow-band signals (AM-FM com-

ponents). As shown in Figure 2.1, the basis function which is used in FBSE has

narrow-band nature in FFT domain and represented compactly in FBSE domain.

Such property helps to obtain more compact representation in FBSE domain as

compared to FFT domain for wide-band and non-stationary signals. This is be-

cause of the contribution of band of frequencies in the representation using Bessel

basis functions in the FBSE. On the other hand, in FFT based spectrum, sinusoidal

basis functions represent spectral lines which do not have any finite bandwidth in

frequency domain. Due to this reason FFT based spectrum is expected to have less
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compact representation as compared to FBSE spectrum. Hence, it is more likely

that a band-pass signal will have more compact representation with fewer non-zero

real FB coefficients in the FBSE spectrum.

Secondly, FBSE spectrum avoids the effect of windowing for spectral representa-

tion [70]. The FFT based spectral representation is embedded with window function

in order to reduce the effect of spectral leakage. However, the multiplication of the

window function with signal produces AM and end points distortion in the time do-

main. On the other hand, FBSE spectrum can produce signal characteristics even

for short duration signals without the effect of windowing.

Moreover, spectral representation using FBSE requires the number of coefficients

equal to the length of the discrete signal. This is contrary to the conventional FFT

spectrum where the spectrum length is half of the analyzed discrete signal [64].

Thus, FBSE based spectrum provides better spectral resolution as compared to FFT

spectrum. The zero padding with signal for obtaining same length FFT spectrum

will produce only interpolated spectrum with smoother appearance. In practice, the

resolution of the transform does not improve since number of points which provides

the actual information remains same [79]. The extra points appearing in the FFT

spectrum after zero padding will not provide any extra spectral information of the

signal. They will be simply interpolated values. In case of FBSE spectrum, all the

FB coefficients are unique for the analyzed signal [80, 82].

These features of the FBSE spectrum help us to determine the optimal boundary

frequencies more accurately as compared to FFT spectrum, especially when the

signal is of short length and contains closed frequency components.

2.4 Normalized Hilbert transform

The HT is used to compute IA and IF functions from the narrow band signal com-

ponents. The analytic signal representation using HT of narrow-band AFM signal

y(t) is expressed as [32],
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yh(t) = y(t) + jH[y(t)] (2.14)

where, H is the HT operator.

In another way equation (2.14) is represented as,

yh(t) = A(t)ejφ(t) (2.15)

The IA function A(t) and instantaneous phase φ(t) are represented as,

A(t) =

√
y2(t) + (H[y(t)])2 (2.16)

φ(t) = arctan

(
H[y(t)]

y(t)

)
(2.17)

The IF function f(t) is represented as,

f(t) =
1

2π

d

dt
[φ(t)] (2.18)

However, Nuttall and Bedrosian in [83], imposed an important condition for

getting a meaningful analytic signal for IF computation. This imposes a limitation

of separating the HT of the carrier signal from its own envelope, expressed as,

H{α(t) cos (θ(t))} = α(t)H{cos(θ(t))} (2.19)

provided that Fourier transform of the carrier signal and its envelope do not

overlap. Thus the signal has to be mono-component and narrow-band as well. Oth-

erwise, the FM part will be contaminated with AM variations. Thus, eqns. (2.14)

to (2.18) become no longer valid when the analyzed signal violates the condition

mentioned in eqn (2.19).

In [44], the authors proposed NHT in order to get rid of Bedrosian condition

[83]. They empirically decomposed AFM signals into envelope (AM) and carrier
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(FM) parts. The empirical AM-FM decomposition is summarised as follows [44]:

It requires identification of all the local maxima points from the absolute value

of given AFM signal y(t) and connect them with a cubic spline. This spline curve

e1(t) is termed as the envelope of the signal. Now, this obtained envelope is used to

normalize the signal y(t). The normalized signal s1(t) can be expressed as,

s1(t) =
y(t)

e1(t)
(2.20)

After normalization, the signal s1(t) should satisfy the condition |s1(t)| ≤ 1.

Otherwise, the envelope e2(t) of the signal s1(t) is found and the normalization

process is again repeated, which is expressed as,

s2(t) =
s1(t)

e2(t)
(2.21)

After nth iteration, the signal sn(t) satisfies the condition |sn(t)| ≤ 1 and the

normalization process is complete. Then, sn(t) is designated as empirically found

FM part F (t) of the AFM signal y(t).

