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The theory of frames has a very close connection with unitary group representations,

since various structured systems, for example, wavelet and Gabor systems can be realized

as a sequence obtained by applying a family of unitary operators to a particular window

function. Among various frame properties, the “orthogonality or strongly disjointness”of

a pair of frames for Hilbert spaces is a very useful concept introduced and studied by

Balan, Han, and Larson. A pair of frames satisfying the above mentioned property are

termed as pairwise orthogonal (simply, orthogonal). Orthogonal frames play a key role in

frame theory, for example, in construction of new frames from existing ones, constructions

related with duality, in multiple access communications, hiding data, and synthesizing

super-frames, etc.

In this thesis we study the orthogonality of a pair of frames for function systems

generated by regular representations of locally compact abelian (LCA) groups. To the

best of our knowledge, we realize that the characterization results for pairwise orthogonal

frames have not been studied earlier in the context of LCA groups, and are appearing

first time in the literature via the work presented in this thesis.

Precisely, we examine pairwise orthogonality of frames generated by the action of

a unitary representation ρ of a countable family of closed and co-compact subgroups

{Γj}j∈J ⊂ G on a separable Hilbert space L2(G), where J ⊂ Z and G is a second

countable LCA group. We consider frames of the form

E(Ψ) :=
{
ρ(γ)ψp,j : ψp,j ∈ Ψ, γ ∈ Γj, p ∈ Pj, j ∈ J

}



for a (not necessarily countable) family Ψ := {ψp,j}p∈Pj ,j∈J in L2(G). We pay special

attention to this problem by assuming ρ as the action of a countable family {Γj}j∈J on

L2(G) by (left-)translation. The representation of Γ acting on L2(G) by (left-)translation

is called the (left-)regular representation of Γ.

We obtain characterizations of orthogonal frame pairs of the form E(Ψ) by considering

different situations on a countable family of closed and co-compact subgroups {Γj}j∈J in

G. Along with this, the resulting characterizations are used to construct new frames and

super-frames by using various techniques including the unitary extension principle by Ron

and Shen and its recent extension to LCA groups by Christensen and Goh.

Additionally, we investigate the orthogonality of structured function systems (e.g.,

wavelet, Gabor, and wave-packet systems) over LCA-group setting. Further, we relate

the above-developed theory to the classical case as well as finite dimensional Hilbert spaces

by letting LCA group G of the form Rd,Zd, and ZdN , etc.

Lastly, we provide a group-theoretic construction of a finite frame wavelet (simply,

framelet) system associated with an induced group action. Along with this, we investigate

the time-frequency localization properties of the framelet system. We also study the

orthogonality and duality properties of a pair of framelet systems, and its applications in

synthesizing super framelet systems over finite dimensional set-up.

viii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

ABSTRACT vii

Chapter 1 INTRODUCTION 1

1.1 Motivation and objective 3

1.2 Preliminaries 6

1.3 Structure of the thesis 11

Chapter 2 PAIRWISE ORTHOGONAL FRAMES GENERATED BY

REGULAR REPRESENTATIONS OF LCA GROUPS 13

2.1 Introduction 13

2.2 Fiberization of operators associated with Γ-TI frame systems 16

2.3 Orthogonality of Γ-TI frame systems over LCA groups 23

Chapter 3 ORTHOGONALITY OF GENERALIZED TRANSLATION

INVARIANT FRAME PAIRS 31

3.1 Pairwise orthogonal GTI frame systems 31

3.2 A characterization result on GTI orthogonal frame pairs 34

3.3 Applications of the characterization result 41

Chapter 4 CONSTRUCTIONS OF GENERALIZED SHIFT

INVARIANT ORTHOGONAL FRAME PAIRS 49

4.1 Introduction 49

4.2 Unitary extension principle (UEP) on LCA groups 50

4.3 A general construction for orthogonal frame pairs via UEP 52

4.4 Applications: Construction of frame pairs over super-spaces 56

Chapter 5 GROUP THEORETIC CONSTRUCTION OF FINITE

TIME-FREQUENCY LOCALIZED ONWS 59



5.1 Introduction 59

5.2 Group-theoretic construction of an ONWS in `2(ZdN) 62

5.3 Uncertainty principle corresponding to an ONWS in `2(ZdN) 72

Chapter 6 FINITE DUAL g-FRAMELET SYSTEMS ASSOCIATED

WITH AN INDUCED GROUP ACTION 79

6.1 Introduction 79

6.2 g-Framelet systems through an induced group action 80

6.3 Characterization results for the g-framelet systems 86

6.4 A characterization for super dual g-framelet system 101

Chapter 7 SUMMARY AND FUTURE DIRECTIONS 107

BIBLIOGRAPHY 109

x







CHAPTER 1

INTRODUCTION

The thesis has been divided into seven chapters. The purpose of this chapter is to

give some motivations and background knowledge about the research problems discussed

in this thesis. Also, this chapter includes preliminaries for the upcoming chapters. We

begin with a brief introduction to frame theory in Hilbert spaces, which is followed by

motivation and objective of the work done in this thesis.

A frame is defined to be a set of vectors in a Hilbert space that provides robust,

basis-like representations. Frames have found their significant role in signal and image

processing, data compression, and sampling theory with ever-increasing applications to

problems in both pure and applied mathematics, physics, engineering, and computer

science, to mention a few (e.g. see [3, 4, 29, 30,33,34,75,87,88] and references within).

In this scenario, a lot of mathematicians and researchers have contributed in analysing

various interesting properties and results of frame theory in different set-ups (see [7,8,10,

12,15,21,23,34,40–43,48,57,58,74,76,77,85] and references therein).

In the last two decades, the study of frames in the context of locally compact abelian

(LCA) groups has become the focus of an active research, both in theory as well as in

applications. This is due to the following advantages of the LCA-group approach:

• It unifies the continuous theory (integral representations) and the discrete theory

(series expansions), and enables us to consider key questions in frame analysis from

an abstract angle.

• This abstract approach also provides a unified way to the analysis on the four

elementary groups R, Z, T, Zm and their higher dimensional variants.

• Since in signal processing one often considers products of the groups R, Z, T,

Zm which are also LCA groups, the approach is very useful in solving practical

problems related to signal and image analysis. For example, multichannel video

signal involves the group Zd × Zm, where d is the number of channels and m the

number of pixels of each image.



In view of the above advantages, several researchers have made remarkable contributions

in establishing the theory required to analyse frame properties on LCA groups (see [10,

12,15,19,28,33,40,42,59,60,63,64,77,89] and various references therein).

Among these properties, the “orthogonality or strongly disjointness” of frame pairs

in Hilbert spaces is very useful. It was initially introduced and investigated by Han and

Larson [51], and Balan [4] in the context of multiplexing. The aforementioned property

of a pair of frames says that the ranges of the analysis operators for the two frames are

orthogonal . In this case, the corresponding frames are termed as pairwise orthogonal

(simply, orthogonal). The orthogonality of frame and Bessel sequences plays a key role in

frame theory, for example:

• In construction of new frames from existing ones, constructions related with duality,

in multiple access communications, hiding data, and synthesizing super-frames and

frames, etc. (see [3, 4, 35,40,51,67,89] and various references within).

• This property is used (by Han and Larson in [52]) as an essential ingredient in

examining the density and connectedness results of the wavelet frames.

Inspired by the wide applications of pairwise orthogonal frames, a lot of mathematicians

and engineering scientists have contributed in developing different aspects of this natural

geometric concept in frame theory over various function spaces (see [35, 36, 40, 42, 50–52,

63,67,89] and various references therein).

In this scenario, the main concern of the present thesis is to study pairwise orthogonal

frames for Hilbert spaces associated with LCA groups. Our focus is to investigate and

explore the orthogonality of frame pairs for function systems generated by regular repre-

sentations of LCA groups. In this direction, we obtain characterizations and constructions

of orthogonal frame pairs for various function spaces on LCA groups. Additionally, we

relate the above developed theory to the classical case as well as finite-dimensional Hilbert

spaces by letting LCA groups of the form Rd,Zd, and ZdN , etc.

To the best of our knowledge, we realize that the characterization results for pairwise

orthogonal frames have not been studied earlier in the context of LCA groups, and are

appearing first time in the literature via the work presented in this thesis. The results

obtained in the thesis are an interesting addition to the recent growing body of literature

on frames generated by structured families of functions on LCA groups.
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1.1. Motivation and objective

Literature says that the theory of frames has a very close connection with unitary

group representations, since various structured systems, for example, wavelet and Gabor

systems can be realized as a sequence obtained by applying a family of unitary operators

to a particular window function. In this direction, several researchers have contributed

in analysing various interesting properties and results of frame theory in different set-ups

(e.g. see [7, 10,12,15,59] and various references therein).

Motivated by this, our concern in the thesis is to examine the orthogonality of frames

for subspaces of a separable Hilbert space H that are invariant under the action of unitary

representations of a closed and (a not necessarily discrete) co-compact abelian group

Γ ⊂ G on H, where G is a second countable LCA group. Note that a subgroup Γ in G

is called co-compact if the quotient group G/Γ is compact, whereas Γ in G is said to be

a uniform lattice if in addition, Γ is discrete. More specifically, in the present thesis we

consider unitary representations of a countable family of co-compact subgroups {Γj}j∈J
acting on L2(G) by left-translation, where J is a countable index set. Such unitary

representations are called (left-)regular representations of {Γj}j∈J .

In connection with this, we mention that our work on orthogonal frames over transla-

tion invariant (TI) spaces is actually inspired by the utility of recent notion on TI systems

in LCA-group setting, which is given by Bownik and Ross in [10]. We also consider orthog-

onality in the context of generalized TI (simply, GTI) frame systems, which is a class of

systems introduced recently by Jakobsen and Lemvig in [59]. The notion of GTI systems

connects the well-established discrete frame theory of generalized shift-invariant (GSI)

systems and its continuous version. Therefore, the study of pairwise orthogonality of GTI

frame systems represents a unified way to deduce similar results for several other function

systems including the case of GSI systems studied by Kutyniok and Labate in [64], and

TI systems considered by Bownik and Ross in [10].

In view of the above discussion, note that the work of Kutyniok and Labate [64]

presented a combined theory for many of the known function systems (e.g., Gabor systems

and GSI systems on Rd) by introducing the notion of GSI systems in the LCA-group

setting. This approach is an extension of the theory of Hernández, Labate and Weiss [53],

and Ron and Shen [81] on GSI systems in L2(Rd).

3



Another significant fact which we wish to remark here is that among all function

systems mentioned above, SI and GSI systems are based on translation along uniform

lattices while TI and GTI systems, respectively, generalize the concept of SI and GSI

systems for the continuous case by considering translation along co-compact subgroups

of an LCA group. The motivation behind the consideration of co-compact subgroups for

TI systems in [10] and GTI systems in [59] is related to the necessity of overcoming the

limitation on the existence of uniform lattices for an LCA group, which says there exist

LCA groups that do not contain any uniform lattices, for example, the p-adic numbers

Qp, whose only discrete subgroup is the neutral element which is not a uniform lattice.

Another example is the p-adic integers which have only trivial examples of uniform lattices

but have a lot of non-trivial co-compact subgroups. Hence, the concept of co-compact

subgroups in [10] and [59] generalizes the work on function systems with translation along

uniform lattices considered in [19] and [64], respectively.

At this juncture, it is pertinent to note that in the Euclidean setting, Weber in [89]

studied orthogonal frames of translates with various applications, and later, Kim et al.

in [63] discussed such frames in a general shift-invariant subspace of L2(Rd), while Lopez

and Han in [67] described the orthogonality of discrete Gabor frame pairs in `2(Zd).

Therefore, the motive of the proposed thesis is to extend the characterization results from

the Euclidean case [89], discrete setting [67], and from the case of uniform lattices [63],

to the set-up of (not necessarily discrete) co-compact subgroups over LCA groups. Along

with this, the investigation of frame properties for structured function systems in different

settings have got special attention (see [2,4,12,28,30,33,60,67]). Hence, we got motivated

to study the orthogonality of such systems over LCA-group setting.

Since practical life applications mainly require frames in finite setting, this motivates

us to study finite time-frequency localized constructions of frame and wavelet systems. It

is known that a time-frequency localized basis plays an important role in extracting both

time as well as frequency information of a given signal, and the uncertainty principle helps

us to understand how much local information in time and frequency we can extract by

using the above-mentioned basis. The theory of uncertainty principle related to the pair of

bases and its applications has been developed by various authors (see [21,24,37,62,65,82]).

4



1.1.1. Objective of the thesis

The present thesis investigates the orthogonality of frame pairs generated by the

action of a unitary representation ρ of Γj on a separable Hilbert space L2(G), where for

each j ∈ J ⊂ Z, we let Γj to be a closed and (a not necessarily discrete) co-compact

subgroup in a second countable LCA group G with Haar measure denoted by µG, and

the unitary representation ρ : Γj → U(L2(G)); γ 7→ ρ(γ) that acts by a (left-)translation,

i.e., ρ(γ)f = f(· − γ) for all f ∈ L2(G). Here, note that U(L2(G)) represents the group

of linear unitary operators over L2(G). Further, for each j ∈ J , by assuming Pj as a (not

necessarily countable) index set, consider Ψj := {ψp,j}p∈Pj ⊂ L2(G), and define a family

EΓj(Ψj) :=
{
ρ(γ)ψp,j : γ ∈ Γj, p ∈ Pj

}
⊂ L2(G).

Precisely, we consider frames of the form 〈{Ψj}j∈J〉 :=
⋃
j∈J E

Γj(Ψj) which coincides with

the recent notion of GTI system introduced in [59]. Note that the GTI system reduces to

TI system discussed in [10], if Γj = Γ for each j ∈ J . However, if each Pj is countable and

each Γj is a uniform lattice in a GTI system, we arrive at GSI system considered in [64].

The main focus of this thesis is to study the orthogonality of frame pairs in the context

of above-mentioned systems over LCA groups. In view of this, the main objectives of the

present thesis are as follows:

• To characterize the orthogonality of frame pairs of the form 〈{Ψj}j∈J〉 by consid-

ering different situations on J ⊂ Z, {Pj}j∈J and {Γj}j∈J . By using the resulting

characterizations, we wish to provide constructions of new frames and super-frames.

• To investigate the orthogonality of structured function systems (for example, wavelet,

Gabor, and wave-packet systems) over LCA-group setting.

• To establish a relation between the above-developed theory and the classical case

as well as finite set-up by letting LCA group G of the form Rd,Zd,ZdN , etc.

• To provide a group-theoretic construction of a time as well as frequency localized

finite orthonormal wavelet system and its generalization to frame wavelet (simply,

framelet) system associated with an induced group action. Additionally, we are

interested to examine the time-frequency localization properties of these systems

via uncertainty principle.

• To study the orthogonality and duality properties of a pair of framelet systems,

and its applications in synthesizing super framelet systems over finite set-up.

5



1.2. Preliminaries

In this section, we set-up some notation, assumptions, and pre-requisites used for the

remaining chapters. We first review some basic results from Fourier analysis on locally

compact abelian groups. Then, we recall some basic definitions and results from frame

theory in Hilbert spaces. Throughout this thesis, we shall use the following notation:

the symbols N,Z, R and C, denote sets of positive integers, integers, real numbers and

complex numbers, respectively, and N0 := N ∪ {0}.

1.2.1. Background on LCA groups

In this part of section, we refer to the classical books [12, 25, 55, 56, 83] along with

research papers [10, 19, 59, 60, 64] for the terminology used and for various results and

properties related to harmonic analysis over locally compact abelian groups.

Here and throughout, let G denote a second countable locally compact abelian (LCA)

group, with the additive group composition, denoted by the symbol “+”, and the neutral

element 0. Note that the second countable property of G is equivalent to saying that G

is metrizable and σ-compact.

It is well-known that on every LCA group G, there exists a unique Haar measure,

that is, a non-negative, regular Borel measure, denoted as µG (not identically zero) which

is translation invariant, i.e., µG(E+x) = µG(E) for every element x ∈ G and every Borel

set E ⊆ G. It should be noted that the Haar measure of a locally compact group is unique

only up to a positive multiplicative constant.

Denote by Ĝ, the set of all continuous characters, that is, all continuous homomor-

phisms from G into the torus T ∼= {z ∈ C : |z| = 1}. Then, under the pointwise multipli-

cation Ĝ forms an LCA group with unit element 1, that is called the dual group associated

to G, when equipped with the compact convergence topology and the composition

(γ + γ′)(x) := γ(x)γ′(x), γ, γ′ ∈ Ĝ, x ∈ G,

and thus possesses a Haar measure that we denote by µĜ. It turns out that there exists a

topological group isomorphism mapping the group
̂̂
G, that is, the dual group of Ĝ, onto

G. More precisely,
̂̂
G ∼= G [25, Pontryagin duality theorem]. Note that if an LCA group

G is discrete then Ĝ is compact, and vice versa.

6



Given an LCA group G with Haar measure µG, the integral over G is translation

invariant in the sense that,∫
G

f(x+ y)dµG(x) =

∫
G

f(x)dµG(x)

for each element y ∈ G and for each Borel-measurable function f on G. For 1 ≤ p <∞,

we define the space Lp(G, µG) (simply, Lp(G)) as follows:

Lp(G) :=
{
f : G→ C is a measurable function and

∫
G

|f(x)|pdµG(x) <∞
}
.

Since G is a second countable LCA group, Lp(G) is separable, for all 1 ≤ p <∞. In this

thesis, we will focus only on p = 2 case. Here, note that L2(G) is a Hilbert space with

inner product given by

〈f, g〉 =

∫
G

f(x)g(x)dµG(x), for all f, g ∈ L2(G).

Let the Fourier transform ̂ : L1(G)→ C0(Ĝ), f 7→ f̂ , be defined by the operator

Ff(ξ) = f̂(ξ) =

∫
G

f(x)ξ(x)dµG(x), ξ ∈ Ĝ,

where C0(Ĝ) denotes the functions on Ĝ vanishing at infinity. If f ∈ L1(G), f̂ ∈ L1(Ĝ),

and the measures on G and Ĝ are normalized appropriately so that the Plancherel theorem

holds, then the inverse Fourier transform can be defined by

f(x) = F−1f̂(x) =

∫
Ĝ

f̂(ξ)ξ(x)dµĜ(ξ), x ∈ G.

Note that the Fourier transform F can be extended from L1(G) ∩ L2(G) to a surjective

isometry between L2(G) and L2(Ĝ) [25, Plancherel theorem]. Thus, the Parseval formula

holds and is given by

〈f, g〉 =

∫
G

f(x)g(x)dµG(x) =

∫
Ĝ

f̂(ξ)ĝ(ξ)dµĜ(ξ) = 〈f̂ , ĝ〉, for all f, g ∈ L2(G).

The following definitions will be used in the sequel: Given G an LCA group, we call

a subgroup Γ in G as co-compact if the quotient group G/Γ is compact, whereas Γ in G

is said to be a uniform lattice if in addition, Γ is discrete.

7



Let Γ ⊆ G be a closed subgroup of an LCA group G. Then, the quotient G/Γ is

a regular topological group. Further, we note that it is a second countable LCA group

under the quotient topology by using the fact that G is second countable.

Note that for a subgroup Γ of an LCA group G, the symbol Γ⊥ denotes the annihilator

of Γ, which is a subgroup of Ĝ defined by

Γ⊥ := {ξ ∈ Ĝ : ξ(x) = 1, for all x ∈ Γ}.

It follows from the definition of the topology on Ĝ that the annihilator Γ⊥ is a closed

subgroup in Ĝ. Moreover, if Γ is closed, then (Γ⊥)⊥ = Γ and the following hold:

(i) there exists a topological group isomorphism mapping Ĝ/Γ onto Γ⊥, that is, we

have Ĝ/Γ ∼= Γ⊥;

(ii) there exists a topological group isomorphism mapping
̂̂
G/Γ⊥ onto Γ, that is, we

have
̂̂
G/Γ⊥ ∼= Γ.

In the rest of this thesis, unless mentioned otherwise we assume Γ to be a closed and

co-compact (not necessarily discrete) subgroup in G. Note that the symbol µΓ represents

a Haar measure on the subgroup Γ. Since, Γ⊥ is topologically isomorphic to the dual of

quotient group G/Γ, that is, Γ⊥ ∼= (̂G/Γ), therefore, Γ is co-compact in G if, and only

if, Γ⊥ is a discrete subgroup of Ĝ (for more details, see [10]). Thus, Γ⊥ will always be

discrete in our case, and hence preserves a counting measure.

Let Γ̂ (the dual group of Γ) be an LCA group with measure denoted by µΓ̂. Observe

that there exists a topological group isomorphism mapping Ĝ/Γ⊥ onto Γ̂. Hence, by

choosing a measure µĜ/Γ⊥ on Ĝ/Γ⊥ appropriately, Weil’s formula [25] can be stated as

(1.1)

∫
Ĝ

f̂(ξ)dµĜ(ξ) =

∫
Ĝ/Γ⊥

∑
α∈Γ⊥

f̂(ξ + α)dµĜ/Γ⊥(ξ + Γ⊥) =

∫
Γ̂

∑
α∈Γ⊥

f̂(ξ + α)dµΓ̂(ξ),

for all f ∈ L1(G).

Note that the dual group Ĝ = Ω ⊕ Γ⊥, therefore, every ξ ∈ Ĝ has a unique repre-

sentation w + α for some w ∈ Ω and α ∈ Γ⊥. Here Ω is a µĜ-measurable subset of Ĝ

and represents a Borel section of Γ⊥ in Ĝ, also known as a fundamental domain of Ĝ/Γ⊥,

whose existence is guaranteed by [27]. Moreover, it is relevant to note that every element

v in Γ̂ ∼= Ĝ/Γ⊥ can be thought of as an element in Ω as all cosets in Ĝ/Γ⊥ ∼= Γ̂ are of the

form w + Γ⊥ for some (unique) w ∈ Ω. For more details, we refer [10, Section 3].
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1.2.2. Theory of frames

In this section, we recall some definitions and basic properties about continuous frames

for Hilbert spaces. Such frames were introduced independently by Ali et al. [1] and Kaiser

[61]. For a brief and self-sufficient introduction to continuous frames, we refer [38,78]. For

more details on general theory and applications of frames and Bessel sequences, we refer

to [1, 2, 10, 12, 19, 28, 33, 34, 51, 60, 61, 79, 84]. For theory of frames generated by unitary

actions of LCA groups, we refer to the research articles [7,8,58,74] and various references

therein. Note that for basic definitions and theory on finite frames, we use the books by

Christensen [12], Casazza et al. [18], and by Han et al. [50].

Definition 1.1. Let H be a complex Hilbert space, and let (M ,
∑

M , µM) be a measure

space, where
∑

M denotes the σ-algebra and µM the non-negative measure. Then, a

family of functions {fm}m∈M in H, is called a continuous frame for H with respect to (M ,∑
M , µM) if

(1) m 7→ fm is weakly measurable; that is, for all h ∈ H, the mapping M → C, m 7→

〈h, fm〉 is measurable, and

(2) there exist constants 0 < α1 ≤ α2 (called continuous frame bounds) such that

(1.2) α1||h||2 ≤
∫
M

|〈h, fm〉|2dµM(m) ≤ α2||h||2, for all h ∈ H.

A continuous frame {fm}m∈M is called tight if we can choose α1 = α2, and tight frame

with frame bound 1 (or, Parseval) if α1 = α2 = 1. The family {fm}m∈M is called Bessel

with constant α2 as its Bessel constant if the right side of inequality in (1.2) holds. In

this case, we say that the family {fm}m∈M satisfies the Bessel condition.

Since this thesis deals with only separable Hilbert spaces, we can use Petti’s theorem

to replace weak measurability of m 7→ fm with (strong) measurability with respect to the

Borel algebra in H.

If µM is a counting measure and M = N, then {fm}m∈M reduces to a discrete frame.

In this sense, continuous frames can be realized as the generalization of discrete frames.

Recall that for a countable index set J, a sequence {fn}n∈J in a separable complex Hilbert

space H is called a discrete frame for H if there exist frame constants 0 < α ≤ β < ∞
9



such that for every f ∈ H, we have

α||f ||2H ≤
∑
n∈J

|〈f, fn〉H|2 ≤ β||f ||2H.

Here onwards, for the sake of simplicity, we will call continuous/discrete frames as just

frames by suppressing the term continuous/discrete.

Given the family of functions F := {fm}m∈M , which is Bessel with respect to a measure

space (M,
∑

M , µM), define the synthesis operator ΘF : L2(M,µM)→ H defined by

〈ΘFϕ, h〉 =

∫
M

〈fm, h〉ϕmdµM(m), ϕ = {ϕm}m∈M ∈ L2(M,µM), h ∈ H,

which is a well-defined, linear and bounded operator [78, Theorem 2.6].

Further, the adjoint of the synthesis operator, known as the analysis operator of F, is

defined by Θ∗F : H → L2(M,µM) with

(Θ∗Fh)(m) = 〈h, fm〉, m ∈M.

Given two Bessel families F and G := {gm}m∈M with respect to the measure space

(M,
∑

M , µM) for H, define the mixed dual Gramian operator corresponding to F and G

as

(1.3) ΘGΘ∗F : H → H; h 7→
∫
M

〈h, fm〉gmdµM(m).

Gabardo and Han in [38] defined a dual frame for a continuous frame as follows:

Definition 1.2. Let F and G be two Bessel families with respect to the measure space

(M,
∑

M , µM) for H. We call G a dual frame for F if the following holds true:

(1.4) 〈h1, h2〉 =

∫
M

〈h1, fm〉〈gm, h2〉dµM(m), for all h1, h2 ∈ H.

In this case, F and G are actually (continuous) frames, and hence (F,G) is called a dual

frame pair . If ΘF and ΘG denote the synthesis operators of F and G, respectively, then

(1.4) is equivalent to ΘGΘ∗F = IH, that is, an identity operator on H. In this case, we say

that the relation

h =

∫
M

〈h, fm〉gmdµM(m), for all f ∈ H,

holds in the weak sense. This relation is generally known as a reproducing formula for

f ∈ H.
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Next, we define the orthogonality of a pair of Bessel families (frames) as follows:

Definition 1.3. Let F and G be Bessel families (frames) with respect to (M,
∑

M , µM)

for H. Then, if the mixed dual Gramian operator of F and G (as defined in (1.3)) is zero,

that is, ΘGΘ∗F = 0, the Bessel families (frames) are said to be pairwise orthogonal (simply,

orthogonal). In other words, we say that F and G satisfy the orthogonality property.

1.3. Structure of the thesis

In Chapter 2, by investigating the dual Gramian analysis tools of Ron and Shen

through a pre-Gramian operator over the set-up of LCA groups, we study and characterize

a pair of orthogonal frames generated by the action of a unitary representation ρ of a co-

compact subgroup Γ ⊂ G on a separable Hilbert space L2(G). We pay special attention

to this problem in the context of translation invariant space by assuming ρ as the action

of Γ on L2(G) by (left-)translation. As an application, we illustrate our results for the

case of co-compact Gabor systems over LCA groups.

The results of Chapter 2 are from the accepted research article:

Gumber, A., Shukla, N. K. (2017), Pairwise orthogonal frames generated by regular

representations of LCA groups, Bulletin des Sciences Mathématiques (Elsevier).

In Chapter 3, we give necessary and sufficient conditions for the orthogonality of two

Bessel families when such families have the form of GTI systems over a second countable

LCA group G. Consequently, we deduce similar results for several function systems

including the case of TI systems, and GTI systems on compact abelian groups. We apply

our results to the Bessel families having wave-packet structure (combination of wavelet as

well as Gabor structure), and hence a characterization for pairwise orthogonal wave-packet

frame systems over LCA groups is obtained.

The results of Chapter 3 are from the published research article:

Gumber A., Shukla N. K., Orthogonality of a pair of frames over locally compact

abelian groups, J. Math. Anal. Appl., 458(2) (2018), 1344-1360.

In Chapter 4, we have obtained a general construction method for arbitrarily many

pairwise orthogonal GSI frames by utilizing the unitary extension principle (UEP) of
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Christensen and Goh in [15]. The method is then applied to study constructions of frame

pairs over super-spaces.

The results of Chapter 4 are from the following manuscript:

Gumber A., Shukla N. K., Constructions of pairs of generalized shift invariant or-

thogonal frames, under preparation.

In Chapter 5, we first investigate a finite collection of functions in `2(ZdN) that

satisfies some localization properties in a region of the time-frequency plane. For this, a

group-theoretic approach based on the complete digit set associated to an invertible matrix

is used. It leads to the construction of an orthonormal wavelet system (ONWS) which is

concentrated in time as well as frequency. We study and characterize the ONWS. Further,

some results on the uncertainty principle corresponding to the ONWS are obtained.

The results of Chapter 5 have been appeared in:

Gumber A., Shukla N. K., Uncertainty Principle corresponding to an Orthonormal

Wavelet System, Appl. Anal., 97(3) (2018), 486-498.

In Chapter 6, we first induce an action of a topological group G on `2(ZdN) from a

given action of G on the space C of complex numbers. Then, for each g ∈ G, we introduce

a framelet system (g-framelet system or g-FS) associated with an induced action of G on

`2(ZdN), and a super g-FS for the super-space in the same set-up. By applying the group-

theoretic approach based on the complete digit set, we characterize the generators of two

g-framelet systems (super g-framelet systems) such that they form a g-dual pair (super

g-dual pair). As a consequence, characterizations for the Parseval g-FS and the Parseval

super g-FS are obtained. Further, some properties of the frame operator corresponding

to the g-FS are observed, which results in concluding that its canonical dual preserves

the same structure.

The results of Chapter 6 are from the published article:

Gumber A., Shukla N. K. (2017), Finite dual g-framelet systems associated with an

induced group action, Complex Anal. Oper. Theory, DOI:10.1007/s11785-017-0729-6.

Finally, Chapter 7 deals with concluding remarks and provides some directions for

future study.
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CHAPTER 2

PAIRWISE ORTHOGONAL FRAMES GENERATED BY

REGULAR REPRESENTATIONS OF LCA GROUPS

The purpose of this chapter is to study and characterize pairwise orthogonal frames

generated by unitary representations of LCA groups. For this, we first investigate the dual

Gramian analysis tools of Ron and Shen [79] by introducing the notion of a pre-Gramian

operator (in Section 2.2) associated with Bessel families generated by unitary actions of

co-compact subgroups of LCA groups. Using this approach, our main focus is to examine

the orthogonality of frames (in the sense of Definition 2.3) for subspaces of a separable

Hilbert space H that are invariant under the action of unitary representations of a closed

and co-compact abelian group Γ ⊂ G on H, where G is a second countable LCA group.

