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Abstract
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In this dissertation, the two chapters propose an accelerated iteration method for

finding the zeroes of a nonlinear function f : R → R. While accelerated iterative

method for finding the zeros of a nonlinear function have been studied already by

Weerakoon Fernando and many others, the proposed technique is an efficient alterna-

tive for the existing methods. Moreover this thesis provides a semilocal convergence

theorem for variation of Newton’s method based on various quadrature rules.

Chapter 1 provides a short bird view on various iterative methods for finding the

zeros of a nonlinear real valued function.

Chapter 2 proposes a variant of Newton’s method based on Weddle’s rule. A local

convergence theorem is provided for the proposed iteration. Theoretically a cubic

order of convergence is obtained. This section also provides a semilocal convergence

theorem for a variant of Newton’s method based on various quadrature rules. A

comparative numerical study is also provided to support the theory.
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Notations

R the set of all real numbers

N the set of all natural numbers

Rn n dimensional real coordinate space

Ck[a, b] {f : [a, b]→ R; f has continuous kth derivative}
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Chapter 1

Introduction

One of the oldest problems in mathematics is finding the zeroes of a given function.

Though finding the zeroes of a real valued function is easy, when it is linear, the

same problem become difficult when the function is nonlinear. For example, the

simplest nonlinear functions are polynomials of degree greater than or equal to two.

Consider the quadratic polynomial ax2 + bx+ c. One can easily locate the zeroes of

this polynomial by applying the formula

zero1 =
−b+

√
b2 − 4ac

2a
, zero2 =

−b−
√
b2 − 4ac

2a
.

The well known result( [8, p. 256]) from algebra due to Abel, polynomial of degree

greater than or equal to five can not be solved by radicals, ensure that these kind of

technique may not be extended for higher degree polynomials.

This problem will be further complicated if the function involves transcendental

function. For example, finding the zeroes of the following functions x − tanx, x −

a sinx − b (arising from Kepler’s equation), k − Ae−Ea/kbt (arising from Arrhenius

equation) play a crucial role in the theory of diffraction of light [9], in the calculation

of planetary orbits [9] and the theory of chemical reactions respectively. Due to the

application of zeroes of nonlinear function arising from real life problems, this urges

us to develop efficient methods to find the zeroes of nonlinear functions. Recent

1



Chapter 1. Introduction

literature supports that this is still an active area of research. The aim of this

section is to provide a bird eye of certain basic methods to find the zeroes of a real

valued function.

1.1 Bisection method

One of the basic technique to find the zeroes of a real valued continuous nonlinear

function is the use of Bisection method. This method produces zeroes of nonlinear

function as a limit of a convergent sequence. The construction of the sequence is

based on the following well known intermediate value theorem.

Theorem 1.1.1. [1, p. 133]

Let I be an interval and let f : I → IR be a continuous on I. If a, b ∈ I, and if

f(a) < k < f(b), then there exists a point c ∈ I between a and b such that f(c) = k.

The construction of the sequence is described as follows:

Step 1. Find an interval [a, b] such that f(a)f(b) < 0. Set a0 = a and b0 = b.

Step 2. Define c = a0+b0
2

.

• If f(a0)f(c) < 0 then set a1 = a0 and b1 = c.

• If f(b0)f(c) < 0 then set a1 = c and b1 = b0.

Step 3. Repeat the above steps.

The following theorem guarantees the convergence of the two sequences (an) and

(bn) to the zero of the real valued function.

Theorem 1.1.2. [9, p. 78-79]

If [a0, b0], [a1, b1], · · · , [an, bn], · · · denote the intervals in the bisection method, then

limits limn→∞ an and limn→∞ bn exist, that are equal, and represent a zero of f . If

r = limn→∞ cn and cn = 1
2
(an + bn), then

|r − cn| ≤ 2−(n+1)(b0 − a0) (1.1)

2



Chapter 1. Introduction

Proof: Denote the successive intervals that arise from the Bisection method by

[a0, b0], [a1, b1], and so on. From the construction of the subintervals it is easy to

conclude that

a0 ≤ a1 ≤ a2 ≤ · · · ≤ b0 (1.2)

b0 ≥ b1 ≥ b2 ≥ · · · ≥ a0 (1.3)

bn+1 − an+1 =
1

2
(bn − an) (n ≥ 0). (1.4)

By Monotone Convergence theorem both (an) and (bn) converge. Moreover, it is

easy to verify that an and bn are satisfying the following relation

bn − an = 2−n(b0 − a0). (1.5)

Hence, limn→∞ bn − limn→∞ an = limn→∞ 2−n(b0 − a0) = 0. Consequently both the

sequences (an) and (bn) converge to the same limit r(say). In other words

r = lim
n→∞

an = lim
n→∞

bn.

Note that from the construction of (an) and (bn), we have f(an)f(bn) ≤ 0. Using

the property of continuity one can conclude that, [f(r)]2 ≤ 0. Thus f(r) = 0.

Define cn = (an + bn)/2. Then r, cn ∈ [an, bn]. Thus,

|r − cn| ≤
1

2
(bn − an) ≤ 2−(n+1)(b0 − a0).

Remark The bisection method is also known as the method of interval halving.

The order of convergence of Bisection method is 1.

Definition Let (xn) be a sequence of real numbers that converges to x∗. If ∃

positive constant c and α and an integer n0 ∈ N such that

|xn+1 − x∗| ≤ c|xn − x∗|α ∀ n ≥ n0

3



Chapter 1. Introduction

then we say that the rate of convergence is of the order α at least.

1.2 Successive iteration method

Let f : IR→ IR be a nonlinear function. Similar to the Bisection method, Successive

iteration method is also a useful tool to find the zeroes of f . This method also

produces zeroes of the nonlinear function f as the limit of a convergent sequence.