F (t) = sn(t) = cos (φ(t)) (2.22)

Then, the AM part A(t) of the AFM signal is determined as,

A(t) = e1(t)e2(t) . . . en(t) (2.23)

Finally, the AFM signal y(t) is expressed as,

y(t) = A(t)F (t) = A(t) cos(φ(t)) (2.24)

Now, as the empirically obtained FM signal F (t) satisfies |F (t)| ≤ 1, the condi-

tion mentioned in eqn (2.19) is not violated and the computation of analytic signal

through Hilbert transform of F (t) is no longer a concern [44]. Thus, IF, f(t) is

computed from the FM signal F (t) using analytic signal representation by following
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eqns (2.14) to (2.18). In Figure 2.2, we have shown the plots of an arbitrary AFM

signal and its IAs and IFs using both HT and NHT methods. It can be observed

that NHT provides better IF estimation of the considered AFM signal. Thus, we

have used NHT for computation of the IA and IF throughout this work.

Finally, the TF coefficients considering all the N oscillatory levels, are expressed

as follows [59]:

Tf(f, t) =
N∑
i=1

Ai(t)δ[f − fi(t)] (2.25)

where Ai(t) and fi(t) denote IA and IF functions of ith oscillatory level.

Figure 2.2: (i) Plot of an arbitrary AFM signal y(t) = 4(1 +
0.8(cos(0.5πt)) cos(2π(7t + 4 cos(0.52t))) with 200 Hz sampling frequency. Plot of
(ii) IA and (iii) IF of the signal using HT and NHT methods, (iv) Plot of the zoomed
version of the computed IF.
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2.5 Summary

In the present work, an alternative method of EMD and EWT has been proposed

to realize the signal decomposition by constructing an adaptive filter bank named

as FBSE-EWT, for the analysis of non-stationary signals. The mechanism is based

on formation of wavelet filter bank. After applying the EWT, obtained sub-band

signals contains a specific center frequency. We have replaced the conventional FFT

based spectrum with FBSE, as FBSE uses Bessel function as bases which are non-

stationary in nature and secondly, FBSE spectrum avoids the effect of windowing for

spectral representation. The FFT based spectral representation is embedded with a

window function. FBSE spectrum provides a better spectral resolution as compared

to FFT. This makes FBSE suitable for non-stationary signals. The scale space based

boundary detection method has been used for boundary detection which works on

the concept of two local minima. Ostu’s method has been used for determining the

threshold value. The HT is used to compute IA and IF functions from the narrow

band signal components. However, Nuttall and Bedrosian imposed an important

condition for getting a meaningful analytic signal for IF computation. In order to

get rid of Bedrosian condition, NHT was proposed. The NHT provides better IF

estimation of the considered AFM signal. Finally, the NHT based TF representation

has been generated for analysing multi-component non-stationary signals.
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Chapter 3

Proposed method

In this chapter, we have proposed a method for analysing non-stationary signals.

The block diagram of the proposed FBSE-EWT method has been depicted in Figure

3.1.

We have considered synthetic multi-component AM, synthetic multi-component

FM, and real EEG signals in the study. First synthetic multi-component AM signal

is considered for the experimental purpose with three cases, In the first case, the

signal components are very closely spaced in frequency domain. The spacing among

the components gradually increased in case two and case three. The reason behind

considering the three cases is, whether proposed method can reproduce each of the

signal component without interference. We have also considered multi-component

FM signal and real epileptic seizure EEG signal for the experimental purpose. The

EEG signal used in this thesis is made available publicly by University of Bonn,

Germany [84]. Then, the proposed FBSE-EWT based TF representations were

compared with existing EWT and HHT based TF (discussed in the introduction

section) representation.

In the proposed method, The FBSE is used in order to obtain the frequency

spectrum of the analyzed signal. The FFT based spectrum is not used anymore

for the boundary detection and spectrum segmentation purpose. FBSE coefficients

are useful for the spectral analysis of non-stationary signals because of the non-
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FBSE spectrum
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Detection of boundaries in Fourier-Bessel domain

Filter bank corresponding to FBSE-EWT method

Signal

Figure 3.1: Block diagram of the proposed FBSE-EWT based TF representation.

stationary nature of Bessel functions. It has been observed that FBSE spectrum

has compact representation as compared to conventional Fourier representation and

avoids windowing for spectral representation. Thereafter, scale-space based bound-

ary detection approach was applied to find meaningful modes based on that we have

found boundaries and to segment the FBSE spectrum which result in improved

EWT based filter bank and sub-band (SB) signals are obtained. The mechanism

of EWT is based on the formation of adaptive wavelet-based filters. The wavelet-

based filters provide support to the spectrum information location of the analysed
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signal. The obtained SB signals after EWT decomposition have specific centre fre-

quencies with compact frequency supports.The HT is used to compute IA and IF

function from narrowband signals, However, Nuttella and Bedrosian imposed an

important condition for getting a meaningful analystic signal for IF computation.