Note that the above mentioned theory is developed by using a (left-)regular representation,

which is a unitary representation of Γ acting on L2(G) by (left-)translation.

2.1. Introduction

Let H be a separable Hilbert space. Then, by a unitary representation of Γ ⊂ G, we

mean a pair (ρ,H) with ρ as a group homomorphism of Γ into U(H), that is, the group

of linear unitary operators over H. We assume that the map Γ×H → H; (γ, h) 7→ ρ(γ)h

is continuous. Note that a subspace of H that is invariant under the action of unitary

representation ρ of Γ on the Hilbert spaceH is called (ρ,Γ)-invariant . To be precise about

our concern in this chapter, we let Γ 3 γ 7→ ρ(γ) ∈ U(H) as a unitary representation of Γ

on H, and wish to study a very interesting research problem regarding the orthogonality

of frame pairs for (ρ,Γ)-invariant subspaces in H. The problem can be stated as follows:

(Q1) For which families Ψ and Φ in H do the collections

〈Ψ〉 :=
{
ρ(γ)ψ : γ ∈ Γ, ψ ∈ Ψ

}
and 〈Φ〉 :=

{
ρ(γ)ϕ : γ ∈ Γ, ϕ ∈ Φ

}
form a pair of orthogonal frames for span〈Ψ〉

H
, that is, for the closed linear span

of 〈Ψ〉, which is indeed the smallest (ρ,Γ)-invariant subspace in H?



In connection with this, we mention that by considering ρ as the action of a closed, co-

compact subgroup Γ on H by left-translation, the main focus of this chapter is to explore

the question (Q1) for the (ρ,Γ)-invariant subspaces in the context of LCA groups. Note

that the representation of Γ acting on H by (left-)translation is called the (left-)regular

representation, and the invariant subspaces of this representation are called translation-

invariant (TI). At this juncture, it is pertinent to note that our work extends the results

from the discrete setting G = Zn and from the case of uniform lattices in L2(Rn), studied

respectively by Lopez and Han in [67] and Kim et al. in [63], to the set-up of (not

necessarily discrete) co-compact subgroups over LCA groups.

For the rest of this chapter, we consider H as L2(G). Unless mentioned otherwise we

assume Γ to be a closed and co-compact (not necessarily discrete) subgroup in G. Now,

we let the unitary representation as a map

ρ : Γ→ U(L2(G)); γ 7→ ρ(γ)

that acts by a left-translation, that is,

ρ(γ)f = f(· − γ), for all f ∈ L2(G),

and define EΓ(Ψ) to be the family

(2.1)
{
ρ(γ)ψ : γ ∈ Γ, ψ ∈ Ψ

}
=: EΓ(Ψ),

which is generated by a countable subset Ψ in L2(G).

Now, we proceed to formulate the statement of the question (Q1) in terms of TI

subspaces which were introduced and studied by Bownik and Ross in [10]. For this, we

observe the following definition:

Definition 2.1. Suppose that Γ ⊂ G is a closed, co-compact subgroup of G. Let V ⊂

L2(G) be a closed subspace. Then

(i) we say that V is (ρ,Γ)-invariant or more appropriately translation-invariant (TI)

under Γ, in short Γ-TI, if f ∈ V implies ρ(γ)f ∈ V for all γ ∈ Γ.

(ii) we call EΓ(Ψ), that is, the system generated by Ψ (defined in (2.1)), as a Γ-TI

system with its closed linear span in L2(G) denoted by

span(EΓ(Ψ))
L2(G)

=: SΓ(Ψ)

as a Γ-TI space which is the smallest closed subspace in L2(G) containing EΓ(Ψ).
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(iii) for Ψ = {ψ} as a singleton subset in L2(G), let the principle translation-invariant

(Γ-PTI) system be given by EΓ(ψ) := {ρ(γ)ψ : γ ∈ Γ}. In this case, the family

span(EΓ(ψ))
L2(G)

=: SΓ(ψ) is called a principle translation-invariant (Γ-PTI) space

generated by ψ.

(iv) in case Γ is a uniform lattice, the term translation-invariant is replaced by shift-

invariant (SI).

Now, we state the main problem associated with (Q1) in the context of Γ-TI systems

over LCA groups. For this, here and throughout, let Ψ := {ψp}p∈P and Φ := {ϕp}p∈P be

subsets in L2(G), where P is a countable index set. Then, by assuming SΓ(Ψ) = SΓ(Φ),

the main problem that we investigate in the remainder of this chapter is:

(Q2) To find necessary and sufficient conditions on the above discussed generators Ψ and

Φ in the Fourier domain such that the Γ-TI systems EΓ(Ψ) and EΓ(Φ) as defined

in (2.1), form a pair of orthogonal frames (in the sense of Definition 2.3) in the

Γ-TI space SΓ(Ψ).

For answering the above question, we introduce the notion of pre-Gramian operator

associated with a Γ-TI space SΓ(Ψ) and fiberize the analysis, synthesis and mixed dual-

Gramian operators corresponding to the Γ-TI systems EΓ(Ψ) and EΓ(Φ) in the next

section. Note that the fiberization is helpful in analysing various frame properties of the

Γ-TI systems.

In this scenario, this chapter is devoted to the study of the orthogonality property

of a pair of frames for Γ-TI spaces over LCA groups by using the approach of a pre-

Gramian operator. The major tool used here is the dual Gramian analysis of Ron and

Shen [79] over the above set-up. Note that the novelty of our results in this chapter lies in

understanding that we do not require Γ to be discrete. As a consequence, our results for

two Γ-TI systems to be pairwise orthogonal frames are new even in the classical setting

of G = Rn, where the results of [63] are not applicable. Moreover, it also applies to LCA

groups G that do not have uniform lattices such as the p-adic field, Qp.

Along with this, we apply our results on systems with co-compact Gabor structure to

obtain a characterization so that the above-structured systems become pairwise orthogo-

nal Γ-TI Bessel (frame) systems. For more details on the definition of such systems, refer

Section 2.2 of this chapter.
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2.2. Fiberization of operators associated with Γ-TI frame systems

The current section deals with the development of the necessary machinery required

to answer the question (Q2) imposed on the orthogonality of two Γ-TI frame systems in

the introduction part. For this, let

L2(Γ, `2(P)) :=
{

measurable h : Γ→ `2(P) with ||h||2 :=

∫
Γ

||h(γ)||2`2(P)dµΓ(γ) <∞
}
,

be the Hilbert space of `2(P)-valued square integrable functions over Γ with inner product

〈h1, h2〉 :=

∫
Γ

〈h1(γ), h2(γ)〉`2(P)dµΓ(γ),

for all hi := (hi(γ))γ∈Γ in L2(Γ, `2(P)) with i = 1, 2, and hi(γ) := (hip(γ))p∈P in `2(P)

for each γ. Note that Γ ⊂ G is a second countable locally compact abelian (LCA) group.

Thus, Γ is σ-compact, and hence σ-finite. Further, P is a countable index set, therefore,

L2(Γ, `2(P)) = L2(P × Γ) since `2(P) is separable. For more details on this, we refer

to [6, Proposition Appendix A.3.]).

2.2.1. Γ-TI frame systems and associated operators

In this subsection, we give the following definition of a Γ-TI system (see [10] for more

details) to be a frame, and study various operators associated with such systems. We

refer to [8, 12, 60, 78] for the general definitions of frames and associated operators along

with other basic concepts of frame theory.

Definition 2.2. The Γ-TI system EΓ(Ψ) is called a Γ-TI frame system for SΓ(Ψ), if there

exist frame bounds 0 < A ≤ B <∞ such that the following relation is satisfied:

(2.2) A||f ||2 ≤
∑
p∈P

∫
Γ

|〈f, ρ(γ)ψp〉|2dµΓ(γ) ≤ B||f ||2, for all f ∈ SΓ(Ψ).

A Γ-TI frame system EΓ(Ψ) is called tight Γ-TI frame system for SΓ(Ψ) with frame bound

A if we can choose A = B. Note that EΓ(Ψ) is a Γ-TI Bessel system for SΓ(Ψ) with B as

its Bessel constant if the right side of inequality in (2.2) holds. Similarly, we can define

all the above terms for the case of SΓ(Ψ) = L2(G).

Further, let EΓ(Ψ) be a Γ-TI Bessel system for L2(G). Then, for h := (h(γ))γ∈Γ in

L2(Γ, `2(P)) with h(γ) := (hp(γ))p∈P in `2(P) for each γ ∈ Γ, the synthesis operator
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ΘΨ associated to EΓ(Ψ) is defined by

(2.3) ΘΨ : L2(Γ, `2(P))→ L2(G); h 7→
∑
p∈P

∫
Γ

hp(γ)ρ(γ)ψpdµΓ(γ).

Note that ΘΨ is well-defined, linear and bounded [78, Theorem 2.6], and hence its adjoint

(2.4) Θ∗Ψ : L2(G)→ L2(Γ, `2(P)); f 7→
((
〈f, ρ(γ)ψp〉

)
p∈P

)
γ∈Γ

,

is also linear and bounded, called the analysis operator corresponding to EΓ(Ψ). Now,

by composing the analysis and synthesis operators of two Γ-TI Bessel systems EΓ(Ψ) and

EΓ(Φ), define another bounded operator called mixed dual-Gramian operator as follows:

(2.5) ΘΦΘ∗Ψ : L2(G)→ L2(G); f 7→
∑
p∈P

∫
Γ

〈f, ρ(γ)ψp〉ρ(γ)ϕpdµΓ(γ).

Definition 2.3. Let EΓ(Ψ) and EΓ(Φ) be Γ-TI Bessel (frame) systems in the Γ-TI space

SΓ(Ψ) = SΓ(Φ). Then, if the operator ΘΦΘ∗Ψ as defined in (2.5) is the zero operator, we

call EΓ(Ψ) and EΓ(Φ) as pairwise orthogonal (simply, orthogonal) Γ-TI Bessel (frame)

systems . In this case, we say that the Γ-TI Bessel (frame) systems satisfy the orthogonality

property.

In the above definition, it should be noted that the desired equality SΓ(Ψ) = SΓ(Φ)

also poses some conditions on the families EΓ(Ψ) and EΓ(Φ).

2.2.2. Pre-Gramian operator associated with Γ-TI systems

In this part, we extend the notion of pre-Gramian of Ron and Shen [79] to the case

of LCA groups. The following is an important observation needed in the sequel:

Remark 2.4. We remark that for a countable family Ψ = {ψp}p∈P in L2(G), EΓ(Ψ) is a

Γ-TI Bessel system in SΓ(Ψ) with bound B if, and only if, we have∑
α∈Γ⊥

∑
p∈P

|ψ̂p(w + α)|2 ≤ B, for a.e. w ∈ Ω.

It is pertinent to note that the above fact can be proved easily by applying the technique

used for the characterization result on frames obtained in [10].

Pre-Gramian operator : Now, we are ready to associate EΓ(Ψ) with a collection of ‘fiber

operators’. The fibers are indexed by Ω. We have the following definition:

17



Definition 2.5. For a.e. w ∈ Ω, the fiber J Ψ
G (w), called the pre-Gramian operator

(simply, pre-Gramian) associated with a Γ-TI Bessel system EΓ(Ψ), is defined by

J Ψ
G (w) : `2(P)→ `2(Γ⊥);

η 7→ (J Ψ
G (w))η =

{∑
p∈P

η(p)ψ̂p(w + α)

}
α∈Γ⊥

.

Note that Remark 2.4 and the upcoming calculations show that the Bessel property

of EΓ(Ψ) plays a very important role in the well-definedness of the pre-Gramian operator.

Therefore, for the rest of this chapter, we assume that EΓ(Ψ) and EΓ(Φ) are Γ-TI Bessel

systems in SΓ(Ψ) with SΓ(Ψ) = SΓ(Φ).

We mention that a family of the form
{
J Ψ
G (w)

}
w∈Ω

is called a collection of fiber

operators, also known as fiberization of the synthesis operator ΘΨ (as defined in (2.3))

corresponding to the Γ-TI Bessel system EΓ(Ψ). Hence,
{
J Ψ
G (w)

}
w∈Ω

can be regarded

as the synthesis operator of EΓ(Ψ) represented in Fourier domain. This fact has been

broadly studied for the case of L2(Rd) by Ron and Shen in [79].

For a.e. w ∈ Ω, clearly J Ψ
G (w) is a linear operator. Further, it is a well-defined

and bounded operator since in view of Cauchy-Schwarz inequality and Remark 2.4, the

following estimates hold:

||(J Ψ
G (w))η||2 =

∑
α∈Γ⊥

∣∣∑
p∈P

η(p)ψ̂p(w + α)
∣∣2

≤
∑
α∈Γ⊥

||η||2
(∑
p∈P

|ψ̂p(w + α)|2
)

<∞, for all η ∈ `2(P) and a.e. w ∈ Ω.

Furthermore, J Ψ
G (w) can be associated with a matrix whose rows are indexed by Γ⊥,

and whose columns are indexed by P. For each w ∈ Ω, let the symbol MΨ
G (w) denote

the matrix associated to J Ψ
G (w) with (α, p) ∈ Γ⊥ ×P entry defined by ψ̂p(w + α), and

hence MΨ
G (w) =

(
ψ̂p(w + α)

)
α∈Γ⊥, p∈P

. In this case, (MΨ
G (w))∗ represents the adjoint of

MΨ
G (w) with (MΨ

G (w))∗ =
(
ψ̂p(w + α)

)
p∈P, α∈Γ⊥

.

Since J Ψ
G (w) is linear, well-defined, and bounded, we define the adjoint of J Ψ

G (w) as

(J Ψ
G (w))

∗
: `2(Γ⊥)→ `2(P);

ϑ 7→ ((J Ψ
G (w))

∗
)ϑ =

(〈
ϑ,
{
ψ̂p(w + α)

}
α∈Γ⊥

〉)
p∈P

,
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which is well-defined because
{
ψ̂p(w + α)

}
α∈Γ⊥

belongs to `2(Γ⊥) for each p ∈P, and〈(
(J Ψ
G (w))

∗
)
ϑ, η
〉

=
〈
ϑ, (J Ψ

G (w))η
〉

=
〈
ϑ,
{∑
p∈P

η(p)ψ̂p(w + α)
}
α∈Γ⊥

〉
=
∑
p∈P

η(p)〈ϑ, {ψ̂p(w + α)}α∈Γ⊥〉

=
〈(〈

ϑ,
{
ψ̂p(w + α)

}
α∈Γ⊥

〉)
p∈P

, η
〉
,

is satisfied for all η ∈ `2(P). It follows that (J Ψ
G (w))

∗
is a bounded operator in view of

Cauchy-Schwarz inequality, Remark 2.4 and the fact that
{
ψ̂p(w+α)

}
α∈Γ⊥

is an element

in `2(Γ⊥) for each p ∈P.

Further, we term the collection
{

(J Ψ
G (w))

∗}
w∈Ω

as the fiberization of the analysis

operator Θ∗Ψ (as defined in (2.4)) corresponding to the Γ-TI system EΓ(Ψ).

Now, for each w ∈ Ω, by the notation G̃Ψ(w) := (J Ψ
G (w))

∗J Ψ
G (w), we denote the

Gramian operator corresponding to EΓ(Ψ), and, by the symbol GΨ,Φ(w), we define the

mixed dual-Gramian operator associated to the Γ-TI systems EΓ(Ψ) and EΓ(Φ) in terms

of the pre-Gramain, where

GΨ,Φ(w) := J Ψ
G (w)(J Φ

G (w))
∗

: `2(Γ⊥)→ `2(Γ⊥)

is a bounded operator by observing that the pre-Gramian J Ψ
G (w) is bounded, and the

computation

||(GΨ,Φ(w))ϑ||2 = ||J Ψ
G (w)

(
((J Φ

G (w))
∗
)ϑ
)
||2 <∞, for all ϑ ∈ `2(Γ⊥).

Further, note that for all ϑ1, ϑ2 ∈ `2(Γ⊥), we can write〈(
GΨ,Φ(w)

)
ϑ1, ϑ2

〉
=
〈(

(J Φ
G (w))

∗
)
ϑ1,
(

(J Ψ
G (w))

∗
)
ϑ2

〉
=
∑
p∈P

〈
ϑ1,
{
ϕ̂p(w + α)

}
α∈Γ⊥

〉〈
ϑ2,
{
ψ̂p(w + β)

}
β∈Γ⊥

〉
.

Therefore, we get

(2.6)
〈(

GΨ,Φ(w)
)
ϑ1, ϑ2

〉
=
∑
p∈P

∑
α∈Γ⊥

∑
β∈Γ⊥

ϑ1(α)ϑ2(β)ψ̂p(w + β)ϕ̂p(w + α).

We say that the collection
{
GΨ,Φ(w)

}
w∈Ω

is the mixed dual-Gramian fiberization of the

operator ΘΦΘ∗Ψ (as defined in (2.5)) corresponding to the Γ-TI systems EΓ(Ψ) and EΓ(Φ).
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2.2.3. Fiberization in terms of the pre-Gramian operator

In this subsection, we first focus in proving some results which are required for the

fiberization of analysis and synthesis operators associated with EΓ(Ψ). For this, next we

define the space L2(Γ̂, `2(P)) which appears as the image under the Fourier transform

(FT) of the space L2(Γ, `2(P)):

L2(Γ̂, `2(P)) :=
{

measurable ζ : Γ̂→ `2(P) with ||ζ||2 :=

∫
Γ̂

||ζ(v)||2`2(P)dµΓ̂(v) <∞
}
.

Observe that L2(Γ̂, `2(P)) is a Hilbert space of `2(P)-valued square integrable functions

over Γ̂ with inner product

〈ζ1, ζ2〉 :=

∫
Γ̂

〈ζ1(v), ζ2(v)〉`2(P)dµΓ̂(v),

for all ζ i := (ζ i(v))v∈Γ̂ in L2(Γ̂, `2(P)) with i = 1, 2, and ζ i(v) := (ζ ip(v))p∈P in `2(P) for

each v. Since every element v in Γ̂ ∼= Ĝ/Γ⊥ can be considered as an element in a funda-

mental domain Ω ⊂ Ĝ of the discrete subgroup Γ⊥, we identify the space L2(Γ̂, `2(P))

with L2(Ω, `2(P)) for the remainder of this chapter.

Proposition 2.6. Let EΓ(Ψ) be a Γ-TI Bessel system in SΓ(Ψ) with Θ∗Ψ as its analysis

operator (defined in (2.4)). For p ∈P and f in L2(G), let (Θ∗Ψf)p := (〈f, ρ(γ)ψp〉)γ∈Γ .

Then, the following assertions are true:

(i) For each p ∈P, the FT of (Θ∗Ψf)p, that is, (̂Θ∗Ψf)p : Ω→ C is given by

(̂Θ∗Ψf)p(v) =
∑
α∈Γ⊥

f̂(v + α)ψ̂p(v + α).

Further, it is well-defined, belongs to L1(Ω), and satisfies that

(2.7) (̂Θ∗Ψf)p(v + β) = (̂Θ∗Ψf)p(v), for all v ∈ Ω, and β ∈ Γ⊥.

(ii) The FT of Θ∗Ψf is given by Θ̂∗Ψf :=
(
Θ̂∗Ψf(v)

)
v∈Ω

which is an element in L2(Ω, `2(P))

with Θ̂∗Ψf(v) :=
( ̂(Θ∗Ψf)p(v)

)
p∈P

for each v ∈ Ω.

Proof. Let f ∈ L2(G) and p ∈P. For each v ∈ Ω, let Cp(v) :=
∑

α∈Γ⊥ f̂(v+α)ψ̂p(v + α).

Then, from Weil’s formula (1.1) and the relation between Ω and the dual group of Γ, it

follows that ∫
Ω

∑
α∈Γ⊥

|f̂(v + α)ψ̂p(v + α)|dµĜ(v) =

∫
Ĝ

|f̂(v)ψ̂p(v)|dµĜ(v),
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which is finite by the Cauchy-Schwarz inequality. This implies that (Cp(v))v∈Ω ∈ L1(Ω).

Note that

Cp(v + β) =
∑
α∈Γ⊥

f̂(v + α + β)ψ̂p(v + α + β)

=
∑
α∈Γ⊥

f̂(v + α)ψ̂p(v + α)

= Cp(v), for all v ∈ Ω and β ∈ Γ⊥,

by changing the summation variable α→ α− β. Now, the proof for part (i) follows from

the fact that

̂(Θ∗Ψf)p(v) =

∫
Γ

〈f, ρ(γ)ψp〉v(γ)dµΓ(γ)

=

∫
Γ

〈f̂ , ρ̂(γ)ψp〉v(γ)dµΓ(γ)

=

∫
Γ

(∫
Ĝ

f̂(ξ) ̂(ρ(γ)ψp)(ξ)dµĜ(ξ)
)
v(γ)dµΓ(γ), for a.e. v ∈ Ω,

in view of the Parseval’s formula. The above expression equivalently provides the following

form by using Weil’s formula (1.1) and the identity (ρ̂(γ)ψp)(ξ) = ξ(γ)ψ̂p(ξ), for all ξ ∈ Ĝ:

̂(Θ∗Ψf)p(v) =

∫
Γ

(∫
Ĝ

f̂(ξ)ξ(γ)ψ̂p(ξ)dµĜ(ξ)
)
v(γ)dµΓ(γ)

=

∫
Γ

(∫
Ω

∑
α∈Γ⊥

f̂(ṽ + α)ṽ(γ)ψ̂p(ṽ + α)dµĜ(ṽ)
)
v(γ)dµΓ(γ)

=

∫
Γ

v(γ)
(∫

Ω

ṽ(γ)Cp(ṽ)dµĜ(ṽ)
)
dµΓ(γ)

=

∫
Γ

(F−1(Cp))(γ)v(γ)dµΓ(γ)

= F(F−1(Cp))(v)

= Cp(v), for a.e. v ∈ Ω,

where F and F−1 denote the FT on L2(Γ) and the inverse FT on L2(Ω), respectively.

For proving part (ii), note that Θ̂∗Ψf is an element of L2(Ω, `2(P)) since for every

f ∈ L2(G), the expression given by
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∫
Ω

||( ̂(Θ∗Ψf)p(v))p∈P ||2dµĜ(v) =

∫
Ω

∑
p∈P

| ̂(Θ∗Ψf)p(v)|2dµĜ(v)

=

∫
Ω

∑
p∈P

|
∑
α∈Γ⊥

f̂(v + α)ψ̂p(v + α)|2dµĜ(v)

≤
∫

Ω

( ∑
α∈Γ⊥

|f̂(v + α)|2
)∑
p∈P

( ∑
α∈Γ⊥

|ψ̂p(v + α)|2
)
dµĜ(v),

is finite by using Remark 2.4, Cauchy-Schwarz inequality and Weil’s formula. Hence, the

result follows.

Proposition 2.7. Let the operator ΘΨ be as defined in (2.3). Then for h ∈ L2(Γ, `2(P)),

the Fourier transform of ΘΨh is given by

(̂ΘΨh)(ξ) =
∑
p∈P

ĥp(ξ)ψ̂p(ξ), for a.e. ξ ∈ Ω.

Proof. Let h ∈ L2(Γ, `2(P)). Then, using the definition of the operator ΘΨ, we can write

(̂ΘΨh)(ξ) =

∫
G

∑
p∈P

∫
Γ

hp(γ)ψp(x− γ)dµΓ(γ)ξ(x)dµG(x)

=
∑
p∈P

∫
G

∫
Γ

hp(γ)ψp(y)ξ(y + γ)dµΓ(γ)dµG(y),

which further equals to the expression given by∑
p∈P

∫
G

(∫
Γ

hp(γ)ξ(γ)dµΓ(γ)

)
ψp(y)ξ(y)dµG(y)

=
∑
p∈P

ĥp(ξ)

(∫
G

ψp(y)ξ(y)dµG(y)

)
=
∑
p∈P

ĥp(ξ)ψ̂p(ξ), for a.e. ξ ∈ Ω.

The following result establishes a relation which represents the fiberization of oper-

ators associated with the Γ-TI Bessel systems EΓ(Ψ) and EΓ(Φ) via the pre-Gramian

operator defined in Definition 2.5.
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Theorem 2.8. For each f in L2(G), and for a.e. κ ∈ Ω, the following expressions hold:

(2.8)
(
(̂Θ∗Ψf)p(κ)

)
p∈P

= (J Ψ
G (κ))

∗(
f̂(κ+ α)

)
α∈Γ⊥

,

(2.9)
(
Θ̂Ψh(κ+ α)

)
α∈Γ⊥

= J Ψ
G (κ)

(
ĥp(κ+ α)

)
p∈P

, for all h ∈ L2(Γ, `2(P)), and

(2.10)
((

Θ̂ΨΘ∗Φf
)
(κ+ α)

)
α∈Γ⊥

= GΨ,Φ(κ)
(
f̂(κ+ α)

)
α∈Γ⊥

,

where for a.e. κ ∈ Ω, the symbol GΨ,Φ(κ) = J Ψ
G (κ)(J Φ

G )∗(κ) denotes the mixed dual-

Gramian operator corresponding to the Γ-TI Bessel systems EΓ(Ψ) and EΓ(Φ).

Proof. Let a.e. κ ∈ Ω. Then, the proof for expression (2.8) follows by using the definition

of operator (J Ψ
G (κ))

∗
along with Proposition 2.6.

Further, (2.9) holds by observing J Ψ
G (κ) from Definition 2.5, Proposition 2.7, and(

Θ̂Ψh(κ+ α)
)
α∈Γ⊥

=
(∑
p∈P

ĥp(κ+ α)ψ̂p(κ+ α)
)
α∈Γ⊥

, for all h ∈ L2(Γ, `2(P)).

Now, (2.10) follows by using the equalities (2.7), (2.8) and (2.9) in the computation:(( ̂ΘΨ(Θ∗Φf)
)
(κ+ α)

)
α∈Γ⊥

= J Ψ
G (κ)

( ̂(Θ∗Φf)p(κ+ α)
)
p∈P

= J Ψ
G (κ)

( ̂(Θ∗Φf)p(κ)
)
p∈P

= J Ψ
G (κ)(J Φ

G (κ))
∗(
f̂(κ+ α)

)
α∈Γ⊥

, for all f ∈ L2(G).

2.3. Orthogonality of Γ-TI frame systems over LCA groups

In this section, we characterize a pair of orthogonal Γ-TI Bessel (frame) systems

over locally compact abelian (LCA) groups. For this, we use the notion of pre-Gramian

operator in LCA-group setting along with the fiberization of operators associated with

the Γ-TI systems which we have studied in Theorem 2.8. The next result characterizes

the frame/Bessel property of a Γ-TI system in terms of the pre-Gramian operator. We

refer [10, 12] for the proof of the following result:

Proposition 2.9. EΓ(Ψ) is a Γ-TI frame system for SΓ(Ψ) if, and only if, J Ψ
G (w)(J Ψ

G (w))
∗

is uniformly bounded with uniformly bounded inverse on the range of J Ψ
G (w) for a.e.
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w ∈ Ω such that ranJ Ψ
G (w) 6= {0}. In particular, if SΓ(Ψ) = L2(G), then the following

are equivalent:

(i) The system EΓ(Ψ) is a Γ-TI frame system for L2(G),

(ii) there exist constants 0 < A ≤ B <∞, such that

AI`2(Γ⊥) ≤ J Ψ
G (w)(J Ψ

G (w))
∗ ≤ BI`2(Γ⊥), for a.e. w ∈ Ω.

In addition, EΓ(Ψ) is a tight Γ-TI frame system with frame bound 1 for L2(G) if, and

only if, J Ψ
G (w)(J Ψ

G (w))
∗

= I`2(Γ⊥), for a.e. w ∈ Ω.

Proof. The result follows from [10,12]. The key for the proof lies in using the computation

done in (2.6) for the case of ϑ1 = ϑ2 ∈ `2(Γ⊥) along with the characterization result on

frames obtained in [10].

2.3.1. Characterizations of pairwise orthogonal Γ-TI Bessel (frame) systems

The following results provide necessary and sufficient conditions on a pair of Γ-TI

frame systems to be orthogonal in the sense of Definition 2.3:

Theorem 2.10. Let Ψ and Φ be countable subsets of L2(G). Suppose that SΓ(Ψ) = SΓ(Φ),

and that both EΓ(Ψ) and EΓ(Φ) are Γ-TI frame systems for SΓ(Ψ). Then, the following

are equivalent:

(i) EΓ(Ψ) and EΓ(Φ) form orthogonal Γ-TI frame systems in SΓ(Ψ).

(ii) J Ψ
G (κ)(J Φ

G (κ))
∗J Φ
G (κ) = 0 for a.e. κ ∈ Ω.

(iii) MΨ
G (κ)(MΦ

G (κ))
∗MΦ

G (κ) = 0 for a.e. κ ∈ Ω.

(iv) G̃Ψ(κ)G̃Φ(κ) = 0 for a.e. κ ∈ Ω.

In particular, when SΓ(Ψ) = L2(G), EΓ(Ψ) and EΓ(Φ) are pairwise orthogonal Γ-TI

Bessel (frame) systems in L2(G) if, and only if, J Ψ
G (κ)(J Φ

G (κ))
∗

= 0 for a.e. κ ∈ Ω.

For proving Theorem 2.10, first we need to describe the decomposition theorem for

a Γ-TI space of L2(G). Before stating this result, we have the following notation. Let

ψ ∈ L2(G). We denote by L2(Ω, ωψ), the space of all functions r : Ω → C, which satisfy∫
Ω

|r(ξ)|2ωψ(ξ)dµĜ(ξ) < ∞, where ωψ(ξ) =
∑
α∈Γ⊥

|ψ̂(ξ + α)|2 for each ξ ∈ Ω. Observe

that by using the relation between the dual group of Γ with Ω, Weil’s formula and the
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Plancherel theorem, we can write∫
Ω

∑
α∈Γ⊥

|ψ̂(ξ + α)|2dµĜ(ξ) =

∫
Ĝ

|ψ̂(ξ)|2dµĜ(ξ) = ||ψ||2.

