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ABSTRACT

KEYWORDS: Frame; orthogonal frames; locally compact abelian (LCA) group; unitary
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system; dual Gramian; frame operator; dual framelet; group action;

time-frequency localization; uncertainty principle.

The theory of frames has a very close connection with unitary group representations,
since various structured systems, for example, wavelet and Gabor systems can be realized
as a sequence obtained by applying a family of unitary operators to a particular window
function. Among various frame properties, the “orthogonality or strongly disjointness” of
a pair of frames for Hilbert spaces is a very useful concept introduced and studied by
Balan, Han, and Larson. A pair of frames satisfying the above mentioned property are
termed as pairwise orthogonal (simply, orthogonal). Orthogonal frames play a key role in
frame theory, for example, in construction of new frames from existing ones, constructions
related with duality, in multiple access communications, hiding data, and synthesizing
super-frames, etc.

In this thesis we study the orthogonality of a pair of frames for function systems
generated by regular representations of locally compact abelian (LCA) groups. To the
best of our knowledge, we realize that the characterization results for pairwise orthogonal
frames have not been studied earlier in the context of LCA groups, and are appearing
first time in the literature via the work presented in this thesis.

Precisely, we examine pairwise orthogonality of frames generated by the action of
a unitary representation p of a countable family of closed and co-compact subgroups
{T;};e; C G on a separable Hilbert space L*(G), where J C Z and G is a second

countable LCA group. We consider frames of the form

E(V) = {P(V)%J Y €V, yET, pEPR;, jE J}



for a (not necessarily countable) family ¥ := {1} ;}pep, jes in L*(G). We pay special
attention to this problem by assuming p as the action of a countable family {I';};c; on
L?*(G) by (left-)translation. The representation of I' acting on L*(G) by (left-)translation
is called the (left-)regular representation of I'.

We obtain characterizations of orthogonal frame pairs of the form E(¥) by considering
different situations on a countable family of closed and co-compact subgroups {I';};c; in
G. Along with this, the resulting characterizations are used to construct new frames and
super-frames by using various techniques including the unitary extension principle by Ron
and Shen and its recent extension to LCA groups by Christensen and Goh.

Additionally, we investigate the orthogonality of structured function systems (e.g.,
wavelet, Gabor, and wave-packet systems) over LCA-group setting. Further, we relate
the above-developed theory to the classical case as well as finite dimensional Hilbert spaces
by letting LCA group G of the form R, Z? and Z%, etc.

Lastly, we provide a group-theoretic construction of a finite frame wavelet (simply,
framelet) system associated with an induced group action. Along with this, we investigate
the time-frequency localization properties of the framelet system. We also study the
orthogonality and duality properties of a pair of framelet systems, and its applications in

synthesizing super framelet systems over finite dimensional set-up.
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CHAPTER 1

INTRODUCTION

The thesis has been divided into seven chapters. The purpose of this chapter is to
give some motivations and background knowledge about the research problems discussed
in this thesis. Also, this chapter includes preliminaries for the upcoming chapters. We
begin with a brief introduction to frame theory in Hilbert spaces, which is followed by
motivation and objective of the work done in this thesis.

A frame is defined to be a set of vectors in a Hilbert space that provides robust,
basis-like representations. Frames have found their significant role in signal and image
processing, data compression, and sampling theory with ever-increasing applications to
problems in both pure and applied mathematics, physics, engineering, and computer
science, to mention a few (e.g. see [3,4,29,30,33,34,75,87,88] and references within).

In this scenario, a lot of mathematicians and researchers have contributed in analysing
various interesting properties and results of frame theory in different set-ups (see [7,8, 10,
12,15,21,23,34,40-43,48,57,58,74,76,77,85] and references therein).

In the last two decades, the study of frames in the context of locally compact abelian
(LCA) groups has become the focus of an active research, both in theory as well as in

applications. This is due to the following advantages of the LCA-group approach:

e It unifies the continuous theory (integral representations) and the discrete theory
(series expansions), and enables us to consider key questions in frame analysis from
an abstract angle.

e This abstract approach also provides a unified way to the analysis on the four
elementary groups R, Z, T, Z,, and their higher dimensional variants.

e Since in signal processing one often considers products of the groups R, Z, T,
Z., which are also LCA groups, the approach is very useful in solving practical
problems related to signal and image analysis. For example, multichannel video
signal involves the group Z¢ x Z,,, where d is the number of channels and m the

number of pixels of each image.



In view of the above advantages, several researchers have made remarkable contributions
in establishing the theory required to analyse frame properties on LCA groups (see [10,
12,15,19,28, 33, 40,42, 59,60, 63,64, 77,89] and various references therein).

Among these properties, the “orthogonality or strongly disjointness” of frame pairs
in Hilbert spaces is very useful. It was initially introduced and investigated by Han and
Larson [51], and Balan [4] in the context of multiplexing. The aforementioned property
of a pair of frames says that the ranges of the analysis operators for the two frames are
orthogonal. In this case, the corresponding frames are termed as pairwise orthogonal
(simply, orthogonal). The orthogonality of frame and Bessel sequences plays a key role in

frame theory, for example:

e In construction of new frames from existing ones, constructions related with duality,
in multiple access communications, hiding data, and synthesizing super-frames and
frames, etc. (see [3,4,35,40,51,67,89] and various references within).

e This property is used (by Han and Larson in [52]) as an essential ingredient in

examining the density and connectedness results of the wavelet frames.

Inspired by the wide applications of pairwise orthogonal frames, a lot of mathematicians
and engineering scientists have contributed in developing different aspects of this natural
geometric concept in frame theory over various function spaces (see [35,36,40,42,50-52,
63,67,89] and various references therein).

In this scenario, the main concern of the present thesis is to study pairwise orthogonal
frames for Hilbert spaces associated with LCA groups. Our focus is to investigate and
explore the orthogonality of frame pairs for function systems generated by regular repre-
sentations of LCA groups. In this direction, we obtain characterizations and constructions
of orthogonal frame pairs for various function spaces on LCA groups. Additionally, we
relate the above developed theory to the classical case as well as finite-dimensional Hilbert
spaces by letting LCA groups of the form R, Z? and Z%, etc.

To the best of our knowledge, we realize that the characterization results for pairwise
orthogonal frames have not been studied earlier in the context of LCA groups, and are
appearing first time in the literature via the work presented in this thesis. The results
obtained in the thesis are an interesting addition to the recent growing body of literature

on frames generated by structured families of functions on LCA groups.
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1.1. Motivation and objective

Literature says that the theory of frames has a very close connection with unitary
group representations, since various structured systems, for example, wavelet and Gabor
systems can be realized as a sequence obtained by applying a family of unitary operators
to a particular window function. In this direction, several researchers have contributed
in analysing various interesting properties and results of frame theory in different set-ups
(e.g. see [7,10,12,15,59] and various references therein).

Motivated by this, our concern in the thesis is to examine the orthogonality of frames
for subspaces of a separable Hilbert space H that are invariant under the action of unitary
representations of a closed and (a not necessarily discrete) co-compact abelian group
I' C G on H, where G is a second countable LCA group. Note that a subgroup I' in G
is called co-compact if the quotient group G/I' is compact, whereas I in G is said to be
a uniform lattice if in addition, I' is discrete. More specifically, in the present thesis we
consider unitary representations of a countable family of co-compact subgroups {I';};es
acting on L?(G) by left-translation, where J is a countable index set. Such unitary
representations are called (left-)reqular representations of {I';}jc.

In connection with this, we mention that our work on orthogonal frames over transla-
tion invariant (TI) spaces is actually inspired by the utility of recent notion on T systems
in LCA-group setting, which is given by Bownik and Ross in [10]. We also consider orthog-
onality in the context of generalized TI (simply, GTI) frame systems, which is a class of
systems introduced recently by Jakobsen and Lemvig in [59]. The notion of GTI systems
connects the well-established discrete frame theory of generalized shift-invariant (GSI)
systems and its continuous version. Therefore, the study of pairwise orthogonality of GTI
frame systems represents a unified way to deduce similar results for several other function
systems including the case of GSI systems studied by Kutyniok and Labate in [64], and
TI systems considered by Bownik and Ross in [10].

In view of the above discussion, note that the work of Kutyniok and Labate [64]
presented a combined theory for many of the known function systems (e.g., Gabor systems
and GSI systems on RY) by introducing the notion of GSI systems in the LCA-group
setting. This approach is an extension of the theory of Hernandez, Labate and Weiss [53],

and Ron and Shen [81] on GSI systems in L*(R9).



Another significant fact which we wish to remark here is that among all function
systems mentioned above, SI and GSI systems are based on translation along uniform
lattices while TT and GTI systems, respectively, generalize the concept of SI and GSI
systems for the continuous case by considering translation along co-compact subgroups
of an LCA group. The motivation behind the consideration of co-compact subgroups for
TI systems in [10] and GTT systems in [59] is related to the necessity of overcoming the
limitation on the existence of uniform lattices for an LCA group, which says there exist
LCA groups that do not contain any uniform lattices, for example, the p-adic numbers
Qp, whose only discrete subgroup is the neutral element which is not a uniform lattice.
Another example is the p-adic integers which have only trivial examples of uniform lattices
but have a lot of non-trivial co-compact subgroups. Hence, the concept of co-compact
subgroups in [10] and [59] generalizes the work on function systems with translation along
uniform lattices considered in [19] and [64], respectively.

At this juncture, it is pertinent to note that in the Euclidean setting, Weber in [89]
studied orthogonal frames of translates with various applications, and later, Kim et al.
in [63] discussed such frames in a general shift-invariant subspace of L?*(R?), while Lopez
and Han in [67] described the orthogonality of discrete Gabor frame pairs in (2(Z%).
Therefore, the motive of the proposed thesis is to extend the characterization results from
the Euclidean case [89], discrete setting [67], and from the case of uniform lattices [63],
to the set-up of (not necessarily discrete) co-compact subgroups over LCA groups. Along
with this, the investigation of frame properties for structured function systems in different
settings have got special attention (see [2,4,12,28,30,33,60,67]). Hence, we got motivated
to study the orthogonality of such systems over LCA-group setting.

Since practical life applications mainly require frames in finite setting, this motivates
us to study finite time-frequency localized constructions of frame and wavelet systems. It
is known that a time-frequency localized basis plays an important role in extracting both
time as well as frequency information of a given signal, and the uncertainty principle helps
us to understand how much local information in time and frequency we can extract by
using the above-mentioned basis. The theory of uncertainty principle related to the pair of

bases and its applications has been developed by various authors (see [21,24,37,62,65,82]).



1.1.1. Objective of the thesis

The present thesis investigates the orthogonality of frame pairs generated by the
action of a unitary representation p of I'; on a separable Hilbert space L*(G), where for
each j € J C Z, we let I'; to be a closed and (a not necessarily discrete) co-compact
subgroup in a second countable LCA group G with Haar measure denoted by ug, and
the unitary representation p : I'; — U(L*(G)); v+ p(v) that acts by a (left-)translation,
ie., p(7)f = f(- — ) for all f € L*(G). Here, note that U(L?*(G)) represents the group
of linear unitary operators over L?(G). Further, for each j € J, by assuming P; as a (not

necessarily countable) index set, consider W; := {1, ; }pep, C L?(G), and define a family
EY(05) = {p(1) ¥y v €Ty, p € P} C L*(G).

Precisely, we consider frames of the form ({V¥;};e7) := U, EYi(¥;) which coincides with
the recent notion of GTT system introduced in [59]. Note that the GTI system reduces to
TI system discussed in [10], if I'; = I for each j € J. However, if each P; is countable and
each I'; is a uniform lattice in a GTI system, we arrive at GSI system considered in [64].
The main focus of this thesis is to study the orthogonality of frame pairs in the context
of above-mentioned systems over LCA groups. In view of this, the main objectives of the

present thesis are as follows:

e To characterize the orthogonality of frame pairs of the form ({W;};c;) by consid-
ering different situations on J C Z, {P;};e; and {I';},;c;. By using the resulting
characterizations, we wish to provide constructions of new frames and super-frames.

e To investigate the orthogonality of structured function systems (for example, wavelet,
Gabor, and wave-packet systems) over LCA-group setting.

e To establish a relation between the above-developed theory and the classical case
as well as finite set-up by letting LCA group G of the form R? Z4¢, Z4,, etc.

e To provide a group-theoretic construction of a time as well as frequency localized
finite orthonormal wavelet system and its generalization to frame wavelet (simply,
framelet) system associated with an induced group action. Additionally, we are
interested to examine the time-frequency localization properties of these systems
via uncertainty principle.

e To study the orthogonality and duality properties of a pair of framelet systems,

and its applications in synthesizing super framelet systems over finite set-up.
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1.2. Preliminaries

In this section, we set-up some notation, assumptions, and pre-requisites used for the
remaining chapters. We first review some basic results from Fourier analysis on locally
compact abelian groups. Then, we recall some basic definitions and results from frame
theory in Hilbert spaces. Throughout this thesis, we shall use the following notation:
the symbols N, Z, R and C, denote sets of positive integers, integers, real numbers and

complex numbers, respectively, and Ny := N U {0}.

1.2.1. Background on LCA groups

In this part of section, we refer to the classical books [12,25, 55, 56, 83| along with
research papers [10, 19,59, 60, 64] for the terminology used and for various results and
properties related to harmonic analysis over locally compact abelian groups.

Here and throughout, let G denote a second countable locally compact abelian (LCA)
group, with the additive group composition, denoted by the symbol “+”, and the neutral
element 0. Note that the second countable property of G is equivalent to saying that G
is metrizable and o-compact.

It is well-known that on every LCA group G, there exists a unique Haar measure,
that is, a non-negative, regular Borel measure, denoted as p (not identically zero) which
is translation invariant, i.e., ug(E +x) = ug(E) for every element z € G and every Borel
set £ C G. It should be noted that the Haar measure of a locally compact group is unique
only up to a positive multiplicative constant.

Denote by @, the set of all continuous characters, that is, all continuous homomor-
phisms from G into the torus T = {z € C : |z| = 1}. Then, under the pointwise multipli-
cation G forms an LCA group with unit element 1, that is called the dual group associated

to G, when equipped with the compact convergence topology and the composition

(v +7)(@) = y(@)¥(2), 7,7 €G, €G,

and thus possesses a Haar measure that we denote by pg5. It turns out that there exists a
topological group isomorphism mapping the group @, that is, the dual group of @, onto
G. More precisely, G = G [25, Pontryagin duality theorem|. Note that if an LCA group

G is discrete then G is compact, and vice versa.
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Given an LCA group G with Haar measure pq, the integral over G is translation

invariant in the sense that,

/ffff+yduc: /f e

for each element y € G and for each Borel-measurable function f on G. For 1 < p < oo,

we define the space LP(G, ue) (simply, LP(G)) as follows:
LP(G) = {f : G — C is a measurable function and / |f(x)[Pduc(x) < oo}.
Since G is a second countable LCA group, LP(G) is separable, for all 1 < p < co. In this

thesis, we will focus only on p = 2 case. Here, note that L?(G) is a Hilbert space with

inner product given by

(f,9) /f g(x)dug(x), forall f, g€ L*(G).

Let the Fourier transform ~ : LY(G) — Cy(G ) f— f , be defined by the operator

Ff( /f E(@)dug(z), €€ G,

where Cy(G) denotes the functions on G vanishing at infinity. If f € L1(G), f € L(G),
and the measures on G and G are normalized appropriately so that the Plancherel theorem

holds, then the inverse Fourier transform can be defined by

fla) = F @) = [ FO6@ina(e). €.
G

Note that the Fourier transform F can be extended from L'(G) N L*(GQ) to a surjective
isometry between L2(G) and L2(G) [25, Plancherel theorem]. Thus, the Parseval formula
holds and is given by

(f.g) = / f(2)g@)dua(z) = / 77 dua(€) = (1.9). for all f.g € L*(G).

(o))

The following definitions will be used in the sequel: Given G an LCA group, we call
a subgroup I' in G as co-compact if the quotient group G/T" is compact, whereas I' in G

is said to be a uniform lattice if in addition, I' is discrete.

7



Let I' C G be a closed subgroup of an LCA group G. Then, the quotient G/T" is
a regular topological group. Further, we note that it is a second countable LCA group
under the quotient topology by using the fact that G is second countable.

Note that for a subgroup I' of an LCA group G, the symbol I't denotes the annihilator
of I, which is a subgroup of G defined by

L= {teG:¢x)=1, forallz el}.

It follows from the definition of the topology on G that the annihilator T't is a closed
subgroup in G. Moreover, if T is closed, then (I't)+ = I" and the following hold:

—

(i) there exists a topological group isomorphism mapping G/T" onto I't, that is, we
have é/\F ~

ii) there exists a topological group isomorphism mapping G/T+ onto T , that is, we
(i)

—

have G/T+ =T,

In the rest of this thesis, unless mentioned otherwise we assume I' to be a closed and
co-compact (not necessarily discrete) subgroup in G. Note that the symbol ur represents
a Haar measure on the subgroup I'. Since, 't is topologically isomorphic to the dual of
quotient group G/T', that is, T+ = (G//\F), therefore, T" is co-compact in G if, and only
if, T+ is a discrete subgroup of G (for more details, see [10]). Thus, T will always be
discrete in our case, and hence preserves a counting measure.

Let T (the dual group of I') be an LCA group with measure denoted by ps. Observe
that there exists a topological group isomorphism mapping G /T+ onto r. Hence, by

choosing a measure jig /rL On G /T appropriately, Weil’s formula [25] can be stated as

) [Fedua© = [ X e+ adngpue+) = [ 3 e+ alduste)
G

a/rt aelt 5 aelt

for all f € L}(QG).

Note that the dual group G=0a [+, therefore, every & € G has a unique repre-
sentation w + « for some w € Q and o € I't. Here Q is a pg-measurable subset of G
and represents a Borel section of I'* in G , also known as a fundamental domain of G /T,
whose existence is guaranteed by [27]. Moreover, it is relevant to note that every element
vin I = G/T* can be thought of as an element in € as all cosets in G/T't = T' are of the

form w + 't for some (unique) w € Q. For more details, we refer [10, Section 3].
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1.2.2. Theory of frames

In this section, we recall some definitions and basic properties about continuous frames
for Hilbert spaces. Such frames were introduced independently by Ali et al. [1] and Kaiser
[61]. For a brief and self-sufficient introduction to continuous frames, we refer [38,78]. For
more details on general theory and applications of frames and Bessel sequences, we refer
to [1,2,10,12,19,28,33,34,51,60,61,79,84]. For theory of frames generated by unitary
actions of LCA groups, we refer to the research articles [7,8,58,74] and various references
therein. Note that for basic definitions and theory on finite frames, we use the books by

Christensen [12], Casazza et al. [18], and by Han et al. [50].

Definition 1.1. Let H be a complex Hilbert space, and let (M, >,,, ar) be a measure
space, where »,  denotes the o-algebra and jy the non-negative measure. Then, a

family of functions { f,, }men in H, is called a continuous frame for H with respect to (M,

(1) m — f,, is weakly measurable; that is, for all o € H, the mapping M — C, m
(h, fm) is measurable, and

(2) there exist constants 0 < oy < ap (called continuous frame bounds) such that

(1.2) ai||h|? < /|<h, Fo) Pdpns (m) < asl|B||?, for all h € H.
M

A continuous frame { f,, }men is called tight if we can choose a; = g, and tight frame
with frame bound 1 (or, Parseval) if a; = ag = 1. The family { f,, }men is called Bessel
with constant oy as its Bessel constant if the right side of inequality in (1.2) holds. In

this case, we say that the family {f,,}menr satisfies the Bessel condition.

Since this thesis deals with only separable Hilbert spaces, we can use Petti’s theorem
to replace weak measurability of m — f,, with (strong) measurability with respect to the
Borel algebra in H.

If pps is a counting measure and M = N, then {f,, }menr reduces to a discrete frame.
In this sense, continuous frames can be realized as the generalization of discrete frames.
Recall that for a countable index set J, a sequence { f,, } e in a separable complex Hilbert

space H is called a discrete frame for H if there exist frame constants 0 < a < § < oo

9



such that for every f € H, we have
llfIB, < YIS Sl < BB
neJ
Here onwards, for the sake of simplicity, we will call continuous/discrete frames as just
frames by suppressing the term continuous/discrete.
Given the family of functions F := { f,,, };nens, which is Bessel with respect to a measure

space (M, >, finr), define the synthesis operator O : L*(M, pupr) — H defined by

<®F907h> = /<fWL7h‘>()0md,uM<m)7 Y = {(pm}mGM € L2(M7 ILLM>7 h S H7

M

which is a well-defined, linear and bounded operator [78, Theorem 2.6].
Further, the adjoint of the synthesis operator, known as the analysis operator of F, is

defined by O3 : H — L*(M, pps) with
(©3h)(m) = (h, fn), m € M.

Given two Bessel families F and G := {g,, }men with respect to the measure space
(M, >4 tear) for H, define the mized dual Gramian operator corresponding to F and G

as

(1.3) ©c65 i H > Hi s [ (b, fn)guclins(m).
M
Gabardo and Han in [38] defined a dual frame for a continuous frame as follows:

Definition 1.2. Let F and G be two Bessel families with respect to the measure space

(M, > s tear) for H. We call G a dual frame for F if the following holds true:

(14) <h1,h2> = /(hl, fm)<gm, h2)duM(m), for all hl, h2 ceH.
M

In this case, F and G are actually (continuous) frames, and hence (F,G) is called a dual
frame pair. If O and O¢g denote the synthesis operators of F and G, respectively, then
(1.4) is equivalent to OO = I3, that is, an identity operator on #H. In this case, we say
that the relation

h = /(h, fn)Gmdpnr(m), for all f € H,

M
holds in the weak sense. This relation is generally known as a reproducing formula for

feH.
10



Next, we define the orthogonality of a pair of Bessel families (frames) as follows:

Definition 1.3. Let F and G be Bessel families (frames) with respect to (M, )", tiam)
for H. Then, if the mixed dual Gramian operator of F and G (as defined in (1.3)) is zero,
that is, OO = 0, the Bessel families (frames) are said to be pairwise orthogonal (simply,

orthogonal). In other words, we say that F and G satisfy the orthogonality property.

1.3. Structure of the thesis

In Chapter 2, by investigating the dual Gramian analysis tools of Ron and Shen
through a pre-Gramian operator over the set-up of LCA groups, we study and characterize
a pair of orthogonal frames generated by the action of a unitary representation p of a co-
compact subgroup I' C G on a separable Hilbert space L?(G). We pay special attention
to this problem in the context of translation invariant space by assuming p as the action
of T' on L*(G) by (left-)translation. As an application, we illustrate our results for the

case of co-compact Gabor systems over LCA groups.
The results of Chapter 2 are from the accepted research article:

Gumber, A., Shukla, N. K. (2017), Pairwise orthogonal frames generated by reqular

representations of LCA groups, Bulletin des Sciences Mathématiques (Elsevier).

In Chapter 3, we give necessary and sufficient conditions for the orthogonality of two
Bessel families when such families have the form of GTI systems over a second countable
LCA group G. Consequently, we deduce similar results for several function systems
including the case of TI systems, and GTT systems on compact abelian groups. We apply
our results to the Bessel families having wave-packet structure (combination of wavelet as
well as Gabor structure), and hence a characterization for pairwise orthogonal wave-packet

frame systems over LCA groups is obtained.
The results of Chapter 3 are from the published research article:

Gumber A., Shukla N. K., Orthogonality of a pair of frames over locally compact
abelian groups, J. Math. Anal. Appl., 458(2) (2018), 1344-1360.

In Chapter 4, we have obtained a general construction method for arbitrarily many

pairwise orthogonal GSI frames by utilizing the unitary extension principle (UEP) of
11



Christensen and Goh in [15]. The method is then applied to study constructions of frame

pairs over super-spaces.
The results of Chapter 4 are from the following manuscript:

Gumber A., Shukla N. K., Constructions of pairs of generalized shift invariant or-

thogonal frames, under preparation.

In Chapter 5, we first investigate a finite collection of functions in ¢?(Z%) that
satisfies some localization properties in a region of the time-frequency plane. For this, a
group-theoretic approach based on the complete digit set associated to an invertible matrix
is used. It leads to the construction of an orthonormal wavelet system (ONWS) which is
concentrated in time as well as frequency. We study and characterize the ONWS. Further,

some results on the uncertainty principle corresponding to the ONWS are obtained.
The results of Chapter 5 have been appeared in:

Gumber A., Shukla N. K., Uncertainty Principle corresponding to an Orthonormal
Wavelet System, Appl. Anal., 97(3) (2018), 486-498.

In Chapter 6, we first induce an action of a topological group G on 3(Z4,) from a
given action of G on the space C of complex numbers. Then, for each g € G, we introduce
a framelet system (g-framelet system or g-FS) associated with an induced action of G on
(%(Z4;), and a super g-FS for the super-space in the same set-up. By applying the group-
theoretic approach based on the complete digit set, we characterize the generators of two
g-framelet systems (super g-framelet systems) such that they form a g-dual pair (super
g-dual pair). As a consequence, characterizations for the Parseval g-FS and the Parseval
super g-FS are obtained. Further, some properties of the frame operator corresponding
to the g-FS are observed, which results in concluding that its canonical dual preserves

the same structure.
The results of Chapter 6 are from the published article:

Gumber A., Shukla N. K. (2017), Finite dual g-framelet systems associated with an
induced group action, Complex Anal. Oper. Theory, DOI:10.1007/s11785-017-0729-6.