This imposes a limitation of separating the HT of the carrier signal. Signal has to

be mono-component and narrow-band as well. otherwise FM part will be contam-

inated with AM variation. in [44], the authors proposed NHT in order to get rid

of Bedrosian condition. Thus, In order to obtain the TF representation of analysed

signal NHT was applied on each sub-band. Finally, proposed FBSE-EWT based TF

representations were compared with existing EWT and HHT based TF (discussed

in the introduction section) representations. It should be noted that EWT based

TF representations were obtained after applying NHT to the sub-band signals using

existing EWT method. For HHT based TF representation, NHT was applied on the

IMF’s obtained through EMD method.

3.1 Performance evaluation

The performance of the TF representation has been quantitatively measured by

computing MSE between the expected TF representation and the obtained TF rep-

resentation of the considered multi-component synthetic signals (discussed latter).

The expected TF representation is obtained by applying NHT to the prior known

individual signal components of the considered multi-component synthetic signals.

Finally, the MSE is expressed as [81]

MSE =
1

PQ

P∑
f=1

Q∑
t=1

(TF1(f, t)− TF(f, t))2 (3.1)

where, P and Q denote the total number of frequency points and total number of

time instants in the TF plane, respectively. The TF1 and TF denote the expected

and obtained TF representations, respectively.
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3.2 Summary

In this chapter, we have explain the complete methodology for FBSE-EWT. FBSE

was applied on multicomponent signals because of its advantage over FFT, FBSE

spectrum has twice frequency resolution as compared to FFT spectrum.Thus, it is

more advantageous to use FBSE spectrum as compared to FFT spectrum in order

to estimate the optimal boundary frequencies. For the boundary detection the scale-

space based boundary detection method has been applied. Then, the EWT based

filter bank is generated. The sub-band signals after EWT decomposition have spe-

cific centre frequencies with compact frequency support. Ostu’s method has been

used for determining the threshold value. NHT advantages over HT which make

NHT suitable for multicomponent signal analysis. NHT has been applied on each

sub-band for computation of IA and IF and thus the TF representation was obtained.

The performance of TF representation has been quantitatively measured by com-

puting MSE of the expected TF representation and the obtained TF representation

of the considered multi-component synthetic signals.
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Chapter 4

Simulation results

In this chapter, we have considered multi-component AM and FM signals with

three different cases with gradually increasing space betwwen the signal component

in frequency domain, we have also considered real EEG signal. Then FBSE-EWT

has been applied for the TF representation. The performance of TF representation

of the proposed method has also been compared with HHT and EWT methods.

4.1 TF representation of synthetic multi-component

AM signals

We have considered synthetic multi-component AM signal expressed as,

y(t) =
3∑
i=1

0.2(1 + 0.3cos(2πt))cos(2πfit)

where three different cases have been considered, namely:

Case 1: f1 = 9 Hz, f2 = 10 Hz, f3 = 11 Hz

Case 2: f1 = 9 Hz, f2 = 11 Hz, f3 = 13 Hz

Case 3: f1 = 9 Hz, f2 = 12 Hz, f3 = 15 Hz

In the first case, the signal components are very closely spaced in frequency do-

main. The frequency spacing among the components have been increased in cases
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Figure 4.1: Plots of the multi-component AM signals: (i) Case 1, (ii) Case 2, and
(iii) Case 3.

Figure 4.2: Plots of the expected TF representation of multi-component AM signals
for Case 1 (top), Case 2 (middle), and Case 3 (bottom).

2 and 3. In all the cases, the signal duration is considered as 6 seconds with a sam-

pling rate of 200 Hz. The multi-component AM signals for all the three cases have

been shown in Figure 4.1 and their expected TF representation is shown in Figure

4.2. The intention behind the consideration of the above three cases is, whether

the proposed FBSE-EWT method can reproduce each of the signal components in

the TF plane without interference. For each of the cases, the performance of the

proposed FBSE-EWT method has been compared with HHT and existing EWT

method. The obtained TF representations of the three considered cases using HHT

method have been shown in Figure 4.3. It can be noticed that, in the first case, the

signal components are hardly identifiable. In the second and third cases, three signal

components are separable in the TF plane, but they are affected by interference.
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Figure 4.3: Plots of the HHT based TF representation of multi-component AM
signal for Case 1 (top), Case 2 (middle), and Case 3 (bottom).