Thus, ω := {ωψ(ξ)}ξ∈Ω is a function in L1(Ω). Note that in this case

||r||2L2(Ω,ωψ) =

∫
Ω

|r(ξ)|2ωψ(ξ)dµĜ(ξ)

is a norm in L2(Ω, ωψ). Further, we denote the support of ωψ by the set

{ξ ∈ Ω : ωψ(ξ) 6= 0} =: Sψ.

Here, note that the set Sψ is called the spectrum of SΓ(ψ).

The next result shows the existence of a decomposition of a Γ-TI space of L2(G)

into an orthogonal sum of spaces each of which is generated by a single function whose

translates form a tight Γ-PTI frame system with frame bound 1.

Theorem 2.11. Let V be a Γ-TI space of L2(G). Then, there exists a family of functions

{ψn}n∈N in V such that V can be decomposed as an orthogonal sum V =
⊕
n∈N

SΓ(ψn), and

EΓ(ψn) is a tight Γ-PTI frame system in the Γ-PTI space SΓ(ψn) with frame bound 1.

Moreover, f ∈ V if, and only if,

(2.11) f̂(ξ) =
∑
n∈N

rn(ξ)ψ̂n(ξ), and hence ||f ||2 =
∑
n∈N

||rn||2L2(Ω∩Sψn ,ωψn ),

where rn ∈ L2(Ω ∩ Sψn , wψn) and Sψn is the spectrum of SΓ(ψn), for every n ∈ N.

Proof. The first part of the proof follows from [10, Theorem 5.3]. For the moreover part,

let n ∈ N and ψn ∈ L2(G). Then, for each n by following the steps of [46, Proposition

2.2], we get fn ∈ SΓ(ψn) if, and only if, f̂n(ξ) = rn(ξ)ψ̂n(ξ), for some rn ∈ L2(Ω, wψn).

Now, if (2.11) holds, then clearly in view of the above discussion f ∈ V .

Conversely, let Pn be the orthogonal projection onto the space SΓ(ψn). Note that for

each f ∈ V , we have f =
∑

n∈N Pnf . Thus,

f̂ =
∑
n∈N

(P̂nf) =
∑
n∈N

rnψ̂n,
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where rn ∈ L2(Ω ∩ Sψn , wψn) for each n. Therefore, we have

||f ||2 = ||f̂ ||2 =
∑
n∈N

||rn||2L2(Ω∩Sψn ,wψn )||ψ̂n||2

=
∑
n∈N

||rn||2L2(Ω∩Sψn ,wψn ),

in view of Plancherel’s formula and the fact that EΓ(ψn) is a tight Γ-PTI frame system

in SΓ(ψn) with frame bound 1. Hence, the result follows.

Proof of Theorem 2.10. By following Definition 2.3, EΓ(Ψ) and EΓ(Φ) form pairwise

orthogonal Γ-TI Bessel (frame) systems for SΓ(Ψ) if, and only if, for all f ∈ SΓ(Ψ), we

have ΘΨΘ∗Φf = 0, which is equivalent to saying that ||ΘΨΘ∗Φf || = 0. Let f ∈ L2(G).

Then, by Plancherel’s formula and Weil’s formula, the following expression holds:

(2.12) ||ΘΨΘ∗Φf ||2 =

∫
Ĝ

| ̂(ΘΨΘ∗Φf)(ξ)|2dµĜ(ξ) =
∑
α∈Γ⊥

∫
Ω

| ̂(ΘΨΘ∗Φf)(v + α)|2dµĜ(v).

Therefore, ΘΨΘ∗Φf = 0 if, and only if, in view of (2.12), ̂(ΘΨΘ∗Φf)(v+α) = 0 for each v ∈ Ω

and α ∈ Γ⊥. This means, ΘΨΘ∗Φf = 0 if, and only if, we have ( ̂(ΘΨΘ∗Φf)(κ+ δ))δ∈Γ⊥ = 0

for a.e. κ ∈ Ω.

Further, by using Theorem 2.8 observe that for every f ∈ L2(G) and for a.e. κ ∈ Ω,

the following relation is satisfied:

((
Θ̂ΨΘ∗Φf

)
(κ+ α)

)
α∈Γ⊥

= GΨ,Φ(κ)
(
f̂(κ+ α)

)
α∈Γ⊥

,

where GΨ,Φ(κ) = J Ψ
G (κ)(J Φ

G (κ))
∗

is the mixed dual-Gramian operator corresponding to

the Γ-TI Bessel (frame) systems EΓ(Ψ) and EΓ(Φ). Hence, it follows that for SΓ(Ψ) =

L2(G), we get ΘΨΘ∗Φf = 0 for all f ∈ L2(G) if, and only if, GΨ,Φ(κ) = 0 for a.e. κ ∈ Ω.

Now, we start for proving the equivalence of (i) and (ii). From Theorem 2.11, we

observe that f ∈ SΓ(Φ) if, and only if, the Fourier transform of f can be written as

f̂ =
∑

p∈P rpϕ̂p for some rp in L2(Ω∩ Sϕp , wϕp), where p belongs to a countable index set

P. Moreover, in view of the above expression of f̂ and Definition 2.5 for the pre-Gramian

operator J Φ
G (κ), we get the following estimate:

(
f̂(κ+ α)

)
α∈Γ⊥

= J Φ
G (κ)

(
rp(κ+ α)

)
p∈P

for a.e. κ ∈ Ω.
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Thus, in view of the above discussion and the equality (2.10), part (i) is equivalent to the

statement that for any f ∈ SΓ(Φ), we have

(2.13) GΨ,Φ(κ)
(
f̂(κ+ α)

)
α∈Γ⊥

= J Ψ
G (κ)(J Φ

G (κ))
∗J Φ
G (κ)

(
rp(κ+ α)

)
p∈P

,

equals to zero since ΘΨΘ∗Φf = 0, and hence

J Ψ
G (κ)(J Φ

G (κ))
∗J Φ
G (κ) = 0,

for a.e. κ ∈ Ω.

Further, by usingMΨ
G (κ), that is, the matrix associated with J Ψ

G (κ), clearly (ii) holds

if, and only if, the relation (iii) is satisfied.

Now, from (2.13), the equivalence of (ii) and (iv) follows since EΓ(Φ) is a Γ-TI frame

system in SΓ(Φ), and hence for a.e. κ ∈ Ω, (J Ψ
G (κ))

∗
has bounded inverse on the range

of J Ψ
G (κ) by Proposition 2.9.

The next result reflects a very useful property of pairwise orthogonal frames. By

using a Γ-periodic function on G and a given pair of orthogonal Γ-TI Bessel (frame)

generators, we construct another pair of generators providing orthogonal frames of the

same structure. Moreover, one system in the newly constructed pair of Γ-TI Bessel (frame)

systems remains the same while the second system acquires some extra properties due to

the effect of a Γ-periodic function. Here, note that for a co-compact subgroup Γ of an

LCA group G, a bounded function on G is called Γ-periodic in the sense that for every

γ ∈ Γ, we have f(x+ γ) = f(x) for all x ∈ G.

Proposition 2.12. Suppose that EΓ(Ψ) and EΓ(Φ) are orthogonal Γ-TI Bessel (frame)

systems in L2(G). Let h be a complex-valued measurable function on G which is Γ-periodic,

such that the collection hΨ is a subset of L2(G), where hΨ is defined by

hΨ := {hψp ∈ L2(G) : (hψp)(x) = h(x)ψp(x); ψp ∈ Ψ, p ∈P, x ∈ G}.

Then, the families EΓ(hΨ) and EΓ(Φ) also form orthogonal Γ-TI Bessel (frame) systems

in L2(G).

Proof. Given that EΓ(Ψ) and EΓ(Φ) form pairwise orthogonal Γ-TI Bessel (frame) systems

in L2(G). Then, for all f ∈ L2(G), we have ΘΨΘ∗Φf = 0. That means, the following holds:

(2.14)
∑
p∈P

∫
Γ

〈f(x), ϕp(x− γ)〉ψp(x− γ)dµΓ(γ) = 0, for all x ∈ G.
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Now, the result follows by using h as a Γ-periodic function along with (2.14) in the

following relation: ∑
p∈P

∫
Γ

〈f(x), ϕp(x− γ)〉(hψp)(x− γ)dµΓ(γ)

=
∑
p∈P

∫
Γ

〈f(x), ϕp(x− γ)〉h(x− γ)ψp(x− γ)dµΓ(γ)

= h(x)
∑
p∈P

∫
Γ

〈f(x), ϕp(x− γ)〉ψp(x− γ)dµΓ(γ),

for all x belongs to G.

Our next proposition provides a construction of pairwise orthogonal Bessel (frame)

systems by using the similarity (equivalence) property. Here, note that for a measure space

(J, µJ) with µJ being a Haar measure on J, we say that X := {xj}j∈J and Y := {yj}j∈J in

the Hilbert space H are similar (equivalent) if there exists a bounded invertible operator

U on H such that xj = Uyj, for all j ∈ J.

Proposition 2.13. For a countable index set P, let Ψ̃ := {ψ̃p}p∈P and Φ̃ := {ϕ̃p}p∈P

be subsets in L2(G). Further, let EΓ(Ψ) and EΓ(Φ) be orthogonal Γ-TI Bessel (frame)

systems in L2(G), and that EΓ(Ψ) is similar to EΓ(Ψ̃), and EΓ(Φ) is similar to EΓ(Φ̃).

Then, EΓ(Ψ̃) and EΓ(Φ̃) also form orthogonal Γ-TI Bessel (frame) systems in L2(G).

Proof. Clearly, EΓ(Ψ̃) and EΓ(Φ̃) are Γ-TI Bessel (frame) systems in L2(G) since similarity

among the systems preserves the frame property, including the frame bounds. Further, by

the definition of similarity, there exist bounded invertible operators U1 and U2 on L2(G)

such that we can write U1ρ(γ)ψp = ρ(γ)ψ̃p and U2ρ(γ)ϕp = ρ(γ)ϕ̃p for every p ∈ P.

We claim that ΘΨ̃ = U1ΘΨ and ΘΦ̃ = U2ΘΦ. For this, it is enough to prove that for all

h ∈ L2(Γ, `2(P)), we have

ΘΨ̃h =
∑
p∈P

∫
Γ

hp(γ)ρ(γ)ψ̃pdµΓ(γ) =
∑
p∈P

∫
Γ

hp(γ)U1ρ(γ)ψpdµΓ(γ)

= U1

∑
p∈P

∫
Γ

hp(γ)ρ(γ)ψpdµΓ(γ) = U1(ΘΨh),

and hence the result follows in view of the fact that EΓ(Ψ) and EΓ(Φ) are orthogonal

in L2(G), and ΘΨ̃Θ∗
Φ̃

= U1ΘΨ(U2ΘΦ)∗ = U1ΘΨΘ∗ΦU∗2 = U10U∗2 = 0, where 0 denotes the

zero operator on L2(G).
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2.3.2. Application of the characterization result on co-compact Gabor systems

In this subsection, we deduce a characterization result for the case of Gabor systems.

For this, next we define these structured systems as a special case of Γ-TI systems given

in Definition 2.1. Let a character χ in Ĝ, and define the modulation operator η(χ) on

L2(G) as η(χ)(f)(x) = χ(x)f(x), for all f ∈ L2(G) and x ∈ G, and observe that it is

associated with the translation operator on L2(Ĝ) by

(η̂(χ)f)(ξ) =

∫
G

χ(x)f(x)ξ(x)dµG(x) =

∫
G

f(x)
(
ξ − χ

)
(x)dµG(x)

= f̂
(
ξ − χ

)
= ρ(χ)f̂(ξ), for a.e. ξ ∈ Ĝ.

Let Γ and Λ be respectively, co-compact subgroups of G and Ĝ. For an index set

J ⊂ Z, let A := {fj}j∈J be a subset in L2(G). Then the collection G (A ,Γ,Λ) defined by

(2.15) G (A ,Γ,Λ) :=
{
ρ(γ)η(χ)fj : γ ∈ Γ, χ ∈ Λ, j ∈ J

}
,

is called the Gabor system generated by A . Note that G (A ,Γ,Λ) is a frame for L2(G)

if, and only if, {η(χ)ρ(γ)fj : γ ∈ Γ, χ ∈ Λ, j ∈ J} is a frame for L2(G), where the later

system is termed as a co-compact Gabor system in [60]. Further, observe that G (A ,Γ,Λ)

is a Γ-TI system of form
{
ρ(γ)ψj : γ ∈ Γ, ψj ∈ Ψ, j ∈ J

}
defined in Definition 2.1, with

ψj = η(χ)fj, where (j, χ) ∈ J × Λ.

Let A = {fj}j∈J and B := {hj}j∈J be countable subsets of L2(G). Then, our next

result gives a characterization of A and B such that G (A ,Γ,Λ) and G (B,Γ,Λ) form a

pair of orthogonal Bessel families (frames) in L2(G), we call as a pair of co-compact Gabor

orthogonal Bessel (frame) systems over LCA groups.

Proposition 2.14. Suppose that G (A ,Γ,Λ) and G (B,Γ,Λ) are co-compact Gabor Bessel

(frame) systems in L2(G). Then, the following assertions are equivalent:

(i) G (A ,Γ,Λ) and G (B,Γ,Λ) form a pair of co-compact Gabor orthogonal Bessel

(frame) systems in L2(G) in the sense of Definition 2.3.

(ii) For each α, β ∈ Γ⊥ and χ ∈ Λ, we have∑
j∈J

f̂j(κ+ α− χ)ĥj(κ+ β − χ) = 0,

for a.e. κ ∈ Ω.
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Proof. In view of computation (2.6) and Theorem 2.10, (i) holds if, and only if, for each

χ ∈ Λ, we have∑
α∈Γ⊥

ϑ1(α)
∑
β∈Γ⊥

ϑ2(β)
(∑
j∈J

(η̂(χ)f j)(κ+ α)(η̂(χ)hj)(κ+ β)
)

= 0, for a.e. κ ∈ Ω,

and for all ϑ1, ϑ2 ∈ `2(Γ⊥). Hence, the result follows since ϑ1, ϑ2 are arbitrary elements

of `2(Γ⊥).

Note that Proposition 2.14 can be used to derive various results on a pair of co-

compact Gabor orthogonal Bessel (frame) systems by considering different situations on

Γ, Λ and G, etc.

Example 2.15. Let G = Zd, and let Γ = AZd and Λ = BZd be uniform lattices in Zd

for some invertible d× d matrices A and B with integer entries. Then, Γ⊥ = ÃZd, where

Ã = (At)
−1

, that is, inverse of the transpose of matrix A. In this case, (2.15) reduces to

the following collection:

G (A , AZd, BZd) :=
{
ρ(γ)η(χ)fj : γ ∈ AZd, χ ∈ BZd, j ∈ J

}
.

Hence, G (A , AZd, BZd) and G (B, AZd, BZd) form a pair of orthogonal frames in `2(Zd)

if, and only if, for m,n, p ∈ Zd, we have∑
j∈J

f̂j(κ+ Ãm−Bp)ĥj(κ+ Ãn−Bp) = 0,

for a.e. κ ∈ Ã([0, 1]d).
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CHAPTER 3

ORTHOGONALITY OF GENERALIZED TRANSLATION

INVARIANT FRAME PAIRS

In this chapter, we give a characterization of pairwise orthogonal frames which arise

from translations of generating functions via a countable family of closed, co-compact

subgroups of a second countable LCA group G. We call such frames as pairwise orthogonal

GTI frame systems in the sense of Definition 1.3. As an application of our characterization

result, we get necessary and sufficient conditions for the orthogonality of various structured

frame systems such as wave-packet, wavelet, and Gabor frame systems over LCA groups.

3.1. Pairwise orthogonal GTI frame systems

In Chapter 2, we have characterized the orthogonality of frame pairs for translation

invariant (TI) subspaces in L2(G) by generalizing the fiberization techniques of Ron and

Shen [79] over locally compact abelian (LCA) groups. In the present chapter, we study

and characterize pairwise orthogonal generalized TI (GTI) Bessel systems in L2(G). The

characterization is obtained in the spirit of the characterizations of duality between GTI

systems investigated in [59]. From this characterization, we deduce a series of similar

results for the function systems related to GTI systems. We state our first main charac-

terization result, that is, Theorem 3.5 (along with several deductions in Remark 3.6) in

Subsection 3.2.1, while the proof for the result is discussed in Subsection 3.2.2.

Our second main result, that is, Theorem 3.9 provides a characterization for pairwise

orthogonal wave-packet frame systems over LCA groups. We shall discuss the definition of

wave-packet systems over LCA groups along with the characterization result in Section 3.3.

For this part of section, we begin by considering GTI systems introduced by Jakobsen

and Lemvig in [59] along with the following definition and the standing hypotheses on it.

Note that such systems model various discrete and continuous systems, e.g., the wavelet,

shearlet and Gabor systems, etc.



Definition 3.1. Let J ⊂ Z be a countable index set. For each j ∈ J , let Pj be a countable

or an uncountable index set, let gj,p ∈ L2(G) for p ∈ Pj, and let Γj be a closed, co-compact

subgroup in G. Then, the generalized translation invariant (GTI) system generated by

{gj,p}p∈Pj , j∈J with translation along closed, co-compact subgroups {Γj}j∈J is the family⋃
j∈J{Tγgj,p}γ∈Γj , p∈Pj , where for y ∈ G, Ty is the translation by y, which is defined as

Ty : L2(G)→ L2(G), (Tyf)(x) = f(x− y), x ∈ G.

Note that the GTI system in Definition 3.1 reduces to the translation invariant (TI)

system discussed in [10], if Γj = Γ for each j ∈ J . However, if each Pj is countable and

each Γj is a uniform lattice in Definition 3.1, we arrive at the generalized shift-invariant

(GSI) system considered in [53,64].

Standing Hypotheses: For GTI systems considered in Definition 3.1, we assume that

these systems satisfy the following criterion for the remainder of this chapter. Before

proceeding for this, we introduce some notation. Let (Pj,
∑

Pj
, µPj) be a measure space

for each j ∈ J , where J ⊂ Z is a countable index set. For a topological space X, by

BX , we denote the Borel algebra of X. By the symbol Pj ×G, we represent the product

measure space formed by the Cartesian product of G with the measure space Pj,
∑

Pj
⊗BG

denotes the tensor-product σ-algebra on Pj × G which is formed by the tensor-product

of BG with the σ-algebra
∑

Pj
on Pj, and the notation µPj ⊗ µG specifies the product

measure on Pj ×G. By assuming above notation, we state the conditions as follows. For

each j ∈ J :

(1) (Pj,
∑

Pj
, µPj) is a σ-finite measure space,

(2) the mapping p 7→ gj,p, (Pj,
∑

Pj
) → (L2(G), BL2(G)) is measurable,

(3) the mapping (p, x) 7→ gj,p(x), that is, (Pj×G,
∑

Pj
⊗BG)→ (C, BC) is measurable.

Further, it is relevant to note that in order to investigate frame properties for the

GTI systems considered in Definition 3.1, we need to view the family of functions given

by
⋃
j∈J{Tγgj,p}γ∈Γj , p∈Pj in the set-up of continuous g-frames. Recall that these frames

are a generalized version of continuous frames, more precisely, for a countable index set

J ⊂ Z, a family of functions
⋃
j∈J{fj,m}m∈Mj

is a continuous generalized frame (continuous

g-frame) for a complex Hilbert space H with respect to a collection of measure spaces

{(Mj,
∑

Mj
, µj) : j ∈ J} if
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(C1) m 7→ fj,m, Mj → H is measurable for each j ∈ J , and

(C2) there exist constants 0 < α1 ≤ α2 such that

α1||h||2 ≤
∑
j∈J

∫
Mj

|〈h, fj,m〉|2dµMj
(m) ≤ α2||h||2, for all h ∈ H.

Note that all the definitions and operators associated to Definition 1.1 can be easily

visualized for the case of continuous g-frames. For more details, we refer [38, 84] and

various references within.

GTI System as a Continuous g-frame: In order to study pairwise orthogonal GTI frame

systems, first we need to define GTI frame systems. The GTI system as a continuous g-

frame is well-explained in [59], but we include the details here for the sake of completion.

Hence, our next motive is to compare the GTI system
⋃
j∈J{Tγgj,p}γ∈Γj , p∈Pj with the

family of functions
⋃
j∈J{fj,m}m∈Mj

considered in the above definition of continuous g-

frame. Then, it follows that we can view the GTI system as a family of functions in L2(G)

with respect to the collection of measure spaces{
(Mj,

∑
Mj

, µj) := (Pj × Γj,
∑
Pj

⊗BΓj , µPj ⊗ µΓj) : j ∈ J
}
.

Next, to realize GTI system as a continuous g-frame, we first verify the condition (C1).

Let j ∈ J . Consider a function F : Pj × Γj → L2(G); (p, γ) 7→ Tγgj,p. The function F

is continuous in γ and measurable in p, and hence represents a Carathéodory function F̃

which is defined on Pj by F̃ (p)(γ) = F (p, γ). Since Γj ⊂ G is second countable and locally

compact, and L2(G) is separable, it follows that F̃ , and hence the function F , is jointly

measurable on (Mj,
∑

Mj
) =

(
Pj × Γj,

∑
Pj
⊗BΓj

)
(for more details, see [71]). Thus, the

condition (C1) holds, and the GTI system
⋃
j∈J{Tγgj,p}γ∈Γj , p∈Pj is automatically weakly

measurable.

In addition, if the GTI system satisfies the condition (C2) with respect to the set of

measure spaces {(Pj × Γj,
∑

Pj
⊗BΓj , µPj ⊗ µΓj) : j ∈ J}, we call

⋃
j∈J{Tγgj,p}γ∈Γj , p∈Pj

as the generalized translation invariant frame system (GTI frame system) for L2(G).

But, in case only the right side of inequality in the condition (C2) holds, the system⋃
j∈J{Tγgj,p}γ∈Γj , p∈Pj is termed as a GTI Bessel system in L2(G). Similarly, we can de-

fine TI and GSI Bessel (frame) systems in L2(G) by replacing GTI system in the definition

of GTI Bessel (frame) system with TI and GSI systems, respectively.
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It is known that pairwise orthogonal frames for a Hilbert space play a key role in

constructing superframes and frames [35,36,40,51,67,89], and also in developing the theory

of frames and its applications (e.g., see [40, 51, 52, 63] and various references therein). In

our setting, we define such frames as GTI systems satisfying a special case of Definition 1.3

as follows:

Definition 3.2. Orthogonal GTI Bessel (frame) systems: Suppose that the systems⋃
j∈J{Tγgj,p}γ∈Γj , p∈Pj and

⋃
j∈J{Tγhj,p}γ∈Γj , p∈Pj are GTI Bessel (frame) systems in L2(G).

Then, we term these systems as pairwise orthogonal GTI Bessel (frame) systems , or

simply, orthogonal GTI Bessel (frame) systems in L2(G) if they satisfy the orthogonality

property in the sense of Definition 1.3. In particular, by replacing GTI systems with

TI systems and GSI systems, this definition corresponds to orthogonal TI Bessel (frame)

systems and orthogonal GSI Bessel (frame) systems , respectively.

3.2. A characterization result on GTI orthogonal frame pairs

In this section, we give the statement of our first main result discussed in this chapter,

that is, Theorem 3.5 which provides a characterization for orthogonal GTI Bessel (frame)

systems defined in Definition 3.2 over LCA group set-up (proof shall be discussed in

Subsection 3.2.2).

3.2.1. Statement of the characterization result

For stating our main characterization result, we require some technical assumption

in the form of a local integrability condition as follows. For the case of GSI systems,

such condition was originally introduced by Hernández, Labate, and Weiss in [53] for

L2(Rn), and later generalized by Kutyniok and Labate in [64] for L2(G). This condition

was further proposed in a more generalized form by Jakobsen and Lemvig in [59] for GTI

systems in L2(G). We state these conditions as follows:

Definition 3.3. Consider two GTI systems
⋃
j∈J{Tγgj,p}γ∈Γj ,p∈Pj and⋃

j∈J{Tγhj,p}γ∈Γj ,p∈Pj in L2(G).

(i) We say that
⋃
j∈J{Tγgj,p}γ∈Γj ,p∈Pj satisfies the local integrability condition (LIC) if

(3.1)
∑
j∈J

∫
Pj

∑
α∈Γ⊥j

∫
supp f̂

|f̂(ξ + α)ĝj,p(ξ)|2dµĜ(ξ)dµPj(p) <∞, for all f ∈ D,

34



where for a Borel set B in Ĝ with µĜ(B) = 0, we define the subset D in L2(G) as

follows:

D := {f ∈ L2(G) : f̂ ∈ L∞(Ĝ) and suppf̂ is compact in Ĝ \B}.

(ii)
⋃
j∈J{Tγgj,p}γ∈Γj ,p∈Pj and

⋃
j∈J{Tγhj,p}γ∈Γj ,p∈Pj satisfy the dual α-local integrability

condition (dual α-LIC) if

(3.2)
∑
j∈J

∫
Pj

∑
α∈Γ⊥j

∫
Ĝ

|f̂(ξ)f̂(ξ + α)ĝj,p(ξ)ĥj,p(ξ + α)|dµĜ(ξ)dµPj(p) <∞, for all f ∈ D.

In case gj,p = hj,p for each j and p, we refer to (3.2) as the α-local integrability

condition (α-LIC) for the GTI system
⋃
j∈J{Tγgj,p}γ∈Γj ,p∈Pj .

Note that the integrands in (3.1) and (3.2) are measurable on Pj × Ĝ, therefore, we are

allowed to reorder sums and integrals in the local integrability conditions.

Further, note that the subset D used in Definition 3.3 is dense in L2(G), and since it

is sufficient to prove the various frame properties on a dense subset of the Hilbert space,

we may verify our results for D and then extend on L2(G) by a density argument.

Remark 3.4. In view of [59, Lemma 3.9], it is clear that

(i) LIC implies the α-LIC while the converse need not be true (see [59, Example 1]).

(ii) if two GTI systems satisfy the LIC, then they satisfy the dual α-LIC.

Next, we provide the statement of our first main characterization result on orthogonal

frames. Here, we would like to add that the characterization results for orthogonal frames

with the form of GTI systems, TI systems, and GSI systems discussed here are new to

the literature. The results obtained here are also helpful in studying the orthogonality

of special structured systems which lead to our second main result on orthogonal wave-

packet Bessel (frame) systems (that is, Theorem 3.9), and hence for the case of wavelet

and Gabor systems over LCA groups (see Section 3.3 for more details).

Moreover, we can easily deduce the orthogonality conditions for a pair of frames in

case of LCA group G = Rd,Zd, etc. That means, our orthogonality results on GTI systems

generalize the existing similar work done for the classical case (e.g., see [63,67,89]) as well.
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Theorem 3.5. Let the families
⋃
j∈J{Tγgj,p}γ∈Γj , p∈Pj and

⋃
j∈J{Tγhj,p}γ∈Γj , p∈Pj be GTI

Bessel (frame) systems in L2(G) which satisfy the dual α-LIC. Then, the following asser-

tions are equivalent:

(i)
⋃
j∈J{Tγgj,p}γ∈Γj , p∈Pj and

⋃
j∈J{Tγhj,p}γ∈Γj , p∈Pj are orthogonal GTI Bessel (frame)

systems in L2(G) in the sense of Definition 1.3,

(ii) for each α ∈
⋃
j∈J

Γ⊥j \ {0}, we have

(3.3)
∑

j∈J :α∈Γ⊥j

∫
Pj

ĥj,p(ξ)ĝj,p(ξ + α)dµPj(p) = 0, for a.e. ξ ∈ Ĝ,

and ∑
j∈J

∫
Pj

ĥj,p(ξ)ĝj,p(ξ)dµPj(p) = 0, for a.e. ξ ∈ Ĝ.

We point out that Theorem 3.5 can be used to deduce similar results for several

function systems since in these cases some of the assumptions trivially hold. We have the

following observation in this regard:

Remark 3.6. We remark that Theorem 3.5 leads to the characterization results on the

orthogonality of TI Bessel (frame) systems, GSI Bessel (frame) systems, and GTI Bessel

(frame) systems (over a compact abelian group). For this, observe that

(i) in the case for TI Bessel systems, and for GTI Bessel systems over compact abelian

groups, the dual α-LIC is satisfied automatically in view of [59] and Remark 3.4;

(ii) for each j in J if we take Pj as countable and Γj as a uniform lattice in Theorem 3.5,

then the orthogonality result for the case of GSI Bessel (frame) systems is obtained.

3.2.2. Proof of the characterization result

In the present part of section, we obtain a proof for Theorem 3.5, that gives necessary

and sufficient conditions for two GTI systems to form orthogonal frames for L2(G) by

following the Definition 1.3. For this, the next result plays an important role.

Proposition 3.7. Suppose
⋃
j∈J{Tγgj,p}γ∈Γj ,p∈Pj and

⋃
j∈J{Tγhj,p}γ∈Γj ,p∈Pj are GTI Bessel

systems in L2(G) satisfying the dual α-LIC. Then, the following statements are equivalent:

(i) the mixed dual Gramian operator corresponding to the systems⋃
j∈J{Tγgj,p}γ∈Γj ,p∈Pj and

⋃
j∈J{Tγhj,p}γ∈Γj ,p∈Pj commutes with the

family of translations {Tx}x∈G,
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(ii) for each α ∈
⋃
j∈J

Γ⊥j \ {0},

(3.4) tα(ξ) :=
∑

j∈J :α∈Γ⊥j

∫
Pj

ĥj,p(ξ)ĝj,p(ξ + α)dµPj(p) = 0, for a.e. ξ ∈ Ĝ.

Moreover, if (i) or (ii) holds, then the mixed dual Gramian operator is a Fourier multiplier

whose symbol is

(3.5) s(ξ) =
∑
j∈J

∫
Pj

ĥj,p(ξ)ĝj,p(ξ)dµPj(p), for a.e. ξ ∈ Ĝ.

