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ABSTRACT

Isocoumarin is a class of O-containing heterocycles with a broad spectrum
of applications in pharmacological, agrochemical, and material sciences.
Introducing a halogen atom at the 4-position of isocoumarin provides a
handle for further derivatization. We show an easy method to synthesize 4-
bromoisocoumarin under very mild conditions, using a bench stable
hypervalent iodine reagent and simply available alkali metal bromide. Our
one-pot, one-step reaction follows a 6-endo-dig-cyclization strategy for
making new bonds. The generality and mechanistic insight of the reaction
are addressed here, followed by post-synthetic modifications. Also, a

catalytic pathway has been uncovered side by side.
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Chapter 1

INTRODUCTION

1.1. Oxygen-containing heterocycles

Heterocycles are prevalent fragments critical in many active pharmaceutical
ingredients and excipients [1]. Many heterocyclic scaffolds show versatile
binding properties. Five or six-membered ring compounds containing
nitrogen, oxygen, or sulfur as a replacement of one or more carbon atoms
can be seen frequently in biologically active compounds. Statistically, more
than 80% of all biologically active compounds contain at least one

heterocycle.
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Figure 1: Some heterocycle-containing USFDA-approved drugs

Oxygen-containing heterocycles are abundant in nature with various
biological roles. They constitute the second largest class of heterocycles
after N-containing ones [2]. According to a report from 2014, nearly 59%
of all USFDA-approved drugs had at least one N-containing heterocycle [3].
Some essential oxygen-containing heterocyclic cores commonly present in
natural compounds are benzofuran, chromane, chromene, xanthene, 1,4-
dibenzodioxins, coumarin, isocoumarin, etc. Among them, isocoumarin is

an important compound class that occurs as natural (and synthetic) lactones.
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1.2. Isocoumarin

Members of this class exhibit a wide range of biological activities. Besides,
they also happen as synthetic intermediates while synthesizing many
important heterocyclic and carbocyclic compounds [4]. An isocoumarin-
based compound is efficient in nitrophenol sensing [5]. Figure 2 includes
some selected examples of isocoumarin-containing compounds with
activities such as antifungal, oncological, antibacterial, antiviral, etc. [6].
Isocoumarin-based compounds were also found to be effective in inhibiting
the aldosterone synthase enzyme and serine protease enzyme. Aldosterone
plays a role in blood pressure regulation, and the serine protease enzyme is
related to blood coagulation after any injury or cut. This broad range of
activities attracted scientists worldwide to develop methodologies for
synthesizing such compounds. Mostly, 3-substituted and 3,4-disubstituted

isocoumarin moieties are found in naturally occurring biologically active

compounds.
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Figure 2: Some examples of isocoumarin-containing compounds



In this regard, a quest to synthesize 3-substituted and 3,4-disubstituted
isocoumarin moieties was started long ago [16]. Scientists have developed
multiple methods to make 3-substituted isocoumarin scaffolds using
transition metal (Cu, Pd, Rh, Ir, Ru, Au, Ag, etc.) catalysts [7]. For making
3,4-disubstituted isocoumarin scaffolds, similar strategies were developed
[8]. Recently, scientists have shifted their attention towards synthesizing 3-
aryl-4-haloisocoumarin scaffolds, which can be converted into the 3-
substituted or the 3,4-disubstituted isocoumarin-containing compounds.
Following (Figure 3) is a retrosynthetic analysis of 3-substituted and 3,4-
disubstituted isocoumarin-containing compounds. The
hydrodehalogenation reactions can make the 3-substituted moieties, while
the 3,4-disubstituted one can be made by using palladium-catalyzed cross-
coupling reactions, using the 3-aryl-4-haloisocoumarin scaffolds as the
common substrate. The 3-aryl-4-haloisocoumarin containing compounds
are commonly synthesized from 2-alkynylaryloate esters by the alkyne
activation followed by a 6-endo-dig selective cyclization strategy. Again,
there is a list of methods to make 3-aryl-4-haloisocoumarin containing
compounds from 2-alkynylaryloate esters. Some involve electrophile-

mediated cyclization, and some follow a metal-catalyzed approach.

If we consider the reactivity of halogens towards the cross-coupling

reactions, we can conclude that the 4-iodo and 4-bromo are more effective

. 4
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Figure 3: A retrosynthetic analysis of 3- and 3,4-di substituted isocoumarin-containing compounds




for such reactions than the 4-chloro ones. Isocoumarin-containing
compounds substituted with iodo at the 4-position are well recorded in the
literature, but we observed many limitations in the methods developed for

making 4-bromoisocoumarin moieties.
1.3. 4-Bromoisocoumarin — Previous work

While doing the literature survey for synthesizing 4-bromoisocoumarins,
we observed many methods but with limitations. Some used highly
hazardous chemicals, while others required a very high temperature. The
usage of transition metals was observed to be very common. We also noted
in those methods that the substrate scope was too narrow. Substrate scope
defines the generality of any reaction, and its narrowness can reduce the
reliability of that reaction. So, we concluded that the synthesis of 4-
bromoisocoumarin has not been explored much, and there is a window open
for any novel, simple, and green synthetic route to make this critical core
structure with bromine at the 4- position which will be of great value in

synthetic and medicinal chemistry.
1.3.1.

Michael A. Oliver and Richard D. Gandour, in 1983, while working
on synthesizing some 1,2-dibromo-1,2-diphenylethene derivatives,
observed that the bromination of methyl 2-(2-phenylethynyl) benzoate
using liquid Brz in AcOH containing LiBr resulted into formation of a
cyclized product which was later confirmed to be 4-bromo-3-phenyl
isocoumarin [9]. They reported this method with two examples (78% yield)

only.
o
COsR Br, (2.0 equiv), LiBr (1.5 equiv) (0)
S HOAc = ph
S Ph rt Br



Limitations: Handling bromine is the very first limitation of this method,

followed by a very narrow substrate scope.
1.3.2.

Li and co-workers, in 2006, reported another method to synthesize
haloisocoumarins via a transition metal-catalyzed 6-endo-cyclization
mechanism using dicyclohexylamine hydrohalide as an additive in DCE at
80 °C [10]. They reported 18 examples with 47-99% yield.

CuX; (2.0 equiv) 0
_>._CO,R" . o
R'-E/-/ | Cy,NH.HX (0.1 equiv) N R'-E’- (0}
S DCE, 80 °C Lol o ANS
R X =Cl, Br X

Limitations: Metal halide had been used by them in their approach, which

also required a high temperature.
1.3.3.

Yuan and co-workers, in 2017, discovered NBS-mediated 4-
bromoisocoumarin synthesis while working on benzil-o-carboxylate
synthesis from o-alkynylbenzoate and concluded the mechanism of benzil-
o-carboxylate to follow a path via bromo-incorporated isocoumarin cation

intermediate formation [11].

0
COMe NBS (2.0 equiv) (o)
DCE, 80 °C =
% Ph
Ph Br

Limitations: They had reported this reaction with a single example (65%
yield) and hadn’t explored its scope, which is its primary limitation

followed by high temperature.

1.3.4.



Yuan and co-workers, in the same year again, uncovered another
methodology to prepare 4-haloisocoumarin (X = CI, Br, 1) by using

transition metal halides from phenyl 2-alkynylaryloate ester [12].

0
ZnX, (2.0 equiv)
X CO2Ph Oxone (2.0 equiv) X o
Rl' - Rl_l
' “ DCE:H,0 (viv, 1:1) NF e
N 80 °C X

Limitations: The use of the stoichiometric amount of transition metal
halides, the requirement of high temperature, and the narrow substrate scope

(10 examples, 65-94% yield) are some of the limitations in their method.
1.3.5.

Recently in 2018, Yuji Kita and co-workers revealed this method
that involves carbon-metal (In or Ga) bond formation. In and Ga are very
selective for the 6-endo-cyclization, unlike B, Al, Au, or Ag, which prefer
5-endo cyclization [13]. (X =CI, I)

CoR? PhI(OAc), ?
R1_| N 2 MX3 a equiv) sy 2.0 equiv) _ Rl_: AN (0
|
% Toluene, 50 °C Et,0 NS R
R  M=Ga,In rt,12 h X
_ o _
A (0]
= 1
' R
R
MX,

Limitations: Two-step reaction, use of metal halide, and high temperature
are some of the primary drawbacks of this method. Additionally, a narrow
substrate scope also increases this method’s limitations. The authors
included twelve examples, among which only three were reported for

synthesizing 4-bromoisocoumarin with a 47-73% yield.

1.4. Our hypothesis



Alkyne belongs to the family of the most versatile functional
moieties and makes the o-alkynylaryloates very useful for synthesizing
isocoumarins via the 6-endo-cyclization mechanism, where new bond
formation occurs. The methods known to synthesize 4-bromoisocoumarin,
summarized in section 1.3, involve either the electrophile-assisted 6-endo
cyclization method or the transition metal-catalyzed 6-endo cyclization
method. First, alkyne activation occurs, followed by the nucleophilic attack
from the ester to complete the 6-membered cyclic structure. Previously
known methods involve metallic conditions, and metal-free synthesis has

not been explored perfectly yet.

To develop novel sustainable methods for synthesizing new bonds
between carbon-carbon and carbon-heteroatom, we hypothesize 2-
alkynylaryloates to convert into 4-bromoisocoumarin, forming new bonds,
in good to excellent yield as a result of simultaneous alkyne activation and
6-endo-cyclization. Insitu, the generation of transient bromoiodane species
using hypervalent (I11) iodine reagent (HI-3) and alkali metal bromide is the

critical approach in our hypothesis.

