
Studies on the effect of internal geometry
in the macroscopic deformation of solids

Ph.D. Thesis

By

T Venkatesh Varma

DEPARTMENT OF CIVIL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

DECEMBER 2022





Studies on the effect of internal geometry
in the macroscopic deformation of solids

A THESIS

submitted to the

INDIAN INSTITUTE OF TECHNOLOGY INDORE

in partial fulfillment of the requirements for

the award of the degree

of
DOCTOR OF PHILOSOPHY

By

T Venkatesh Varma

DEPARTMENT OF CIVIL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

DECEMBER 2022









ACKNOWLEDGEMENTS

I would like to take this opportunity to express my heartfelt gratitude to a number of

persons who in one or another other way contributed by making this time learnable,

enjoyable, and bearable. First, I would like to thank my supervisor Dr. Saikat

Sarkar, who was a constant source of inspiration during my work. Without his

constant guidance and research directions, this research work could not be completed.

His continuous support and encouragement have motivated me to remain streamlined

in my research work.

I am very thankful to my research collaborators Prof. Richard V. Craster

and Prof. Sébastien R L Guenneau for inviting me to Imperial College London

and constantly supporting me during my stay there. I would also like to thank Dr.

Stéphane Brûlé (Seismic Hazard Expert, Menard, France), Dr. Bogdan Ungure-

anu (Associate Researcher, Department of Mathematics, Imperial College London),

and Dr. Mohammad Masiur Rahaman (Assistant Professor, IIT Bhubaneswar)

for collaborating with us on various stages of my research. Their valuable comments

and suggestions helped me to improve my work at various stages. I greatly acknowl-

edge Dr. Abhijit Ghosh, Department of Metallurgy Engineering and Materials

Science, IIT Indore for his suggestions on the practical feasibility of my work.

I would like to appreciate the fine company of my dearest colleagues and friends

especially, Mukul Saxena, Gyanesh Patnaik, Anshul Kaushik, Revanth

Dugalam, and Vinay Kumar Sharma.

My sincere acknowledgment and respect to the Ministry of Human Resource Devel-

opment (MHRD India), Scheme for Promotion of Academic Research and Collabora-

tion (SPARC India), Research and Development section (IIT Indore), and Finance and

Accounts section (IIT Indore) for supporting me with various scholarships and grants

to conduct my research smoothly. I would like to highly appreciate the Civil Engineer-

ing Department staff members for their unfailing support and assistance throughout

my research.

Finally, I would like to express my heartfelt respect to my parents and brother for



the love, care, encouragement, and support they have provided to me throughout my

life.

T Venkatesh Varma



To my Parents





Abstract

A comprehensive understanding of the arrangements of internal geometries in solids

is essential to predict their macroscopic response which evolves with time and space

under external loading and ultimately leads to their failure. The internal geometries

may vary over a wide range of length scales (from nanometer to meter) and at times

can be highly complex, and heterogeneous and can exhibit nonlinear constitutive re-

lations. Altering the internal geometries of a solid in an appropriate manner can

enhance the overall macroscopic response leading to an efficient design. As a part

of this thesis, we study the effect of internal geometry in the form of heterogeneity

arising from periodic inclusions. Towards this, we borrow ideas from the analysis of

mechanical metamaterials. However, large-scale implementation of metamaterial de-

signs is rather a recent and less explored phenomenon. One such implementation is

seismic metamaterials (length-scale of meter-Order) used to shield earthquake forces.

But most of the works are on the experimental front and lack on the modeling front.

Another interesting implementation is a metamaterial-based design of armor (length-

scale of millimeter-Order) which remained largely unexplored to date. The basic idea

is similar to a crystal lattice with periodic structure, when local resonators are placed

in the form of stiffer inclusions, they collectively show nonintuitive behavior such as

large attenuation of elastic waves. This thesis uses such a concept of metamaterials

to design efficient solids with specific applications to seismic metamaterials and armor

design. Initially, the effect of internal geometries (in the form of inclusion shapes

and orientations) on modulating frequency bandgap is studied. This is shown with

specific application to seismic metamaterials which can be deployed to shield/divert

earthquake waves. It is observed that a square-shaped inclusion with sides aligned

with the sides of a square lattice performs better than any other shape of the inclu-

sions in a linear regime. After arriving at a particular choice of shape for inclusions,

we test its fracture properties (fracture toughness and fracture strength). Here, it is

observed that high fracture toughness and high fracture strength than its constituent

material, similar to that possessed by nacre, can be achieved simultaneously if the
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inclusions are compressively prestressed. Such a design is helpful in developing an

efficient front panel of protective armor. Still, a stress wave will be transmitted to

the back panel of the armor and we show that a metamaterial-based polymer backing

panel (in which the inclusions are in form of cubic voids) can efficiently absorb the

energy and attenuate the stress wave drastically in comparison to its bulk solid coun-

terpart. En route to this, we show that the detailed finite element modeling for the

internal geometries of the solid can be bypassed by using a coarse-grained formulation

which is capable of accurately capturing its macroscopic response.

Keywords: Seismic metamaterials, Dispersion curves, Transmission loss, Periodic

microstructure, Prestressed inclusions, High-performance composites, High fracture

toughness, High fracture strength, Protective armors, coarse-graining, Finite element

method (FEM), Energy absorption, Polymer-based metamaterial
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Chapter 1

Introduction

A comprehensive understanding of the deformation and failure mechanism in struc-

tures is crucial for large-scale engineering problems. This serves as a basis to refine

the guidelines to arrest failure mechanisms and prevent further failure events which

eventually improves the structure’s intended service. The deformation of a solid is

characterized by its mechanical response, which does not only depend on its intensive

properties, such as density, elastic modulus, Poisson’s ratio, etc., but also on the sub-

system’s internal geometry and its arrangements. The internal geometry collectively

defines the shape of a unit cell and the shape of its inclusions in a periodic setup. The

inclusions can also have voids, defects or imperfections. Fig. 1.1 shows the different

arrangement of the “internal geometry”. Fig. 3.3(a) shows the square shaped unit

cell with different shape of the voids in it, whereas fig. 1.1(b) shows the unit cell

with different inclusion shapes in it. By tweaking these geometrical parameters, such

as unit cell shape, size, inclination angle, etc. one can get insights about the local

response, which affects the bulk, an overall response such as modulating frequency

bandgap, attenuating stress waves, crack bending, improving energy absorption capa-

bility, etc. For instance, adding a strut to BCC micro lattice of a stainless steel wire

mesh (typically used in transport conveyor belts) increases its stiffness and changes its

deformation modes. Thus, the mechanical response of a solid is directly related to the

underlying details of the internal geometries (also called unit cells/micro-structure),

which at times can be highly heterogeneous, complex, and can have non-linear con-
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stitutive relations. This in-situ mechanical approach unfolds the interface mechanics

and leads to a strengthening mechanism.

 

 

 

 

 

    

    

    

    

 

    

    

    

    

 

(a) Repeating unit cell with voids as inclusions

 

 

 

 

 

    

    

    

    

 

    

    

    

    

 

(b) Repeating unit cell with different inclu-
sions

Figure 1.1: Arrangement of internal geometries in a 2D plate.

The applicability may vary over a wide range of length scales (from nanometer to

meter) of the solid’s microstructural geometry. This concept immediately reminds us

of composites, known as metamaterials, which are assemblies of multiple elements usu-

ally arranged in periodic patterns at sub-wavelength scales. These composites do not

only derive their properties from the constituent materials, but also from the combina-

tion of elements with given shapes and orientations, such as the consecrated split ring

resonators and swiss-rolls [3]. With unusual material properties and advanced func-

tionalities, metamaterials can be a key to revolutionizing the mechanics and structural

engineering field. Their remarkable features like programmable frequency bandgap,

negative poison’s ratio, malleability, etc. make it possible to control, divert or shield

the elastic waves/stress waves. This thesis uses the concept of metamaterials to show

the effect of varying the internal geometries and their material constituents on the

macroscopic properties (such as modulating frequency bandgaps, crack propagation,

energy absorption, etc.) of a solid body.
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1.1 Background and Motivation

Understanding structural deformation serves as a key to solving many engineering

problems. An important aspect of this is to save structures against vibrations caused

by elastic waves propagating through them.

While there are techniques to suppress structural vibrations via external means,

there are certain limitations in some of these approaches, e.g., Tuned Mass Dampers

(TMD) and Base Isolations (BI)[4, 5, 6, 7, 8, 9]: BI induces large movement of the

structures which may not be acceptable, TMD works only for a narrow frequency

range outside of which it may work adversely which is again a major issue because

identifying the frequency contents in the structure correctly is not straightforward as

it may change significantly with time due to structural degradation and environmental

change [10, 11]. In this context, metamaterials, if exploited appropriately, can provide

us with robust strategies.

Metamaterials at the micro- and nanometer scales have already shown tremendous

impact in photonics and phononics, their extensions to solving large-scale engineering

problems are a rather recent and less explored phenomenon. One such large-scale im-

plementation is seismic metamaterial (SM) which can be used as an earthquake shield.

The basic idea is to deploy a series of resonators buried in soil or above-surface around

a structure so that certain frequencies of seismic waves cannot propagate through

them and affect the primary structure, which can be a building, a bridge, or an entire

city. These resonators are typically conceived in the form of periodically placed tubes

inside the soil or above the surface forest of trees [12]. Another interesting large-

scale application is a metamaterial-based armor design. In engineering new types of

composite armors, their material constituents play an important role in translating

the kinetic energy of the impacts into internal energy, which many researchers have

explored [13]. However, a metamaterial-based armor design can enhance the overall

performance in terms of retarding the impact projectile penetration (function of the

front metal panel), transmitting the shock wave, or dissipating the energy (function

of the back polymer panel). These composites usually derive their non-intuitive prop-
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erties from the arrangement of the unit cell geometry and the same has remained

unexplored to date. The effect of varying the geometry of the unit cell and their ma-

terial constituents on the macroscopic properties of a solid body is not yet addressed

such as the variation in frequency bandgaps, fracture toughness, fracture strength,

energy absorbing capacity, etc. Moreover, analyzing metamaterials involves extreme

computational overhead in solving the continuum equations which is not possible to

afford for the large engineering scale of our interest.

1.2 Objectives

Based on the above discussion, we aim to achieve the following objectives in this

thesis:

[1] To study the effect of different types of internal geometries and material consti-

tutents in modulating frequency contents in the propagating waves, with appli-

cation to seismic metamaterials.

[2] To study the effect of internal geometry on fracture toughness and fracture

strength in a solid with periodic inclusions with application to designing armor

front panel.

[3] To develop a coarse-grained formulation to effectively compute the overall re-

sponse of a solid with internal geometries with application to designing armor

backing panel.

1.3 Organization of the Thesis

The thesis is organized into six chapters which are as follows;

[1] Chapter 1: Includes the introduction to the thesis topic, the importance of the

study, research background, objectives of the study, and thesis organization.
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[2] Chapter 2: Covers past literature relevant to the work, the basic theory of 3D

elastic equations incorporating Bloch’s theorem to analyze the periodic medium.

[3] Chapter 3: Discuss the effect of different geometry and material constituents

in modulating frequency contents in the propagating wave. This is shown with

specific applications to seismic metamaterials on a meter scale.

[4] Chapter 4: Shows the effect of internal geometry on fracture toughness and

fracture strength in a solid with periodic inclusions. A strategy for designing a

metamaterial-based front panel of body armor is discussed.

[5] Chapter 5: Describes a coarse-grained formulation to effectively compute the

overall response of a solid body with period voids. This is shown with specific

application to a polymer-based metamaterial backing panel of body armor.

[6] Chapter 6: This chapter draws some conclusions about the overall study and

possible future directions.
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Chapter 2

Literature Survey and Research

Methodology

This chapter provides an overview of the importance of internal geometries in a

solid body, the relevant theories of metamaterials, and the computational methodology

used to analyze them. The whole chapter is divided into five sections. Section 2.1

draws the users attention toward understanding the importance of internal geometries

in structures with reference to some past studies. Section 2.2 shows an overview of the

periodic materials with emphasis on their periodicity. Section 2.3 shows the emergence

of metamaterials which are basically an arrangement of inclusions (internal geometry

in our case) in a periodic pattern in a given matrix. Then the basic theories which will

be used to analyze a metamaterial are discussed in section 2.4. Section 2.5 discusses

a finite element based modeling for the metamaterials.

2.1 Importance of internal geometries in structures

Studies on the internal geometry of structures have been the focus of research

for many decades, e.g., from biological systems to aircraft designs [14, 15]. Here, we

consider voids and inclusions as a source of altering internal geometry in a solid body.

Such a source gives rise to heterogeneity in the material. It is well known that such

geometries offer variation in the macroscopic response by a change in volume fraction,
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e.g., heat conductance through a porous medium increases with an increase in the

pore size [16, 17]. However, a change in the macroscopic response can also be achieved

by changing their shapes, orientation, and spatial distribution at the same volume

fraction. This offers many engineering advantages such as a cost-effective design and

removing fabrication difficulties involved with different materials.

The importance of internal geometry in structures can be seen in many past studies.

The length scale of these geometries may vary from micro-meter to meter. Cao et al.

[18] studied the effect of inclusion shapes and orientations on plastic and viscoplastic

deformations of a rock mineral. It is observed that there is less influence of this on

the macroscopic yield stress, however, there are significant influences on macroscopic

plastic and viscoplastic strains. This also shows that all the macroscopic properties will

not be affected by microscopic changes in the internal geometries. Internal geometries

are also important in the case of industrial precipitators where the crystallizer size

determines the quality of precipitated particles [19]. Not only in metal or ceramics,

internal geometries also play a crucial role in polymers too. Jayan et al. have shown the

influence of internal geometries on woven-like structures whose chemical constituent

is an E-glass tow [20]. Similarly, Vallons et al. showed a new stitching pattern as

an alteration to the internal geometries of a fabric composite and observed strength

variation in the longitudinal and transverse directions [21]. These internal geometries

when arranged in a repetitive sense form a periodic pattern that holds exotic properties

during the dynamic behavior of a structure.

2.2 Overview of periodic materials

Periodic structures are known to attract the interest of many well-known scientists

such as Cauchy, Lord Rayleigh, Kevlin, Vincent etc. since the early 19th Century.

Most of the works during that time involved in developing electric filters out of periodic

networks [22, 23]. Later, Bloch proposed a generalized theory for Floquet’s results for

the wavy nature of a particle moving in a periodically repeating environment [24]. The

theory today is known as Bloch’s theorem for wave propagation in a periodic medium

8



and fits in many applications [25, 26, 27, 28]. A detailed description of this theory is

given in the section 2.4 of this chapter in the context of metamaterials. For a detailed

study on wave propagation in the periodic medium, one can refer to Brillouin’s Book

[29].

The periodicity of a structure can be defined in one-dimensional (1D), two-

dimensional (2D), or three-dimensional (3D) as shown in figure 2.1, composed of the

smallest repeating element known as a unit cell. Researchers have observed that these

periodic structures may hold exotic properties, e.g., vibration shielding [30, 31, 32, 33].

One may note that the dynamic behavior of structures is a complex phenomenon and

analyses of large structures such as aircraft is computationally very expensive. How-

ever, if these structures are composed of repeating substructures, the analyses become

easier since we will be dealing only with the substructure with periodicity incorpo-

rated. Now, if we introduce the geometric and material periodicity in the mathemati-

cal modeling of these structures, their dynamic behavior can be represented as a wave

propagating through the structure and this gave rise to the concept of mechanical

metamaterials which is discussed in the next subsection. Thus, the computational

effort depends only on the complexity of the substructure (or unit cell in our case)

rather than the whole structure.