To apply this method first rewrite the equation f(x) = 0 in the form of x = g(x).

In other words, express f(x) as x − g(x). Now the construction of the sequence is

as follows:

Step 1. Choose x0 as an initial guess to the equation f(x) = 0.

Step 2. Generate the sequence (xn) by the recursive formula xn+1 = g(xn), n =

0, 1, 2, · · · .

It is interesting to note that the construction of sequence in the Successive iteration

method is much more simpler than the Bisection method. The following theorem

ensures the convergence of the Successive iteration scheme.

Theorem 1.2.1. Let g : R→ R be a continuous function such that

|g(x)− g(y)| ≤ k|x− y| ∀x, y ∈ R. (1.6)

If k < 1 then the successive iteration scheme will converge to the unique solution of

x = g(x). In other words, the successive iterative scheme converges to the unique

zero of f(x).

Proof: Let (xn) be the sequence of iterations obtained in Step 2 in section 1.2. First,

we will prove that (xn) is a Cauchy sequence. Consider

|xn+1 − xn| = |g(xn)− g(xn−1)|

≤ k|xn − xn−1| ≤ k2|xn−1 − xn−2|

|xn+1 − xn| ≤ kn|x1 − x0|.

4



Chapter 1. Introduction

Thus for n > m,

|xn − xm| = |xn − xn−1 + xn−1 − · · · − xm+1 + xm+1 − xm|

≤ |xn − xn−1|+ · · ·+ |xm+1 − xm|

≤ kn−1|x1 − x0|+ · · ·+ km|x1 − x0|

≤ (kn−1 + kn−2 + · · ·+ km)|x1 − x0|

≤ km(1 + k + k2 + · · ·+ kn−1−m)|x1 − x0|

≤ km(1 + k + k2 + · · ·+ kn−1−m + · · · )|x1 − x0|

|xn − xm| ≤
km

1− k
|x1 − x0|.

Since 0 < k < 1, we have limm→∞ |xn − xm| = 0. Thus, (xn) is a Cauchy sequence.

Consequently, (xn) will converge to some x∗ ∈ IR. Using the property of continuity

one can conclude that g(x∗) = x∗. Let x∗ and y∗ be two solutions of x = g(x).

|x∗ − y∗| = |g(x∗)− g(y∗)| ≤ k|x∗ − y∗| < |x∗ − y∗|.

This is a contradiction that leads to uniqueness.

Remark

1. The condition (1.6) is known as Contraction condition. In other words, g

satisfies Lipschitz condition with Lipschitz constant k.

2. Sufficient condition for (1.6) to hold true is g ∈ C1(R) and supx∈R |g′(x)| ≤

k < 1.

3. If x∗ is a zero of f(x), then the following error estimate hold:

|xn − x∗| ≤
kn

1− k
|x1 − x0|, ∀ n ≥ 1.

The local version of the above theorem can be stated as follows:

Theorem 1.2.2. [2, p. 62]

Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x in [a, b]. Suppose, in addition,

5



Chapter 1. Introduction

that g′ exists on (a, b) and a constant 0 < k < 1 exists with

|g′(x)| ≤ k, ∀ x ∈ (a, b). (1.7)

Then, for any number x0 in [a, b], the sequence (xn) defined by

xn+1 = g(xn), n ≥ 1

converges to the unique fixed point r in [a, b].

Remark

1. From the error estimate one can conclude that the order of convergence of the

successive iterative scheme is one.

2. In the above Theorem 1.2.2., the interval [a, b] can be replaced by any interval

which is complete.

Note

The above theorems suggest that one should be careful when rewriting the equation

f(x) = 0 into x = g(x). Consider the example of finding the zeroes of the function

f(x) = x3− x− 2 discussed in [10, p. 42]. To find the zero of f(x) it can be written

as x = x3 − 2. Here g(x) = x3 − 2. Note that g(1) = −1 < 1, g(2) = 6 > 2. Thus

g : [1, 2]→ R and by intermediate value theorem g has a zero between 1 and 2 but

we can not apply Theorem 1.2.1. as well as Theorem 1.2.2., as g(x) fails to satisfy

the hypothesis. Rewrite f(x) = 0 as x = (x + 2)1/3. Here g(x) = (x + 2)1/3. It is

easy to see that supx≥1 |g′(x)| ≤ 1
3×91/3 . Thus g is a contraction in [1,∞). Thus the

successive iteration xn+1 = g(xn) where g(x) = (x+ 2)1/3 converge to the zero of the

polynomial x3 − x− 2.

6



Chapter 1. Introduction

1.3 Secant method

Though the Bisection method and Successive iteration scheme are able to approx-

imate the zero of the nonlinear function, their order of convergence is linear. To

overcome this issue Secant method is used. This method also known as the method

of chords. In the Secant method the sequences are generated using the recurrence

relation

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
n = 1, 2, ·.

In contrast, to the successive iteration, secant method requires two initial guess.

The following theorem ensures the convergence of the sequence produced by Secant

method.

Theorem 1.3.1. [5, p. 104]

Let f(x) be twice continuously differentiable on the interval [a, b] and let the follow-

ing conditions be satisfied:

1. f(a)f(b) < 0

2. f ′(x) 6= 0, x ∈ [a, b]

3. f ′′(x) is either ≥ or ≤ 0 ∀x ∈ [a, b]

7



Chapter 1. Introduction

4. At the end points a, b

|f(a)|
|f ′(a)|

< b− a, |f(b)|
|f ′(b)|

< b− a.

Then Secant method converges to the unique solution r of f(x) = 0 in [a, b] for any

choice of x0, x1 ∈ [a, b].

It is interesting to note that Conditions 1 and 2 ensure that f has a unique zero in

[a, b]. Condition 3 guarantees that the graph of f(x) is either convex or concave.

Moreover, condition 2 and 3 together provided that f ′(x) is monotone on [a, b].