L—I—-L L—I—Br
MBr
_—
L—I—B Q
a, _CO,R? i B
RZ 0 > Ph RZE SN O
SN > =
MR ¥ Ry
R! Br

HIR reagents are highly stable, non-toxic, readily available, and
easy to handle reagents. Their use is a step towards the practice of green
chemistry because the waste can be treated as regular waste or even can be
recycled if required. The chemistry shown by hypervalent iodine reagents
is similar to the chemistry followed by transition metals [23]. The driving

force of HIRs’ reactions is the reduction of iodine to its most stable



oxidation state [24]. Commonly used HIRs are Dess-Martin’s periodinane
(DMP) and 2-iodoxybenzoic acid (IBX) which are iodine(V) reagents and
widely used for oxidation reactions [25]. Compared to iodine(V) and iodine
(VII), a large number of iodine(l11) reagents are also being used and there
are a higher number of transformations (arylation, dearomatization of
phenols, cyclization, ethylenation, halogenation, etc.) supported by

iodine(l11) reagents compared to the other two [26].

To check the validity of our hypothesis, we synthesized methyl 2-
(phenylethynyl)benzoate as our model substrate from a reported procedure
[15] and started to imply various reaction conditions.



Chapter 2

RESULTS & DISCUSSION

2.1. Optimization of the best reaction conditions

o o)
OMe HIR (equiv), MBr (equiv) 7o)
% Solvent (mL), rt, 6-8 h = Ph
Ph Br
la 2a

2.1.1. Screening of hypervalent iodine reagents (HIRS)

We started our optimization right from the screening of different
hypervalent iodine reagents. All the reactions were performed at room
temperature, and the recorded yields were isolated. In this regard, we did a
reaction using PIDA (2.0 equiv) as the hypervalent iodine reagent,
potassium bromide (2.0 equiv) as the source of bromide ion, and acetonitrile

(1 mL) as the solvent for 0.1 mmol of the starting material 1a (entry 01).

We got no formation of the desired product 2a. Instead, we observed a

hydrolysis product.
Entry HIR (equiv) Solvent (conc.)
01 PIDA (2.0) KBr(2.0) CH3CN (0.1 M) -
02 PIFA (2.0) KBr (2.0) CH:;CN (0.1 M) 50
03 HTIB (2.0) KBr (2.0) CH3;CN (0.1 M) 60

After PIDA, we tried PIFA as the reagent, keeping other reaction parameters
unchanged (entry 02). This time we got our desired product with a 50%
yield. PIDA and PIFA are among the extreme hypervalent iodine reagents
- PIDA is mildly reactive, while PIFA reacts aggressively. We wanted to

try a reagent of in-between reactivity and reacted with Koser’s reagent



(hydroxy tosyloxy iodo benzene or HTIB). With HTIB (2.0 equiv) and the
rest things constant (entry 03), we got 60% of the desired product. After

identifying the best reagent, we moved toward screening different solvents.

(0] \
>:0 —cry NS
O\ O\ ©/O—S:O
1o I CF
¢ @
O

PIDA PIFA HTIB

2.1.2. Solvent screening

Until here, we had entry 03 to be our best reaction condition. Now, we
started to screen solvents other than acetonitrile, such as dichloromethane
(entry 04), 1,1,1,3,3,3-hexafluoro-2-propanol (entry 05), dimethyl
sulphoxide (entry 06), 1,2-dichloroethane (entry 07), trifluoromethyl
benzene (entry 08), methanol (entry 09), and tetrahydrofuran (entry 10).

Conditions other than the solvent were the same as entry 03, and we found

that our desired product was not forming with HFIP and DMSO (entries 05
& 06), but with the other solvents (entries 04, 07 - 10). We found a 78%
yield of our desired product when we used 1,2-DCE as the solvent (entry
07).

Entry HIR (equiv) MBr Solvent (conc.)  Yield
(equiv) (%)
03 HTIB (2.0) KBr (2.0) CH;CN (0.1 M) 60
04 HTIB (2.0) KBr (2.0) DCM (0.1 M) 50
05 HTIB (2.0) KBr (2.0) HFIP (0.1 M) -
06 HTIB (2.0) KBr (2.0) DMSO (0.1 M) -
07 HTIB (2.0) KBr (2.0) 1,2-DCE (0.1 M) 78
08 HTIB (2.0) KBr (2.0) PhCF; (0.1 M) 54
09 HTIB (2.0) KBr (2.0) MeOH (0.1 M) 53
10 HTIB (2.0) KBr (2.0) THF (0.1 M) 76

10



After the solvent screening, we selected 1,2-DCE as the best solvent for our
reaction, and entry 07 became the best condition for our reaction. After
getting the best HIR and the best solvent for our reaction, we moved towards
studying the effect of different equivalents of reactants on our reaction. And

we also screened the other alkali metal bromides too.
2.1.3. Equivalent adjustments and the screening of alkali metal bromide

When we did reactions by taking HTIB (1.5 equiv), KBr (2.0 equiv) or by
taking HTIB (2.0 equiv), KBr (1.5 equiv), both the time, we observed a
decrement in the yield of the desired product (entries 11 & 12 respectively).
We concluded that the 2.0 equiv of each HTIB and KBr is the best reaction
condition. In addition to the effect of equivalent adjustments, we also
performed a few reactions to study the effect of dilution on our reaction. We
did reactions with different volumes of the solvent where we got 68%, 73%,
and 68% yield for 0.5 mL, 1.5 mL, and 2.0 mL of 1,2-DCE, respectively
(entries 13 - 15).

Entry

HIR (equiv)

Solvent (mL) Yield
(%)

07 HTIB (2.0) KBr(2.0) 12-DCE(.1M) 78
1 HTIB (1.5) KBr(2.0) 1,2-DCE(0.IM) 60
12 HTIB (2.0) KBr(1.5) 12-DCE(0.IM) 74
13 HTIB (2.0) KBr(2.0) 12-DCE(02M) 68
14 HTIB (2.0) KBr(2.0) 12-DCE(0.07M) 73
15 HTIB (2.0) KBr(2.0) 1,2-DCE (0.05M) 68
16 HTIB (2.0) LiBr(2.0) 12-DCE(0.1M) 57
17 HTIB (2.0)  NaBr(2.0) 12-DCE(0.1M) 47

Later in this quest, we also optimized the different alkali metal bromides.
With LiBr (2.0 equiv), we got 57% yield, while with NaBr (2.0 equiv), 47%

only (entries 16 & 17, respectively).

11



2.1.4. Effect of substitution at the p-position of HTIB — Screening of
HTIB derivatives

After optimizing all the reaction parameters, we studied the electronic effect
of HTIB. For this, we tried different derivatives of HTIB; all were para-
substituted derivatives substituted with electron-donating or electron-

withdrawing substituents.

X = H; HTIB

IS
Y X = Cl; HTIB-1
X = F; HTIB-2

X = Me; HTIB-3
X = OMe; HTIB-4

X

HIR (equiv) Solvent (mL) Yield

(%)
07 HTIB (2.0) KBr (2.0) 1,2-DCE (0.1 M) 78
18 HTIB-1 (2.0) KBr (2.0) 1,2-DCE (0.1 M) 91
19 HTIB-2 (2.0) KBr (2.0) 1,2-DCE (0.1 M) 79
20 HTIB-3 (2.0) KBr (2.0) 1,2-DCE (0.1 M) 60
21 HTIB-4 (2.0) KBr (2.0) 1,2-DCE (0.1 M) 5

We observed that our reaction was performing excellently with HTIB-1 (2.0
equiv), giving 91% yield (entry 18), and the yield was decreased again to
79% when we used fluoro (more electronegative than chloro) substituted
reagent HTIB-2 (entry 19). With HTIB-3, we got 60% of the desired
product (entry 20). While HTIB-4, with the substitution of an electron
donating group (-OMe), was giving 5% of the desired product only. It
happens because the HTIB-4 reagent is not stable at room temperature [21].
The effect of the substitutions at the p-position of HTIB on the reaction is

also depicted through a line graph in figure 4.
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% vyield of 2a
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Figure 4: Effect of substitution at HTIB on the reaction

In this way, we got our best reaction conditions to be — HTIB-1 (2.0 equiv),
KBr (2.0 equiv), 1,2-DCE (0.1 M) at room temperature, and after this, we

moved towards checking the generality of our reaction.

2.2. Substrate scope

The generality of our best reaction conditions (entry 18) was studied with
several substrates. We synthesized a library of starting materials by bringing
various substitutions in the model substrate and employed them individually
in our reaction conditions. First, we did reactions by varying the R-group
attached to the alkyne. In this quest, we found substrates 1b, 1c, and 1d,
substituted with tolyl groups (electronically neutral) of different
regioisomers in place of R on the alkyne, were working excellently in the
optimized condition. The reaction of 2-tolyl, 3-tolyl, and 4-tolyl gave 80%,
78%, and 83% yield of the desired products 2b, 2c, and 2d, respectively.
Next, substrate 1le, in this series, substituted with the methoxy group, was
tested, and a significant amount (60%) of the desired product (2e) was
observed. We did not find any electrophilic aromatic bromination on the

ring (R). Our reaction was also working properly with halogen-substituted

13



substrates 1f-1h in a good to excellent manner. The reaction of 3-F and 4-F
containing

HO—1—O0Ts

=]

HTIB-1 (2.0 equiv)

CO,Me '
Rl‘/\ KBr (2.0 equiv) Rl
[ 1,2-DCE (1 mL), rt R
h R B Cl
0.1 mmol r HTIB-1
o) o) 0
Br ‘ Br ‘ Br ‘
2a,91% 2b, 80% 2¢, 78%
) 0 0o
I
o) F
Br Br Br
2d, 83% 21, 74%
’ 2e, 60% » 147
o o
Br ‘\ Br ‘\
Cl NO,
0,
2g, 84% 2h, 78% 21 0%
*\/ *
Br Br
2K, 30% 21, 0%
0o o
S
\
cl
Br Br
2m, 78% 2n, 81% 20,53%
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substrates gave 74% and 84% yield of the desired products 2f and 2g,
respectively. While the 4-Cl substituted substrate was also working
efficiently, giving a 78% yield of the desired product 2h. Another substrate
in this series was tried with the nitro substitution at the 4- position of the
phenyl attached to the alkyne (11i), but with this substrate, we did not observe
the formation of our desired product (2i). Instead of the desired product, we
got a different product 2i’ (63%). It was probably due to the carbocation's
destabilization by the nitro group's electron-withdrawing nature. Further, a
4-phenyl substituted substrate (1j) was examined and found to work
properly. It gave a 79% yield of the desired product (2j). In this series, we
tried a "butyl substituted substrate 1k and found a considerable amount
(30%) of the desired product 2k. After examining different substitutions on
the alkyne, we also examined a substrate (11) containing terminal alkyne.
The reaction of 11 did not give any desired product 2I, but a by-product (21°)
was observed in a good amount (55%). After varying the R group, we
moved towards changing the R* group. In this series, we tried substrates 1m
and 1n. These two substrates were also giving good to excellent yields. On

employing 1m in our best reaction conditions, we got a 78% yield of 2m,

l CO,Me o
0 OMe

Br o
O "
O,N Br Br
2i', 63% 21', 55%

and employing 1n there gave an 81% yield of 2n. We also found that a
completely different substrate with thiophene instead of the usual phenyl
ring was also working efficiently. With the substrate 10, we got a 53% yield
of the desired product 20. After examining a range of substrates, we

proposed a plausible mechanism for this reaction.
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2.3. Mechanistic details
2.3.1. Control experiment

For insight into the reaction mechanism, we did a control experiment using
TEMPO (3.0 equiv). In this experiment, we got a 34% yield of the desired
product. This compelled us to believe that the reaction follows an ionic

mechanism instead of a radical one.