Finally, Chapter 7 deals with concluding remarks and provides some directions for

future study.
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CHAPTER 2

PAIRWISE ORTHOGONAL FRAMES GENERATED BY
REGULAR REPRESENTATIONS OF LCA GROUPS

The purpose of this chapter is to study and characterize pairwise orthogonal frames
generated by unitary representations of LCA groups. For this, we first investigate the dual
Gramian analysis tools of Ron and Shen [79] by introducing the notion of a pre-Gramian
operator (in Section 2.2) associated with Bessel families generated by unitary actions of
co-compact subgroups of LCA groups. Using this approach, our main focus is to examine
the orthogonality of frames (in the sense of Definition 2.3) for subspaces of a separable
Hilbert space H that are invariant under the action of unitary representations of a closed
and co-compact abelian group I' C G on H, where G is a second countable LCA group.
Note that the above mentioned theory is developed by using a (left-)regular representation,

which is a unitary representation of I' acting on L*(G) by (left-)translation.

2.1. Introduction

Let H be a separable Hilbert space. Then, by a unitary representation of I' C G, we
mean a pair (p, H) with p as a group homomorphism of T" into U(#), that is, the group
of linear unitary operators over H. We assume that the map I' x H — H; (v, h) — p(7)h
is continuous. Note that a subspace of H that is invariant under the action of unitary
representation p of I' on the Hilbert space H is called (p, I')-invariant. To be precise about
our concern in this chapter, we let I' 5 v +— p(y) € U(H) as a unitary representation of I'
on H, and wish to study a very interesting research problem regarding the orthogonality

of frame pairs for (p, I')-invariant subspaces in H. The problem can be stated as follows:

(Q1) For which families ¥ and ® in H do the collections

() = {p(My:v el e ¥} and (D) :={p(1)p:v€el,pecd}

——H
form a pair of orthogonal frames for span{¥) | that is, for the closed linear span

of (¥), which is indeed the smallest (p,T')-invariant subspace in H?



In connection with this, we mention that by considering p as the action of a closed, co-
compact subgroup I' on H by left-translation, the main focus of this chapter is to explore
the question (Q1) for the (p, I')-invariant subspaces in the context of LCA groups. Note
that the representation of I' acting on H by (left-)translation is called the (left-)regular
representation, and the invariant subspaces of this representation are called translation-
invariant (TI). At this juncture, it is pertinent to note that our work extends the results
from the discrete setting G = Z" and from the case of uniform lattices in L?(R™), studied
respectively by Lopez and Han in [67] and Kim et al. in [63], to the set-up of (not
necessarily discrete) co-compact subgroups over LCA groups.

For the rest of this chapter, we consider H as L?(G). Unless mentioned otherwise we
assume [' to be a closed and co-compact (not necessarily discrete) subgroup in G. Now,

we let the unitary representation as a map
p:T = ULG)): 7+ p(7)
that acts by a left-translation, that is,

p(y)f = f(- =), forall f e L*G),

and define E' (¥) to be the family

(2.1) {p(M v €T,¢ € U} = EN(V),

which is generated by a countable subset ¥ in L*(G).
Now, we proceed to formulate the statement of the question (Q1) in terms of TI
subspaces which were introduced and studied by Bownik and Ross in [10]. For this, we

observe the following definition:

Definition 2.1. Suppose that I' C G is a closed, co-compact subgroup of G. Let V' C
L*(G) be a closed subspace. Then

(i) we say that V is (p,I')-invariant or more appropriately translation-invariant (T1)
under I, in short I-T1, if f € V implies p(y)f € V for all v € T.

(i) we call E'(W), that is, the system generated by ¥ (defined in (2.1)), as a ['-T1
system with its closed linear span in L?*(G) denoted by

span(ET (D))" @ = 57(w)

as a ['-T1 space which is the smallest closed subspace in L?*(G) containing E' ().
14



(iii) for ¥ = {¢} as a singleton subset in L?(G), let the principle translation-invariant
(C-PTI) system be given by EY () := {p(y)¢ : v € T'}. In this case, the family
WLQ(G) =: ST(v) is called a principle translation-invariant (I-PTI) space
generated by .

(iv) in case I' is a uniform lattice, the term translation-invariant is replaced by shift-

invariant (SI).

Now, we state the main problem associated with (Q1) in the context of I'-TT systems
over LCA groups. For this, here and throughout, let ¥ := {1, },c» and ® := {p,},e» be
subsets in L?(G), where £ is a countable index set. Then, by assuming ST (¥) = ST (®),

the main problem that we investigate in the remainder of this chapter is:

(Q2) To find necessary and sufficient conditions on the above discussed generators U and
® in the Fourier domain such that the T-TI systems EY (V) and EY(®) as defined
n (2.1), form a pair of orthogonal frames (in the sense of Definition 2.3) in the
[-TT space ST ().

For answering the above question, we introduce the notion of pre-Gramian operator
associated with a T-T1I space ST (¥) and fiberize the analysis, synthesis and mixed dual-
Gramian operators corresponding to the T-TT systems E'(¥) and E'(®) in the next
section. Note that the fiberization is helpful in analysing various frame properties of the
I'-TT systems.

In this scenario, this chapter is devoted to the study of the orthogonality property
of a pair of frames for I'-TI spaces over LCA groups by using the approach of a pre-
Gramian operator. The major tool used here is the dual Gramian analysis of Ron and
Shen [79] over the above set-up. Note that the novelty of our results in this chapter lies in
understanding that we do not require I' to be discrete. As a consequence, our results for
two I'-TT systems to be pairwise orthogonal frames are new even in the classical setting
of G =R", where the results of [63] are not applicable. Moreover, it also applies to LCA
groups G that do not have uniform lattices such as the p-adic field, Q,.

Along with this, we apply our results on systems with co-compact Gabor structure to
obtain a characterization so that the above-structured systems become pairwise orthogo-
nal I'-TT Bessel (frame) systems. For more details on the definition of such systems, refer

Section 2.2 of this chapter.
15



2.2. Fiberization of operators associated with I'-T1 frame systems

The current section deals with the development of the necessary machinery required
to answer the question (Q2) imposed on the orthogonality of two I'-TI frame systems in

the introduction part. For this, let

L*(T,*(2)) := {measurable h : T' — (*(2) with ||h]|* := / Hh(’)/)H?z(y)d/,LF(’}/) < o0},

be the Hilbert space of ¢?(2)-valued square integrable functions over I with inner product

(0,02) = [ 0 ).120) o i)

T

for all i := (h'(7))yer in L*(T',£*(2)) with i = 1,2, and h'(y) := (h(7))pes in £*(P)
for each 7. Note that I' C G is a second countable locally compact abelian (LCA) group.
Thus, I' is o-compact, and hence o-finite. Further, &2 is a countable index set, therefore,
LA(T,(3(2)) = L*(L x T) since (*(Z) is separable. For more details on this, we refer
to [6, Proposition Appendix A.3.]).

2.2.1. I'-TI frame systems and associated operators

In this subsection, we give the following definition of a I'-TT system (see [10] for more
details) to be a frame, and study various operators associated with such systems. We
refer to [8,12,60, 78] for the general definitions of frames and associated operators along

with other basic concepts of frame theory.

Definition 2.2. The I'-T1 system E' (V) is called a I'-TT frame system for ST (), if there
exist frame bounds 0 < A < B < oo such that the following relation is satisfied:

22) AP < Z/ ) 2dpr () < B|f|I2, for all f € ST(W).

peEP T

A T-TTI frame system E" (¥) is called tight T'-TI frame system for ST (¥) with frame bound
A if we can choose A = B. Note that EY(¥) is a ['-T1 Bessel system for ST (V) with B as

its Bessel constant if the right side of inequality in (2.2) holds. Similarly, we can define
all the above terms for the case of ST(¥) = L?(G).

Further, let EY'(¥) be a I-TI Bessel system for L?(G). Then, for h := (h(7))er in

LA(T,02(22)) with h(7y) := (hp(7))per in 2(P) for each v € T, the synthesis operator
16



Oy associated to ET(¥) is defined by

(2.3) Ou 1 AT, () = LXG); hs Y / (1) () i (7).

PEL
Note that Oy is well-defined, linear and bounded [78, Theorem 2.6], and hence its adjoint
(2.4) 0% : L) — LA, A(P)); frs (((ﬂp(v)%))pe@)ver,
is also linear and bounded, called the analysis operator corresponding to E'(¥). Now,
by composing the analysis and synthesis operators of two I'-TI Bessel systems E'(¥) and
EY(®), define another bounded operator called mized dual-Gramian operator as follows:

(2.5) 0405 1 L3(G) = LG); frr Y / (1)) oY)l ().

peES T

Definition 2.3. Let E'(¥) and E'(®) be I'-TT Bessel (frame) systems in the I-TT space
ST(¥) = ST(®). Then, if the operator Og07% as defined in (2.5) is the zero operator, we
call EY(¥) and E'(®) as pairwise orthogonal (simply, orthogonal) T'-TI Bessel (frame)
systems. In this case, we say that the I'-TI Bessel (frame) systems satisfy the orthogonality

property.

In the above definition, it should be noted that the desired equality S*(¥) = ST (®)

also poses some conditions on the families E¥(¥) and ET(®).

2.2.2. Pre-Gramian operator associated with I'-TT systems

In this part, we extend the notion of pre-Gramian of Ron and Shen [79] to the case

of LCA groups. The following is an important observation needed in the sequel:

Remark 2.4. We remark that for a countable family ¥ = {¢, },c» in L*(G), E*(¥) is a
[-TT Bessel system in S'(¥) with bound B if, and only if, we have

Z Z |?Zp(w +a)? < B, forae weqQ.

o€l peZ?
It is pertinent to note that the above fact can be proved easily by applying the technique

used for the characterization result on frames obtained in [10].

Pre-Gramian operator: Now, we are ready to associate E' (W) with a collection of ‘fiber

operators’. The fibers are indexed by 2. We have the following definition:
17



Definition 2.5. For a.e. w € , the fiber qu’(w), called the pre-Gramian operator
(simply, pre-Gramian) associated with a I'-TT Bessel system E'(¥), is defined by

jg\l’(w) (D) — 62(FL);

= (Jg (w))n = { > " np) iy (w + a)} :

peP

Note that Remark 2.4 and the upcoming calculations show that the Bessel property
of EY(W) plays a very important role in the well-definedness of the pre-Gramian operator.
Therefore, for the rest of this chapter, we assume that E¥(¥) and E'(®) are I'-TI Bessel
systems in S (V) with S*(¥) = ST(®).

We mention that a family of the form {7 (w)}wEQ is called a collection of fiber
operators, also known as fiberization of the synthesis operator Oy (as defined in (2.3))
corresponding to the I-TT Bessel system ET(¥). Hence, {Jg'(w)},_, can be regarded
as the synthesis operator of E'(W¥) represented in Fourier domain. This fact has been
broadly studied for the case of L*(R?) by Ron and Shen in [79].

For a.e. w € €, clearly jg‘l’ (w) is a linear operator. Further, it is a well-defined
and bounded operator since in view of Cauchy-Schwarz inequality and Remark 2.4, the
following estimates hold:

1TE @)l = 3" 3 np)ip(w + a)|*

acl't pe&

<SPS [pw + a)P)

aclt peES

< o0, forallp€ *(#)and a.e. w € Q.

Furthermore, JJ (w) can be associated with a matrix whose rows are indexed by I'*t,
and whose columns are indexed by &. For each w € , let the symbol Mg (w) denote
the matrix associated to Jg (w) with (o, p) € T+ x & entry defined by @/b\p(w + «), and
hence Mg (w) = (zzp(w - a)) . In this case, (Mg (w))* represents the adjoint of

aelt pey
¥ (w) with (MZ(w))* = (A ) .
ME(w) with (ME@) = (Flw+a)
Since Jg (w) is linear, well-defined, and bounded, we define the adjoint of J3 (w) as

(g (W) (IF) = 2(2);

= (T @) = ({0, {Tplw + )}, )

18
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which is well-defined because {Jp(w + oz)} belongs to ¢2(I't) for each p € &2, and

acl+

(T @) ) o) = (0. @) = (0. Yo nwdpw+a)} )
peP
Z<_ ){9, {@Dp W+ a)taert)

()

is satisfied for all n € (*(22). It follows that (JJ (w))" is a bounded operator in view of
Cauchy-Schwarz inequality, Remark 2.4 and the fact that {zzp(w + a)}a is an element
in (2(I'*) for each p € 2.

Further, we term the collection {(Jy (w))*}w cq as the fiberization of the analysis

ert

operator ©% (as defined in (2.4)) corresponding to the I-TT system E'(¥).

Now, for each w € €, by the notation G¥(w) = (JF (w))" TF (w), we denote the
Gramian operator corresponding to E'(¥), and, by the symbol G¥®(w), we define the
mized dual-Gramian operator associated to the T-TI systems E' (V) and E'(®) in terms

of the pre-Gramain, where
G (w) := Jg (w)(Ig (w))" : (TF) — (1)

is a bounded operator by observing that the pre-Gramian JQ‘I’ (w) is bounded, and the

computation
G w)|* = 17 () (T () W) I < o0, for all ¥ € ()
Further, note that for all ¥y, 9, € (2(T'1), we can write
(@ w)v1,02) = (@) )or. (T (w)")v2)
=3 B+ )} ) (P (B0 + B} g ).

peEP

Therefore, we get

(2.6) <(Gq’® 1917192> Z Z Z 791 wp(w-i-ﬂ)@p(w"i‘a)

pEP ael't pelt

We say that the collection {G"®(w)}, _, is the mizved dual-Gramian fiberization of the

operator O40%, (as defined in (2.5)) corresponding to the I-TT systems E' (V) and E(®).
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2.2.3. Fiberization in terms of the pre-Gramian operator

In this subsection, we first focus in proving some results which are required for the
fiberization of analysis and synthesis operators associated with E'(¥). For this, next we
define the space LQ(f,éz(W)) which appears as the image under the Fourier transform

(FT) of the space L*(T, (2(2)):
L*(T, 2(2)) := {measurable ¢ : T — (*(2) with ||¢||? ;:/Aug(v)\ﬁz(%duf@) < ool
I

Observe that L2(T', (2(2?)) is a Hilbert space of £2(2)-valued square integrable functions

over T with inner product
(€. = [ (01O andir(o)

for all ¢ := (C*(v)),op in LA(T, 3(P)) with i = 1,2, and ((v) = (C(v))pesr in £2(P) for
each v. Since every element v in r~a /T can be considered as an element in a funda-
mental domain Q C G of the discrete subgroup I't, we identify the space L(T', (2(2))
with L?(2, ¢*(Z?)) for the remainder of this chapter.

Proposition 2.6. Let EY (V) be a T-TI Bessel system in ST (V) with ©%, as its analysis
operator (defined in (2.4)). Forp € & and f in L*(G), let (0% f)p :== ((f, p(7)0p))ver -

Then, the following assertions are true:

—

(i) For eachp € &, the FT of (04 f)p, that is, (@*\I,f)p : Q0 — C is given by
(©3.5),0) = Fw+a),+a).
acl’t

Further, it is well-defined, belongs to L'(Q), and satisfies that

—_—

(2.7) (©3f),(v+B8) =(04f),(v), forallveQ, and 3 € r+.
(ii) The FT of ©% f is given by (;&,\f = (@"/\I,\f(v))vEQ which is an element in L*(Q, (*(2))

with @(v) = ((@/fl,f\)p(v))pey for each v € Q.

Proof. Let f € L*(G) and p € . For each v € Q, let Cp(v) := >, pu ]/”\(U—l—a)zzp(v + a).
Then, from Weil’s formula (1.1) and the relation between 2 and the dual group of T', it
follows that

f, 35 1+ )yl allngto) = [ oWhwlangto
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which is finite by the Cauchy-Schwarz inequality. This implies that (C,(v)),eq € L*(Q).
Note that

Cy(v+ )= Z (v+a+ B)y(v+ o+ f)

ZF
Cylo

v+a)

k'ﬁ)

), forallveQand el

by changing the summation variable & — a — 3. Now, the proof for part (i) follows from

the fact that

@3 ),(v) = / f. P o) dar (7)

T

/ (F. ) o (1)

= [ ([ RO dugl€))otdur(). for ae. v e
g

in view of the Parseval’s formula. The above expression equivalently provides the following

form by using Weil’s formula (1.1) and the identity (p/(fy)\wp)(f) = 5(7)1@,(5), for all ¢ € G:

G / [ F OB duale))odur ()

v + a)v mdﬂc(m>mdﬂr (7)

»(v), forae. veq,

where F and F~! denote the FT on L?*(T') and the inverse FT on L*(2), respectively.
For proving part (ii), note that ©% f is an element of L*(€, (2(2)) since for every

f € L*(@G), the expression given by
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JAlCRE)

Pdug(v) / S @3 1), () Pdug(v)

pEP

/Z|va+awpv+a>| dug(v)
peEP et

/Z]fv—l—a ) ( Zywpwa g (v),
aelt peEP  oaelt

is finite by using Remark 2.4, Cauchy-Schwarz inequality and Weil’s formula. Hence, the
result follows.

]

Proposition 2.7. Let the operator Oy be as defined in (2.3). Then for h € L*(T, (*(2)),

the Fourier transform of ©gh is given by

Zh , fora.e &€

pES

Proof. Let h € L*(T,£*(£2)). Then, using the definition of the operator Oy, we can write

/ Z/ V(e = 7)dpr(7)E(x)dpc ()

pE]

= Z// )e(y +7)dpr (v)dpc (),

pE}G T

which further equals to the expression given by

>/ ( | G ))& )

=S e (/w Ednal >)

peEP
=" hyp(E)1(€), for ace. £ € Q.
peEP

]

The following result establishes a relation which represents the fiberization of oper-
ators associated with the I-TT Bessel systems E'(¥) and E'(®) via the pre-Gramian

operator defined in Definition 2.5.
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Theorem 2.8. For each f in L*(G), and for a.e. k € §2, the following expressions hold:

— o~

(2.8) ((©3),(8)) e p = (TG (8))" (f(5 + @) s

(29)  (Ouh(k+0)) e = T (8) (hy(ki+a)) . forall h € LA(T,(3(2)), and

(2.10) (0903 f) (k + ) = G2 () (F5 + ),y

where for a.e. k € Q, the symbol GV (k) = JF (k)(I$)*(k) denotes the mized dual-

Gramian operator corresponding to the T'-TI Bessel systems E' (V) and E*(®).

Proof. Let a.e. k € Q. Then, the proof for expression (2.8) follows by using the definition
of operator (JJ ()" along with Proposition 2.6.
Further, (2.9) holds by observing J3 () from Definition 2.5, Proposition 2.7, and
(@/\\ph(m + a))aeFL = ( Z ﬁp(li + a)vfp(m + a)) , for all h € L*(T, (*(2)).

acl’'t
peES

Now, (2.10) follows by using the equalities (2.7), (2.8) and (2.9) in the computation:

((©9(03N) (5 + ), re = T& (W) (O3 )k + ) _,,

= T () ((055)p()) e
= T3 (5)(TS ()" (Flk + )y, for all f € L¥(G).

2.3. Orthogonality of I'-TI frame systems over LCA groups

In this section, we characterize a pair of orthogonal T-TT Bessel (frame) systems
over locally compact abelian (LCA) groups. For this, we use the notion of pre-Gramian
operator in LCA-group setting along with the fiberization of operators associated with
the I'-TTI systems which we have studied in Theorem 2.8. The next result characterizes
the frame/Bessel property of a I'-T1I system in terms of the pre-Gramian operator. We

refer [10,12] for the proof of the following result:

Proposition 2.9. E'(V) is aT-TI frame system for S*(V) if, and only if, T§ (w)(JTZ (w))”
15 uniformly bounded with uniformly bounded inverse on the range of jg‘l’(w) for a.e.
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w € Q such that ran J3 (w) # {0}. In particular, if ST(¥) = L*(G), then the following

are equivalent:

(i) The system EY (W) is a T-TI frame system for L*(G),

(ii) there exist constants 0 < A < B < 00, such that
Alp ey < T3 (w) (TG (w )" < Blp Ly, for a.e. w €L

In addition, E*(¥) is a tight T-TI frame system with frame bound 1 for L*(G) if, and
only if, I§ (w)(JIg (w))" = Lprry,  for a.e. w € Q.

Proof. The result follows from [10,12]. The key for the proof lies in using the computation
done in (2.6) for the case of ¥; = ¥y € ¢*(I'') along with the characterization result on

frames obtained in [10]. O

2.3.1. Characterizations of pairwise orthogonal I'-TI Bessel (frame) systems

The following results provide necessary and sufficient conditions on a pair of I'-TI

frame systems to be orthogonal in the sense of Definition 2.3:

Theorem 2.10. Let ¥ and ® be countable subsets of L*(G). Suppose that ST (V) = ST (),
and that both EY (V) and EY(®) are U-TI frame systems for ST(¥). Then, the following
are equivalent:

(i) EY(¥) and EY(®) form orthogonal T-TI frame systems in ST ().
(il) TF (k)T (k) TS (k) =0 for a.e. k € Q.

(iii) Mg (k)(ME(K)) ME(K) =0 for a.e. k€ Q.

(iv) G¥(k)G®(k) =0 for a.e. k€ Q.

In particular, when ST (¥) = L*(G), E*(¥) and EY(®) are pairwise orthogonal T-TI
Bessel (frame) systems in L*(G) if, and only if, T3 (k)(JI$ (k)" =0 for a.e. k€ Q.

For proving Theorem 2.10, first we need to describe the decomposition theorem for
a I-TI space of L*(G). Before stating this result, we have the following notation. Let
P € L2(G). We denote by L*(Q,wy), the space of all functions 7 :  — C, which satisfy
f\r (€)dpgs(€) < oo, where wy(€) = 3 |1h(€ + )2 for each € € Q. Observe

aelt
that by using the relation between the dual group of I' with €2, Weil’s formula and the
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Plancherel theorem, we can write

/ S 10 + o) Pdug () = / 1D(6) Pdug(€) = |02

Q acl't =~

Q

Thus, w := {wy () }eeq is a function in L'(2). Note that in this case

Il = [ 1@ Pon(dng @

Q

is a norm in L?*(2, wy). Further, we denote the support of wy, by the set

[EeQiw,(€) 40} =S,

Here, note that the set Sy is called the spectrum of ST (1).
The next result shows the existence of a decomposition of a I-TI space of L*(G)
into an orthogonal sum of spaces each of which is generated by a single function whose

translates form a tight I'-PTI frame system with frame bound 1.

Theorem 2.11. Let V be a T-TI space of L*(G). Then, there exists a family of functions
{n}nen in V such that V' can be decomposed as an orthogonal sum V = @ S* (v,), and
neN

EY(1,) is a tight T-PTI frame system in the T-PTI space S*(v,,) with frame bound 1.
Moreover, f € V if, and only if,

(2.11) FO) =" ral©)vn(), and hence ||| =Y [IralF2ars,, wo )

neN neN

where r, € L*(Q NSy, , wy,) and Sy, is the spectrum of S*(1,,), for every n € N.

Proof. The first part of the proof follows from [10, Theorem 5.3]. For the moreover part,
let n € N and 1, € L*(G). Then, for each n by following the steps of [46, Proposition
2.2], we get f, € ST (3,) if, and only if, ﬁb(f) = rn(f){b\n(f), for some 1, € L*(Q,wy,,).
Now, if (2.11) holds, then clearly in view of the above discussion f € V.

Conversely, let P, be the orthogonal projection onto the space ST (1,,). Note that for
each f € V, we have f =5 _P,f. Thus,

]?:: 2{:(22;?) = 2{:’rnign’

neN neN
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where 7, € L*(2 N Sy,,, wy, ) for each n. Therefore, we have

AP = 1P = Y lrallzegars,, g ¥l

neN

= Z Hrn| |%2(Qms¢n’w¢n)’

neN

in view of Plancherel’s formula and the fact that E(1,) is a tight [-PTI frame system
in ST (1),,) with frame bound 1. Hence, the result follows. O

Proof of Theorem 2.10. By following Definition 2.3, E'(¥) and E"(®) form pairwise
orthogonal T-TT Bessel (frame) systems for ST (¥) if, and only if, for all f € ST(¥), we
have ©gO%f = 0, which is equivalent to saying that ||©40%f|| = 0. Let f € L*G).

Then, by Plancherel’s formula and Weil’s formula, the following expression holds:

(212) (0903 = / (O30 1)(©)Pdug(€) = 3 / (6904 £) (v + o) Pdpa(v).

ael't g

Therefore, ©y 0} f = 0 if, and only if, in view of (2.12), (@q,@ f)(v+a) =0 for each v €
and « € I't. This means, OyO% f = 0 if, and only if, we have ((@q,@ f)(k+6))serr =0
for a.e. kK € Q2.