We first remark that the equations (3.4) and (3.5) are well-defined which can be easily

verified by using Cauchy-Schwartz inequality in the following computation:∑
j∈J :α∈Γ⊥j

∫
Pj

|ĥj,p(ξ)ĝj,p(ξ + α)|dµPj(p)

≤
∑
j∈J

∫
Pj

|ĥj,p(ξ)||ĝj,p(ξ + α)|dµPj(p)

≤
∑
j∈J

(∫
Pj

|ĥj,p(ξ)|2dµPj(p)
)1/2(∫

Pj

|ĝj,p(ξ + α)|2dµPj(p)
)1/2

≤
(∑
j∈J

∫
Pj

|ĥj,p(ξ)|2dµPj(p)
)1/2(∑

j∈J

∫
Pj

|ĝj,p(ξ + α)|2dµPj(p)
)1/2

,

and hence we can write

(3.6)
∑

j∈J :α∈Γ⊥j

∫
Pj

|ĥj,p(ξ)ĝj,p(ξ + α)|dµPj(p) ≤ β, for a.e. ξ ∈ Ĝ,

in view of [59, Proposition 3.3] and by letting β be a common Bessel constant for the two

GTI systems. Now, in order to prove Proposition 3.7, we need the following result:

Lemma 3.8. Suppose
⋃
j∈J{Tγgj,p}γ∈Γj ,p∈Pj and

⋃
j∈J{Tγhj,p}γ∈Γj ,p∈Pj satisfy the assump-

tions of Proposition 3.7, and assume that the symbol Θ is their corresponding mixed dual

Gramian operator. For f ∈ D, define the function wf : G→ C, x 7→ 〈ΘTxf, Txf〉. Then,

the following hold true:

(i) The operator Θ commutes with all translations Tx for x ∈ G, if, and only if, wf is

constant for all f ∈ D, that means, wf (x) = wf (0) = 〈Θf, f〉 for all x ∈ G, where

0 denotes the neutral element of the LCA group G.
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(ii) Let f ∈ D. Then, wf is a continuous function that coincides pointwise with its

absolutely convergent (almost periodic) Fourier series

(3.7) wf (x) =
∑

α∈
⋃
j∈J

Γ⊥j

α(x)ŵf (α),

where

(3.8) ŵf (α) :=

∫
Ĝ

f̂(ξ)f̂(ξ + α)tα(ξ)dµĜ(ξ),

and the last integral converges absolutely.

(iii) wf is constant for all f ∈ D if, and only if, for all α ∈
⋃
j∈J

Γ⊥j \ {0}, tα(ξ) =

0 a.e. ξ ∈ Ĝ.

Proof. (i) Let ΘTx = TxΘ, for all x ∈ G. Then, the direct part of (i) can be concluded by

observing that

wf (x) = 〈ΘTxf, Txf〉 = 〈TxΘf, Txf〉

= 〈Θf, T ∗xTxf〉 = 〈Θf, f〉,

for all x ∈ G and f ∈ D, since for each x, Tx is an unitary operator.

Conversely, let wf be constant for all f ∈ D. Then, for all x ∈ G,

wf (x) = 〈ΘTxf, Txf〉 = 〈T−xΘTxf, f〉 = 〈Θf, f〉,

which by using unitary nature of Tx for each x and polarization identity, leads to T−xΘTx =

Θ, and hence we get ΘTx = TxΘ.

(ii) For each f ∈ D and x ∈ G, we can write the function

wf (x) = 〈ΘTxf, Txf〉 =
〈∑
j∈J

∫
p∈Pj

∫
Γj

〈
Txf, Tγhj,p

〉
Tγgj,pdµΓj(γ)dµPj(p), Txf

〉
,

which further gives

(3.9) wf (x) =
∑
j∈J

∫
p∈Pj

∫
Γj

〈
Txf, Tγhj,p

〉〈
Tγgj,p, Txf

〉
dµΓj(γ)dµPj(p).

Now, by proceeding in the same way as in the proof of [59, Theorem 3.4], the result

follows.
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(iii) Given that dual α-LIC holds for all f ∈ D. From (3.7) and (3.9), it follows that

(3.10)

wf (x) =
∑
j∈J

∫
p∈Pj

∫
Γj

〈
Txf, Tγhj,p

〉〈
Tγgj,p, Txf

〉
dµΓj(γ)dµPj(p) =

∑
α∈

⋃
j∈J

Γ⊥j

α(x)ŵf (α).

Consider now the function zf (x) := wf (x)− 〈Θf, f〉 which is continuous in view of conti-

nuity of the function wf .

Now, for the direct part, assume that the function wf is constant for all f ∈ D. We

claim that tα(ξ) = 0, for all α ∈
⋃
j∈J

Γ⊥j \ {0} and a.e. ξ ∈ Ĝ. Here, note that by the

construction, zf is identical to the zero function. Additionally, since wf equals an absolute

convergent generalized Fourier series, also zf can be expressed as an absolute convergent

generalized Fourier series zf (x) =
∑

α∈
⋃
j∈J

Γ⊥j

α(x)ẑf (α), with

ẑf (α) =

ŵf (0)− 〈Θf, f〉, if α = 0,

ŵf (α), if α 6= 0.

By the uniqueness theorem for generalized Fourier series [11, Theorem 7.12], the function

zf (x) is identical to zero if, and only if, ẑf (α) = 0 for all α ∈
⋃
j∈J

Γ⊥j .

Thus, for α ∈
⋃
j∈J

Γ⊥j and f ∈ D, we have

(3.11) ŵf (α) = δα,0〈Θf, f〉.

Let α 6= 0. Then, for all f ∈ D, (3.11) reduces to ŵf (α) = 0, and hence we get

(3.12)

∫
Ĝ

f̂(ξ)f̂(ξ + α)tα(ξ)dµĜ(ξ) = 0, for a.e. ξ ∈ Ĝ.

Now, define the multiplication operator Mtα : L2(Ĝ) → L2(Ĝ) by Mtα f̂(ξ) = tα(ξ)f̂(ξ)

which is a bounded linear operator in view of the fact that tα(ξ) ∈ L∞(Ĝ) (for details,

see (3.6)). For all f ∈ D and a.e. ξ ∈ Ĝ, we can now rewrite the term in left hand side

of (3.12) as ∫
Ĝ

f̂(ξ)tα(ξ)Tαf̂(ξ)dµĜ(ξ) =

∫
Ĝ

f̂(ξ)Mtα(Tαf̂)(ξ)dµĜ(ξ)

=

∫
Ĝ

f̂(ξ)(MtαTα)f̂(ξ)dµĜ(ξ) =
〈
f̂ ,MtαTαf̂

〉
L2(Ĝ)

,
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which is equal to zero in view of (3.12). From the above equality and the fact that

D is dense in the complex Hilbert space L2(G), it follows that MtαTαf̂ = 0, which is

if, and only if, MtαTα = 0, that means, MtαTα(ĝ) = 0 for all ĝ ∈ L2(Ĝ), and hence

MtαTαĝ(ξ) = tα(ξ)Tαĝ(ξ) = 0 for all ĝ ∈ L2(Ĝ) and a.e. ξ ∈ Ĝ. Thus, (3.12) holds if, and

only if, for a.e. ξ ∈ Ĝ, we have tα(ξ) = 0, for all α ∈
⋃
j∈J

Γ⊥j \ {0}.

Conversely, for each α ∈
⋃
j∈J

Γ⊥j \ {0}, let tα(ξ) = 0 for a.e. ξ ∈ Ĝ, which implies that

ŵf (α) = 0, and by using this in (3.10) along with the fact from (3.11) that for α = 0, we

have ŵf (α) = 〈Θf, f〉, and hence

wf (x) =
∑

α∈
⋃
j∈J

Γ⊥j \{0}

α(x)ŵf (α) +
∑
α∈{0}

α(x)ŵf (α) = 0 + ŵf (0) = 〈Θf, f〉,

for a.e. x ∈ G. Therefore, wf is constant for all f ∈ D.

Proof of Proposition 3.7. Clearly, part (i) is true if, and only if, (3.4) holds in view of

Lemma 3.8. Further, it is well-known that if the mixed dual Gramian operator, say Θ,

commutes with Tx for all x ∈ G, then it is a Fourier multiplier (see [66, Theorem 4.1.1]),

and hence there exists a unique s ∈ L∞(Ĝ) such that Θ̂f(ξ) = s(ξ)f̂(ξ), where s(ξ)

represents the symbol corresponding to Θ. Now, for a.e. ξ ∈ Ĝ, we are interested in

finding the expression for s(ξ). For this, observe that

(3.13) 〈Θf, f〉 = 〈Θ̂f, f̂〉L2(Ĝ) =

∫
Ĝ

Θ̂f(ξ)f̂(ξ)dµĜ(ξ) =

∫
Ĝ

s(ξ)f̂(ξ)f̂(ξ)dµĜ(ξ).

Moreover, for α = 0, it follows from (3.8) and (3.11) that for all f ∈ D,

(3.14) 〈Θf, f〉 = ŵf (0) =

∫
Ĝ

f̂(ξ)f̂(ξ)
∑
j∈J

∫
Pj

ĥj,p(ξ)ĝj,p(ξ)dµPj(p)dµĜ(ξ).

Since (3.13) and (3.14) are valid for all f ∈ D and s is unique, it is clear that the symbol

of Θ, that is, s(ξ) =
∑
j∈J

∫
Pj

ĥj,p(ξ)ĝj,p(ξ)dµPj(p).

Now, we are ready to prove our first main result, that is, Theorem 3.5, which is as follows:

Proof of Theorem 3.5. By Definition 1.3, the part (i) is equivalent to saying that the

mixed dual Gramian operator corresponding to the GTI systems
⋃
j∈J{Tγgj,p}γ∈Γj ,p∈Pj

and
⋃
j∈J{Tγhj,p}γ∈Γj ,p∈Pj , say Θ, is equal to zero. Next, we claim that Θ = 0 if, and only
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if, Θ commutes with the translations Tx for all x ∈ G, and, act as a Fourier multiplier

with symbol

s(ξ) =
∑
j∈J

∫
Pj

ĥj,p(ξ)ĝj,p(ξ)dµPj(p) = 0, for a.e. ξ ∈ Ĝ.

For proving the above claim, let Θ = 0. Then, ΘTx(f) = 0, for all x ∈ G and f ∈ L2(G).

Since for each x, the translation Tx is a linear operator, therefore Tx(0) = zero function

in L2(G) = 0, and hence TxΘf = Tx(0) = 0, which implies that ΘTx = TxΘ for all x ∈ G.

Thus by [66, Theorem 4.1.1], Θ is a Fourier multiplier. So for all f ∈ L2(G) we have

0 = Θ̂f(ξ) = s(ξ)f̂(ξ), ξ ∈ Ĝ a.e., where s(ξ), the symbol of Θ as a Fourier multiplier, is

given by (3.5).

Conversely, if Θ is a Fourier multiplier with symbol s(ξ) = 0, then Θ̂f(ξ) = 0, which

implies that Θf = 0 for all f ∈ L2(G), and hence Θ = 0. Now, the result follows by

considering the above claim along with Proposition 3.7.

3.3. Applications of the characterization result

The purpose of this section is to discuss applications of our first main result (that

is, Theorem 3.5 in Subsection 3.2.1) to the Bessel families having wave-packet structure,

which are obtained by applying certain collections of dilations, modulations, and transla-

tions to a countable family of functions in L2(G). As a consequence, we obtain results for

wavelet and Gabor systems in Subsection 3.3.2. Along with this, we connect the already

existing results from the literature with the theory discussed in this chapter by providing

various examples in case of G = Rd, Zd, etc.

3.3.1. Wave-Packet Systems

For a given second countable LCA group G, let Epi(G), Epick(G), and Aut(G)

denote respectively, the semigroup of continuous group homomorphisms α from G onto

G, the semigroup of α ∈ Epi(G) having compact kernel kerα, and the group of topological

automorphisms α of G onto itself. Note that Aut(G) ⊂ Epick(G) ⊂ Epi(G). For α ∈

Epick(G), we define the isometric dilation operator Dα by

Dα : L2(G)→ L2(G); Dαf(x) = (∆(α))−1/2f(α(x)), for all x ∈ G,
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where the modular function ∆ : Epick(G)→ (0,∞) is a semigroup homomorphism such

that ∫
G

(g ◦ α)(x)dµG(x) = ∆(α)

∫
G

g(x)dµG(x)

for all integrable functions g on G with respect to the Haar measure µG (see [10, Theorem

6.2]). For a character χ in Ĝ, we define the modulation operator Mχ on L2(G) as

Mχ(f)(x) = χ(x)f(x), for all x ∈ G,

and observe that for each χ ∈ Ĝ, it is associated with the translation operator on L2(Ĝ)

by the relation

(3.15) (M̂χf)(ξ) =

∫
G

χ(x)f(x)ξ(x)dµG(x) =

∫
G

f(x)
(
ξ − χ

)
(x)dµG(x) = Tχf̂(ξ),

for all f ∈ L2(G) and a.e. ξ ∈ Ĝ. Further, note that for each α ∈ Epick(G), the dilation

operator on L2(G) satisfies the following relation (see [10, Lemma 6.6]):

(3.16) (̂Dαf)(χ) =

(∆(α))1/2f̂(β−1(χ)) for χ ∈ β(Ĝ) = (kerα)⊥,

0 otherwise,

for all f ∈ L2(G), where by β := α∗, we denote the adjoint of α ∈ Epick(G) which is a

topological isomorphism β : Ĝ→ (kerα)⊥; χ 7→ χ ◦ α in view of [10, Proposition 6.5].

Let A be a subset of Epick(G), let Γ and Λ be co-compact subgroups of G and Ĝ,

respectively, and for some index set J ⊂ Z, let Ψ := {ψj : j ∈ J} be a subset of L2(G).

Then, we define the wave-packet system generated by Ψ as:

(3.17) W(Ψ,A,Γ,Λ) := {DαTγMχψj : α ∈ A, γ ∈ Γ, χ ∈ Λ, j ∈ J}.

In the case of L2(R) and L2(Rd), the systems of the above form have been studied by

several authors, including [20, 54, 69], and various references within. The wave-packet

systems were originally introduced by Córdoba and Fefferman [13], and the collection

defined in (3.17) generalizes the notion of such systems in the context of LCA groups. In

particular, the wavelet and Gabor systems can be seen as special cases of (3.17) which we

shall discuss in Subsection 3.3.2.
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The following commutator relation helps in representing the collection (3.17) in the

form of a GTI system. This relation says that for each α ∈ A, γ ∈ Γ, χ ∈ Λ, and j ∈ J ,

we have:

DαTγMχψj(x) = (∆(α))−1/2TγMχψj(α(x)) = (∆(α))−1/2Mχψj(α(x)− γ)

= (∆(α))−1/2Mχψj(α(x− γ1)) = DαMχψj(x− γ1) = Tγ1DαMχψj(x),

for all x ∈ G, and for some γ1 ∈ α−1Γ such that α(γ1) = γ.

In the rest of this section, let A be a countable subset of Epick(G). Then, by using

the above commutator relation, the wave-packet system W(Ψ,A,Γ,Λ) will represent a

GTI system of the form
⋃
α∈A
{Tγgα,p}γ∈Γα, p∈Pα for Γα := α−1Γ with α ∈ A, gα,p = gα,(j,χ) =

DαMχψj for (α, p) = (α, (j, χ)) in A× (J ×Λ). In this case, for each α ∈ A, the measure

space Pα := {(j, χ) : j ∈ J, χ ∈ Λ} is equipped with the measure µPα := µJ×Λ =

(∆(α))−1(µJ ⊗ µΛ), where the quantity (∆(α))−1 helps in avoiding the scaling factor in

the calculations and µJ represents the counting measure on J . Clearly, the measure µPα is

σ-finite. Here, note that Γα = α−1Γ is a closed co-compact subgroup of G for each α ∈ A,

in view of [10, Proposition 6.4] and the fact that α is a continuous group homomorphism

from G onto G along with Γ as a closed subgroup of G.

Next, we apply Theorem 3.5 to wave-packet systemsW(Ψ,A,Γ,Λ) andW(Φ,A,Γ,Λ),

where for any index set J ⊂ Z, Ψ := {ψj}j∈J and Φ := {ϕj}j∈J are subsets in L2(G).

Further, we simplify (3.3) by consideringW(Ψ,A,Γ,Λ) andW(Φ,A,Γ,Λ) as GTI systems⋃
α∈A
{Tγgα,p}γ∈Γα, p∈Pα and

⋃
α∈A
{Tγhα,p}γ∈Γα, p∈Pα , respectively, where

gα,p = gα,(j,χ) = DαMχψj and hα,p = hα,(j,χ) = DαMχϕj

for (α, p) = (α, (j, χ)) ∈ A × Pα = A × (J × Λ). Hence, for each α̃ ∈
⋃
α∈A

Γ⊥α and for

a.e. ξ ∈
⋃
α∈A(kerα)⊥, the expression (3.3) takes the following form in view of (3.15) and

(3.16) along with β = α∗:

Tα̃(ξ) :=
∑

α∈A: α̃∈Γ⊥α

∫
Pα

ĥα,p(ξ)ĝα,p(ξ + α̃)dµPα(p)

=
∑

α∈A: α̃∈Γ⊥α

∫
J×Λ

ĥα,(j,χ)(ξ)ĝα,(j,χ)(ξ + α̃)dµJ×Λ((j, χ))

=
∑

α∈A: α̃∈(α−1Γ)⊥

∑
j∈J

∫
Λ

̂(DαMχϕj)(ξ) ̂(DαMχψj)(ξ + α̃)
1

∆(α)
dµΛ(χ),
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which further gives

Tα̃(ξ) =
∑

α∈A: α̃∈βΓ⊥

∑
j∈J

∫
Λ

M̂χϕj(β−1ξ)M̂χψj(β
−1(ξ + α̃))dµΛ(χ)

=
∑

α∈A: α̃∈βΓ⊥

∑
j∈J

∫
Λ

Tχϕ̂j(β−1ξ)Tχψ̂j(β
−1(ξ + α̃))dµΛ(χ)

=
∑

α∈A: α̃∈βΓ⊥

∑
j∈J

∫
Λ

ϕ̂j(β−1ξ − χ)ψ̂j(β
−1(ξ + α̃)− χ)dµΛ(χ) =: T̃α̃(ξ) (say),

whereas for the case of ξ ∈ Ĝ \
⋃
α∈A(kerα)⊥ a.e., we get Tα̃(ξ) = 0 by proceeding in the

similar way as above. Hence, we can write

(3.18) Tα̃(ξ) =

T̃α̃(ξ) for a.e. ξ ∈
⋃
α∈A(kerα)⊥,

0 otherwise.

Now, to apply Theorem 3.5 on the wave-packet systems, we require that for a.e.

ξ ∈ Ĝ, Tα̃(ξ) in (3.18) should be equal to 0 for all α̃ ∈
⋃
α∈A

Γ⊥α .

The above discussion leads to our second main result, that is, Theorem 3.9 which

provides the conditions on Ψ and Φ such that the wave-packet systems generated by

Ψ and Φ form pairwise orthogonal Bessel families (frames) which we call as pairwise

orthogonal (simply, orthogonal) wave-packet Bessel (frame) systems in L2(G). Note that

the general LCA group approach applies to all groups of the form G = Rs×Zp×Tq×Zm.

Therefore, the following characterization result on wave-packet systems can be easily used

to verify the concrete conditions for any choice of G specified as above, while the direct

derivation would be rather complex.

Theorem 3.9. Let the wave-packet systems W(Ψ,A,Γ,Λ) and W(Φ,A,Γ,Λ) be Bessel

families (frames) in L2(G) satisfying the corresponding dual α-LIC, where A is a countable

subset of Epick(G). Then, the following assertions are equivalent:

(i) W(Ψ,A,Γ,Λ) and W(Φ,A,Γ,Λ) form orthogonal wave-packet Bessel (frame) sys-

tems in L2(G),

(ii) for a.e. ξ ∈ Ĝ and α̃ ∈
⋃
α∈A

Γ⊥α , the following holds:

∑
α∈A: α̃∈Γ⊥α

∑
j∈J

∫
Λ

ϕ̂j(β−1ξ − χ)ψ̂j(β
−1(ξ + α̃)− χ)dµΛ(χ) = 0,

where for β = α∗, Γ⊥α is given by βΓ⊥.
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Proof. The proof can be concluded by observing that if we consider W(Ψ,A,Γ,Λ) and

W(Φ,A,Γ,Λ) as Bessel families (frames) satisfying the corresponding dual α-LIC, then,

the wave-packet systems generated by Ψ and Φ form pairwise orthogonal Bessel families

(frames) in L2(G) if, and only if, in view of (3.18), Tα̃(ξ) is equal to 0 for all α̃ ∈
⋃
α∈A

Γ⊥α

and a.e. ξ ∈ Ĝ.

In the following example, by applying Theorem 3.9 to the case G = Rd, we get a

characterization result for the orthogonality of a pair of wave-packet systems in L2(Rd).

Hence, the wave-packet systems within L2(Rd) are easily covered within our framework.

Example 3.10. Let G = Rd (equipped with Lebesgue measure), Γ = Zd and Λ = Rd.

Then, Ĝ = Rd, with Euclidean metric, we have Γ⊥ = Zd and Λ⊥ = {0}. Further,

by assuming the matrix A in GL(d,R), set A = {x 7→ Akx : k ∈ Z}. Under these

assumptions, from (3.17), the wave-packet system generated by Ψ = {ψl}Ll=1 ⊂ L2(Rd)

can be written as

W(Ψ,A,Zd,Rd) :=
{
DAkTγMχψl(·) : l = 1, . . . , L, k ∈ Z, γ ∈ Zd, χ ∈ Rd

}
=
{
| detA|−k/2χ(Ak · − γ)ψl(A

k · − γ) : l = 1, . . . , L, k ∈ Z, γ ∈ Zd, χ ∈ Rd
}
.

By letting W(Ψ,A,Zd,Rd) as a wave-packet system in L2(Rd) which satisfies the Bessel

condition (frame inequality), we conclude from Theorem 3.9 that the wave-packet systems

generated by Ψ and Φ form pairwise orthogonal Bessel families (frames) in L2(Rd) if, and

only if, the following holds:
∑

k∈Z: α̃∈BkZd

L∑
l=1

∫
Rd

ϕ̂l(B−kξ − χ)ψ̂l(B
−k(ξ + α̃) − χ)d(χ) = 0,

for a.e. ξ ∈ Rd and for each α̃ ∈
⋃
k∈Z

BkZd along with B = A∗.

In the next subsection, by applying Theorem 3.9 we deduce the orthogonality condi-

tions for the case of Gabor and wavelet systems over LCA groups.

3.3.2. Special cases of Wave-Packet Systems

3.3.2.1. Gabor Systems. In (3.17), by assuming A = {IG}, where IG denotes the

identity group homomorphism on G, we consider the following system as a special case

of wave-packet system defined in (3.17) which we call the Gabor system generated by Ψ:

G(Ψ,Γ,Λ) := {TγMχψj : γ ∈ Γ, χ ∈ Λ, j ∈ J}.
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At this juncture, it is relevant to note that the system G(Ψ,Γ,Λ) is a frame for L2(G)

if, and only if, {MχTγψj : γ ∈ Γ, χ ∈ Λ, j ∈ J} is a frame for L2(G) (see [59, Lemma

2.4]), where the later system is termed as a co-compact Gabor system in [60]. Further,

observe that G(Ψ,Γ,Λ) is a TI system of the form
⋃
j∈J{Tγgj,p}γ∈Γj , p∈Pj with Γj = Γ for

j ∈ J ⊂ Z and gj,p = gj,χ = Mχψj, where (j, p) = (j, χ) ∈ J × Λ. In this case, for each

j ∈ J , Pj = {χ : χ ∈ Λ} is equipped with the measure µPj := (∆(α))−1µΛ that satisfies

the standing hypothesis. Since for TI systems the dual α-LIC is automatically satisfied,

Theorem 3.9 leads to the following result on the orthogonality of Gabor systems. Here,

note that the Bessel families (frames) with co-compact Gabor structure which satisfy the

orthogonality property are termed as pairwise orthogonal (simply, orthogonal) co-compact

Gabor Bessel (frame) systems in L2(G):

Proposition 3.11. Let the Gabor systems G(Ψ,Γ,Λ) and G(Φ,Γ,Λ) be Bessel families

(frames) in L2(G). Then, they form orthogonal co-compact Gabor Bessel (frame) systems

in L2(G) if, and only if, for each α̃ ∈ Γ⊥ and for a.e. ξ ∈ Ĝ, the following assertion

holds: ∑
j∈J

∫
Λ

ϕ̂j(ξ − χ)ψ̂j((ξ + α̃)− χ)dµΛ(χ) = 0.

Using the above result, we can deduce a characterization for the orthogonality of

Gabor Bessel families (frames) in `2(Zd) given by Lopez and Han in [67]. This property

of Gabor frames has found its significance in developing frame theory and its applications

including the construction of Gabor superframes in various set-ups. For more details,

see [2, 35,36,39,51,67,68] and references within.

In the next part, we provide a characterization for pairwise orthogonal Bessel families

(frames) with wavelet structure which we call as pairwise orthogonal (simply, orthogonal)

wavelet Bessel (frame) systems in L2(G).

3.3.2.2. Wavelet Systems. By letting Λ = {χ0} ⊂ Ĝ in (3.17), where χ0 being the

neutral element of Ĝ, we define the collection U(Ψ,A,Γ) as the wavelet system generated

by Ψ:

(3.19) U(Ψ,A,Γ) := {DαTγψj : α ∈ A, γ ∈ Γ, j ∈ J},

as a special case of wave-packet system defined in (3.17). For a countable subset A in

Epick(G), the system (3.19) is a GTI system of the form
⋃
α∈A{Tγgα,p}γ∈Γα, p∈Pα for

46



Γα = α−1Γ with α ∈ A, gα,p = gα,j = Dαψj for (α, p) = (α, j) in A× J . In this case, for

each α ∈ A, the measure space Pα := {j : j ∈ J} is equipped with a counting measure

µPα := (∆(α))−1(µJ) which is clearly σ-finite. Thus, Theorem 3.9 for the case of wave-

packet systems now reduces to the following result on wavelet systems which generalizes

similar results discussed in [63,89] along with various applications:

Proposition 3.12. Let U(Ψ,A,Γ) and U(Φ,A,Γ) be Bessel families (frames) in L2(G)

which satisfy the corresponding dual α-LIC, where A is a countable subset of Epick(G).

Then, they form orthogonal wavelet Bessel (frame) systems in L2(G) if, and only if, for

a.e. ξ ∈ Ĝ and α̃ ∈
⋃
α∈A

Γ⊥α , we have∑
α∈A: α̃∈Γ⊥α

∑
j∈J

ϕ̂j(β−1ξ)ψ̂j(β
−1(ξ + α̃)) = 0,

where for β = α∗, Γ⊥α is given by βΓ⊥.

Example 3.13. By assuming Λ = {χ0} ⊂ Ĝ in Example 3.10, where χ0 being the neutral

element of Ĝ, we obtain a wavelet system generated by Ψ:

U(Ψ,A,Zd) =
{
DAkTγψl(·) : l = 1, . . . , L, k ∈ Z, γ ∈ Zd

}
=
{
| detA|−k/2ψl(Ak · − γ) : l = 1, . . . , L, k ∈ Z, γ ∈ Zd

}
,

which is a special case of wave-packet system W(Ψ,A,Zd,Rd). It follows that two Bessel

families (frames) U(Ψ,A,Zd) and U(Φ,A,Zd) are pairwise orthogonal Bessel families

(frames) if, and only if, we have∑
k∈Z: α̃∈BkZd

L∑
l=1

ϕ̂l(B−kξ)ψ̂l(B
−k(ξ + α̃)) = 0, for a.e. ξ ∈ Rd,

and for all α̃ ∈
⋃
k∈Z

BkZd. Note that the above result coincides with the characterization of

two wavelet systems to be pairwise orthogonal frames in L2(Rd) which is given by Weber

in [89].

47



48



CHAPTER 4

CONSTRUCTIONS OF GENERALIZED SHIFT INVARIANT

ORTHOGONAL FRAME PAIRS

In this chapter, we obtain a general construction for arbitrarily many orthogonal

GSI frame pairs in the context of LCA groups by utilizing the main characterization

result obtained in Chapter 3 and the unitary extension principle (UEP) of Christensen

and Goh [15]. The construction is then applied to synthesize GSI frame pairs over super-

spaces. Note that the above developed constructions are useful in the derivation of explicit

constructing procedures for pairwise orthogonal GSI frames generated by B-splines on the

group itself as well as on characteristic functions on the dual group.

4.1. Introduction

In Chapter 3, we have obtained a characterization for orthogonal frame pairs with

GTI structure. The characterization represents a unified way to deduce similar results for

several function systems including the case of GSI systems which is studied by Kutyniok

and Labate in [64]. Using the above result along with a unitary extension principle on LCA

groups [15] as basic ingredients, this chapter provides a general construction technique

for pairwise orthogonal GSI frames over LCA groups.

Recently, the construction techniques for some special types of frames, such as tight

wavelet frames, dual wavelet frames, Gabor frames, and pairwise orthogonal wavelet

frames have attracted many researchers (see [5, 9, 16, 23, 47, 48, 57, 63, 89] and references

within). In [89], Weber has investigated orthogonal wavelet frames, which are useful

in multiplexing techniques and in characterizing frames for super-spaces. Moreover, an

explicit construction of symmetric orthogonal wavelet frames is given by Li and Yang

in [70]. In this chapter, motivated by the work of Weber et al. in [9], we obtain a

general construction for pairwise orthogonal frames with GSI structure. Note that gen-

eralized shift-invariant (GSI) systems in L2(Rd) were introduced by Hernández, Labate



and Weiss [53], and by Ron and Shen [81] as a common framework to present a unified

theory for many of the familiar discrete systems, most notably the Gabor system and the

wavelet system.

The GSI systems in L2(Rd) are collections of functions of the form
⋃
j∈J{Tγgj}γ∈Γj ,

where J is a countable index set, Tγ denotes translation by γ, the generators {gj}j∈J ⊂

L2(Rd), and for each j ∈ J , Γj is a uniform lattice, that is, a discrete subgroup in Rd

such that Rd/Γj is compact. If Γj = Γ for each j, we recover the case of shift-invariant

(SI) system. To give examples of such systems in case of L2(R), by letting a, b ∈ R and

f ∈ L2(R), we define the modulation operator (Ebf)(x) = e2πibxf(x), and (for a > 0) the

dilation operator (Daf)(x) = a1/2f(ax). Then, the discrete wavelet system {D2jTkψ}j,k∈Z
is a GSI system of the form {T2−jkD2jψ}j,k∈Z which is generated by ψ ∈ L2(R) with

J = Z,Γj = 2−jZ, and gj = D2jψ. For c, b ∈ R, the discrete Gabor system {TckEbtψ}t,k∈Z
generated by ψ ∈ L2(R) describes an SI system for the choice of J = {j0},Γ = cZ, and

gj0 = Ebtψ.