HTIB-1 (2.0 equiv) o
CO,Me KBr (2.0 equiv) o
TEMPO (3.0 equiv)
=
AN 1,2-DCE, 6 h, rt Ph
Ph Br
34%

The significant decrease in the yield was possibly due to the non-
compatibility of TEMPO with the hypervalent iodine reagents.

2.3.2. Plausible mechanism for the desired product formation

The mechanism starts with the reaction of HTIB-1 and KBr. They generate

o H,0
@,
(OMe \OMG
R OMe HTIB-1 + KB > o o
N R4 | . R
X X =
I 1 N R!
R m SN
o m Br
1
/
TsO \O\
Cl
HO OMe
( Y
TsO —1—OH TsO —1—Br 2 (0}
R
KBr Z SRl
B ——
Br
v
Cl Cl
HTIB-1 Transient
L bromoiodane ) MeOH
(o)
R? 0
= R!
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a transient bromoiodane species, which activates the alkyne of substrate |
to give an intermediate 11. A nucleophilic attack from the ester group onto
the activated alkyne (intermediate Il) in a 6-endo-dig-selective manner
completes the ring to give another intermediate Ill. Next, the water
(moisture) comes into the picture and knocks off the methanol to give our

desired product V via an intermediate IV.
2.3.3. Plausible mechanism for the by-product formation

With some substrates, the nucleophilic attack of the ester group onto the
activated alkyne competes with the nucleophilic attack of the water
(moisture) nucleophile. Because of this competition, we get a by-product
2I’. This happens when the carbocation is not getting stabilized at the
position of our interest. Because of this, instead of the nucleophilic attack
from the ester, water attacks at the stabilized carbocation.

(0] OMe (0}
@Me HTIB-1 + KBr o OMe
OH
X o :/\ 2
11 H A | B‘r’ H H,0 VII

S—I/ Br{ "H

TsO' \©\ Br
|
Cl IOO
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Chapter 3

CATALYTIC PATHWAY

3.1. Optimization of the catalytic reaction

In our reaction, the fate of HTIB-1 is the formation of 4-chloroiodobenzene.
This led us to hypothesize this reaction catalytically. We were synthesizing
HTIB-1 from 4-chloroiodobenzene and using that in the reaction in a
stoichiometric amount. Later, we hypothesized to generate this reagent
insitu itself. We again chose the previous model substrate 1a and treated it
with 4-chloroiodobenzene, mCPBA, p-toluenesulphonic acid, and KBr in
1,2-DCE for 24 h. In the first condition, we took 4-chloroiodobenzene 10
mol%, mCPBA (1.5 equiv), p-toluenesulphonic acid (1 equiv), and KBr (1
equiv) in 1,2-DCE (0.1 M), we got a 62% yield of 2a (entry 1). Changing
the solvent did not help much; we got a 65% of 2a when we used THF
instead of 1,2-DCE (entry 2).

o)
CO,Me al TsOH.H,0
" /O/ tomerBA - liBrt 24h !
% 1 olvent, rt, Pz Ph
1a Ph 10 mol% 1.5 equiv 2a gr
Entry KBr TsOH.H,0 Solvent Yield” (%)
(equiv) (equiv)
1 1.0 1.0 1,2-DCE 62
2 1.0 1.0 THF 65
3 1.2 1.0 1,2-DCE 70
4 1.5 1.0 1,2-DCE 53
sb 1.2 1.0 1,2-DCE 52
6 1.2 - 1,2-DCE 0
7 1.2 0.2 1,2-DCE 20

Reaction condition: 0.1 mmol of 1a, 10 mol% of Arl, 0.15 mmol of mCPBA, 1 mL solvent.
“Isolated yield. ”using 15 mol% of Arl.
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But increasing the amount of KBr helped significantly, and we got a 70%
yield of 2a (entry 3), while a further increase in that led to a decrease in the
yield (entry 4). We repeated entry 3, but taking 15 mol% of 4-
chloroiodobenzene instead of 10 mol%, a 52% yield of 2a was recorded
(entry 5). In a reaction (entry 6) without taking the p-toluenesulphonic acid,
we tried and found no formation of the desired product, concluding that it
IS a necessary reactant of our catalytic cycle. We took TsOH.H2O in a
catalytic amount (entry 7) but observed only a 20% yield. So, the best
reaction conditions for our reaction in a catalytic manner are the entry 3 -
1.2 equiv KBr, 1.0 equiv of TSOH.H20, 10 mol% 4-chloroiodobenzene, and
1.5 equiv of mCPBA in 1 mL 1,2-DCE for 0.1 mmol of la.

3.2. Plausible mechanism for the catalytic reaction

(0]
(0]
= Ph

Br

o I
OMe
% mCPBA
Ph Cl

Cl
Transient \©\ /Br
bromoiodane /l
TsO I—
=0
KOH
Cl
HO—I—0Ts

TsOH.H 20

KBr

Cl
HTIB-1
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The hypervalent iodine reagent (HTIB-1) is generated in situ [14]. It reacts
with KBr to give transient bromoiodane species, which activates the alkyne
of the starting material, and after cyclization, we get our desired product.
First, 4-chloroiodobenzene is oxidized by mCPBA to give 4-
chloroiodosylbenzene, which reacts with TsSOH.H20 to generate HTIB-1 in
situ. The generated HTIB-1 reacts with KBr, and a ligand exchange occurs,
providing a transient bromoiodane species. These transient bromoiodane
species react to the substrate, similarly explained in section 2.3.3.
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Chapter 4
LARGE-SCALE REACTION & SCOPE OF
DIFFERENT ESTERS

TsO
\
(0) I\
Me OH
o cl
SN KBr, DCE
rt,6 h
2.5 mmol 489.4 mg, 65%

Our reaction was also found to be performing well in a large-scale reaction.
With 2.5 mmol of 1a, we got a 65% vyield (489.4 mg, 1.63 mmol) of 2a.

TsO
\

1
OH
cl

(0}
(0]
% KBr, DCE
rt, 6 h

We tested some different esters instead of methyl ester for this reaction. In
this series, we synthesized tert-butyl 2-(phenylethynyl)benzoate and benzyl
2-(phenylethynyl)benzoate following the reported procedures [19-20]. On
employing them one by one in the optimized reaction conditions, we got

59% and 76% yields of 2a, respectively.
R2 2a
Methyl (1a) 91 %
tert-Butyl (1p) 59%
Benzyl (1q) 76%

23



In the reaction using 1q as the starting material, we observed an excellent
amount of the desired product. Along with this, we also got a piece of useful

information regarding the plausible mechanism - we observed the formation

of benzyl alcohol which is in favour of our proposed mechanism.

(0]

OBn HTIB-1 + KBr

OBn

@@
S+
A2 11 B

|

Ph

Cr

X
1q Ph ;
&'
1
/
TsO \©\
Cl
TsO—1—OH TsO—1—Br
KBr
—_—

Cl Cl

HTIB-1 Tran'sient
bromoiodane

BnOH
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Chapter 5.

POST-SYNTHETIC TRANSFORMATIONS

Bromine substituted at the 4-position of the isocoumarin scaffold provides
a handle for further derivatization. A library of compounds can be prepared
by various coupling reactions. Palladium-based coupling reactions such as
Suzuki coupling, Sonogashira coupling, Heck coupling, etc. can be very
useful in this regard. We also showed an example of Suzuki coupling using
phenylboronic acid. This type of moiety finds applications in the
pharmaceutical sectors as well as in the material sectors. By using above
mentioned techniques, bigger molecule can also be prepared.

(0)
(0]
= Ph
2a Br
Zn, EtOH
PhB(OH),
reflux Pd(PPh;), DMF, Water
16 h K,CO; 60 °C
2h
0 “O
o (0}
= Ph = Ph
H Ph
2aa, 81% 2ab, 57%

After getting a new method to synthesize 4-bromo-3-phenyl isocoumarin
(2a), we did two more reactions where we showed how one could make a
3-substituted and 3,4-disubstituted isocoumarin moiety from 2a. In the first

reaction (hydrodehalogenation), we refluxed 2a with zinc powder in ethanol
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for 16 h, and we got 2aa in a very good amount (81%). In another synthetic
application, we did the Suzuki coupling treating the phenylboronic acid
with 2a at 60 °C. We obtained 2ab in a 57% yield in this palladium-
catalyzed cross-coupling reaction.
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Chapter 6

EXPERIMENTAL DETAILS

6.1. General information

All the reagents and solvents that we used during the synthesis of our
substrates were purchased from local vendors, and the synthesis was done
by the below-mentioned protocols. We used the purchased chemicals
without purification. Hexane and ethyl acetate were distilled before using
in the column chromatography. The reactions were performed in an inert
atmosphere, and monitoring was done by a thin-layer chromatographic
technique using Merck 60 F254 precoated silica gel plates. Products were
observed by UV detection, and the purification was done by SiO> (100-200
mesh) column chromatography using hexane and ethyl acetate as the eluent.