Condition 4 states that the tangent to the curve at either endpoint intersects the

x-axis within the interval [a, b].

Note

The convergence of the Secant method is much better than the bisection method

and the successive iteration method. If x∗ is the root of the equation f(x) = 0 then

under sufficient conditions one can show that

|xn+1 − x∗| ≤ C|xn − x∗|α, α =
1 +
√

5

2
≈ 1.618.

1.4 Newton’s method

Newton’s method / Newton-Raphson method can be thought of an improvement of

the secant method. This method is systematically introduced three hundred years

back for solving algebraic equation by Newton in 1669 and later by Raphson in

1690 [13]. In 1600, Vieta developed a procedure to solve monic polynomials of

the form p(x) = N , N being a constant. This method is similar to the Secant

method. Newton improved the procedure and used it to find the zeroes of the cubic

polynomial f(x) = x3 − 2x− 5 = 0. His procedure is described as follows:

1. Let x0 = 2 be an initial guess.

8



Chapter 1. Introduction

2. Replace x by p+ 2 in f(x) and obtain the new polynomial,

g(p) = p3 + 6p2 + 10p− 1. (1.8)

3. Obtain the linear equation 10p − 1 = 0 by neglecting the higher terms from

g(p). Thus, p = 0.1.

4. Replace p by q + 0.1 in g(p) and obtain the new polynomial

h(q) = q3 + 6.3q2 + 11.23q + 0.061.

5. Obtain the linear equation 11.23q + 0.061 = 0 from h(q) by neglecting the

higher terms in h(q). Hence, q = −0.0054.

By repeating the above procedure in the third step, Newton obtain r ≈ 0.00004853.

Now the approximation to the zero of f(x) was provided by adding x0 + p+ q+ r ≈

2.09455147. Though this idea does not explicitly contain the derivative concept, one

can easily see that p and q satisfy

p = x1 − x0 = −f(x0)/f
′(x0)

q = x2 − x1 = −f(x1)/f
′(x1).

In general, Newton’s method to solve f(x) = 0 with a solution x∗ is defined as

follows:

1. Let xk be an approximation to x∗

2. Solve the linear equation

f(xk) + f ′(xk)h = 0 (1.9)

with respect to h, provided f ′(xk) is non-zero.

9



Chapter 1. Introduction

3. Set xk+1 = xk + h, expecting for it to be an improvement to xk, where k =

0, 1, 2, ...

In 1690, Raphson independently gave the iterative scheme,

xk+1 = xk − f(xk)/f
′(xk)

for the equation x3 − ax − b = 0. However it can be seen that both methods are

equivalent to find the solution of f(x) = 0. It is worth mentioning that the usage

of this technique had been in use prior to Newton’s time. For example, to calculate

the square root of a positive number, a Greek engineer and architect Heron(lived

between 100 B.C. and 10 A.D. [9]) used the formula xn+1 = 1
2
(xn + a

xn
). This

procedure for finding the square root was used in Mesopotamia before 1500 B.C. [1]

1.4.1 Graphical interpretation of Newton’s method

Consider 4 ABC in Fig 2.

tanQ =
f(x1)

x1 − x2

10



Chapter 1. Introduction

We know, tanQ = f ′(x1). Hence f ′(x1) = f(x)
x1−x2 . Consequently, x2 = x1 − f(x)

f ′(x1)
.

Similarly, we draw tangent at x2 and proceed in the similar way and we obtain the

Newton’s iterative scheme

xn+1 = xn −
f(xn)

f ′(xn)
.

Similarly, one can derive the Newton’s method from Taylor’s theorem. Let x be

an approximation to the root r. If f ′′(x) exists and is continuous, then by Taylor’s

theorem

0 = f(r) = f(x+ h) = f(x) + hf ′(x) +O(h2)

where h = r − x. If h is small neglect O(h2) and solve the remaining equation for

h. Therefore we have, h = f ′(x)−1f(x) Newton’s method begins with an estimate

x0 of r and then defines inductively

xn+1 = xn − f ′(xn)−1f(xn). (1.10)

Basically there are two types of convergence theorem available in the literature for

the above iterative scheme 1.10;

1. By assuming the existence of solution for the equation f(x) = 0 and prov-

ing the convergence of the iterative scheme (1.10). This type of convergence

theorem is known as local convergence theorem.

2. By assuming sufficient condition on the initial guess x0 and proving the con-

vergence of the iterative scheme as well as the existence of the solution to

f(x) = 0. This type of the convergence theorem is known as semi-local con-

vergence theorem.

In 1829, Cauchy first proved a convergence theorem which does not assume any

existence of a solution, i.e., semi - local convergence theorem which is stated as

follows

11
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Theorem 1.4.1. [13]

Let X = IR, F = f ∈ C2, x0 ∈ X, f ′(x0) 6= 0, σ0 = − f(x0)
f ′(x0)

, η = |σ0|,

I =
〈
x0, x0 + 2σ0

〉
≡

[x0, x0 + 2σ0] ifσ0 ≥ 0,

[x0 + 2σ0, x0] ifσ0 < 0

and |f ′′(x)| ≤ K in I . Then the following results hold: If 2Kη < |f ′(x0)|, then

f(x) = 0 has a unique solution x∗ in I. Also if |f ′(x)| ≥ m in I and 2Kη < m, then

the Newton’s sequence xk starting from x0 satisfies the following:

|xk+1 − xk| ≤
K

2m
|xk − x2k−1|, k ≥ 1

and

x∗ ∈
〈
xk, xk + 2σk

〉
,

where, σk = −f(xk)/f
′(xk) = xk+1 − xk, so that

|x∗ − xk| ≤ 2η
(Kη

2m

)2k−1
(k ≥ 0).