Further, by using Theorem 2.8 observe that for every f € L*(G) and for a.e. k € Q,

the following relation is satisfied:

-~

(0205 (r+a) | =G (w)(Fl+a),

acl+

where G¥'* (k) = JJ (k)(J$ (k) is the mixed dual-Gramian operator corresponding to
the I-T1 Bessel (frame) systems E'(¥) and E'(®). Hence, it follows that for ST (¥) =
L*(@), we get OgO%Lf = 0 for all f € L?(G) if, and only if, G¥"®(k) = 0 for a.e. k € Q.
Now, we start for proving the equivalence of (i) and (ii). From Theorem 2.11, we
observe that f € S'(®) if, and only if, the Fourier transform of f can be written as
f= > pep ToPp for some 1, in L*(2NS,,,w,,), where p belongs to a countable index set
. Moreover, in view of the above expression of annd Definition 2.5 for the pre-Gramian

operator J§ (), we get the following estimate:

~

(f(rk+ a>)a€1’”— = Jg (k) (rp(k + a))pe@ for a.e. k€ Q.
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Thus, in view of the above discussion and the equality (2.10), part (i) is equivalent to the

statement that for any f € ST(®), we have

(2.13) G (1) (J(k + @) gers = TG R)TE (1) TS (k) (rp (5 + @)

peEP’

equals to zero since ©y0O% f = 0, and hence
Jg (8)(Tg (k)" T (k) = 0,

for a.e. Kk € QL

Further, by using M (), that is, the matrix associated with J3' (), clearly (ii) holds
if, and only if, the relation (iii) is satisfied.

Now, from (2.13), the equivalence of (ii) and (iv) follows since E'(®) is a [-TI frame
system in ST(®), and hence for a.e. k € Q, (JF(k))" has bounded inverse on the range

of J§ (k) by Proposition 2.9. O

The next result reflects a very useful property of pairwise orthogonal frames. By
using a I'-periodic function on G and a given pair of orthogonal I'-TI Bessel (frame)
generators, we construct another pair of generators providing orthogonal frames of the
same structure. Moreover, one system in the newly constructed pair of I-T1 Bessel (frame)
systems remains the same while the second system acquires some extra properties due to
the effect of a I'-periodic function. Here, note that for a co-compact subgroup I' of an
LCA group G, a bounded function on G is called I'-periodic in the sense that for every
v €T, we have f(x +v) = f(x) for all x € G.

Proposition 2.12. Suppose that EY (V) and EY(®) are orthogonal T'-TI Bessel (frame)
systems in L*(G). Let h be a complex-valued measurable function on G which is T -periodic,

such that the collection h¥ is a subset of L*(G), where h¥ is defined by
h = {ht, € L*(G) : () (x) = h(x)p(x); ¥p € V,p € P 2 € G}

Then, the families EY(h¥) and ET(®) also form orthogonal T-TI Bessel (frame) systems
in L*(G).

Proof. Given that E*(¥) and E'(®) form pairwise orthogonal I'-TT Bessel (frame) systems
in L?(G). Then, for all f € L*(G), we have OO} f = 0. That means, the following holds:

(2.14) > [ (@) epta = )yle = )dur() =0, forallz € G.

peEP T
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Now, the result follows by using h as a I'-periodic function along with (2.14) in the

following relation:

> [ ente = D) b) e~ )dur ()

pEP T
-3 / (), 0l — )b — 1w — 1)dpr(7)
pe@
Z/ ), 0p(x = 7)) p(z = 7)dur(7),
pef
for all x belongs to G. O

Our next proposition provides a construction of pairwise orthogonal Bessel (frame)
systems by using the similarity (equivalence) property. Here, note that for a measure space
(J, puy) with py being a Haar measure on J, we say that X := {x;},;c; and Y := {y, },e5 in
the Hilbert space ‘H are similar (equivalent) if there exists a bounded invertible operator

U on H such that z; = Uy;, for all j € J.

Proposition 2.13. For a countable index set P, let U := {@Zp}pey and & = {@ptper
be subsets in L2(G). Further, let EY (V) and E'(®) be orthogonal T-TI Bessel (frame)
systems in L*(G), and that E* (V) is similar to EX(V), and EY(®) is similar to E¥(®).
Then, EX (W) and ET(®) also form orthogonal U-TI Bessel (frame) systems in L2(G).

Proof. Clearly, E* (V) and ET (®) are I-TI Bessel (frame) systems in L2(G) since similarity
among the systems preserves the frame property, including the frame bounds. Further, by
the definition of similarity, there exist bounded invertible operators U; and Uy on L*(G)
such that we can write Uyp(y)y, = p(’y){bvp and Uap(v)e, = p(v)p, for every p € £,
We claim that O = U;0y and ©3 = Uy04. For this, it is enough to prove that for all
h € L*(T, (*(22)), we have

Ogh = Z/ ¢pdur Z/ Y U1p(7)Ypdpr(7)

peP T peES T
—Ulz/ (Vpdpr(y) = Ui(Owh),
peEP T
and hence the result follows in view of the fact that E'(¥) and E'(®) are orthogonal
in L*(G), and @@@’% =1U,0¢(Us04)* = U10403U5 = U;0U%5 = 0, where 0 denotes the
zero operator on L?(G). O
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2.3.2. Application of the characterization result on co-compact Gabor systems

In this subsection, we deduce a characterization result for the case of Gabor systems.
For this, next we define these structured systems as a special case of I'-TI systems given
in Definition 2.1. Let a character y in é, and define the modulation operator n(x) on
L3(G) as n(x)(f)(z) = x(x)f(x), for all f € L*(G) and = € G, and observe that it is

associated with the translation operator on L%(G) by

0D = / £ (@) (@) E@)dpic () = / F@)E— ) @ dualz)
G

~

G
= J(€=x) = p(0f(€), forae &€d.

Let T" and A be respectively, co-compact subgroups of G and G. For an index set

J C Z,let o :={f;};es be asubset in L?(G). Then the collection ¢4 (<7, T', A) defined by

(2.15) G( T,A) = {p(y)n(x)f; :v €T, x €A, jeJ},

is called the Gabor system generated by «/. Note that 4 (&, T, A) is a frame for L*(G)
if, and only if, {n(x)p(V)f; : v € T,x € A,j € J} is a frame for L?(G), where the later
system is termed as a co-compact Gabor system in [60]. Further, observe that ¢ (<7, ', A)
is a T-TI system of form {p(y)1; : v €T, ¢; € ¥, j € J} defined in Definition 2.1, with
¥; =n(x)f;, where (j,x) € J x A.

Let o« = {f;}jes and B := {h;};c; be countable subsets of L*(G). Then, our next
result gives a characterization of & and % such that 4(«7, ', A) and 4(%,T", A) form a
pair of orthogonal Bessel families (frames) in L?(G), we call as a pair of co-compact Gabor

orthogonal Bessel (frame) systems over LCA groups.

Proposition 2.14. Suppose that G (<7 ,TI', A) and ¢ (B,T', \) are co-compact Gabor Bessel

(frame) systems in L*(G). Then, the following assertions are equivalent:

(i) 9(,T,A) and G(AB,T,A) form a pair of co-compact Gabor orthogonal Bessel
(frame) systems in L*(G) in the sense of Definition 2.5.
(ii) For each o, 8 € T+ and x € A, we have
> ikt a=x)hi(s+ 65— x) =0,
jed
for a.e. k€.
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Proof. In view of computation (2.6) and Theorem 2.10, (i) holds if, and only if, for each
X € A, we have

IRAODD W(Z(n/@m)(n + ) (n()h,) (5 + 5)) — 0, for ac. K € Q,

acl+ Ber+ jeJ

and for all 9,1y € EZ(FL). Hence, the result follows since 1,19, are arbitrary elements

of 2(T'1). O

Note that Proposition 2.14 can be used to derive various results on a pair of co-
compact Gabor orthogonal Bessel (frame) systems by considering different situations on

I', A and G, etc.

Example 2.15. Let G = Z¢, and let I' = AZ? and A = BZ? be uniform lattices in Z¢
for some invertible d x d matrices A and B with integer entries. Then, I't = EZd, where
A = (A", that is, inverse of the transpose of matrix A. In this case, (2.15) reduces to

the following collection:
(o, A7, BZ?) = {p()n0)f;:v € AZ® x € BZ%, j € J}.

Hence, 9 (o, AZ?, BZY) and 9 (%, AZ¢, BZ%) form a pair of orthogonal frames in ¢*(Z%)

if, and only if, for m,n, p € Z%, we have

ZE(/{ + Am — Bp)/fzj(/ﬁzjtgn — Bp) =0,

jedJ

for a.c. x € A([0,1]7).
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CHAPTER 3

ORTHOGONALITY OF GENERALIZED TRANSLATION
INVARIANT FRAME PAIRS

In this chapter, we give a characterization of pairwise orthogonal frames which arise
from translations of generating functions via a countable family of closed, co-compact
subgroups of a second countable LCA group G. We call such frames as pairwise orthogonal
GTTI frame systems in the sense of Definition 1.3. As an application of our characterization
result, we get necessary and sufficient conditions for the orthogonality of various structured

frame systems such as wave-packet, wavelet, and Gabor frame systems over LCA groups.

3.1. Pairwise orthogonal GTI frame systems

In Chapter 2, we have characterized the orthogonality of frame pairs for translation
invariant (TT) subspaces in L?(G) by generalizing the fiberization techniques of Ron and
Shen [79] over locally compact abelian (LCA) groups. In the present chapter, we study
and characterize pairwise orthogonal generalized TT (GTI) Bessel systems in L?(G). The
characterization is obtained in the spirit of the characterizations of duality between GTI
systems investigated in [59]. From this characterization, we deduce a series of similar
results for the function systems related to GTI systems. We state our first main charac-
terization result, that is, Theorem 3.5 (along with several deductions in Remark 3.6) in
Subsection 3.2.1, while the proof for the result is discussed in Subsection 3.2.2.

Our second main result, that is, Theorem 3.9 provides a characterization for pairwise
orthogonal wave-packet frame systems over LCA groups. We shall discuss the definition of
wave-packet systems over LCA groups along with the characterization result in Section 3.3.

For this part of section, we begin by considering GTT systems introduced by Jakobsen
and Lemvig in [59] along with the following definition and the standing hypotheses on it.
Note that such systems model various discrete and continuous systems, e.g., the wavelet,

shearlet and Gabor systems, etc.



Definition 3.1. Let J C Z be a countable index set. For each j € J, let P; be a countable
or an uncountable index set, let g;, € L*(G) for p € P;, and let I'; be a closed, co-compact
subgroup in G. Then, the generalized translation invariant (GTI) system generated by
{9jp}tpep;, jes With translation along closed, co-compact subgroups {I';} ;e is the family

UjEJ{T,ngm},yepj,pepj, where for y € G, T}, is the translation by y, which is defined as
T, : L*(G) = L*(@Q), (T,f)(x) = f(x —y), 2 €G.

Note that the GTI system in Definition 3.1 reduces to the translation invariant (TI)
system discussed in [10], if I'; = I" for each j € J. However, if each P; is countable and
each I'; is a uniform lattice in Definition 3.1, we arrive at the generalized shift-invariant

(GSI) system considered in [53,64].

Standing Hypotheses: For GTI systems considered in Definition 3.1, we assume that
these systems satisfy the following criterion for the remainder of this chapter. Before
proceeding for this, we introduce some notation. Let (P}, Pj,upj) be a measure space
for each 57 € J, where J C Z is a countable index set. For a topological space X, by
Bx, we denote the Borel algebra of X. By the symbol P; x GG, we represent the product
measure space formed by the Cartesian product of G with the measure space P;, > P, ®Bg
denotes the tensor-product o-algebra on P; x G which is formed by the tensor-product
of Bg with the o-algebra p, ON P;, and the notation up, ® ug specifies the product
measure on P; x G. By assuming above notation, we state the conditions as follows. For

each j € J:

(1) (P, ij, pp,;) is a o-finite measure space,

(2) the mapping p — g;,, (P}, ZPj) — (L*(G), Biz(c)) is measurable,

3) the mapping (p, x) — ¢,,(x), that is, (P; x G, ®Bg) — (C, Be) is measurable.
g 9j.p J P;

Further, it is relevant to note that in order to investigate frame properties for the
GTTI systems considered in Definition 3.1, we need to view the family of functions given
by U i ATy gjptver,, pep; in the set-up of continuous g-frames. Recall that these frames
are a generalized version of continuous frames, more precisely, for a countable index set
J C 7, a family of functions | J. i m Fmen; 18 a continuous generalized frame (continuous

y jeJ e J g
g-frame) for a complex Hilbert space H with respect to a collection of measure spaces

{(ijzMJ7l’L]) ] S J} if
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(C1) m v~ fjm, M; — H is measurable for each j € J, and

(Cs) there exist constants 0 < a; < ay such that

aq||h|]? < Z/ \(h, i) Pdpar, (m) < asl|R][?, for all h € H.
ieT iy,
Note that all the definitions and operators associated to Definition 1.1 can be easily
visualized for the case of continuous g-frames. For more details, we refer [38,84] and

various references within.

GTI System as a Continuous g-frame: In order to study pairwise orthogonal GTI frame
systems, first we need to define GTI frame systems. The GTT system as a continuous g-
frame is well-explained in [59], but we include the details here for the sake of completion.
Hence, our next motive is to compare the GTI system ;e ;{T,9jp}ver;,pep, With the
family of functions ;¢ ;{fjm}men; considered in the above definition of continuous g-
frame. Then, it follows that we can view the GTI system as a family of functions in L?(G)
with respect to the collection of measure spaces
{(M;, >, )= (P x Ty, Y @Br,, pp, ®pr,):j € J}.
M; Pj

Next, to realize GTI system as a continuous g-frame, we first verify the condition (Cy).
Let j € J. Consider a function F : P; x I'; — L*(G); (p,7) — T,g;,- The function F
is continuous in v and measurable in p, and hence represents a Carathéodory function F
which is defined on P; by F(p)(7) = F(p, 7). Since I'; C G is second countable and locally
compact, and L*(G) is separable, it follows that F , and hence the function F, is jointly
measurable on (Mj, > ;) = (P; x T, >op, ®Br,) (for more details, see [71]). Thus, the
condition (C1) holds, and the GTI system ;¢ ;{75 gjp}~er;, pep; is automatically weakly
measurable.

In addition, if the GTI system satisfies the condition (Cs) with respect to the set of
measure spaces {(P; x Fj,zpj ®Br;, pip; @ pr;) = j € J}, we call U AT gjpter;, pep;
as the generalized translation invariant frame system (GTI frame system) for L*(Q).
But, in case only the right side of inequality in the condition (C;) holds, the system
U e ATy 9jptrer;.pep,; is termed as a GTI Bessel system in L*(G). Similarly, we can de-
fine T'I and GSI Bessel (frame) systems in L?(G) by replacing GTI system in the definition

of GTI Bessel (frame) system with TT and GSI systems, respectively.
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It is known that pairwise orthogonal frames for a Hilbert space play a key role in
constructing superframes and frames [35,36,40,51,67,89], and also in developing the theory
of frames and its applications (e.g., see [40,51,52,63] and various references therein). In
our setting, we define such frames as GT1 systems satisfying a special case of Definition 1.3

as follows:

Definition 3.2. Orthogonal GTI Bessel (frame) systems: Suppose that the systems
U e AT 9sp trer; pep; and U AT5 i p ber; per; are GTI Bessel (frame) systems in L?(G).
Then, we term these systems as pairwise orthogonal GTI Bessel (frame) systems, or
simply, orthogonal GTI Bessel (frame) systems in L*(Q) if they satisfy the orthogonality
property in the sense of Definition 1.3. In particular, by replacing GTI systems with
TT systems and GSI systems, this definition corresponds to orthogonal TI Bessel (frame)

systems and orthogonal GSI Bessel (frame) systems, respectively.

3.2. A characterization result on GTI orthogonal frame pairs

In this section, we give the statement of our first main result discussed in this chapter,
that is, Theorem 3.5 which provides a characterization for orthogonal GTI Bessel (frame)
systems defined in Definition 3.2 over LCA group set-up (proof shall be discussed in
Subsection 3.2.2).

3.2.1. Statement of the characterization result

For stating our main characterization result, we require some technical assumption
in the form of a local integrability condition as follows. For the case of GSI systems,
such condition was originally introduced by Hernéndez, Labate, and Weiss in [53] for
L*(R™), and later generalized by Kutyniok and Labate in [64] for L?(G). This condition
was further proposed in a more generalized form by Jakobsen and Lemvig in [59] for GTI

systems in L?*(G). We state these conditions as follows:

Definition 3.3. Consider two GTI systems (J,c ;{79 }er; pep, and
UjeJ{thj,p}veFj,per in L*(G).
(i) We say that |, {T,9;p}er; pep, satisfies the local integrability condition (LIC) if

CHEEDY DS

/ (€ + @), (O)Pdug () dur, (n) < oo, for all f € D,
jed P; acl+ ~

J supp f
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where for a Borel set B in G with pta(B) = 0, we define the subset © in L*(G) as

follows:
D= {fecL*G): fe LOO(@) and supp/f is compact in G \ B}.

(i) U;e AT 9jpter; pep; and U e AT Ry p brer; pep, satisfy the dual a-local integrability
condition (dual a-LIC) if

(32) Y / > / [F(E)F(E + )G () yp(€ + )|dug(€)dpp, (p) < oo, for all f € D.

- 0
JGJPJ. aEl—‘j a

In case gj, = hj, for each j and p, we refer to (3.2) as the a-local integrability

condition (a-LIC) for the GTI system ;. ;{T-9jp}rer; pep;-

Note that the integrands in (3.1) and (3.2) are measurable on P; x @G, therefore, we are

allowed to reorder sums and integrals in the local integrability conditions.

Further, note that the subset © used in Definition 3.3 is dense in L?(G), and since it
is sufficient to prove the various frame properties on a dense subset of the Hilbert space,

we may verify our results for ® and then extend on L?(G) by a density argument.

Remark 3.4. In view of [59, Lemma 3.9], it is clear that

(i) LIC implies the a-LIC while the converse need not be true (see [59, Example 1]).
(ii) if two GTI systems satisfy the LIC, then they satisfy the dual a-LIC.

Next, we provide the statement of our first main characterization result on orthogonal
frames. Here, we would like to add that the characterization results for orthogonal frames
with the form of GTI systems, TI systems, and GSI systems discussed here are new to
the literature. The results obtained here are also helpful in studying the orthogonality
of special structured systems which lead to our second main result on orthogonal wave-
packet Bessel (frame) systems (that is, Theorem 3.9), and hence for the case of wavelet
and Gabor systems over LCA groups (see Section 3.3 for more details).

Moreover, we can easily deduce the orthogonality conditions for a pair of frames in
case of LCA group G = R? Z%, etc. That means, our orthogonality results on GTI systems

generalize the existing similar work done for the classical case (e.g., see [63,67,89]) as well.
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Theorem 3.5. Let the families J;c {7 gjptver;,per; and U;c AT 0 pter; pep; be GTI
Bessel (frame) systems in L*(G) which satisfy the dual a-LIC. Then, the following asser-

tions are equivalent:

() UjeATh 950 ver; pep, and U;c AT R ptyer; pep, are orthogonal GTI Bessel (frame)
systems in L*(GQ) in the sense of Definition 1.5,
(ii) for each a € |J I'; \ {0}, we have
jeg
(3.3) Z h;p(§)Gip(€ + a)dpp,(p) =0, forae. §e€G,
jGJ:aEFj— P;

and

> / Ry (€)G;5(E)dpp, (p) = 0, for a.e. € € G.

i€t p,
We point out that Theorem 3.5 can be used to deduce similar results for several
function systems since in these cases some of the assumptions trivially hold. We have the

following observation in this regard:

Remark 3.6. We remark that Theorem 3.5 leads to the characterization results on the
orthogonality of TI Bessel (frame) systems, GSI Bessel (frame) systems, and GTI Bessel

(frame) systems (over a compact abelian group). For this, observe that

(1) in the case for TT Bessel systems, and for GTT Bessel systems over compact abelian
groups, the dual a-LIC is satisfied automatically in view of [59] and Remark 3.4;
(ii) for each j in J if we take P; as countable and I'; as a uniform lattice in Theorem 3.5,

then the orthogonality result for the case of GSI Bessel (frame) systems is obtained.
3.2.2. Proof of the characterization result

In the present part of section, we obtain a proof for Theorem 3.5, that gives necessary
and sufficient conditions for two GTI systems to form orthogonal frames for L?(G) by

following the Definition 1.3. For this, the next result plays an important role.

Proposition 3.7. Suppose ;e AT,9)p}tver; per; and U;c AT R ptrer; pep, are GTI Bessel
systems in L*(G) satisfying the dual a-LIC. Then, the following statements are equivalent:

(i) the mized dual Gramian operator corresponding to the systems

Uje AT 9iprer, pep, and Uje AT hjptoer, pep, commutes with the
family of translations {T,}.eq,
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(ii) for each a € |J I'; \ {0},
jeJ

B 0w©= X [ TalO8i(€ + adun ) = 0. Jor ae. €€ G

icJ: 1
jeJ:ael’; P;

Moreover, if (i) or (ii) holds, then the mized dual Gramian operator is a Fourier multiplier

whose symbol is

(3.5) Z/ i0(£)35p(E)dpp, (p), for a.e. ¢ed.

]EJP

We first remark that the equations (3.4) and (3.5) are well-defined which can be easily

verified by using Cauchy-Schwartz inequality in the following computation:

3 / o103 € + ) din, ()

jEJ:aEFJ.-p,
<3 [ sn @ + el )

i€l p,

1/2

< |h]p 2d | 7P S_l_ )| d ( )

5 Foierinnn)”(f e tiono)
S(Z/Ihgp(é“)ldup 2/|gjpf+a|dup< )"

j€J p JGJP

and hence we can write

39 S [ al@iale + ldn, () < 5. for ac. €€ G
jEJ:ozEFjl P;
in view of [59, Proposition 3.3] and by letting 5 be a common Bessel constant for the two

GTTI systems. Now, in order to prove Proposition 3.7, we need the following result:

Lemma 3.8. Suppose UjGJ{T»ygﬁp}’yepj’per and UjEJ{Tth,p}Vepj,pepj satisfy the assump-
tions of Proposition 3.7, and assume that the symbol © is their corresponding mixed dual
Gramian operator. For f € ©, define the function wy: G — C, x — (0T, f, T, f). Then,
the following hold true:

(i) The operator © commutes with all translations T, for x € G, if, and only if, wy is
constant for all f € ©, that means, wy(x) = ws(0) = (Of, f) for all x € G, where

0 denotes the neutral element of the LCA group G.
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(ii) Let f € ©. Then, wy is a continuous function that coincides pointwise with its

absolutely convergent (almost periodic) Fourier series

(3.7) wi(w) = Y a(x)wg(a),
ac J I'ff

where

~ =

(3.8) (E)F (€ + a)tal&)dps(E),

g)
=
i
Q>\

and the last integral converges absolutely.

(iii) wy is constant for all f € ® if, and only if, for all @ € |J Fj \ {0}, to (&) =
jeT

0 a.e. SE@

Proof. (i) Let ©T, = T,0, for all z € G. Then, the direct part of (i) can be concluded by

observing that

wy(z) = (O, f,T.f) = (1.Of, T f)
= (Of. T;T.f) = (Of, f),

for all x € G and f € D, since for each x, T}, is an unitary operator.

Conversely, let w; be constant for all f € ®. Then, for all z € G,

wi(z) = (O f, Tof) = (TOT.f, [) = (6F, f),

which by using unitary nature of T, for each x and polarization identity, leads to T_,OT, =
O, and hence we get OT, = T,0.

(ii) For each f € ©® and = € G, we can write the function
wie) = OTLLH) = (3 [ [ (Tef Do) Togpr, 0)din, (0). T2 ),
JereP r;
which further gives
39 = [ [ BT T T i, (), ()
JereP r;

Now, by proceeding in the same way as in the proof of [59, Theorem 3.4], the result

follows.
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(iii) Given that dual a-LIC holds for all f € ©. From (3.7) and (3.9), it follows that
(3.10)
wre) =3 [ [Tt Ty )T o, )i (0) =3 a(o)sla)

jeJ L
J pEP; T anLGJJ F]

Consider now the function z;(z) := wy(x) — (O f, f) which is continuous in view of conti-
nuity of the function wy.

Now, for the direct part, assume that the function wy is constant for all f € ®. We
claim that t,(£) = 0, for all & € (J T} \ {0} and a.e. £ € G. Here, note that by the
construction, zy is identical to the zjeeré function. Additionally, since wy equals an absolute

convergent generalized Fourier series, also 2y can be expressed as an absolute convergent

generalized Fourier series z¢(x) = > a(x)zZf(«), with
ozejgjf‘jL
~ {Ef(o)_<®faf>> ifO(IO,
zr(a) =
wy(a), if a # 0.

By the uniqueness theorem for generalized Fourier series [11, Theorem 7.12], the function
zf(x) is identical to zero if, and only if, Zf(a) = 0 for all a € |J I';.
j€J
Thus, for « € [J T} and [ € D, we have
jeJ

(3.11) wy(a) = da,0(OFf, f).

Let o # 0. Then, for all f € ®, (3.11) reduces to Ws(a) = 0, and hence we get

(3.12) /f(§)f(§ + a)to(§)dugs(§) =0, for ae. £ € G.
€

Now, define the multiplication operator M;_: L2(G) — L2(G) by My f(€) = ta(€)f(€)
which is a bounded linear operator in view of the fact that to(£) € L=(G) (for details,
see (3.6)). For all f € D and a.e. £ € G, we can now rewrite the term in left hand side

of (3.12) as

/ FO @ Tuf € dug(€) = / FOM, (Tu ) (E)dnalé)

G G

= | JOO,T)f©)dugé) = (F. Mi, Tuf ) oy

Q)
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which is equal to zero in view of (3.12). From the above equality and the fact that
D is dense in the complex Hilbert space L?(G), it follows that MgaTaf = 0, which is
if, and only if, M; T,, = 0, that means, M; T,(g) = 0 for all g € LQ(CAJ), and hence
M; Tog(€) = ta(§)Tag(€) = 0 for all g € LQ(@) and a.e. £ € G. Thus, (3.12) holds if, and
only if, for a.e. £ € G, we have t,(£) = 0, for all a € .UJ I\ {o}.