6.2. Instrumentation

The authentication of the purified products was done by NMR spectroscopy
(*H) on an AVANCE NEO Ascend 500 Bruker BioSpin International AG
(500 MHz) in CDCls, DMSO-dg, or TMS as the reference. Chemical shift
values (6 scale) mentioned here are only in parts per million (ppm). The
residual solvent peaks of CDClz and DMSO-ds were found at 7.26 and 2.50,

respectively. The multiplicities of the desired peaks are denoted as:

Singlet S
Doublet d
Doublet of doublet dd
Triplet t
Triplet of doublet td
Quartet q
Multiplet m
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6.3. Synthesis of starting materials

6.3.1. General procedure for synthesizing the substrates 1a-1k, 1m, & 1n
[15]

(0] o) (0]
RS X" SoH McOH, H,S0, Y oM R——= rif X" “OMe
Z 70°C,3h L~ | Pd(PPh;),Cl,, Cul PN
Et;N N

R
rt,12h

Synthesis of methyl 2-(alkynyl)benzoate was done in two steps: I)
Methylation of 2-lodobenzoic acid, 1) Sonogashira coupling of Methyl-2-

iodobenzoate with a terminal alkyne.

I) In a round bottom flask (50 mL), which was oven dried, we put a
magnetic bead inside and charged it with o-iodobenzoic acid (1g, 4.0 mmol)
followed by 10 mL 2.0M H>SOj4 in methanol. The round bottom flask was
clamped (dipped in an oil bath) over a magnetic stirrer and connected with
a reflux condenser. The reaction mixture was stirred for 3h at 70 °C. After
3h, we evaporated the solvent using a rotatory evaporator and extracted the
crude product using NaHCOs and EtOAc (3x10 mL). The collected organic
phases were washed (combinedly) with a brine solution. After washing, it
was dried over anhydrous Na>SOs. After drying, filtration followed by
concentration using a rotatory evaporator was done to get the crude product.
Purification was done by column chromatography using SiO2 as the
stationary phase and a 5% EtOAc-hexane mixture as the mobile phase. The

obtained pure product (900 mg, 3.4 mmol) was utilized in the second step.

I1) We charged Methyl-2-iodobenzoate (393 mg, 1.5 mmol, 1 equiv.) in a
round bottom flask (oven dried, 25 mL) having a magnetic bead inside
followed by EtsN (4 mL), Pd(PPhs).Cl> (5 mol%), and Cul (5 mol%) to get
a solution (yellow) with solid suspension. A stream of nitrogen was passed
through the solution for 15 min, followed by the addition of alkyne (1.25
equiv). As soon as we added alkyne to the solution, the color of the solution

turned black. The stirring of the reaction mixture was done at rt for 18h.
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After completion of the reaction (monitored by TLC, 10% EtOAc-hexane
as the eluent), 9 mL saturated ag. NH4Cl solution was added in the RB to
dilute the reaction mixture, and extraction was performed using EtOAc
(3%x10 mL). The collected organic phases were washed (combinedly) with a
brine solution. This was followed by drying over anhydrous Na;SOa. After
drying, filtration concentration using a rotatory evaporator was done to get
the crude. Purification was done by column chromatographic technique
using SiO> as the stationary phase and a 2% EtOAc-hexane mixture as the

mobile phase.

CO,Me
©/\

Ph

Methyl 2-(Phenylethynyl)benzoate (1a), 93% vyield, yellow liquid.

IH NMR (500 MHz, CDCls) 5 7.98 (dd, J = 7.9, 1.4 Hz, 1H), 7.65 (dd, J =
7.8, 1.4 Hz, 1H), 7.61 — 7.57 (m, 2H), 7.49 (td, J = 7.6, 1.4 Hz, 1H), 7.40 —
7.32 (m, 4H), 3.97 (s, 3H); °C NMR (126 MHz, CDCl3) § 166.8, 134.1,
131.9, 131.8, 131.8, 130.6, 128.6, 128.4, 128.0, 123.8, 123.4, 94.4, 88.3,
52.3; IR (neat) 2949, 2217, 1727, 1493, 1291, 1248, 1126, 1077, 1598, 752,
689 cm™,

Methyl 2-(o-tolylethynyl)benzoate (1b), 95% yield, yellow liquid.

"H NMR (500 MHz, CDCl3) 6 7.97 (dd, J= 7.9, 1.4 Hz, 1H), 7.66 (dd, J =
7.8, 1.3 Hz, 1H), 7.56 — 7.53 (m, 1H), 7.50 (td, J = 7.6, 1.4 Hz, 1H), 7.38
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(td, J=7.7,1.3 Hz, 1H), 7.27 — 7.22 (m, 2H), 7.20 — 7.16 (m, 1H), 3.96 (s,
3H), 2.57 (s, 3H); *C NMR (126 MHz, CDCls) § 167.0, 140.6, 134.3,
132.4, 131.8, 131.8, 130.6, 129.6, 128.7, 128.0, 125.7, 124.0, 123.2, 93.6,
92.7,52.4,20.9; IR (neat) 2949, 2213, 1727, 1714, 1491, 1292, 1248, 1076,
752 cm

Methyl 2-(m-tolylethynyl)benzoate (1c), 99% yield, yellow liquid.

'H NMR (500 MHz, CDCls) & 7.97 (dd, J = 7.9, 1.4 Hz, 1H), 7.64 (dd, J =
7.7, 1.4 Hz, 1H), 7.49 (td, J= 7.6, 1.4 Hz, 1H), 7.42 — 7.35 (m, 3H), 7.27 —
7.23 (m, 1H), 7.17-7.15 (m, 1H), 3.97 (s, 3H), 2.36 (s, 3H); 13C NMR (126
MHz, CDCL3) & 166.9, 138.2, 134.2, 132.4, 132.0, 131.8, 130.6, 129.6,
129.0, 128.4, 128.0, 124.0, 123.2, 94.7, 88.0, 52.3, 21.4.

COzMe

Methyl 2-(p-tolylethynyl)benzoate (1d), 99% yield, yellow liquid.

'H NMR (500 MHz, CDCL3) § 7.97 (dd, J= 7.9, 1.5 Hz, 1H), 7.64 (dd, J =
7.8, 1.3 Hz, 1H), 7.51 — 7.45 (m, 3H), 7.37 (td, J= 7.7, 1.3 Hz, 1H), 7.19 —
7.15 (m, 2H), 3.97 (s, 3H), 2.38 (s, 3H); 3C NMR (126 MHz, CDCl3) &
167.0, 138.9, 134.1, 132.0, 131.8, 130.6, 129.3, 127.8, 124.1, 120.4, 94.8,
87.8,52.3,21.7.
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Methyl 2-(3-methoxyphenylethynyl)benzoate (1e), 99% vyield, yellow
liquid.

'H NMR (500 MHz, CDCls) & 7.98 (dd, J = 7.9, 1.4 Hz, 1H), 7.65 (dd, J =
7.8, 1.3 Hz, 1H), 7.50 (td, J = 7.6, 1.4 Hz, 1H), 7.39 (td, J = 7.7, 1.3 Hz,
1H), 7.29 — 7.25 (m, 1H), 7.18 (dt, J = 7.6, 1.2 Hz, 1H), 7.10 (dd, J = 2.6,
1.4 Hz, 1H), 6.91 (ddd, J = 8.4, 2.7, 1.0 Hz, 1H), 3.97 (s, 3H), 3.83 (s, 3H);
13C NMR (126 MHz, CDCls) & 166.9, 159.5, 134.2, 132.1, 131.8, 130.6,
129.6, 128.1, 124.5, 124.4, 123.8, 116.6, 115.3, 94.4, 88.2, 55.5, 52.4.

COzMe

Methyl 2-(3-fluorophenylethynyl)benzoate (1f), 90% yield, yellow liquid.

'H NMR (500 MHz, CDCl3) § 7.99 (dd, J = 7.9, 1.4 Hz, 1H), 7.64 (dd, J =
7.8, 1.3 Hz, 1H), 7.51 (td, J= 7.6, 1.4 Hz, 1H), 7.44 — 7.24 (m, 4H), 7.058-
7.03 (m, 1H), 3.96 (s, 3H); '*C NMR (126 MHz, CDCl3) § 166.7, 162.5 (d,
J=246.7Hz), 134.2,132.1,131.9, 130.7, 130.1 (d, J= 8.6 Hz), 128.4, 127.8
(d,J=3.1Hz), 125.3 (d, J=9.6 Hz), 123.4, 118.6 (d, J = 22.6 Hz), 116.0
(d,J=21.4Hz), 93.1 (d, J=3.5 Hz), 89.2, 52.4.

! COZMe
X
l F

Methyl 2-(4-fluorophenylethynyl)benzoate (1g), 98% yield, yellow liquid.
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'H NMR (500 MHz, CDCls) § 7.98 (dd, J = 7.9, 1.4 Hz, 1H), 7.63 (dd, J =
7.7, 1.3 Hz, 1H), 7.58 — 7.54 (m, 2H), 7.50 (td, J = 7.6, 1.4 Hz, 1H), 7.39
(td, J= 7.7, 1.3 Hz, 1H), 7.09 — 7.03 (m, 2H), 3.96 (s, 3H); 3C NMR (126
MHz, CDCls) § 166.7, 162.8 (d, J=250.0 Hz), 134.1, 133.8 (d, J = 8.5 Hz),
131.9, 131.9, 130.6, 128.1, 123.8, 119.6 (d, J = 3.4 Hz), 115.8 (d, /= 22.1
Hz), 93.4, 88.1 (d, J=2.1 Hz), 52.3.