Figure 4.4: Plots of (i) the detected boundaries in the FFT spectrum and (ii) EWT
based filter-bank for multi-component AM signal corresponding to Case 1. Plots
of (iii) the detected boundaries in the FFT spectrum and (iv) EWT based filter-
bank for multi-component AM signal corresponding to Case 2. Plots of (v) the
detected boundaries in the FFT spectrum and (vi) EWT based filter-bank for multi-
component AM signal corresponding to Case 3.

For EWT based TF representation, the boundary frequencies are not optimally

detected in the FFT spectrum when first two cases have been considered, as shown

in Figure 4.4 (first column). This resulted into formation of undesired EWT based

filter-bank for these two cases (second column of Figure 4.4). The EWT based TF

representations for the three considered cases have been presented in Figure 4.5.

It can be observed that, EWT clearly reproduces three individual signal compo-

nents in the TF plane for the third case only. Thus, EWT method is not able to

represent closely spaced frequency components in the TF plane. For all the three

cases, the detected boundaries in the FBSE domain and FBSE-EWT based filter

25



Figure 4.5: Plots of EWT based TF representations of multi-component AM signals
corresponding to case 1 (top), case 2 (middle), and case 3 (bottom).

Figure 4.6: Plots of (i) the detected boundaries in the FBSE spectrum, (ii) FBSE-
EWT based filter-bank for multi-component AM signal corresponding to Case 1.
Plots of (iii) the detected boundaries in the FBSE spectrum and (iv) FBSE-EWT
based filter-bank for multi-component AM signal corresponding to Case 2. Plots
of (v) the detected boundaries in the FBSE spectrum and (vi) FBSE-EWT based
filter-bank for multi-component AM signal corresponding to Case 3.

banks have been presented in first and second column of Figure 4.6, respectively. It

can be seen in the figure that, for case 2, the boundary frequencies are optimally

detected in the FBSE domain as compared to in FFT domain (shown in Figure 4.4).

This is due to the fact that, FBSE spectrum provides better frequency resolution

as compared to FFT spectrum. The TF representation of all the three considered

cases, using proposed FBSE-EWT method has been presented in Figure 4.7. It is

clear from the figures that, except for the first case, proposed FBSE-EWT method

clearly represents all the signal components in the TF plane. Thus, for case 1, none

of the methods is able to represent the frequency components in the TF plane. Table
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Figure 4.7: Plots of FBSE-EWT based TF representation of multi-component AM
signals corresponding to case 1 (top), case 2 (middle), and case 3 (bottom).

Table 4.1: Comparison of the MSE values of multi-component AM signal for different
considered cases using FBSE-EWT, EWT, and HHT methods

Cases FBSE-EWT EWT HHT

Case 1 3.924×10−4 3.973×10−4 2.837×10−4

Case 2 1.983×10−4 3.794×10−4 3.742×10−4

Case 3 2.972×10−5 3.66×10−5 3.662×10−4

4.1, presents the MSE values for the HHT, EWT, and proposed FBSE-EWT method

when above mentioned three cases of the multi-component AM signals have been

considered. For case 1, the MSE values are not considerable as none of the methods

was successful in representing multi-component AM signal. For case 2, the MSE

values for FBSE-EWT method is the lowest followed by EWT and HHT methods.

Such kind of results were expected. For case 3, the MSE value for FBSE-EWT

method is lower then EWT based method, whereas MSE for EMD method was the

highest. This is because, the TF representation using EMD method has spurious or

unwanted frequencies and interference terms which give rise to higher MSE value.

In order to observe the effect of signal duration in the detection of optimal

boundary frequencies, we have increased the signal duration of the case 1 multi-

component AM signal and considered three different subcases as follows: subcase 1 :

signal duration of 15 seconds, subcase 2 : signal duration of 20 seconds, and subcase

3 : signal duration of 25 seconds. The TF representation using HHT method for
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three different subcases have been shown in Figure 4.8.

Figure 4.8: Plots of the HHT based TF representation of multi-component AM
signals for subcase 1 (left most), subcase 2 (middle), and subcase 3 (right most).

Figure 4.9: Plots of (i) the detected boundaries in the FFT spectrum and (ii) EWT
based filter-bank of multi-component AM signal for subcase 1. Plots of the (iii)
detected boundaries in the FFT spectrum and (iv) EWT based filter-bank of multi-
component AM signal for subcase 2. Plots of (v) the detected boundaries in the
FFT spectrum and (vi) EWT based filter-bank of multi-component AM signal for
subcase 3.