The theory of GSI frame systems given in [53] is further generalized by Kutyniok and

Labate [64] to the LCA-group setting by letting GSI systems of the form
⋃
j∈J{Tγgj}γ∈Γj

in L2(G), where G is an LCA group and for a countable index set J , the collection {Γj}j∈J
denotes a family of uniform lattices in G. Since GSI systems provide a unified way for

the analysis of a large class of function systems, various researchers have contributed in

the investigation of frame properties for such systems (see [5, 14, 16, 53, 59, 64, 81] and

references within). In this direction, our main focus is to provide a construction method

for orthogonal GSI frames pairs over LCA groups. The major tool used in the construction

procedure is the recent unitary extension principle technique of Christensen and Goh [15].

4.2. Unitary extension principle (UEP) on LCA groups

The unitary extension principle (UEP) investigated by Ron and Shen [80] for the

Euclidean case and its many variants (e.g. [17, 23], to mention a few) play a key role in

constructing tight wavelet frames with compact support, desired smoothness, and good

approximation theoretic properties. Recently, the principle is further generalized to the

set-up of LCA groups by Christensen and Goh in [15]. The generalization covers several

variants of the unitary extension principle including the Euclidian case and the periodic
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case corresponding to the torus group at the same time. In [15], the authors have derived

explicit conditions for the UEP construction of tight frames in the context of general LCA

groups. For this, they have proved the general version of the UEP over LCA groups. In

this chapter, we have utilized the UEP by Christensen and Goh [15] to give a general

construction of pairwise orthogonal frames for L2(G) with GSI structure.

In order to obtain the general construction procedure of pairwise orthogonal GSI

frames, we first provide a “General set-up”consisting of notation and standing assumptions

needed for the remainder of this chapter. For this, we follow the general set-up of [15] for

describing the UEP with some additional assumptions which we need in the sequel.

Next, we state the standing assumptions for the rest of this chapter:

General set-up: Let I := {k}∞k=k0
be a sequence of consecutive numbers in Z, {Λk}k∈I

be a nested sequence of lattices in G and {Φk}k∈I ⊂ L2(Ĝ). For each k ∈ I, consider Vk

as a fundamental domain associated with the lattice Λ⊥k . Then, for each k ∈ I, we have

(4.1) Ĝ =
⋃
w∈Λ⊥k

(w + Vk), (w + Vk) ∩ (w′ + Vk) = φ for w 6= w′, w, w′ ∈ Λ⊥k .

Further, we need to restate the following conditions which are used by Christensen

and Goh in [15] for proving the UEP over LCA groups:

(O1) For every compact set S in Ĝ, there exists K1 ∈ I such that

µĜ((w + S) ∩ (w′ + S)) = 0 for w 6= w′, w, w′ ∈ Λ⊥K1
.

(O2) For every compact set S in Ĝ and any ε > 0, there exists K2 ∈ I such that for all

k ≥ K2, k ∈ I, ∣∣µĜ(Vk)|Φk(γ)|2 − 1
∣∣ ≤ ε, ∀γ ∈ S.

(O3) For all k ∈ I and some periodic functions Hk+1 ∈ L∞(Vk+1), we define

(4.2) Φk(γ) = Hk+1(γ)Φk+1(γ) for a.e. γ ∈ Ĝ.

(O4) For k ∈ I, choose a sequence {vk,l}l=1,...,dk ⊂ Ĝ such that vk,1 = 0 and

Λ⊥k =

dk⋃
l=1

(vk,l + Λ⊥k+1), (vk,l + Λ⊥k+1) ∩ (vk,l′ + Λ⊥k+1) = φ for l 6= l′,

where dk = µĜ(Vk+1)/µĜ(Vk).
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Additionally, for all k ∈ I and for i = 1, 2, consider the periodic functions given by

(4.3) Ψ
(i)(m)
k (γ) = G

(i)(m)
k+1 (γ)Φk+1(γ); γ ∈ Ĝ and m = 1, 2, . . . , sk,

where {G(i)(m)
k+1 ∈ L∞(Vk+1) : m = 0, 1, . . . , sk} is a collection of given periodic functions

with G
(1)(0)
k+1 = G

(2)(0)
k+1 = Hk+1. Further, for all k ∈ I and for i = 1, 2, let the matrix-valued

functions M
(i)
k and N

(i)
k be defined for a.e. γ ∈ Vk by

(4.4) M
(i)
k (γ) :=

(
G

(i)(m)
k+1 (γ + vk,n)

)
0≤m≤sk
1≤n≤dk

and N
(i)
k (γ) :=

(
G

(i)(m)
k+1 (γ + vk,n)

)
1≤m≤sk
1≤n≤dk

,

respectively, with (M
(i)
k )∗ as the conjugate transpose of the matrix M

(i)
k .

For each k ∈ I such that k ≥ k0 + 1, let the index set

(4.5) Pk := {(m, k) : m = 1, 2, . . . , sk}

with Pk0 := {(m, k0) : m = 0, 1, 2, . . . , sk0}.

Now, for each i = 1, 2 and p ∈ Pk, we assume the functions g
(i)
p in L2(G) given by

(4.6) g(i)
p =

 g
(i)
(m,k0) = F−1Φk0 if p = (m, k0) ∈ Pk0 ;

g
(i)
(m,k) = F−1Ψ

(i)(m)
k if p = (m, k) ∈ Pk, k ≥ k0 + 1,

with F−1 as a symbol for the inverse Fourier transform on L2(Ĝ).

Using the above assumptions, we state the modified form of the UEP [15] as follows:

Theorem 4.1. In addition to the assumptions (O1)− (O3) in the general set-up, assume

that for each k ∈ I, the matrix-valued function M
(1)
k defined in (4.4) satisfies the following:

(M
(1)
k )∗(γ)M

(1)
k (γ) = dkIdk , for a.e. γ ∈ Vk.

Then, for each p ∈ Pk, by assuming the functions g
(1)
p defined as in (4.6), the GSI system⋃

k∈I{Tλg
(1)
p }λ∈Λk,p∈Pk forms a Parseval frame for L2(G).

4.3. A general construction for orthogonal frame pairs via UEP

In this section, by using the assumptions from the “General set-up”and the modified

form of UEP given in Theorem 4.1, we obtain a general construction procedure for arbi-

trarily many pairwise orthogonal GSI frames. The next result provides a general method

to construct a pair of orthogonal frames with GSI structure:
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Theorem 4.2. In addition to the assumptions (O1)−(O4) and (4.4)−(4.6) in the general

set-up, assume that for each k ∈ I, the periodic function Hk+1 ∈ L∞(Vk+1) (as defined

in (4.2)) satisfies the conditions of Theorem 4.1. Additionally, for each k ∈ I, let the

matrix-valued functions M
(1)
k , M

(2)
k , N

(1)
k and N

(2)
k satisfy the following conditions:

(i) (M
(i)
k )∗(γ)M

(i)
k (γ) = dkIdk for each i = 1, 2 and for a.e. γ ∈ Vk;

(ii) (N
(1)
k )∗(γ)N

(2)
k (γ) = 0 for a.e. γ ∈ Vk;

(iii) (M
(1)
k0

)∗(γ)M
(2)
k0

(γ) = 0 for a.e. γ ∈ Vk0.

Then, the collection of functions given by
⋃
k∈I{Tλg

(1)
p }λ∈Λk,p∈Pk and

⋃
k∈I{Tλg

(2)
p }λ∈Λk,p∈Pk

generate orthogonal Parseval GSI frame pairs in L2(G).

For proving Theorem 4.2, the following result is needed in the sequel:

Theorem 4.3. For each k ∈ I and p ∈ Pk, let µĜ

(
supp(̂g

(1)
p )
⋂

supp(̂g
(2)
p )(· + α)

)
= 0

for all α ∈ Γ⊥k \ {0}. Suppose that the GSI systems given by
⋃
k∈I{Tλg

(1)
p }λ∈Λk,p∈Pk and⋃

k∈I{Tλg
(2)
p }λ∈Λk,p∈Pk are Bessel families in L2(G). Then, the systems form:

(i) dual frames for L2(G) if, and only if, we have∑
k∈I

∑
p∈Pk

(̂g
(1)
p )(w)(̂g

(2)
p )(w) = 1, for a.e. w ∈ Ĝ,

(ii) orthogonal frames for L2(G) if, and only if, we have∑
k∈I

∑
p∈Pk

(̂g
(1)
p )(w)(̂g

(2)
p )(w) = 0, for a.e. w ∈ Ĝ.

Proof. Given that supp(̂g
(1)
p ) ∩ supp(̂g

(2)
p )(· + α) = φ for all p ∈ Pk and k ∈ I with

α ∈ Γ⊥k \ {0}. Therefore, the proof can be easily deduced by using α = 0 in the duality

characterization result given by Jakobsen and Lemvig in [59, Theorem 3.4] and in the

characterization of pairwise orthogonal GTI systems, that is, Theorem 3.5 which we have

obtained in Chapter 3.

Proof of Theorem 4.2. By using the given condition in part (i) and the modified UEP

stated in Theorem 4.1, it follows that
⋃
k∈I{Tλg

(1)
p }λ∈Λk,p∈Pk and

⋃
k∈I{Tλg

(2)
p }λ∈Λk,p∈Pk

generate Parseval GSI frames for L2(G).

Before proceeding further, we first simplify the conditions given in part (ii) and part

(iii). In part (ii), it is given that for each k ∈ I, the matrix-valued functions N
(1)
k and
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N
(2)
k (as defined in (4.4)) satisfy the following condition:

(N
(1)
k )∗(γ)N

(2)
k (γ) =

(
sk∑
m=1

G
(1)(m)
k+1 (γ + vk,i)G

(2)(m)
k+1 (γ + vk,j)

)
1≤i≤dk
1≤j≤dk

= 0,

for a.e. γ ∈ Vk, which further holds if, and only if, we have

(4.7)

sk∑
m=1

G
(1)(m)
k+1 (γ + vk,i)G

(2)(m)
k+1 (γ + vk,j) = 0, for all 1 ≤ i, j ≤ dk,

which by observing the condition (O4) from the general set-up along with the equality

(4.1), is further equivalent to the following equation:

(4.8)

sk∑
m=1

G
(1)(m)
k+1 (w)G

(2)(m)
k+1 (w) = 0 for a.e. w ∈ Ĝ.

Similarly, we can prove that the condition given in part (iii), (M
(1)
k0

)∗(γ)M
(2)
k0

(γ) = 0

for a.e. γ ∈ Vk0 holds if, and only if, we have

(4.9)

sk0∑
m=0

G
(1)(m)
k0+1 (w)G

(2)(m)
k0+1 (w) = 0 for a.e. w ∈ Ĝ,

Next, we proceed for proving the orthogonality of GSI frame systems. For this, we use

the characterization equations of Theorem 4.3(ii) to prove the orthogonality conditions.

For a.e. w ∈ Ĝ, consider the following:

∑
k∈I

∑
p∈Pk

(̂g
(1)
p )(w)(̂g

(2)
p )(w)

=
∑
p∈Pk0

(̂g
(1)
p )(w)(̂g

(2)
p )(w) +

∑
k∈I\{k0}

∑
p∈Pk

(̂g
(1)
p )(w)(̂g

(2)
p )(w)

=

sk0∑
m=0

̂
(g

(1)
(m,k0))(w)

̂
(g

(2)
(m,k0))(w) +

∞∑
k=k0+1

sk∑
m=1

̂
(g

(1)
(m,k))(w)

̂
(g

(2)
(m,k))(w)

=
̂

(g
(1)
(0,k0))(w)

̂
(g

(2)
(0,k0))(w) +

sk0∑
m=1

̂
(g

(1)
(m,k0))(w)

̂
(g

(2)
(m,k0))(w)

+
∞∑

k=k0+1

sk∑
m=1

̂
(g

(1)
(m,k))(w)

̂
(g

(2)
(m,k))(w)

=
̂

(g
(1)
(0,k0))(w)

̂
(g

(2)
(0,k0))(w) +

∑
k∈I

sk∑
m=1

̂
(g

(1)
(m,k))(w)

̂
(g

(2)
(m,k))(w).
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By using (4.2), (4.3) and (4.6), the above expression is further equivalent to the following:

̂(F−1Φk0)(w) ̂(F−1Φk0)(w) +
∑
k∈I

sk∑
m=1

̂
(F−1Ψ

(1)(m)
k )(w)

̂
(F−1Ψ

(2)(m)
k )(w)

= Φk0(w)Φk0(w) +
∑
k∈I

sk∑
m=1

Ψ
(1)(m)
k (w)Ψ

(2)(m)
k (w)

= Hk0+1(w)Φk0+1(w)Hk0+1(w)Φk0+1(w) +
∑
k∈I

sk∑
m=1

G
(1)(m)
k+1 (w)Φk+1(w)G

(2)(m)
k+1 (w)Φk+1(w)

= G
(1)(0)
k0+1 (w)G

(2)(0)
k0+1 (w)|Φk0+1(w)|2 +

∑
k∈I

|Φk+1(w)|2
( sk∑
m=1

G
(1)(m)
k+1 (w)G

(2)(m)
k+1 (w)

)
= G

(1)(0)
k0+1 (w)G

(2)(0)
k0+1 (w)|Φk0+1(w)|2 + |Φk0+1(w)|2

sk0∑
m=1

G
(1)(m)
k0+1 (w)G

(2)(m)
k0+1 (w)

+
∑

k∈I\{k0}

|Φk+1(w)|2
( sk∑
m=1

G
(1)(m)
k+1 (w)G

(2)(m)
k+1 (w)

)
= |Φk0+1(w)|2

( sk0∑
m=0

G
(1)(m)
k0+1 (w)G

(2)(m)
k0+1 (w)

)
+

∑
k∈I\{k0}

|Φk+1(w)|2
( sk∑
m=1

G
(1)(m)
k+1 (w)G

(2)(m)
k+1 (w)

)
.

In view of the equations (4.8)-(4.9) along with the above computation, we get∑
k∈I

∑
p∈Pk

(̂g
(1)
p )(w)(̂g

(2)
p )(w) = 0

for a.e. w ∈ Ĝ. Hence, the result follows.

For the better understanding of the construction method obtained in Theorem 4.2,

we provide the following example in the set-up of L2(R):

Example 4.4. By following Section 4.1 for the modulation, translation and dilation

operators on L2(R), consider a function ϕ ∈ L2(R) satisfying that ϕ̂(γ)→ 1 as γ → 0. In

the “General set-up”, let G = R, I := Z and for each k ∈ Z, consider Φk := D̂akEbkϕ and

Λk := a−kZ. Then, Λ⊥ := akZ, with the fundamental domain Vk := [0, ak). By following

the initial steps of [15, Example 3.7], we get dk := a and {vk,l}l=1,...,dk := {(l−1)ak}l=1,...,a

for each k ∈ Z. Now, the scaling equation described in [15, equation (3.25)] in our case

means that

̂(Da−1E−bϕ)(γ) = H0(γ) ̂(E−bϕ)(γ), for γ ∈ R,
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with H0 ∈ L∞([0, 1). The above expression is further equivalent to the following:

a1/2ϕ̂(aγ + b) = H0(γ)ϕ̂(γ + b), for γ ∈ R,

which is the classical scaling equation in wave-packet analysis. By using the above discus-

sion and assumptions of “General set-up”along with the procedure of [15, Example 3.7],

note that the matrix-valued functions M
(i)
k and N

(i)
k becomes

M
(i)
k (γ) = M

(i)
−1(a−k−1γ), and N

(i)
k (γ) = N

(i)
−1(a−k−1γ)

for each γ ∈ Vk = [0, ak), where k ∈ Z and i = 1, 2. Since a−k−1γ runs through V−1 :=

[0, a−1) when γ runs through Vk, the assumptions given in Theorem 4.2 now reduces to

the following for all k ∈ Z:

(a1) (M
(i)
−1)∗(γ)M

(i)
−1(γ) = aIa for each i = 1, 2 and for a.e. γ ∈ V−1 := [0, a−1);

(a2) (N
(1)
−1 )∗(γ)N

(2)
−1 (γ) = 0 for a.e. γ ∈ V−1;

(a3) (M
(1)
−1 )∗(γ)M

(2)
−1 (γ) = 0 for a.e. γ ∈ V−1.

Under the assumptions (a1)− (a3) along with the conditions used in Theorem 4.2, we can

generate orthogonal Parseval wave-packet frame pairs in L2(R) by choosing the suitable

generators according to the choice of Φk := D̂akEbkϕ for each k ∈ Z.

4.4. Applications: Construction of frame pairs over super-spaces

Let H be a complex-valued Hilbert space. In order to study the applications of our

construction technique which we have obtained in the last section, we need to introduce an

H-valued generalized translation invariant system. To define such systems, let n ∈ N∪{∞}

and consider the following notation:

(4.10) Zn :=

Z/nZ (under addition modulo n) if n <∞;

Z if n =∞,

and `2(Zn) as a collection of all square summable sequences α with norm

||α||2`2(Zn) =
∑
k∈Zn

|α(k)|2 <∞.
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4.4.1. H-valued generalized translation invariant systems

We begin by defining a Hilbert space valued system (also known as vector-valued

(super) space) in the context of locally compact abelian (LCA) groups. For this, let the

notation H represents a Hilbert space H := `2(Zd), where Zd is as described in (4.10) for

d ∈ N ∪ {∞}. Then, the collection of functions

(4.11) L2(G,H) :=
{

measurable f : G→ H such that ||f ||2 :=

∫
G

||f(x)||2HdµG(x) <∞
}
,

is a Hilbert space, we call as a Hilbert space valued (H-valued) system, or, vector-valued

(super) space endowed with the inner product given by

〈f1, f2〉 :=

∫
G

〈f1(x), f2(x)〉HdµG(x),

for all f i := (f i(x))x∈G in L2(G,H) with i = 1, 2, and f i(x) := (f i(x,m))m∈Zd in H for each

x in G. Note that G is a second countable LCA group which implies G is σ-compact, and

hence, σ-finite. Thus, the H-valued system satisfies the following equality:

(4.12) L2(G,H) = L2(G, `2(Zd)) = L2(G×Zd),

in view of Proposition Appendix A.3 from [6] and the fact that `2(Zd) is separable.

By using the above mentioned set-up, we first modify the definition of GTI system

given in Definition 3.1. Then, we introduce the notion of the H-valued generalized trans-

lation invariant system. Note that the families of functions in the definitions given below

satisfy the assumptions of standing hypothesis which are stated in Chapter 3.

Remark 4.5. For each n ∈ N ∪ {∞} and for j ∈ Zn, let Pj be a countable or an

uncountable index set, let gp ∈ L2(G×Zn) for p ∈ Pj, and let Γj be a closed, co-compact

subgroup in G. Then, the GTI system generated by {gp}p∈Pj, j∈Zn ⊂ L2(G × Zn) with

translation along closed, co-compact subgroups {Γj}j∈Zn is the family of functions in

L2(G) which is given by
⋃
j∈Zn{Tγgp}γ∈Γj, p∈Pj

.

Definition 4.6. For each d, n ∈ N ∪ {∞} and for j ∈ Zn, let Pj be a countable or an

uncountable index set, let gp ∈ L2(G × Zd × Zn) for p ∈ Pj, and let Γj be a closed, co-

compact subgroup in G. Then, the H-valued generalized translation invariant (H-valued

GTI) system generated by {gp}p∈Pj, j∈Zn ⊂ L2(G×Zd×Zn) with translation along closed,
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co-compact subgroups {Γj × {0}}j∈Zn is the family of functions in L2(G × Zd) which is

given by
⋃
j∈Zn
{Tγgp}γ∈Γj×{0}, p∈Pj

.

Note that the above definition can be used to deduce the case of GSI system over

super-spaces. Further, in view of Remark 4.5 and Definition 4.6, the following is another

important observation related to the concept of frames over super-spaces in context of

LCA groups:

Remark 4.7. We mention that while the concept of vector-valued frames is an addition

to the frame theory of functions on L2(R) it is not for frames on L2(G), where G is a

second countable LCA group. This is because the “H-valued system” L2(G,H) defined

in (4.11) coincides with the space L2(G×Zd), where Zd is the locally compact abelian, in

fact, countable and discrete group as described in (4.10). Hence the “H-valued system”

L2(G,H) is just L2 for the group G×Zd.

By using the important observation of Remark 4.7, we conclude that Theorem 4.2 also

provides the construction technique for orthogonal Parseval frame pairs over super-spaces

in the context of LCA groups by choosing generators for GSI systems for super-spaces

in accordance with the Definition 4.6, and by using corresponding modifications in the

assumptions of “General set-up”.
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CHAPTER 5

GROUP THEORETIC CONSTRUCTION OF FINITE

TIME-FREQUENCY LOCALIZED ONWS

In this chapter, we give a group-theoretic construction of a finite orthonormal wavelet

system (ONWS) which is concentrated in time as well as frequency. Further, we study and

characterize the ONWS. Finally, some results on the uncertainty principle corresponding

to the ONWS are obtained.

5.1. Introduction

In Chapters 2-4, we have characterized and constructed orthogonal frame pairs in

the context of a general (second countable) locally compact abelian (LCA) group G.

Since practical life applications mainly require frames in finite setting, this motivates us

to relate our work in the thesis with the finite set-up by letting LCA group G of the

form ZdN . Therefore, the main focus of Chapters 5-6 is to give a construction of finite

time-frequency localized frame systems with wavelet structure.

In this direction, we construct a finite time-frequency localized orthonormal wavelet

system in the current chapter. The construction is obtained by using a new group-

theoretic approach based on the complete digit set associated to an invertible matrix.

By continuing this work in Chapter 6, we generalize the above construction to frame

set-up and study orthogonality and duality properties of such finite frame pairs, with

applications to frames over super-spaces.

In the present chapter, we provide a group-theoretic construction of a finite time-

frequency localized basis with wavelet structure, and study time-frequency localization

properties of this basis via uncertainty principle. Note that a time-frequency localized

basis plays an important role in extracting both time as well as frequency information

of a given signal, and the uncertainty principle helps us to understand how much local

information in time and frequency we can extract by using the above-mentioned basis.



A function (signal) f with domain D is said to be time localized/ frequency localized

near a point n0 ∈ D, if for n ∈ D, most of the (components f(n) of f)/(components of

Fourier transform of f) are 0 or relatively small except for a few values of n close to n0. By

a time-frequency localized basis (TFL-basis), we mean that every vector in the basis is time

localized as well as frequency localized. In the last two decades, a lot of research on time-

frequency analysis has been done by several authors for the various spaces, namely, finite

and infinite abelian groups, Euclidean spaces, etc. (e.g. [26,37,44,45,49,65,82,88,89]).

A TFL-basis has enormous applications in the problems related to real life as well as

in different areas of mathematics. Due to this, many researchers are attracted towards

the problem of finding good bases having both time as well as frequency localization

properties (e.g. [26,72,82,88]). Furthermore, in this day and age of computers, processing

can be done only when the signal can be stored in memory. Therefore, the importance of

discrete and finite signals cannot be ignored.

At this juncture, it is pertinent to note that the standard orthonormal basis for Cn is

time localized but not frequency localized, while its Fourier basis is frequency localized but

not time localized. Therefore, we need to search another basis for Cn, which is localized

in time as well as frequency.

Wavelets are the latest and most successful tools to extract information from many

different kinds of data including but certainly not limited to audio signals and images.

Motivated from the construction of wavelets on ZN by Frazier (see [26, Definition 3.4]), the

main goal of this chapter is to study an orthonormal wavelet system for `2(ZdN) along with

its time-frequency localization properties via uncertainty principle, which is obtained by

generalizing the set-up mentioned above in [26] to multidimensional case. We proceed by

providing motivation for this particular form of system, which we introduce in (5.2). It is

actually inspired from the following system of translates in `2(ZN) having time-frequency

localization properties, which is defined and studied by Frazier [26].

Definition 5.1. Let N = 2M for some M ∈ N and let u1, u2 ∈ `2(ZN). An orthonormal

basis for `2(ZN) of the form

(5.1) {ui(· − 2k) : 1 ≤ i ≤ 2, 0 ≤ k ≤M − 1},

is called an orthonormal wavelet system for `2(ZN).
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Inspired from the collection of the form (5.1), we wish to develop the theory related

to the collection in a multidimensional set-up for the more general case. In particular,

we want to find conditions on the sets I1, I2 and A ∈ GL(d,R), and to characterize

Φ = {ϕp}p∈I2 ⊂ `2(ZdN) such that the collection B(Φ, A, I1) (with distinct elements)

defined by

(5.2) B(Φ, A, I1) := {TAkϕp : k ∈ I1 ⊆ ZdN , p ∈ I2 ⊂ N}

forms a TFL-basis for `2(ZdN), where for each k ∈ ZdN and f ∈ `2(ZdN), the trans-

lation operator Tk on `2(ZdN) is defined by Tk(f)(m) = f(m − k), for all m ∈ ZdN .

For N ∈ N, the space `2(ZdN) denotes the collection of all Nd × 1-complex vectors.

Here, note that it is an Nd-dimensional Hilbert space with usual inner product 〈f, g〉 =∑
n∈ZdN

f(n)g(n), for all f, g ∈ `2(ZdN), and associated norm || · || := 〈·, ·〉1/2, where

ZN := {0, 1, 2, . . . , N − 1} denotes a group of integers under addition modulo N .

In order to compare B(Φ, A, I1) with the classical notion of an orthonormal multi-

wavelet [90], let us consider Ψ = {ψ1, ψ2, . . . , ψL} ⊂ L2(Rd) with the dilation matrix A0

and translation Zn, which provides an orthonormal basis A(Ψ, A0) for L2(Rd), where

A(Ψ, A0) := {ψlj,k := | det(A0)|j/2ψl(Aj0 · −k) : j ∈ Z, k ∈ Zd and ψl ∈ Ψ}.

In view of the system A(Ψ, A0), note that the elements of B(Φ, A, I1) can be written

as ϕp0,Ak = TAkϕp, where p ∈ I2, k ∈ I1. Further, we remark that if B(Φ, A, I1) is an

orthonormal basis for `2(ZdN), then one cannot construct an orthogonal set by adding

elements into B(Φ, A, I1). This, in turn, implies that we are able to get an orthonormal

basis for `2(ZdN) in terms of translations of Φ, without using any dilation operator. Thus, it

leads us to conclude that we cannot use the natural definition of orthonormal multiwavelet

for L2(Rn) in our case. Throughout the chapter, we call such system B(Φ, A, I1) as an

orthonormal wavelet system (ONWS) in `2(ZdN).

Further, in this chapter, we study the uncertainty principle in terms of the pair of

representations of a given signal by coupling ONWS with the standard basis and Fourier

basis. This study can be useful to provide uniqueness properties of the sparse represen-

tation of the signal. The theory of uncertainty principle related to the pair of bases and

its applications has been developed by many authors (e.g. [22, 24,37,62,65,82]).
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Throughout the chapter, for d,N ∈ N, the notations M(d,K)/ M̃(d,K) denote the

collection of all d × d (matrices)/(invertible matrices) over K, respectively, where K is

used as Z (the set of integers) or R (the set of real numbers). The notation | · | denotes

the cardinality of a set, or, the absolute value of a complex number. For m,n ∈ N, the

symbol M
t

represents the conjugate transpose of any m×n matrix M . For A ∈M(d,Z)

and Ĩ ⊆ ZdN , we get AĨ ⊆ ZdN , where its entries are obtained by applying addition modulo

N (denoted by modN) to each coordinate of AĨ. Note that we represent any arbitrary

element of ZdN as a d× 1 column vector.

For f, g ∈ `2(ZdN), the discrete Fourier transform (DFT) and inverse discrete Fourier

transform (IDFT) on `2(ZdN) are defined for each m,n ∈ ZdN by

f̂(m) =
∑
s∈ZdN

f(s)e−2πi〈m,s〉/N and g∨(n) =
1

Nd

∑
l∈ZdN

g(l)e2πi〈n,l〉/N ,

respectively. Here, note that the formulas for DFT and IDFT can be defined for all

m,n ∈ Zd by observing the relations f̂(m + jN) = f̂(m), and g∨(n + jN) = g∨(n),

for all f, g ∈ `2(ZdN), j ∈ Zd. For proving various results in upcoming sections, we need

to state the following properties related to DFT and the translation operator on `2(ZdN):

(P1) For f, g ∈ `2(ZdN), the Plancherel’s formula is given by

〈f, g〉 =
1

Nd

∑
m∈ZdN

f̂(m)ĝ(m) =
1

Nd
〈f̂ , ĝ〉,

which leads to Parseval’s formula for f = g.

(P2) Let k, k1 ∈ ZdN . Then for f, g ∈ `2(ZdN), we can easily observe the following:

(i) (̂TAkf)(m) = e−2πi〈m,Ak〉/N f̂(m), for all m ∈ ZdN .

(ii) 〈TAk1f, TAkg〉 = 〈f, T(Ak−Ak1)g〉.

(P3) |δ̂(k)| = 1, where δ(k) = 1 for k = 0, and zero for 0 6= k ∈ ZdN .

In the next section, we study some group-theoretic results, which help us to construct

a TFL-basis for `2(ZdN):

5.2. Group-theoretic construction of an ONWS in `2(ZdN)

Our main motive in this section is to answer the question imposed for the system

B(Φ, A, I1) defined in (5.2). For this, we need to recall and establish some group-theoretic

results. From (5.2), it is clear that AZdN ⊆ ZdN , and |B(Φ, A, I1)| = |AI1||I2| . Further,
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we note that the system B(Φ, A, I1) should have Nd distinct elements to become an

orthonormal basis for `2(ZdN). Hence, we get Nd = |B(Φ, A, I1)| = |AI1||I2|, which

implies that |I2| = Nd/|AI1|. To find |I2|, firstly we are interested in computing |AI1|,

where I1 ⊆ ZdN . Next, we observe that in order to get the distinctness property in

B(Φ, A, I1), the form of I1 should be such that AI1 behaves like a group.

Now, by using the fact that ZdN is an abelian group, we conclude that AZdN is a normal

subgroup of ZdN . The motivation for considering subgroups of ZdN of this type comes from

the fact that every subgroup of Zd is of the form ÃZd for some Ã ∈M(d,Z).