Ostrowski improved Cauchy’s theorem [1.4.1] by replacing 2Kη < m by 2Kη ≤

|f ′(x0)| and showed

|xk+1 − xk| ≤
K

2|f ′(x0)|
|xk − xk−1|2.

Later, Kantorovich extended the Cauchy’s Theorem 1.4.1. to operator equations in

Banach spaces. The one dimensional version of Kantorovich result can be stated as

follows

Theorem 1.4.2. [4, p. 127]

Let f : R→ R. Let x0 ∈ R such that f ′(x0) 6= 0. Define

1. a0 = |f(x0)|
|f ′(x0)|

12



Chapter 1. Introduction

2. b0 = |f ′(x0)−1|

3. S =
{
x ∈ R : |x− x0| ≤ 2a0

}
4. k = 2sup

{
|f ′(u)−f ′(v)|
|u−v| : u, v ∈ S, u 6= v

}
If f is differentiable in S and if a0b0k ≤ 1

2
, then f has a unique zero in S. Moreover

the Newton’s iteration 1.10 started at x0 converges quadratically to the zero.

The following theorem on Newton’s method is a sample for local convergence theo-

rem.

Theorem 1.4.3. [9]

Let f ′′ be a continuous and r be a simple zero of f . Then there is a neighbourhood of

r and a constant C such that if Newton’s method is started in that neighbourhood,

then the iterative method (1.10) converges and satisfy

|xn+1 − r| ≤ C|xn − r|2.

In contrast to the above theorems, the following theorem provides a greater flexibility

to choose the initial condition when the function is concave.

Theorem 1.4.4. [9]

Let f belongs to C2(R). If f is strictly increasing, strictly convex and has a zero

then the Newton’s iteration will converge from any starting point to the unique zero

of f(x).

1.4.2 System of nonlinear equations

In this section we outline the derivation of Newton’s method for a system of nonlinear

equations based on the presentation [9]. For a system of equation in the Newton’s

iteration 1.10 is still valid whereas f ′(x) denotes the Jacobian of f at x. Here is an

13



Chapter 1. Introduction

illustration where we have a pair of equations with two variables:g1(r1, r2) = 0

g2(r1, r2) = 0.

(1.11)

If (r1, r2) is an approximate solution of (1.11), let us find the corrections h1 and h2

so that (r1 + h1, r2 + h2) will be a better approximation solution. We will use linear

terms in the Taylor’s expansion in two variables , we have0 = g1(r1 + h1, r2 + h2) ≈ g1(r1, r2) + h1
∂g1
∂r2

+ h2
∂g1
∂r2

0 = g2(r1 + h1, r2 + h2) ≈ g2(r1, r2) + h1
∂g2
∂r2

+ h2
∂g2
∂r2
.

(1.12)

In the above equations, the value of the partial derivatives needs to be evaluated at

(r1, r2). The coefficient matrix of equation (1.12) to find h1 and h2 is the Jacobian

matrix of g1 and g2,

J =

∂g1∂r1

∂g1
∂r2

∂g2
∂r1

∂g2
∂r2

 .
J has to be nonsingular in order to solve equation (1.12). In that case, the solution

is h1
h2

 = −J−1
g1(r1, r2)
g2(r1, r2)

 .
Hence , Newton’s method for two nonlinear equations in two variables isr(n+1)

1

r
(n+1)
2

 =

r(n)1

r
(n)
2

+

h(n)1

h
(n)
2

 .
The following theorem ensures the semilocal convergence theorem for system of non

linear equations

Theorem 1.4.5. [6]

Let fi(x1, x2, ..., xn), (i = 1, 2, ..., n), be a system of real functions of the real

14



Chapter 1. Introduction

variables x1, x2, ..., xn which have continuous first and second derivatives in the region

R, (x
(0)
1 , x

(0)
2 , ..., x

(0)
n ) be a set of values of x1, x2, ..., xn belonging to this region, and

ξ1, ξ2, ..., ξn the set of numbers determined by the equations.

fi(x
(0)
1 , x

(0)
2 , ..., x(0)n ) +

n∑
k=1

∂fi

∂x
(0)
k

ξk = 0 (i = 1, 2, ..., n)

and let S denote the interval, circle, sphere, or hypersphere whose centre is (x
(0)
1 +

ξ1, ..., x
(0)
n + ξn) and whose radius is ρ = (

∑n
k=1 ξ

2
k)

1/2, Sρ being supposed belong to

R.

Suppose also that in S the functional determinant F of the functions fi does not

vanish, µ(< ∞) is the upper bound of the absolute values of the fractions whose

denominators are F and whose numerators are the several first minors of F , and

v(< ∞) is the upper bound of the absolute values of the second derivatives of the

functions fi.

Then, if

[
n∑
i=1

(fi(x
(0)
1 , x

(0)
2 , ..., x(0)n ))2]1/2 <

1

n7/2µ2ν
(1.13)

the equations fi = 0 have one and but one solution in S, and an approximate value

of this solution, as close as may be desired, will be obtained by determinations first

of ξ
(j)
1 , ξ

(j)
2 , ..., ξ

(j)
n and then of x

(j+1)
1 , x

(j+1)
2 , ..., x

(j+1)
n , for j = 0, 1, 2, ... successively,

by the equations

fi(x
(j)
1 , x

(j)
2 , ..., x(j)n ) +

n∑
k=1

∂fi

∂x
(j)
k

ξ
(j)
k = 0 (i = 1, 2, ..., n) (1.14)

x
(j+1)
k = x

(j)
k + ξ

(j)
k , (k = 1, 2, ..., n) (1.15)

(where ξ
(0)
k = ξk), the solution being limj=∞(ξ

(j)
1 , ξ

(j)
2 , ..., ξ

(j)
n ).

Moreover the equations (1.14) and (1.15) will yield a similar sequence of approxima-

tions to this solution if instead of (x
(0)
1 , x

(0)
2 , ..., x

(0)
n ) any other point in S be chosen

as the point of departure.