It can be observed that signal components overlap with each other in the TF

plane. Thus, HHT method fails to represent closely spaced frequency components

in the TF plane. For each of the considered subcases, the detected boundaries in the

FFT spectrum and EWT based filter banks have been shown in the first and second

columns of Figure 4.9. It is clear from the figure that boundaries are erroneously

detected which resulted into formation of undesired EWT based filter bank. The

TF representations using EWT method for the above mentioned subcases have been
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presented in Figure 4.10. Hence, EWT method is not able to represent the closely

spaced frequency components, even for increased signal durations.

Figure 4.10: Plots of EWT based TF representation of multi-component AM signals
corresponding to subcase 1 (left most), subcase 2 (middle), and subcase 3 (right
most).

Figure 4.11: Plots of the (i) detected boundaries in the FBSE spectrum and (ii)
FBSE-EWT based filter-bank for multi-component AM signal corresponding to sub-
case 1. Plots of (iii) the detected boundaries in the FBSE spectrum and (iv) FBSE-
EWT based filter-bank for multi-component AM signal corresponding to subcase 2.
Plots of (v) the detected boundaries in the FBSE spectrum and (vi) FBSE-EWT
based filter-bank for multi-component FM signal corresponding to subcase 3.

The detected boundary frequencies in the FBSE domain for all three subcases

have been shown in the first column, where as the corresponding filter banks have

been presented in the second column of Figure 4.11. The figure shows that opti-

mal boundary frequencies have been detected in the FBSE domain even for closely

spaced frequency components. However, it can be noticed in Figures 4.9 and 4.11
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that, for all the considered subcases, though FFT based spectrum also has three

signal components like as FBSE spectrum, but the optimal boundary frequencies

are detected in the FBSE spectrum only.

Figure 4.12: Plots of scalespace planes for FFT (top) and FBSE (bottom) spectrums
corresponding to subcase 3.

Figure 4.13: Plots of FBSE-EWT based TF representation of multi-component AM
signals corresponding to subcase 1 (left most), subcase 2 (middle), and subcase 3
(right most).

The reason is explained with Figure 4.12, which presents the plots of scalespace

planes for the FFT and FBSE spectrums corresponding to subcase 3. It is clear in

the figure that in both the spectrums, six initial minima points are detected. This

led to six scalespace curves (located at initial minima points) of different lengths in

each of the scalespace plane. However, after length based thresholding operation,

only first (located around zero frequency) and last (located around maximum fre-

quency) scalespace curves are retained in the scalespace plane of FFT spectrum.
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Table 4.2: Comparison of the MSE values of multi-component AM signal for different
considered subcases using FBSE-EWT, EWT, and HHT methods

Subcases FBSE-EWT EWT HHT

Subcase 1 1.126×10−4 1.797×10−4 1.327×10−4

Subcase 2 9.399×10−5 1.402×10−4 1.012×10−4

Subcase 3 7.29×10−5 1.141×10−4 8.204×10−5

Thus, scalespace method detects only two boundary frequencies (corresponding to

location of retained scalespace curves) and fails to detect other two desired bound-

ary frequencies in the FFT spectrum. This is in contrast to FBSE spectrum, where,

four scalespace curves are chosen after thresholding. Thus, in FBSE spectrum four

boundary frequencies are detected which include two desired boundary frequencies in

between the closely spaced frequency components (9 Hz, 10 Hz, and 11 Hz). The TF

representations for all the considered subcases using FBSE-EWT method are pre-

sented in Figure 4.13 which clearly represent closely spaced frequency components

in the TF plane. Thus, proposed FBSE-EWT provides better TF representation for

the above considered subcases in comparison to HHT and existing EWT methods.

Table 4.2 presents the MSE values for FBSE-EWT, EWT, and HHT based TF rep-

resentations considering all the three subcases. As expected, the MSE values for

FBSE-EWT based TF representation have been found lower in value as compared

to HHT and EWT based TF representation for all the subcases.

4.2 TF representation of synthetic multi-component

FM signals

In this subsection, we have considered a multi-component FM signal y(t) expressed

as,

y(t) = y1(t) + y2(t)

where y1(t) is a sinusoidally FM signal and y2(t) is a linearly FM chirp signal.
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These signals are mathematically expressed as

y1(t) = cos (2π(20t+ 4cos(0.54t)))

y2(t) = cos (2π(f4t+ 0.4t2))

where three distinct cases have been considered as,

Case 1: f4 = 9 Hz.