Conversely, for each o € |J T'j-\ {0}, let £4(€) :306 for a.e. & € G, which implies that

jeT
w(a) =0, and by using this in (3.10) along with the fact from (3.11) that for o = 0, we

have Wy(a) = (Of, f), and hence

wi(x) = Y al@)@g(a) + Y al@)ip(a) =0+ as(0) = (Of, f),

ae J rH\{0} ae{0}
JjeJ
for a.e. x € G. Therefore, w; is constant for all f € D. m

Proof of Proposition 3.7. Clearly, part (i) is true if, and only if, (3.4) holds in view of
Lemma 3.8. Further, it is well-known that if the mixed dual Gramian operator, say ©,
commutes with 7, for all z € G, then it is a Fourier multiplier (see [66, Theorem 4.1.1]),
and hence there exists a unique s € Lw(@) such that é}"(f) = s(f)]/‘\(f), where (&)
represents the symbol corresponding to ©. Now, for a.e. £ € (A}, we are interested in

finding the expression for s(§). For this, observe that

(3.13)  (OF.F) = (OF, Pyug, = / 67(€) () dug(€) = / SEOTET O dua ().

Moreover, for o = 0, it follows from (3.8) and (3.11) that for all f € D,

/\

31 ©1.0) = 50) = [ FOFO X [ Toole)i@ur, 01
€

]GJP

Since (3.13) and (3 14) are valid for all f € © and s is unique, it is clear that the symbol
of ©, that is, s(§) = >_ [ h]p )G5.0(&)dpp, (p). O

JEJ P;

Now, we are ready to prove our first main result, that is, Theorem 3.5, which is as follows:

Proof of Theorem 3.5. By Definition 1.3, the part (i) is equivalent to saying that the
mixed dual Gramian operator corresponding to the GTI systems e AT, G5 p ter, pep;

and ;e ;{1 hjp}rer, pep,, say O, is equal to zero. Next, we claim that © = 0 if, and only
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if, © commutes with the translations 7T}, for all x € G, and, act as a Fourier multiplier

with symbol

() = [ Ban@Bin(din,3) =0, for ac. € € G
i€ b,

For proving the above claim, let © = 0. Then, OT,(f) =0, for all z € G and f € L*(G).
Since for each z, the translation 7}, is a linear operator, therefore 7, (0) = zero function
in L?(G) = 0, and hence 7,0 f = T,(0) = 0, which implies that ©T, = T,,© for all z € G.
Thus by [66, Theorem 4.1.1], © is a Fourier multiplier. So for all f € L*(G) we have
0= é?f(f) = S(f)f(f), e G a.e., where s(¢), the symbol of © as a Fourier multiplier, is
given by (3.5).

Conversely, if © is a Fourier multiplier with symbol s(§) = 0, then (:)7‘ (&) = 0, which
implies that ©f = 0 for all f € L*(G), and hence © = 0. Now, the result follows by

considering the above claim along with Proposition 3.7. O]

3.3. Applications of the characterization result

The purpose of this section is to discuss applications of our first main result (that
is, Theorem 3.5 in Subsection 3.2.1) to the Bessel families having wave-packet structure,
which are obtained by applying certain collections of dilations, modulations, and transla-
tions to a countable family of functions in L*(G). As a consequence, we obtain results for
wavelet and Gabor systems in Subsection 3.3.2. Along with this, we connect the already
existing results from the literature with the theory discussed in this chapter by providing

various examples in case of G = R?, Z¢, etc.

3.3.1. Wave-Packet Systems

For a given second countable LCA group G, let Epi(G), Epick(G), and Aut(G)
denote respectively, the semigroup of continuous group homomorphisms « from G onto
G, the semigroup of @ € Epi(G) having compact kernel ker v, and the group of topological
automorphisms « of G onto itself. Note that Aut(G) C Epick(G) C Epi(G). For a €

Epick(G), we define the isometric dilation operator D, by

Dq : L}(G) = L*(G); Dof(z) = (A(a)) Y2 f(a(x)), for all z € G,
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where the modular function A : Epick(G)— (0,00) is a semigroup homomorphism such

that

/ (g0 a)(@)duc(z) = Ala) / g(x)duc(x)
G

a
for all integrable functions g on G with respect to the Haar measure ug (see [10, Theorem

6.2]). For a character x in @, we define the modulation operator M, on L*(G) as
M, (f)(z) = x(2) f(z), forall z € G,

and observe that for each y € @, it is associated with the translation operator on LZ(a)

by the relation

315 (LD = [ x@f@E@due) = [ )= )@dnol) = 1F©)
e e
for all f € L*(G) and a.e. £ € G. Further, note that for each o € Epick(G), the dilation

operator on L?(G) satisfies the following relation (see [10, Lemma 6.6]):

D A(a) 2 f (B for G) = (kera)t,
(3.16) Do) = (A(@)2f(B7H(x)) for x € B(G) = (kera)

0 otherwise,
for all f € L*(G), where by 8 := o*, we denote the adjoint of o € Epick(G) which is a
topological isomorphism £ : G — (ker a)t; ¥ — x o v in view of [10, Proposition 6.5].
Let A be a subset of Epick(G), let T" and A be co-compact subgroups of G and @,
respectively, and for some index set J C Z, let U := {¢); : j € J} be a subset of L*(G).
Then, we define the wave-packet system generated by W as:

(3.17) W, AT A) ={D,T,Myp; :ac A,yel,x e\, je J}

In the case of L?(R) and L?(R?), the systems of the above form have been studied by
several authors, including [20, 54, 69], and various references within. The wave-packet
systems were originally introduced by Cérdoba and Fefferman [13], and the collection
defined in (3.17) generalizes the notion of such systems in the context of LCA groups. In
particular, the wavelet and Gabor systems can be seen as special cases of (3.17) which we

shall discuss in Subsection 3.3.2.
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The following commutator relation helps in representing the collection (3.17) in the
form of a GTI system. This relation says that for each a € A,y €', x € A, and j € J,

we have:

DT, Myi(x) = (A(e))”*T, My (a(x)) = (A(a)) /My (a(z) — 7)
= (A(a))~ s Mj(a(z — 7)) = DaMj(x — 1) = Ty, Da My 1bs(),

for all x € G, and for some ; € a~'T such that a(y;) = 7.

In the rest of this section, let A be a countable subset of Epick(G). Then, by using
the above commutator relation, the wave-packet system W(W, A, T', A) will represent a
GTI system of the form |J {Tgap}tera,pep, for T := a™'T with & € A, gap = ga,(x) =
Dy M,; for (o, p) = (oz,a(ejilx)) in A x (J x A). In this case, for each o € A, the measure
space P, := {(j,x) : 7 € J, x € A} is equipped with the measure pp, = pjxa =
(A(a)) (g @ pa), where the quantity (A(a))”" helps in avoiding the scaling factor in
the calculations and j; represents the counting measure on J. Clearly, the measure pp, is
o-finite. Here, note that I'y, = o~ 'I" is a closed co-compact subgroup of G for each o € A,
in view of [10, Proposition 6.4] and the fact that « is a continuous group homomorphism
from G onto GG along with I' as a closed subgroup of G.

Next, we apply Theorem 3.5 to wave-packet systems W(W, A, ', A) and W(P, A, T, A),
where for any index set J C Z, ¥ := {t;},c; and ® := {p;},cs are subsets in L*(G).
Further, we simplify (3.3) by considering W(V¥, A, ", A) and W(®, A, ', A) as GTI systems

U {75 9aptvera, pep. and U {Tyhap}yera, pepr,  respectively, where
acA acA

Gop = Yo,(jx) = DaMythj and hep = ha,(jx) = DaMyp;

for (o,p) = (o, (j4,x)) € Ax P, = Ax (J x A). Hence, for each @ € |J I't and for
acA
a.e. £ € [J,c(ker a)t, the expression (3.3) takes the following form in view of (3.15) and

(3.16) along with 8 = o*:
T© = Y [ Fasl€ualé + @, )

acA:aely p,

_ Z / m/g\%(m) (& +a)dusxa((7,x))

a€A:aeTg 7y A
— 1
= ) > - Z;/ E)( aMx¢j)(§+a)mdﬂA(X)v
acA:ae(a~ Jed A
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which further gives

Ta(§) = Z Z/MX‘PJ B1E) X¢J(ﬁ_1(§+a))dﬂA(X)

a€A: GepTt JeT )

= Y 3 TR €+ Ddnw)

acA:aeprt jed )

= X Y [FE 0BG+ @) - dual) = Tel©) sa)

acA:aeprt jed )

whereas for the case of £ € G \ Uoe(ker o)t ace., we get T5(£) = 0 by proceeding in the

similar way as above. Hence, we can write

(3.18) Ta(€) = Ta(§) forae. §elyealkera)s,

0 otherwise.

Now, to apply Theorem 3.5 on the wave-packet systems, we require that for a.e.

¢ € G, T5(€) in (3.18) should be equal to 0 for all & € |J T'L.

The above discussion leads to our second main 1reOéselﬁt7 that is, Theorem 3.9 which
provides the conditions on ¥ and & such that the wave-packet systems generated by
U and ® form pairwise orthogonal Bessel families (frames) which we call as pairwise
orthogonal (simply, orthogonal) wave-packet Bessel (frame) systems in L?(G). Note that
the general LCA group approach applies to all groups of the form G = R®* x ZP x T X Z,y,.
Therefore, the following characterization result on wave-packet systems can be easily used

to verify the concrete conditions for any choice of G specified as above, while the direct

derivation would be rather complex.

Theorem 3.9. Let the wave-packet systems W(V, A, ', A) and W(P, A,T', A) be Bessel
families (frames) in L*(G) satisfying the corresponding dual a-LIC, where A is a countable
subset of Epick(G). Then, the following assertions are equivalent:
(i) W, AT, A) and W(P, A, T, A) form orthogonal wave-packet Bessel (frame) sys-
tems in L*(G),

(i) for a.e. €€ G and @ € |J T'Z, the following holds:
acA

S Y [BETE R €+ D - () =0,

acA:aelg jed )

where for 8 = o, 'L is given by SI'+.
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Proof. The proof can be concluded by observing that if we consider W(W¥, A, T, A) and
W(®, A, T, A) as Bessel families (frames) satisfying the corresponding dual a-LIC, then,

the wave-packet systems generated by ¥ and ® form pairwise orthogonal Bessel families

(frames) in L?(G) if, and only if, in view of (3.18), Tz(€) is equal to 0 for alla € | T'Z
acA

and a.e. £ € G. O
In the following example, by applying Theorem 3.9 to the case G = RY, we get a
characterization result for the orthogonality of a pair of wave-packet systems in L?(R?).

Hence, the wave-packet systems within L?(R?) are easily covered within our framework.

Example 3.10. Let G = R? (equipped with Lebesgue measure), I' = Z¢ and A = R%
Then, G = R? with Euclidean metric, we have 't = Z¢ and AL = {0}. Further,
by assuming the matrix A in GL(d,R), set A = {z — A*z : k € Z}. Under these
assumptions, from (3.17), the wave-packet system generated by ¥ = {¢;}£, C L*(R?)

can be written as

W, A ZY RY = {DpT My (-) : 1 =1,...,L, k € Z,y € Z%, x € R?}

= {|det A| "2 (A¥ - —y)(A¥ —q):l=1,....,L, k€ Z,yeZyeR}.

By letting W(¥, A, Z¢, RY) as a wave-packet system in L?(R?) which satisfies the Bessel

condition (frame inequality), we conclude from Theorem 3.9 that the wave-packet systems

generated by ¥ and ® form pairwise orthogonal Bessel families (frames) in L?(R?) if, and
L

only if, the following holds: >~ )~ / BB — )hi(B7*(¢ + @) — x)d(x) = 0,

k€Z: GEBFZA 1=1 g

for a.e. ¢ € R? and for each a € |J B*Z? along with B = A*.

kEZ

In the next subsection, by applying Theorem 3.9 we deduce the orthogonality condi-

tions for the case of Gabor and wavelet systems over LCA groups.

3.3.2. Special cases of Wave-Packet Systems

3.3.2.1. Gabor Systems. In (3.17), by assuming A = {Is}, where I; denotes the
identity group homomorphism on G, we consider the following system as a special case

of wave-packet system defined in (3.17) which we call the Gabor system generated by W:

GW,I'A) ={T, My :vyel,xeAje J}
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At this juncture, it is relevant to note that the system G(¥,T',A) is a frame for L*(G)
if, and only if, {M,T¢; : v € T,x € A,j € J} is a frame for L*(G) (see [59, Lemma
2.4]), where the later system is termed as a co-compact Gabor system in [60]. Further,
observe that G(¥,I', A) is a TI system of the form {J,c {7’ 9;p}rer;, pep; with I'; =T for
Jj€J CZand gj, = gj, = Mp;, where (5,p) = (4,x) € J x A. In this case, for each
Jj€J, P;={x:x € A} is equipped with the measure yp, := (A(a)) "'y that satisfies
the standing hypothesis. Since for TT systems the dual a-LIC is automatically satisfied,
Theorem 3.9 leads to the following result on the orthogonality of Gabor systems. Here,
note that the Bessel families (frames) with co-compact Gabor structure which satisfy the

orthogonality property are termed as pairwise orthogonal (simply, orthogonal) co-compact

Gabor Bessel (frame) systems in L*(G):

Proposition 3.11. Let the Gabor systems G(V, ', A) and G(®,T",A) be Bessel families
(frames) in L*(G). Then, they form orthogonal co-compact Gabor Bessel (frame) systems
in L2(G) if, and only if, for each & € T't and for a.e. & € CAJ, the following assertion
holds:

> [EE00E+ @) = 0dia0) =0

jed %

Using the above result, we can deduce a characterization for the orthogonality of
Gabor Bessel families (frames) in ¢*(Z%) given by Lopez and Han in [67]. This property
of Gabor frames has found its significance in developing frame theory and its applications
including the construction of Gabor superframes in various set-ups. For more details,
see [2,35,36,39,51,67,68] and references within.

In the next part, we provide a characterization for pairwise orthogonal Bessel families
(frames) with wavelet structure which we call as pairwise orthogonal (simply, orthogonal)
wavelet Bessel (frame) systems in L*(G).

3.3.2.2. Wavelet Systems. By letting A = {xo} C G in (3.17), where x( being the
neutral element of @, we define the collection U (W, A, T") as the wavelet system generated

by W:
(3.19) U, AT) ={D. T :ac Ayel,je J},

as a special case of wave-packet system defined in (3.17). For a countable subset A in

Epick(G), the system (3.19) is a GTI system of the form J,.4{7}9a,p}vera,pep, for
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[y =a 'T with @ € A, gap = go; = Dath; for (a,p) = (o, j) in A x J. In this case, for
each o € A, the measure space P, := {j : j € J} is equipped with a counting measure
pp, = (A(a)) (i) which is clearly o-finite. Thus, Theorem 3.9 for the case of wave-
packet systems now reduces to the following result on wavelet systems which generalizes

similar results discussed in [63,89] along with various applications:

Proposition 3.12. Let U(V, A, T') and U(®, A, T) be Bessel families (frames) in L*(G)
which satisfy the corresponding dual a-LIC, where A is a countable subset of Epick(G).

Then, they form orthogonal wavelet Bessel (frame) systems in L*(G) if, and only if, for

age E€Gandae |J It
acA

we have

Yo D GBI (B €+ ) =0,
acA:aelt jeJ

where for f = o, T't is given by BT.

Example 3.13. By assuming A = {xo} C G in Example 3.10, where yo being the neutral

element of G , we obtain a wavelet system generated by W:
U, AZY = {DauTy(-) : 1=1,....L, k€ Z,y € Z}
= {|det A"y (A* - —4):l=1,...,L, k € Z,y € Z%},

which is a special case of wave-packet system W(V, A, Z¢ R9). It follows that two Bessel
families (frames) U(V,A,Z%) and U(P, A,Z%) are pairwise orthogonal Bessel families

(frames) if, and only if, we have

Z ZSOZ —k¢) % FE+a) =0, forae &cRY

k€Z: aeBk74 1=1

and for all @ € |J B*Z?. Note that the above result coincides with the characterization of
kEZ

two wavelet systems to be pairwise orthogonal frames in L?(R?) which is given by Weber

in [89].
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CHAPTER 4

CONSTRUCTIONS OF GENERALIZED SHIFT INVARIANT
ORTHOGONAL FRAME PAIRS

In this chapter, we obtain a general construction for arbitrarily many orthogonal
GSI frame pairs in the context of LCA groups by utilizing the main characterization
result obtained in Chapter 3 and the unitary extension principle (UEP) of Christensen
and Goh [15]. The construction is then applied to synthesize GSI frame pairs over super-
spaces. Note that the above developed constructions are useful in the derivation of explicit
constructing procedures for pairwise orthogonal GSI frames generated by B-splines on the

group itself as well as on characteristic functions on the dual group.

4.1. Introduction

In Chapter 3, we have obtained a characterization for orthogonal frame pairs with
GTT structure. The characterization represents a unified way to deduce similar results for
several function systems including the case of GSI systems which is studied by Kutyniok
and Labate in [64]. Using the above result along with a unitary extension principle on LCA
groups [15] as basic ingredients, this chapter provides a general construction technique
for pairwise orthogonal GSI frames over LCA groups.

Recently, the construction techniques for some special types of frames, such as tight
wavelet frames, dual wavelet frames, Gabor frames, and pairwise orthogonal wavelet
frames have attracted many researchers (see [5,9,16,23,47,48,57,63,89] and references
within). In [89], Weber has investigated orthogonal wavelet frames, which are useful
in multiplexing techniques and in characterizing frames for super-spaces. Moreover, an
explicit construction of symmetric orthogonal wavelet frames is given by Li and Yang
in [70]. In this chapter, motivated by the work of Weber et al. in [9], we obtain a
general construction for pairwise orthogonal frames with GSI structure. Note that gen-

eralized shift-invariant (GSI) systems in L?(R?) were introduced by Herndndez, Labate



and Weiss [53], and by Ron and Shen [81] as a common framework to present a unified
theory for many of the familiar discrete systems, most notably the Gabor system and the
wavelet system.

The GSI systems in L?(R?) are collections of functions of the form ULy 95 er;
where J is a countable index set, 7', denotes translation by ~, the generators {g;};es C
L*(R%), and for each j € J, T; is a uniform lattice, that is, a discrete subgroup in R?
such that R?/I'; is compact. If I'; = T for each j, we recover the case of shift-invariant
(SI) system. To give examples of such systems in case of L(R), by letting a,b € R and
f € L*(R), we define the modulation operator (E,f)(x) = e*™® f(z), and (for a > 0) the
dilation operator (D, f)(z) = a'/?f(ax). Then, the discrete wavelet system { Dy, Ti1} s ez
is a GSI system of the form {T5-j, D91} kez which is generated by ¢ € L*(R) with
J=17Z,T; =277, and g; = Dytp. For ¢,b € R, the discrete Gabor system {7, Ept) b rez
generated by ¢ € L*(R) describes an SI system for the choice of J = {jo},I' = ¢Z, and
9jo = En.

The theory of GSI frame systems given in [53] is further generalized by Kutyniok and
Labate [64] to the LCA-group setting by letting GSI systems of the form (J;c {7, g;}er,
in L?(G), where G is an LCA group and for a countable index set J, the collection {T';};c s
denotes a family of uniform lattices in GG. Since GSI systems provide a unified way for
the analysis of a large class of function systems, various researchers have contributed in
the investigation of frame properties for such systems (see [5, 14,16, 53,59, 64, 81] and
references within). In this direction, our main focus is to provide a construction method
for orthogonal GSI frames pairs over LCA groups. The major tool used in the construction

procedure is the recent unitary extension principle technique of Christensen and Goh [15].

4.2. Unitary extension principle (UEP) on LCA groups

The unitary extension principle (UEP) investigated by Ron and Shen [80] for the
Euclidean case and its many variants (e.g. [17,23], to mention a few) play a key role in
constructing tight wavelet frames with compact support, desired smoothness, and good
approximation theoretic properties. Recently, the principle is further generalized to the
set-up of LCA groups by Christensen and Goh in [15]. The generalization covers several

variants of the unitary extension principle including the Euclidian case and the periodic
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case corresponding to the torus group at the same time. In [15], the authors have derived
explicit conditions for the UEP construction of tight frames in the context of general LCA
groups. For this, they have proved the general version of the UEP over LCA groups. In
this chapter, we have utilized the UEP by Christensen and Goh [15] to give a general
construction of pairwise orthogonal frames for L*(G) with GSI structure.

In order to obtain the general construction procedure of pairwise orthogonal GSI
frames, we first provide a “General set-up” consisting of notation and standing assumptions
needed for the remainder of this chapter. For this, we follow the general set-up of [15] for
describing the UEP with some additional assumptions which we need in the sequel.

Next, we state the standing assumptions for the rest of this chapter:

General set-up: Let Z := {k}2, be a sequence of consecutive numbers in Z, {Ay}rer

~

be a nested sequence of lattices in G and {®;}rer C L*(G). For each k € Z, consider V;,

as a fundamental domain associated with the lattice A;-. Then, for each k € Z, we have
(4.1) G = U (w+ Vi), (w+ V)N (w' + Vi) = ¢ for w # w',w,w' € A
wEAé

Further, we need to restate the following conditions which are used by Christensen

and Goh in [15] for proving the UEP over LCA groups:
(Oy) For every compact set S in @, there exists K; € Z such that
pa((w+S)N (w' +8)) =0 for w # w', w,w' € Ag,.

(O,) For every compact set S in G and any € > 0, there exists Ky € Z such that for all
k>Ky kel,

lna(Vi)|ou(1)? = 1] <e, ¥y € S.
(O3) For all k € Z and some periodic functions Hyq € L>®(Vi11), we define

(4.2) D4 (y) = Hyr1(7)®py1(7) for ae. v € G.

.....
dy

Ar = Jr+ Ngn) (er+ M) 0 (ke + Ajyy) = ¢ for 1£ 7

=1

where d = pa(Vie)/ng(Ve).
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Additionally, for all £ € Z and for ¢ = 1,2, consider the periodic functions given by

(4.3) \Il,(f)(m)(v) = G,(f}r(fn) (V) ®ri1(7); v € G and m = 1,2,..., Sk,
where {G,(;J)r(fl ) e L>®(Viyi1) :m = 0,1,..., s} is a collection of given periodic functions

with G,(:l(lo) = G,(jz(lo) = Hj.1. Further, for all k € Z and for ¢ = 1, 2, let the matrix-valued

functions M,gi) and N,gi) be defined for a.e. v € Vi by

(44) MOG) = (GO + 0rn) Joeme, 2 NP () = (GE 0+ 00) )<
1<n<dy, 1<n<dy

respectively, with (M, ,iz))* as the conjugate transpose of the matrix M. ,gi).

For each k € Z such that k > kg + 1, let the index set
(4.5) Py :={(m,k) -m=1,2,... 5}

with Py, := {(m, ko) :m =0,1,2,..., Sk}
Now, for each ¢+ = 1,2 and p € P, we assume the functions gl(,i) in L?*(G) given by

(4.6) g(i) — g((;)%ko) - ‘F_lq)lfo if p= (m> kO) € Py,;
P g((:r)uk’) — ffl\ljl(cz)(m) if p=(m,k) € Py, k>ko+1,

with F~1 as a symbol for the inverse Fourier transform on LZ(CA;).

Using the above assumptions, we state the modified form of the UEP [15] as follows:

Theorem 4.1. In addition to the assumptions (O1) — (Os) in the general set-up, assume

that for each k € I, the matriz-valued function M,El) defined in (4.4) satisfies the following:
(MY (DML (1) = dilay, for ace. vy € Vi

Then, for each p € Py, by assuming the functions g;,(,l) defined as in (4.6), the GSI system
Ukez{TAgz(’l)}AeAk,pePk forms a Parseval frame for L*(G).

4.3. A general construction for orthogonal frame pairs via UEP

In this section, by using the assumptions from the “General set-up”and the modified
form of UEP given in Theorem 4.1, we obtain a general construction procedure for arbi-
trarily many pairwise orthogonal GSI frames. The next result provides a general method

to construct a pair of orthogonal frames with GSI structure:
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Theorem 4.2. In addition to the assumptions (O1) —(O4) and (4.4)—(4.6) in the general
set-up, assume that for each k € I, the periodic function Hyi 1 € L>®(Viy1) (as defined
in (4.2)) satisfies the conditions of Theorem 4.1. Additionally, for each k € I, let the
matriz-valued functions M,gl), MS), N,gl) and N}gz) satisfy the following conditions:

(i) (M,gz))*(y)M,gz)(v) = dily, for eachi=1,2 and for a.e. v € Vj;

(i) (V) (NI (1) =0 for a.e. 5 € Vi

(iil) (M) (MMD(7) =0 for a.e. v € Vi
Then, the collection of functions given by Ukez{Tkgzgl)}AeAk,pePk and UkGI{TAg£2)})\€Ak7PGPk
generate orthogonal Parseval GSI frame pairs in L*(G).