15
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Remark

Though the order of convergence of Newton’s method is bigger than the secant’s

method, Newton’s method requires evaluation of two functions f and f ′ at each

step whereas secant method requires the evaluation of f alone. Consequently secant

method may produce the solution faster than the Newton’s method occasionally.

Definition

Let r be zero of a function f . r is said to be zero of f(x) of order m if f(x) can be

expressed as f(x) = (x− r)mh(x), h(r) 6= 0.

Till now, all the theorems related to the convergence of Newton’s method presented

above have been based on the assumption that the zero r of f is of the order 1. If r

is zero of the order m > 1, then the Newton’s method fails to possess the quadratic

convergence properly.

One can express the Newton’s method as a successive approximation method in the

following way

xn+1 = g(xn), g(x) = x− f(x)

f ′(x)
. (1.16)

Note that if r is zero of order m then f(x) = (x − r)mh(x). In this case g can be

expressed as g(x) = x− (x−r)h(x)
mh(x)+(x−r)h′(x) . Consequently,

g′(r) = 1− 1

m
=
m− 1

m

For m > 1, this is nonzero. One can easily conclude that

r − xn+1 ≈ λ(r − xn), λ =
m− 1

m
.

Thus, Newton’s method converges linearly.

If one knows the order of zero in advance a small modification in classical Newton’s

method will ensure the quadratic convergence. For example, if r is zero of order m

then generate the sequence as follows:

xn+1 = g(xn), g(x) = x−m f(x)

f ′(x)
. (1.17)

16
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It is interesting to note that g′(r) = 0.

1.4.3 Halley’s method

Considerable efforts have been made to improve the order of convergence of the

Newton’s iteration. To accelerate the Newton’s method, Halley introduced a modi-

fication in Newton’s method and obtained a cubic order of convergence. This method

was developed based on the assumption that the nonlinear function f is twice dif-

ferentiable. The following recurrence formula is used to generate the sequence in

Halley’s method.

xn+1 = xn −
2f(xn)f ′(xn)

2[f ′(xn)]2 − f(xn)f ′′(xn)
, n = 1, 2, · · · . (1.18)

with x0 being an initial guess.

By assuming the function to be three times continuously differentiable, bounded and

with suitable choice of the initial guess, the Halley’s method satisy the following

inequality

|xn+1 − r| ≤ K|xn − r|3, for some K > 0.

The following alternative formulation shows the similarities between Halley’s method

and Newton’s method.

xn+1 = xn −
f(xn)

f ′(xn)

[
1− f(xn)

f ′(xn)

f ′′(xn)

2f ′(xn)

]−1
.

It is interesting to note that when the second derivative is very close to zero, the

Halley’s method iteration is almost the same as the Newton’s method iteration.

1.4.4 Variants of Newton’s method

In 2000, Weerakoon and Fernando proposed modification in Newton’s method and

obtain a cubic order iterative scheme to find the zeros of a real valued nonlinear

17
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function. More specifically, the following iterative scheme is proposed

xn+1 = xn −
2f(xn)

[f ′(xn) + f ′(x∗n+1)]
, n = 0, 1, 2, · · · where x∗n+1 = xn −

f(xn)

f ′(xn)
.

(1.19)

The approximation of the integral term by trapezoidal rule in the relation

f(x) = f(xn) +

∫ x

xn

f ′(λ)dλ (1.20)

is the key step in deriving the above iterative scheme. For convergence analysis, the

following theorem has been provided:

Theorem 1.4.6. [12]

Let f : D → R and D be an open interval in IR. Assume that f has first, second,

and third derivatives in the interval D. If f(x) has a simple root α ∈ D and x0 is

sufficiently close to α, then the new method defined by (1.19) satisfies the following

error estimates:

en+1 = (C2
2 +

1

2
C3)e

3
n +O(e4n),

where,

en = xn − α, and Cj =
1

j!

f j(α)

f 1(α)
, j = 1,2,3, · · · .

Similar attempts have been made by Hansanov, Ivanov and Nedjibov [7] in 2002,

where they approximated the integral by simpson’s 1/3rd rule. Hasanov, Ivanov,

Nedjibov proposed the following variant of Newton’s method

xn+1 = xn −
6f(xn)

f ′(x∗n+1) + 4f ′(x∗∗n+1) + f ′(xn)
, (1.21)

where

x∗n+1 = xn −
f(xn)

f ′(xn)
x∗∗n+1 = xn −

f(xn)

2f ′(xn)
. (1.22)

For the convergence analysis, they gave the following theorem

Theorem 1.4.7. [7]

Let f : D → R for an open interval D. Assume that f ∈ C3(D). Assume that α is

18
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the simple root of f(x) = 0 and x0 is sufficiently close to α, then the method defined

by (1.21) and (1.22) has cubic convergence.

Recently Chen, Kincaid and Lin [3] in 2018 approximated the integral by simpson’s

3/8th rule. More specifically they proposed the following iterative scheme

xn+1 = xn −
8f(xn)

f ′(xn) + 3f ′(xn − 1
3
h(xn)) + 3f ′(xn − 2

3
h(xn)) + f ′(xn − h(xn))

.

(1.23)

The following local convergence theorem ensures the cubic order of the iterative

scheme 1.23

Theorem 1.4.8. [3]

Let f : D → R for an open interval D. Assume that f ∈ C3(D) and α is the simple

root of f(x) = 0 and x0 is sufficiently close to α, then the method defined by (1.23)

has cubic convergence.
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Chapter 2

A variant of Newton’s method

based on Weddle’s rule

In this chapter we derive a variant of Newton’s method to find the zeros of a nonlinear

function f : R → R using Weddle’s rule. Theoretically, cubic order of convergence

is obtained for the proposed iteration. A unified semilocal convergence theorem for

variant of Newton’s method based on quadrature rule is obtained in this chapter.