Note that if Ã is a d×d expansive matrix with integer entries, then the order of group
Zd

ÃZd
is | det(A)| (see [90, Proposition 5.5]), while the result is also true for Ã ∈ M̃(d,Z).

Here, by an expansive matrix, we mean that all of its eigenvalues λ satisfy |λ| > 1.

Next, we proceed for the computation of |AI1|, where I1 ⊆ ZdN . In general, here we

are interested in finding the order of group AZdN . Therefore, we have the following result:

Proposition 5.2. For N ∈ N, let the matrix A ∈ M̃(d,Z) be such that B := NA−1 ∈

M̃(d,Z). Then, the determinant det(A) of A divides Nd, and hence the order of the groups

AZdN and
ZdN
BZdN

are respectively given by |AZdN | =
Nd

| det(A)|
and

∣∣∣ ZdN
BZdN

∣∣∣ = | det(B)|.

Proof. The key for this proof lies in understanding the significance of assuming the matrix

B = NA−1 ∈ M̃(d,Z), which implies that Zd
BZd is defined, and hence

∣∣∣ Zd
BZd

∣∣∣ = | det(B)| (see

[90, Proposition 5.5]). Now, by using this particular form of B, we claim to establish an

isomorphism between the groups AZdN and Zd
BZd , that means, AZdN ∼= Zd

BZd , which will imply

that |AZdN | =
∣∣∣ Zd
BZd

∣∣∣ = | det(B)|, and hence
∣∣∣ ZdN
BZdN

∣∣∣ = | det(B)|. Firstly, observe that Nd

divides det(A) since entries of B are integers. Next, for proving our claim, we consider a

map f : Zd → AZdN ; (n1, . . . , nd)
t 7→ A(r1, . . . , rd)

t, where for 1 ≤ i ≤ d, ri ≡ ni(modN),

that means, N divides (ni− ri). It can be seen easily that the map f is well defined, onto

and homomorphism with kernel BZd. Hence, we conclude our claim from the fundamental

theorem of group homomorphism.

Remark 5.3. (i) Observe that if A ∈ M̃(d,Z) is a matrix such that det(A) divides

Nd, then the matrix NA−1 need not be a member of M̃(d,Z). For example, let
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A =

(
3 1

1 3

)
and N = 4. Then, det(A) divides N2, but NA−1 =

4

8

(
3 −1

−1 3

)
=

(
3/2 −1/2

−1/2 3/2

)
/∈ M̃(2,Z).

(ii) Note that this particular form of B defined in Proposition 5.2 (which will be used

for getting A in collection (5.2)) may play a significant role when one has to look

at reconstruction formula or the windowed Fourier transform.

Now, assume that the matrix A in the collection (5.2) satisfies the assumptions of

Proposition 5.2. Then, from the same result, it is clear that |I2| = Nd/|AI1| = | det(A)|.

Next, we wish to find the structure of the set I1 used in the collection (5.2). We need

following definition in this regard:

Definition 5.4. Let H be a subgroup of ZdN . We say that a set D̃ tiles ZdN by H if

{H + m : m ∈ D̃} is a disjoint partition of ZdN . In this situation, D̃ is also called a

complete digit set for the quotient group ZdN/H and we say that D̃ is a H-tile of ZdN .

Now, by letting D as a BZdN -tile of ZdN for the rest of this chapter, we list the following

properties, which suggest us to choose I1 as D, and then AI1 will behave like a group:

Proposition 5.5. For N ∈ N, let the matrix A ∈ M̃(d,Z) be such that B = NA−1 ∈

M̃(d,Z). Let D be a BZdN -tile of ZdN containing 0 as zero element and satisfying Ad1 6=

Ad2 whenever d1 6= d2 ∈ D. Then, D possesses the following properties:

(i) |D| = |AZdN | = |A(D)| = Nd

| det(A)| .

(ii) AZdN = A(D).

(iii) For some β ∈ D, Aβ = 0 if, and only if, β = 0.

(iv) For β1, β2 ∈
{
β = β + BZdN : β ∈ D

}
, β1 ∩ β2 = φ, and we can write ZdN =⋃

β ∈D(β +BZdN).

(v) For β1, β2 ∈ D, we have (β1 + β2) +BZdN = β +BZdN for some β ∈ D.

(vi) For β1, β2 ∈ D, there exists β ∈ D such that Aβ1 − Aβ2 = Aβ. Moreover, β1 = β2

if, and only if, β = 0.

Proof. The proof for (i) can be seen by observing Proposition 5.2 along with the fact that

|D| =
∣∣∣ ZdN
BZdN

∣∣∣ = | det(B)| = |AZdN |, and hence, |D| = |A(D)| by noting that Ad1 6= Ad2
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whenever d1 6= d2 ∈ D. Now, the result AZdN = A(D) in (ii) follows from A(D) ⊆ AZdN
and |A(D)| = |AZdN |. The rest of properties can be proved easily.

Now, by considering the matrix A with assumptions of Proposition 5.5, we conclude

that in the collection (5.2), |I2| = Nd/|AI1| = | det(A)|, and I1 = D yields a group

structure for AI1. Further, note that we should take |I2| > 1. Because for |I2| = 1 =

| det(A)| case, we get |AI1| = Nd, and since AI1 ⊂ ZdN , this results in AI1 = ZdN . It

converts (5.2) into a collection obtained through translates of a single function, say ϕ0.

Hence, for Φ = {ϕ0}, the collection (5.2) takes the following form B(ϕ0, A,D), defined

by

(5.3) B(ϕ0, A,D) := {TAkϕ0 : Ak ∈ A(D) = ZdN},

which is just a reordering of the collection {Tkϕ0}k∈ZdN . Now, the next result shows that

we will not get frequency localization properties in the collection of the form defined in

the equation (5.3):

Lemma 5.6. The collection B(ϕ0, A,D) defined in (5.3) forms an orthonormal basis for

`2(ZdN) if, and only if, |ϕ̂0(n)|2 = 1 for all n ∈ ZdN . Moreover, an orthonormal basis of

this form is not frequency localized.

Proof. The system B(ϕ0, A,D) forms an orthonormal basis for `2(ZdN) if, and only if,

δ(k) = 〈ϕ0, Tkϕ0〉, for k ∈ ZdN . Now, by using the Plancherel’s formula, we can write

δ(k) =
1

Nd
〈ϕ̂0, T̂kϕ0〉 =

1

Nd

∑
n∈ZdN

|ϕ̂0(n)|2e2πi〈n,k〉/N = G∨(k),

where G(n) = |ϕ̂0(n)|2, for all n ∈ ZdN . Hence, the system B(ϕ0, A,D) forms an orthonor-

mal basis for `2(ZdN) if, and only if, for all k ∈ ZdN , we have δ(k) = G∨(k), which is if, and

only if, |ϕ̂0(n)|2 = 1 for all n ∈ ZdN , in view of property (P3). This implies that the vector

ϕ0 is not frequency localized, and hence the orthonormal basis of the form B(ϕ0, A,D) is

not frequency localized.

In order to get a TFL-basis for `2(ZdN), we modify our approach by considering a

collection whose elements are translations of two or more vectors. This means, we consider

the case when |I2| = | det(A)| > 1. From Proposition 5.5, we have |AI1| = |A(D)| =

N2

| det(A)| , and hence in this case, we must have I1 = D ( ZdN . Thus, we have the following

assumptions for the rest of the chapter, which are needed to redefine the collection (5.3):
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(A1): For some N ∈ N, we consider the matrix A ∈ M̃(d,Z) such that B = NA−1 ∈

M̃(d,Z).

(A2): For I2 = | det(A)| =: q ≥ 2, we have Φ = {ϕp}q−1
p=0 ⊂ `2(ZdN).

(A3): Under the assumptions of A1 and A2, the system in (5.3) can be redefined as:

(5.4) B(Φ, A,D) := {TAkϕp : k ∈ D ( ZdN , 0 ≤ p ≤ q − 1} ⊂ `2(ZdN).

Remark 5.7. An important point that one should keep in mind while choosing Φ in

(5.4) is to select Φ in such a way that there should not exist any element ψ ∈ `2(ZdN) such

that {Tkψ : k ∈ ZdN} = B(Φ, A,D), otherwise B(Φ, A,D) will become similar with the

system (5.3), and Lemma 5.6 says that the orthonormal basis of this form is not frequency

localized. For a better explanation of this fact, we need the following result in the sequel:

Proposition 5.8. Let {em}m∈ZdN be a standard orthonormal basis for `2(ZdN), where for

each m ∈ ZdN , we define em(m′) = 1 if m = m′, and 0 otherwise. Then, for some N ∈ N

and A ∈ M̃(d,Z) (which satisfies the condition (A1)) with | det(A)| = q ≥ 2, there exists

a set {γ0, γ1, · · · , γq−1} ( ZdN for which

{TAkeγj : k ∈ D, 0 ≤ j ≤ q − 1} = {Tken}k∈ZdN , for some n ∈ ZdN .

Proof. Let n ∈ ZdN . Then, both the collections {Tken}k∈ZdN and {em}m∈ZdN are the same,

and hence we claim that {TAkeγj : k ∈ D, 0 ≤ j ≤ q − 1} = {em}m∈ZdN . For this, it is

enough to show that there exists {γj}q−1
j=0 ⊂ ZdN such that the collection

{γj + Ak : k ∈ D, 0 ≤ j ≤ q − 1} = ZdN ,

since for k ∈ D and 0 ≤ j ≤ q− 1, we have TAkeγj = e(γj+Ak). Now, from Proposition 5.2,

we have
∣∣∣ ZdN
AZdN

∣∣∣ = q. Further, by {αj}q−1
j=0, we denote the q distinct coset representatives for

ZdN
AZdN

, where for 0 ≤ j ≤ q−1, we define αj = αj+AZdN . Let D0 := {αj}q−1
j=0, which satisfies

properties of Proposition 5.5. Then, we can write ZdN = {α+Ak : α ∈ D0, k ∈ D}. This

implies that there exists {αj}q−1
j=0 = D0 ⊂ ZdN such that {TAkeαj : k ∈ D, 0 ≤ j ≤ q−1} =

{em}m∈ZdN .

Now, we are defining an orthonormal wavelet system for `2(ZdN) that is motivated

from Definition 5.1, with terminology adapted from Frazier in [26, Definition 3.4].
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Definition 5.9. Orthonormal Wavelet System: We call the system B(Φ, A,D),

which is defined in (5.4), an orthonormal wavelet system (ONWS) for `2(ZdN), if it forms

an orthonormal basis for `2(ZdN).

The following is our main result of this section which characterizes Φ ⊂ `2(ZdN) such

that the system B(Φ, A,D)) defined in (5.4) provides an ONWS for `2(ZdN):

Theorem 5.10. Let A ∈ M̃(d,Z) be a matrix such that for some N ∈ N, we have

another matrix C := (NA−1)t ∈ M̃(d,Z). Consider Φ = {ϕp}q−1
p=0 ⊂ `2(ZdN), where

| det(A)| = q ≥ 2. Then, the following statements are equivalent:

(i) B(Φ, A,D) ⊂ `2(ZdN) forms an ONWS in `2(ZdN).

(ii) For all m ∈ D∗ and (p1, p2) ∈ {(n1, n2) : 0 ≤ n1 ≤ n2 ≤ q − 1}, we have∑
γ∈CZdN

ϕ̂p1(m+ γ)ϕ̂p2(m+ γ) = qδp1,p2 ,

where D∗ is a CZdN -tile of ZdN .

(iii) For each m ∈ D∗, the system matrix SΦ(m) of Φ is unitary, where the q× q matrix

SΦ(m) is defined as

SΦ(m) :=
1
√
q

(
ϕ̂p(m+ γ)

)
γ∈CZdN

0≤p≤q−1

.

For proving the above result, we need to set up the background in the form of following

results:

Lemma 5.11. For α ∈ AZdN and β ∈ CZdN , the inner product 〈α, β〉 ∈ NZ, where

A and C are as defined in Theorem 5.10.

Proof. Let α ∈ AZdN and β ∈ CZdN . Then, there exist n, m ∈ ZdN such that α = An

and β = Cm. Now, the result follows by observing that 〈α, β〉 = 〈An, (NA−1)tm〉 =

N〈n,m〉 = Np, for some p ∈ Z.

Our main motive is to prove the Theorem 5.10, and the upcoming Proposition 5.12

plays an important role in this, which is true in view of the following identity: for k1, k2 ∈

D, we have

(5.5)
∑
m∈D∗

e2πi〈m,(Ak1−Ak2)〉/N =

 |D∗| for k1 = k2,

0 otherwise.
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Note that the above key identity is well known (see for example [32]), but we include

its proof for completing the details for our next result, which is as follows:

Proposition 5.12. Let {Ek}k∈D ⊆ `2(D∗), where for each k ∈ D, we define Ek(m) =

1√
|D∗|

e2πi〈m,Ak〉/N , for all m ∈ D∗ (here, A and D∗ are as defined in Theorem 5.10). Then,

the system {Ek}k∈D forms an orthonormal basis for `2(D∗).

Proof. Observe that for k1, k2 ∈ D, we have

(5.6) 〈Ek1 , Ek2〉`2(D∗) =
∑
m∈D∗

Ek1(m)Ek2(m) =
1

|D∗|
∑
m∈D∗

e2πi〈m,(Ak1−Ak2)〉/N .

Now, we claim that the identity (5.5) holds true. For this, let m1 ∈ D∗ be an arbitrary

element. Then, we can write

e2πi〈m1,(Ak1−Ak2)〉/N
∑
m∈D∗

e2πi〈m,(Ak1−Ak2)〉/N =
∑
m∈D∗

e2πi〈(m+m1),(Ak1−Ak2)〉/N .

Now, in view of Proposition 5.5, we have Ak1 − Ak2 = Ak, for some k ∈ D. Therefore,

by substituting m+m1 = m2, we get

e2πi〈m1,Ak〉/N
∑
m∈D∗

e2πi〈m,Ak〉/N =
∑
m∈D∗

e2πi〈m+m1,Ak〉/N =
∑
m2∈D∗

e2πi〈m2,Ak〉/N ,

which implies that either e2πi〈m1,Ak〉/N = 1, or,
∑

m∈D∗
e2πi〈m,Ak〉/N = 0. But, e2πi〈m1,Ak〉/N = 1

if, and only if, 〈m1, Ak〉 ∈ NZ, which is if, and only if, we have Ak ∈ NZd as m1 ∈

D∗ is arbitrary. Equivalently, we can say that e2πi〈m1,Ak〉/N = 1 if, and only if, k ∈

NA−1Zd ∩D = {0}, which in view of Proposition 5.5 implies that k1 = k2.

Now, by using (5.5) and (5.6), we get 〈Ek1 , Ek2〉`2(D∗) = δk1,k2 . Hence, the result.

Proof of Theorem 5.10. The system B(Φ, A,D) will form an orthonormal basis for `2(ZdN)

if, and only if, for k ∈ D and ϕp1 , ϕp2 ∈ Φ, where 0 ≤ p1, p2 ≤ q − 1, we have

δp1,p2δ(k) = 〈ϕp1 , TAkϕp2〉 =
1

Nd
〈ϕ̂p1 , T̂Akϕp2〉 =

1

Nd

∑
n∈ZdN

ϕ̂p1(n)ϕ̂p2(n)e2πi〈n,Ak〉/N ,
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in view of the Plancherel’s formula. Next, by applying Lemma 5.11 in the above equation,

we get

δp1,p2δ(k) =
1

Nd

∑
m∈D∗

∑
γ∈CZdN

ϕ̂p1(m+ γ)ϕ̂p2(m+ γ)e2πi〈(m+γ),Ak〉/N

=
1

Nd

∑
m∈D∗

∑
γ∈CZdN

ϕ̂p1(m+ γ)ϕ̂p2(m+ γ)e2πi〈m,Ak〉/N

=
1

q|D∗|
∑
m∈D∗

Ψ(m)e2πi〈m,Ak〉/N ,

where Ψ(m) =
∑

γ∈CZdN
ϕ̂p1(m + γ)ϕ̂p2(m+ γ), for all m ∈ D∗. Next, by noting that

(Ψ(m))m∈D∗ ∈ `2(D∗) and Proposition 5.12, we get δp1,p2δ(k) =
1

q
F−1(Ψ(k)), for all

k ∈ D, where F−1 denotes the inverse discrete Fourier transform on `2(D∗), which further

yields Ψ(m) = qδp1,p2 for all m ∈ D∗. Hence, the system B(Φ, A,D) forms an ONWS in

`2(ZdN) if, and only if, for ϕp1 , ϕp2 ∈ Φ, where 0 ≤ p1, p2 ≤ q − 1, we have

Rp1,p2 :=
∑

γ∈CZdN

ϕ̂p1(m+ γ)ϕ̂p2(m+ γ) = qδp1,p2 for all m ∈ D∗.

Further, we note that Rp2,p1 = Rp1,p2 , which proves (i) ⇔ (ii) part. Observe that the

above equation is equivalent to the fact that for m ∈ D∗, columns of SΦ(m), the system

matrix of Φ having order q × q, defined by

SΦ(m) =
1
√
q

(
ϕ̂p(m+ γ)

)
γ∈CZdN

0≤p≤q−1

,

forms an orthonormal basis for Cq. Equivalently, the collection B(Φ, A,D) ⊂ `2(ZdN) is

an ONWS in `2(ZdN) if, and only if, the system matrix of Φ is unitary for each m ∈ D∗.

Hence (i) ⇔ (iii) follows.

The following are some examples of ONWS in `2(ZdN) with respect to expansive as

well as non-expansive matrices. In the case of L2(Rn), the expansive and non-expansive

nature of a dilation matrix plays an important role in the existence of an orthonormal

wavelet.

Example 5.13. (i) For non-expansive matrix: Let N = 2 and A =

(
2 2

1 2

)
. Then,

AZ2
2 = BZ2

2 =
{

(0, 0)t, (0, 1)t
}
, where B = NA−1 =

(
2 −2

−1 2

)
and hence, we can

69



choose D =
{

(0, 0)t, (1, 0)t
}
⊂ Z2

2. Note that the matrix A is non-expansive since one of

its eigenvalues (2±
√

2) is less than 1. Further, consider Φ1 = {ϕ0, ϕ1} ⊂ `2(Z2
2) defined

by

ϕ0 =
(
ϕ0((0, 0)t), ϕ0((0, 1)t), ϕ0((1, 0)t), ϕ0((1, 1)t)

)t
=
( 1√

2
, 0,

1√
2
, 0
)t
,

and ϕ1 =
( 1√

2
, 0,− 1√

2
, 0
)t
.

Then,

B(Φ1, A,D) = {TAkϕp : k ∈ D, 0 ≤ p ≤ 1}

= {ϕ0, ϕ1, T(0,1)tϕ0, T(0,1)tϕ1},

is an ONWS for `2(Z2
2), where

T(0,1)tϕ0 = (0,
1√
2
, 0,

1√
2

)t

and

T(0,1)tϕ1 = (0,
1√
2
, 0,− 1√

2
)t.

Further, the discrete Fourier transforms of ϕ0 and ϕ1 are given by ϕ̂0 =
(√

2,
√

2, 0, 0
)t

and ϕ̂1 =
(

0, 0,
√

2,
√

2
)t
, respectively. We can easily verify that for each m ∈ D∗ =

{(0, 0)t, (0, 1)t} and 0 ≤ p1, p2 ≤ 1,∑
γ∈CZ2

2

ϕ̂p1(m+ γ)ϕ̂p2(m+ γ) = 2δp1p2 ,

where CZ2
2 = BtZ2

2 = {(0, 0)t, (1, 0)t}. Hence,

B(Φ1, A,D) = {TAkϕp : k ∈ D, 0 ≤ p ≤ 1} ⊂ `2(Z2
2)

forms an ONWS in `2(Z2
2), by using Theorem 5.10.

(ii) For expansive matrix: Let A =

(
3 −1

1 1

)
be an expansive matrix with eigenvalues

2, 2. Then, AZ2
4 = BZ2

4 =
{

(0, 0)t, (1, 3)t, (2, 2)t, (3, 1)t
}
, where B = NA−1 =

(
1 1

−1 3

)
,

and hence, we can choose

D =
{

(0, 0)t, (0, 1)t, (0, 2)t, (0, 3)t
}
⊂ Z2

4,
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which satisfies all properties from Proposition 5.5. Next, we consider Φ2 = {ϕ0, ϕ1, ϕ2, ϕ3} ⊂

`2(Z2
4) whose discrete Fourier transforms are given by

ϕ̂0 =
(
ϕ̂0((0, 0)t), ϕ̂0((0, 1)t), . . . , ϕ̂0((0, 3)t), ϕ̂0((1, 0)t), ϕ̂0((1, 1)t), . . . , ϕ̂0((3, 3)t)

)t
=
(√

2, 0,
√

2i, 0,−
√

2i, 0,−
√

2, 0, 0, 1− i, 0,−
√

2, 0,
√

2, 0,−1− i
)t
,

ϕ̂1 =
(

0,
√

2, 0,
√

2, 0,
√

2i, 0,−
√

2i,−
√

2, 0,
√

2i, 0,
√

2i, 0,
√

2, 0
)t
,

ϕ̂2 =
(

0,
√

2i, 0,
√

2i, 0,−1 + i, 0, 1− i,−
√

2i, 0, 1− i, 0,
√

2, 0,−
√

2i, 0
)t
,

and ϕ̂3 =
(
− 1− i, 0, 1− i, 0, 1 + i, 0, 1− i, 0, 0,−

√
2i, 0,−1 + i, 0, 1 + i, 0,−

√
2i
)t
.

Then, for 0 ≤ p1, p2 ≤ 3, we can check that∑
γ∈CZ2

4

ϕ̂p1(m+ γ)ϕ̂p2(m+ γ) = 4δp1p2 for all m ∈ D∗,

where CZ2
4 = BtZ2

4 = {(0, 0)t, (1, 1)t, (2, 2)t, (3, 3)t}. Hence, from Theorem 5.10, we

conclude that the collection

B(Φ2, A,D) = {TAkϕp : k ∈ D, 0 ≤ p ≤ 3} ⊂ `2(Z2
4)

forms an ONWS in `2(Z2
4).

In the next section, we discuss some results on the uncertainty principle by coupling

the Fourier basis and the standard orthonormal basis with the orthonormal wavelet system

B(Φ, A,D) defined in (5.4). For this, let us denote the standard orthonormal basis for

`2(ZdN) by BS := {TAkeαj : k ∈ D, 0 ≤ j ≤ q − 1}, where {αj}q−1
j=0 = D0 ⊂ ZdN (see

proof of Proposition 5.8). By F := {Fv}v∈ZdN , we denote a d-dimensional Fourier basis for

`2(ZdN) defined for each v ∈ ZdN by Fv(n) = 1
Nd/2 e

2πi〈n,v〉/N , for all n ∈ ZdN . For a non-zero

function f ∈ `2(ZdN), we can write

(5.7) f =
∑
k∈D

q−1∑
j=0

tj,kTAkeαj =
∑
m∈D

q−1∑
p=0

sp,mTAmϕp =
∑
v∈ZdN

wvFv,

and hence, we have

(5.8) ‖f‖2 =
∑
k∈D

q−1∑
j=0

|tj,k|2 =
∑
m∈D

q−1∑
p=0

|sp,m|2 =
∑
v∈ZdN

|wv|2.

Further, we denote the number of non-zero coefficients from among {tj,k : k ∈ D, 0 ≤ j ≤

q − 1}, {wv : v ∈ ZdN} and {sp,m : m ∈ D, 0 ≤ p ≤ q − 1} by Sf , Cf and Wf , respectively.
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5.3. Uncertainty principle corresponding to an ONWS in `2(ZdN)

Uncertainty principles put restrictions on how well frequency localized a good time

localized signal can be and vice versa. In the case of a signal defined on a finite abelian

group, localization is generally expressed through the cardinality of the support of the

signal. Uniqueness of sparse representation of a signal depends upon the bound provided

by uncertainty relations in terms of pair of bases.

In this direction, for the setup of `2(ZdN), we prove the following results on the uncer-

tainty principle with respect to the collection B(Φ, A,D) defined in (5.4):

Theorem 5.14. Let Φ = {ϕp}q−1
p=0 ⊂ `2(ZdN) be such that B(Φ, A,D) is an ONWS in

`2(ZdN). Consider two positive real numbers R0 and E0 defined by

R0 = max {|ϕp(α + Aβ)| : α ∈ D0, β ∈ D, 0 ≤ p ≤ q − 1} , and

E0 = max
{ 1

Nd/2

∑
n∈ZdN

|ϕp(n)| : 0 ≤ p ≤ q − 1
}
,

where the max Z represents the maximum of all elements of the set Z ⊂ R. Then, the

following inequalities hold true:

(i) The bounds for R0 and E0 are given by 1
Nd/2 ≤ R0, E0 ≤ 1. In the case of R0 = 1,

the system B(Φ, A,D) is not frequency localized. Moreover, a similar situation

arises for E0 = 1
Nd/2 .

(ii) For 1
Nd/2 ≤ R0 < 1, the representations of f ∈ `2(ZdN) in terms of B(Φ, A,D) and

BS provide the following relations:

SfWf ≥ max

{
2,

1

R2
0

}
, and Sf +Wf ≥ max

{
3,

2

R0

}
.

(iii) For 1
Nd/2 < E0 ≤ 1, the representations of f ∈ `2(ZdN) in terms of B(Φ, A,D) and

F provide the following relations:

CfWf ≥
1

E2
0

, and Cf +Wf ≥
2

E0

.
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Proof. By considering the representations of f ∈ `2(ZdN) in terms of B(Φ, A,D) and BS

from (5.7), we have the following:

||f ||2 =

∣∣∣∣∣
〈∑
m∈D

q−1∑
p=0

sp,mTAmϕp,
∑
k∈D

q−1∑
j=0

tj,kTAkeαj

〉∣∣∣∣∣
=

∣∣∣∣∣∑
m∈D

q−1∑
p=0

sp,m
∑
k∈D

q−1∑
j=0

tj,k
〈
TAmϕp, TAkeαj

〉∣∣∣∣∣
≤
∑
m∈D

q−1∑
p=0

∑
k∈D

q−1∑
j=0

|sp,m||tj,k||〈TAmϕp, TAkeαj〉|,

and hence, we have

(5.9) ||f ||2 ≤
∑
m∈D

q−1∑
p=0

|sp,m|
∑
k∈D

q−1∑
j=0

|tj,k||〈TAmϕp, TAkeαj〉|.

Similarly, if we proceed by using the representations of f ∈ `2(ZdN) in terms of B(Φ, A,D)

and F, we get

(5.10) ||f ||2 ≤
∑
m∈D

q−1∑
p=0

|sp,m|
∑
v∈ZdN

|wv||〈TAmϕp, Fv〉|.

In view of Proposition 5.5, we observe that for k,m ∈ D and 0 ≤ j, p ≤ q − 1,

|〈TAmϕp, TAkeαj〉| = |〈ϕp, T(Ak−Am)eαj〉| = |〈ϕp, TAβeαj〉|, for some β ∈ D

=
∣∣∣ ∑
n∈ZdN

ϕp(n)eαj+Aβ(n)
∣∣∣ = |ϕp(αj + Aβ)| ,

which implies that R1 = R2, for R1 = {|〈TAmϕp, TAkeαj〉| : k,m ∈ D, 0 ≤ j, p ≤ q − 1},

and R2 = {|ϕp(αj + Aβ)| : αj ∈ D0, β ∈ D, 0 ≤ p, j ≤ q − 1}, and hence for any h ∈ R1,

we have h ≤ R0, where R0 = maxR2. Using this fact in (5.9), along with (5.8) and the

Cauchy-Schwarz inequality, it is clear that

||f ||2 ≤
∑
m∈D

q−1∑
p=0

|sp,m|
∑
k∈D

q−1∑
j=0

|tj,k|R0

≤
√ ∑

m,p:|sp,m|6=0

|sp,m|2
√√√√ ∑

m,p:|sp,m|6=0

(∑
k∈D

q−1∑
j=0

|tj,k|R0

)2

,
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which further gives the following estimates:

||f ||2 ≤

√√√√∑
m∈D

q−1∑
p=0

|sp,m|2
√√√√Wf

(∑
k∈D

q−1∑
j=0

|tj,k|R0

)2

= ||f ||
√
Wf

∑
k∈D

q−1∑
j=0

|tj,k|R0

≤ ||f ||
√
Wf

√ ∑
j,k:|tj,k|6=0

|tj,k|2
√ ∑

j,k:|tj,k|6=0

(
R0

)2

= ||f ||
√
Wf

√√√√∑
k∈D

q−1∑
j=0

|tj,k|2
√
Sf
(
R0

)2

= ||f ||2
√
Wf

√
SfR0.

Therefore, we have the inequality
√
SfWf ≥ 1

R0
. Now, by using the inequality of arith-

metic and geometric means, we have Sf + Wf ≥ 2
√
SfWf ≥ 2

R0
. Further, by assuming

part (i) [which we will prove later], we cannot consider R0 equal to 1, otherwise the system

B(Φ, A,D) will not remain frequency localized. Thus, for 1
Nd/2 ≤ R0 < 1, we get

Sf +Wf ≥
2

R0

> 2 and SfWf ≥
1

R2
0

> 1,

which results in part (ii), in view of the fact that Sf and Wf are natural numbers.

Next, we prove (iii) part. For this, first we observe the following:

|〈TAmϕp, Fv〉| = |
∑
n∈ZdN

TAmϕp(n)Fv(n)|

= |
∑
n∈ZdN

ϕp(n− Am)
1

Nd/2
e−2πi〈n,v〉/N | ≤ 1

Nd/2

∑
t∈ZdN

|ϕp(t)|,

for m ∈ D, 0 ≤ p ≤ q − 1 and v ∈ ZdN , which implies that maxX ≤ maxY , where the

sets X and Y are given by

{|〈TAmϕp, Fv〉| : m ∈ D, 0 ≤ p ≤ q − 1, v ∈ ZdN}

and { 1

Nd/2

∑
t∈ZdN

|ϕp(t)| : 0 ≤ p ≤ q − 1
}
,

respectively, and hence for any x ∈ X, we have x ≤ E0, where E0 = maxY . Therefore,

by using the above discussion in (5.10) along with the way we proceeded in case of part
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(ii) provide the following inequalities:

CfWf ≥
1

E2
0

, and Cf +Wf ≥
2

E0

, for
1

Nd/2
≤ E0 ≤ 1.