  

a

(a) 1D periodicity (b) 2D periodicity (c) 3D periodicity

Figure 2.1: Periodic structures
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2.3 Emergence of mechanical metamaterials

In the parallel research area of electromagnetism, there is a keen interest in com-

posites, known as metamaterials, which are assemblies of multiple elements usually ar-

ranged in periodic patterns at subwavelength scales. These materials were introduced

as a means to achieve effective electromagnetic properties not from the properties of

the constituent materials, but from the combination of elements with given shapes and

orientations, such as split ring resonators [34]. Such periodically arranged elements

take their name from the shape of the thin metal sheets they are made of that allow

for artificial magnetism, not present in the constituent materials (metal surrounded

by plastic, neither of which are magnetic media), through the precise manipulation of

electric and magnetic components of the electromagnetic field and their interplay. In-

deed, the electromagnetic field is tremendously enhanced due to internal capacitance

and inductance phenomena upon the resonance of the thin sheets. From the highly

dispersive nature of the metamaterials around the resonant frequencies of split ring

resonators and other arrangements, such as swiss-rolls, it is possible to block, absorb,

enhance, or even bend electromagnetic waves propagating through a doubly or triply

periodic array of them, as low-frequency stopbands and strong anisotropy (apparent

in distorted isofrequency contours in pass bands) take place [35].

The story of metamaterials doesn’t end with electromagnetism. Later, a new

class of materials, known as mechanical metamaterials (MM), showed nonintuitive

mechanical properties when combined with different structures. Early in 1987, Lakes

experimentally showed that a material can have a negative Poisson’s ratio, i.e., it

expands laterally when stretched in contrast to the ordinary materials [36]. Thereon

a series of works have been done on mechanical metamaterials, both experimentally

and numerically, which show nonintuitive mechanical properties, e.g., negative com-

pressibility MM [37], auxetic MM [38, 39], multistable MM to trap energy [40, 41],

Programmable MM [42, 43], Soft MM [44], bio-inspired MM [45], topological MM

][46], etc. Most of the studies on MM were confined to nano- and micro-scale and

their large-scale extension on the meter-scale remained unexplored. However, the last
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decade has seen their meter-scale applications too, e.g. forest trees acting as a MM to

attenuate Rayleigh waves [47], seismic metamaterials (SMs) [48, 49], etc. Mechanical

metamaterials if designed appropriately can actually shield frequency contents ranging

from a few hertz to kilo-hertz. The relevant literature used in the work is shown in

the subsequent chapters for convenience.

2.4 Basic theories of metamaterials

The basic theories of metamaterials are derived from solid-state physics concepts

We start with understanding the term reciprocal lattice, which plays a crucial role in

periodic structures. In general, the reciprocal lattice is the Fourier transform of a direct

lattice, if the latter is a periodic spatial function in real space. The reciprocal lattice

represents a reciprocal space of spatial frequencies containing all sets of wavevectors

in the Fourier series. Suppose, we define the direct lattice as Rn = n1a1+n2a2+n3a3

where ai is the primitive vectors and ni ∈ Z; Z is the set of integers. Its reciprocal

lattice is represented as Gm = m1b1+m2b2+m3b3 where mi ∈ Z and bi =
2π
V
aj×ak;

V = ai · aj × ak; {i, j, k} = {1, 2, 3}.

Next, we describe the Brillouin zone (BZ) which is a primitive cell of the reciprocal

lattice as described above. BZ for a direct lattice is shown in figure 2.2. nth BZ is

the locus of all points reachable from the origin of the reciprocal lattice by exactly

crossing n−1 distinct Bragg planes. Consequently, we define the Irreducible Brillouin

Zone (IBZ) as the first BZ reduced by all of the symmetries in the point group of the

reciprocal lattice, i.e., the wavevector k is swept from 0 to π/a as shown in the figure.
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Figure 2.2: Representation of a direct lattice (left figure) and Irreducible Brillouin
zone (IBZ) in the reciprocal lattice (right figure).

Now, it comes to account for the periodicity of the lattice. Here we use Floquet-

Bloch periodic condition and express the displacement vector u(r) as:

u (r, t) = ũ(r)ei(k·r−ωt) (2.1)

where, ω is the angular frequency and ũ is the displacement modulation function

whose periodicity is identical to the lattice periodicity:

ũ(r+ a) = ũ(r) (2.2)

k = (kx, ky, kz) is the wavevector along the X, Y, and Z-direction of the BZ. Using

Eq. (2.2) in Eq. (2.1), we get:

u (r+ a, t) = ũ(r+ a)ei(k·(r+a)−ωt)

= eik·aũ(r)ei(k·r−ωt)

= eik·au (r, t)

(2.3)

Eq. (2.3) represents the periodic boundary conditions for the displacement function.

This implies that the output wave is having a phase difference of k · a with the input

wave. The dispersion diagrams presented in this thesis are obtained by substituting
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Eq. (2.3) in the governing equation of motions (shown in the subsequent chapters)

and solving an eigenvalue problem.

2.5 Finite element modeling for metamaterials

We take an elastic medium consisting of isotropic homogeneous phases, for which

the governing equation is [50]:

(λ+ µ)
∂2uj
∂xj∂xi

+ µ
∂2ui
∂xj∂xj

= ρ
∂2ui
∂t2

(2.4)

which is valid in each homogeneous phase and is described by a constant density ρ

and Lamé parameters λ = E
2(1+ν)

and µ = Eν
(1+ν)(1−2ν)

; E is the elastic modulus and ν is

the Poisson’s ratio of the isotropic phase. {ui}3i=1 = {u, v, w} is the displacement field

vector having components u, v and w in the x, y and z-direction in space, respectively.

On expanding and expressing in Cartesian coordinates, Eq. (2.4) takes the form;

(λ+ µ) (uxx + vyx + wzx) + µ (uxx + uyy + uzz) = ρutt

(λ+ µ) (uxy + vyy + wzy) + µ (vxx + vyy + vzz) = ρvtt

(λ+ µ) (uxz + vyz + wzz) + µ (wxx + wyy + wzz) = ρwtt

(2.5)

where the double subscript (a)(bb) represents the second order derivative of a with

respect to b. For further analyses we consider the following solution forms for the field

variables:

u = ũ(r)e(K·r−iωt)

v = ṽ(r)e(K·r−iωt)

w = w̃(r)e(K·r−iωt)

(2.6)

where, r is the position vector, K = {kx, ky, kz} is the wave number and ω is the

frequency associated with the wave. The various derivatives in Eq. (2.5) can be

written as the following using Eq. (2.6):

13



uxx =
[
ũxx + 2iũxkx − k2xũ

]
e(K·r−iωt)

uxy = [ũxy + iũykx + iũxky − kxkyũ] e
(K·r−iωt)

uxz = [ũxz + iũzkx + iũxkz − kxkzũ] e
(K·r−iωt)

uyy =
[
ũyy + 2iũyky − k2yũ

]
e(K·r−iωt)

uzz =
[
ũzz + 2iũzkz − k2z ũ

]
e(K·r−iωt)

utt = ω2ũe(K·r−iωt)

(2.7)

Similar expressions can be arrived at for the derivatives associated with v and w.

Accordingly Eq. (2.5) can be written as:

(λ+ µ) [ũxx + ṽyx + w̃zx]− µ (ũxx + ũyy + ũzz) + ikx [(λ+ µ) (2ũx + ṽy + w̃z) + 2µũx]

+iky [(λ+ µ) ṽx + 2µũy] + ikz [(λ+ µ) w̃x + 2µũz]− k2x [(λ+ µ) ũ+ µũ]− k2yµũ− k2zµũ

−kxky (λ+ µ) ṽ − kxkz (λ+ µ) w̃ = −ρω2ũ

(2.8)

We now perform the weak formulation for Eq. (2.8) as below:

− (λ+ µ)

[∫
Ω

NxũxdV +

∫
Ω

NxṽydV +

∫
Ω

Nxw̃zdV

]
− µ

(∫
Ω

NxũxdV +

∫
Ω

NyũydV +

∫
Ω

NzũzdV

)
+ ikx

[
(λ+ µ)

(
2

∫
Ω

NũxdV +

∫
Ω

NṽydV +

∫
Ω

Nw̃zdV

)]
+ 2µikx

∫
Ω

NũxdV

+ iky

[
(λ+ µ)

∫
Ω

NṽxdV + 2µ

∫
Ω

NũydV

]
(2.9)

+ ikz

[
(λ+ µ)

∫
Ω

Nw̃xdV + 2µ

∫
Ω

NũzdV

]
− k2x

[
(λ+ µ)

∫
Ω

NũdV + µ

∫
Ω

Nũ

]
− k2yµ

∫
Ω

NũdV − k2zµ

∫
Ω

NũdV

− kxky (λ+ µ)

∫
Ω

NṽdV − kxkz (λ+ µ)

∫
Ω

Nw̃dV
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= −ρω2

∫
Ω

NũdV

where N is 3D shape functions. Taking ũx = Njûj, ũy = Njûj, and ũz = Njûj

(assuming Einstein’s summation convention), and similarly for v and w, we arrive at

the following equations:

− (λ+ µ)

[∫
Ω

NxNxjdV ûj +

∫
Ω

NxNyjdV v̂j +

∫
Ω

NxNzjdV ŵj

]
− µ

(∫
Ω

NxNxjdV ûj +

∫
Ω

NyNyjdV ûj +

∫
Ω

NzNzjdV ûj

)
+ ikx

[
(λ+ µ)

(
2

∫
Ω

NNxjdV ûj +

∫
Ω

NNyjdV v̂j +

∫
Ω

NNwjŵj

)]
+ 2µikx

∫
Ω

NNxjdV ûj

+ iky

[
(λ+ µ)

∫
Ω

NNxjdV v̂j + 2µ

∫
Ω

NNyjdV ûj

]
+ ikz

[
(λ+ µ)

∫
Ω

NNxjdV ŵj + 2µ

∫
Ω

NNzjdV ûj

]
− k2x

[
(λ+ µ)

∫
Ω

NNjdV ûj + µ

∫
Ω

NNjdV ûj

]
(2.10)

− k2yµ

∫
Ω

NNjdV ûj − k2zµ

∫
Ω

NNjdV ûj

− kxky (λ+ µ)

∫
Ω

NNjdV v̂j − kxkz (λ+ µ)

∫
Ω

NNjdV ŵj

= −ρω2

∫
Ω

NNjdV ûj

Similarly in the Y-direction,

− (λ+ µ)

[∫
Ω

NyNxjdV ûj +

∫
Ω

NyNyjdV v̂j +

∫
Ω

NyNzjdV ŵj

]
− µ

(∫
Ω

NxNxjdV v̂j +

∫
Ω

NyNyjdV v̂j +

∫
Ω

NzNzjdV v̂j

)
+ ikx

[
(λ+ µ)

∫
Ω

NNyjdV ûj + 2µ

∫
Ω

NNxjdV v̂j

]
+ iky

[
(λ+ µ)

(∫
Ω

NNxjdV ûj + 2

∫
Ω

NNyjdV v̂j +

∫
Ω

NNzjdV ŵj

)]
+ 2ikyµ

∫
Ω

NNyjdV v̂j
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+ ikz

[
(λ+ µ)

∫
Ω

NNyjdV ŵj + 2µ

∫
Ω

NNzjdV v̂j

]
(2.11)

− k2x

[
µ

∫
Ω

NNxjdV v̂j

]
− k2y

[
(λ+ µ)

∫
Ω

NNyjdV v̂j + µ

∫
Ω

NNyjdV v̂j

]
− k2zµ

∫
Ω

NNzjdV v̂j

and in the Z-directions,

− (λ+ µ)

[∫
Ω

NzNxjdV ûj +

∫
Ω

NzNyjdV v̂j +

∫
Ω

NzNzjdV ŵj

]
− µ

(∫
Ω

NxNxjdV ŵj +

∫
Ω

NyNyjdV ŵj +

∫
Ω

NzNzjdV ŵj

)
+ ikx

[
(λ+ µ)

∫
Ω

NNzjdV ûj + 2µ

∫
Ω

NNxjdV ŵj

]
+ iky

[
(λ+ µ)

∫
Ω

NNzjdV v̂j + 2

∫
Ω

NNyjdV ŵj

]
(2.12)

+ ikz

[
(λ+ µ)

(∫
Ω

NNxjdV ûj + 2

∫
Ω

NNyjdV v̂j +

∫
Ω

NNzjdV ŵj

)]
+ 2µikz

∫
Ω

NNzjdV ŵj − k2xµ

∫
Ω

NNxjdV ŵj − k2yµ

∫
Ω

NNyjdV ŵj

− k2z

[
(λ+ µ)

∫
Ω

NNzjdV ŵj + µ

∫
Ω

NNzjdV ŵj

]
− kxkz (λ+ µ)

∫
Ω

NNjdV ûj − kzky (λ+ µ)

∫
Ω

NNjdV v̂j

= −ρω2

∫
Ω

NNjdV ŵj

The above equations (Eq. (2.10), (2.11) and (2.12)) can be arranged in matrix

form as below:

(K− ω2M)U = 0 (2.13)

where, K and M are global stiffness and mass matrices, respectively, and U is the

assembled displacement vector. We perform eigenvalue analyses on Eq. (2.13) after

imposing periodic boundary conditions using Bloch’s theorem via Eq. (2.3). Thus,
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K will be a function of wavevector k, swept across the boundaries of IBZ and corre-

sponding ω’s are calculated.

2.6 Fracture analyses on periodic materials

The failure of structures always poses a serious threat to designers. Advances in the

field of fracture mechanics has helped to analyze structures with pre-existing cracks.

Linear elastic fracture mechanics (LEFM) have been extensively used to analyze the

possible crack propagation and its stability on a structure with pre-existing cracks or

flaws. The non-local concepts in LEFM such as stress intensity factor (SIF), energy

release rate (ERR), and energy-based criterion for crack propagation guarantee the

mesh independency in the solutions. Crack propagations in periodic structures are

complex since it involves discontinuity jumps in stress and displacements over the

interfaces of different phases in the unit cell [51, 52, 53]. Extended finite element

method (XFEM) has proven to be advantageous in simulation cracks in structures

with voids or inclusions [54, 55, 56]. The complexity of simulating a crack in a hetero-

geneous material is that there is a discontinuity in the strain (displacement derivative

wrt spatial coordinate) on the inclusion-matrix interfaces in addition to the regular

displacement discontinuity on the crack surfaces. Thus to capture both the disconti-

nuities (strong discontinuity in displacement field and weak discontinuity in strain),

two different enrichment functions are employed. To calculate the fracture energy in

terms of asymptotic displacement and stress fields in a linearly elastic solid, we use

stress intensity factor (SIF), e.g., in mode-I fracture, the following expression is used:

σij =

(
KI√
2πr

)
fij(θ) (2.14)

where, σij is the Cauchy stresses, r is the distance from the crack tip, fij are functions

that depends on geometrical parameters. Here, KI is the SIF. The energy release rate

for a crack to grow is given by:
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G =
∂U

∂a
(2.15)

where U is the elastic energy of the system and a is the crack length. For in-

clusions, on interfaces Γ, the equilibrium condition is taken as a continuous dis-

placement field, i.e.,JuK := u(2) − u(1) = 0 and discontinuous traction field, i.e.,JtK := −
(
σ(2) − σ(1)

)
n(1); superscripts (1) and (2) denote the two sides of the in-

terface Γ. A detailed description of fracture simulation and XFEM implementation is

given in chapter 4.
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Chapter 3

The Influence of Clamping, Structure

Geometry, and Material on Seismic

Metamaterial Performance

Diverting and controlling the impact of elastic vibrations upon an infrastructure

is a major challenge for seismic hazard mitigation and for the reduction of machine

noise and vehicle vibration in the urban environment. Seismic metamaterials (SMs),

with their inherent ability to manipulate wave propagation, provide a key route for

overcoming the technological hurdles involved in this challenge. This chapter shows

engineering the structure of the SM, which serves as a basis to tune and enhance its

functionality. Inspired by split rings, swiss rolls, and notch-shaped, and labyrinthine

designs of elementary cells in electromagnetic and mechanical metamaterials, we inves-

tigate altering the internal geometries of SMs with the aim of creating large bandgaps

in a subwavelength regime. Interestingly, clamping an SM to the bedrock creates a

zero-frequency stopband, but further effects can be observed in the higher frequency

regime due to their specific geometry. We show that square stiff inclusions perform

better in comparison to circular ones while keeping the same filling fraction. En route

to enhancing the bandgap, we have also studied the performance of SMs with different

constituent materials; we find that steel columns, as inclusions, show large bandgaps,

however, the columns are too large for steel to be a feasible material in practical or

financial terms. Plain concrete would be preferable for industry-level scaling up of the
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technology because, concrete is cost-effective, easy to cast directly at the construction

site, and easy to provide arbitrary the geometry of the structure. As a part of this

study, we show that concrete columns can also be designed to exhibit bandgaps if we

cast them within a soft soil coating surrounding the protected area for various civil

structures like a bridge, buildings, oil pipelines, etc. Although our motivation is for

ground vibration, and we use the frequencies, lengthscales, and material properties

relevant to that application, it is notable that we use the equations of linear elasticity,

and our investigation is more broadly relevant in solid mechanics.