An interesting comparative study is done numerically.

2.1 A variant of Newton’s method based on Wed-

dle’s rule

Weddle’s rule is one of the Quadrature formula which is used to approximate the

definite integral. One can get Weddle’s rule from the Newton-Cotes formula for the

choice n = 6. More specifically, the formula for Weddle’s rule is given by

I =

∫ b

a

f(x)dx ∼=
3h

10
[f0 + 5f1 + f2 + 6f3 + f4 + 5f5 + f6],
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Chapter 2. A variant of Newton’s method based on weddle’s Rule

where h = b−a
6

and fj = f(xj), x0 = a, x6 = b, xi+1 = xi + h.

To obtain the variant of Newton’s method based on Weddle’s rule first approximate

the integral
∫ x
xm
f ′(λ)dλ by Weddle’s rule. Hence

∫ x

xm

f ′(λ)dλ ≈ (x− xm)

20
[f ′(xm) + 5f ′(xm + h) + f ′(xm + 2h) + 6f ′(xm + 3h)

+f ′(xm + 4h) + 5f ′(xm + 5h) + f ′(x)],

where h = x−xm
6
. Note that if α is a root of f(x), then f(α) can be written as

f(α) = f(xn) +

∫ α

xn

f ′(λ)dλ ≈ f(xn) +
(α− xn)

20
[P (xn)],

where

P (xn) = f ′(xn) + 5f ′(xn +
α− xn

6
) + f ′(xn + 2.

α− xn
6

)

+ 6f ′(xn + 3.
α− xn

6
) + f ′(xn + 4.

α− xn
6

)

+ 5f ′(xn + 5.
α− xn

6
) + f ′(α).

Setting α = xn+1 in P (xn), we have

xn+1 − xn =
−20f(xn)

P (xn)
=⇒ xn+1 = xn −

20f(xn)

P (xn)
.

Since xn+1 is implicit in both sides, it is difficult to solve xn+1. Instead, replace xn+1

by x∗n+1 in the right hand side obtained from the Newton’s method

x∗n+1 = xn −
f(xn)

f ′(xn)
.

Consequently one can get the following iterative scheme

xn+1 = xn −
20f(xn)

T (xn)
, (2.1)
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Chapter 2. A variant of Newton’s method based on weddle’s Rule

where, T (x) = f ′(x) + 5f ′(x − 1
6
h(x)) + f ′(x − 2

6
h(x)) + 6f ′(x − 3

6
h(x)) + f ′(x −

4
6
h(x)) + 5f ′(x− 5

6
h(x)) + f ′(x− h(x)) and h(x) = − f(x)

f ′(x)
.

2.2 Convergence analysis

In this section a semi-local convergence theorem as well as local convergence theorem

for the above iterative scheme 2.1 is proved. From recent literature it is evident

that only local convergence version theorem only available for variants of Newton’s

method discussed in [3], [7]. In [11], the convergence analysis has been done for the

following iterative scheme xn+1 = xn− (λf ′(xn) + (1− λ)f ′(zn))−1f(xn). for solving

the abstract operator equation f(x) = 0. From a simple observation, one can get

the semi-local convergence theorem for variants of Newton’s method [12] from the

work of [11]. In this section a more general semi-local convergence theorem is proved

for variants of Newton’s method obtained from quadrarture rules. More specifically

a semi-local convergence theorem for the following iterative scheme is proved

xn+1 = xn − (
m∑
i=1

λif
′(x(i)n ))−1f(xn) n = 0, 1, 2, · · · . (2.2)

where x
(i)
n = xn− λi f(xn)f ′(xn)

and
∑m

i=1 λi = 1. One of the main theorem of this section

given below

Theorem 2.2.1. Let f : R→ R be a differentiable function. Let λi ∈ [0, 1], 1 ≤ i ≤ m

such that
∑m

i=1 λi = 1. Assume further that

1. f ′(x0) 6= 0;

2. for some η > 0,|f ′(x0)−1f(x0)| ≤ η;

3. |(f ′(x0)−1(f ′(x0) − f ′(x))| < ε whenever x ∈ [x0 − 2r, x0 + 2r]. Set c0 =

(λ1+
∑m

i=2 2λi)ε

1−ε , c = 2ε
1−ε such that (1 + c0

1−c)η < r and 0 < 3ε < 1;

4. for some x
(i)
0 ∈ [x0 − r, x0 + r],|

∑m
i=1(λif

′(x
(i)
0 ))−1f(x0)| ≤ η.
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Then, the sequence of iterates (xn) generated by

xn+1 = xn − (
m∑
i=1

λif
′(x(i)n ))−1f(xn), x(i)n = xn − λi

f(xn)

f ′(xn)

is well-defined, remains in [x0−r, x0+r] ∀n ≥ 0 and converges to a unique solution

x∗ ∈ [x0 − r, x0 + r] of the equation f(x) = 0. Moreover for n ≥ 2, the following

error-estimates hold

|xn+1 − xn| ≤ cn−1c0η,

|xn − x∗| ≤
cn−1c0η

1− c
.