For proving Theorem 4.2, the following result is needed in the sequel:

Theorem 4.3. For each k € T and p € Py, let g <3upp(g,(,1)) ﬂsupp(g,(f))(- + a)) =0
for all a € Tt \ {0}. Suppose that the GSI systems given by Ukez{T/\gz(Jl)}AeAk,pePk and
UkEI{T)\g£2)})\€Ak7PEPk are Bessel families in L*(G). Then, the systems form:

(i) dual frames for L*(Q) if, and only if, we have

—

Z Z (;]g\l))(w)(gz(?))(w) =1, for a.e. w e G,

keZ pGPk

(ii) orthogonal frames for L*(G) if, and only if, we have

S5 @) )@ ) (w) = 0, for a.e. we .

k€L pePy

—_—

Proof. Given that supp(gS”) N supp(gs”)(- + @) = ¢ for all p € P, and k € T with
a € T3\ {0}. Therefore, the proof can be easily deduced by using a = 0 in the duality
characterization result given by Jakobsen and Lemvig in [59, Theorem 3.4] and in the
characterization of pairwise orthogonal GTT systems, that is, Theorem 3.5 which we have

obtained in Chapter 3. O

Proof of Theorem 4.2. By using the given condition in part (i) and the modified UEP
stated in Theorem 4.1, it follows that Ukez{TAgz(al)}/\eAk,pePk and UkGZ{T)\gl(f)})\eAlmpEPk
generate Parseval GSI frames for L?(G).

Before proceeding further, we first simplify the conditions given in part (ii) and part

(iii). In part (ii), it is given that for each k& € Z, the matrix-valued functions N,il) and
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N, ,52) (as defined in (4.4)) satisfy the following condition:

(Nél))*(v)N (v) = (Z Gk+1 (7+U )Gl(irl (7 + V) 1<i<dy, =0
1<5<dy,

for a.e. v € Vj, which further holds if, and only if, we have

(4.7) Z GO (4 0p ) GA (y 0 ;) = 0, for all 1 < i, 5 < dy,

which by observing the condition (OQy4) from the general set-up along with the equality

(4.1), is further equivalent to the following equation:
(4.8) Z Gl€+1 ,jz(lm)(w) =0 for a.e. w € G.

Similarly, we can prove that the condition given in part (iii), (M, é;))*(y)M ,g? (v)=0
for a.e. v € Vi, holds if, and only if, we have

(4.9) Z Gk0+1 k?JET)(w) =0 for a.e. w € G,

Next, we proceed for proving the orthogonality of GSI frame systems. For this, we use
the characterization equations of Theorem 4.3(ii) to prove the orthogonality conditions.

For a.e. w € @, consider the following:

S () (w) () (w)
keZ pePy
TN 2 EONVICH
=Y (@) (w)(g D) + 0y Z D) (w)
PE Py keT\{ko} PEPs
Sk ———— /\ o —
1 2
= (g((m,ko))(w) (g (m ko Z Z 9im k:) )(g 7271.;))(1”)
m=0 k=ko+1m=1

Sk —————

= GO @)D @) + 3 (G W) (g8 ) )

m=1
2)
+ Z Z mk) <mk>)(“’)
k=ko+1m=1
(1) (2) (1) 2)
(g(0k0)>( w)(y Oko +ZZ gmk))( )
k€Z m=1



By using (4.2), (4.3) and (4.6), the above expression is further equivalent to the following:

—

(F 10y, ) (w) (F 1y, ) (w +ZZ ) (w) (F~1w ) (w)
keZ m=1
— By () Dy, (w0 +zzw @) (1)
keZ m=1

= Hiy1 () @1 (1) Higy 1 (10) By 1 (w +ZZGM ka1 ()G () By (w)

keZ m=1

= GO )G ()| a1 (W) 2+ 3 (@ (w) ZGW GO ()G (w)
kel
Skq

1 2)(0 (m m
= GV ()G (w)| @1 (W) + | D1 (w ZG,EJL )G (w)

(2)(m
+ Z | Ppey1 (w ZGk-H k—i)-(l )(w))
keT\{ko}

Sko

= |y 1 (w ZGW GO @)+ 3 P (w ZGM GO () G (w)).

keT\{ko}

In view of the equations (4.8)-(4.9) along with the above computation, we get

S5 (6 () () (w) = 0

keZ pEPk

for a.e. w € G. Hence, the result follows.

O

For the better understanding of the construction method obtained in Theorem 4.2,

we provide the following example in the set-up of L*(R):

Example 4.4. By following Section 4.1 for the modulation, translation and dilation
operators on L*(R), consider a function ¢ € L?(R) satisfying that (y) — 1 as v — 0. In
the “General set-up”, let G = R, Z := 7Z and for each k € Z, consider ®;, := D@@ and
Ay := a"*Z. Then, At := a*Z, with the fundamental domain V}, := [0, ak). By following
the initial steps of [15, Example 3.7], we get d := a and {vy;}i=1,.. ={(l-1)a*} =

for each k € Z. Now, the scaling equation described in [15, equation (3.25)] in our case

means that

—

(Dur E_p)(7) = Ho(1)(E_yp)(7), for 7 € R,
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with Hy € L>(]0,1). The above expression is further equivalent to the following:
a'?G(ay +b) = Ho(y)@(y +0), for y €R,

which is the classical scaling equation in wave-packet analysis. By using the above discus-
sion and assumptions of “General set-up”along with the procedure of [15, Example 3.7,

note that the matrix-valued functions M, ,gi) and N, ,gi) becomes

MO () = M9(a 1), and N (7) = N (@ *)

for each v € V}, = [0,a"), where k € Z and i = 1,2. Since a ¥~ runs through V_; :=
[0,a™1) when ~ runs through V4, the assumptions given in Theorem 4.2 now reduces to

the following for all k € Z:

(a1) (M(?)*(y)M ?(v) =al, for eachi=1,2 and for a.e. y € V_;:=[0,a™!);
(7)N_21)(7) =0 forae vyeV_g;
: 0 for a.e. yeV_y.

—~
=
w
~
~—~
=
~Z
~—
*
—~
0
~—
l LY
—
—~
=
~—

Under the assumptions (a1) — (a3) along with the conditions used in Theorem 4.2, we can
generate orthogonal Parseval wave-packet frame pairs in L?(R) by choosing the suitable

—

generators according to the choice of & := D Eyp for each k € Z.

4.4. Applications: Construction of frame pairs over super-spaces

Let H be a complex-valued Hilbert space. In order to study the applications of our
construction technique which we have obtained in the last section, we need to introduce an
H-valued generalized translation invariant system. To define such systems, let n € NU{oo}

and consider the following notation:

Z/nZ (under addition modulo n) if n < oo;
(4.10) Z, =

Y/ if n = oo,

and (?(Z,) as a collection of all square summable sequences o with norm

lallfaz,) = D la(k)]® < co.

keZ,
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4.4.1. H-valued generalized translation invariant systems

We begin by defining a Hilbert space valued system (also known as vector-valued
(super) space) in the context of locally compact abelian (LCA) groups. For this, let the
notation H represents a Hilbert space H := (?(Z;), where Z, is as described in (4.10) for
d € NU {oco}. Then, the collection of functions

(4.11) L*(G,H) := {measurable f : G — H such that |[|f||* := / ||£(z)||fdpc(z) < oo},
G

is a Hilbert space, we call as a Hilbert space valued (H-valued) system, or, vector-valued

(super) space endowed with the inner product given by

(,6%) = / (£ (@), £2(2)dlpic (),

el
for all f* := (f'(x)),eq in L*(G, H) with i = 1,2, and f(z) := (f'(z,m))mez, in H for each
z in G. Note that G is a second countable LCA group which implies G is o-compact, and
hence, o-finite. Thus, the H-valued system satisfies the following equality:

(4.12) L*(G,H) = L*(G, *(Zy)) = L*(G x Zy),

in view of Proposition Appendix A.3 from [6] and the fact that (?(Z,) is separable.

By using the above mentioned set-up, we first modify the definition of GTT system
given in Definition 3.1. Then, we introduce the notion of the H-valued generalized trans-
lation invariant system. Note that the families of functions in the definitions given below

satisfy the assumptions of standing hypothesis which are stated in Chapter 3.

Remark 4.5. For each n € NU {oo} and for j € Z,, let P be a countable or an
uncountable index set, let g, € L*(G x Z,) for p € P;, and let T; be a closed, co-compact
subgroup in G. Then, the GTI system generated by {g,}pep, jez, C L*(G x Z,) with

translation along closed, co-compact subgroups {I';};cz, is the family of functions in

L?(@G) which is given by Uicz AT 9p trery, pep;-

Definition 4.6. For each d,n € NU {oo} and for j € Z,,, let P, be a countable or an
uncountable index set, let g, € L*(G x Z; x Z,) for p € P;, and let Tj be a closed, co-
compact subgroup in G. Then, the H-valued generalized translation invariant (H-valued

GTI) system generated by {g,}pep, jez, C L*(G x Zq4x Z,) with translation along closed,
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co-compact subgroups {T'j x {0} }jcz, is the family of functions in L?*(G x Z;) which is

given by Lg {T59p }rer; (0. per;-
JEZn

Note that the above definition can be used to deduce the case of GSI system over
super-spaces. Further, in view of Remark 4.5 and Definition 4.6, the following is another
important observation related to the concept of frames over super-spaces in context of

LCA groups:

Remark 4.7. We mention that while the concept of vector-valued frames is an addition
to the frame theory of functions on L?(R) it is not for frames on L*(G), where G is a
second countable LCA group. This is because the “H-valued system” L?(G,H) defined
in (4.11) coincides with the space L?(G x Z4), where Z, is the locally compact abelian, in
fact, countable and discrete group as described in (4.10). Hence the “H-valued system”

L?(G,H) is just L? for the group G x Z,.

By using the important observation of Remark 4.7, we conclude that Theorem 4.2 also
provides the construction technique for orthogonal Parseval frame pairs over super-spaces
in the context of LCA groups by choosing generators for GSI systems for super-spaces
in accordance with the Definition 4.6, and by using corresponding modifications in the

assumptions of “General set-up”.
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CHAPTER 5

GROUP THEORETIC CONSTRUCTION OF FINITE
TIME-FREQUENCY LOCALIZED ONWS

In this chapter, we give a group-theoretic construction of a finite orthonormal wavelet
system (ONWS) which is concentrated in time as well as frequency. Further, we study and
characterize the ONWS. Finally, some results on the uncertainty principle corresponding

to the ONWS are obtained.

5.1. Introduction

In Chapters 2-4, we have characterized and constructed orthogonal frame pairs in
the context of a general (second countable) locally compact abelian (LCA) group G.
Since practical life applications mainly require frames in finite setting, this motivates us
to relate our work in the thesis with the finite set-up by letting LCA group G of the
form Z4%,. Therefore, the main focus of Chapters 5-6 is to give a construction of finite
time-frequency localized frame systems with wavelet structure.

In this direction, we construct a finite time-frequency localized orthonormal wavelet
system in the current chapter. The construction is obtained by using a new group-
theoretic approach based on the complete digit set associated to an invertible matrix.
By continuing this work in Chapter 6, we generalize the above construction to frame
set-up and study orthogonality and duality properties of such finite frame pairs, with
applications to frames over super-spaces.

In the present chapter, we provide a group-theoretic construction of a finite time-
frequency localized basis with wavelet structure, and study time-frequency localization
properties of this basis via uncertainty principle. Note that a time-frequency localized
basis plays an important role in extracting both time as well as frequency information
of a given signal, and the uncertainty principle helps us to understand how much local

information in time and frequency we can extract by using the above-mentioned basis.



A function (signal) f with domain D is said to be time localized/ frequency localized
near a point ng € D, if for n € D, most of the (components f(n) of f)/(components of
Fourier transform of f) are 0 or relatively small except for a few values of n close to ng. By
a time-frequency localized basis (TFL-basis), we mean that every vector in the basis is time
localized as well as frequency localized. In the last two decades, a lot of research on time-
frequency analysis has been done by several authors for the various spaces, namely, finite
and infinite abelian groups, Euclidean spaces, etc. (e.g. [26,37,44,45,49,65,82,88,89]).

A TFL-basis has enormous applications in the problems related to real life as well as
in different areas of mathematics. Due to this, many researchers are attracted towards
the problem of finding good bases having both time as well as frequency localization
properties (e.g. [26,72,82,88]). Furthermore, in this day and age of computers, processing
can be done only when the signal can be stored in memory. Therefore, the importance of
discrete and finite signals cannot be ignored.

At this juncture, it is pertinent to note that the standard orthonormal basis for C" is
time localized but not frequency localized, while its Fourier basis is frequency localized but
not time localized. Therefore, we need to search another basis for C", which is localized
in time as well as frequency.

Wavelets are the latest and most successful tools to extract information from many
different kinds of data including but certainly not limited to audio signals and images.
Motivated from the construction of wavelets on Zy by Frazier (see [26, Definition 3.4]), the
main goal of this chapter is to study an orthonormal wavelet system for £2(Z4,) along with
its time-frequency localization properties via uncertainty principle, which is obtained by
generalizing the set-up mentioned above in [26] to multidimensional case. We proceed by
providing motivation for this particular form of system, which we introduce in (5.2). It is
actually inspired from the following system of translates in ¢?(Zy) having time-frequency

localization properties, which is defined and studied by Frazier [26].

Definition 5.1. Let N = 2M for some M € N and let uq,us € EQ(ZN). An orthonormal
basis for (?(Zy) of the form

(5.1) (- —2k):1<i<2,0<k<M—1},

is called an orthonormal wavelet system for ?(Zy).
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Inspired from the collection of the form (5.1), we wish to develop the theory related
to the collection in a multidimensional set-up for the more general case. In particular,
we want to find conditions on the sets I;,Io and A € GL(d,R), and to characterize
® = {pptper, C *(Z%) such that the collection B(®P, A, ;) (with distinct elements)
defined by

(5.2) B(®, A, L) = {Tapp,: k€, CZ%, pel, CN}

forms a TFL-basis for (*(Z%), where for each k € Z% and f € (*(Z%), the trans-
lation operator Tj, on (*(Z%) is defined by Ti(f)(m) = f(m — k), for allm € Z%.
For N € N, the space (*(Z%) denotes the collection of all N¢ x 1-complex vectors.

Here, note that it is an N¢-dimensional Hilbert space with usual inner product (f, g) =

> f(n)g(n), forall f,g € (*(Z%), and associated norm || - || := (-,-)1/2, where
nEZ‘]i\]

Zy ={0,1,2,..., N — 1} denotes a group of integers under addition modulo N.
In order to compare B(P, A, [;) with the classical notion of an orthonormal multi-
wavelet [90], let us consider W = {1y, 19, ...,%r} C L*(R?) with the dilation matrix Ag

and translation Z", which provides an orthonormal basis A(V¥, Ay) for L?*(R?), where
AT, Ag) = {9l = | det(Ao)*eu(A} - —k) : j € Z,k € Z? and ¢ € T},

In view of the system A(V, Ap), note that the elements of B(P, A, ;) can be written
as gpfiAk = Tarpp, where p € I,k € I,. Further, we remark that if B(®, A, ;) is an
orthonormal basis for £?(Z<;), then one cannot construct an orthogonal set by adding
elements into B(P, A, ;). This, in turn, implies that we are able to get an orthonormal
basis for £2(Z4;) in terms of translations of ®, without using any dilation operator. Thus, it
leads us to conclude that we cannot use the natural definition of orthonormal multiwavelet
for L?(R") in our case. Throughout the chapter, we call such system B(®, A, ;) as an
orthonormal wavelet system (ONWS) in ?(Z%,).

Further, in this chapter, we study the uncertainty principle in terms of the pair of
representations of a given signal by coupling ONWS with the standard basis and Fourier
basis. This study can be useful to provide uniqueness properties of the sparse represen-
tation of the signal. The theory of uncertainty principle related to the pair of bases and

its applications has been developed by many authors (e.g. [22,24,37,62,65,82]).
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Throughout the chapter, for d, N € N, the notations M(d,K)/ M(d,K) denote the
collection of all d x d (matrices)/(invertible matrices) over K, respectively, where K is
used as Z (the set of integers) or R (the set of real numbers). The notation | - | denotes
the cardinality of a set, or, the absolute value of a complex number. For m,n € N, the
symbol M represents the conjugate transpose of any m x n matrix M. For A € M(d,Z)
and I C 74, we get Al C 74, where its entries are obtained by applying addition modulo
N (denoted by mod N) to each coordinate of AI. Note that we represent any arbitrary
element of Z% as a d x 1 column vector.

For f, g € (*(Z%), the discrete Fourier transform (DFT) and inverse discrete Fourier

transform (IDFT) on (*(Z%) are defined for each m,n € Z4, by

Z f 7271*1 (m,s) andg Nd Zg 27rznl

sezs, ez,
respectively. Here, note that the formulas for DFT and IDFT can be defined for all
m,n € Z¢ by observing the relations f(m + jN) = f(m), and ¢¥(n + jN) = ¢g¥(n),
for all f,g € (?(Z%,), j € Z%. For proving various results in upcoming sections, we need

to state the following properties related to DFT and the translation operator on ¢2(Z%):

(P1) For f,g € (*(Z%,), the Plancherel’s formula is given by
(F.o) = O Tm)alm) = 15(7.9).
mezd,
which leads to Parseval’s formula for f = g.

(P2) Let k, ky € Z%. Then for f,g € (*(Z%), we can easily observe the following:

(i) (m)(m) = ¢ 2milmAR) /N F(m)  for all m € Z4,.

(i) (Tar, S, Targ) = (f, Tar—ar)9)-
(P3) [5(k)| = 1, where §(k) =1 for k = 0, and zero for 0 # k € Z4,.

In the next section, we study some group-theoretic results, which help us to construct

a TFL-basis for (?(Z%):

5.2. Group-theoretic construction of an ONWS in (?(Z%)

Our main motive in this section is to answer the question imposed for the system
B(P, A, I) defined in (5.2). For this, we need to recall and establish some group-theoretic

results. From (5.2), it is clear that AZ%, C Z4,, and |B(®, A, )| = |AL||L;| . Further,
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we note that the system B(®, A, I;) should have N¢ distinct elements to become an
orthonormal basis for (2(Z%). Hence, we get N¢ = |B(®, A, I,)| = |AL||L;|, which
implies that |I;] = N9/|AL|. To find |I5|, firstly we are interested in computing |Al,
where I} C Z%. Next, we observe that in order to get the distinctness property in
B(P, A, I), the form of I; should be such that AI; behaves like a group.

Now, by using the fact that Z4; is an abelian group, we conclude that AZ4; is a normal
subgroup of Z%. The motivation for considering subgroups of Z% of this type comes from
the fact that every subgroup of Z% is of the form AZ? for some A € M(d,Z).

Note that if Aisa dxd expansive matrix with integer entries, then the order of group
% is | det(A)] (see [90, Proposition 5.5]), while the result is also true for A € Mv(d, 7).
Here, by an expansive matriz, we mean that all of its eigenvalues X satisfy || > 1.

Next, we proceed for the computation of |AI|, where I} C Z%. In general, here we

are interested in finding the order of group AZ%. Therefore, we have the following result:

Proposition 5.2. For N € N, let the matriz A € M(d,Z) be such that B := NA™ €
//\/lv(d, Z). Then, the determinant det(A) of A divides N2, and hence the order of the groups
d

Z N4
AZ% and BZJ\;\, are respectively given by |AZ%| = Tdet(A)] and ‘BZd ‘ = | det(B)|.

Proof. The key for this proof lies in understanding the significance of assuming the matrix
B = NA"' € M(d,Z), which implies that -Z = | det(B)] (see

[90, Proposition 5.5]). Now, by using this particular form of B, we claim to establish an

is defined, and hence ’

BZd Bz4

isomorphism between the groups AZ4, and Bzzd, that means, AZ4, = Bzzd, which will imply
that |AZ%| = ‘BZd = | det(B)|, and hence ‘BZW = | det(B)|. Firstly, observe that N¢
N

divides det(A) since entries of B are integers. Next, for proving our claim, we consider a
map f: Z% — AZ%; (ny,...,ng)t— A(ry,...,rg)t where for 1 <i <d, r; = n;(mod N),
that means, N divides (n; —r;). It can be seen easily that the map f is well defined, onto
and homomorphism with kernel BZ?. Hence, we conclude our claim from the fundamental

theorem of group homomorphism. O

Remark 5.3. (i) Observe that if A € M(d,Z) is a matrix such that det(A) divides

N? then the matrix NA~! need not be a member of M(d, 7). For example, let
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1 3

3/2 —1/2\ . —
(_1/2 S/Q)WQ,Z).

(ii) Note that this particular form of B defined in Proposition 5.2 (which will be used

31 N 43 -1
A= and N = 4. Then, det(A) divides N2, but NA™! = 3 =
—1

for getting A in collection (5.2)) may play a significant role when one has to look

at reconstruction formula or the windowed Fourier transform.

Now, assume that the matrix A in the collection (5.2) satisfies the assumptions of
Proposition 5.2. Then, from the same result, it is clear that |I| = N¢/|AL;| = |det(A)].
Next, we wish to find the structure of the set I; used in the collection (5.2). We need

following definition in this regard:

Definition 5.4. Let H be a subgroup of Z4. We say that a set ® tiles Z% by H if
{H+m :m € 5} is a disjoint partition of Z%. In this situation, D is also called a
complete digit set for the quotient group Z%/H and we say that D is a H-tile of Z74.

Now, by letting ® as a BZ%-tile of Z4, for the rest of this chapter, we list the following
properties, which suggest us to choose I as ®, and then AI; will behave like a group:

Proposition 5.5. For N € N, let the matrix A € Mv(d, Z) be such that B = NA™! €

M(d, 7). Let ® be a BZS-tile of Z3; containing 0 as zero element and satisfying Ad, #

Ady whenever dy # dy € ©. Then, ® possesses the following properties:

(i) 1] = [AZL] = |AD)] =
(i) AZ% = A(D).
) For some 5 € ©,AB =0 if, and only if, f =0

(iv) For B,,B, € {B = B+ BZ% : B € @}, BN By = ¢, and we can write 74, =
Useo(B + BZY).

(v) For 81,8, € ®, we have (B1 + 32) + BZ% = B3+ BZ4, for some 3 € D.

(Vi) For B1, 02 € ©, there exists B € © such that Apy — APy = AB. Moreover, B = Po
if, and only if, B = 0.

(iii

Proof. The proof for (i) can be seen by observing Proposition 5.2 along with the fact that
D] = ) = |det(B)| = |AZ%|, and hence, |D| = |A(D)| by noting that Ad; # Ads

Bzd
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whenever d; # dy € ©. Now, the result AZ% = A(D) in (ii) follows from A(D) C AZ4
and |A(D)| = |AZ4,|. The rest of properties can be proved easily. O

Now, by considering the matrix A with assumptions of Proposition 5.5, we conclude
that in the collection (5.2), |I,| = N¢/|AL;| = |det(A)|, and I; = D yields a group
structure for Al;. Further, note that we should take |[5] > 1. Because for |I] = 1 =
| det(A)| case, we get |Al;| = N9 and since AI; C Z%, this results in Al, = Z%. Tt
converts (5.2) into a collection obtained through translates of a single function, say ¢q.
Hence, for ® = {pp}, the collection (5.2) takes the following form B(yg, A, D), defined
by

(5.3) B (0, A, D) = {Tarpo : Ak € A(D) = Z%},

which is just a reordering of the collection {7, kgpo}kez% . Now, the next result shows that
we will not get frequency localization properties in the collection of the form defined in

the equation (5.3):

Lemma 5.6. The collection B(pg, A, D) defined in (5.3) forms an orthonormal basis for
(2(Z%) if, and only if, |po(n)|*> = 1 for all n € Z%,. Moreover, an orthonormal basis of

this form is not frequency localized.

Proof. The system B(pg, A,D) forms an orthonormal basis for ¢*(Z%,) if, and only if,
5(k) = (po, Txipo), for k € Z4,. Now, by using the Plancherel’s formula, we can write

1 ~ 7 1 ~ Ti{n
= wa'%o. Tevo) = 73 D 1o)X RN = GV (k),
nGZ%

o (k)

where G(n) = |@o(n)|?, for all n € Z4,. Hence, the system B(pp, A, D) forms an orthonor-
mal basis for ¢2(Z4,) if, and only if, for all k € Z4,, we have d(k) = G (k), which is if, and
only if, |§o(n)|? = 1 for all n € Z%, in view of property (P3). This implies that the vector
©o is not frequency localized, and hence the orthonormal basis of the form B(pg, A, D) is

not frequency localized. ]

In order to get a TFL-basis for ¢*(Z%), we modify our approach by considering a
collection whose elements are translations of two or more vectors. This means, we consider
the case when |I5| = |det(A)| > 1. From Proposition 5.5, we have |Al;| = [A(D)| =
Id+(2A)\’ and hence in this case, we must have I; = ® C Z4,. Thus, we have the following
assumptions for the rest of the chapter, which are needed to redefine the collection (5.3):
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(A;): For some N € N, we consider the matrix A € M(d,Z) such that B = NA~! €
M(d, 7).

(As): For I, = |det(A)| =: ¢ > 2, we have & = {y,}=; C (*(Z%).

(A3z): Under the assumptions of A4; and Aj, the system in (5.3) can be redefined as:

(5.4) B(0,A,D) = {Tiwp, : k € D C Z4, 0 < p < g — 1} C F(Z4).