3.1 Introduction

Controlling elastic waves near structures is key to addressing a large class of civil

engineering problems ranging from seismic hazard mitigation to stopping unwanted

noise and vibration produced by vehicles, heavy machinery on construction sites, etc.

[57, 58, 59, 60]. Seismic waves lead to the destruction of civil installations and loss

of life, thus forming one of the most important and difficult challenges for civil engi-

neers; the reduction of urban noise and vibration is also important because they create

health issues and have other consequences, such as affecting highly sensitive scientific

and medical instruments. There are many other applications, e.g., in the context of

ground motions produced from even minor tremors, industrial machinery, or suburban

rail transport systems degrading the structural integrity of nearby buildings, pipeline

systems, and sensitive instruments; additionally, small-scale damage to structures in

petrochemical industries or nuclear reactors can have devastating consequences. Tra-

ditional approaches for vibration mitigation, mostly in the form of base isolation (BI)

and tuned mass damper (TMDs) have certain limitations [4, 5, 6, 7, 8, 9]: BI induces

large movement of the structures which may not be acceptable, TMD works only for

a narrow frequency range outside of which it may work adversely which is again a ma-

jor issue because identifying the frequency contents in the structure correctly is not

straightforward as it may change significantly with time due to structural degradation

and environmental change [10, 11].
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Metamaterials have the capability of manipulating a desired range of frequency

components in the propagating wave, an aspect that has been extensively used in

electromagnetics, optics, and micro and nano-scale mechanics [61, 62, 63, 64, 65, 66,

67, 68, 69, 70, 71, 72, 73]. However, their large scale extension, which can be extremely

useful in solving many of the important engineering problems, mentioned above, re-

quires development. Recent developments have indicated that metamaterials, if de-

signed appropriately, can indeed provide a robust solution for the manipulation of

elastic waves, thanks to their ability to create large frequency bandgaps even at large

scale [12, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85].

Early work by Economou and Sigalas [86] in 1993 established a global trait that a

denser inclusion in the microstructure geometry of periodic media exhibits bandgaps

for 2D and 3D structures. This phenomenon is predicted in [87, 25, 88] by using the

Floquet-Bloch theory which can be applied to different wave types traveling through

a periodic media. Experimentally, Meseguer and Holgado (1999), and Meseguer et al.

(1999), showed the attenuation of surface elastic waves in a marble quarry containing

repetitive circular holes [89]. The bandgaps obtained in the process are in the range

of Kilo-Hertz which is not important for seismic applications because seismic forces

mostly contain frequencies in the range of few Hertz only [90, 91, 92, 93]. First, full-

scale experiments to attenuate surface waves, such as Rayleigh and Love waves, were

conducted by Brûlé et al. (2014, 2017), in structured soil [12, 78, 94, 67]. The soil was

engineered with cylindrically configured voids as inclusions in a periodic manner. This

experiment shows the feasibility of using metamaterial at a meter-scale important for

civil engineering applications.

A variety of extensions of these concepts are aimed at creating larger bandgaps and

forcing these to occur at the low frequencies required for civil engineering applications.

Recently, Miniaci et. al. (2016) [48] numerically analyzed and designed optimal

configurations for inclusions of micro-structure geometry, i.e., cross-shaped voids and

hollow cylindrical and locally resonant inclusions (e.g., steel, rubber, and concrete),

which shield low-frequency contents in seismic forces. Their parametric study on the

filling fraction of inclusions in microstructure shows a possibility of enhancing the
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bandgap. The ultimate goal of bandgap engineering in this context is to create a

zero-frequency bandgap, i.e., one that starts at zero frequency and then extends over

a broad range of low frequencies. Achaoui et. al. (2017) [95] show that this can be

achieved with cylindrical steel inclusions clamped to a bed rock that lies underneath

a soil layer; they also considered struts linking the cylindrical steel columns.

Here, we focus on large-scale metamaterials made by periodically installing stiff

columns in a matrix-like soil. There are many aspects that are not yet known about

such metamaterials, e.g., the effect of structure geometry, that is the detailed geometry

within a single building block of the periodic medium, and material constituents.

Although the possibility of enhancing the bandgap via varying the substitution ratio

of stiffer inclusions is established, the effect of varying the structure geometry and

keeping the same filling fraction is yet to be addressed. In the present study, we

investigate the effect of the structure geometry in SMs with the aim of creating large

band gaps, keeping the volume of inclusions the same. As an illustrative example

of the importance of both clamping and structure geometry, we consider, in Figure

3.1, two similar geometries for SMs when they vibrate freely (A,B) and when they

are clamped to the bedrock (C,D). We see in Figure 3.1 that just simply tilting some

junctions between a cylinder and a bulk medium has a profound impact on stopband

width, as noted in earlier studies on phononic crystals consisting of inertial resonators

[96, 97, 98]. Interestingly, we find that a torsional mode is associated with the upper

edge of the stopband in (A,B), see Figures 2D,H for the case of inertial resonators

(IRs) with tilted junctions (also known as ligaments). Such resonance is akin to those

studied in chiral elastic metamaterials in a very different range of frequencies [99].

Furthermore, a similar geometrical effect occurs in the higher frequency spectrum

when the inclusion is clamped at the bottom. This emphasizes the importance of

structure geometry as an additional mechanism to tune higher frequency band spectra

of clamped SMs. We also explore the performance of SMs by considering different

constituent materials. Specifically, we aim to maximize the bandgap width as well as

the number of stopbands since the SMs may have to safeguard different types of civil

installations with varied frequency contents ranging from massive tall buildings with
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very small natural frequencies to fluid conveyors containing large natural frequencies

[100, 101]. Enroute to enhancing the bandgap, we report an innovative design for SM,

which is very pertinent to civil engineering practices.

Figure 3.1: Floquet-Bloch band diagrams for cylindrical inclusions obtained for a
modulus of Bloch wavevector | k |, that describes the edges of the irreducible Brillouin
zone ΓXM .
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Figure 3.2: Representative eigenmodes for cylindrical inertial resonators (IRs) with
four inclined ligaments at high-symmetry point X of the irreducible Brillouin zone
ΓXM : (A,E) Rotational mode at 48.5 Hz (IR clamped at bottom, third mode in
Figure 3.1D); (B,F) Rotational mode 38.6 Hz (fourth mode in Figure 3.1B); (C,G)
Longitudinal mode at 45.8 Hz (sixth mode in Figure 1B); (D,H) Torsional mode at
63.8 Hz (seventh mode in Figure 3.1B).

3.2 Mathematical Formulation-Finite Element Ap-

proach

A periodic medium can be analyzed by sequential translational operations per-

formed on its elementary cell, by making use of a lattice vector a = (a1, a2). The

inherent periodicity of this cell enables us to characterize the dispersion properties of

elastic waves propagating within such a periodic medium, via Bloch’s theorem as in

Eq.3.1, where k = {kx, ky} is Bloch wavevector and x = (x1, x2) [29]:
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ϕ(x+ a) = ϕ(x)eik.a (3.1)

Elastic wave propagation through a linear elastic medium is governed by the elastic

Navier equation as given in Eq. 3.2; λ and µ are Lame’s constant, ρ is the density

of the elastic medium, and {ui}3i=1 = {u, v, w} represents three components of the

displacement field in space. While using Eq. 3.2, a no-slip condition is ensured between

the two homogeneous mediums, i.e., relative displacement will be zero between the

two mediums.

(λ+ µ)
∂2uj
∂xj∂xi

+ µ
∂2ui
∂xj∂xj

= ρüi (3.2)

Rewriting Eq. 3.1 as u = ũ(x, t)ei(k.x−ωt), where x and t represent space and time,

and ω is angular frequency, and substituting it in Eq. 3.2, we arrive at Eq. 3.3 by

discretizing ũ in weak form using 3D shape functions in a finite element approach [102].

K and M being global stiffness and mass matrices, respectively, which are basically

functions of Bloch wavevector k, and u is the assembled displacement vector.

(K− ω2M)U = 0 (3.3)

Bloch analyses is conducted by computing dispersion curves via varying k =

{kx, ky} along the edges of irreducible Brillouin zone (IBZ). For a square lattice, IBZ

lies along the edges of the triangle ΓMX; Γ = (0, 0), M = (π
a
, π
a
) and X = (π

a
, 0),

where a = a1 = a2. For a real valued k, the frequencies (ω) are obtained by solving an

appropriate eigenvalue problem, thereby constructing the dispersion curves via plot-

ting real valued frequencies corresponding to k [103, 104]. Since dispersion curves are

computed over a medium representing an infinite array of micro-structured geometry,

they alone do not fully reveal the inherent effectiveness of SM design. For this pur-

pose, transmission spectra is also computed, which is a measure of wave propagation

attenuation/transmission losses over a finite medium [105].
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3.3 Results and Discussion

In this section, we present dispersion curves and transmission losses for different

microstructure geometries. We have already illustrated the importance of microstruc-

ture geometry with cylindrical inertial resonators that make possible a torsional mode

associated with a large stopband of around 50 Hz when IRs are freely vibrating, see

Figures 3.1B, 3.2D,H in section 3.1. Clamping IRs to the bedrock suppresses all

ground vibrations below 13 Hz but prevents the appearance of the torsional mode,

so the stopband at 50 Hz disappears. We further note that tilting the ligaments of

IRs of both the freely vibrating (Figure 3.1B) and clamped (Figure 3.1D) cases, opens

a high-frequency stopband around 83 Hz. Depending upon applications (e.g., earth-

quake protection which is mostly in the 0–10 Hz range, or, for instance, suppression

of ground vibration due to the car and railway traffic, which is concerned with higher

frequencies), civil engineers might focus on clamping to bedrock, or on micro-structure

geometry, of SMs. Thus, there is certainly a trade-off between micro-structure geome-

try and clamping that needs to be taken into account in the design of clamped SMs in

order to achieve optimal performance in a range of frequencies of interest. To the best

of our knowledge, this has never been studied before, and this is the main scope of

the present section. To arrive at a microstructure that maximizes the bandgap (with

or without clamping), we compare different results keeping the substitution ratio the

same. Having arrived at a particular configuration, we explore the effect of changes

in orientation of the inclusion from 0 to 45◦. After this, we move to the aspect of

material constituents for inclusion, and we also focus on cost-effectiveness and ease of

fabrication of arbitrary microstructure geometry.

3.3.1 Comparison of different geometry of inclusions

Basic civil engineering infrastructures are constructed on medium to dense soil for

their obvious stability purposes. Satisfying this, realistic soil conditions are adopted

in present work, i.e., medium soil with parameters as Elastic modulus, E = 153 MPa,

Poisson’s ratio, µ = 0.3 and density, ρ = 1800 kg/m3. Micro-structure of the peri-
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odic media is configured with steel columns as inclusions in three forms having same

substitution ratio as shown in Fig. 3.3.

• Cylindrical steel column of height 10 m and circular cross-section of radius 1.128

m.

• Regular sized square steel column of same height, i.e., 10 m. The cross-section

of regular sized square is taken as 2 m × 2 m.

• Notch-shaped square steel column again with same height, i.e, 10 m. 0.4 m ×

0.6 m notch is provided in a square of 2.25 m size as shown in Fig. 3.3(e).

Each form of inclusion is embedded in an unstructured medium soil matrix (3 m×

3 m × 10 m) so as to form a microstructure of the periodic media; top and bottom

of the microstructure remain unclamped. Elastic properties of steel is chosen as E =

200 GPa, Poisson’s ratio, µ = 0.33 and density, ρ = 7850 kg/m3. We have also used

soft clay models (which will be seen subsequently) to study their effect on bandgap

enhancement. A comparison of its dispersion properties, obtained along the edges of

the irreducible Brillouin zone ΓMX, can be made from Fig.3.3. Bandgaps are obtained

in all the configurations, i.e., microstructure with inclusions having circular, regular

square, and notch-shaped square cross-sections. The square cross-section inclusions

show a higher range of bandgap (approximately 28 Hz and 34 Hz in regular and notch-

shaped, respectively) in comparison to circular cross-section inclusion (approximately

18 Hz) for the same substitution ratio of steel.

A comparison of stop-bands for these configurations is also obtained (see Fig.3.5),

by clamping the bottom of the microstructure. Here, the column inclusions with

circular cross-sections show a better stop-band (approximately 15 Hz) in contrast to

regular square-shaped inclusions (approximately 7.62 Hz). However, the notch-shaped

square inclusion shows a slightly higher stop-band (approximately 17 Hz) to that of

the circular cross-section for the same substitution ratio of steel inclusion. Along

with stop-band, bandgap at a higher frequency range is also observed for all three

forms of inclusions. The circular cross-section shows a higher bandgap of around 21
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Hz in comparison to regular square-shaped cross-section which has only about 3.3

Hz. The notch-shaped square cross-section shows a slightly higher range of bandgap,

approximately 21.75 Hz (7.85 Hz + 14 Hz), than the circular cross-sectioned inclusion.

However, the bandgaps in circular and notch-shaped inclusions are positioned at a

higher frequency spectrum, which is less important for engineering applications.
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Figure 3.3: Unclamped configuration of (a) cylindrical, (c) regular-shaped square, and
(e) notch-shaped square geometry inclusions in the elementary cell of periodic media
(medium soil) with equal substitution ratio (0.445) and their corresponding dispersion
curves (b,d,f)
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(c) Dispersion curves for notch-shaped square cross-section (four notches of dimension 0.6
m × 0.4 m in a 2 m square as shown in figure 3.3(e))

Figure 3.4: Dispersion curves for clamped configuration of geometries shown in fig.3.3
with substitution ratio 0.445.
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(a) Dispersion curves for cylindrical inclusions for clamped (left) and unclamped (right) with
4 inclined ligaments.

(b) Representative eigenmodes for cylindrical inertial resonators (IRs) with 4 inclined lig-
aments at high-symmetry point X of the irreducible Brillouin zone ΓXM corresponding to
the star points in Fig.3.5 a: 7th and 12th modes are longitudinal, 8th is torsional and 13
rotational.

Figure 3.5: Dispersion curves and eigen modes of cylindrical inclusions for clamped
and unclamped configurations.

Other investigated microstructure geometries are coil/Labyrithine (complex sheet

piling type of inclusion), split ring-like and swiss roll-like cylindrical steel inclusions

in medium soil (see Fig. 3.6 and 3.7). The same substitution ratio, i.e., 0.445 was

considered in the former two microstructures, whereas the swiss roll-like inclusion

is considered with a diameter equal to solid circular inclusion as in Fig. 3.3, i.e.,
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1.128 m with a substitution ratio of 0.15. Notably, in medium soil, without clamping

the bottom, split-ring-like inclusion with 4 gaps shows a band gap of approximately

10.6 Hz, whereas the Labyrithine inclusion shows no bandgap. Testing with another

material constituent for Labyrithine inclusion (Fig. 3.6(a)), i.e., with rubber and

concrete, no bandgap was observed (see Fig. 3.8). On the other hand, a split-ring

with 2 gaps shows an enhanced bandgap (12 Hz in the range of 46.84 Hz- 59.23 Hz)

as compared to 4 gap split-ring (10.6 Hz in the range of 48.53 Hz- 58.35 Hz) with

same substitution ratio (0.445). Dispersion curves for swiss roll-like steel inclusion

with different thickness, i.e., 0.128 m and 0.03 m in medium soil (3 m × 3 m × 10 m)

is obtained by without clamping the bottom and is shown in Fig.3.7. Clearly, there

is no bandgap for these configurations. The stop-bands for configurations in Fig. 3.6

and 3.7 are obtained by clamping the bottom and is shown in Fig. 3.9. It is observed

that Labyrithine inclusion gives a higher stop-band in contrast to the other two, i.e.,

14.7 Hz for Labyrithine steel inclusion in comparison to 12.7 Hz and 11 Hz in split-ring

and swiss-roll-like steel inclusions.