Case 2: f4 = 10 Hz.

Case 3: f4 = 11 Hz.

Figure 4.14: Plots of the multi-component FM signals: (i) Case 1, (ii) Case 2, and
(iii) Case 3.

Figure 4.15: Plots of the expected TF representation of multi-component FM signals
corresponding to case 1 (left most), case 2 (middle), and case 3 (right most).

In case 1, the signal components y1(t) and y2(t) have comparatively higher fre-

quency spacing as compared to Case 2 and Case 3. The frequency spacing between

y1(t) and y2(t) is the lowest in Case 3 among the three cases. In all the cases, we have

considered signal duration of 7 seconds with a sampling rate of 200 Hz. The syn-
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Figure 4.16: Plots of HHT based TF representation of multi-component FM signals
corresponding to case 1 (left most), case 2 (middle), and case 3 (right most).

Figure 4.17: Plots of (i) the detected boundaries in the FFT spectrum and (ii)
EWT based filter-bank for multi-component FM signal corresponding to Case 1.
Plots of (iii) the detected boundaries in the FFT spectrum and (iv) EWT based
filter-bank for multi-component FM signal corresponding to Case 2. Plots of (v)
the detected boundaries in the FFT spectrum and(vi) EWT based filter-bank for
multi-component FM signal corresponding to Case 3.

thetic multi-component FM signals corresponding to all the cases have been shown

in Figure 4.14 and their expected TF representations are depicted in Figure 4.15.

We have generated TF plane for all the three cases using the proposed FBSE-EWT

method as well as with existing HHT and EWT methods. Figure 4.16 presents

the HHT based TF representation corresponding to three considered cases of multi-

component FM signals. It can be observed from the figure that, HHT based TF

representation suffers from interference terms. This is because of the mode mixing

problem encountered by EMD method and the computation of IFs become difficult.

Figure 4.17 presents the detected boundaries in the FFT spectrum (first column),
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Figure 4.18: Plots of EWT based TF representation of multi-component FM signals
corresponding to case 1 (left most), case 2 (middle), and case 3 (right most).

Table 4.3: Comparison of the MSE values of multi-component FM signal for different
considered cases using FBSE-EWT, EWT, and HHT methods

Cases FBSE-EWT EWT HHT

Case 1 0.0015 0.0043 0.0048
Case 2 0.0015 0.0044 0.0051
Case 3 0.0015 0.0045 0.0053

and the generated filter banks (second column) corresponding to the three consid-

ered cases. The EWT based TF representation corresponding to above three cases

of multi-component FM signals have been presented in Figure 4.18. It can be no-

ticed that EWT method has provided better TF representation as compared to HHT

representation. However, the EWT based TF representation is not completely free

from the presence of interference terms in the TF plane. The detected boundaries

in the FBSE domain and the formed FBSE-EWT filter banks are shown in the first

and second column of the Figure 4.19, respectively. The TF representation based on

FBSE-EWT method corresponding to three considered cases have been presented

in Figure 4.20.

It can be observed from the figure that, FBSE-EWT method clearly represents

the multi-component FM signals in the TF plane. Table 4.3 presents the MSE values

of all the studied TF representation methods for all the considered cases. It can be

observed that, the MSE values for the proposed FBSE-EWT method are less in
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Figure 4.19: Plots of (i) the detected boundaries in the FBSE spectrum, (ii) FBSE-
EWT based filter-bank for multi-component FM signal corresponding to Case 1.
Plots of (iii) the detected boundaries in the FBSE spectrum and (iv) FBSE-EWT
based filter-bank for multi-component FM signal corresponding to Case 2. Plots
of (v) the detected boundaries in the FBSE spectrum and (vi) FBSE-EWT based
filter-bank for multi-component FM signal corresponding to Case 3.

comparison to HHT, and EWT methods. These results are corresponding to the

obtained TF representations using FBSE-EWT, EWT, and HHT methods.

Figure 4.20: Plots of FBSE-EWT based TF representation of multi-component FM
signals corresponding to case 1 (left most), case 2 (middle), and case 3 (right most).
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Figure 4.21: Plot of real EEG signal.