Remark 5.7. An important point that one should keep in mind while choosing ® in
(5.4) is to select ® in such a way that there should not exist any element v € ¢*(Z%) such
that {Tp : k € Z%} = B(P, A, D), otherwise B(P, A, D) will become similar with the
system (5.3), and Lemma 5.6 says that the orthonormal basis of this form is not frequency

localized. For a better explanation of this fact, we need the following result in the sequel:

Proposition 5.8. Let {em},eze be a standard orthonormal basis for (%(Z%,), where for
each m € 2%, we define e,,(m') = 1 if m = m’, and 0 otherwise. Then, for some N € N
and A € M(d,Z) (which satisfies the condition (A1) with |det(A)| = q > 2, there eists
a set {70,771, Vg1t S Z% for which

{Tarer, 1k €D,0<j < q—1} ={Thentpeza, for somen € VA

Proof. Let n € Z%. Then, both the collections {Then}rezs and {€m}yeza are the same,
and hence we claim that {Taxe,; : k € D,0 < j < ¢ — 1} = {en}peze . For this, it is

enough to show that there exists {7;}7_ 0 C Z4% such that the collection
{vj+Ak: k€e® 0<j<q—1}=12%,

since for k 6 D and 0 < j < g—1, we have Tage,; = €(,,+ax)- Now, from Proposition 5.2,

we have we denote the ¢ distinct coset representatives for

J=0

AZd ‘ = ¢. Further, by {a@,}_,

AZd , where for 0 < j < ¢—1, we define @; = a;+AZ%,. Let Dy := {ozj};];é, which satisfies
properties of Proposition 5.5. Then, we can write Zjl\, ={a+ Ak :a € Dy, k € ©}. This
implies that there exists {ij}?;é =Dy C L% such that {Taeq, 1k €D,0<j < g—1} =

{6m}m€Z‘]i\,' [

Now, we are defining an orthonormal wavelet system for ¢2(Z%) that is motivated

from Definition 5.1, with terminology adapted from Frazier in [26, Definition 3.4].
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Definition 5.9. Orthonormal Wavelet System: We call the system B(P, A, D),
which is defined in (5.4), an orthonormal wavelet system (ONWS) for (*(Z%), if it forms

an orthonormal basis for ¢?(Z%,).

The following is our main result of this section which characterizes ® C ¢%(Z4;) such

that the system B(®, A, D)) defined in (5.4) provides an ONWS for ¢2(Z%):

Theorem 5.10. Let A € M(d,Z) be a matriz such that for some N € N, we have
another matriz C = (NA™Y) € M(d,Z). Consider ® = {gop}g;(l) C (*(Z%), where
|det(A)| = q¢ > 2. Then, the following statements are equivalent:
(i) B(®, A, D) C *(Z%) forms an ONWS in (2(Z%).
(ii) For allm € ©* and (p1,p2) € {(n1,n9) : 0 < ny <ng < q— 1}, we have
D Pon(m 4Py, (M +7) = ¢6p, o
yeCZY,
where D* is a CZ%-tile of 7.
(iii) For each m € ©*, the system matriz Se(m) of ® is unitary, where the q¢ X ¢ matric
Sa(m) is defined as
Sa(m) = —=(Z(m +7)) ccms -
Vi 0<p<a 1
For proving the above result, we need to set up the background in the form of following

results:

Lemma 5.11. For o € AZ% and 3 € CZ%,, the inner product (o, 3) € NZ, where
A and C are as defined in Theorem 5.10.

Proof. Let a € AZ4, and B € CZ%. Then, there exist n, m € Z4 such that a = An
and 8 = Cm. Now, the result follows by observing that (a, 3) = (An, (NA™')'m) =
N{n,m) = Np, for some p € Z. ]

Our main motive is to prove the Theorem 5.10, and the upcoming Proposition 5.12
plays an important role in this, which is true in view of the following identity: for ki, ks €

2, we have

. |©*| for kl = ]{52,
(55) Z 62m<m,(Ak1—Ak2)>/N _

meD* 0 otherwise.
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Note that the above key identity is well known (see for example [32]), but we include

its proof for completing the details for our next result, which is as follows:

Proposition 5.12. Let {Ey}reo C (2(D*), where for each k € D, we define E(m) =
\/‘19—|627”<m ARN - for allm € D* (here, A and D* are as defined in Theorem 5.10). Then,

the system { Ey,}ren forms an orthonormal basis for (2(D*).

Proof. Observe that for ki, ky € ®, we have

(56) <Ek1,Ek;2 52(9 ) Z Ek1 Ek’z ) — ’9*’
meD*
Now, we claim that the identity (5.5) holds true. For this, let m; € ©* be an arbitrary

element. Then, we can write

27rz(m1 (Ak1—Ak2))/N Z 2mi{m,(Ak1—Akz))/N — Z 627Ti<(m+m1),(Akl—Ak2)>/N‘

meD* meD*

Now, in view of Proposition 5.5, we have Ak; — Aky = Ak, for some k € ©. Therefore,

by substituting m 4+ m; = ms, we get

€2m'(m1,Ak>/N Z e27ri(m,Ak>/N _ Z 627ri<m+m1,Ak>/N _ Z 627ri(m2,Ak>/N’

meD* meD* moED*

2mi(ma,Ak)/N _ 17 or, z 27rz<m Ak)/N _ = 0. But eQm(ml Ak)y/N _ =1

meD*
if, and only if, (m,, Ak) € NZ, which is if, and only if, we have Ak € NZ% as m; €

which implies that either e

D* is arbitrary. Equivalently, we can say that e?™muAR/N — 1 if and only if, k €
NA7'Z2ND = {0}, which in view of Proposition 5.5 implies that k; = ks.
Now, by using (5.5) and (5.6), we get (Ej,, E,)p2(9+) = Ok, k,- Hence, the result. [

Proof of Theorem 5.10. The system B(®, A, D) will form an orthonormal basis for ¢*(Z%)
if, and only if, for £ € ® and ¢,,, ¢p, € ¢, where 0 < p;,ps < g — 1, we have
L = 1 ~ = 2mi(n,Ak)/N
5pl,p25(k) = <90p17TAk90p2> = m<¢p17TAk9@p2> = Nd Z Pp1 (n)@p, (n)e 7 J
nEZ%
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in view of the Plancherel’s formula. Next, by applying Lemma 5.11 in the above equation,

we get

! %) %) mi{(m
Op1 p20 () - N Z Z Bor (M4 7)Ppy (M + 7)e? ((m+v),Ak)/N

* d
meD veCZY,

: 2, 3 (1 L ) p2mi{m
T Nd Z Z ¢p1(m+7)<ﬁp2(m+7)e2 (m,Ak)/N

d
meD* veCzd,

_ 1 Z \I,(m)e%ri(m,Ak)/N?

Q|@*| me*

where U(m) = ZWGCZ% By, (M 4 7)Ppy(m +7), for all m € D*. Next, by noting that
(U(m))meo+ € £*(D*) and Proposition 5.12, we get &y, ,,0(k) = é]—'_l(\ll(k:)), for all
k € ©, where F~! denotes the inverse discrete Fourier transform on ¢?(®*), which further
yields W(m) = ¢d,, p, for all m € ©*. Hence, the system B(P, A, D) forms an ONWS in
(2(74,) if, and only if, for ,,, ¢y, € ®, where 0 < py,p2 < ¢ — 1, we have

Rpipe = Z @Pl (m + 7)(1/0\172 (m+7) = 0p, p, for all m € D"
veCZY,

Further, we note that R, ,, = R,,,,, which proves (i) < (ii) part. Observe that the
above equation is equivalent to the fact that for m € ©*, columns of Sg(m), the system
matrix of ® having order q x ¢, defined by
Sa(m) = —=(Zp(m +7)) e,
Vi 0<p<a1
forms an orthonormal basis for C4. Equivalently, the collection B(®, A, D) C (*(Z%) is
an ONWS in ¢%(Z4%) if, and only if, the system matrix of ® is unitary for each m € D*.

Hence (i) < (iii) follows. O

The following are some examples of ONWS in ¢?(Z%) with respect to expansive as
well as non-expansive matrices. In the case of L?(R"), the expansive and non-expansive
nature of a dilation matrix plays an important role in the existence of an orthonormal

wavelet.

2 2
Example 5.13. (i) For non-expansive matrix: Let N =2 and A = ( ) Then,
1 2

2 =2

Az = BZE = {(0,0)',(0,1)'}, where B = NA™! = (
1 2

) and hence, we can
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choose ® = {(O, 0)%, (1, O)t} C Z3. Note that the matrix A is non-expansive since one of
its eigenvalues (2 & 1/2) is less than 1. Further, consider ®; = {g, ¢1} C (?(Z2) defined
by

20 = (000,00, 20((0, 1)), o((1,0)), 0((1,1)1))

Then,
B(P1, A, D) ={Turpy, : k€D, 0<p<1}
= {900, L1, T(o,l)tSOo, T(o,1)t 301},

is an ONWS for ¢2(Z2), where

1 1
Tio,1):p0 = (0, ok 0, E)t
and
1 1

t

Tioyre1 = (0, Ea(), —E) :
Further, the discrete Fourier transforms of g and ¢, are given by @y = (\/5, V2,0, O)t
and p; = <0,0, V2, \/§>t, respectively. We can easily verify that for each m € ©* =
{(0,0)",(0,1)"} and 0 < py,p» < 1,
Y Bn(m+7)8p(m +7) = 205,
vECTZ3

where CZ2 = B'Z2 = {(0,0)%, (1,0)!}. Hence,
B(P,A,D) ={Turp, : k€D, 0<p< 1} CP(Z3)

forms an ONWS in ¢%(Z2), by using Theorem 5.10.
—1

) be an expansive matrix with eigenvalues
1 1

(ii) For expansive matrix: Let A = (

11
2,2. Then, AZ? = BZ? = {(o,o)t, (1,3)", (2,2)", (3, 1)t}, where B = NA™! = ( )
13

and hence, we can choose

D= {(0,0)2 (0,1, (0,2)", (0,3)t} cz2,
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which satisfies all properties from Proposition 5.5. Next, we consider ®5 = {g, ¢1, 02, 3} C

(*(Z?%) whose discrete Fourier transforms are given by

Bo = (B0((0,0)), Zo((0. 1)), Bo((0,3)"), Bo((1,0)) Bol(1, 1)), ., Bo((3,3)1))
(\/_ 0,2, 0, \/ﬁz',o,—\/i,o,o,l—z,o,—ﬂ,o,ﬂ,o,—l—z’)t,
V= (0.v2,0,v2,0,v31,0, V2, \/5,0,\/§z',0,\/§z‘,0,\/§,0>t,
(0\/_zofzo 144,01 —i,—/2i,0,1 — i,O,\/§,0,—\/§z’,O>t,
(-

t
and @3 = —4,0,1414,0,1— 0,—\/§¢,0,—1+¢,0,1+z‘,0,—\/§z’).

Then, for 0 < p1, ps < 3, we can check that
Z Ppr (M + 7)Dpo (M + ) = 46, for all m € D7,
yeCZ2
where CZ3 = B'Z3 = {(0,0)!,(1,1),(2,2)%,(3,3)'}. Hence, from Theorem 5.10, we

conclude that the collection
B(Dy, A, D) = {Tupp, : k €D, 0 < p <3} C*(Z3)

forms an ONWS in (?(Z3).

In the next section, we discuss some results on the uncertainty principle by coupling
the Fourier basis and the standard orthonormal basis with the orthonormal wavelet system
B(P, A, D) defined in (5.4). For this, let us denote the standard orthonormal basis for
C(ZE) by B = {Tupea, : k € D,0 < j < q— 1}, where {o;}12) = Dy C ZE (see
proof of Proposition 5.8). By § := {[%},ez¢ , We denote a d-dimensional Fourier basis for
(*(Z%;) defined for each v € Z§ by F,(n) = e ™/N for all n € Z%. For a non-zero

function f € (*(Z%), we can write

q—1
(57) f = Z th,kTAkeaJ Z Z Sp, mTAmSDp Z wv R

keD j=0 meDd p=0 vezd,
and hence, we have
qg—1
659 1 = S sl = 05 bl = 3
ke® j=0 meD p=0 UEZ‘]{,
Further, we denote the number of non-zero coefficients from among {t; : k € ©,0 < j <

q—1}, {w, :veZ%} and {sp,, :m € D,0<p<q—1} by Sy, C; and Wy, respectively.
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5.3. Uncertainty principle corresponding to an ONWS in (%(Z4)

Uncertainty principles put restrictions on how well frequency localized a good time
localized signal can be and vice versa. In the case of a signal defined on a finite abelian
group, localization is generally expressed through the cardinality of the support of the
signal. Uniqueness of sparse representation of a signal depends upon the bound provided
by uncertainty relations in terms of pair of bases.

In this direction, for the setup of £2(Z%,), we prove the following results on the uncer-

tainty principle with respect to the collection B(®, A,®) defined in (5.4):

Theorem 5.14. Let & = {p,}i_y C (*(Z%) be such that B(D, A, D) is an ONWS in

p=0

(%(Z4,). Consider two positive real numbers Ry and Ey defined by

Ry =maz {|p,(a+ AB)| :a € Dy, €D,0<p<qg—1}, and

1

d
neLy;

where the max Z represents the mazximum of all elements of the set Z C R. Then, the

following inequalities hold true:

(i) The bounds for Ry and Ey are given by ﬁ < Ry, Ey < 1. In the case of Ry = 1,

the system B(P, A, D) is not frequency localized. Moreover, a similar situation

arises for By = w7 -
(ii) For w7z < Ro < 1, the representations of f € (*(Z%) in terms of B(®, A, D) and

B provide the following relations:

1 2
SfoZmax{2,—2}, and Sf+Wf2maq:{3,—}.
Rg Ry

(ili) For w7 < Eo <1, the representations of f € (*(Z%) in terms of B(P, A, D) and

§ provide the following relations:

1 2
CW, > — d C W, > —.
f f—Egv ana Cy+ <5
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Proof. By considering the representations of f € ¢*(Z%) in terms of B(®, A, D) and By

from (5.7), we have the following:

q—1 q—1
Hf“2 = <Z Z SpmTAmPp, Z Z tj,kTAkeaj > ‘

me® p=0 ke® 7=0
q—1 q—1
= E E Sp,m E E tj,k <TAm§0p7 TAkeaj>
me®D p=0 keD j=0

q—1 q—1
STONSS spanll Gl (Tamep: Tarea,)l.

meD p=0 ke® j=0

IN

and hence, we have
q—1 q—1
2 —
(5.9) A< DD lsmml D D Gkl Tamep, Tanea, )|
meD p=0 keD j=0

Similarly, if we proceed by using the representations of f € £2(Z4,) in terms of B(®, A, D)
and §, we get

(5.10) AP <D0 D Ispml D [@ell{Tamiop, F)l.

— d
meD p=0 vELY

In view of Proposition 5.5, we observe that for k,m € ® and 0 < j,p < g —1,

|<TAm(pp7TAkeaj>‘ = |<90P7T(Ak—Am)eozj>| = |<¢vaA56aj>‘7 for some 5 €D

= ‘ Z ep(n)ea;+ap(n)| = |ep(a; + AB)],

d
nezsy

which implies that R; = Ry, for Ry = {[{Tam@p, Tarea;)| : k,m € ©,0 < j,p < ¢ — 1},
and Ry = {|pp(o; + AB)| 1 oj € Dy, €D,0 < p,j <q— 1}, and hence for any h € Ry,
we have h < Ry, where Ry = maz Ry. Using this fact in (5.9), along with (5.8) and the

Cauchy-Schwarz inequality, it is clear that

q—1 q—1
AP <D0 D Ispml D0 D [Eal Ro

meD p=0 ke® j=0
q—1 9
9 J—
< LY sl X (D )
m,p:|sp,m|#0 m,p:|sp,m|#0 k€D j=0
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which further gives the following estimates:

q—1 q—1
IEERDIT AL ML)

meD p=0 ke® j7=0
q—1
= IFIIVW5 DD 6kl R
ke® j=0
<WAWNWE [ Y Gl [ >
Jik:|t; k| #0 Jkilt) k| #0
= [|fllvW ZZV/M \/ Sr(Ro)”
ke® =0

= [1£1I"/W;+/Ss Ro.

. . 1 . . . .
Therefore, we have the inequality /SyW; > 7 Now, by using the inequality of arith-
metic and geometric means, we have Sy + W; > 2,/S5;W; > =. Further, by assuming
part (i) [which we will prove later], we cannot consider Ry equal to 1, otherwise the system
B(P, A, D) will not remain frequency localized. Thus, for ﬁ < Ry < 1, we get

2 1

Sf+WfZ—>2 and SfoZ—2>1,

which results in part (ii), in view of the fact that Sy and Wy are natural numbers.

Next, we prove (iii) part. For this, first we observe the following:

[(Tameps F) =1 D) Tampp(n)F,(n)]

nelﬁl\,
1 —2mi(n,w) /N
=| Z wp(n — Am) Nd/ze = Nd/2 Z [0
nEZd tGZd

form e D,0<p<q—1andv e Z%, which implies that maxr X < max Y, where the

sets X and Y are given by
{{Tamep, B :meD,0<p<q—1,v € Z%}

and
1
{W > len(®)] :0§p§q—1},
tezd,
respectively, and hence for any x € X, we have © < Ej, where Ey = max Y. Therefore,

by using the above discussion in (5.10) along with the way we proceeded in case of part
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(i) provide the following inequalities:

1 2 1
E—g, and Cf—i_WfZEO’ for WSE@Sl

CW; >
Again, by considering part (i) [which we will prove next|, note that we cannot consider
FEy equal to ﬁ, otherwise the system B(®, A, D) will not remain frequency localized.
Therefore, for ﬁ < Fy <1, we can write
2 1
Cf+Wf25022andCfo2E—321,
which leads to part (iii).
For the part (i), let us consider elements of B(P, A,D) and Bg. Then, from Cauchy-

Schwarz inequality, we have

[(Tam®p: Tarea, )| < |[Tam@plll[Tarea, || = 1,

for all k,m € ® and 0 < j,p < ¢ — 1. Therefore, 1 is an upper bound for the set R;
and hence its maximum element Ry < 1. Next, we note that the real number R, cannot
take the value 1. For this, let by contradiction we assume Ry = 1. Then, we have
mazx{|g,(n)| :n € Z%,0 < p < g—1} = 1, since the collection {a + Ak : o € Dy, k € D}
is a partition of Z% . This assures the existence of p; € {0,1,...,q—1} and ny € Z% such

that |, (n1)| = 1. Therefore, we have

(5.11) lenlP= Y lonm)P =lepnm)P+ Y lon(m)P=1,

mezs, m#n1 €23

in view of the fact that ¢, € ® and B(®, A, D) forms an ONWS in (*(Z%). Since
|©py (n1)] = 1, therefore from (5.11), it is clear that

Y. lemm)P =0,
m;énleZ‘]iV

which allows us to write

1, if m=ny,
(5.12) o, (m)] =
0, if m#n; €Z4.

It follows from (5.12) that ¢,, (m) = 0 for all m # n; € Z%, and hence we can define

©p € P C L3(ZL) by ¢, (n) = €™ for n = n, € Z4,, and zero otherwise, where the real
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number #(n) depends on n. Therefore, we have

Bp, () = Z Ppy (n)eﬂwi(mm)/N — €i9(n1)€f2ﬂ<m,m>/N7
nezd,
and hence |3, (m)| = 1 for all m € Z%,. Thus, we conclude that ¢, is not frequency
localized which implies that the system B(®, A, D) is not frequency localized.
Now, for computing a lower bound of Ry (greater than zero), we consider an N4 x N¢
matrix M = ((T AmPp, 1| Akeaj>) , where rows of the matrix are varying over m € © and
0 <p<gqg—1, and columns over £k € ® and 0 < 57 < g — 1. Observe that, for each

k,me® and 0 < p,7 <q—1, we have

q—1
Z Z |<TAm¢p7TAk6aj>|2 = ||TAk60tj||2 = ]‘7

meD p=0

and
q—1
2 2

ZZ ’<TAk€ajaTAm90p>‘ = HTAm(PpH =1L

keD j=0
Therefore, rows and columns of M have unit norm. Further, for 0 < j; # jo < g — 1 and
k1 # ko € ®, the inner product of any two columns of M given by

q—1

Z Z<TAMSOP7 TAklejl > <TAm90p7 TAkz ejz) = <TA/€2 €z, TAk1 ej1> = O>

meD p=0

implies that columns of M are orthogonal. Similarly, we can check that rows of M are
orthogonal, and hence M is an orthonormal matrix having the sum of squares of its entries
equal to N?. Therefore, all of its entries cannot be less than 1/N%2. This follows by noting
that if we assume that all entries of M are less than 1/N%2, then, sum of squares of all
N?% entries of M will be less than N?* x <, that is, N, which is not true. Further,
observe that the absolute values of all entries of the matrix M are exactly the elements
of the set R;. Hence, we conclude that there exists h € R, such that h > 1/N%2. Thus,
Ry > 1/N%2. Hence, we have 1/N%? < R, < 1.

Similarly, we can show that 1/N%? < E, < 1 by considering elements of B(®, A, D)
and §. Note that we cannot consider Fy = ﬁ, otherwise the system B(P, A, D) will

not remain frequency localized. For verifying this fact, let us consider

1 1
Eozmax{W Z |90p(n)|30§P§q—1}=W,

d
nezsy,

76



which assures the existence of some py € {0,1,...,¢ — 1} such that

Y lemm)] =1,

nezg
and hence

2
(X 1enml) = X lenmP+2( Y lenmlignm)l) =1,
nEZ‘]i\, nEZ‘Ji\, nlyénzeriV
which further implies that
(5.13) Y lem(m)llep(na)] =0,
’VLl;éTLQeZ(JiV

in view of the fact that ||¢,,[|? = 1 as ¢,, € ® and B(P, A, D) forms an ONWS in (*(Z%).
It follows from (5.13) that |p,,(n1)]l@p, (n2)] = 0, for all ny # ny € Z%, which in turn
says that either |p,,(n1)] = 0 for all ny # ny € 2%, or |p,,(ne)| = 0 for all ny # ny € Z4.
Now, without loss of generality, let us assume that |¢,,(n;)| = 0 for all n; # ny € 2%,
which in view of Znez% |©p, ()] = 1 implies that |¢,,(n2)| = 1. Therefore, we conclude
that ¢, satisfies (5.12), and hence the required result can be concluded by following the
approach used after (5.12). O

7
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CHAPTER 6

FINITE DUAL g-FRAMELET SYSTEMS ASSOCIATED
WITH AN INDUCED GROUP ACTION

This chapter is the continuation of our work discussed in Chapter 5 which is actually
inspired by the study of Frazier in [26, Chapter 3|, and Frazier and Kumar in [31]. The
purpose of this chapter is to study the frame properties of a finite collection consisting
of time-frequency localized functions associated with an induced action of a topological
group G on (%(Z4;). We refer Chapter 5 for preliminaries on finite-dimensional Hilbert

spaces and notation used throughout this chapter.

6.1. Introduction

In Chapter 3, we have investigated the orthogonality of GTI frame pairs over LCA
groups, which can be used to deduce the orthogonality results for finite frames of translates
by considering an LCA group of the form Z%,. However, this chapter is concerned with
the study of duality and orthogonality of frame pairs with a special representation which
is associated with an induced group action.

By using the above-mentioned representation, in the present chapter, we first gener-
alize the construction techniques of an ONWS (obtained in Chapter 4) to a framelet
system in finite set-up. Then, we investigate the orthogonality and duality of such finite
framelet systems by adapting techniques which are different from that are used in [59]
and Chapter 3. Note that the framelet systems obtained in this chapter have a special
representation with additional properties due to the role of an induced group action.

It is well known that one of the important factor behind the stable decomposition
of a signal for analysis or transmission is related to the type of representation used for
its spanning set (representation system). A careful choice of the spanning set enables
us to solve a variety of analysis tasks. In the last two decades, many researchers have

contributed in the designing and time-frequency analysis of these representation systems



for the various spaces, namely, finite and infinite abelian groups, Euclidean spaces, locally
compact abelian groups, etc. (see [10,31,33,44,49,51,59,67,68] and references therein).
In this connection, we first introduce a framelet system for each g € G (we call as
g-framelet system) in ¢*(Z<;), and then, establish the characterizations for the generators
of two g-framelet systems (super g-framelet systems) associated with an induced action of
the topological group G on £2(Z4;) such that they form a g-dual pair (super g-dual pair) for
(%(Z4,). Among different types of representation systems, frame wavelet (simply, framelet)
systems are useful tools in various research areas including but certainly not limited
to signal detection, image representation, object recognition, noise reduction, sampling
theory, harmonic analysis, non linear sparse approximation, wireless communications and

filter banks, etc. (e.g. [18,28,33]).

6.2. g-Framelet systems through an induced group action

In this section, by taking motivation from the collection of the form (5.1) which was
studied by Frazier in [26, Chapter 3], we wish to generalize the time-frequency localized
collection (5.4) along with the theory related to its construction to the frame set-up. For
this, we consider a system of translates in terms of a general invertible matrix, in which
elements are represented through an induced action of a topological group G on (*(Z%).
We refer [55] for more details about topological groups.