COzMe

Cl
Methyl 2-(4-chlorophenylethynyl)benzoate (1h), 98% vyield, yellow solid.

"H NMR (500 MHz, CDCl3) § 7.99 (dd, J= 7.8, 1.4 Hz, 1H), 7.64 (dd, J =
7.7, 1.3 Hz, 1H), 7.54 — 7.47 (m, 3H), 7.40 (td, /= 7.7, 1.3 Hz, 1H), 7.36 —
7.31 (m, 2H), 3.96 (s, 3H); *C NMR (126 MHz, CDCls) § 166.7, 134.7,
134.1, 133.1, 132.0, 131.9, 130.7, 128.9, 128.3, 123.6, 122.0, 93.3, 89.3,
52.4.

Methyl 2-(4-nitrophenylethynyl)benzoate (1i), 95% yield, yellow liquid.

"H NMR (500 MHz, CDCl3) & 8.26 — 8.20 (m, 2H), 8.03 (dd, /=7.9, 1.4
Hz, 1H), 7.75 — 7.69 (m, 2H), 7.67 (dd, J= 7.7, 1.4 Hz, 1H), 7.54 (td, J =
7.6, 1.4 Hz, 1H), 7.45 (td, J=7.7, 1.4 Hz, 1H), 3.97 (s, 3H); >*C NMR (126
MHz, CDCl3) & 166.3, 147.3, 134.4, 132.6, 132.2, 132.1, 130.8, 130.4,
129.1, 123.8, 122.8, 93.5, 92.3, 52.5.
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Methyl 2-([1,1’-biphenyl]-4-ylethynyl)benzoate (1j), 88% yield, yellow
liquid.

'H NMR (500 MHz, CDCl3) § 7.99 (dd, J = 7.8, 1.4 Hz, 1H), 7.68 — 7.64
(m, 3H), 7.63 — 7.59 (m, 4H), 7.51 (td, J= 7.6, 1.4 Hz, 1H), 7.48 — 7.44 (m,
2H), 7.42 — 7.35 (m, 2H), 3.99 (s, 3H); *C NMR (126 MHz, CDCls) §
166.9, 141.4, 140.5, 134.1, 132.3, 132.0, 131.8, 130.6, 129.0, 128.0, 127.8,
127.2,124.0, 122.4,94.4, 89.1, 52.4; HRMS (ESI): m/z [M+Na]" Calcd for
C2oHi602 335.1043; found 335.1043.

COzMe
X
Methyl 2-(hex-1-ynyl)benzoate (1k), 94% vyield, pale yellow liquid.

"H NMR (500 MHz, CDCl3) § 7.87 (dd, J= 7.9, 1.4 Hz, 1H), 7.50 (dd, J =
7.8, 1.4 Hz, 1H), 7.41 (td, J = 7.6, 1.4 Hz, 1H), 7.30 (td, J = 7.7, 1.4 Hz,
1H), 3.91 (s, 3H), 2.48 (t,J= 7.1 Hz, 2H), 1.66 — 1.60 (m, 2H), 1.56 — 1.45
(m, 2H), 0.96 (t, J = 7.3 Hz, 3H); 3C NMR (126 MHz, CDCls) & 167.2,
134.4,132.1, 131.6, 130.3, 127.2, 124.6, 96.1, 79.3, 52.2, 30.9, 22.2, 19.6,
13.8; IR (neat) 3066, 2955, 2932, 2863, 2230, 1731, 1716, 1484, 1432,
1292, 1275, 1247, 1082, 755, 701 cm™".
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Methyl 2-(phenylethynyl) 5-fluorobenzoate (1m), 85% yield, yellow solid.

'H NMR (500 MHz, CDCls) & 7.68 (dd, J= 9.2, 2.8 Hz, 1H), 7.63 (dd, J =
8.6, 5.4 Hz, 1H), 7.58 — 7.54 (m, 2H), 7.39 — 7.33 (m, 3H), 7.21 (ddd, J =
8.6,7.7,2.8 Hz, 1H), 3.97 (s, 3H); '*C NMR (126 MHz, CDCl3) 5 165.7 (d,
J=2.7Hz), 161.8 (d, J=250.6 Hz), 136.0 (d, J= 8.0 Hz), 134.0 (d, J= 7.6
Hz), 131.8, 128.7, 128.5, 123.3, 120.1 (d, J = 3.7 Hz), 119.4 (d, J=21.9
Hz), 117.7 (d, J=23.9 Hz), 94.2, 87.3, 52.6.

COzMe

Methyl 2-(phenylethynyl) 4-chlorobenzoate (1n), 97% yield, yellow liquid.

'H NMR (500 MHz, CDCls) & 7.93 (d, J = 8.4 Hz, 1H), 7.64 (d,J=2.2 Hz,
1H), 7.59 — 7.55 (m, 2H), 7.39 — 7.33 (m, 4H), 3.96 (s, 3H); '*C NMR (126
MHz, CDCls) § 166.0, 138.2, 133.8, 132.0, 132.0, 130.2, 129.0, 128.6,
128.3, 125.7, 123.0, 95.8, 87.2, 52.5.

6.3.2. Synthetic procedure (2 steps) for the substrate 11 [15][17]

o) o)
OMe / Pd(PPh;),Cl, OMe
+ —Si— >
I \ Cul, Et;N

rt,12 h Si

An oven-dried RB (25 mL) containing a magnetic stir bar inside, was
charged with methyl 2-iodobenzoate (1 g, 3.82 mmol) followed by
Pd(PPh3)CL (5 mol%), Cul (5 mol%), and triethylamine (10 mL). The
formed solution was degassed with a continuous stream of nitrogen for 10
min. Following this, trimethylsilylacetylene (470 mg, 4.78 mmol) was
added, and the reaction mixture was allowed to stir for 12 h at rt. A saturated

aq. NH4Cl solution (20 mL) was added to the reaction mixture. The crude
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product was extracted using EtOAc (3 x 10 mL). The organic phases were
washed (combinedly) using a brine solution, dried over anhydrous Na>SOs,
filtered, and concentrated under reduced pressure using a rotatory
evaporator. Pure methyl 2-(trimethylsilylethynyl)benzoate (1L) was
obtained using SiO; column chromatography eluting with a 2% EtOAc-
hexane mixture.

CO,Me
%Si/
Methyl 2-(trimethylsilylethynyl)benzoate (117), 91%, yellow liquid.

"H NMR (500 MHz, CDCls) § 7.92 — 7.88 (m, 1H), 7.59 — 7.56 (m, 1H),
7.46 —7.40 (m, 1H), 7.39 — 7.34 (m, 1H), 3.92 (s, 3H), 0.27 (s, 9H).

(0] (0]
K,CO;
OMe MeOH OMe
% |./ 25°C,1.5h %
i

In an oven-dried RB (25 mL) equipped with a magnetic stir bar, we charged
methyl 2-(trimethylsilylethynyl)benzoate (750 mg, 3.23 mmol) followed by
K2CO3 (491 mg, 3.55 mmol) and MeOH (7 mL). The reaction mixture was
stirred at 25 °C for 1.5 h. The solvent was evaporated, and the crude mixture
was diluted with water. The crude was extracted using DCM (3 x 10 mL).
Combined organic phases were washed with a brine solution, dried over
anhydrous Na>SOys, filtered, and concentrated under reduced pressure using
a rotatory evaporator. Purified methyl 2-ethynylbenzoate (11) was obtained

by SiO2 column chromatography eluting with a 2% EtOAc-hexane mixture.

CO,Me
©/\

H

Methyl 2-ethynylbenzoate (11), 64% vyield, colourless liquid.
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'H NMR (500 MHz, CDCls) & 7.94 (dd, J = 7.8, 1.4 Hz, 1H), 7.63 (dd, J =
7.7, 1.4 Hz, 1H), 7.48 (td, J = 7.6, 1.4 Hz, 1H), 7.40 (td, J = 7.6, 1.4 Hz,
1H), 3.93 (s, 3H), 3.40 (s, 1H); 3C NMR (126 MHz, CDCL3) § 166.6, 135.1,
132.6, 131.9, 130.4, 128.6, 122.8, 82.4, 52.3.

6.3.3. Synthetic procedure (2 steps) for the substrate 1o [18][15]

S KI, NaNO, S
| )—COMe . | p)—coMme
HCI, H,0
I

NH, rt —» 0 °C

In an oven-dried RB equipped with a magnetic stir bar, we first charged HCI
(1.5 mL 6 M) and dissolved methyl 3-aminothiophene-2-carboxylate (471.5
mg, 3 mmol) in it. After stirring for half an hour, we cooled the RB to 0 °C,
and added NaNO> (207 mg, 3 mmol) dissolved in water (0.5 mL) to that
RB. Then stirred the reaction mixture for 1 h at 0 °C, followed by the
addition of K1 (498.0 mg, 3 mmol) dissolved in conc. HCI (1.25 mL). After
stirring for 1 h at 0 °C, the RB was heated to 60 °C. After half an hour, we
cooled down the RB to room temperature. The crude was extracted using
sat. ag. Na»2S20s3 solution and EtO (3 x 10 mL). The organic phases were
washed (combinedly) with brine solution, dried over anhydrous Na>SQg,
filtered, and concentrated under reduced pressure using a rotatory
evaporator. Purified methyl 3-iodothiophene-2-carboxylate (10) was
obtained by SiO> column chromatography eluting with a 2% EtOAc-hexane

mixture.

S
Qcone

I
Methyl 3-iodothiphene-2-carboxylate (10”), 30%, pale-yellow solid.