Investigating with different soil properties, i.e., with soft soil having properties

E = 96.5 MPa, µ = 0.33 and ρ = 1650 kg/m3 and very soft soil type 1 with properties

E = 10 MPa, µ = 0.25 and ρ = 1400 kg/m3, Labyrithine and 2 gap split ring-like

steel inclusion shows an improvement on bandgaps obtained via dispersion curves in

Fig. 3.6. Labyrithine steel inclusion shows a bandgap of 6 Hz in the range of 38 Hz

- 44 Hz in soft soil (Fig. 3.10(a)) in contrast to medium soil (Fig. 3.6(b)), which

shows no bandgap. Split ring with 2 gaps shows an enhanced bandgap (approx. 17

Hz) in soft soil with soil properties E = 96.5 MPa, µ = 0.33 and ρ = 1650 kg/m3

(Fig. 3.10(b)). The bandgap is also obtained in a lower region than that obtained in

the medium soil (Fig. 3.6(f)). On further exploring soil properties, 2 gap split ring

shows an excellent improvement over the bandgap in a very soft soil type 2 with soil

properties E = 5 MPa, µ = 0.35 and ρ = 1633 kg/m3. A bandgap of 5 Hz is obtained

at a much lower region (approx. 8 Hz - 13 Hz) in very soft soil type 2 for 2 gap split

ring (Fig. 3.10(c)). Finally, we investigated a typical configuration such as a triphasic

inclusion as shown in Fig. 3.11 [106].
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Figure 3.6: Unclamped configuration of (a) coil/Labyrithine, (c) 4 gaps split-ring and
(e) 2 gaps split-ring with steel as an inclusion with substitution ratio 0.445 in medium
soil matrix and corresponding dispersion curves (b, d, f).
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Figure 3.8: Dispersion curves for unclamped configuration of Labyrithine geometry
as shown in fig. 3.6(a) with different constituent material, i.e., (a) rubber and (b)
concrete.
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Figure 3.9: Dispersion curves for clamped configuration with steel as inclusion material
for (a) Labyrithine, (b) 4 gaps split ring, and (c) swiss roll with 0.128 m thickness
with substitution ratio as 0.445 (for swiss roll: 0.15).
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(a) Dispersion curves for cylindrical Labyrithine inclusion in very soft clay type 1 (cross-
section details in Fig. 3.6(a))
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(b) Dispersion curves for 2 gap cylindrical split-ring-like inclusion in soft soil (cross-section
details in Fig. 3.6(e))
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(c) Dispersion curves for 2 gap cylindrical split-ring-like inclusion in very soft clay type 2
(cross-section details in Fig. 3.6(e))

Figure 3.10: Dispersion curves for unclamped configurations of Labyrithine and 2 gap
split ring steel inclusions with 0.445 substitution ratio in soft, very soft clay type 1
and very soft clay type 2.
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Figure 3.11: Unclamped configuration (all three type of inclusion, i.e., concrete, rub-
ber and steel), and Variation of bandgap width versus substitution ratio of triphasic
inclusion in soft soil.

A circular cylinder of steel, surrounded by a thick rubber shell, surrounded by a

concrete outer shell within a bulk of soft soil with parameters E = 96.5 MPa, µ = 0.33

and ρ = 1650 kg/m3 as shown in Fig. 3.11(a). The ratio of the radius of each inclusion

material is taken such as S
R

= R
C

= 0.83, where S, R, and C denote the radius of

steel, rubber and concrete, respectively. The dimension of the unit cell is 3 m × 3

m × 10 m. With increasing substitution ratio of material constituents, the varying

bandgap width is plotted as shown in fig. 3.11(b). It can be seen that the band

gap for triphasic inclusion appears at lower substitution rates than for monophasic

substitution cases. For convenience, we summarize the geometry and elastic properties

of the microstructures in the following tables.

Table 3.1: Geometry of the microstructures of seismic metamaterial

Types Width/thickness (m) Length (m) Diameter (m) Substitution ratio
Medium soil 3 3 - -
Loose soil 3 3 - -
Regular shaped
sqaure inclusion 2 2 - 0.445

Notch shaped
square inclusion 2.25 2.25 - 0.445

Labyrithine
like inclusion 0.2 7 - 0.445

4 gap split ring
inclusion - - Outer 1.3

Inner 0.62 0.445

2 gap split ring
inclusion - - Outer 1.423

Inner 0.84 0.445
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Table 3.2: Material properties used in the design of seismic metamaterial

Material Elastic modulus (MPa) Poisson’s ratio Density (kg/m3)
Medium soil 153 0.3 1800
Soft soil 96.5 0.33 1650
Very soft clay type 1 10 0.25 1400
Very soft clay type 2 5 0.35 1633
Steel 2 ×105 0.33 7850
Concrete 3.5 ×104 0.15 2400

3.3.2 Effect of varying orientation in square inclusions

Verifying in subsection 3.3.1, that square geometry as inclusions perform better,

here we explore the effect of varying its orientation within the microstructure of peri-

odic media by rotating the same from 0◦ to 45◦. With this exercise, we further explore

the microstructure geometries towards achieving higher bandgaps. Steel inclusion is

considered as column with regular-shaped square geometry (2 m×2 m×10 m) within

an unstructured medium soil (3 m × 3 m × 10 m), with properties same as in section

3.3.1. The orientation of square inclusion is made to vary from 0◦ to 45◦, in increments

of 5◦. Fig. 3.12(c) shows the plot for bandgaps obtained from varying the orientation

of inclusion plotted against the angle. Interestingly, the plot shows a declining trend

for the bandgap with increase in angle, starting from 28 Hz at 0◦ to 0 Hz at 45◦. Thus,

we summarize that a square inclusion oriented at 0◦ gives a wider bandgap in com-

parison to other orientations when examined with same substitution ratio. To further

investigate the efficacy of the design, transmission losses (see Fig. 3.13) are computed

over a finite array of SM design consisting of five square steel columns (oriented at 0◦

and 45◦, respectively). For the computation, Rayleigh wave is incident normally as a

line source. With 0◦ orientation a dip is observed in the range of 58 Hz-82 Hz, which

shows possible large wave attenuation/transmission loss, whereas no such observations

is made for the 45◦ case.
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Figure 3.12: Effect of change in orientation angle (in degrees) of unclamped regular-
shaped square steel inclusion with 0.445 substitution ratio in medium soil on bandgap;
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Figure 3.13: Transmission loss for 0◦ and 45◦ oriented square steel inclusion in medium
soil matrix (bottom remains unclamped).

3.3.3 Feasibility of inclusion material

So far we have discussed about the geometry of the inclusions within the unit cell, so

as to generate a wide bandgap and its positioning in the frequency spectrum. However,

we have exclusively utilized steel as its constituent material for the purpose. But it

is not feasible, both economically and technically, to generate such a large volume of

steel having dimensions 2 m × 2 m × 10 m making up a volume of 40 m3 and give

them complex cross-section geometry via standard industrial fabrication processes.

Conversely, concrete having an advantage over steel, in terms of fire and corrosion

resistance, low density, resistant to impact of high groundwater level and other on-field

applications like easily mouldable into desired shapes, makes it a better choice within

civil engineering domain. Noting this fact, we compared the dispersion properties of

concrete inclusions (M50 grade) with that of steel inclusions (Figs. 3.3(d) and 3.14(b));

both having same substitution ratio (0.445) and embedded in medium soil whose

geometry and elastic properties are same as in section 3.3.1. The elastic properties

of M50 grade concrete is taken as E = 35.35 GPa, Poisson’s ratio, µ = 0.15 and

density, ρ = 2400 kg/m3. Unfortunately, concrete inclusions in medium soil matrix

shows no bandgap frequencies (Fig. 3.14(b)). However, as discussed earlier, concrete
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being an ideal choice for most of the civil installations, we performed a parametric

study with different grades of concrete combined with soft, medium and dense soil.

In the process, we arrive at a design of SM having M50 grade concrete inclusion in

very soft soil type 1 (soil properties is taken as E = 10 MPa, Poisson’s ratio, µ = 0.25

and density, ρ = 1400 kg/m3 ), showing a bandgap of approximately 3.91 Hz in the

range of 18.45 Hz-22.36 Hz (Fig. 3.14(d)). Transmission loss are computed using a

finite strip of five concrete square columns in very soft soil type 1 which shows large

Rayleigh wave attenuation in range of 15 Hz- 25 Hz, in comparison to medium soil (Fig.

3.15). Zero frequency stop-band computation (see Fig. 3.16) distinctly shows two

bandgaps; ultra-low stop-band frequency (0-7.62 Hz) and a higher range of bandgap,

approximately 3.28 Hz (range 18.72 Hz-22 Hz). Transmission loss for 0◦ oriented

regular-shaped square concrete columns in very soft soil type 1 (E = 10 MPa, µ = 0.25

and ρ = 1400 kg/m3) and medium (E = 153 MPa, µ = 0.3 and ρ = 1800 kg/m3) soil

matrix is also computed over a finite array of the design region (see Fig. 3.17). Clearly,

concrete columns in soft soil type 1 attenuate the Rayleigh wave vibrations to a larger

extent in comparison to medium soil matrix in stop-band.
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Figure 3.14: Unclamped configuration of concrete inclusion (with 0.445 substitution
ratio) in (a) medium soil; (c) very soft soil and corresponding dispersion curves (b,d).
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type 1 and medium soil matrix corresponding to Fig. 3.14.
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Figure 3.16: Dispersion curve for clamped configuration of M50 grade square concrete
columns in soft soil matrix.
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Figure 3.17: Attenuation for clamped configuration of square concrete columns in
soft soil type 1 and medium soil matrix.

As mentioned earlier, since loose soil is not suitable for construction purposes, we

recommend the following architecture. As shown in Fig. 3.18, for a finite region to be

protected (denoted with A in Fig. 3.18), the SM microstructure should be designed

using square inclusions of concrete columns oriented at 0◦ in a narrow strip of very

soft soil matrix in Fig. 3.18, leaving the residual region in its natural/structured state,

making civil constructions possible on the residual region. Another aspect is that since
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the civil installations within the protected region may vary largely, with varied natural

frequency ranges and importance, concrete columns of such a high dimension may not

be necessary always. For the same, a parametric study on obtaining stop-bands with

different concrete sizes is performed and the results are shown in Fig. 3.19. The effect

of variation of stop-band follows a linear trend with increasing substitution ratio of

regular-shaped square concrete columns. Such graphs can be used for calibration

purpose for optimal SM design.
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Figure 3.18: Schematic representation of the proposed design for metamaterial.
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Figure 3.19: Bandgap versus substitution ratio plot for clamped configuration of
square concrete inclusions.

3.4 Summary

In this chapter, we first noticed the importance of structure geometry to further

enhance the filtering effects of clamped seismic metamaterials consisting of cylindrical

inertial resonators clamped at their bottom. The clamping makes possible a zero-

frequency stopband of interest for earthquake protection, whereas the microstructure

allows for additional stopbands at higher frequencies that might find applications in

the suppression of ground vibrations induced by traffic. We stress that such types

of cylindrical inclusions mixing stress-free and clamped boundary conditions have no

counterpart in electromagnetism since these conditions model infinite conducting in-

clusions in irreconcilable light polarizations (transverse electric and magnetic fields,

for stress-free and clamped conditions, respectively). We have explored the effect

of different internal geometries of SMs toward obtaining a wider bandgap with an

equal amount of inclusions and its positioning in the frequency spectrum, i.e., a lower

bandgap region (approximately below 20 Hz) is essential for most of the engineer-

ing applications. We have arrived at a configuration of columns having a square

cross-section with sides aligned with a square lattice that gives a wider bandgap in

comparison to circular cross-section inclusions for the same substitution ratio of the
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constituent material. This has been demonstrated by computing transmission losses in

addition to the dispersion curves for different internal geometries of the SM. We have

also performed an analysis of the constituent material, observing that, not only steel

but concrete the conventional construction material, can also be used to design inclu-

sions for large wave attenuation. This is important for the industrial scale-up of the

technology because, concrete is cost-effective, easy to cast directly at the construction

site, and easy to provide arbitrary geometry of the microstructure. We have observed

that concrete shows a bandgap for very soft soil. Since very soft soil is not suitable for

construction, we prescribe an architecture of SM, with concrete inclusions in a narrow

strip of very soft soil matrix surrounding the protected region. Even though we have

arrived at an efficient design of SM, our study opens the door to further generaliza-

tion. For example, we assume linear elastic materials, and it would be interesting to

see what happens in the case of material and geometric non-linearity; soil often shows a

significant amount of plastic deformation. In a future study, we would like to pay more

attention to damping of ground vibrations, introducing so-called K-Dampers, such as

those used to reduce vibration of bridges [107] and to mitigate site-city interactions

[78] using the SMs which we introduced here.
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Chapter 4

A numerical study to assess the role of

pre-stressed inclusions on enhancing

fracture toughness and strength of

periodic composites

A rational design for simultaneous toughening and strengthening in composites

would be significant for myriad applications in fracture-related problems. Nacre si-

multaneously exhibits extremely high toughness (approximately 3000 times the con-

stituent materials) and high strength, being one of the classic examples of the brilliant

solutions nature can come up with based on necessity. Several experimental studies

have suggested that the underlying “brick and mortar” microstructure of the nacre

could be responsible for the high performance (high strength and high toughness).

However, it has been realized that the engineered composites can not achieve the de-

sired performance by only mimicking the “brick and mortar” structure. Naturally, the

question arises whether there is any additional mechanism that is possibly responsible

for the high performance of nacre and may be mimicked in the engineered composites

to achieve the desired high performance. In this chapter, numerical simulations show

that the design of high-performance engineered composites can be achieved by intro-

ducing pre-stress in the inclusions. We have carried out mode-I and mode-II fracture

simulations in periodic composites with both hard and soft pre-stressed inclusions to
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assess their role in the performance of composites. For modeling crack propagation in

mode I, we have adopted the surfing boundary conditions proposed by [108], and ap-

propriately extended it for modeling crack propagation in mode II. The present work

indicates that a study on the existence of a pre-stressed condition of the platelets in the

nacre may be a topic of research interest to explore the origin of the high performance

of the nacre.

4.1 Introduction

From naturally formed biological systems, e.g. nacre, to engineered materials,

heterogeneity arising from internal geometry has been found to enhance the fracture

property of solids ([109, 110, 111, 112, 113]). With the advent of additive manu-

facturing technology, the idea of incorporating inclusions is increasingly becoming

popular. It is now possible to introduce heterogeneity in a homogeneous media via

elastic mismatch on a micro to macro scale. However, a rational design to achieve si-

multaneously toughened and strengthened material to resist fracture is still a challenge

to modern engineering ([114]). Towards achieving this we note that many biological

systems resolve this issue by efficiently evolving their material composition and inter-

nal geometries, incorporating hard minerals into soft polymer matrices, and forming

intricate composites to resist external threat ([115, 116, 117, 118, 119]). For instance,

nacre with the chemical composition of 95% aragonite (a ceramic material) and 5%

biopolymer shows excellent fracture properties (fracture toughness is about 3000 times

its main constituent, aragonite). This extremely high toughness is not yet achieved in

synthetic nacre-inspired composites ([120, 121]). While bio-inspired composites show

enhanced fracture toughness, unfortunately, they suffer from compromising strength.

A common choice for hard inclusions is high-modulus ceramic in the usual soft matrix,

e.g. in designing protective armor. High fracture toughening is achieved by introduc-

ing ceramic-based hard inclusions in a soft matrix that provides contrast in elastic

properties and thereby, crack repelling, deflection, meandering, etc. ([122, 123, 124]).

Due to the stress discontinuities at the matrix-inclusion interface, delamination also
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occurs that drastically reducing the fracture strength of the composite. Therefore,

there is a trade-off between fracture strength and fracture toughness that poses a

major difficulty.