Proof: Let Ln =
∑m

i=1 λif
′(x

(i)
n ).Here f ′(x

(1)
0 ) = f ′(x0). For n = 0, |x1 − x0| =

|(L0)
−1f(x0)| ≤ η < r. Therefore x1 ∈ [x0 − r, x0 + r] and

|1− (f ′(x0))
−1L1| = |(f ′(x0))−1(f ′(x0)− L1)|

= |(f ′(x0))−1(
n∑
i=1

λif
′(x0)−

m∑
i=1

λif
′(x

(i)
1 ))|

≤
m∑
i=1

λi|(f ′(x0))−1(f ′(x0)− f ′(x(i)1 ))|

|1− (f ′(x0))
−1L1| ≤

m∑
i=1

λiε = ε < 1. [by(3)]

So (L1)
−1 exists and |(f ′(x0)−1L1)

−1| ≤ 1
1−ε . Now

x2 − x1 = −(L1)
−1f(x1)

= −(L1)
−1(f(x1) + f(x0)− f(x0))

= −(L1)
−1(f ′(c1)(x1 − x0) + f(x0)), where c1 ∈ (x0, x1)

= −(f ′(x0)
−1L1)

−1(f ′(x0)
−1f ′(c1)(x1 − x0)− L0f

′(x0)
−1(x1 − x0))

= −(f ′(x0)
−1L1)

−1(f ′(x0)
−1(f ′(c1)− L0)(x1 − x0))

= −(f ′(x0)
−1L1)

−1(f ′(x0)
−1(f ′(c1)−

m∑
i=1

λif
′(x

(i)
0 ))(x1 − x0))

x2 − x1 = −(f ′(x0)
−1L1)

−1(
m∑
i=1

λif
′(x0)

−1(f ′(c1)− f ′(x(i)0 ))(x1 − x0)).
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So

|x2 − x1| ≤
1

1− ε
[λ1 + 2(

m∑
i=2

λi)]|x1 − x0| ≤ c0η [by(3)].

Consequently |x2−x0| ≤ |x2−x1|+|x1−x0| ≤ c0η+η < r. Thus, x2 ∈ [x0−r, x0+r].

Assume that xk ∈ [x0− r, x0 + r] and |xk+1− xk| ≤ ck−1c0η for k = 2, 3, ..., n− 1. In

view of hypothesis (3.), (Lk)
−1 exists and |(f ′(x0))−1Lk)−1| ≤ 1

1−ε for k = 2, 3, ..., n−

1. From the definition of xn+1,

xn+1 − xn = −L−1n f(xn)

= −(Ln)−1(f(xn) + f(xn−1)− f(xn−1))

= −(Ln)−1(f ′(cn)(xn − xn−1) + f(xn−1)), where cn ∈ (xn−1, xn)

= −(f ′(x0)
−1Ln)−1(f ′(x0)

−1f ′(cn)(xn − xn−1)− Ln−1f ′(x0)−1(xn − xn−1))

= −(f ′(x0)
−1Ln)−1(f ′(x0)

−1(f ′(cn)− Ln−1)(xn − xn−1))

= −(f ′(x0)
−1L1)

−1(f ′(x0)
−1(f ′(cn)−

m∑
i=1

λif
′(x

(i)
n−1))(xn − xn−1))

xn+1 − xn = −(f ′(x0)
−1L1)

−1(
m∑
i=1

λif
′(x0)

−1(f ′(cn)− f ′(x(i)n−1))(xn − xn−1))

|xn+1 − xn| ≤
2ε

1− ε
|xn+1 − xn| ≤ cn−1c0η, by induction hypothesis.

Thus, for all n ≥ 2, |xn+1 − xn| ≤ cn−1c0η. Since

|xn+1 − x0| ≤ |xn+1 − xn|+ ...+ |x1 − x0|

≤ cn−1c0η + cn−2c0η + ...+ cc0η + c0η + η

|xn+1 − x0| ≤ η(1 +
c0

1− c
) < r,

xn+1 ∈ [x0 − r, x0 + r]. Let k ≥ 2 and m ∈ IN. Then

|xk+m − xk| ≤ |xk+m − xk+m−1|+ ...+ |xk+1 − xk|

≤ ck+m−2c0η + ck+m−3c0η + ...+ ck−1c0η

|xk+m − xk| ≤
1− cm

1− c
ck−1c0η ≤

ck−1c0η

1− c
.
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Since 0 < c < 1, it follows that (xn) is a Cauchy sequence in [x0−r, x0+r] and hence

converges to an element x∗ in [x0 − r, x0 + r]. From hypothesis (3.) using triangle

inequality |Ln| ≤M , where M = ( ε
|f ′(x0)−1|+|f ′(x0)|). Since xn+1 = xn − (Ln)−1f(xn),

f(xn) = −Ln(xn+1 − xn). So,

|f(xn)| ≤ |Ln||xn+1 − xn| ≤M |xn+1 − xn|. (2.3)

Proceeding to the limit in (2.1) as n tends to infinity and using the continuity of f,

it follows from the convergence of (xn) to x∗, that f(x∗) = 0. Suppose x∗ and y∗ are

two solutions of f(x) = 0, in [x0−r, x0+r]. Then 0 = f(x∗)−f(y∗) = f ′(c∗)(x∗−y∗),

c∗ ∈ (x∗, y∗). Thus, c∗ ∈ [x0− r, x0 + r]. Consequently, c∗ ∈ [x0− 2r, x0 + 2r]. Then,

|1− f ′(c∗)(f ′(x0))−1| = |(f ′(x0))−1f ′(x0)− f ′(c∗)(f ′(x0))−1|

= |(f ′(x0))−1(f ′(x0)− f ′(c∗))|

≤ ε < 1.

So, f ′(c∗)(f ′(x0))
−1 6= 0 and hence f ′(c∗) 6= 0. Thus, x∗ = y∗.

Remark

1. For the choices of λi will be λ1 = λ2 = 1/2, i = 1, 2 in the above theorem one

can get the semi-local convergence theorem for the iterative scheme proposed

by Weerakoon and Fernando [12].

2. For the choices of λi will be λ1 = 1/6, λ2 = 4/6, λ3 = 1/6, i = 1, 2, 3

in the above theorem one can get the semi-local convergence theorem for the

iterative scheme proposed by Hasanov, Ivanov, Nedjibov [7].