4.3 TF representation of real electroencephalo-

gram signals

We have applied the proposed FBSE-EWT method for the TF representation of real

epileptic seizure EEG signal. The EEG signal used in this paper is made available

publicly by University of Bonn, Germany [84]. The EEG signal has a sampling rate

of 173.61 Hz with a duration of 23.6 seconds. In this work, we have obtained the

TF representation of the 8 seconds duration segment of the EEG signal, as shown in

Figure 4.21. The TF representation using FBSE-EWT method has been compared

with HHT and existing EWT method. It can be seen from the Figure 4.22 that, HHT

based TF representation generates spurious frequencies in TF plane and suffers from

interference. The EWT based TF representation has been shown in Figure 4.23(iii),

where as the detected boundaries in the FFT spectrum and EWT based filter banks

for the real EEG signal have been shown in Figure 4.23(i) and (ii), respectively. It

is clear from the figure that EWT method generates unwanted and mostly scattered

IFs. This is because, some of the EWT generated sub-band signals are wide band

frequency components due to improper detection of boundary frequencies in the

FFT spectrum. The detected boundaries in the FBSE domain, the FBSE-EWT

based filter bank and obtained FBSE-EWT based TF representation have been

shown in Figure 4.24 (i), (ii), and (iii), respectively. It should be noted that almost
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all the subband signals generated using FBSE-EWT method are narrow-band in

nature. This helps to compute the more meaningful IF using NHT. In HHT and

EWT based TF representations, it is difficult to interpret the frequency components

above 15 Hz as they are mostly scattered and not well connected. However, the

FBSE-EWT provides more clear TF representation of the frequency components in

low as well as in high frequency regions. Thus, FBSE-EWT has clear advantage

over EWT and HHT in the TF representation of non-stationary signals.

Figure 4.22: Plot of HHT based TF representation of real EEG signal.

Figure 4.23: Plots of (i) the detected boundaries in the FFT spectrum, (ii) generated
EWT based filter bank, and (iii) EWT based TF representation of real EEG signal.

In the previous section, we have presented the performance of the proposed

FBSE-EWT based TF representation method and compared with HHT and existing

EWT methods. The obtained results demonstrate that proposed FBSE-EWT pro-

vides better TF representation as compared to HHT and EWT methods especially
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Figure 4.24: Plots of (i) the detected boundaries in the FBSE spectrum, (ii) gener-
ated FBSE-EWT based filter bank, and (iii) FBSE-EWT based TF representation
of real EEG signal.

when analyzed signals have closely spaced frequency component. The existing EWT

method is not successful to estimate the desired boundary frequencies when signal

frequency components are very closely spaced. This is due to low frequency resolu-

tion of FFT spectrum. It also becomes very difficult to identify components in FFT

spectrum when the analyzed signal is of short duration. On the other hand, FBSE

spectrum has twice frequency resolution as compared to FFT spectrum. Thus, it is

more advantageous to use FBSE spectrum as compared to FFT spectrum in order

to estimate the optimal boundary frequencies. There exist several algorithms for the

efficient computation of FBSE coefficients such as: expansion of the function into

Gaussian-Laguerre (G-L) functions [85], using interpolated FFT values of the func-

tion given [75], dual algorithm based on Fourier selection summation method and

Bessel function large argument asymptotic expansion [86], one-dimensional Fourier

transform followed by iterated additions of preselected Fourier components [87].

These algorithms can be used for computation of FB coefficients in faster way. In

the literature, there has been effort for estimating the optimal boundary frequencies

in order to build wavelet based filter bank. In [60], authors replaced FFT spectrum

with multiple signal classification (MUSIC) spectrum for estimating the optimal

boundary frequencies [88]. However, the model order is required in advance for the

MUSIC spectrum. In Figure 4.25, we have presented the MUSIC-EWT based TF
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Figure 4.25: Plot of (i) the detected boundaries in the MUSIC spectrum
(model order = 4), (ii) MUSIC-EWT based filter-bank, and (iii) MUSIC-EWT
based TF representation for multi-component AM signal of case 3. Plot of (iv)
the detected boundaries in the MUSIC spectrum (model order = 6), (v) MUSIC-
EWT based filter-bank, and (vi) MUSIC-EWT based TF representation for multi-
component AM signal of case 3.

representation for multi-component AM signal of case 3 (discussed in subsection

4.1) with model orders 4 and 6, respectively. The respective boundary frequencies

and MUSIC-EWT based filter banks are also shown in the figure. It can be seen

that MUSIC-EWT provides desired TF representation for order 6. The problem

can be more severe in case of the TF representation of non-stationary signals like

EEG signals where prior information of number of signal components are unknown.