Again, by considering part (i) [which we will prove next], note that we cannot consider

E0 equal to 1
Nd/2 , otherwise the system B(Φ, A,D) will not remain frequency localized.

Therefore, for 1
Nd/2 < E0 ≤ 1, we can write

Cf +Wf ≥
2

E0

≥ 2 and CfWf ≥
1

E2
0

≥ 1,

which leads to part (iii).

For the part (i), let us consider elements of B(Φ, A,D) and BS. Then, from Cauchy-

Schwarz inequality, we have

|〈TAmϕp, TAkeαj〉| ≤ ||TAmϕp||||TAkeαj || = 1,

for all k,m ∈ D and 0 ≤ j, p ≤ q − 1. Therefore, 1 is an upper bound for the set R1

and hence its maximum element R0 ≤ 1. Next, we note that the real number R0 cannot

take the value 1. For this, let by contradiction we assume R0 = 1. Then, we have

max{|ϕp(n)| : n ∈ ZdN , 0 ≤ p ≤ q− 1} = 1, since the collection {α+Ak : α ∈ D0, k ∈ D}

is a partition of ZdN . This assures the existence of p1 ∈ {0, 1, . . . , q− 1} and n1 ∈ ZdN such

that |ϕp1(n1)| = 1. Therefore, we have

(5.11) ||ϕp1||2 =
∑
m∈ZdN

|ϕp1(m)|2 = |ϕp1(n1)|2 +
∑

m 6=n1∈ZdN

|ϕp1(m)|2 = 1,

in view of the fact that ϕp1 ∈ Φ and B(Φ, A,D) forms an ONWS in `2(ZdN). Since

|ϕp1(n1)| = 1, therefore from (5.11), it is clear that∑
m 6=n1∈ZdN

|ϕp1(m)|2 = 0,

which allows us to write

(5.12) |ϕp1(m)| =

1, if m = n1,

0, if m 6= n1 ∈ ZdN .

It follows from (5.12) that ϕp1(m) = 0 for all m 6= n1 ∈ ZdN , and hence we can define

ϕp1 ∈ Φ ⊂ `2(ZdN) by ϕp1(n) = eiθ(n) for n = n1 ∈ ZdN , and zero otherwise, where the real
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number θ(n) depends on n. Therefore, we have

ϕ̂p1(m) =
∑
n∈ZdN

ϕp1(n)e−2πi〈m,n〉/N = eiθ(n1)e−2πi〈m,n1〉/N ,

and hence |ϕ̂p1(m)| = 1 for all m ∈ ZdN . Thus, we conclude that ϕp1 is not frequency

localized which implies that the system B(Φ, A,D) is not frequency localized.

Now, for computing a lower bound of R0 (greater than zero), we consider an Nd×Nd

matrix M =
(
〈TAmϕp, TAkeαj〉

)
, where rows of the matrix are varying over m ∈ D and

0 ≤ p ≤ q − 1, and columns over k ∈ D and 0 ≤ j ≤ q − 1. Observe that, for each

k,m ∈ D and 0 ≤ p, j ≤ q − 1, we have

∑
m∈D

q−1∑
p=0

|〈TAmϕp, TAkeαj〉|
2 = ||TAkeαj ||

2 = 1,

and ∑
k∈D

q−1∑
j=0

|〈TAkeαj , TAmϕp〉|
2 = ||TAmϕp||2 = 1.

Therefore, rows and columns of M have unit norm. Further, for 0 ≤ j1 6= j2 ≤ q − 1 and

k1 6= k2 ∈ D, the inner product of any two columns of M given by

∑
m∈D

q−1∑
p=0

〈TAmϕp, TAk1ej1〉〈TAmϕp, TAk2ej2〉 = 〈TAk2ej2 , TAk1ej1〉 = 0,

implies that columns of M are orthogonal. Similarly, we can check that rows of M are

orthogonal, and hence M is an orthonormal matrix having the sum of squares of its entries

equal to Nd. Therefore, all of its entries cannot be less than 1/Nd/2. This follows by noting

that if we assume that all entries of M are less than 1/Nd/2, then, sum of squares of all

N2d entries of M will be less than N2d × 1
Nd , that is, Nd, which is not true. Further,

observe that the absolute values of all entries of the matrix M are exactly the elements

of the set R1. Hence, we conclude that there exists h ∈ R1 such that h ≥ 1/Nd/2. Thus,

R0 ≥ 1/Nd/2. Hence, we have 1/Nd/2 ≤ R0 < 1.

Similarly, we can show that 1/Nd/2 ≤ E0 ≤ 1 by considering elements of B(Φ, A,D)

and F. Note that we cannot consider E0 = 1
Nd/2 , otherwise the system B(Φ, A,D) will

not remain frequency localized. For verifying this fact, let us consider

E0 = max{ 1

Nd/2

∑
n∈ZdN

|ϕp(n)| : 0 ≤ p ≤ q − 1} =
1

Nd/2
,
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which assures the existence of some p2 ∈ {0, 1, . . . , q − 1} such that∑
n∈ZdN

|ϕp2(n)| = 1,

and hence( ∑
n∈ZdN

|ϕp2(n)|
)2

=
∑
n∈ZdN

|ϕp2(n)|2 + 2
( ∑
n1 6=n2∈ZdN

|ϕp2(n1)||ϕp2(n2)|
)

= 1,

which further implies that

(5.13)
∑

n1 6=n2∈ZdN

|ϕp2(n1)||ϕp2(n2)| = 0,

in view of the fact that ‖ϕp2‖2 = 1 as ϕp2 ∈ Φ and B(Φ, A,D) forms an ONWS in `2(ZdN).

It follows from (5.13) that |ϕp2(n1)||ϕp2(n2)| = 0, for all n1 6= n2 ∈ ZdN , which in turn

says that either |ϕp2(n1)| = 0 for all n1 6= n2 ∈ ZdN , or |ϕp2(n2)| = 0 for all n2 6= n1 ∈ ZdN .

Now, without loss of generality, let us assume that |ϕp2(n1)| = 0 for all n1 6= n2 ∈ ZdN ,

which in view of
∑

n∈ZdN
|ϕp2(n)| = 1 implies that |ϕp2(n2)| = 1. Therefore, we conclude

that ϕp2 satisfies (5.12), and hence the required result can be concluded by following the

approach used after (5.12).
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CHAPTER 6

FINITE DUAL g-FRAMELET SYSTEMS ASSOCIATED

WITH AN INDUCED GROUP ACTION

This chapter is the continuation of our work discussed in Chapter 5 which is actually

inspired by the study of Frazier in [26, Chapter 3], and Frazier and Kumar in [31]. The

purpose of this chapter is to study the frame properties of a finite collection consisting

of time-frequency localized functions associated with an induced action of a topological

group G on `2(ZdN). We refer Chapter 5 for preliminaries on finite-dimensional Hilbert

spaces and notation used throughout this chapter.

6.1. Introduction

In Chapter 3, we have investigated the orthogonality of GTI frame pairs over LCA

groups, which can be used to deduce the orthogonality results for finite frames of translates

by considering an LCA group of the form ZdN . However, this chapter is concerned with

the study of duality and orthogonality of frame pairs with a special representation which

is associated with an induced group action.

By using the above-mentioned representation, in the present chapter, we first gener-

alize the construction techniques of an ONWS (obtained in Chapter 4) to a framelet

system in finite set-up. Then, we investigate the orthogonality and duality of such finite

framelet systems by adapting techniques which are different from that are used in [59]

and Chapter 3. Note that the framelet systems obtained in this chapter have a special

representation with additional properties due to the role of an induced group action.

It is well known that one of the important factor behind the stable decomposition

of a signal for analysis or transmission is related to the type of representation used for

its spanning set (representation system). A careful choice of the spanning set enables

us to solve a variety of analysis tasks. In the last two decades, many researchers have

contributed in the designing and time-frequency analysis of these representation systems



for the various spaces, namely, finite and infinite abelian groups, Euclidean spaces, locally

compact abelian groups, etc. (see [10, 31,33,44,49,51,59,67,68] and references therein).

In this connection, we first introduce a framelet system for each g ∈ G (we call as

g-framelet system) in `2(ZdN), and then, establish the characterizations for the generators

of two g-framelet systems (super g-framelet systems) associated with an induced action of

the topological group G on `2(ZdN) such that they form a g-dual pair (super g-dual pair) for

`2(ZdN). Among different types of representation systems, frame wavelet (simply, framelet)

systems are useful tools in various research areas including but certainly not limited

to signal detection, image representation, object recognition, noise reduction, sampling

theory, harmonic analysis, non linear sparse approximation, wireless communications and

filter banks, etc. (e.g. [18,28,33]).

6.2. g-Framelet systems through an induced group action

In this section, by taking motivation from the collection of the form (5.1) which was

studied by Frazier in [26, Chapter 3], we wish to generalize the time-frequency localized

collection (5.4) along with the theory related to its construction to the frame set-up. For

this, we consider a system of translates in terms of a general invertible matrix, in which

elements are represented through an induced action of a topological group G on `2(ZdN).

We refer [55] for more details about topological groups.

In order to introduce a generalized version of (5.4), let θ be an action of G on the

space C of complex numbers, that means, a continuous map

θ : G× C→ C; (g, x) 7→ gx

so that θ(e, x) = x and θ(g, θ(h, x)) = θ(gh, x), for all g, h ∈ G and x ∈ C, where e ∈ G

is the identity element. Now, we consider a map

θ̃ : G× `2(ZdN)→ `2(ZdN); (g, f) 7→ θ̃(g, f)

defined for all n ∈ ZdN by θ̃(g, f)(n) = θ(g, f(n)). Note that the map θ̃ induces an action

of G on `2(ZdN). Throughout this chapter, the map θ̃ will be termed as the induced action

on `2(ZdN) by the action θ of G on C.
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Further, by fixing an arbitrary element g in G and the matrix A in M̃(d,Z), we

consider the following collection in `2(ZdN):

(6.1) BF (g, A,Ψ) :=
{
θ̃(g, TAkψj) : k ∈ I1 ⊆ ZdN , ψj ∈ Ψ, j ∈ I2 ⊂ N0

}
,

where Ψ := {ψj}j∈I2 ⊂ `2(ZdN). Now, our motive is to find conditions on Ψ, and the finite

sets I1 and I2 such that the collection BF (g, A,Ψ) defines a framelet system for `2(ZdN)

having time-frequency localization properties.

Here, note that by letting the group element g in G as e, that is, the identity element

of the group G, and by using the definition of the induced group action, the collection

(6.1) reduces to the following form:

(6.2) BF (e, A,Ψ) :=
{
TAkψj : k ∈ I1 ⊆ ZdN , ψj ∈ Ψ, j ∈ I2 ⊂ N0

}
,

which yields a generalization for the collection (5.1) in the multidimensional set-up. Fur-

ther, in order to see the time-frequency localization properties in the system (6.1), we

consider the possible situations of the sets I1 and I2, and the matrix A as follows.

In the collection (6.1), if we consider I1 such that AI1 = ZdN , then the cardinality of

I2 should be equal to one, in order to make the system BF (g, A,Ψ) an orthonormal basis

for `2(ZdN). That means, if we let Ψ = {ψ}, then (6.1) can be redefined as follows:

(6.3) BF (g, A, {ψ}) =
{
θ̃(g, TAkψ) : Ak ∈ AI1 = ZdN

}
.

But the above defined system is not frequency localized, which follows by noting the

following result:

Proposition 6.1. Let the map θ̃ be the induced action on `2(ZdN) by the additive as well

as multiplicative action θ of G on C. Then, for each g ∈ G, the collection defined by (6.3)

forms an orthonormal basis for `2(ZdN) if, and only if, |˜̂θ(g, ψ)(n)|2 = 1, for all n ∈ ZdN .

Moreover, an orthonormal basis of this form is not frequency localized.

In order to prove Proposition 6.1, we need the following definitions and result that

provide the notion of an additive action and a multiplicative action of G on C, which will

be useful for obtaining various results in this chapter. For this, we define the map

θ2 : G× C2 → C2; (g, (z1, z2)) 7→ (θ(g, z1), θ(g, z2)).
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Inductively, we can define θn for a natural number n. Note that in the following definitions,

the notation IG denotes the identity map on G:

Definition 6.2. An action θ of the topological group G on C is called

(i) additive if the following diagram commutes, where ′+′ is the addition of complex

numbers:

G× C2 C2

G× C C

(IG,+)

θ2

θ

+

(g, (z1, z2)) θ2(g, (z1, z2))

(g, z1 + z2) θ(g, z1 + z2)

(IG,+)

θ2

θ

+

This means, θ is additive if for all g ∈ G and (z1, z2) ∈ C2, we have

θ(g, z1 + z2) = θ(g, z1) + θ(g, z2).

(ii) multiplicative if the following diagram commutes, where ′ · ′ is the multiplication

of complex numbers and p2 is the second projection of C2 onto C:

G× C2 C2

G× C C

(IG, ·)

(θ, p2)

θ

·

(g, (z1, z2)) (θ(g, z1), z2))

(g, z1.z2) θ(g, z1.z2)

(IG, ·)

(θ, p2)

θ

·

This means, θ is multiplicative if for all g ∈ G and (z1, z2) ∈ C2, we have

θ(g, z1.z2) = θ(g, z1).z2.

Now, we provide some examples on additive and multiplicative group actions, which

are as follows:

Example 6.3. (i) For G = Z2 = {[0], [1]}, that is, the group of integers under addi-

tion modulo 2, the group action θ : Z2 ×C→ C, defined for all z ∈ C by [0].z = z

and [1].z = −z, is additive as well as multiplicative.

(ii) Let the Klein’s four group as G = {I, f, g, h}, where I, f, g and h are mapped on C,

defined respectively by I(z) = z, f(z) = z, g(z) = −z and h(z) = −z, for all z ∈ C.

Here, G forms a discrete topological group under the operation of the composition

of maps, and the group action θ : G × C → C; (ϕ, z) 7→ ϕ(z), is additive but not

multiplicative.
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(iii) Let G = Iso(C) be a set of all isometries on C, where every element f ∈ G, is a

bijective map f : C→ C satisfying the condition |f(z1)− f(z2)| = |z1 − z2|, for all

z1, z2 ∈ C. Then, G forms a group under the operation of composition of maps,

and the group action θ on C defined by

θ : G× C→ C; (ϕ, z) 7→ ϕ(z),

where

ϕ(z) =

az + b, if ϕ is a direct isometry,

az + b, if ϕ is an indirect isometry,

for some a, b ∈ C with |a| = 1, is neither additive nor multiplicative.

Next, we define an equivarient map which is required in the sequel:

Definition 6.4. An equivarient map is a function between two sets that commutes with

the action of a group. Specifically, let θ be a group action of the topological group G on

the associated G-sets X and Y . Then, a function w : X → Y is said to be equivarient if

the following diagram commutes:

G×X X

G× Y Y

(IG, w)

θ

θ

w

(g, x) θ(g, x)

(g, w(x)) θ(g, w(x))

(IG, w)

θ

θ

w

In other words, we say w is an equivarient map if for all g ∈ G and x ∈ X, we have

w(θ(g, x)) = θ(g, w(x)).

Lemma 6.5. Let θ be an action of a group G on C, and let θ̃ be an induced action on

`2(ZdN) by the action θ of G on C. Then, we have following:

(i) For each k ∈ Zd, the translation map Tk : `2(ZdN)→ `2(ZdN) is an equivarient map

under the action of θ̃.

(ii) By assuming additive and multiplicative properties of θ, the DFT map given bŷ : `2(ZdN)→ `2(ZdN) is an equivarient map under the action of θ̃.

Proof. The result can be easily seen by observing that for each g ∈ G and
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(i) for k, n ∈ ZdN , we have

Tk(θ̃(g, f))(n) = θ̃(g, f)(n− k) = θ(g, f(n− k))

= θ(g, Tkf(n)) = θ̃(g, Tkf)(n), for all f ∈ `2(ZdN).

(ii) for f ∈ `2(ZdN), we have

˜̂θ(g, f)(n) =
∑
m∈ZdN

θ̃
(
g, f
)
(m)e−2πi〈m,n〉/N =

∑
m∈ZdN

θ
(
g, f(m)

)
e−2πi〈m,n〉/N

=
∑
m∈ZdN

θ
(
g, f(m).e−2πi〈m,n〉/N) = θ

(
g,
∑
m∈ZdN

f(m).e−2πi〈m,n〉/N

)

= θ
(
g, f̂(n)

)
= θ̃
(
g, f̂

)
(n), for all n ∈ ZdN ,

in view of the additive and multiplicative nature of θ.

Proof of Proposition 6.1. The system BF (g, A, {ψ}) forms an orthonormal basis for `2(ZdN)

if, and only if, for k1, k2 ∈ ZdN , we have 〈θ̃(g, Tk1ψ), θ̃(g, Tk2ψ)〉 = δk1,k2 , which by using

(P2) and Lemma 6.5 becomes equivalent to δk,0 = 〈θ̃(g, ψ), Tk(θ̃(g, ψ))〉, for k ∈ ZdN . Now,

by using the Plancherel’s formula and (P2), we can write

δk,0 =
1

Nd
〈˜̂θ(g, ψ),

̂
Tk(θ̃(g, ψ))〉 =

1

Nd

∑
n∈ZdN

|˜̂θ(g, ψ)(n)|2e2πi〈n,k〉/N = G∨(k),

where for each n ∈ ZdN , we have G(n) := |˜̂θ(g, ψ)(n)|2, and hence, the result follows by

following the steps of Lemma 5.6 of Chapter 5.

By continuing in the same way as in case of Chapter 5, we give the final form of the

collection (6.1) under the following list of assumptions for the remainder of this chapter:

(B1): For some N ∈ N, we consider the matrix A ∈ M̃(d,Z) such that Ã = NA−1 ∈

M̃(d,Z).

(B2): For L := |I2| ≥ | det(A)| ≥ 2, we assume Ψ = {ψj}L−1
j=0 ⊂ `2(ZdN).

(B3): Let I1 = DÃ (which is an ÃZdN -tile of ZdN) to get a group representation for AI1.

(B4): Under the assumptions of (B1)− (B3), for each g in G, the system in (6.1) can be

redefined as follows:
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(6.4) B̃F (g, A,Ψ) :=
{
θ̃(g, TAkψj) : k ∈ DÃ, ψj ∈ Ψ, 0 ≤ j ≤ L− 1

}
.

Consequently, the collection defined in (6.2) takes the following form:

B̃F (e, A,Ψ) :=
{
θ̃(e, TAkψj) = TAkψj : k ∈ DÃ, ψj ∈ Ψ, 0 ≤ j ≤ L− 1

}
.

Next, we provide the definitions for the framelet systems associated with an induced

action of the group G on `2(ZdN):

Definition 6.6. Let Ψ = {ψj}L−1
j=0 ⊂ `2(ZdN), where L ≥ | det(A)| ≥ 2. Then, for each

g ∈ G, the collection B̃F (g, A,Ψ) (defined in (6.4)), is termed as a

(i) g-framelet system (g-FS) for `2(ZdN) if it is a frame for `2(ZdN).

(ii) tight g-framelet system (tight g-FS ) for `2(ZdN) if it is a tight frame for `2(ZdN).

(iii) Parseval g-framelet system (Parseval g-FS ) for `2(ZdN) if it is a tight frame for

`2(ZdN) with frame bound equal to one.

(iv) g-orthonormal wavelet system (g-ONWS) if it is a Parseval frame for `2(ZdN) along

with L = | det(A)| ≥ 2.

Here, we mention that for g = e, the above defined g-framelet systems will be called as

e-framelet systems (simply, framelet systems).

Note that the frames in Hilbert spaces allow stable representation of all the elements

of the space via a given frame and its dual frame. Now, for defining dual of a g-FS, we

need to first recall (B1) and then assume the following throughout this chapter:

(B5): For each positive integer 1 ≤ a ≤ 2, let Ψ(a) := {ψ(a)
j }L−1

j=0 ⊂ `2(ZdN), where L ≥

| det(A)| ≥ 2.

(B6): By assuming (B1), (B3) and (B5), for each g ∈ G and positive integer 1 ≤ a ≤ 2,

we define the collection in `2(ZdN) by

(6.5) B̃F (g, A,Ψ(a)) :=
{
θ̃(g, TAkψ

(a)
j ) : k ∈ DÃ, ψ

(a)
j ∈ Ψ(a), 0 ≤ j ≤ L− 1

}
.

Definition 6.7. A system B̃F (g, A,Ψ(1)) in `2(ZdN) will form a dual g-framelet system

(dual g-FS ) for the g-framelet system B̃F (g, A,Ψ(2)) in `2(ZdN), if for all f ∈ `2(ZdN), the
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following reconstruction formula is satisfied:

f =
∑
k∈D

Ã

L−1∑
j=0

〈f, θ̃(g, TAkψ(1)
j )〉θ̃(g, TAkψ(2)

j )

=
∑
k∈D

Ã

L−1∑
j=0

〈f, θ̃(g, TAkψ(2)
j )〉θ̃(g, TAkψ(1)

j ).

In this case, we say that the systems B̃F (g, A,Ψ(1)) and B̃F (g, A,Ψ(2)) form a g-dual

pair in `2(ZdN) or Ψ(1) is a g-dual of Ψ(2). Similarly, for g = e, we say that the collections

B̃F (g, A,Ψ(1)) and B̃F (g, A,Ψ(2)) form an e-dual pair in `2(ZdN).

In the next section, we provide the characterization results for the above defined g-

framelet systems. Several such systems have been introduced very successfully in mathe-

matics and its applications by many researchers (see [10,12,51,59]).

6.3. Characterization results for the g-framelet systems

Our first aim in this section is to characterize dual of a g-FS, from which the char-

acterizations for the Parseval g-FS and g-ONWS can be easily deduced. For this, we

use equivarient property of DFT and translation operator, and, the additive and mul-

tiplicative properties of the group action θ. Therefore in view of Lemma 6.5, here and

throughout, we assume the action θ of G on C is additive as well as multiplicative.

6.3.1. Characterization for a dual g-framelet system

We begin this subsection by stating some notation to be used in the remainder of

this chapter. By D∗
Ã

, we denote the complete digit set of P in ZdN , where P := CZdN for

C = (Ã)t, that is, transpose of the matrix Ã. Here, observe that |D∗
Ã
| = |DÃ|.

Motivated from a result of Frazier [26, Theorem 3.8], that is, the system (defined in

(5.1)) generated by u1 and u2 forms an orthonormal basis for `2(ZN) if, and only if, for

each 0 ≤ n ≤M − 1, the system matrix given by

1√
2

(
û1(n) û2(n)

û1(n+M) û2(n+M)

)
is unitary, we expect the required characterization for dual g-FS in terms of system

matrices for the generators Ψ(a) = {ψ(a)
j }L−1

j=0 ; a = 1, 2 defined in (B5). Here, we provide

the definition for this:
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Definition 6.8. For each g ∈ G, positive integer 1 ≤ a ≤ 2 and m ∈ D∗
Ã

, we define the

system matrix of Ψ(a), that is, S(a)
g (m) as follows:

S(a)
g (m) :=

1√
| det(A)|

(
θ̃
(
g, ψ̂

(a)
j

)
(m+ p)

)
p∈P

0≤j≤L−1

.

Further, in case of frame theory, the dual (cross dual) Gramian operators play a

significant role in deducing the important characteristics of frame vectors. Thus, we

want to relate the system matrices of Ψ(a); a = 1, 2 with the dual (cross dual) Gramian

operators corresponding to some suitable collections. Therefore, our next step is to define

these collections.

For this, for each g ∈ G, positive integer 1 ≤ a ≤ 2 and m ∈ D∗
Ã

, we consider the

collection in the space `2(P), given as

(6.6)

K̃(g,m,Ψ(a)) :=

{
K g(ψ

(a)
j )(m) :=

1√
| det(A)|

T g
(
θ̃(g, ψ

(a)
j )
)
(m); 0 ≤ j ≤ L− 1

}
,

where we define

T g
(
θ̃(g, ψ

(a)
j )
)
(m) =

(
θ̃
(
g, ψ̂

(a)
j

)
(m+ p)

)
p∈P

in view of equivarient property of DFT. Here, the map T g described by

T g : `2(ZdN)→ `2(D∗
Ã
, `2(P));

T gf(m)(p) = f̂ (m+ p), for all m ∈ D∗
Ã

and p ∈ P ,

is a well defined isometric isomorphism, which follows by observing that the collection

H0 := `2(D∗
Ã
, `2(P)) is an |D∗

Ã
||P|, that is, Nd-dimensional Hilbert space with the usual

inner product, and

||T gf ||2H0
=
∑
l∈D∗

Ã

||T gf(l)||2`2(P) =
∑
l∈D∗

Ã

∑
p∈P

| T gf(l)(p) |2

=
∑
l∈D∗

Ã

∑
p∈P

| f̂(l + p) |2=
∑
n∈ZdN

| f̂(n) |2= Nd||f ||2, for all f ∈ `2(ZdN),

since ZdN =
⋃
l∈D∗

Ã

(l + P). The above discussion leads to the following result:

Proposition 6.9. For each g ∈ G, the map T g is well defined and establishes an isometric

isomorphism between `2(ZdN) and H0. Moreover, we have ||T gf ||H0
=
√
Nd||f ||, for all

f ∈ `2(ZdN).
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Next, we define the dual (cross dual) Gramian operators corresponding to the collec-

tions in (6.6).

Definition 6.10. For each g ∈ G, positive integers 1 ≤ a, b ≤ 2, and m ∈ D∗
Ã

, the

composition operator G
(a),(b)
g (m) :=

(
Θ

(a)
g (m)

)∗
Θ

(b)
g (m) defined by

G(a),(b)
g (m) : `2(P)→ `2(P); f 7→

L−1∑
j=0

〈f,Kg(ψ
(b)
j )(m)〉Kg(ψ

(a)
j )(m),

will be termed as the dual (cross dual) Gramian operator corresponding to the collections

K̃(g,m,Ψ(a)) and K̃(g,m,Ψ(b)), when a = b (a 6= b). Here, Θ
(a)
g (m) (respectively, adjoint

of Θ
(a)
g (m), that is,

(
Θ

(a)
g (m)

)∗
) is the analysis operator (respectively, synthesis operator)

corresponding to the collection K̃(g,m,Ψ(a)), where the map Θ
(a)
g (m) : `2(P)→ CL.

The system matrices for Ψ(a); a = 1, 2 and the dual (cross dual) Gramian operators

corresponding to the collections in (6.6) are related as follows:

Proposition 6.11. For each g ∈ G, positive integers 1 ≤ a, b ≤ 2, and m ∈ D∗
Ã

, the dual

(cross dual) Gramian operator G
(a),(b)
g (m) defined as above, satisfy the following relation:

G(a),(b)
g (m) = S(a)

g (m)
(
S(b)

g (m)
)∗

=
1

| det(A)|

(
L−1∑
j=0

θ̃
(
g, ψ̂

(a)
j

)
(m+ p1)θ̃

(
g, ψ̂

(b)
j

)
(m+ p2)

)
p1,p2∈P

,

where
(
S(b)

g (m)
)∗

represents the conjugate transpose of S(b)
g (m) (that is, the system matrix

for Ψ(b)).

Proof. Let g ∈ G, m ∈ D∗
Ã

and positive integers 1 ≤ a, b ≤ 2. Then,

S(a)
g (m)

(
S(b)

g (m)
)∗

=
1

| det(A)|

(
L−1∑
j=0

θ̃
(
g, ψ̂

(a)
j

)
(m+ p1)θ̃

(
g, ψ̂

(b)
j

)
(m+ p2)

)
p1,p2∈P

.

Now, we wish to compute the dual (cross dual) Gramian operators corresponding to

the collections K̃(g,m,Ψ(a)); a = 1, 2. For this, let {ep}p∈P be the standard orthonormal

basis for `2(P). Then, for s, q ∈ P , the entry in the sth row and qth column of G
(a),(b)
g (m)
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is given by

〈
G(a),(b)

g (m)eq, es
〉

=
〈(

Θ(a)
g (m)

)∗
Θ(b)

g (m)eq, es
〉

=
〈L−1∑
j=0

〈eq,Kg(ψ
(b)
j )(m)〉Kg(ψ

(a)
j )(m), es

〉

=
L−1∑
j=0

〈eq,Kg(ψ
(b)
j )(m)〉〈es,Kg(ψ

(a)
j )(m)〉

=
1

| det(A)|

L−1∑
j=0

θ̃
(
g, ψ̂

(a)
j

)
(m+ s)θ̃

(
g, ψ̂

(b)
j

)
(m+ q),

since

〈eq,Kg(ψ
(b)
j )(m)〉 =

1√
| det(A)|

∑
q′∈P

eq(q
′)θ̃
(
g, ψ̂

(b)
j

)
(m+ q′)

=
1√

| det(A)|
θ̃
(
g, ψ̂

(b)
j

)
(m+ q)

and

〈es,Kg(ψ
(a)
j )(m)〉 =

1√
| det(A)|

θ̃
(
g, ψ̂

(a)
j

)
(m+ s).

Therefore, we conclude that

G(a),(b)
g (m) =

1

| det(A)|

(
L−1∑
j=0

θ̃
(
g, ψ̂

(a)
j

)
(m+ s)θ̃

(
g, ψ̂

(b)
j

)
(m+ q)

)
s,q∈P

.

The following result relates the collections K̃(g,m,Ψ(a)) and K̃(g,m,Ψ(b)) with the

operator G
(a),(b)
g (m):

Lemma 6.12. For each g ∈ G, m ∈ D∗
Ã

, and positive integers 1 ≤ a, b ≤ 2, the collections

K̃(g,m,Ψ(a)) and K̃(g,m,Ψ(b)) are dual frames for `2(P) if, and only if, the dual (cross

dual) Gramian operator G
(a),(b)
g (m) = IQ, where IQ is an identity matrix of order Q :=

| det(A)|.