3. For the choices of λi will be λ1 = 1/8, λ2 = 3/8, λ3 = 3/8, λ4 = 1/8,

i = 1, 2, 3, 4 in the above theorem one can get the semi-local convergence

theorem for the iterative scheme proposed by Chen, Kincaid, Lin [3].
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4. For the choices of λi will be λ1 = 1/20, λ2 = 5/20, λ3 = 1/20, λ4 =

6/20, λ5 = 1/20, λ6 = 5/20, λ7 = 1/20, i = 1, 2, 3, 4, 5, 6, 7 in the above

theorem one can get the semi-local convergence theorem for the proposed vari-

ant of Newton’s iterative method based on Weddle’s rule.

The following theorem guarantees the cubic order convergence of the proposed vari-

ant of Newton’s method 2.1.

Theorem 2.2.2. Let f : D → R for an open interval D. Assume that f ∈ C3(D) and

α is the simple root of f(x) = 0 and x0 is sufficiently close to α, then the method is

defined by (2.1) and has cubic convergence.

Proof: Write the iterative scheme 2.1 as xn+1 = φ(xn) where φ(x) = x − 20f(x)
K(x)

,

K(x) = f ′(x) + 5f ′(x− 1
6
h(x)) + f ′(x− 2

6
h(x)) + 6f ′(x− 3

6
h(x)) + f ′(x− 4

6
h(x)) +

5f ′(x− 5
6
h(x)) + f ′(x− h(x)) and h(x) = f(x)

f ′(x)
. Note that

φ′(x) = 1− 20f ′(x)K(x)

K2(x)
+

20f(x)K ′(x)

K2(x)
= 1− 20f ′(x)

K(x)
+

20f(x)K ′(x)

K2(x)
.

φ′′(x) = −20f ′′

K
+

20f ′K ′

K2
+

20f ′K ′

K2
+

20fK ′′

K2
− 40f(K ′)2

K3
.

Here,

K ′(x) = f ′′(x) + 5f ′′(x− 1
6
h(x))(1− 1

6
h′(x)) + f ′′(x− 2

6
h(x))(1− 2

6
h′(x)) + 6f ′′(x−

3
6
h(x))(1− 3

6
h′(x))+f ′′(x− 4

6
h(x))(1− 4

6
h′(x))+5f ′′(x− 5

6
h(x))(1− 5

6
h′(x))+f ′′(x−

h(x))(1− h′(x)) and h′(x) = (f ′(x))2−f(x)f ′′(x)
(f ′(x))2

= 1− ff ′′

(f ′)2
.

Consequently

K ′′(x) = f ′′′(x) + 5f ′′′(x− 1
6
h(x))(1− 1

6
h′(x))2 + 5f ′′(x− 1

6
h(x))(−1

6
h′′(x)) + f ′′′(x−

2
6
h(x))(1− 2

6
h′(x))2+f ′′(x− 1

6
h(x))(−2

6
h′′(x))+6f ′′′(x− 3

6
h(x))(1− 3

6
h′(x))2+6f ′′(x−

3
6
h(x))(−3

6
h′′(x)) + f ′′′(x− 4

6
h(x))(1− 4

6
h′(x))2 + f ′′(x− 4

6
h(x))(−4

6
h′′(x)) + 5f ′′′(x−

5
6
h(x))(1− 5

6
h′(x))2 + 5f ′′(x− 5

6
h(x))(−5

6
h′′(x)) + f ′′′(x−h(x))(1−h′(x))2 + f ′′(x−

h(x))(−h′′(x)) and h′′(x) = − f ′f ′′

(f ′)2
− ff ′′′

(f ′)2
+ 2f(f ′′)2

(f ′)3
.

Since α is the simple root of f(x),then f(α) = 0. Note that h′(α) = 1 and K ′(α) =
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10f ′′(α), h′′(α) = −f ′′(α)
f ′(α)

and K ′′(α) = 20
3
f ′′′(α)− 10f

′′(α)
f ′(α)

. Therefore

φ′(α) = (x− 20f(x)

K(x)
)′|x=α

= 1− 20f ′(α)

K ′(α)

φ′(α) = 0.

Moreover

φ′′(α) = (x− 20f(x)

K(x)
)′′|x=α

= −20f ′′(α)

K(α)
+

400f ′(α).f ′′(α)

(20f ′(α))2

φ′′(α) = 0.

Define en = xn − α. Consequently

xn+1 = φ(xn) = φ(α + en) = φ(α) + enφ
′(α) +

e2n
2!
φ′′(α) +

e3n
3!
φ′′′(α)

xn+1 = α +
e3n
3!
φ′′′(α).

Thus en+1 = e3n
3!
φ′′′(α). Hence the theorem.

The proposed iterative method compared with various variants of Newton’s method

available in the literature in the following Table 2.1.

Table 2.1: Errors for different methods.

f(x) x0 NT SR [7] SL [3] TP [12] W

(1) x3 + x2 − 2 3 7 5 5 6 5

(2) cos x− x 4 30 6 8 13 4

(3) (x− 1)3 − 1 -2 11 6 6 8 8

(4) ex
2+7x−30 − 1 3.5 12 8 8 9 8
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NT - Newton’s method

W - Proposed scheme

2.3 Sample MATLAB code for the proposed scheme

syms x

FF = (x− 1)3 − 1

f=inline(FF );

g= inline(diff(FF ));

noi = 0;

xx = −1;

yy = 0;

test1 = 1000;

test2 = f(xx)

eps =
√

2.22 ∗ 10−16;

while (test1 > eps||test2 > eps)

AA=f(xx)/g(xx);

denom = (g(xx) + 3 ∗ g(xx− (1/3 ∗AA)) + 3 ∗ g(xx− (2/3 ∗AA)) + g(xx−AA));

nume = (8 ∗ f(xx));

yy = xx− (nume/denom);

test1 = abs(yy − xx);

test2 = abs(f(yy))

xx = yy

noi = noi+ 1

end
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