Past studies have shown that the effective fracture toughness of an engineered

composite is larger than its constituent material, but not so significantly high as seen

in nacre ([125]). [108], [126], [127], [128], [129] and [130] have shown that layered solid

with alternating layers of different elastic moduli and fracture toughness has an overall

toughness that surpasses its constituents. They ascribe the toughening mechanism of

solid layers to stress fluctuations and crack re-nucleation. They have used the so-called

surfing boundary conditions (SBCs) for the crack to propagate. However, layered solids

are difficult to implement in composites like armors, and also, the obtained toughness is

not so significant in comparison to its constituent materials. Moreover, these studies

are only restricted to macroscopic mode-I loading (opening mode), whereas, mode-

II loading (shear mode) is itself a critical phenomenon to understand in resisting

fracture. In the present work, we propose introducing pre-stress in the inclusions as

a possible route to design engineered composites with desired fracture toughness and

strength. For our numerical simulations, we have adopted the SBCs proposed by [108]

and appropriately extended it to mode-II fracture propagation. We have chosen a

microstructural (or unit cell) configuration for the composite having a hard/soft cubic

shape of inclusions in an alumina matrix. We have selected ceramic composites in the

present study as they can be easily synthesized by reactive hot pressing in the form of

nanocomposites ([1, 131]) and have wide usage in armor applications. In this context

one may note that shape memory ceramics are classic examples where initial stresses

can be introduced via stress induced martensitic transformation (SIMT) in which

morphology is governed by shear-strain energy ([132, 133, 134]). This diffusion-less

transformation is accomplished by large change in shape/volume and thereby local

compressive/tensile stresses are introduced, while its crystallography changes from

tetragonal to monoclinic phase (austenite to martensite phase) ([135, 136]).

The pre-stressing technique has always been advantageous in increasing the load-

carrying capacity of materials and structures ([137]). Understanding the effect of
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pre-stressing a material, both on theoretical and practical fronts, always forms ac-

tive research, especially in the context of fracture mechanics. For example, studies

on stress concentration, shear band formation, and energy release rate (ERR) when a

stiffener is placed in a pre-stressed orthotropic elastic medium ([138, 139, 140]); studies

on stress intensity factors (SIF) and crack opening displacement (COD) at the crack

tips in a pre-stressed cracked-isotropic elastic medium ([141, 142]); studies on calcu-

lating J-integral and fatigue crack arrest in pre-stressed reinforced concrete and steel

members ([31, 143]), etc. However, most of these studies are limited to understanding

macroscopic behavior and remain silent on microscopic details, which are important

aspects in heterogeneous media since crack propagation can be entirely different on

a micro-scale owing to the elastic contrasts in the medium. In our numerical results,

we show that the minimum driving force for a crack to propagate in a heterogeneous

media can be substantially increased if pre-stresses are induced in the inclusion, thus

increasing its fracture toughness and strength.

In this work, we have shown the effect of pre-stressed inclusion on the performance

of composites for crack propagation under a quasi-static condition. Since crack propa-

gation in a heterogeneous media is a complex phenomenon within itself, present work

is limited to linear elasticity problems, i.e., brittle fracture in both matrix and inclu-

sions. Moreover, brittle solids are prone to catastrophic failure which itself forms an

important study. We have considered the cubic shape of inclusions for which a plane

stress modeling can be done [112] and carried out two-dimensional fracture simulations

by introducing pre-stress in the inclusion. Here, the effect of compressing and tensile

prestressed inclusions on the fracture toughness and fracture strength is addressed.

We have organized the rest of the article as follows. We have defined a boundary

value problem in Section 4.2 on a periodic microstructure with an initial crack. We

have briefly described surfing boundary conditions (SBCs) proposed by [108] for mode

I and proposed an extension of the idea of SBCs to mode II crack propagation. We

have provided mode I and mode II fracture simulations on periodic composites with

both hard and soft inclusions in Section 4.3.
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4.2 Boundary value problem

Consider a periodic composite body that can be described by an open set Ω with

boundary ∂Ω and periodic unit cell Ωc as shown in Fig. 4.1. Dirichlet boundary

conditions are applied as prescribed displacements ū on ∂Ωu and Neumann conditions

are applied as prescribed traction t̄ with surface normal n on ∂Ωt. The material body

may consist of several isotropic inclusions Ω =: {Ωi
c}ni=1 with Ωi

c∩Ωj
c = ∅, separated by

interfaces Γi. Let the crack surface be defined by ∂Ωcr=∂Ω+
cr ∪ ∂Ω−

cr with superscripts

‘+’ and ‘-’ as upper and lower surfaces, respectively. Let b be the body force per unit

volume. The linear momentum balance for the material body is given below:

∇ · σ + b = 0 in Ω, (4.1)

with boundary conditions as:

u = ū on ∂Ωu,

σn = t̄ on ∂Ωt,

σn = 0 on ∂Ωcr,

(4.2)

where σ is the Cauchy stress tensor, related to strain ϵ tensor as σ = Cϵ; C is

the fourth order elasticity tensor. For inclusions, on interfaces Γi, the equilibrium

condition is taken as continuous displacement field, i.e.,JuK := u(2) − u(1) = 0 and

discontinuous traction field, i.e., JtK := −
(
σ(2) − σ(1)

)
n(1); superscripts (1) and (2)

denote the two sides of the interface Γi. In presence of an initial stress σ0 in the

material body, the linear momentum balance can be given by

∇ · (σ + σ0) + b = 0 in Ω. (4.3)

The finite element discretized form of Eqn. (4.3) can be arrived at by writing the
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Figure 4.1: Left sub-figure shows the periodic micro-structure described by an open set
Ω with boundary ∂Ω = ∂Ωu∪∂Ωt∪∂Ωcr∪∂Ω0. The domain Ω can be identified as the
assembly formed by repetition of the unit cell, Ωc having isotropic phases separated
by Γ, as shown in the right sub-figure.

corresponding virtual work relation as given below:

∫
Ω

(σ + σ0) : ϵ̃dΩ =

∫
Ω

b · ũdΩ +

∫
∂Ωt

t · ũd(∂Ωt), (4.4)

where tilde symbol denotes the virtual field and u ∈ U is kinematically admissible

displacement field such that

U =
{

u | u ∈
(
H1(Ω)

)d
,u = ū on ∂Ωu

}
, (4.5)

where d is the dimension of u. Functions of H1(Ω) are implicitly discontinuous on

crack surface ∂Ωcr. (̃.) symbol denotes the virtual field.

4.2.1 Crack modelling

We have modeled crack using the level set method in an extended finite element

framework ([144, 145, 146, 147]). For an arbitrary point x ∈ Ω, ϕ and φ are defined

as:

52



[1] ϕ is the signed distance function from the crack surface ∂Ωcr given by:

ϕ(x) = min
x̄∈∂Ωcr

∥x− x̄∥ (n+ · (x− x̄)) (4.6)

where n+ is the outward normal vector to ∂Ωcr.

[2] φ is signed distance function approximately orthogonal to ϕ, i.e.,

∇ϕ · ∇φ ≈ 0 (4.7)

Crack-tip is defined by intersection of ϕ(x) = 0 and φ(x) = 0; and crack surface by

ϕ(x) = 0 and φ(x) < 0. Crack-tip polar coordinates can be represented as:

r =
√
ϕ2(x) + φ2(x), θ = tan−1

(
ϕ

φ

)
(4.8)

4.2.2 XFEM discretisation

Eq. (4.4) is discretized in Galerkin form considering arbitrariness of nodal varia-

tions in an extended finite element method (XFEM) framework to account for disconti-

nuities in displacement fields due to crack ([148, 149, 150]). The XFEM approximation

for the field variable is given by ([151, 152, 153, 56, 154, 155]):

uh(x) =
∑
J∈Ns

NJ(x)uJ

+
∑

J∈Ncs

NJ(x) (H(ϕ(x))−H(ϕ(xJ))) aJ

+
∑
J∈Nct

NJ(x)R(x)
(

4∑
k=1

(Fk(x)− Fk(xJ))bk
J

)

+
∑

J∈Nint

NJ(x)ξ(x)qJ ,

(4.9)

where, Ns, Ncs, Nct and Nint are nodal sets corresponding to standard DOF uJ ,

enriched DOF aJ having crack surface, bJ having crack tip and qJ passing the interface

Γ in their support domain. Note that aJ and bJ are additional DOFs that are used
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to adjust the amplitude of shape functions to approximate the displacement field

in the presence of strong discontinuities such as cracks. Similarly qJ is for weak

discontinuities such as an interface. Jumps in the displacement field along the crack

surface are introduced by Heaviside step function H(ϕ): +1 if ϕ is on one side of the

crack surface and -1 otherwise ([54]). The basis function F (x) for the asymptotic near

crack-tip displacement field can be given in terms of polar coordinates centered at the

crack tip as
F (r, θ) =

[√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

]
.

(4.10)

The ramp function R(x) =
∑

J∈Nr
NJ(x) is used to adjust F (x) such that it decreases

progressively and vanishes outside a chosen support, r for the crack tip, where Nr is

the nodal set that contains the chosen radius r. To modify the shape functions of

the blending elements around the weak discontinuity, Γ, we have used a function ξ(x)

defined as ([54]):

ξ(x) =
∑

J∈Nint

|ϕ(xJ)|NJ(x)−
∣∣∣ ∑
J∈Nint

ϕ(xJ)NJ(x)
∣∣∣ (4.11)

4.2.3 Crack propagation

Cracks grow along the weakest plane and generate non-zero stress intensity fac-

tors (SIF) in mode-I and II. Therefore, a mixed-mode crack propagation criterion is

required to check the initiation of crack growth and to determine its direction and

increment. Out of the several mixed-mode crack growth criteria, we chose the max-

imum circumferential tension criteria. The use of this criterion is motivated by the

assumption that the size of the investigated structure has a minor influence on the

crack path since the solutions are based on the local stress field close to the crack tip

([156]). A crack will open in a radial direction within a plane perpendicular to the

maximum tension when the maximum circumference tension stress intensity factor
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exceeds a critical material constant ([55]). Hence the criterion is defined as:

KI

Keq

cos3
θ0
2
− 3

2

KII

Keq

cos
θ0
2
sin θ0 = 1, (4.12)

where KI and KII are stress intensity factors corresponding to mode-I and II loading

respectively and Keq is the material fracture toughness. θ0 is the kinking angle at the

crack tip found by solving the following equation:

KI sin θ +KII (3 cos θ − 1) = 0 with


KII sin

θ
2
< 0

−π ≤ θ ≤ π

K1 > 0.

(4.13)

Eq. (4.12) seems to depend only on values KI and KII , thus, no other data from

the numerical model is required to compute the kinking angle. While simulating

crack propagation, SIFs in the above expressions are evaluated by interaction integral

method ([157]). The consequence of choosing such crack evolution criteria can be

estimated as follows. For a pure mode-I loading, KII will not evolve and θ remains zero.

Similarly, for pure mode-II loading, KI will not evolve, however; θ will have a finite

value. To study the crack propagation in a heterogeneous media, we have used SBCs

([108]). This defines a macroscopic propagation law without resolving the microscopic

details of the media. We apply a displacement-controlled load u∗(x, y, t) conforming

to the analytic fracture mode displacement fields. SBCs are successfully applied as KI

controlled displacement fields under mode-I loading ([126, 128, 129, 130, 158]). We

endeavor to extend this for KII controlled displacement fields under mode-II loading

([159]). For that, we apply displacement-controlled loads as u∗
I(x, y, t) = UI(x−vt, y)

and u∗
II(x, y, t) = UII(x − vt, y); where UI and UII are the analytic displacement
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fields in opening and shearing mode, respectively:

Mode-I

UIx(t) =
KI

2µ

√
r(t)
2π

(κ− cos θ(t)) cos θ(t)
2

UIy(t) =
KI

2µ

√
r(t)
2π

(κ− cos θ(t)) sin θ(t)
2
,

Mode-II



UIIx(t) =
KII

2µ

√
r(t)
2π

(κ+ 2 + cos θ(t))

sin θ(t)
2

UIIy(t) = −KII

2µ

√
r(t)
2π

(κ− 2 + cos θ(t))

cos θ(t)
2
,

(4.14)

where (r(t), θ(t)) are time-dependent crack tip polar coordinates steadily translating

with velocity v and is given by r(t) =
√

(x− vt)2 + y2 and θ(t) = arctan y
x−vt

. Note

that Eq. (4.14) serves as a boundary condition for the crack to propagate macro-

scopically with constant imposed velocity v. t represents a ”fictitious” time used for

the incremental formulation as the crack tip proceeds in space. For all the numerical

simulations, we adopt a time step size ∆t = 0.05L/v, where L is the length of domain

in x-direction. One may refer to [126] for better understanding on time step (∆t)

and imposed velocity (v). The magnitude of the loading is governed by varying stress

intensity factor (KI and KII) and shear modulus (µ). For plane stress, κ = 3−ν
1+ν

and

for plane strain, κ = 3 − 4ν. These boundary conditions act as a driving force for

the crack at macroscopic scale, but will not, in any manner, restrain its growth at

the microscopic scale, i.e., crack may deflect, meander, arrest, etc. at the microscopic

level due to the presence of elastic contrast in heterogeneous media.

4.2.4 Fracture toughness

In linear elastic fracture mechanics (LEFM), the energy release rate at each instant

is computed via far-field J−integral ([160]).

J =

∫
L

(
WnLx − σijui,xnLj

)
∂L, (4.15)
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where, W is the strain energy density, L is a closed counter-clockwise contour around

the crack tip and nL = nLxex + nLyey is the outward normal to L and J = Gc =
K2

I

E
;

Gc being critical energy release rate and referred as fracture toughness of the material.

We compute the macroscopic energy release rate (J−integral) at each instant, which

demonstrates a periodic pattern. We denote the maximum of this value as the effective

fracture toughness of the heterogeneous medium, i.e., Geff
c = max

t
J(t) [108]. We chose

the domain to be large enough as compared to the heterogeneity scale in the media

and crack sufficiently far from the boundary to make J−integral path independent

([161]).

4.3 Numerical simulations

4.3.1 Simulation set-up

For numerical simulations, we have considered an alumina (Al2O3) matrix having

geometry 11 mm × 11 mm. The results are computed using in-house code developed on

MATLAB 2019a. To show the effect of hard and soft inclusions, we have chosen silicon

carbide (SiC) and alumina (elastic modulus less than that used for matrix), respec-

tively, as materials. The material properties are given in table 4.1. These materials

are commonly used ceramics in armor applications [1]. The inclusions are symmetri-

cally placed with center-to-center spacing of 2 mm, e.g. as shown for hard inclusions

in fig. 4.5. The domain size in comparison to the inclusion size is approximately 11

times. However, we have also shown the effect of the size of the inclusions and the

effect of type of periodicity with increasing domain size. We test-run simulations with

increasing domain size and compute normalized J-integral (the path remains the same

for all the domains). A compressive prestress load of 250 MPa is applied to the hard

inclusions to study the effect. Note that the inclusion size and spacing between them

for all the domains remain the same. From fig. 4.3(b), we observe that convergence is

achieved beyond 21 × 21 inclusions. It also shows that a compressive prestress force in

the inclusions shows an increase in fracture toughness in all the test domains. Fig. 4.2

57



shows that fracture strength is also converged after 21 × 21 inclusions. Next, to study

the effect of inclusion shape, we test run with square-shaped, circular-shaped, and

triangular-shaped inclusions on the converged domain, i.e., 21 × 21 inclusion domain.

It is observed that with hard inclusions, there is not much change in the J-integral,

i.e, the shape of the inclusions has a negligible effect with hard inclusions (even with

applied compressive prestressing in the inclusions). we aim to address such concepts

in our future work.
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Figure 4.2: Effect of periodicity with hard inclusions under mode-I loading. A com-
pressive pre-stress of 250 MPa is applied to the inclusions.
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Figure 4.3: Effect of inclusion shape on fracture toughness under mode-I loading. A
compressive pre-stress of 250 MPa is applied to the inclusions.
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The present work is only based on five rows and five columns inclusions (denoted

as 5 × 5) merely on pragmatic grounds and computational ease. The main focus of

the present work is to discuss the effect of applying to prestress force in the inclusions.

A predefined edge crack of 0.5 mm in length is given for initiating crack propagation.

The inclusion geometries are all set as squares of side length 1 mm. Following [112,

111], we have considered square cross-sectioned inclusions with sides aligned with

a cubic lattice. This type of arrangement has an advantage over other shapes and

orientations in terms of attenuating the elastic waves propagating through the media

and obtaining a wider frequency bandgap in the linear regime. Unless otherwise

specified, geometries and material properties are kept the same for all our simulations.