'H NMR (500 MHz, CDCls) & 7.44 (d, J = 5.1 Hz, 1H), 7.23 (d, J = 5.1 Hz,
1H), 3.90 (s, 3H).
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——Ph

| S Pd(PPh3)Cl, S
CO,M >
Q 2Me Cul, BN | Y CO,Me
I rt, 12 h

W\

Ph

In the next step, methyl 3-iodothiophene-2-carboxylate (241 mg, 0.9 mmol)
was charged in an oven-dried RB (10 mL) containing a magnetic stir bar
inside. After this, we also added Pd(PPhs)Cl2 (5 mol%), Cul (5 mol%), and
triethylamine (3 mL) to that RB. The formed solution was degassed by a
continuous stream of nitrogen. After degassing, we added phenylacetylene
(0.12 mL, 114.4 mg, 1.12 mmol), and allowed the reaction mixture to stir
at rt for 12 h. A sat. ag. NH4Cl (5 mL) solution was added, and the crude
was extracted using EtOAc (3 x 5 mL). The organic phases were washed
(combinedly) with a brine solution, dried over anhydrous Na,SOa, filtered,
and concentrated under reduced pressure using a rotatory evaporator. Pure
methyl 3-(phenylethynyl)thiophene-2-carboxylate (10) was obtained using
SiO2 column chromatography eluting with a 2% EtOAc-hexane mixture.

S COzMe

\
X

Methyl 3-(phenylethynyl) thiophene-2-carboxylate (10), 93% vyield, orange
solid.

'H NMR (500 MHz, CDCl3) § 7.61 — 7.57 (m, 2H), 7.47 (d,J= 5.1 Hz, 1H),
7.38 — 7.34 (m, 3H), 7.21 (d, J = 5.1 Hz, 1H), 3.94 (s, 3H); *C NMR (126
MHz, CDCls) & 162.0, 133.5, 132.2, 132.0, 130.6, 128.9, 128.5, 127.6,
123.0, 95.4, 84.0, 52.4.
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6.3.4. Synthetic procedure (2 steps) for the substrate Ip

0 ‘BuOH

0]
H,SO J<
OH ikt (0)
MgSO,, DCM
I rt, 48 h I

In an oven-dried RB (25 mL) containing a magnetic stir bar inside, a

suspension of MgS0O4 (972.6 mg, 8.08 mmol) in DCM (10 mL) was made

under a nitrogen atmosphere. To this stirred suspension, sulphuric acid
(198.1 mg, 2.02 mL) was also added, and the mixture was allowed to stir
for 15 min. Then, 2-iodobenzoic acid (500 mg, 2.02 mL) and tert-butanol
(0.97 mL, 748.6 mg, 10.1 mmol) were also added. The reaction mixture was
allowed to stir for 48 h at rt. Later, to obtain the crude product, a work-up
was done using aq. NaHCOj3 solution and DCM (3 x 10 mL). The organic
phases were washed (combinedly) with brine, dried over anhydrous
NazSOq, filtered, and concentrated under reduced pressure using a rotatory
evaporator. Pure tert-butyl 2-iodobenzoate (1p’) was obtained after SiO»
column chromatography using a 5% EtOAc-hexane mixture as the eluent.

Further, this product was used in the next step to synthesize the substrate

i

tert-butyl 2-iodobenzoate (1p’), 56% yield.

'"H NMR (500 MHz, CDCl3) § 7.94 (dd, J= 7.9, 1.2 Hz, 1H), 7.68 (dd, J =
7.7, 1.7 Hz, 1H), 7.37 (td, J = 7.5, 1.1 Hz, 1H), 7.10 (td, J = 7.6, 1.7 Hz,
1H), 1.62 (s, 9H); '3C NMR (126 MHz, CDCl3) & 166.3, 141.0, 137.6,
132.1, 130.6, 128.0, 93.5, 82.8, 28.3.

o
O J<
)< =——Ph 0
[I 0
Pd(PPh);Cl,
1 Cul, EGN X -

rt, 12 h
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Tert-butyl 2-iodobenzoate (334.5 mg, 1.1 mmol) was charged in an oven-
dried RB (25 mL) with a magnetic stir bar. Following this, Pd(PPh3)Cl (5
mol%), Cul (5 mol%), and triethylamine (3 mL) were also added. A clear
solution with yellow suspension was observed. This solution was degassed
using a continuous stream of nitrogen for 10 min. To this degassed solution,
phenylacetylene (0.15 mL, 140.4 mg, 1.375 mmol) was added, as a result
of this addition, color of the reaction mixture turned black instantaneously.
We allowed the reaction mixture to stir for 12 h at rt. A saturated aq. NH4Cl
(7 mL) solution was added, and the extraction was performed using EtOAc
(3 x 10 mL). The organic phases were washed (combinedly) with brine
solution, dried over anhydrous Na>SOs, filtered, and concentrated under
reduced pressure using a rotatory evaporator. Pure tert-butyl 2-
(phenylethynyl)benzoate was obtained using SiO2 column chromatography

using a 2% EtOAc-hexane mixture.

tert-butyl 2-(phenylethynyl)benzoate (1p), 92% yield, yellow liquid.

'H NMR (500 MHz, CDCl3) & 7.87 (dd, J = 7.8, 1.5 Hz, 1H), 7.62 (dd, J =
7.7, 1.4 Hz, 1H), 7.60 — 7.53 (m, 2H), 7.45 (td, J= 7.6, 1.4 Hz, 1H), 7.39 —
7.32 (m, 4H), 1.61 (s, 9H); 3C NMR (126 MHz, CDCl3) § 166.1, 134.3,
134.1, 131.7, 131.1, 130.1, 128.5, 128.0, 123.6, 123.1, 93.8, 88.6, 81.8,
28.4.

6.3.5. Synthetic procedure (2 steps) for the substrate 1q

BnBr =—Fh
COH K,CO, CO;,Bn Pd(PPh);Cl, CO,Bn
:;: Cul, Et;N
: :] DMF, H,0 I > =13 N
rt,24h rt,12h N

Ph
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In an over-dried RB (25 mL) containing a magnetic stir bar, firstly, we
charged 2-iodobenzoic acid (744.1 mg, 3 mmol). Following this, benzyl
bromide (0.71 mL, 1.026 g, 6 mmol), KoCOs (829.3 mg, 6 mmol), and DMF
(6 mL) were added to the RB. The reaction mixture was stirred for 24 h at
rt. The reaction was quenched by diluting with water (10 mL), and the crude
was extracted using EtOAc (3 x 10 mL). The organic phases were washed
(combinedly) with water (3 x 10 mL). The organic phase was dried over
anhydrous Na>SOys, filtered, and concentrated under reduced pressure using
a rotatory evaporator. This crude product was used in the next step.

In an oven-dried RB (25 mL) containing a magnetic stir bar, we added the
crude benzyl 2-iodobenzoate (3 mmol) followed by Pd(PPh3)Cl, (5 mol%),
Cul (5 mol%), and triethylamine (6 mL). The formed solution was degassed
by a continuous stream of nitrogen for 10 min. Next, phenylacetylene (0.41
mL, 383 mg, 3.75 mmol) was added. The reaction mixture was allowed to
stir for 12 h at rt. A saturated aq. NH4Cl (15 mL) was added, and the
extraction was performed using EtOAc (3 x 10 mL). The organic phases
were washed (combinedly) with a brine solution, dried over anhydrous
NayS0q, filtered, and concentrated under reduced pressure using a rotatory
evaporator. Pure benzyl 2-(phenylethynyl)benzoate was obtained using

Si0; column chromatography using a 2% EtOAc-hexane mixture.

(0]
CL7 0
“C

Benzyl 2-(phenylethynyl)benzoate (1q), 95% yield, brown liquid.

'H NMR (500 MHz, CDCls) 6 8.02 (dd, J= 7.9, 1.4 Hz, 1H), 7.66 (dd, J =
7.8, 1.3 Hz, 1H), 7.52 — 7.42 (m, 5H), 7.38 (td, J= 7.4, 1.3 Hz, 1H), 7.35 -
7.29 (m, 6H), 5.42 (s, 2H); *C NMR (126 MHz, CDCl;3) § 166.3, 136.0,
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134.3,131.9, 131.9, 131.8, 130.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.0,
124.0, 123.4,94.6, 88.4, 67.2.

6.4. General procedure for synthesizing the hypervalent iodine reagent
[21]

I TsOH.H,O0 X
mCPBA 9
0-8;
DCM / TFE (1:1) T 0
X 30 min, rt HO

An oven-dried round bottom flask (100 mL) containing a magnetic bead of
suitable size was charged with 4-X-iodobenzene (8.97 mmol, 1 equiv)
followed by DCM / TFE (1:1) mixture (40 mL) to give a solution which
was stirred for 10 min. After this, p-Toluene sulphonic acid - monohydrate
(1.1 equiv) and 3-chloroperbenzoic acid (1.5 equiv) were added to that
solution. The reaction mixture was stirred for half an hour at room
temperature. The complete solvent was evaporated using a rotatory
evaporator. Diethyl ether (20 mL) was added to the residue, filtered, washed

with Et2O and acetone, and dried in a desiccator.

Cl

1-[Hydroxy(tosyloxy)iodo]-4-chlorobenzene (HTIB-1), 82% yield, White

solid.

'H NMR (500 MHz, DMSO) & 8.23 — 8.19 (m, 1H), 7.76 — 7.71 (m, 1H),
7.70 — 7.66 (m, 1H), 7.50 — 7.45 (m, 2H), 7.26 — 7.22 (m, 1H), 7.12 (d, J =
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7.8 Hz, 2H), 2.29 (s, 3H); 3C NMR (126 MHz, CDCls) & 145.3, 139.0,
137.9, 133.1, 130.7, 128.2, 125.5, 92.7, 20.8.

1-[Hydroxy(tosyloxy)iodo]-4-fluorobenzene (HTIB-2), 76% yield, White

solid.

'H NMR (500 MHz, DMSO) § 8.30 — 8.24 (m, 1H), 7.76 — 7.71 (m, 1H),
7.52 — 7.47 (m, 2H), 7.47 — 7.42 (m, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.10 —
7.01 (m, 1H), 2.29 (s, 3H).