In Figures. 4.26 and 4.27, we have presented the MUSIC-EWT based TF repre-

sentation of real EEG signal (discussed in section 4.3) for model orders 6 and 20,

respectively. It can be seen that, MUSIC-EWT achieved better TF representation

with model order 20. Thus, if the number of components in the signal is unknown,

then a fine tuning is recommended in the MUSIC-EWT algorithm. However, our

proposed method does not require any prior information about the presence of num-

ber of signal components. The method presented in this paper is suitable for the

TF representation of the signals whose components do not overlap in frequency. If

the signal components overlap in frequency domain, obtaining optimal boundary

frequencies for segmenting the spectrum will be difficult. In future, it will be inter-

esting to develop EWT based algorithm for representing signals whose components
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Figure 4.26: Plots of (i) the detected boundaries in the MUSIC spectrum
(model order = 6), (ii) MUSIC-EWT based filter-bank, and (iii) MUSIC-EWT
based TF representation of real EEG signal.

Figure 4.27: Plots of (iv) the detected boundaries in the MUSIC spectrum
(model order = 20), (v) MUSIC-EWT based filter-bank, and (vi) MUSIC-EWT
based TF representation of real EEG signal.

overlap in frequency domain but disjoint in TF plane.

4.4 Summary

We have taken multicomponent AM signals and multicomponent FM signals for sig-

nal analysis. For each signal, we have considered three cases. In the first case, signal

components are very closely spaced. For the second and third cases, frequency spac-

ing among the components was increased. The intention behind considering three

cases is to determine whether the FBSE-EWT method can reproduce each of the
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signal components in the TF plane without interference. The signal duration is con-

sidered to be 6 seconds for the first case. Further, in order to observe the effect of

signal duration in the detection of optimal boundary frequencies, we have increased

the signal duration. In some cases, we can see that FFT based spectrum also has

three components like FBSE spectrum, but the optimal boundary frequencies are

detected in the FBSE spectrum only. This is due to the fact that FBSE spectrum

provides better frequency resolution as compared to FFT spectrum. The perfor-

mance of the TF representation has been quantitatively measured by computing

MSE. The MSE value for the FBSE- EWT method is the lowest among all. After

applying the scale-space based boundary detection method, six initial minima were

detected. However, after length based thresholding operation, scale-space method

detected only two boundary frequencies and failed to detect the other two desired

boundaries. In contrast to FBSE spectrum, four boundaries were detected after

thresholding operation, which included two desired boundary frequencies. This is

due to the fact that FBSE spectrum has twice frequency resolution as compared

to FFT spectrum.The FBSE-EWT method was also applied to the real epileptic

seizure EEG signal for the TF representation. The FBSE-EWT provides more clear

TF representation of the frequency component in low as well as in high region. The

performance of the FBSE-EWT method has been compared with HHT and existing

EWT method. The FBSE-EWT has clear advantage over EWT and HHT in the

TF representation of non-stationary signals.
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Chapter 5

Conclusion and future work

5.1 Conclusion

We have presented a new FBSE-EWT method for the TF representation of non-

stationary signals. The FFT spectrum has been replaced with FBSE spectrum for

the estimation of optimal boundary frequencies . Then scale-spaced based boundary

detection method was applied, which works on the concept of two local minima, thus

resulted into improved wavelet based filter bank. Ostu’s method has been applied

for determining the threshold value. Instead of using HT to compute IA and IF

functions from the narrow band signal components, we have used NHT and based on

that TF representation was generated for analysing multi-component non-stationary

signals. The performance of TF representation was quantitatively measured by

computing MSE of the expected TF representation and the TF representation of

the considered multi-component synthetic signal. The proposed method has been

applied to multi-component AM signals, multi-component FM signals, and real EEG

signal for TF representation. For the AM and FM multi-component signals, we have

considered three different cases and then compared FBSE-EWT with HHT, EWT,

and MUSIC-EWT methods. The experimental results have shown that the proposed

algorithm provides better TF representation in comparison to existing EWT method

and HHT method. Thus, the proposed FBSE-EWT method has potential to analyze
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wide classes of real life non-stationary signals.

5.2 Future work

The presented research work can be applied on synthetic signals and real EEG

signal. Further, we can explore the FBSE-EWT for the multivariate signals in order

to determine the joint instantaneous amplitude and frequencies in signal adaptive

frequency scale. The multivariate extension of FBSE-EWT can be developed in

future. This work can also be extended to 2D signals. The proposed method can be

studied for various non-stationary signals like as EEG, ECG, EMG, etc. The feature

set can be obtained from the proposed FBSE-EWT method and can be studied for

classification of normal and abnormal categories of various physiological signals.
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