After mesh refinement and convergence study for the numerical model, the domain is

discretized using 114962 triangular elements and 57480 nodes. Note that the length of

the element edges is considered as an immediate measure of the mesh refinement level

adopted in our simulations. Mesh is not refined in the crack propagation direction.

However, after the convergence study, a mesh with a maximum size of 0.025 yields

good results. A convergence plot for the same is shown below.
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Figure 4.4: Convergence plot with different mesh sizes. Good convergence is shown
for the mesh size 0.02 mm.

The minimum and maximum sizes of the elements are 0.021 mm and 0.025 mm, re-

spectively, and the corresponding areas are 0.0376 mm2 and 0.0703 mm2, respectively.
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It should be noted that numerical integration should be performed on sub-elements

since discontinuity will exit in the integrands across the crack interface as it cuts the

elements. For each increment in crack length, i.e., for each t we have used a polar inte-

gration scheme for crack tip element with branch enrichment with 13 and 7 integration

points per sub-element in the radial and angular directions, respectively [162]. The

Standard quadrature scheme with 33 and 1 integration points per sub-element is used

for completely split with branch enrichment and Heaviside enrichment, respectively.

For the non-split elements with branch enrichment standard quadrature scheme with

33 integration points per element is used. SBCs, as given in Eq. (4.14), are applied

as displacement load at the top and bottom edges of the domain Ω. KI/KII and µ

in Eq. (4.14) are set as: KI/KII = 1.5
√
Gnum

c E and µ = E
2(1+ν)

. Gnum
c is the critical

energy release rate estimated [163] (using LEFM) by solving a conjugate numerical

model with homogenized elastic properties :

Gnum
c = −dUs

dli
+
dWext

dli
(4.16)

where, first term of Eq. (4.16) denotes the rate of strain energy release from the domain

and second term denotes the rate of external work done with respect to the extension

of crack tip branch area li. Us for the model is estimated from the homogenized elastic

tensor calculated by asymptotic homogenization method, where the relation of stress

to strain can be defined as [164, 165].

σ = C : ϵ =
(
C− C0

)
: ϵ+ C0 : ϵ (4.17)

where C0 is the elastic tensor of homogeneous material and the material difference at

any arbitrary location of solid having C as elastic tensor will result in polarization

stress τ = (C− C0) : ϵ. Substituting Eq. (4.17) into (4.3), we get

∇ ·
(
τ + σ0 + C0 : ϵ

)
+ b = 0 (4.18)

Extending and Writing Eq. (4.18) in Einstein tensor form, we get:
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C0
ijkluk,lj + bi +

(
τij,j + σ0ij,j

)
= 0 (4.19)

the solution to Eq. (4.19), i.e., displacement fields takes the following form ([166, 165]):

u = u0(x,y) + γu1(x,y) (4.20)

where y = x/γ denotes the position relation in macro- and micro-coordinate with a

constant 0 < γ << 1. u0 is the solution on macro-scale to C0
ijkluk,lj + bi + σ0ij,j = 0,

where as u1 is the solution on micro-scale to the following characteristic equation

([165]):

∫
Ω

Cijmnϵijϵmn(u
1(kl)
i )dΩ =

∫
Ω

Cijklϵijϵ
0(kl)
mn dΩ (4.21)

where, ϵ0(kl)mn are linearly independent unit test strains which in 2D takes the form

[1 0 0]T , [0 1 0]T and [0 0 1]T , respectively. Finally, the homogenized elastic tensor

can be written as ([167]):

CH
ijkl =

1

∥Ω∥

∫
Ω

Cmnrs

(
ϵ0(ij)mn − ϵijmn(u

1(ij)
m )

)
(
ϵ0(kl)rs − ϵklrs(u

1(kl)
m )

)
dΩ

(4.22)

Here, ∥Ω∥ denotes the volume of the unit cell. Note that, for all our numerical cases,

we set time step as ∆t = 0.05L/v; L is the length of the domain Ω and report J-integral

in a normalized form, i.e., J̄ = J/Gnum
c .

Table 4.1: Ceramic material properties (taken from [1, 2])

Materials Elastic modulus
E (GPa) Poisson’s ratio Toughness

(MPa
√
m)

Alumina ( as matrix) 221 0.20 3.0
Alumina (as soft inclusions) 160 0.20 3.0
Silicon carbide (as hard inclusions) 453 0.16 5.1
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Figure 4.5: Simulation setup for mode-I crack propagation.

4.3.2 Toughening and strengthening mechanism in mode-I

fracture

4.3.2.1 Effect of hard inclusions

We set the geometry, material properties, and initial crack for the numerical model

as stated in section 4.3.1 . SBCs in mode-I (Eq. (4.14)) are applied at the top and

bottom edges as tension forces. These forces will open up the crack and pure mode-I

propagation is obtained. Initially, σ0 is set to zero, i.e. null pre-stress. We compute

GIc (or J), Gnum
Ic and crack growth for each time step and have shown the plots in

fig. 4.6(a). J − integral increases as the crack propagates in the matrix (Al2O3)

and decreases as it propagates in the hard region (SiC). To be precise, the stresses in

heterogeneous media significantly vary due to elastic contrast. These stresses are low

in the matrix region due to low elastic modulus, and thus, the driving force should be

large enough to initiate crack propagation. J − int thus begins to rise till it reaches

a critical value and suddenly breaks through the matrix-inclusion interface. This is

accompanied by sudden drop in the J − int. In the stiffer region (SiC), due to high
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stress, the crack propagates at a relatively smaller driving force, which in the figure

is shown by the drop in J − int. Moreover, GIc/G
num
Ic reaches a value approximately

2.1 times than the value of uniformly varying toughness (homogenized toughness,

Gnum
c ), before the crack can propagate the macroscopic distance. This shows that the

macroscopic toughness is higher than the uniformly varying toughness of the medium.
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Figure 4.6: Toughening mechanism in mode-I fracture with hard inclusions (σ0=0).

Stating on crack propagation, we observe that smooth propagation is lacking.

Although, it propagates along a straight line, the crack gets trapped in the matrix

region at the matrix-inclusion interface and GIc/G
num
Ic begins to rise. When GIc/G

num
Ic

reaches a critical value, the crack breaks through the interface and enters the hard

silicon carbide region. This is accompanied by small kinks in the crack propagation

plot and sudden drops in GIc/G
num
Ic . The crack then propagates smoothly for a short

duration before it gets trapped at the next interface. Since the crack propagates

along a straight line and σ0 = 0, the toughening mechanism is purely due to elastic

heterogeneity and has no influence on other parameters.

Next, we investigate the effect of σ0, which has non-zero values in the inclusion

region and zero elsewhere, i.e., pre-stressing the inclusions only. This can be made pos-

sible on practical front by means of stress induced martensitic transformation (SIMT)

in the inclusion ceramic where the volume expansion introduces residual stresses. In

such cases, negligible strains are developed at the interfaces in the matrix, which van-
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ish away from the interface. Unless stated otherwise, σ0 holds this description for

the rest of the article. Initially, we apply pre-stress in the principal y-direction of

the inclusions, i.e. in the transverse direction of crack propagation. We set σ0
yy =

{±250 MPa,±500 MPa}; where ‘+’ and ‘-’ denotes tension and compression respec-

tively. These values are justified, since in martensitic transformed ceramics residual

stresses can be in the order of gigapascal [168]. Fig. 4.7(a) shows that a 250 MPa

compressive pre-stress increases the effective toughness of the medium by 1.112 than

that of without any pre-stress value, whereas a tensile pre-stress decreases it to 0.91.

Further applying a compressive pre-stress (say 500 MPa), we can achieve approxi-

mately 1.21 times the increment in the fracture toughness. Similarly, if we increase

the tensile prestress value up to 500 MPa, the fracture toughness is reduced to 0.82

times approximately. This is because a compressive pre-stress in the transverse di-

rection of crack propagation tends to suppress the crack opening whereas in the case

of tensile pre-stress it does the opposite. Note that in both the cases, i.e., tensile

and compressive pre-stress, Geff
Ic is higher than Gnum

Ic . Thus, we can say that fracture

toughness increases by applying a compressive pre-stressing force in the inclusions.

Fig. 4.7(b) shows the load-displacement curve for different pre-stressing values in the

principal y-direction. We observe that there is a significant increase by approximately

1.14 times the load-carrying capacity of the structure with pre-stressing the inclusions

by 250 MPa. However, tensile pre-stress tends to decrease the load-carrying capacity

of the structure by approximate 0.88 times %. Thus, this shows that with pre-stressing

the inclusions, fracture strength also increases. Fig. 4.8 shows all possible cases for

pre-stressing the inclusions, i.e., bi-axial compression (σ0
xx, σ0

yy < 0 ), bi-axial tension

(σ0
xx, σ0

yy > 0 ), uni-axial tension (σ0
xx > 0 and σ0

yy = 0 or vice versa) and uni-axial

compression (σ0
xx < 0 and σ0

yy = 0 or vice versa). As can be seen from the numerical

simulations, a 250 MPa bi-axial compressive pre-stress loading increases the fracture

toughness about 1.07 times than that of without bi-axial loading and simultaneously

fracture strength is increased by 1.11 times than that of without bi-axial loading.

Similarly, a 500 MPa bi-axial compressive pre-stress increases fracture toughness by

1.15 times and fracture strength by 1.2 times. On the other hand, a 250 MPa of
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bi-axial tension loading reduces the fracture toughness and strength to 0.95 times and

0.97 times, respectively. Similarly, a 500 MPa of bi-axial tension loading reduces the

fracture toughness and strength to 0.91 and 0.93 times, respectively.
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Figure 4.7: Toughening and strengthening effect in mode-I fracture with pre-stressing
the hard inclusions in the principal y-direction only.
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Figure 4.8: Toughening and strengthening effect in mode-I fracture with hard inclu-
sions for uniaxial and biaxial, compression and tension pre-stressing force.

4.3.2.2 Effect of soft inclusions

We proceed, as discussed in the previous example, and set the geometries and the

boundary conditions (SBCs in mode-I) same as that used in earlier (section 4.3.2.1).
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For soft inclusions, we have considered the same material as a matrix, i.e, alumina

but with lower elastic modulus. Fig. 4.9(a) shows the effect of pre-stressing the

inclusions in uniaxial direction (y-direction) on fracture toughness. It is observed

that the effective fracture toughness of the medium with soft inclusions is higher than

that in comparison to the hard inclusions at the same pre-stressing values. This

is because the matrix is now a stiffer region in comparison to the inclusions, and

stresses in the inclusions are comparatively lower. Thus, the driving force in the

inclusions should be high enough to initiate crack propagation. In the matrix, due

to high stresses as compared to the inclusion region, the crack will propagate at a

relatively smaller driving force. Moreover, the effective toughness in the case of soft

inclusions is higher than the uniformly varying toughness, i.e. Geff
Ic > Gnum

Ic , thus

showing a toughening mechanism. However, it is observed that there is no significant

enhancement of fracture strength with soft inclusions (Fig. 4.9(b)). The strength will

decrease when using softer materials. A plot for variation of normalized Geff
c with

σ0
xx (as a fraction of elastic modulus of the matrix) for all possible cases is shown in

fig. 4.10(a). Clearly, applying bi-axial compressive pre-stress to the inclusions shows

significant enhancement in the fracture toughness. However, there is only a slight

improvement in the fracture strength (Fig. 4.10(b)).
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Figure 4.9: Toughening and strengthening effect in mode-I fracture with pre-stressing
the soft inclusions in the principal y-direction only.
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Figure 4.10: Toughening and strengthening effect in mode-I fracture with soft inclu-
sions for uniaxial and biaxial, compression and tension pre-stressing force.

4.3.3 Toughening and strengthening mechanism in Mode II

fracture

4.3.3.1 Effect of hard inclusions

The geometries and material properties are taken the same as used for mode-I

crack propagation as in section 4.3.2. We use the boundary conditions as given in

Eq. (4.14). Top edge is given UIIx in the positive x-direction, whereas UIIy is kept

zero in the top edge. UIIx and UIIy for the bottom edge of the domain is kept zero

as well. The left and right edge are kept free. These BCs will act as a driving force

for the crack propagation which is purely mode-II in character. It is observed that

with an initial crack length of 0.5 mm (as used for mode-I), the crack does not grow

even when applying high shear force. The crack starts to grow when the length is

approx. 0.97 mm. So we chose the initial crack length as 0.97 mm (since at 1 mm

length the crack tip is exactly at the matrix-inclusion interface and its effect cannot be

seen). We compute GIIc for each time step with different values of σ0 as shown in fig.

4.11(a). It is observed that with σ0 = 0, i.e., null pre-stress, Geff
IIc is approximately 1.7

times higher than Gnum
c . This again shows that elastic contrast indicates a toughening

mechanism. GIIc is asymmetric and non-periodic in the plot since the crack cuts an
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unequal fraction of the inclusions while it propagates from matrix to inclusion region

and vice-versa in mode-II fracture (crack propagation is shown in fig. 4.12). Now,

uni-axial pre-stressing force is applied in the principal y-direction of the inclusions.

It is observed that effective toughness becomes 1.12 and 1.19 times with application

of 250 MPa and 500 MPa of compressive pre-stressing force, respectively whereas it

decreases to 0.95 and 0.89 times with 250 MPa and 500 MPa of tensile pre-stressing

force, respectively. However, in both the casesGeff
IIc is higher thanGnum

IIc . Thus, a larger

driving force is required for a crack to propagate in mode-II with hard inclusions and

an effective toughening mechanism can be obtained. Fig. 4.11(b) shows the load-

displacement curve for the hard-inclusion model with the same set of pre-stressing

forces used to show effective fracture toughness. It is indicated that the load-carrying

capacity of the structure by the application of 250 MPa compressive pre-stressing

force is improved by approximately 1.18 times than that of without applying any pre-

stressing force. This shows that pre-stressing the inclusions can enhance the fracture

toughness and fracture strength simultaneously. Fig. 4.13(a) and 4.13(b) shows the

variation of normalized Geff
IIc and max. force carrying capacity of the structure with

σ0
xx, respectively, for different σ0

yy. Thus, it can be seen that the fracture toughness

and fracture strength are enhanced with the application of bi-axial compressive pre-

stressing force to the inclusions.
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Figure 4.11: Toughening and strengthening effect in mode II fracture with hard in-
clusions.
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Figure 4.12: Crack propagation under mode-II loading with σ0 = 0.

-2 -1 0 1 2

xx
0 /E

mat
10

-3

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

G
II
c

e
ff
/G

II
c

n
u
m

yy

0
 = 500 MPa

yy

0
 = 250 MPa

yy

0
 =  0 MPa

yy

0
 =  -250MPa

yy

0
 =  -500MPa

(a) Fracture toughness

-3 -2 -1 0 1 2 3

xx
0 /E

mat
10

-3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
a
x
. 
F

o
rc

e
 (

k
N

)

yy

0
 = 500 MPa

yy

0
 = 250 MPa

yy

0
 =  0 MPa

yy

0
 =  -250MPa

yy

0
 =  -500MPa

(b) Fracture strength

Figure 4.13: Toughening and strengthening effect in mode-II fracture with hard in-
clusions for uniaxial and biaxial, compression and tension pre-stressinf force.

4.3.3.2 Effect of soft inclusions

The geometries and boundary conditions are set the same as stated in section

4.3.3.1. Soft inclusions are represented as the same material that of the matrix but

having a lower elastic modulus. The crack starts growing if the initial length is 0.97

mm. GIIc is computed for different values of σ0. Fig. 4.14(a) shows that pre-stressing
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with the same set of values as used for hard inclusions, the effective fracture toughness

is higher than that compared with hard inclusions. Compressive pre-stressing force

gives higher toughness than the tensile pre-stressing force. This trend is similar to

the observed results of mode-I crack propagation. Moreover, Geff
IIc > Gnum

IIc . Thus

pre-stressing the inclusions enhances the fracture toughness in mode-II propagation

also. Fig. 4.14(b) show the load-displacement curve for uni-axial pre-stressing values

in principal y-direction. It is observed that there is not much improvement in the

load-carrying capacity with soft inclusions. Fig. 4.15 shows the variation of effective

fracture toughness and load-carrying capacity with σ0
xx. Bi-axial compressive pre-

stress shows a significant increase in the fracture toughness, however, fracture strength

is only slightly improved.
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Figure 4.14: Toughening and strengthening effect in mode-II fracture with soft inclu-
sions pre-stressed in the principal y-direction.
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Figure 4.15: Toughening and strengthening effect in mode-II fracture with soft inclu-
sions for uniaxial and biaxial, compression and tension pre-stressinf force.