6.5. General procedure for synthesizing 4-bromoisocoumarin

In an oven-dried reaction tube with a magnetic bead inside, we charged the
starting material (0.1 mmol, 1 equiv) followed by HTIB-1 (2 equiv), KBr
(2 equiv), and DCE (1 mL). This reaction mixture was stirred at room
temperature with monitoring by TLC analysis (5% EtOAc-hexane mixture).
The stirring was turned off after the starting material was consumed
completely (a color change was observed). The reaction mixture was
concentrated using a rotatory evaporator. Purification was done by column
chromatography using SiO> as the stationary phase and a 2% EtOAc-hexane

mixture as the mobile phase.

4-Bromo-3-phenyl-1H-isochromen-1-one (2a), 91% yield, white solid.
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'H NMR (500 MHz, CDCls) & 8.35 (dd, J=7.8, 1.4 Hz, 1H), 7.98 (dd, J =
8.1, 1.1 Hz, 1H), 7.87 (ddd, J = 8.3, 7.3, 1.4 Hz, 1H), 7.84 — 7.76 (m, 2H),
7.61 (td,J=7.6, 1.1 Hz, 1H), 7.48 (h, J=2.7 Hz, 3H); 3C NMR (126 MHz,
CDCL) § 161.3, 152.0, 136.8, 135.6, 133.0, 130.4, 130.0, 129.8, 129.4,
128.3, 126.8, 120.8, 101.5; IR (neat) 3056, 3026, 1733, 1618, 1599, 1472,
1444, 1314, 1230, 1085, 1073, 1052, 1018, 959, 750, 671, 641, 533 cm’.

4-Bromo-3-(o-tolyl)-1H-isochromen-1-one (2b), 80% yield, white solid.

'H NMR (500 MHz, CDCls) & 8.37 (dd, J=7.9, 1.4 Hz, 1H), 7.93 (dd, J =
8.1, 1.2 Hz, 1H), 7.87 (ddd, J = 8.2, 7.2, 1.4 Hz, 1H), 7.63 (ddd, J = 8.2,
7.2, 1.2 Hz, 1H), 7.39 (ddd, /= 7.3, 6.0, 1.7 Hz, 2H), 7.30 (dt, /= 8.4, 6.9
Hz, 2H), 2.35 (s, 3H); '*C NMR (126 MHz, CDCls) § 161.5, 153.0, 137.3,
136.4, 135.7, 133.0, 130.5, 130.4, 130.1, 130.0, 129.4, 126.5, 125.9, 120.9,
103.3, 19.7; HRMS (ESI): m/z [M+H]" Calcd for Ci¢Hi1BrO2 315.0015;
found 315.0018.

4-Bromo-3-(m-tolyl)-1H-isochromen-1-one (2c), 78% yield, white solid.

'H NMR (500 MHz, CDCls) § 8.35 (dd, J = 7.8, 1.4 Hz, 1H), 8.00 — 7.95
(m, 1H), 7.86 (ddd, /= 8.2, 7.3, 1.4 Hz, 1H), 7.65 — 7.57 (m, 3H), 7.37 (td,
J=17.6,0.8 Hz, 1H), 7.29 (ddt, J= 7.6, 1.9, 0.9 Hz, 1H), 2.43 (s, 3H); *C
NMR (126 MHz, CDCIl3) 6 161.4, 152.2, 138.1, 136.8, 135.6, 132.8, 131.2,
130.3, 130.0, 129.3, 128., 127.1, 126.8, 120.7, 101.4, 21.6; HRMS (ESI):
m/z [M+H]" Calcd for C16H11BrO2 315.0015; found 315.0017.
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4-Bromo-3-(p-tolyl)-1H-isochromen-1-one (2d), 83% yield, white solid.

'H NMR (500 MHz, CDCl:) § 8.34 (dd, J = 7.9, 1.4 Hz, 1H), 7.99 — 7.94
(m, 1H), 7.85 (ddd, J=8.2, 7.3, 1.4 Hz, 1H), 7.74 — 7.68 (m, 2H), 7.60 (ddd,
J=8.1,7.3, 1.1 Hz, 1H), 7.31 — 7.27 (m, 2H), 2.43 (s, 3H); *C NMR (126
MHz, CDCL) & 161.4, 152.2, 140.7, 136.9, 135.6, 130.1, 129.9, 129.8,
129.2, 129.0, 126.8, 120.7, 101.2, 21.7; IR (neat) 3694, 2914, 2340, 1736,
1601, 1564, 1477, 1320, 1018, 956, 818, 756, 635 cm.

4-Bromo-3-(3-methoxyphenyl)-1H-isochromen-1-one (2e), 60% yield,

white solid.

'"H NMR (500 MHz, CDCls) & 8.35 (dd, J = 7.9, 1.4 Hz, 1H), 8.00 — 7.95
(m, 1H), 7.86 (ddd, J = 8.2, 7.3, 1.4 Hz, 1H), 7.65 — 7.58 (m, 1H), 7.44 —
7.34 (m, 2H), 7.31 (dt, J = 2.3, 1.2 Hz, 1H), 7.03 (dt, /= 6.9, 2.6 Hz, 1H),
3.87 (s, 3H); *C NMR (126 MHz, CDCl3) § 161.3, 159.3, 151.8, 136.8,
135.6, 134.1, 130.0, 129.4, 126.9, 122.3, 120.8, 116.4, 115.1, 101.6, 55.6;
HRMS (ESI): m/z [M+H]" Caled for CisHiiBrOs 332.9946; found
332.9948.
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4-Bromo-3-(3-fluorophenyl)-1H-isochromen-1-one (2f), 74% vyield, white

solid.

'H NMR (500 MHz, CDCls) & 8.36 (dd, J= 7.9, 1.4 Hz, 1H), 7.98 (dd, J =
8.3, 1.1 Hz, 1H), 7.88 (ddd, J = 8.4, 7.3, 1.4 Hz, 1H), 7.65 — 7.59 (m, 2H),
7.53 (ddd, J=9.6, 2.6, 1.7 Hz, 1H), 7.46 (td, J= 8.0, 5.7 Hz, 1H), 7.19 (tdd,
J=8.3,2.6, 1.0 Hz, 1H); 13C NMR (126 MHz, CDCls) & 162.3 (d, J=247.1
Hz), 161.0, 150.5 (d, J= 2.4 Hz), 136.5, 135.8, 134.8 (d, /= 8.3 Hz), 130.1,
130.0 (d, J= 8.2 Hz), 129.7, 127.0, 125.67 (d, J = 3.2 Hz), 120.9, 117.4 (d,
J=21.1 Hz), 117.0 (d, J = 23.6 Hz), 102.1; IR (neat) 3083, 2922, 1737,
1607, 1581, 1485, 1177, 1064, 1022, 976, 918, 756, 682 cm’.

4-Bromo-3-(4-fluorophenyl)-1H-isochromen-1-one (2g), 84% yield, white

solid.

'H NMR (500 MHz, CDCls) & 8.35 (dd, J= 7.9, 1.4 Hz, 1H), 7.97 (dd, J =
8.2, 1.1 Hz, 1H), 7.87 (ddd, J = 8.3, 7.3, 1.4 Hz, 1H), 7.83 — 7.79 (m, 2H),
7.62 (td, J = 7.6, 1.2 Hz, 1H), 7.20 — 7.14 (m, 2H); 3C NMR (126 MHz,
CDCls) § 163.7 (d, J=251.6 Hz), 161.1, 151.0, 136.7, 135.7, 132.1 (d, J =
8.7 Hz), 130.0, 129.4, 129.0 (d, J= 3.4 Hz), 126.8, 120.7, 115.5 (d, J=21.9
Hz), 101.6; IR (neat) 2922, 2328, 1736, 1619, 1504, 1473, 1228, 1158,
1081, 1054, 1018, 961, 836, 758 cm’".
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4-Bromo-3-(4-chlorophenyl)-1H-isochromen-1-one (2h), 78% yield, white
solid.

'H NMR (500 MHz, CDCls) & 8.35 (dd, J = 7.9, 1.4 Hz, 1H), 7.97 (dd, J =
8.1, 1.1 Hz, 1H), 7.87 (ddd, J= 8.2, 7.3, 1.4 Hz, 1H), 7.78 — 7.74 (m, 2H),
7.62 (td, J= 7.6, 1.1 Hz, 1H), 7.49 — 7.44 (m, 2H); '*C NMR (126 MHz,
CDCL) § 161.1, 150.8, 136.6, 136.5, 135.7, 131.3, 131.2, 130.0, 129.6,
128.6, 126.9, 120.8, 101.8; IR (neat) 2923, 2854, 1729, 1618, 1598, 1486,
1228, 1082, 1052, 1014, 961, 830, 758 cm™'.

CO,Me
L,

Br

o
O,N

Methyl 2-(2,2-dibromo-2-(4-nitrophenyl)acetyl)benzoate (2i’), 63% yield,
white solid.

"H NMR (500 MHz, CDCl;3) § 8.26 — 8.20 (m, 4H), 8.02 (d, J= 7.8 Hz, 1H),
7.70 (d, J=17.6 Hz, 1H), 7.63 (t, J= 7.5, 1.2 Hz, 1H), 7.57 (t, J=17.5, 1.2
Hz, 1H), 3.89 (s, 3H); 3*C NMR (126 MHz, CDCl3) & 194.2, 166.4, 148.1,
145.7,139.0, 132.8, 131.2, 130.4, 129.9, 129.3, 128.9, 123.0, 64.5, 53.1.

46



3-([1,1°-biphenyl]-4-yI)-4-bromo-1H-isochromen-1-one (2j), 79% Yyield,

white solid.

'"H NMR (500 MHz, CDCls) § 8.37 (dd, J = 7.9, 1.4 Hz, 1H), 8.02 — 7.98
(m, 1H), 7.93 —7.85 (m, 3H), 7.73 — 7.70 (m, 2H), 7.69 — 7.60 (m, 3H), 7.48
(dd, J=8.4, 6.8 Hz, 2H), 7.42 — 7.37 (m, 1H); *C NMR (126 MHz, CDCl5)
o 161.3, 151.7, 143.1, 140.2, 136.8, 135.6, 131.7, 130.3, 130.0, 129.3,
129.1,128.1, 127.4, 126.9, 126.9, 120.8, 101.5; IR (neat) 3686, 2923, 2340,
1735, 1602, 1564, 1477, 1321, 1076, 1015, 956, 833, 755, 690 cm™'; HRMS
(ESI): m/z [M+H]" Calcd for C21H13BrO, 377.0172; found 377.0161.