In order to introduce a generalized version of (5.4), let # be an action of G on the

space C of complex numbers, that means, a continuous map
0:GxC—C; (g,z) —gr

so that f(e,xz) = x and 0(g,0(h,x)) = 0(gh,x), for all g,h € G and = € C, where e € G

is the identity element. Now, we consider a map
0:G x ((Z) = C(ZY); (3,1) = 0(e, /)

defined for all n € Z4 by 8(g, f)(n) = 6(g, f(n)). Note that the map # induces an action
of G on (*(Z%). Throughout this chapter, the map 6 will be termed as the induced action

on (2(Z%,) by the action 6 of G on C.
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Further, by fixing an arbitrary element g in G and the matrix A in M(d, 7), we

consider the following collection in ¢*(Z%):
(6.1) Bz, A, V) = {ﬁ(g,TAk¢j) ke, CZL, eV, jel, C No} ,

where U := {9, },er, C €*(Z%). Now, our motive is to find conditions on ¥, and the finite
sets I; and I, such that the collection B (g, A, ¥) defines a framelet system for ¢2(Z%)
having time-frequency localization properties.

Here, note that by letting the group element g in G as e, that is, the identity element
of the group G, and by using the definition of the induced group action, the collection

(6.1) reduces to the following form:
(6.2) Brle, A, V) = {Tupy; 1 k€ I CZY, ; €V, j € I, C Ny},

which yields a generalization for the collection (5.1) in the multidimensional set-up. Fur-
ther, in order to see the time-frequency localization properties in the system (6.1), we
consider the possible situations of the sets I; and I, and the matrix A as follows.

In the collection (6.1), if we consider I; such that AI; = Z%, then the cardinality of
I; should be equal to one, in order to make the system B (g, A, V) an orthonormal basis

for (2(Z4;). That means, if we let ¥ = {1}, then (6.1) can be redefined as follows:

(6.3) Br(g, A, (1)) = {0(g. Ta) : Ak € AL =74}

But the above defined system is not frequency localized, which follows by noting the

following result:

Proposition 6.1. Let the map 0 be the induced action on (%(Z4,) by the additive as well
as multiplicative action 0 of G on C. Then, for each g € G, the collection defined by (6.3)

forms an orthonormal basis for (*(Z%) if, and only if, |0(g,¥)(n)|*> = 1, for all n € Z4,.

Moreover, an orthonormal basis of this form is not frequency localized.

In order to prove Proposition 6.1, we need the following definitions and result that
provide the notion of an additive action and a multiplicative action of G on C, which will

be useful for obtaining various results in this chapter. For this, we define the map

0?: G x C* = C% (g, (21, 22)) = (0(g, 21),0(g, 22))-
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Inductively, we can define 6" for a natural number n. Note that in the following definitions,

the notation /g denotes the identity map on G:

Definition 6.2. An action # of the topological group G on C is called

(i) additive if the following diagram commutes, where '+ is the addition of complex

numbers:
2 62 )
G x C2 CZ (g7 (’Zl? 22)) — 0 (g7 (Zla 22))
(Ig, +) + (g, +) +
G x C C (8,21 + 22) 0(g, z1 + 22)

This means, 6 is additive if for all ¢ € G and (z1, 22) € C?, we have

0(g, 21 + 22) = 6(g, 21) + 0(g, 22).

(ii) multiplicative if the following diagram commutes, where ' - is the multiplication

of complex numbers and p, is the second projection of C? onto C:

0,2
G x C2 . p2) C2 (g, (21, 22)) 6:2) (0(g, 21), 22))
(Ig, )l k (Ig, )l
GxC i C (g, 21.22) b (g, z1.22)

This means, 6 is multiplicative if for all g € G and (21, 25) € C?, we have
0(g, z1.22) = 0(g, 21)-22.

Now, we provide some examples on additive and multiplicative group actions, which

are as follows:

Example 6.3. (i) For G = Z, = {[0], [1]}, that is, the group of integers under addi-
tion modulo 2, the group action 6 : Zy x C — C, defined for all z € C by [0].z = z
and [1].z = —2z, is additive as well as multiplicative.

(ii) Let the Klein’s four group as G = {1, f, g, h}, where I, f, g and h are mapped on C,
defined respectively by I(z) = z, f(2) = Z,9(z) = —z and h(z) = —Z, for all z € C.
Here, G forms a discrete topological group under the operation of the composition
of maps, and the group action 6 : G x C — C; (¢, z) — ¢(z), is additive but not

multiplicative.
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(iii) Let G = Iso(C) be a set of all isometries on C, where every element f € G, is a
bijective map f : C — C satisfying the condition |f(z1) — f(22)| = |21 — 22/, for all
21,29 € C. Then, G forms a group under the operation of composition of maps,

and the group action 6 on C defined by
0:GxC—C; (p,2)— p(2),

where
az +0b, if ¢ is a direct isometry,

p(z) =
aZ + b, if ¢ is an indirect isometry,

for some a,b € C with |a| = 1, is neither additive nor multiplicative.
Next, we define an equivarient map which is required in the sequel:

Definition 6.4. An equivarient map is a function between two sets that commutes with
the action of a group. Specifically, let 6 be a group action of the topological group G on
the associated G-sets X and Y. Then, a function w : X — Y is said to be equivarient if

the following diagram commutes:

G x X X (g>$) $ Q(g,x)
(Lg,w)k w (Ia,w)l [w
Gy y (g, w(x)) —— 0(g, w(z))

In other words, we say w is an equivarient map if for all g € G and x € X, we have

w(0(g, x)) = 0(g, w(z)).

Lemma 6.5. Let 0 be an action of a group G on C, and let 0 be an induced action on

(2(Z4)) by the action 6 of G on C. Then, we have following:

(i) For each k € Z2, the translation map Ty, : (*(Z%) — (*(Z%,) is an equivarient map
under the action of 0.
(ii) By assuming additive and multiplicative properties of 0, the DFT map given by

~ L 2(Z4) — (7)) is an equivarient map under the action of 6.

Proof. The result can be easily seen by observing that for each g € G and
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(i) for k,n € Z%, we have

T,(0(g, f))(n) = 0(g, f)(n — k) = 0(g, f(n — k))
= 0(g. T f(n)) = 0(g, To.f)(n), for all f € ((Z4).

(ii) for f € (?(Z%), we have

g(g/,\f)(n) = Z g(g, f)(m)e—Qﬂi(WM/N: Z (g F(m )) —2ri(m,n) /N
mEZ‘fV mEZ‘]i\,
= 3 0 (g f(m).e mmY) —e<g, > rm —2mmn>/N>
mEZ]dV meZd

—0(g, f(n)) = 0(g, f)(n), for all n € Z%,

in view of the additive and multiplicative nature of 6.

]

Proof of Proposition 6.1. The system Bx(g, A, {1}) forms an orthonormal basis for £*(Z%,)
if, and only if, for ki, ks € Z%, we have (0(g, T, ), 0(g, Te,t))) = Ok, ky» Which by using
(P2) and Lemma 6.5 becomes equivalent to 0y o = (B(g, 1), Te(B(g, 1)), for k € Z4,. Now,
by using the Plancherel’s formula and (P2), we can write

1 = 2 2mi(n,k)/
6k,0 = W(‘g(ga w>7Tk(9 Nd % |€ | g\/( )
ne

where for each n € Z%, we have G(n) := 6(g,4)(n)|2, and hence, the result follows by
following the steps of Lemma 5.6 of Chapter 5. m

By continuing in the same way as in case of Chapter 5, we give the final form of the

collection (6.1) under the following list of assumptions for the remainder of this chapter:

(B1): For some N € N, we consider the matriz A € M(d,Z) such that A = NA~! €
M(d,Z).

(Bs): For L := |I| > |det(A)| > 2, we assume ¥ = {4;}\=) C (*(Z).

(B3): Let I, = ® 3 (which is an AZ4 -tile of Z4) to get a group representation for Al .

(By): Under the assumptions of (By) — (Bs), for each g in G, the system in (6.1) can be

redefined as follows:
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(6.4) Br(g, A, 1) = {é(g,TAkwj) heDp b eV, 0<j<L— 1} .
Consequently, the collection defined in (6.2) takes the following form:

Brle, A, 1) = {é(e,Tij) =Tty k€D ¥, €V, 0<j<L— 1}.

Next, we provide the definitions for the framelet systems associated with an induced

action of the group G on *(Z%):

Definition 6.6. Let ¥ = {¢;}/=] C (*(Z%), where L > |det(A)| > 2. Then, for each
g € G, the collection Bp(g, A, ¥) (defined in (6.4)), is termed as a

(i) g-framelet system (g-FS) for (3(Z%) if it is a frame for (2(Z4,).
(ii) tight g-framelet system (tight g-FS) for (2(Z%) if it is a tight frame for £2(Z%).
(iii) Parseval g-framelet system (Parseval g-FS) for (?(Z%) if it is a tight frame for
(*(Z%) with frame bound equal to one.

(iv) g-orthonormal wavelet system (g-ONWS) if it is a Parseval frame for £2(Z%) along

with L = |det(A)| > 2.

Here, we mention that for g = e, the above defined g-framelet systems will be called as
e-framelet systems (simply, framelet systems).

Note that the frames in Hilbert spaces allow stable representation of all the elements
of the space via a given frame and its dual frame. Now, for defining dual of a g-FS, we

need to first recall (B;) and then assume the following throughout this chapter:

(Bs): For each positive integer 1 < a < 2, let U(®) = {wj(a) 2 C (2%), where L >
| det(A)| > 2.

(Bg): By assuming (By), (Bs) and (Bs), for each g € G and positive integer 1 < a < 2,
we define the collection in (*(Z4,) by

(6.5) Bp(g, A, V@) = {é’(g, Tau'”) k€D, @ W@ 0<j<L— 1} .
Definition 6.7. A system Bp(g, A, ¥W) in (2(Z%) will form a dual g-framelet system

(dual g-FS) for the g-framelet system Bp(g, A, W) in (2(Z4), if for all f € (2(Z%), the
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following reconstruction formula is satisfied:

L-1

kED 7 j=0

L—1
= > .0 Tart )0, T,
keD 5 j=0
In this case, we say that the systems ‘%F(g, A, ¥M) and Br(g, A, V) form a g-dual
pair in (2(Z4) or YW is a g-dual of ¥, Similarly, for g = e, we say that the collections
Br(g, A, VW) and Bp(g, A, ¥@) form an e-dual pair in (2(Z4,).
In the next section, we provide the characterization results for the above defined g-
framelet systems. Several such systems have been introduced very successfully in mathe-

matics and its applications by many researchers (see [10,12,51,59]).

6.3. Characterization results for the g-framelet systems

Our first aim in this section is to characterize dual of a g-FS, from which the char-
acterizations for the Parseval g-F'S and g-ONWS can be easily deduced. For this, we
use equivarient property of DFT and translation operator, and, the additive and mul-
tiplicative properties of the group action 6. Therefore in view of Lemma 6.5, here and

throughout, we assume the action 6 of G on C is additive as well as multiplicative.

6.3.1. Characterization for a dual g-framelet system

We begin this subsection by stating some notation to be used in the remainder of
this chapter. By @}, we denote the complete digit set of P in Z%, where P := CZ$, for
C = (A)t, that is, transpose of the matrix A. Here, observe that D% = |D4l.

Motivated from a result of Frazier [26, Theorem 3.8], that is, the system (defined in
(5.1)) generated by u; and uy forms an orthonormal basis for ¢?(Zy) if, and only if, for
each 0 < n < M — 1, the system matrix given by

b uy(n) uz(n)
is unitary, we expect the required characterization for dual g-FS in terms of system
matrices for the generators ¥(® = {wj(a) f;ol; a = 1,2 defined in (Bs). Here, we provide
the definition for this:
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Definition 6.8. For each g € G, positive integer 1 < a < 2 and m € @}, we define the
system matriz of U@ that is, Sg(a)(m) as follows:
S (m) = (0e.0)m+9)) e
| det(A)] ’ 0<j<r-1

Further, in case of frame theory, the dual (cross dual) Gramian operators play a
significant role in deducing the important characteristics of frame vectors. Thus, we
want to relate the system matrices of U(¥;q = 1,2 with the dual (cross dual) Gramian
operators corresponding to some suitable collections. Therefore, our next step is to define
these collections.

For this, for each g € G, positive integer 1 < a < 2 and m € D% T we consider the

collection in the space ¢?(P), given as

(6.6)

K(g,m, w) = {icgw(“)( P

S of Y 7] @V (1m)- . B
ydet(A)|T (Blg ;")) (m); 0<j< L 1},

where we define
TE(0(s.0)") (m) = (0(e. &5") (m +p))

in view of equivarient property of DF'T. Here, the map 7% described by
TS (2(Z%) — 62(5‘3}, (P));

Tef(m)(p) = f (m~+p), forallme D% and p € P,
is a well defined isometric isomorphism, which follows by observing that the collection
Ho = (D%, (2(P)) is an [D%]|P|, that is, Ne-dimensional Hilbert space with the usual
inner product, and

T8 | = D ITEF Dy = D D I TEFD(P)

le@* le@} peEP

=Y ST FU+p) P= Y 1 Fn) P= NIFIP, for all £ € (Z4),

1€D% peP nezg,

since Z% = |J (I +P). The above discussion leads to the following result:
leD%
A

Proposition 6.9. For each g € G, the map T?® is well defined and establishes an isometric
isomorphism between (*(Z%;) and Hy. Moreover, we have ||TEf||,, = V' N\ ]|, for all
f e r(zZy).
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Next, we define the dual (cross dual) Gramian operators corresponding to the collec-

tions in (6.6).
Definition 6.10. For each g € G, positive integers 1 < a,b < 2, and m € @}, the

composition operator ng)’(b) (m) = (@é;a) (m))*@g)) (m) defined by

GO (m) - (P) = E(P); £ DKy () KE(™) (),

will be termed as the dual (cross dual) Gramian operator corresponding to the collections
K(g,m,¥@) and K(g,m, ¥®), when a = b (a # b). Here, @gl) (m) (respectively, adjoint
of @gl) (m), that is, (@é“) (m))*) is the analysis operator (respectively, synthesis operator)
corresponding to the collection K (g, m, (@), where the map @gl) (m) : 2(P) — CL.

The system matrices for ¥(@);a = 1,2 and the dual (cross dual) Gramian operators

corresponding to the collections in (6.6) are related as follows:

Proposition 6.11. For each g € G, positive integers 1 < a,b < 2, and m € @}, the dual

(cross dual) Gramian operator Géa)’(b)(m) defined as above, satisfy the following relation:
GO () = S(“)(m)(S(b)(m))*

g
L—1
- g (S Ao -l TN )

p1,p2€P

where (Sg(b)(m))* represents the conjugate transpose of Sg(b)(m) (that is, the system matriz

for W®).

Proof. Let g € G, m € Q*A and positive integers 1 < a,b < 2. Then,

L

S&(m) (8P (m))" = |det (Z g, ) (m + p1)0 (g, 0 ))(mﬂoz))
p1,p2€P

Now, we wish to compute the dual (cross dual) Gramian operators corresponding to

the collections I%(g, m, ¥@);a = 1,2. For this, let {e,},ep be the standard orthonormal

basis for £2(P). Then, for s,q € P, the entry in the s row and ¢'* column of G )( )
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is given by

<G’g1) (b)(m)eq, e$> = < @é“)(m))*@éb)(m)eq,es>
= (3 lea K m)KEWL) ). .
= 3 (e K3 m)) e 5057 ()

g (b) m /
<€lJ7IC (,lvbj )( )> |det §,€P ( ‘l‘Q)
1 N (m
Tl 0(g, ") (m + q)
and
SN ) = —— (e DD (m + s

Therefore, we conclude that

L—1
GO (m) = |det (Zt?g@b” (m + 5)6 (gﬁjb)ﬂmﬂ)) :
s,q€P

J

]

The following result relates the collections Iz(g,m, U@) and lC(g,m U®) with the

operator G (m):

Lemma 6.12. For eachg € G, m € D% bt and positive integers 1 < a,b < 2, the collections
K(g,m, V) and K(g,m, ¥®) are dual frames for (*(P) if, and only if, the dual (cross

dual) Gramian operator Géa)’(b) (m) = Ig, where Ig is an identity matriz of order Q) =

| det(A)].

Proof. Let g € G, m € D% bt and positive integers 1 < a,b < 2. Then, the collections
K(g,m, U @) and K(g,m,¥®) are dual frames for ¢2(P) if, and only if, the following
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reconstruction formula holds:
L—1
h=">"(h, KE@) (m) K" (m), for all h € (2(P),

j=0

which in view of Definition 6.10 is equivalent to the following equality:

(1) = 3 (=) ) (Y ), T
= (Ggl)’(b)(m)h,ﬁ), for all h, h € (*(P),

that means, Géa)’(b)(m) is an identity operator on £2(P), and hence, the result follows. [

Now, we state the main result of this subsection that represents the conditions under
which the systems Bp(g, A, ¥@) and Bp(g, A, ¥®); 1 < a,b < 2 (defined in (6.5)) form
a g-dual pair in (2(Z%):

Theorem 6.13. For each g € G and positive integers 1 < a,b < 2, let U@ = {¢§a)}f;&
and W® = {¢](-b)}§:_01 be subsets of (*(Z%), where L > |det(A)| > 2. Then, the following
assertions are equivalent:
(i) The collections ‘%F(g, A, (@) gnd %F(g, A, U®)) form a g-dual pair in (*(Z;).
(ii) For each m € CD*K, the following relation between the system matrices for U@ and

O holds:

S0 (m) (8P (m)" = Io,

g

where 1g is an identity matriz of order () = |det(A)|, equivalently, it means

~

-1

(6.7) g(g, @;a))(m +p1)§(g,@§b))(m + pa) = | det(A)|0p,p, Sfor all p1,ps € P.

<.
Il
o

In particular, by using a = b in the above result, we get a characterization of W@ = w®)

such that for each g € G, the system %F(g,A, V@) defined in (6.5) forms a Parseval
g-FS for (*(Z%,), which in addition by considering L equals to the | det(A)| leads to a g-
ONWS in (*(Z%,), and hence a generalization of the result [26, Theorem 3.8] is obtained

for the multidimensional set-up.

Observe that by using g = e and the definition of an induced group action 0 in
Theorem 6.13, we can easily deduce a characterization for an e-dual pair. We state this

result in the following form:
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Corollary 6.14. For positive integers 1 < a,b < 2, let U@ = {¢§“) jL;()l and U =
{wj(b)}f;ol be subsets of (*(Z%), where L > |det(A)| > 2. Then, the following statements
are equivalent:

(i) The collections Bp(e, A, ¥ @) and Bp(e, A, V) form an e-dual pair in (*(Z%).

(i) For each m € D%, we have

~
—_

57 m 4 p) Yy (m o+ pa) = | det(4)[8yy,, for all pr.pz € P.

.
Il
=)

In particular, by using a = b in the above result, we get a characterization of W@ = y®)
such that the system Bp(e, A, ¥ @) (defined in (6.5) for g =€) forms a Parseval e-FS for
(%(Z%,), which in addition by considering L = | det(A)| leads to an e-ONWS in (*(Z%).

The following result is useful in finding a g-ONWS with the help of one generator:

Proposition 6.15. For N € N, let the matriz A € /W(d, Z) with |det(A)| = 2 be such
that the matriz A = NA™' € M(d,Z). Let 1y € (2(Z%) be such that for each g € G, the
collection {g(g, Taxtho) 1 k € @g} forms an orthonormal set in (*(Z%) with |D ;| elements.

Further, by assuming P = {y1,72}, we let ¢ € (*(Z%,) satisfying the following relation:

0(g, V1) (m + ;) = (=172 ™NG(g o) (m + ),

for all m € ®% and 1 < ji # j» < 2. Then, for each g € G, the collection given by
{5(g7TAk1/)j) ke®;,0<5< 1} forms a g-ONWS for (2(74,).

Proof. Following the technique used in Proposition 6.1, it can be easily verified that the
orthonormality of the collection {g(g, Tarthy) k€D g} is equivalent to saying that for
each m € @}, we can write:

(6.8) S 10(g, o) (m +7) [ = | det(A)] = 2.

yEP

Therefore, the result follows by using the given form of ¢, € (*(Z%) along with (6.8),

which says

Y 16(s, n) (m+ ) = 16(g, do)(m +)[* =2,

YEP YEP

and for each 0 <i#j <1, > 5(g,$i)(m+7)5(g,zzj)(m+7) =0, forallme ®%. O

yEP
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Our next motive is to prove Theorem 6.13. For this, the following result plays an important

role, which is true in view of Proposition 5.12:

Lemma 6.16. Let {Ej}ren, C 52(’}3}), where for each k € ® 3, we define Ep(m) =
\/‘;@?G%“m’/‘mm, for all m € ’D}. Then, the system {Ek}ke@g forms an orthonormal
basis for £2(D%).

Proof of Theorem 6.13. Let g € G and positive integers 1 < a,b < 2. Then, by using the
approach of [10], it can be justified that the system %F(g, A, V@) is a g-FS for (2(Z4)
with frame bounds oy and «s if, and only if, for each m € D7, the collection Iz(g, m, U(@)
is a frame for £2(P) with the same bounds.

Also, if s%F(g,A, U(@) and %F(g,A,\P(b)) are collections in ¢*(Z%), then, for f,h €
(%(Z4;), we get the following estimates:

S (s Tat®), 1) e Tt ™) )
7=0 ke@;
= (T @ ) Y T (Bl ™)) )
7=0 kE@g
LSS (T Bl ) BTk (0 ),
7=0 kE@g

where the last equality follows from Lemma 6.5 and the Plancherel’s formula. Further,
by using the property (P2), the definition of map 7T, equivarient property of the DET
map, and the fact that (o, 8) € NZ, for all a € AZ4, and 8 € CZ%, the above quantity

is equivalent to the following:

L-1
| o ARG 2 GO (] S QAN (o ()
o AN NG (g ) (n)n) 3 ARG (g, D) () Flm)

7=0 k€D 5 nezd, mezs,

1 & Ty +p1)
- Z Z 2l AN N (g, ) (ma + pr)h(my + py)

@ p1EP
y Z p2mi(ms,Ak) /N Z 5( o @a))<m2 + o) f(ma + po)
m2€DY p2€P
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I S S e () on) T

J=0 k€D 3 m1€©~

» Z ezm‘(mg,Ak>/N<]Cg(¢J(,“))(m2)7Tgf<m2)>‘

*
mQEDZ

Next, we define
Gys) (m) = (K= (m), TEf (m)
and
Gy (m) = (K& (m), T5h(m)),

foreach 0 < j < L—1and m € ©%. Thus, by using {Er}ren; C 62(9}) as an orthonormal

basis for ¢2(D%) from Lemma 6.16, we can write

S 3 (Ba Tt 1) (B, Tact®). )

J=0 keD 5
_ | det(A)] f Z Z e—2wi<m1,Ak>/Ng(b)(ml) Z 6—2wi(m2,Ak>/Ng(“)(m2)
N2d Jj= Oke'D m1€©~ " m26©} e
- |det ‘9 Z Z gj(bg’ Jg’ Ey)
Jj=0 k€D ;
L St )
~ Nd <gjag’ gyg>
j=0
1 () () (@)
=i Gis(§)G;q(€)
j=0 {E@*g
1 L—1 N
) =1 (CE (W) (€), TER(E)UCE (™) (€), THF(9)).
=0 €D,

Now, in order to prove the sufficient conditions, assume that the relation (6.7) holds
true, which in view of Proposition 6.11 and Lemma 6.12, is equivalent to the fact that for
each m € D%, the collections K(g,m, U@ and K(g,m, ¥®) are dual frames for (2(P),
that is if, and only if, the following relation holds:

L—
. Z ho, KCEA) (m) ) KCE (") (m), for all by € 2(P),
7=0
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which can be equivalently written as

b‘
,_n

(o) = 3 (e, KEQED ) )Y UCE () (m), ho), for all By, by € (P).

<.
Il
o

If f,h € (*(Z%), both T&f(m) and T8h(m) belong to ¢*(P), for all m € D%, by using the
definition and properties of the map 7¢. Therefore,

b‘
,_l

(T F(m), T*h(m)) = 3 (T5f(m). KE (S (m) ) (ICE () (m), TER(m)),

for all f,h € (?(Z%,). Further, by taking summation over D% in the above equation, we

get the following:

Z Z T2 f(m), K2 (') (m)) (K2 () (m), T=h(m),

for all f,h € (*(Z%). Moreover, by using the isometric properties of the map 78 and

equation () in the above equality, we get

NUf hy = (TEf,Teh) = ) Z T f (m), KB ™) (m) (K3 (W) (m), TEh(m))

mG’D

L—1
= NS> (F, 008 Tawd™)) (b, 0(g, T,

7=0 ke® 3

b S

for all f,h € (2(Z%). Thus, the collections Bp(g, A, ¥@) and By(g, A, ¥®) form a
g-dual pair in (2(Z).
Conversely, if the collection Bp(g, A, U®) is a dual g-FS for By (g, 4, ¥®) in *(74),

or equivalently by the previous computations, if the identity

(6.9)
> (TEf(m), TEh(m Z Z (TEf( D) (m)) (K2 () (m), TEh(m)),

holds for all f,h € (*(Z%), we would like to deduce that, for each m € D% and all
fih € 3(Z2%),

b‘
)_l

(6.10)  (T%f(m), T=h(m)) = S (T%f(m). K 84 (m)) (KB () (m), TEh(m)).

<.
Il
o
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Let {e;}icp denote the standard basis in £*(P). Note that the validity of (6.10) for all
f,h € (3(Z%) is equivalent to

~
[asy

(esver) =Y {es, K@) (m)) (KB () (m), er),  s,t € P.