4.4 Summary

In this study, we have carried out mode I and mode II fracture simulations on

composites with inclusions and demonstrated that high-performance engineered com-

posites can be designed by appropriately pre-stressing the inclusions. As anticipated,

we have observed a significant enhancement in fracture toughness and strength of

periodic composites when the inclusions are compressing pre-stressed. As seen from

the numerical simulations, one may achieve simultaneous improvement in fracture

toughness and strength by considering inclusions as hard and under a compressive

pre-stressing force. With compressing pre-stressed soft inclusions, one may achieve

even higher fracture toughness but with insignificant improvement in strength com-

pared to hard inclusions. Hence, we recommend using pre-stressed hard inclusions

where fracture toughness and strength are equally important, and soft inclusions where

fracture toughness is predominately important. While this study is limited to brittle

fracture (both inclusions and matrix), one may extend the present work to ductile

matrix-brittle inclusions, where matrix plasticity may play an important role in frac-

ture toughness and strength. We plan to extend this work and consider a geometrically

interlocking shape for the inclusion such as osteomorphic brick to explore the effect of
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interlocking geometry in presence of pre-stress in the inclusions. However, the effect

of pre-stressed inclusion under a dynamic load may be more prominent and can be

taken as a part of the immediate future scope of this study.
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Chapter 5

Designing polymer metamaterial for

protective armor: A coarse-grained

formulation

Designing protective armor is important for varied civil and defense applications.

Ceramic-polymer composite armors are particularly interesting for their high strength

and lightweight with high energy absorption capability. While the function of ceramic

is to retard ballistic impact penetration, polymer panel serves the purpose of absorb-

ing high energy generated from the propagating elastic/stress waves. Enhancing this

energy absorption capability of the armor is essential for its back-face signature (BFS).

This chapter shows that energy absorption can be considerably enhanced if the bulk

polymer panel is replaced with a polymer-based metamaterial. To demonstrate this, a

comparison of the polymer metamaterial is made with its solid counterpart, i.e., bulk

polymer matrix in terms of their respective transmission losses in the propagating

elastic waves. We have also studied the effect of the size of the polymer metamaterial,

e.g., by increasing the number of metamaterial layers and variation in the fiber length

and thickness within a layer. A major challenge in such studies is the extreme com-

putational overhead involved in solving continuum mechanics equations using finite

element methods on the complex geometry with microstructure details. Note that

microstructure details, i.e., geometry, size, and shape are mostly responsible for the

nonintuitive properties of metamaterials. We have bypassed the huge computational
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requirement by proposing a novel coarse-grained methodology based on the energet-

ics of the structure of the polymer metamaterial. We envisage that the methodology

would be useful to other related studies on mechanical metamaterials.

5.1 Introduction

A superior energy absorption mechanism is essential for protective armor toward

resisting ballistic impacts [169]. In modern-day armor technology, advanced designs,

e.g. ceramic-polymer composite armors are replacing their traditional counterpart of

monolithic design owing to their lightweight with excellent ballistic resistance [170].

The competing interest comes from the fact that, for the need of today’s advanced

military and weapon technology, law enforcement applications, etc., monolithic armors

appear to be too thick and heavy, affecting their mobility and flexibility. On the other

hand, composite armor, which has the potential to overcome these drawbacks, can be

made lightweight. This forms an important scope of research in the context of varied

defense and civil applications [171, 172]. In engineering new types of composite armors,

their material constituents play an important role in translating the kinetic energy

of the impacts into internal energy, which has been explored by many researchers

[13, 173, 174, 175, 176]. Generally, a composite armor is made up of bulk hard layered

ceramic front panel and polymer-based rear panel joined by adhesives. The ceramic

panel functions as a retarder of the impacted object penetration [177]. It transmits

the shock wave, which is absorbed by the bulk polymer panel. Even if the impact

object does not pierce the armor, in the absence of an adequate energy dissipation

mechanism the shock wave can cause injuries to the wearer’s body. Thus the energy-

absorbing efficiency of polymer panels is crucial in the design of the armor. This forms

the basis for active research on designing appropriate rear panels of the armor. For

example, Wilhelm and Bir (2008) [178] have shown, via different case studies, that

excessive vest deformation can also cause backface signature (BFS) injuries even if the

bullet does not penetrate the vest. They have shown that by putting a threshold limit

on the energy density of the impact is an effective measure to prevent BFS injuries.
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Experimentally, Park et. al. (2012) [179] have quantified the energy dissipated to

the backing material of a soft body armor panel. They have shown that the energy

absorption per unit dent volume of the backing material varies linearly with impact

velocity. Recently, Bajya et. al. (2020) [180]have shown an improvement in the

energy absorption mechanism of armor backing material using shear thickening fluid

(STF), reinforced with kevlar fabrics. They have also studied the size effect of silica

nanoparticles (prime composition of STF) on the ballistic performance of armor and

concluded that STF-500 (STF composed with 500 nm silica particles) has higher

absorption energy in comparison to STF-100, designed with the same number of fabric

layers. These works indicate that enhancement in the energy-absorbing mechanism of

the polymer panel is crucial for an efficient design of the armors.

In this context, we would like to recall that metamaterials have certain clear ad-

vantages over their classical counterparts with the above-mentioned features desired

from protective armors [181, 95]. While metamaterials are still among the developing

areas of research, its journey actually started in the context of electromagnetism way

back in 1968 with the visionary article by Veselago [182]. Over the last couple of

decades, there have been a series of exciting works on metamaterials in different fields

ranging from electromagnetics and optics to mechanics showcasing interesting proper-

ties, e.g. negative Poisson’s ratio [36, 183], negative refractive index [184], frequency

bandgap [95] etc. We believe that the efficiency of ceramic polymer composite armors

can be increased drastically if we replace the bulk polymer panel with a metamaterial

whose constituent chemical composition is a polymer. The present study is geared

towards investigating this aspect. A major challenge in such a study is to incorpo-

rate microstructure details of the metamaterials in finite element-based solutions of

the continuum laws. Note that metamaterials derive such non-intuitive properties

mostly from their microstructures, i.e. geometry, size, and shape of the microstruc-

tures. Hence we can not ignore the microstructure details in modeling. The task

involves extreme computational overhead which is not possible to afford for the large

engineering scale of our interest. We need an efficient strategy with reduced degrees

of freedom to analyze metamaterials. The usual rigid rotating square approximation-
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based approaches are not accurate enough and may lead to erroneous results [185]. We

need an appropriate coarse-grained description of the metamaterial that incorporates

microstructure information and the chemical composition of its constituent material.

With this motivation, we propose an energetic description of the polymer metama-

terial via a finite element-based coarse-graining strategy. The reduced order model

is utilized to get through-thickness transmission losses, which clearly demonstrates

that appropriately designed polymer metamaterials can be much more efficient than

monolithic polymer panels in absorbing the propagating shock waves. Via transmis-

sion loss diagrams, we basically check the frequency contents in the elastic wave that

get heavily attenuated while propagating through the metamaterial.

Here we propose a novel high-energy absorbing design for a backing panel of ar-

mors with polymer-based mechanical metamaterial (PMM) which can be achieved

via additive manufacturing (AM) technology. For analyzing PMM, we also provide

a novel FEM-based coarse-grained description of the model to capture its mechani-

cal behavior. Usually coarse graining is used in the context of molecular dynamics

simulations. Here the phrase ”Coarse-grain” is used contextually, which basically

means a simplified model with reduced degrees of freedom, yet capable of capturing

the overall behaviour of the structure accurately. The simulations are based on the

simplified model derived from the energetic description of the whole structure. Thus

our objective is twofold. First, we illustrate that polymer metamaterial panel (PMP,

a schematic representation is given in Fig. 5.1 has high energy absorbing capacity

than its monolithic counterpart, i.e. solid polymer panel (SPP) which has the same

chemical composition. This is shown by studying the through-thickness transmission

losses in elastic waves while propagating through the PMP and SPP. Second, to by-

pass the huge computational requirement involved in the micromechanical model of

PMP, we propose a FEM-based course-grained formulation, which captures its ener-

getics with reduced degrees of freedom. Specifically, we model the fiber elements of

PMP as flexible 3D frame elements to avoid the erroneous approximations involved

with the assumption of a rigid rotating square mechanism. Since the mechanics of the

metamaterials is greatly influenced by their microstructural geometry, the contribu-
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tion from the connecting filaments of the fiber elements are also accounted for in the

energetics of the micromechanical model.

A detailed mathematical formulation of the coarse-grained methodology is given in

section 5.2. Section 5.3 shows the validation of the coarse-grained formulation solving

a test example and comparing it with the classical finite element-based continuum

solution. The energy absorption efficiency of polymer metamaterial panel (PMP) in

comparison to monolithic solid polymer panel (SPP) is shown by comparing transmis-

sion losses in section 5.4.

5.2 Mathematical formulation for coarse-grained

description

En route to avoiding extreme computation involved in a finite element-based solu-

tion of the continuum equations, we need a coarse-graining methodology to incorporate

the microstructure information and chemical composition of the polymer metamaterial

in our coarse-grained description. A schematic representation of the proposed polymer

metamaterial panel (PMP) is shown in Fig. 5.1. The abbreviation for dimensions of

each modeled fiber element is as shown in the figure, i.e., length (L), thickness (d),

and width (w) of each fiber element and thickness of the connector/hinge-like joint

(l). We propose a coarse-grained formulation based on the energetics of the model to

capture the mechanics of the metamaterial. In the process, the PMP fiber elements

are modeled as flexible 3D frame elements and since micro details of metamaterial

are essential, their connecting filaments which act as connectors/hinge-like joints are

modeled based on rotating square mechanism capturing their energetics in bending,

shear and stretch.
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Figure 5.1: Schematic representation of a 3 layered polymer metamaterial panel
(PMP).

We discritize each fiber element as two noded element and express the energetics

of ith fiber element (Efi) as given in Eq. (5.1).

Efi =
1

2
qi

Tkiqi (5.1)

where qi =
[
qsi qei

]T
captures the displacements along the degrees of freedom

of the start and end connecting nodes, si and ei, respectively, of ith fiber element;

qji =
[
ujx ujy ujz θjx θjy θjz

]
for j = {s, e}; u and θ being translational and

rotational deformations, respectively along the directions x, y and z. ki is the classical

stiffness matrix of ith frame element. Element stiffness matrix, ki for a frame element

in 3D space considering axial rigidity (EA)i, flexural rigidities, (EIz)i and (EIy)i for

bending about the local z and y, and torsional rigidity (GJ)i is given by Eq. (5.2).

ki =

ka kc
T

kc kb

 (5.2)

where ka, kb and kc is given by Eq. (5.3), (5.4) and (5.5).
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ka =



αi 0 0 0 0 0

0 12δzi
Li

2 0 0 0 6δzi
Li

0 0
12δyi
Li

2 0
−6δyi
Li

0

0 0 0 ϵi 0 0

0 0
−6δyi
Li

0 4δyi 0

0 6δzi
Li

0 0 0 4δzi


(5.3)

kb =



αi 0 0 0 0 0

0 12δzi
Li

2 0 0 0 −6δzi
Li

0 0
12δyi
Li

2 0
6δyi
Li

0

0 0 0 ϵi 0 0

0 0
6δyi
Li

0 4δyi 0

0 −6δzi
Li

0 0 0 4δzi


(5.4)

kc =



−αi 0 0 0 0 0

0 −12δzi
Li

2 0 0 0 −6δzi
Li

0 0
−12δyi
Li

2 0
6δyi
Li

0

0 0 0 −ϵi 0 0

0 0
−6δyi
Li

0 2δyi 0

0 6δzi
Li

0 0 0 2δzi


(5.5)

Where,

• E is elastic modulus of the frame element

• A is the cross-sectional area

• I is the second moment of area

• G is shear modulus

• J is polar moment of inertia

• αi = (EA)i
Li
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• δzi = (EIz)i
Li

• δyi = (EIy)i
Li

• ϵi = (GJ)i
Li

We consider the connector to be flexible and its mechanics is characterized by

adjoining fiber elements. The mechanism involved is characterized by the following

description.

[1] Connector energetics: This is described in most general way when we allow them

for pure bending, shear and stretching. Each connector connects two adjacent

flexible fibers, i.e., one fiber in the bottom layer to another fiber on top of it as

shown in Fig. 5.1. The governed stiffnesses (Cb, Csh and k for bending, shear and

stretching, respectively) in linear elastic regime are calibrated by finite element

based simulations following their detailed geometry.

[2] Parameters in energetic expression: To express the energetics of the jth connec-

tor, we use translational (uj) and rotational (θj) displacements against external

forcing on ith fiber element as shown in Fig. 5.2. To account for shear defor-

mations of the connectors, the shear angle (ψj) is also considered. We express

the bending energy as 1
2
Cb (θi − θi+a)

2, the shear energy as 1
2
Csh

(
θi+θi+a

2
− ψj

)2
and the stretching energy as 1

2
k (ui)

2, where i and i+ a are the fibers connected

by jth connector; a being number of discretized fiber elements in one layer of

PMP. It should be noted that in global coordinates {sj, ej} = {ei, si+1}.

[3] Determination of stiffnesses: As mentioned earlier, Cb, Csh and k are calibrated

via full scale finite element simulations of the 3D continuum equations of the

system following exact geometry. Fig. 5.2 shows the loading pattern to deter-

mine these stiffnesses. For simulation of each connector with thickness, l=0.01

mm, effective dimensions of connecting fibers are chosen as length, L=0.25 mm,

width, w=0.1 mm and thickness, d=0.1 mm.

Pure bending is implemented via counter rotations: θi = −θi+1 while ui=ψj=0
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(Fig. 5.2(a)).

Pure shear is implemented via relative horizontal motion: ψj ̸= 0 while

θi = θi+1 = ui = 0 (Fig. 5.2(b)).

Pure stretch is implemented via relative vertical motion: ui ̸= 0 while θi =

θi+1 = ψj = 0 (Fig. 5.2(c)).

To determine Cb, increasing moment (M) is applied along y-direction on both the

adjacent fibers as shown in Fig. 5.2(a), and corresponding rotational deformations (θj)

on the opposite sides of jth connector are measured. The slope of the plot between M

and relative rotational deformation along z-direction (θsz − θez) gives elastic bending

coefficient of the connector in z-direction; s and e denote the starting and ending

node of the jth connector. Thus, bending coefficient (Cb) recovered from the plot, M

versus θsz − θez, has a value of 0.03 N · m. Similarly, Csh is determined by applying

load P in two opposite directions on the adjacent fibers as shown in Fig. 5.2(b)

and capturing θsy, θex and ψj, where ψj = usx−uey

l
. Shear coefficient is the slope of

plot between different P and corresponding θsy+θex
2

− ψj values. The recovered shear

coefficient (Csh) from the plot, P versus θsy+θex
2

− ψj, has a value of 123.18 N. Stretch

coefficient is determined by gradually pulling the adjacent fibers in opposite directions

as shown in Fig. 5.2(c) and measuring the relative displacement of the sides of the

connector (usx − uex). The slope of the plot obtained by varying P and measuring

corresponding usx − uex gives the stretch coefficient. The recovered stretch coefficient

(k) from the plot, P versus usx − uex, has a value of 1.19 × 107 N/m. Thus, results

of FEM simulations for elastic coefficients of the connectors in bending, shear and

stretch, in linear elastic regime gives the values as Cb = 0.03 N · m, Csh = 123.18 N

and k = 1.19×107 N/m, respectively. Using the numerical values of these coefficients,

the energetics of jth connector, Ecj in 3D space is expressed as in Eq. (5.6).
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Figure 5.2: FEM simulations to obtain elastic coefficients of connector filaments, i.e.,
(a) bending, (b) shear, and (c) stretch. Dimensions L=0.25 mm, l=0.01 mm and
w=d=0.1 mm.