OMe
(0]
H

Br Br

Methyl 2-(2,2-dibromoacetyl)benzoate (21’), 55% yield, colourless liquid.

"H NMR (500 MHz, CDCls) & 8.06 (d, J = 7.8, 1.3 Hz, 1H), 7.66 (td, J =
7.5, 1.3 Hz, 1H), 7.61 — 7.55 (m, 2H), 6.37 (s, 1H), 3.94 (s, 3H); '°C NMR
(126 MHz, CDCl3) 8 191.9, 166.3, 138.0, 133.2, 130.8, 130.5, 130.4, 127.6,
53.3,44.3.

4-Bromo-7-fluoro-3-phenyl-1H-isochromen -1-one (2m), 78% yield, white

solid.

"H NMR (500 MHz, CDCl;) § 8.04 — 7.98 (m, 2H), 7.81 — 7.76 (m, 2H),
7.57 (ddd, J=8.9, 7.9, 2.8 Hz, 1H), 7.49 (tt, J=3.7, 2.4 Hz, 3H); '*C NMR
(126 MHz, CDCl3) § 162.6 (d, J = 252.3 Hz), 160.4 (d, J = 3.3 Hz), 151.4
(d, J=3.0 Hz), 133.4 (d, J= 2.9 Hz), 132.6, 130.5, 129.8, 129.6 (d, J="7.8
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Hz), 128.3, 123.7 (d, J = 23.0 Hz), 122.4 (d, J= 8.3 Hz), 115.5 (d, J=23.5
Hz), 100.6; IR (neat) 3074, 2922, 1729, 1605, 1482, 1326, 1243, 1078, 965,
905, 831, 771, 727, 691, 645, 547 cm’'.

4-Bromo-6-chloro-3-phenyl-1H-isochromen-1-one (2n), 81% vyield, white
solid.

"H NMR (500 MHz, CDCl3) & 8.28 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 2.0 Hz,
1H), 7.81 — 7.78 (m, 2H), 7.56 (dd, J = 8.5, 2.0 Hz, 1H), 7.51 — 7.47 (m,
3H); 1*C NMR (126 MHz, CDCls) & 160.5, 153.3, 142.7, 138.3, 132.6,
131.7,130.6, 129.8, 129.8, 128.3, 126.7, 119.0, 100.1; IR (neat) 2922, 2854,
1740, 1599, 1522, 1469, 1310, 1228, 1073, 1041, 966, 691, 652 cm;
HRMS (ESI): m/z [M+Na]® Caled for C;sHgBrClO, 358.9267; found
358.9267.

4-Bromo-5-phenyl-7H-thieno[2,3-c]pyran-7-one (20), 53% vyield, white

solid.

'H NMR (500 MHz, CDCl3) & 7.90 (d, J = 5.2 Hz, 1H), 7.83 — 7.81 (m,
2H), 7.50 — 7.47 (m, 3H), 7.44 (d, J = 5.2 Hz, 1H); 13C NMR (126 MHz,
CDCL) 5 157.4, 153.8, 148.2, 136.8, 132.0, 130.5, 129.6, 128.4, 126.6,
122.8, 96.9; IR (neat) 3112, 3071, 2922, 1749, 1723, 1588, 1492, 1432,
1055, 997, 907, 753, 688 cm’.

6.6. Procedures for post-synthetic transformations
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6.6.1. Procedure for synthesizing 2aa from 2a

Zn, EtOH

reflux, 16 h

Compound 2a (60.2 mg, 0.2 mmol) was charged in an oven-dried vial
equipped with a magnetic stir bar, followed by Zn powder (130 mg, 2 mmol)
and EtOH (3 mL). Then, we refluxed the reaction mixture for 16 h. After
refluxing, the RB was cooled down to rt, and the mixture was filtered
through a celite pad and washed with EtOAc. The filtrate was concentrated
under reduced pressure using a rotatory evaporator, followed by purification
through the SiO> column chromatography eluting with a 2% EtOAc-hexane

mixture.

3-Phenyl-1H-isochromen-1-one (2aa), 81% yield, white solid.

'H NMR (500 MHz, CDCls) & 8.34 — 8.30 (m, 1H), 7.91 — 7.88 (m, 2H),
7.75—-7.71 (m, 1H), 7.53 — 7.43 (m, 5H), 6.97 (s, 1H); *C NMR (126 MHz,
CDCI3) 6 162.5, 153.8, 137.7, 135.0, 132.1, 130.1, 129.8, 129.0, 128.3,
126.1, 125.4, 120.7, 102.0.

6.6.2. Procedure for synthesizing 2ab from 2a [22]

OH
/
Ve
\
OH
Pd(PPh);Cl,

K,CO;, DMF
H,0, 60 °C
2h

In an oven-dried vial containing a magnetic stir bar, we charged 2a (60.2

mg, 0.2 mmol), phenylboronic acid (48.8 mg, 0.4 mmol), Pd(PPh);Cl; (5
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mol%), and DMF (4 mL) were added. The mixture was stirred for half an
hour, followed by adding KoCO3 (55.3 mg, 0.4 mmol) dissolved in water (1
mL). Then, we stirred he reaction mixture for 2 h at 60 °C. The RB was
cooled down to 0 °C, and water (5 mL) was added to the mixture. Extraction
was done by using DCM (3 x 5 mL). The organic phases were washed
(combinedly) with brine, dried over anhydrous Na>SOs, filtered, and
concentrated under reduced pressure using a rotatory evaporator.
Purification through SiO> column chromatography eluting with 2% EtOAc-

hexane mixture gave the product 2ab.

3.,4-Diphenyl-1H-isochromen-1-one (2ab), 53% yield, white solid.

'"H NMR (500 MHz, CDCls) & 8.41 (dd, J = 7.8, 1.4 Hz, 1H), 7.66 — 7.62
(m, 1H), 7.55-7.51 (m, 1H), 7.44 —7.39 (m, 2H), 7.35 — 7.32 (m, 2H), 7.28
—7.17 (m, 7H); 3C NMR (126 MHz, CDCl3) § 162.4, 151.1, 139.0, 134.8,
134.5,133.1, 131.4,129.7, 129.4, 129.2, 129.1, 128.3, 128.2, 128.0, 125.5,
120.6, 117.0.
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Chapter 7
CONCLUSION

Isocoumarins constitute a class of lactones — natural and synthetic both.
They exhibit various biological activities such as anti-oncological, antiviral
[16], antibacterial, antifungal, etc. Their applications are not just limited to
biological activities; they also are very important scaffolds in material
chemistry. Besides, they also happen as synthetic intermediates during the
synthesis of many carbocyclic and heterocyclic compounds. Their wide
application compelled chemists worldwide to develop methods for
synthesizing such scaffolds. In this regard, 4-bromoisocoumarin is an
important compound because it can be converted into a library of 3-
substituted isocoumarins through hydrodehalogenation reactions and 3,4-
disubstituted isocoumarins through cross-coupling reactions. We
hypothesized and successfully developed a method to make this compound
by using hypervalent iodine reagent and alkali metal bromide in a very mild
condition from 2-alkynylaryloate esters. Our reaction was studied over
various substrates and found effective in most. But the effect becomes odd
when the alkyne is attached to any electron-withdrawing group. We have
also optimized a catalytic pathway to make similar moieties, where the
hypervalent iodine reagent is generated in situ. Plausible mechanisms are
drawn for all the methods. Two post-synthetic reactions are also performed

to show the formation of 3-substituted and 3,4-disubstituted isocoumarins.
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V. CHARACTERIZATION DATA

V.l.'H & 3C NMR Spectra
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Figure 68: 'H NMR spectrum of 2m
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89



SK-Ms-186C.1.fid

o sanssmzesac S
n A boanoonnatg !
S ddidoccoxes S
2 DQSBNERARSSE g
e e

CDCI3

Br
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
1 (ppm)
ioure 71 13 .
Figure 71: '°C NMR spectrum of 2n
SK-MS-168R.1.fid o
ComMmO AN NS —C A ®EBE LT o
513006 60 WKLLRX AT LT T LT LT
l\l\l\l\l\l\l\l\l\l\l\l\jl\l\l\l\l\l\l\l\l\\
\ { o
N 0
}J \} S
Br
|
8.0 7.9 7.8 7.7 7.6 7.5 7.4
1 (ppm)
0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
1 (ppm)
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Figure 78: HRMS spectrum of 2b

93



Name
Inj. Vol. (ul)
Data File

AJ-MS-111
1

AJ-MS-111.d

Spectrum Plot Report

Instrument 1
Success

Instrument
IRM Status
‘Comment

Rack Pos.
Plate Pos.

Method (Acq) KAMAL Method.m

- Agilent

Operator

22-12-2022 15:34:16

Acq. Time (Local)
(UTC+05:30)

x106 [+ESI Scan (rt: 0.066-0.468 min, 25 scans) Frag=175.0V A)-Ms-111.d

2.3
2.7
2.1

N
1.9
1.8
17
16
1.5
147
1.3
1.7
LI

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.7
0.1

315.0017

279.0931
288.2894

2710517

301.0749

2510001 2611306
D
250 255 260 265

T T T
270 275 280

Counts vs. Mass-to-Charge (m/z)

H 338.[414
103101 | L_322.9060 333.1880
- T T

T T T ——T T T
285 290 295 300 305 310 315 320

Found

325 330 335 340 345 350

Intens. |
] 14+
315.0015

2000
1500 |

1000

500-|

o

1+
316.9996

1+
316,0049

1+
318.0029

CieHnBrOy, MinH, 315.0015

Calculated

316 317 318
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Figure 82: HRMS spectrum of 2e
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