J

Il
o

If (6.10) fails, there is sg,ty € P such that,

Z(m) = (Z (eso KBS ) () (ICE ) (), e4y) — (50, >> #0

=0
on a finite set, say, © C D% with |©| > 0. Thus, one of the inequalities Real part of Z(m),
that means, Re(Z(m)) > 0, Re(Z(m)) < 0, Imaginary part of Z(m), that is, Im(Z(m)) >
0, or Im(Z(m)) < 0, holds on the set ©. Suppose, for example, that the inequality
Re(Z(m)) > 0 is true on such a set ®. Letting

€syy fOorm e D, ey, formeD,
p1(m) = and pa(m) =
0, for m € D%\ D, 0, form € D%\ D,

there exist f,h € (*(Z%) such that p;(m) = T&f(m), and pa(m) = T&h(m) for each

m € D%. Therefore, using (6.9), we can write

L—1
0=Re( ST ST TERm) K@) (m)) (E () (m), TER(m Z (TEf(m Tgh<m>>)
33

mG’)Dg 7=0

Re( 3 z<m>> = 3 (Re(Z(m),
meDy meDL

which being sum of non negative terms implies that each term, that is, Re(Z(m)) = 0,
and hence contradicts our assumption that Re(Z(m)) > 0. Therefore, (6.10) holds true,
or equivalently, for each m € D%, the collections K(g,m,¥@) and K(g,m, ¥®) are dual
frames for ¢*(P), and hence by using Lemma 6.12, the equality (6.7) can be obtained
easily, which completes the proof. O

6.3.2. Relation between a dual g-FS and a dual e-FS

In this subsection, for each g € G and positive integer 1 < a < 2, we want to relate
the collections %p(g, A, (@) and %F(e, A, (@), For this, we need to state the notion of

a circle orbit which is defined as follows:
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Definition 6.17. Let fi, fo € £2(Z%,). Then, we say that f; lies in the circle orbit of fs,
written as f; € St.fo, if f1 is a product of f, by an element of the unit circle S* in the

complex plane.

Proposition 6.18. For each g € G and positive integers 1 < a,b < 2, let () = {wj(-a) f;ol
and OO = {z/zj(b)}f;ol be subsets of (*(Z%), where L > |det(A)| > 2. Then, for each
0<j<L-—1, by assuming (é(g,@“)),ﬁ(g, %b) )) in the circle orbit of (1Z§a),$§b) ), the

following statements are equivalent:
(i) The collections Bp(g, A, ¥ @) and Br(g, A, ¥®) form a g-dual pair in (2(Z%,).
(i) The collections By (e, A, V@) and Bp(e, A, U®) form an e-dual pair in (2(Z).

Moreover, a similar type of relation can be established between the Parseval g-FS (g-

ONWS) and the Parseval e-FS (e-ONWS').

Proof. Let g € G and positive integers 1 < a,b < 2. Then, from Theorem 6.13, we recall
that the collections Bp(g, A, U@) and Bp(g, A, ¥®) form a g-dual pair in (2(Z%) if, and
only if, for all m € 0% and p1, py € P, the following condition is satisfied:

~

-1

a(g’ 7:5]('&)) (m + pl)g(& 1Z‘§b)) (m + p2) = | det(A)|5p1p27

i
o

which in turn is equivalent to the following equality:

L-1

Z eiﬁjvgzzj(.a)(m + pl)eiﬁjﬂ%b) (m + p2) = [ det(A)|6p,p,.
=0

in view of the fact that the tuple (g(g,%a)),g(g,@b) )) belongs to the circle orbit of
(zzj(-a), "@J(»b) ), and hence by using Definition 6.17, we get the existence of some £, , € [0, 27)
such that the tuple

3 M)y By b iBi o (@) (b
(6(g. 05, 8g. ;")) = e (&7, 45 ).
Hence, we can conclude the required result from Corollary 6.14. O

Next, we want to see conditions needed to put on the elements of B r(g, A, V) (defined
in (6.4)), in order to ensure that ¥ generates a framelet system having a dual of the same

structure:
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6.3.3. Structure of a canonical dual g-framelet system

This subsection deals with the study of the canonical dual of a framelet system asso-

ciated with each g € G. We define this type of g-framelet system as follows:

Definition 6.19. Let ¥ = {¢;}/= C (*(Z%), where L > |det(A)| > 2. For cach g € G,
let the collection By (g, A, ¥) be a g-FS in (2(Z4,) with frame bounds « and 3, and let Sg
be the corresponding frame operator (we call as g-frame operator), which is a bounded,

positive and invertible operator given by

Sy C(Zy) — C(Zy);

fe > Z 1,608, Tar)y))6 (g, Tarthy)-

ke® 7 j=0
Then, we can define the collection Cy (V) := Sg_l(%F(g, A, ¥)), which is a framelet system
for ¢%(Z4;) with frame bounds a~! and 7!, We call Cy(¥) as the canonical dual g-framelet
system (canonical dual g-FS) for (?(Z%).

Now, we wish to prove that under certain conditions the collection Cy(¥) shares a

similar structure with %5 r(g, A, ). For this, we need the following result:

Lemma 6.20. Suppose ¥ = {1);}; Ly c 4(Z%), where L > |det(A)| > 2. Then, for
each g € G, the g-frame operator corresponding to the g-framelet system %F(g, A, W) in

(%(Z4,)), that is, Sg and its inverse denoted by Sg_l, are equivarient maps under the action

of 0.
Proof. Let g € G, m € Z%, and f € (*(Z%). Then, Lemma 6.5 allows us to write

S(0(s ZZ (8 1) Tan(0(g, ) Tar(0(g, 1)) (m)

ke® z j=0
= 3 X e )0 T ) ) | T @) m)
keDz j=0 \nez¢

= Y 0(g. f(0)Tar(0(g.9))(n) | Tar(B(s, v5)) (m)

ke® 7 j=0 nEZ‘Ii\,
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h
L

nef\,

e

m

]
E N

ML 1]
~
- A

N

6 (. f () T (0L wj»(n))) Tar(B(g, ;) (m)

2

E’Dg'

DY F)Tar(8(g, 45))(n ))) Tai(6(g, 15)) (m)

neZd

N

0|e, (f, TAk<5<g,w»»nk@(g,wj»(m)) ,

keD

<.
Il
o

in view of the additive and multiplicative nature of the group action # of G on C. Hence,

we obtain
Sg(0(g, £))(m) = 0(g, S f)(m), for all m € Z% and f € (*(Z%).

Therefore, for each 0 < j < L — 1, the above relation implies that

S (0 ( ¢])) = (g,S S 7/’3)

which is if, and only if,

0z, 05) = 0(g. 0)),

where ¢; = S;'4;. Hence, the result follows. O

Theorem 6.21. Suppose ¥ = {t;}; Ly c 4(Z%), where L > |det(A)| > 2. Then, for
each g € G, Cy(V), that is, the canonical dual of g-framelet system S%F(g, A, W), preserves

the same structure.
Proof. Observe that the canonical dual of B r(g, A, W) is given by

Og(\p) = g_l(%F(gv A? \Ij))

S,
:{%4@@JM%0:ke@$0§j§L—1}CF@m.
Let g € G and k € © 3. Then, we claim that

(6.11) SeTanf = TapSef and Sy 'Tarf =TarS; ' f, for all f € *(Z5),
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and hence by using the above equation in Cy (V) along with Lemma 6.5 and Lemma 6.20,

we obtain the required proof as follows:

O, (W) = {S*lTAk (5<g,wj)) keD0<j<L— 1}
{TAkS ( gwj)) Zk‘G’Dg,OSjSL—l}
{T ( gm):ké@g,OSjSL—l}
- {0

Olg, Tar(ny)) sk €D, 0<j < L1},

where Sgle =mn; foreach 0 <j <L —1.
Now, in order to prove (6.11), let m € © 7. Then, by using Lemma 6.5 and (P3), we
get the following:

SeTamf = 3 S T, Tar@g, 1) Tarl 0, 0,))

ke® 7 j=0

L—1
= D > (s Tate—m (0(,9:))) Tar(0(g, 7)),
ke® 7 j=0
which on replacement of the summation index k with k& + m gives

SeTam [ = Z i(f, Tar(0(g. ¥3)) Tagesmy (0(g, ¥5))

kE@g 7=0

— Z i(f, TAk(g(g, wj))>TAkTAm(5(g7 ¥5))

kED 57 j=0

L1
k,‘E@g 7=0
= TumSe f.
Since we know that the operator S, is invertible, therefore for all f € (*(Z%), S;'f €

(%(Z4,), and hence using this fact in the above relation, we get
SgTAmSglf = TAmSgSglf = TAmf7

which is if, and only if,
Sy S TamSy ' f = Sy Tam f-

Hence, the claim follows. O
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6.3.4. Examples

To understand the above theory in a better way, next we are providing some examples

related to g-FS, tight g-FS, g-ONWS, and the canonical dual of a g-FS in ¢*(Z%) :

Example 6.22. Let G = R* = R\ {0} be a multiplicative group of real numbers and let
0:R*xC—C; (rz)—rz

be a group action on C. Clearly, 6 is an additive as well as multiplicative group action.

Further, consider A = (2

1 2
and © 7 = {(0,0)%,(1,0)'}. Now, assume that Uy = {4,491} C (*(Z3), where for any

) , which is a non-expansive matrix with eigenvalues (24:/2),

arbitrary element g € R*, we have

1 1

t
—,0,—,0) and
gv2 gV2

o = ($0((0,0)), ¥((0, 1)), %o((1,00), (1, 1)) = (

1 1 ¢
(i) g-ONWS: Then, for cach g € R*, the collection By (g, A, ;) defined by
Br(g A, ¥1) = {0(g. Taxy) 1 k€ D5, 0<j <1}
={gTartpj : k€D, 0<j <1}
forms a g-ONWS for (2(Z3).

(i) g-FS: Let Wy = {4y, 11,12} C (*(Z3), where 1y = tpy. Then, for each g € R*, the

collection given by

forms a g-FS for ¢*(Z3) with frame bounds 1 and 2.

(111) tight g—FSI Let \113 = {¢0,¢1,¢2,w3} C 62(23), Where ﬂ]Q = ’QDD and 77/}3 = 7,[)1.
Then, for each g € R*, the collection

forms a tight g-FS for ¢2(Z3) with frame bound 2.
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Example 6.23. (Canonical dual g-FS): Consider the g-FS defined as %F(g, A, ¥y) in
the Example 6.22(ii). Then, for each g € R*, the canonical dual of this g-FS is given by

ST (B r(g, A, Ws)) = {S71(0(g, Tarthy))  k €Dz, 0 < j <2},

where S, : (2(Z3) — ((Z3); f = Y Z £,0(g, Taxt);))0(g, Tagt);) is termed as the
ke® 7 j=0

g-frame operator corresponding to the g-framelet system B r(g, AU, .

From the above definition of Sy, it can be easily verified that
Su(6(s,¥0)) = 20(8,v0),  Su(6(g,41)) = Blg, 1),

Se(0(g, Tioto)) = 20(g, Tiotho), and Sy(8(g, To.1yt1)) = 0(g. To.yth),

which in turn implies that

;1 Bl v0)) = 5 e vo), 55 B(s. 1)) = Bl va),

R 1~
Sg l(e(gaT(O,l)qu)O)) = 5 e(g;T(o,1)¢0), and S ( ( 01 ¢1>) ( 7T(0,1)77Z)1)'
Hence, the canonical dual of %F(g, A, ¥y), that is, Sg_l(%p(g, A, W,)) is given by

0(g, @/Jo) 0(g ,T(o,l)l/)o)}

{1 (g, vo). Ole, ¢1) (g, To.vo), (gvT(Ol V1), %

= {0(g, Tary;) k€D, 0<j <2} =Bp(g, A, ),

where ® = {py = % = 2, p1 =Y}, and p; = Sg_le, forall 0 <5 < 2.

6.4. A characterization for super dual g-framelet system

Frames have found use in potential applications to data transmission by using a
technique called multiplexing (an important method in telecommunications, computer
networks and digital video, etc.) [3,50, 67, 68|, it motivates us to study super-framelet
and super-wavelet systems associated with an induced action of the group G on (?(Z%).
For the purpose of defining such systems, we consider ¥®) := = {¢; 2 )}q C 2(Z%) and
P:={1,2,..., P}, for some ¢, P € N, and also, we define the following collection:

612)  Bp(g, A, 99) = {B(g Taw") k€ D50 j < q—1} € A(ZR),

for each g € G and p € P. Thus, we have the following definition:
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Definition 6.24. For each g € G and p € P = {1,2,..., P}, assume the collection
Bp(g, A, UP) as defined in (6.12). Then for a finite sequence {U®1} p in @ (2(Z4) =

peP
(%(Z4;,CP), we say that

(613) <g7 A {‘1/ }pGP) <%F<g7 A7 ‘1!(1))7 %F(g7 A7 \11(2))7 sy %F(g7 A7 \II(P))) )

is a super g-F'S (respectively Parseval super g-FS, super g-ONWS ) for the super-space
(%(74,,CP) if the collection

(6.14)  Bg A (Y} er) = {0 Tt & 00, Tav”) ke D30 <g-1f,

forms a frame (respectively Parseval frame, orthonormal basis) for the super-space

¢3(74,,CP).

Remark 6.25. Note that in order to make the collection (6.13) an orthonormal basis
for the space ¢%(Z4,,C?), we need to assume ¢ = P|det(A)| in the collection defined in
(6.12). Therefore, we should consider ¢ > P|det(A)]| to study super g-FS for ¢2(Z%;,CP).

Foreachp € P = {1,2,..., P}, let U = {w }q sand ) = {cpgp)}?;é be subsets of
(2(Z4)), where ¢ > P|det(A)|, and let {UP} cp and {@P},cp be sequences in (3(Z%, CT).
Then, for cach g € G, the collection B(g, A, {®®1) (defined in (6.14)) will form a super
dual g-framelet system (super dual g-FS) for the super g-framelet system s%(g, AU
in (2(Z4,,CF), if for all f € EQ(Z]‘{,, C?), the following reconstruction formula holds:

F=> Z f,@9 g,TAM/J(p @9 g,TAkw§ )
p=1

»Q

keD z j=0
q—1 P _ P »
=S Y (1. Db Tare?)) @ be, Tarw'?).
keD ; j=0 p=1 p=1

In this case, we say that the systems %(g, A, {¥®1}) and ‘%(g,A, {®®)}) form a super
g-dual pair in (2(Z4,CP) or {UP} is a super g-dual of {®P}. Similarly, for g = e, we
say that the collections B(g, A, {U®}) and B(g, A, {®P}) form a super e-dual pair in
2(74,,CP).

In order to find conditions on {¥®} and {®®)} such that B(g, A, {¥®}) form a super
dual g-FS for B(g, A, {U®}) in (*(Z4%,CP), we need to prove a result on orthogonal g-

framelet systems. We define these g-framelet systems as follows:

Definition 6.26. For each p € P = {1,2,..., P}, we assume ¥ = {w(p)} C 2(Z%)

for some ¢ € N. Then, for each g € G and p; # py € P, the g-framelet systems
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%F(g,A, ¥ and %F(g,A,\IJ(m)) in (*(Z%) will be termed as orthogonal g-framelet
systems if, for all f € (*(Z%;), we have

1 L-1
E:EZUﬁ@Jm@mﬁ@Jm@“ =" > (£.0(g, TP (g, Tary)) = 0.
=0 keD ; =0 keD ;
Lemma 6.27. For each p € P = {1,2,..., P}, we assume U® = {w(p} C *(7%)
for some q € N. Then, for each g € G and p1 # py € P, the g-framelet systems
%F(g, A, WPV and %F(g, A, U2 form orthogonal g-framelet systems in (*(Z%) if, and
only if, the following equality holds:

[y

(6.15) __ﬂgﬁm)@+7)(&¢”5@+vﬁ 0,

J

I
o

for all v1,v2 € P and £ € 0%

Proof. Let g € G and p; # py € P. Then, the g-framelet systems s%F(g,A,\I/(pl)) and
B r(g, A, UP2) form orthogonal g-framelet systems in ¢2(Z4,) if, and only if, by equivalent
form of Definition 6.26, we have (@épl))*@ém) = 0, where (@épl))* and O are respec-
tively the synthesis and analysis operators corresponding to the collections B r(g, A, \If(pl))
and %F(g,A,\P(m)), which in turn holds if, and only if, (© pl)) (m)f = 0, for all
f € (*(Z%,), equivalently, it represents the following identity:

(6.16) ((OFN) el f,h) =0, forall f,he (*(Z%).

g

Moreover, by recalling the technique used in computing the equation () in the proof of

Theorem 6.13, we can write

L-1
<(@§”1))*®§’2)f, h) = Z Z {f, §(g7TAk¢(pz))><h,§(g,TAk¢(m))>

Jj=0 keD ;

(%) = dZ S TUTEF(), KW €N (Teh(E), KCe(w)) (),

7=0 56@*

for all f,h € (*(Z%). Hence, from (6.16) and (x*), we get

~
[y

0= (TEF(E), KEWI) (€N TEh(E), Ka(wPV)(€)),  for all f,h e (*(Z%),

J=0 €D,

Il
=]
hS}
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which in view of the fact proved in the converse of Theorem 6.13 is if, and only if, for

each £ € D%,

0= ivgf(&) (I (€))(Teh(E), Ke(wPV)(€)),  for all f,h € (2(Z).

§=0
Since for f,h € (*(Z%), hy = Tef(£) and hy = T8h(£) are elements of (2(P), for all
e ZD*~, the above equation can be rewritten as

(617)

h
,_a

(hy, KB () (€)) (ha, KE () (€)) = (GPI@2) () hg, y), for all by, hy € (2(P),

.
Il
o

where Gép 1)(p2) (&) represents the cross dual Gramian operator corresponding to the collec-
tions K(g, &, Py and I%(g,f’, ¥(2)) Now, (6.17) holds if, and only if, for all £ € D%, we
have GPV")(¢) = 0, which by using Proposition 6.11 holds if, and only if, the relation
(6.15) is satisfied. O

Our next result provides necessary and sufficient conditions on {W®} and {®} such

that they form a super g-dual pair.

Theorem 6.28. For ecachp € P = {1,2,..., P}, let U?) = {w(p)}q_l and P = {go(-p)}q_l
be subsets of (*(Z%), where ¢ > P|det(A)|, and let {¥ P} cp and {®P},cp be se-
quences in (*(Z%,,CP). For each g € G, consider the collections B(g, A, {®®}) and
B(g, A, {UP}) in (2(Z4,CP). Then, {IP} is a super g-dual of {®P)} if, and only if,
both of the following hold:

(i) For each 1 <p < P and m € D%, we have

-1

0(g, 037 (m +1)0(g, 37) (m + 72) = | det(A)|,, -, for all 1,72 € P.

=)

<.
I
o

(ii) For each 1 < p; #py < P and m € D%, the following equality is satisfied:

q—1

> 0(z, 0 (m +71)0(g, B7) (m + 72) = 0, for all 1,72 € P.

7=0

In particular, for each p € P, by using VP = &P in the above result, we get a character-
ization of {U®} such that for each g € G, the system Bp(g, A, {¥P}) forms a Parseval
super g-FS for (*(Z%,,CY), which in addition by considering q equals to the P|det(A)|
leads to a super g-ONWS in (?(Z4,,CF).
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Proof. Let {¥®)} be a super g-dual of {®®} which is if, and only if, é (p1)(p2)» that
is, the cross dual Gramian operator corresponding to the collections B(g, A, {U®}) and

B(g, A, {®®1), is identity on (2(Z%, CF), where G(pl)(m) : 2(Z2%,CP) — (*(Z%,CP) is
defined by

P

qg—1 P
Gonenf = Y. > (f.EPos, Ta?)) EB (g Tare),

keD; j=0  p=1 p—1
for all f = (fW, f@ ... ) ¢ 2(74,CP), where f@) € ¢3(Z%) for 1 < i < P. Since
{w®1} is a super g-dual of {®®)} this means,

> Z<f 6}99 (g, Ta") >@9 (g, Tap”) = f, for all f € (*(2%,C"),

keD 7 j=0

which is if, and only if, we can write

(f(l),f(Z)’ ... 7f(P))

q—1 P P
= Z Z<(f(l)uf(2)7"' ), @ gaTAk¢(p) @ g,TAk%
p=1 p=1

keD 5 j=0
for all f € ¢2(Z%);1 < i < P, which in turn is equivalent to
(Z Z (PO, 0, Tarw§))0(g, Tarel), 0 > Z<f“’> 0(s, Tart\"))0(g, Targ!” 5)
kED 5 =0 kED 5 =0

if, and only if, the collections %F(g,A, UP)) and s%F(g,A,\I/(p?)) form orthogonal g-
framelet systems in £%(Z%). Comparing both sides of the above equation, it leads us to
conclude that {¥®} will be a super g-dual of {®®} if, and only if, each ¥ is a g-dual of
®®) for each 1 < p < P, and ‘%(g,A, wP) and ‘lN%(g, A, U®2)) are orthogonal g-framelet
systems for 1 < p; # py < P. Hence, by using Lemma 6.27 and Theorem 6.13, we obtain
the required result. O

Further, we establish the following relation between a super g-dual pair and a super

e-dual pair:

Theorem 6.29. For cachp € P = {1,2,..., P}, let U?) = {Q/J(p) 175 and ®P) = {g0§p)}q;l
be subsets of (*(Z%), where ¢ > P|det(A)|, and let {U P} cp and {®P},cp be se-
quences in (*(Z4,, CF). For each g € G and 1 < j < q — 1, assume that the tuple
(g(g, 12]@)), 5(g, @p) )) is in the circle orbit of (w](p), @ﬁp) ). Then, the following statements

are equivalent:
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(i) The collections B(g, A, {UP) and B(g, A, {®®) form a super g-dual pair in
(74, CP).

(ii) The collections B(e, A, {¥P}) and B(e, A, {®P}) form a super e-dual pair in
?(74,,CP).

Proof. Let g€ G, pe Pand 1 < j < ¢—1. Then, it is given that ( (g, w ) ( 5)))
in the circle orbit of (1/1] ), <p§ P) ), therefore by using Definition 6.17, we get the existence

of some B;,, € [0,27) such that ( (g, wp)) 0(g, gogp))) = eWPier (w(p)’@p))' Hence, we
conclude the required result from the Theorem 6.28. O
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

The first chapter of this thesis gives an introduction to the research area, the motiva-
tion used for this work, and available literatures along with a basic introduction to each
of the chapters presented in the thesis. In the second chapter, we introduce the notion of
pre-Gramian operator associated to I'-TT systems over LCA groups, and discuss the fiber-
ization of operators associated with these systems. By using the fiberization approach,
we study orthogonal I'-TT Bessel (frame) systems, and apply our results on co-compact
Gabor frame systems over LCA groups.

In the third chapter, we characterize pairwise orthogonal GTI frame systems in L*(G)
and deduce similar results for several function systems including the case of TI systems,
GSI systems and GTI systems on compact abelian groups. We also discuss applications
of our characterization result on the Bessel families with wave-packet, Gabor, and wavelet
structure over LCA groups. By using recent unitary extension principle (techniques of
Christensen and Goh on LCA groups), the resulting characterizations (from Chapter 3)
are used to develop construction procedures for orthogonal frames, which are recorded in
the fourth chapter. The fourth chapter also consists of the construction of dual frame
pairs over super-spaces.

The fifth and sixth chapters relate the theory developed in Chapters 2-4 to the finite
dimensional Hilbert spaces by letting LCA group G of the form Z%. The connection
of work with finite-dimensional set-up is necessary since in this day and age of comput-
ers, processing can be done only when the signal can be stored in memory. Therefore,
the importance of discrete and finite signals cannot be ignored. The chapters are actually
devoted to investigate a finite collection of functions in £2(Z%;) that satisfies some localiza-
tion properties in a region of the time-frequency plane using the group theoretic approach
based on the set of digits. Using these functions, we first introduce an orthonormal wavelet

system (ONWS) in ¢*(Z%) and then provide a characterization for its generators in the



fiftth chapter. Further, we present some results on the uncertainty principle corresponding
to this ONWS.

The sixth chapter is the continuation of our work on the construction of a time-
frequency localized ONWS which is discussed in Chapter 5. We generalize the above-
mentioned construction to the g-framelet systems associated with an induced group ac-
tion in Chapter 6. Along with this, we focus on developing the theory required to study
the duality properties of the g-framelet systems for ¢2(Z4;). Further, we investigate the
structure of canonical dual for a g-FS. At last we concentrate on characterizing the gener-
ators of two super g-framelet systems associated with an induced group action such that
they form a super g-dual pair.

Note that we have characterized orthogonality of TI and GTT frame systems in Chap-
ter 2 and Chapter 3, respectively. The characterizations are further useful in Chapter 4
to construct orthogonal GSI systems via the approach of unitary extension principle on
LCA groups. It would be interesting to use results discussed in Chapter 4 to study general
constructions of orthogonal frames, based on B-splines on the group itself as well as on
characteristic functions on the dual group. Moreover, we do expect that using the results
of Chapter 5 and by considering a number of concrete groups, one can derive explicit
constructions of the resulting orthogonal frames. These constructions might be useful
in multiplexing of signals via super-frames, in the synthesis of new frames from existing
ones, in the construction of super-frames, etc. Along with this, we expect that some of

the investigations would lead to new results in different areas of research in frame theory.
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