Ecj =
1

2
Csh

(
θsy,j + θex,j

2
− usx,j − uey,j

l

)2

+
1

2
Csh

(
θsx,j + θey,j

2
− usy,j − uex,j

l

)2

+
1

2
k (usz,j − uez,j)

2 +
1

2
Cb (θsx,j − θex,j)

2 +
1

2
Cb (θsy,j − θey,j)

2

+
1

2
Cb (θsz,j − θez,j)

2

(5.6)

Combining Eq. (5.1) and Eq. (5.6), the total elastic energy (Ee) of the system is

expressed as in Eq. (5.7), where n1 and n2 represents total number of fiber elements

and total number of connectors, respectively.

Ee =

n1∑
i=1

Efi +

n2∑
j=1

Ecj (5.7)

Kinetic energy (Ek) of the system may be written as given in Eq. (5.8).

Ek =

n1∑
i=1

1

2
q̇T
i mq̇i (5.8)

Accordingly, Lagrangian, L = Ek − Ee, and the Euler-Lagrangian equation, i.e., the

equation of motion may be written as in Eq. (5.9).

∂L
∂qi

− ∂

∂t

(
∂L
∂q̇i

)
= 0 (5.9)
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Since each fiber element is discritized into two noded element, Eq. (5.9) gives 12

number of equations of motion (6 dof at each node; 3 translational and 3 rotational).

Thus, we arrive at 12N number of equations of motion, where N is the total number

of discretized elements of the system. Including the contribution from external force

vector, these equations, when rearranged, can be written in frequency domain as given

in Eq. (5.10) where K and M are global stiffness and mass matrices, respectively, U

is assembled displacement vector and F is the applied external force vector.

(K− ω2M)U = F (5.10)

In frequency domain, we compute U by varying ω from Eq. (5.10) and represent

transmission loss by Eq. (5.11); where ui is deformation at incident node and uo is

deformation at node opposite of ui through the thickness of PMP.

loss = 10 log10
u2o
u2i

(5.11)

5.3 Validation of coarse-grained methodology

For validation purposes of the proposed coarse-grained methodology presented

in section 5.2, its comparison is made with finite element simulation under similar

conditions. A two-layered polymer metamaterial is fixed at its bottom layer as shown

in Fig. 5.3. Unless otherwise specified, the PMP has material properties as Elastic

modulus, E = 152 GPa, Poisson’s ratio, µ = 0.35 and density, ρ = 1467 kg/m3. The

Length of each fiber element, L is taken as 0.25 mm, width, w, and thickness, d as

0.1 mm and 0.1 mm, respectively. The connector (hinge-like joint) thickness is taken

as 0.01 mm. The metamaterial is subjected to a pulling force P in the form of a

uniformly distributed load on selected fiber elements as shown in the figure. The force

P is increased gradually and corresponding displacement is recorded.
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Figure 5.3: A two-layered PMP of armor with a dimension of each fiber element as,
L =0.25 mm, w=d=0.1 mm and connector as, l=0.01 mm, subjected to pulling by a
uniformly distributed load on selected fibers.
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Figure 5.4: Load Vs displacement plot for a two-layered PMP (corresponding to
fig.5.3), simulated using full-scale finite element analysis (continuous marked line) and
proposed coarse-grained formulation (star marked line).

The simulation results showing a comparison of both the methods, i.e., finite ele-

ment method and the proposed coarse-grained method is given in Fig. 5.4. The plot

shows that the coarse-grained formulation is in excellent agreement with the full-scale

finite element simulation of 3D continuum laws. The volume of unit cell of PMP is
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0.015 mm3 approximately, whereas the homogeneous volume of the unit cell (for the

detailed analysis) is 0.01875 mm3, which is higher than the simplified model. Thus,

there is approximately 20 % reduction in the volume via simplified model, yet the

model is able to capture the response accurately.

5.4 Numerical results and discussion

In this section, we demonstrate different numerical results of polymer metamaterial

via transmission losses following coarse-grained solutions, of which a detailed explana-

tion is given in section 5.2. The results are computed using in-house code developed

on MATLAB 2019a. We first compare a 2 mm thick PMP based armor design to its

solid counterpart, i.e., SPP of the same thickness under similar loading conditions.

On arriving at a choice, we next examine the size effect of the microstructure of PMP

on attenuating the propagation of elastic/stress waves via transmission losses. We

specifically study the effect of increasing the number of layers and refining the fiber

length and thickness along each layer of PMP.

5.4.1 Comparison of polymer metamaterial with its solid

counterpart

To compare the energy absorbing capacity of PMP and its solid counterpart, i.e.,

bulk single polymer panel (SPP), we compute the transmission losses in both cases

when an elastic wave from object impact is propagating through it. A 10-layered

PMP is numerically analyzed using the coarse-grained formulation as demonstrated

in section 5.2 while the bulk polymer panel, i.e., SPP is numerically analyzed using

the finite element approach. Each layer of PMP is having an effective thickness of 0.1

mm, thus making a total thickness of PMP 2 mm (along the z-direction), and each

fiber in the impact influence zone, of dimension 10 mm × 10 mm in both x and y

direction, is modeled using 1 mm frame element. For comparison purposes, the SPP

is also chosen to have the same thickness, i.e., 2mm. Both the models, i.e., PMP and
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SPP are studied for an elastic wave generating from an impact of 50 N in the frequency

domain.
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Figure 5.5: Comparison of transmission losses in polymer metamaterial (PMP) and
its solid counterpart bulk polymer matrix (SPP), both having thicknesses of 2 mm.

Fig. 5.5 shows the attenuation of propagating elastic waves in PMP and SPP via

transmission losses. Clearly, PMP shows large attenuation of elastic wave propagation

in comparison to SPP under similar conditions. Where SPP can only attenuate the

wave upto approximately 3 dB (see the dotted line of Fig 5.5), PMP on the other

hand achieves large attenuation of wave propagation in the range of 2.5 kHz-4 kHz

and beyond. This proves that SPP if is replaced with a PMP, the energy-absorbing

capacity of the armor system can be enhanced significantly. Moreover, since the

order of attenuation is very large for PMP in comparison to SPP, for a specific armor

application the thickness of PMP can be varied by varying the number of PMP layers.

This serves as an advantage of having a much lighter weight than the SPP-based

design and also enhances defense system mobility.
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5.4.2 Effect of an increasing number of layers in polymer

metamaterial

On proving that PMP has high energy absorbing capacity in comparison to SPP,

we further study the size effect of PMP on attenuating the elastic wave. For this

purpose, we numerically simulate 2 models, i.e., the 4-layered and 8-layered PMP

models keeping the fiber length and thickness the same in each layer. Each fiber is

having a thickness of 0.1 mm (along the z-direction) and the impact influence zone

is taken the same as in the previous test results, i.e., 10 mm × 10 mm (x and y

direction). Since in the earlier section we have shown that the thickness of PMP can

be reduced by reducing the number of layers to a greater extent in comparison to SPP

for a similar armor application, in this section we use a lesser number of layers, i.e., 4

and 8 to study the wave attenuation for thinner PMP design.
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Figure 5.6: Comparison of transmission losses in a 4-layered and 8-layered polymer
metamaterial (PMP).

Fig. 5.6 shows the elastic wave attenuation in a 4 and 8-layered PMP. The former

PMP model shows transmission losses in the frequency range of 3.5 kHz - 4.5 kHz,

while the latter shows transmission losses in a slightly higher frequency range, i.e.,

above 4.5 kHz frequency. Thus the number of layers in a PMP-based design of armor

is also an essential parameter that can be regulated to achieve desirable properties
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of the defense system based on the striking velocities of the impact. However, one

should note that the attenuation difference in 4 and 8-layered models is not more than

approximately 3 dB (121.5 db for 4-layered and 124.4 dB for 8-layered), i.e., around

2.5 %.

5.4.3 Effect of varying fiber length and thickness in the mi-

crostructural geometry of polymer metamaterial

To further investigate the effect of varying fiber length and thickness on elastic

wave attenuation, we numerically simulate a 4 layered PMP model. This model is

tested with two types of arrangements for the length and thickness of the fiber ele-

ment, keeping the dimensions of the influence zone the same, i.e, 10 mm × 10 mm.

Within the influence zone, one arrangement of finely spaced fiber elements is con-

sidered and the other one is taken as coarsely spaced fiber elements. For simulation

purposes, we keep the length to thickness ratio of each fiber element the same. Figure

5.7 shows the wave attenuation in both types of arrangements. The figure depicts

that the finer arrangement of the fiber elements in the microstructural geometry of

PMP attenuates the propagating wave to a large extent in comparison to the coarser

arrangement. The former arrangement of PMP shows better wave attenuation than

the latter arrangement in the frequency range of 2 kHz-2.2 kHz and again in the range

of 3.3 kHz-4.4 kHz. Although the finer arrangement shows better attenuation, this

may again increase the computational time. Thus, there can be a trade-off between

the fiber arrangement in PMP design and the required computational time based on

the importance of the defense structure.
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Figure 5.7: Comparison of transmission losses in a 4-layered PMP design of armor
with finner and coarser arrangement of fibers in its microstructure.

5.5 Summary

In the present study, we have shown that the energy-absorbing efficiency of com-

posite armors can be drastically improved if the bulk polymer matrix is replaced by

an appropriate metamaterial whose constitute chemical composition is a polymer.

The finite element-based solution of 3D continuum laws for metamaterials requires

huge computational power, thus making the traditional route infeasible for analyz-

ing metamaterials for engineering applications like armor design. At the same time,

we cannot ignore the microstructural geometries of the metamaterials from which

they derive their nonintuitive properties. Thus, to bypass the huge computational

requirement which comes from finite element-based solutions, we have proposed a

novel coarse-grained methodology to analyze metamaterials for armor design. In this

coarse-grained formulation, the PMP behavior is analyzed by capturing its energetics

with reduced degrees of freedom. Since microstructural geometries of metamaterial

are also influential, the contribution from the energetics of the connecting filaments

of PMP fiber is also accounted for in the whole micromechanical model. Specifically,

the PMP fiber elements were modeled as 3D frame elements and their connectors were

modeled by capturing their linear elastic behavior in bending, shear, and stretching.

89



The elastic coefficients of connectors are obtained via finite element-based simulations

whose detailed description is given in section 5.2.

The PMP of armor has a great energy-absorbing capacity than its solid coun-

terpart SPP. This is shown by comparing through-thickness transmission losses in

elastic/stress waves propagating through a 2 mm thick PMP and SPP of armor. PMP

achieves large attenuation in wave propagation in the range of 2.5 kHz-4 kHz and

beyond, in comparison to 3 dB attenuation of SPP-designed armor. The size effect of

metamaterial in PMP is also influential in attenuating elastic/stress waves, i.e., with

increasing the number of layer in the metamaterial, stress waves further attenuate

considerably. An 8-layered PMP attenuates elastic waves approximately 2.5 % more

than a 4-layered PMP, both having thicknesses of 0.1 mm for each layer. However,

transmission loss is obtained in a slightly higher frequency domain for the 8-layered

than for the 4-layered PMP. This necessitates proper tuning to achieve the number

of PMP layers for desirable properties of the defense system based on the striking

velocities of the impact. The influence of the size effect of PMP is further shown by

comparing the simulations on a 4-layered PMP with finely and coarsely spaced fiber

elements. Better attenuation is obtained with the finer arrangement of fiber elements

in comparison to the coarser arrangement. While this study shows a novel aspect of

designing composite armor using metamaterials, it has many scopes for further re-

search. Since this study is conducted in a linear regime, one would like to explore the

non-linearity involved in the model. One may also be interested in investigating the

behavior of PMP in the failure regime.
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Chapter 6

Conclusions and Future Work

This thesis primarily investigates the effect of internal geometries on the macro-

scopic deformation of a solid. The mechanical response of a solid body does not only

depend on its elastic properties but also on the subsystem’s internal geometry and

its arrangements. This research work uses the concept of metamaterials and shows

that tweaking the geometrical parameters of a unit cell of periodic media affects the

bulk overall response such as frequency bandgap, stress wave attenuation, energy ab-

sorption capability, etc. The length scale of internal geometry’s dimensions may vary

from nano-meter to meter depending on the specific applications. In particular, we

have shown that such designs are important for applications in developing efficient

protective structures such as seismic shields and body armor.

6.1 Conclusions

From the present study the following conclusions are drawn:

[1] Firstly, we noticed the importance of internal geometry to further enhance the

filtering effects from the propagating wave in a periodic solid medium. By chang-

ing the internal geometries, it is observed that seismic waves can get weakened

to a great extent. Further, tilting the junctions between the inertial resonators

and the bulk medium of seismic metamaterials (SMs), a torsional mode opens up

a frequency bandgap in the upper region of the frequency spectrum. The addi-
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tional stopbands at higher frequencies might find applications in the suppression

of ground vibrations induced by traffic.

[2] For SMs, inclusions having a square cross-section with sides aligned with the

square lattice gives a wider bandgap in comparison to any other cross-sections

for the same substitution ratio of the constituent material. This has been demon-

strated by computing transmission losses in addition to the dispersion curves for

different microstructure geometries of the SM.

[3] By mixing stress-free and clamped boundary conditions (where the bottoms of

SMs are clamped), we observe zero frequency bandgaps. Practically, clamping

the bottom is possible if the steel columns are embedded in bedrock or a layer of

gravel. Such designs are important for tall structures whose natural frequencies

are close to zero.

[4] As fabricating large volumes of steel is not feasible, both economically and tech-

nically, we have shown that concrete can also be used to design inclusions for

large wave attenuations in very loose soil. Since concrete is easily mouldable in

desired shapes, and more cost-effective than steel, it will help in the industrial

scaling up of technology in such designs.

[5] As very soft soil is not suitable for construction, an architecture of SM is pre-

scribed, with concrete inclusions in a narrow strip of very soft soil matrix sur-

rounding the protected region. The rest portion of the soil can be in its natural

state.

[6] We have observed that square cross-section inclusions with an initial prestressing

force can also be used to design high-performance engineered composites having

simultaneous fracture toughness and fracture strength. Such composites will find

applications in designing efficient protective armor front panels, where ceramic

inclusions are introduced periodically in the steel matrix.

[7] A compressive prestressing force applied to the hard inclusions shows significant

improvement in the fracture toughness and fracture strength. A similar force
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is applied to the soft inclusions showing even higher fracture toughness but a

negligible increase in fracture strength. Thus, where fracture toughness and frac-

ture strength are equally important, we recommend hard inclusions whereas soft

inclusions will find application where only fracture toughness is predominately

important.

[8] We have observed that cubic voids arranged periodically in a polymer matrix

can drastically improve the energy-absorbing efficiency of the material. Such

designs are useful in developing efficient back panels of a composite armor whose

chemical composition is a polymer.

[9] A Finite Element-based solution of 3D continuum laws for designs incorporating

internal geometries requires huge computational power. Thus, to bypass this a

novel coarse-grained methodology is proposed (with reduced dofs) to analyze

such structures.

[10] It is observed that a polymer-based metamaterial panel design for a backing

panel of armors shows large attenuation of the propagating wave throughout

the frequency spectrum in comparison to its solid counterpart.

6.2 Future Research Directions

The study of the arrangement of internal geometry and its effect on the macroscopic

deformation of a solid body is a new idea and there are a lot of scopes for future studies.

Some of them are listed below.

[1] We have assumed linear elastic materials for SMs in our study. However, it

would be interesting to investigate the performance of SMs in the context of

material and geometric non-linearity; soil often shows a significant amount of

plastic deformation.

[2] It would be interesting to consider a geometrically interlocking shape of the

inclusion such as osteomorphic brick to explore the effect of interlocking geome-
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try in the presence of pre-stressed inclusions on the macroscopic deformation of

solid.

[3] Crack branching and coalescence of cracks in a periodic media is an interesting

topic to explore.

[4] Effects of internal geometries in the nonlinear regime leading to permanent de-

formation and failure is another aspect which one can focus on.

[5] Studying the effect of projectile impact on the integrated metamaterial-based

front and back panels of armor is yet another interesting aspect.
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