Proof. Let g ∈ G, m ∈ D∗
Ã

, and positive integers 1 ≤ a, b ≤ 2. Then, the collections

K̃(g,m,Ψ(a)) and K̃(g,m,Ψ(b)) are dual frames for `2(P) if, and only if, the following
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reconstruction formula holds:

h =
L−1∑
j=0

〈h,Kg(ψ
(a)
j )(m)〉Kg(ψ

(b)
j )(m), for all h ∈ `2(P),

which in view of Definition 6.10 is equivalent to the following equality:

〈h, h̃〉 =
L−1∑
j=0

〈h,Kg(ψ
(a)
j )(m)〉〈Kg(ψ

(b)
j )(m), h̃〉

= 〈G(a),(b)
g (m)h, h̃〉, for all h, h̃ ∈ `2(P),

that means, G
(a),(b)
g (m) is an identity operator on `2(P), and hence, the result follows.

Now, we state the main result of this subsection that represents the conditions under

which the systems B̃F (g, A,Ψ(a)) and B̃F (g, A,Ψ(b)); 1 ≤ a, b ≤ 2 (defined in (6.5)) form

a g-dual pair in `2(ZdN):

Theorem 6.13. For each g ∈ G and positive integers 1 ≤ a, b ≤ 2, let Ψ(a) = {ψ(a)
j }L−1

j=0

and Ψ(b) = {ψ(b)
j }L−1

j=0 be subsets of `2(ZdN), where L ≥ | det(A)| ≥ 2. Then, the following

assertions are equivalent:

(i) The collections B̃F (g, A,Ψ(a)) and B̃F (g, A,Ψ(b)) form a g-dual pair in `2(ZdN).

(ii) For each m ∈ D∗
Ã

, the following relation between the system matrices for Ψ(a) and

Ψ(b) holds:

S(a)
g (m)

(
S(b)

g (m)
)∗

= IQ,

where IQ is an identity matrix of order Q = | det(A)|, equivalently, it means

(6.7)
L−1∑
j=0

θ̃
(
g, ψ̂

(a)
j

)
(m+ p1)θ̃

(
g, ψ̂

(b)
j

)
(m+ p2) = | det(A)|δp1p2 , for all p1, p2 ∈ P .

In particular, by using a = b in the above result, we get a characterization of Ψ(a) = Ψ(b)

such that for each g ∈ G, the system B̃F (g, A,Ψ(a)) defined in (6.5) forms a Parseval

g-FS for `2(ZdN), which in addition by considering L equals to the | det(A)| leads to a g-

ONWS in `2(ZdN), and hence a generalization of the result [26, Theorem 3.8] is obtained

for the multidimensional set-up.

Observe that by using g = e and the definition of an induced group action θ̃ in

Theorem 6.13, we can easily deduce a characterization for an e-dual pair. We state this

result in the following form:

90



Corollary 6.14. For positive integers 1 ≤ a, b ≤ 2, let Ψ(a) = {ψ(a)
j }L−1

j=0 and Ψ(b) =

{ψ(b)
j }L−1

j=0 be subsets of `2(ZdN), where L ≥ | det(A)| ≥ 2. Then, the following statements

are equivalent:

(i) The collections B̃F (e, A,Ψ(a)) and B̃F (e, A,Ψ(b)) form an e-dual pair in `2(ZdN).

(ii) For each m ∈ D∗
Ã

, we have

L−1∑
j=0

ψ̂
(a)
j (m+ p1)ψ̂

(b)
j (m+ p2) = | det(A)|δp1p2 , for all p1, p2 ∈ P .

In particular, by using a = b in the above result, we get a characterization of Ψ(a) = Ψ(b)

such that the system B̃F (e, A,Ψ(a)) (defined in (6.5) for g = e) forms a Parseval e-FS for

`2(ZdN), which in addition by considering L = | det(A)| leads to an e-ONWS in `2(ZdN).

The following result is useful in finding a g-ONWS with the help of one generator:

Proposition 6.15. For N ∈ N, let the matrix A ∈ M̃(d,Z) with | det(A)| = 2 be such

that the matrix Ã = NA−1 ∈ M̃(d,Z). Let ψ0 ∈ `2(ZdN) be such that for each g ∈ G, the

collection
{
θ̃(g, TAkψ0) : k ∈ DÃ

}
forms an orthonormal set in `2(ZdN) with |DÃ| elements.

Further, by assuming P = {γ1, γ2}, we let ψ1 ∈ `2(ZdN) satisfying the following relation:

θ̃(g, ψ̂1)(m+ γj1) = (−1)j1−1e−2πim/N θ̃(g, ψ̂0)(m+ γj2),

for all m ∈ D∗
Ã

and 1 ≤ j1 6= j2 ≤ 2. Then, for each g ∈ G, the collection given by{
θ̃(g, TAkψj) : k ∈ DÃ, 0 ≤ j ≤ 1

}
forms a g-ONWS for `2(ZdN).

Proof. Following the technique used in Proposition 6.1, it can be easily verified that the

orthonormality of the collection
{
θ̃(g, TAkψ0) : k ∈ DÃ

}
is equivalent to saying that for

each m ∈ D∗
Ã

, we can write:

(6.8)
∑
γ∈P

|θ̃
(
g, ψ̂0

)
(m+ γ)|2 = | det(A)| = 2.

Therefore, the result follows by using the given form of ψ1 ∈ `2(ZdN) along with (6.8),

which says ∑
γ∈P

|θ̃
(
g, ψ̂1

)
(m+ γ)|2 =

∑
γ∈P

|θ̃(g, ψ̂0)(m+ γ)|2 = 2,

and for each 0 ≤ i 6= j ≤ 1,
∑
γ∈P

θ̃
(
g, ψ̂i

)
(m+ γ)θ̃

(
g, ψ̂j

)
(m+ γ) = 0, for all m ∈ D∗

Ã
.
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Our next motive is to prove Theorem 6.13. For this, the following result plays an important

role, which is true in view of Proposition 5.12:

Lemma 6.16. Let {Ek}k∈D
Ã
⊆ `2(D∗

Ã
), where for each k ∈ DÃ, we define Ek(m) =

1√
|D∗
Ã
|e

2πi〈m,Ak〉/N , for all m ∈ D∗
Ã
. Then, the system {Ek}k∈D

Ã
forms an orthonormal

basis for `2(D∗
Ã

).

Proof of Theorem 6.13. Let g ∈ G and positive integers 1 ≤ a, b ≤ 2. Then, by using the

approach of [10], it can be justified that the system B̃F (g, A,Ψ(a)) is a g-FS for `2(ZdN)

with frame bounds α1 and α2 if, and only if, for each m ∈ D∗
Ã

, the collection K̃(g,m,Ψ(a))

is a frame for `2(P) with the same bounds.

Also, if B̃F (g, A,Ψ(a)) and B̃F (g, A,Ψ(b)) are collections in `2(ZdN), then, for f, h ∈

`2(ZdN), we get the following estimates:

L−1∑
j=0

∑
k∈D

Ã

〈
θ̃
(
g, TAkψ

(b)
j

)
, h
〉〈
θ̃
(
g, TAkψ

(a)
j

)
, f
〉

=
L−1∑
j=0

∑
k∈D

Ã

〈
TAk
(
θ̃(g, ψ

(b)
j )
)
, h
〉〈
TAk
(
θ̃(g, ψ

(a)
j )
)
, f
〉

=
1

N2d

L−1∑
j=0

∑
k∈D

Ã

〈 ̂
TAk
(
θ̃(g, ψ

(b)
j )
)
, ĥ
〉〈 ̂
TAk
(
θ̃(g, ψ

(a)
j )
)
, f̂
〉
,

where the last equality follows from Lemma 6.5 and the Plancherel’s formula. Further,

by using the property (P2), the definition of map T g, equivarient property of the DFT

map, and the fact that 〈α, β〉 ∈ NZ, for all α ∈ AZdN and β ∈ CZdN , the above quantity

is equivalent to the following:

1

N2d

L−1∑
j=0

∑
k∈D

Ã

∑
n∈ZdN

e−2πi〈n,Ak〉/N ̂
θ̃
(
g, ψ

(b)
j

)
(n)ĥ(n)

∑
m∈ZdN

e2πi〈m,Ak〉/N ̂
θ̃
(
g, ψ

(a)
j

)
(m)f̂(m)

=
1

N2d

L−1∑
j=0

∑
k∈D

Ã

∑
m1∈D∗

Ã

e−2πi〈m1,Ak〉/N
∑
p1∈P

θ̃
(
g, ψ̂

(b)
j

)
(m1 + p1)ĥ(m1 + p1)

×
∑

m2∈D∗
Ã

e2πi〈m2,Ak〉/N
∑
p2∈P

θ̃
(
g, ψ̂

(a)
j

)
(m2 + p2)f̂(m2 + p2)
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=
| det(A)|
N2d

L−1∑
j=0

∑
k∈D

Ã

∑
m1∈D∗

Ã

e−2πi〈m1,Ak〉/N
〈
Kg(ψ

(b)
j )(m1), T gh(m1)

〉
×
∑

m2∈D∗
Ã

e2πi〈m2,Ak〉/N
〈
Kg(ψ

(a)
j )(m2), T gf(m2)

〉
.

Next, we define

G(a)
j,g (m) = 〈Kg(ψ

(a)
j )(m), T gf(m)〉

and

G(b)
j,g (m) = 〈Kg(ψ

(b)
j )(m), T gh(m)〉,

for each 0 ≤ j ≤ L−1 andm ∈ D∗
Ã

. Thus, by using {Ek}k∈D
Ã
⊆ `2(D∗

Ã
) as an orthonormal

basis for `2(D∗
Ã

) from Lemma 6.16, we can write

L−1∑
j=0

∑
k∈D

Ã

〈
θ̃(g, TAkψ

(b)
j ), h

〉〈
θ̃(g, TAkψ

(a)
j ), f

〉

=
| det(A)|
N2d

L−1∑
j=0

∑
k∈D

Ã

∑
m1∈D∗

Ã

e−2πi〈m1,Ak〉/NG(b)
j,g (m1)

∑
m2∈D∗

Ã

e−2πi〈m2,Ak〉/NG(a)
j,g (m2)

=
| det(A)||D∗

Ã
|

N2d

L−1∑
j=0

∑
k∈D

Ã

〈G(b)
j,g , Ek〉〈G

(a)
j,g , Ek〉

=
1

Nd

L−1∑
j=0

〈G(b)
j,g ,G

(a)
j,g 〉

=
1

Nd

L−1∑
j=0

∑
ξ∈D∗

Ã

G(b)
j,g (ξ)G(a)

j,g (ξ)

=
1

Nd

L−1∑
j=0

∑
ξ∈D∗

Ã

〈Kg(ψ
(b)
j )(ξ), T gh(ξ)〉〈Kg(ψ

(a)
j )(ξ), T gf(ξ)〉.(∗)

Now, in order to prove the sufficient conditions, assume that the relation (6.7) holds

true, which in view of Proposition 6.11 and Lemma 6.12, is equivalent to the fact that for

each m ∈ D∗
Ã

, the collections K̃(g,m,Ψ(a)) and K̃(g,m,Ψ(b)) are dual frames for `2(P),

that is if, and only if, the following relation holds:

h1 =
L−1∑
j=0

〈h1,Kg(ψ
(a)
j )(m)〉Kg(ψ

(b)
j )(m), for all h1 ∈ `2(P),
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which can be equivalently written as

〈h1, h2〉 =
L−1∑
j=0

〈h1,Kg(ψ
(a)
j )(m)〉〈Kg(ψ

(b)
j )(m), h2〉, for all h1, h2 ∈ `2(P).

If f, h ∈ `2(ZdN), both T gf(m) and T gh(m) belong to `2(P), for all m ∈ D∗
Ã

, by using the

definition and properties of the map T g. Therefore,

〈T gf(m), T gh(m)〉 =
L−1∑
j=0

〈T gf(m),Kg(ψ
(a)
j )(m)〉〈Kg(ψ

(b)
j )(m), T gh(m)〉,

for all f, h ∈ `2(ZdN). Further, by taking summation over D∗
Ã

in the above equation, we

get the following:∑
m∈D∗

Ã

〈T gf(m), T gh(m)〉

=
∑
m∈D∗

Ã

L−1∑
j=0

〈T gf(m),Kg(ψ
(a)
j )(m)〉〈Kg(ψ

(b)
j )(m), T gh(m)〉,

for all f, h ∈ `2(ZdN). Moreover, by using the isometric properties of the map T g and

equation (∗) in the above equality, we get

Nd〈f, h〉 = 〈T gf, T gh〉 =
∑
m∈D∗

Ã

L−1∑
j=0

〈T gf(m),Kg(ψ
(a)
j )(m)〉〈Kg(ψ

(b)
j )(m), T gh(m)〉

= Nd

L−1∑
j=0

∑
k∈D

Ã

〈
f, θ̃(g, TAkψ

(a)
j )
〉〈
h, θ̃(g, TAkψ

(b)
j )
〉
,

for all f, h ∈ `2(ZdN). Thus, the collections B̃F (g, A,Ψ(a)) and B̃F (g, A,Ψ(b)) form a

g-dual pair in `2(ZdN).

Conversely, if the collection B̃F (g, A,Ψ(a)) is a dual g-FS for B̃F (g, A,Ψ(b)) in `2(ZdN),

or equivalently by the previous computations, if the identity

(6.9)∑
m∈D∗

Ã

〈T gf(m), T gh(m)〉 =
∑
m∈D∗

Ã

L−1∑
j=0

〈T gf(m),Kg(ψ
(a)
j )(m)〉〈Kg(ψ

(b)
j )(m), T gh(m)〉,

holds for all f, h ∈ `2(ZdN), we would like to deduce that, for each m ∈ D∗
Ã

and all

f, h ∈ `2(ZdN),

(6.10) 〈T gf(m), T gh(m)〉 =
L−1∑
j=0

〈T gf(m),Kg(ψ
(a)
j )(m)〉〈Kg(ψ

(b)
j )(m), T gh(m)〉.
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Let {ei}i∈P denote the standard basis in `2(P). Note that the validity of (6.10) for all

f, h ∈ `2(ZdN) is equivalent to

〈es, et〉 =
L−1∑
j=0

〈es,Kg(ψ
(a)
j )(m)〉〈Kg(ψ

(b)
j )(m), et〉, s, t ∈ P .

If (6.10) fails, there is s0, t0 ∈ P such that,

Z(m) :=

(
L−1∑
j=0

〈es0 ,Kg(ψ
(a)
j )(m)〉〈Kg(ψ

(b)
j )(m), et0〉 − 〈es0 , et0〉

)
6= 0

on a finite set, say, D ⊂ D∗
Ã

with |D| > 0. Thus, one of the inequalities Real part of Z(m),

that means, Re(Z(m)) > 0, Re(Z(m)) < 0, Imaginary part of Z(m), that is, Im(Z(m)) >

0, or Im(Z(m)) < 0, holds on the set D. Suppose, for example, that the inequality

Re(Z(m)) > 0 is true on such a set D. Letting

p1(m) =

es0 , for m ∈ D,

0, for m ∈ D∗
Ã
\D,

and p2(m) =

et0 , for m ∈ D,

0, for m ∈ D∗
Ã
\D,

there exist f, h ∈ `2(ZdN) such that p1(m) = T gf(m), and p2(m) = T gh(m) for each

m ∈ D∗
Ã

. Therefore, using (6.9), we can write

0 = Re

 ∑
m∈D∗

Ã

L−1∑
j=0

〈T gf(m),Kg(ψ
(a)
j )(m)〉〈Kg(ψ

(b)
j )(m), T gh(m)〉 −

∑
m∈D∗

Ã

〈T gf(m), T gh(m)〉


= Re

 ∑
m∈D∗

Ã

Z(m)

 =
∑

m∈D∗
Ã

(
Re(Z(m))

)
,

which being sum of non negative terms implies that each term, that is, Re(Z(m)) = 0,

and hence contradicts our assumption that Re(Z(m)) > 0. Therefore, (6.10) holds true,

or equivalently, for each m ∈ D∗
Ã

, the collections K̃(g,m,Ψ(a)) and K̃(g,m,Ψ(b)) are dual

frames for `2(P), and hence by using Lemma 6.12, the equality (6.7) can be obtained

easily, which completes the proof.

6.3.2. Relation between a dual g-FS and a dual e-FS

In this subsection, for each g ∈ G and positive integer 1 ≤ a ≤ 2, we want to relate

the collections B̃F (g, A,Ψ(a)) and B̃F (e, A,Ψ(a)). For this, we need to state the notion of

a circle orbit which is defined as follows:
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Definition 6.17. Let f1, f2 ∈ `2(ZdN). Then, we say that f1 lies in the circle orbit of f2,

written as f1 ∈ S1.f2, if f1 is a product of f2 by an element of the unit circle S1 in the

complex plane.

Proposition 6.18. For each g ∈ G and positive integers 1 ≤ a, b ≤ 2, let Ψ(a) = {ψ(a)
j }L−1

j=0

and Ψ(b) = {ψ(b)
j }L−1

j=0 be subsets of `2(ZdN), where L ≥ | det(A)| ≥ 2. Then, for each

0 ≤ j ≤ L − 1, by assuming
(
θ̃(g, ψ̂

(a)
j ), θ̃(g, ψ̂

(b)
j )
)

in the circle orbit of
(
ψ̂

(a)
j , ψ̂

(b)
j

)
, the

following statements are equivalent:

(i) The collections B̃F (g, A,Ψ(a)) and B̃F (g, A,Ψ(b)) form a g-dual pair in `2(ZdN).

(ii) The collections B̃F (e, A,Ψ(a)) and B̃F (e, A,Ψ(b)) form an e-dual pair in `2(ZdN).

Moreover, a similar type of relation can be established between the Parseval g-FS (g-

ONWS) and the Parseval e-FS (e-ONWS ).

Proof. Let g ∈ G and positive integers 1 ≤ a, b ≤ 2. Then, from Theorem 6.13, we recall

that the collections B̃F (g, A,Ψ(a)) and B̃F (g, A,Ψ(b)) form a g-dual pair in `2(ZdN) if, and

only if, for all m ∈ D∗
Ã

and p1, p2 ∈ P , the following condition is satisfied:

L−1∑
j=0

θ̃
(
g, ψ̂

(a)
j

)
(m+ p1)θ̃

(
g, ψ̂

(b)
j

)
(m+ p2) = | det(A)|δp1p2 ,

which in turn is equivalent to the following equality:

L−1∑
j=0

eiβj,g ψ̂
(a)
j (m+ p1)eiβj,g ψ̂

(b)
j (m+ p2) = | det(A)|δp1p2 ,

in view of the fact that the tuple
(
θ̃(g, ψ̂

(a)
j ), θ̃(g, ψ̂

(b)
j )
)

belongs to the circle orbit of(
ψ̂

(a)
j , ψ̂

(b)
j

)
, and hence by using Definition 6.17, we get the existence of some βj,g ∈ [0, 2π)

such that the tuple (
θ̃(g, ψ̂

(a)
j ), θ̃(g, ψ̂

(b)
j )
)

= eiβj,g
(
ψ̂

(a)
j , ψ̂

(b)
j

)
.

Hence, we can conclude the required result from Corollary 6.14.

Next, we want to see conditions needed to put on the elements of B̃F (g, A,Ψ) (defined

in (6.4)), in order to ensure that Ψ generates a framelet system having a dual of the same

structure:
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6.3.3. Structure of a canonical dual g-framelet system

This subsection deals with the study of the canonical dual of a framelet system asso-

ciated with each g ∈ G. We define this type of g-framelet system as follows:

Definition 6.19. Let Ψ = {ψj}L−1
j=0 ⊂ `2(ZdN), where L ≥ | det(A)| ≥ 2. For each g ∈ G,

let the collection B̃F (g, A,Ψ) be a g-FS in `2(ZdN) with frame bounds α and β, and let Sg

be the corresponding frame operator (we call as g-frame operator), which is a bounded,

positive and invertible operator given by

Sg : `2(ZdN)→ `2(ZdN);

f 7→
∑
k∈D

Ã

L−1∑
j=0

〈f, θ̃(g, TAkψj)〉θ̃(g, TAkψj).

Then, we can define the collection Cg(Ψ) := S−1
g (B̃F (g, A,Ψ)), which is a framelet system

for `2(ZdN) with frame bounds α−1 and β−1. We call Cg(Ψ) as the canonical dual g-framelet

system (canonical dual g-FS) for `2(ZdN).

Now, we wish to prove that under certain conditions the collection Cg(Ψ) shares a

similar structure with B̃F (g, A,Ψ). For this, we need the following result:

Lemma 6.20. Suppose Ψ = {ψj}L−1
j=0 ⊂ `2(ZdN), where L ≥ | det(A)| ≥ 2. Then, for

each g ∈ G, the g-frame operator corresponding to the g-framelet system B̃F (g, A,Ψ) in

`2(ZdN), that is, Sg and its inverse denoted by S−1
g , are equivarient maps under the action

of θ̃.

Proof. Let g ∈ G, m ∈ ZdN and f ∈ `2(ZdN). Then, Lemma 6.5 allows us to write

Sg(θ̃(g, f))(m) =
∑
k∈D

Ã

L−1∑
j=0

〈θ̃(g, f), TAk(θ̃(g, ψj))〉TAk(θ̃(g, ψj))(m)

=
∑
k∈D

Ã

L−1∑
j=0

∑
n∈ZdN

θ̃(g, f)(n)TAk(θ̃(g, ψj))(n)

TAk(θ̃(g, ψj))(m)

=
∑
k∈D

Ã

L−1∑
j=0

∑
n∈ZdN

θ(g, f(n))TAk(θ̃(g, ψj))(n)

TAk(θ̃(g, ψj))(m)
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=
∑
k∈D

Ã

L−1∑
j=0

∑
n∈ZdN

θ
(

g, f(n)TAk(θ̃(g, ψj))(n)
)TAk(θ̃(g, ψj))(m)

=
∑
k∈D

Ã

L−1∑
j=0

θ
g,

∑
n∈ZdN

f(n)TAk(θ̃(g, ψj))(n)

TAk(θ̃(g, ψj))(m)

= θ

g,
∑
k∈D

Ã

L−1∑
j=0

〈f, TAk(θ̃(g, ψj))〉TAk(θ̃(g, ψj))(m)

 ,

in view of the additive and multiplicative nature of the group action θ of G on C. Hence,

we obtain

Sg(θ̃(g, f))(m) = θ̃(g, Sgf)(m), for all m ∈ ZdN and f ∈ `2(ZdN).

Therefore, for each 0 ≤ j ≤ L− 1, the above relation implies that

Sg(θ̃(g, S−1
g ψj)) = θ̃(g, SgS

−1
g ψj),

which is if, and only if,

S−1
g θ̃(g, ψj) = θ̃(g, ϕj),

where ϕj = S−1
g ψj. Hence, the result follows.

Theorem 6.21. Suppose Ψ = {ψj}L−1
j=0 ⊂ `2(ZdN), where L ≥ | det(A)| ≥ 2. Then, for

each g ∈ G, Cg(Ψ), that is, the canonical dual of g-framelet system B̃F (g, A,Ψ), preserves

the same structure.

Proof. Observe that the canonical dual of B̃F (g, A,Ψ) is given by

Cg(Ψ) = S−1
g (B̃F (g, A,Ψ))

=
{
S−1

g

(
θ̃(g, TAkψj)

)
: k ∈ DÃ, 0 ≤ j ≤ L− 1

}
⊂ `2(ZdN).

Let g ∈ G and k ∈ DÃ. Then, we claim that

(6.11) SgTAkf = TAkSgf and S−1
g TAkf = TAkS

−1
g f, for all f ∈ `2(ZdN),
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and hence by using the above equation in Cg(Ψ) along with Lemma 6.5 and Lemma 6.20,

we obtain the required proof as follows:

Cg(Ψ) =
{
S−1

g TAk

(
θ̃(g, ψj)

)
: k ∈ DÃ, 0 ≤ j ≤ L− 1

}
=
{
TAkS

−1
g

(
θ̃(g, ψj)

)
: k ∈ DÃ, 0 ≤ j ≤ L− 1

}
=
{
TAk

(
θ̃(g, ηj)

)
: k ∈ DÃ, 0 ≤ j ≤ L− 1

}
=
{
θ̃(g, TAk(ηj)) : k ∈ DÃ, 0 ≤ j ≤ L− 1

}
,

where S−1
g ψj = ηj for each 0 ≤ j ≤ L− 1.

Now, in order to prove (6.11), let m ∈ DÃ. Then, by using Lemma 6.5 and (P3), we

get the following:

SgTAmf =
∑
k∈D

Ã

L−1∑
j=0

〈TAmf, TAk(θ̃(g, ψj))〉TAk(θ̃(g, ψj))

=
∑
k∈D

Ã

L−1∑
j=0

〈f, TA(k−m)(θ̃(g, ψj))〉TAk(θ̃(g, ψj)),

which on replacement of the summation index k with k +m gives

SgTAmf =
∑
k∈D

Ã

L−1∑
j=0

〈f, TAk(θ̃(g, ψj))〉TA(k+m)(θ̃(g, ψj))

=
∑
k∈D

Ã

L−1∑
j=0

〈f, TAk(θ̃(g, ψj))〉TAkTAm(θ̃(g, ψj))

= TAm

∑
k∈D

Ã

L−1∑
j=0

〈f, TAk(θ̃(g, ψj))〉TAk(θ̃(g, ψj))


= TAmSgf.

Since we know that the operator Sg is invertible, therefore for all f ∈ `2(ZdN), S−1
g f ∈

`2(ZdN), and hence using this fact in the above relation, we get

SgTAmS
−1
g f = TAmSgS

−1
g f = TAmf,

which is if, and only if,

S−1
g SgTAmS

−1
g f = S−1

g TAmf.

Hence, the claim follows.
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6.3.4. Examples

To understand the above theory in a better way, next we are providing some examples

related to g-FS, tight g-FS, g-ONWS, and the canonical dual of a g-FS in `2(ZdN) :

Example 6.22. Let G = R∗ = R \ {0} be a multiplicative group of real numbers and let

θ : R∗ × C→ C; (r, z) 7→ rz

be a group action on C. Clearly, θ is an additive as well as multiplicative group action.

Further, consider A =

(
2 2

1 2

)
, which is a non-expansive matrix with eigenvalues (2±

√
2),

and DÃ = {(0, 0)t, (1, 0)t}. Now, assume that Ψ1 = {ψ0, ψ1} ⊂ `2(Z2
2), where for any

arbitrary element g ∈ R∗, we have

ψ0 =
(
ψ0((0, 0)t), ψ0((0, 1)t), ψ0((1, 0)t), ψ0((1, 1)t)

)t
=
( 1

g
√

2
, 0,

1

g
√

2
, 0
)t
, and

ψ1 =
( 1

g
√

2
, 0,− 1

g
√

2
, 0
)t
.

(i) g-ONWS: Then, for each g ∈ R∗, the collection B̃F (g, A,Ψ1) defined by

B̃F (g, A,Ψ1) =
{
θ̃(g, TAkψj) : k ∈ DÃ, 0 ≤ j ≤ 1

}
=
{

gTAkψj : k ∈ DÃ, 0 ≤ j ≤ 1
}

forms a g-ONWS for `2(Z2
2).

(ii) g-FS: Let Ψ2 = {ψ0, ψ1, ψ2} ⊂ `2(Z2
2), where ψ2 = ψ0. Then, for each g ∈ R∗, the

collection given by

B̃F (g, A,Ψ2) = {θ̃(g, TAkψj) : k ∈ DÃ, 0 ≤ j ≤ 2}

forms a g-FS for `2(Z2
2) with frame bounds 1 and 2.

(iii) tight g-FS: Let Ψ3 = {ψ0, ψ1, ψ2, ψ3} ⊂ `2(Z2
2), where ψ2 = ψ0 and ψ3 = ψ1.

Then, for each g ∈ R∗, the collection

B̃F (g, A,Ψ3) = {θ̃(g, TAkψj) : k ∈ DÃ, 0 ≤ j ≤ 3}

forms a tight g-FS for `2(Z2
2) with frame bound 2.
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Example 6.23. (Canonical dual g-FS): Consider the g-FS defined as B̃F (g, A,Ψ2) in

the Example 6.22(ii). Then, for each g ∈ R∗, the canonical dual of this g-FS is given by

S−1
g (B̃F (g, A,Ψ2)) = {S−1

g (θ̃(g, TAkψj)) : k ∈ DÃ, 0 ≤ j ≤ 2},

where Sg : `2(Z2
2) → `2(Z2

2); f 7→
∑
k∈D

Ã

2∑
j=0

〈f, θ̃(g, TAkψj)〉θ̃(g, TAkψj) is termed as the

g-frame operator corresponding to the g-framelet system B̃F (g, A,Ψ2) .

From the above definition of Sg, it can be easily verified that

Sg(θ̃(g, ψ0)) = 2 θ̃(g, ψ0), Sg(θ̃(g, ψ1)) = θ̃(g, ψ1),

Sg(θ̃(g, T(0,1)ψ0)) = 2 θ̃(g, T(0,1)ψ0), and Sg(θ̃(g, T(0,1)ψ1)) = θ̃(g, T(0,1)ψ1),

which in turn implies that

S−1
g (θ̃(g, ψ0)) =

1

2
θ̃(g, ψ0), S−1

g (θ̃(g, ψ1)) = θ̃(g, ψ1),

S−1
g (θ̃(g, T(0,1)ψ0)) =

1

2
θ̃(g, T(0,1)ψ0), and S−1

g (θ̃(g, T(0,1)ψ1)) = θ̃(g, T(0,1)ψ1).

Hence, the canonical dual of B̃F (g, A,Ψ2), that is, S−1
g (B̃F (g, A,Ψ2)) is given by{

1

2
θ̃(g, ψ0), θ̃(g, ψ1),

1

2
θ̃(g, T(0,1)ψ0), θ̃(g, T(0,1)ψ1),

1

2
θ̃(g, ψ0),

1

2
θ̃(g, T(0,1)ψ0)

}
= {θ̃(g, TAkϕj) : k ∈ DÃ, 0 ≤ j ≤ 2} = B̃F (g, A,Φ),

where Φ = {ϕ0 = ψ0

2
= ϕ2, ϕ1 = ψ1}, and ϕj = S−1

g ψj, for all 0 ≤ j ≤ 2.

6.4. A characterization for super dual g-framelet system

Frames have found use in potential applications to data transmission by using a

technique called multiplexing (an important method in telecommunications, computer

networks and digital video, etc.) [3, 50, 67, 68], it motivates us to study super-framelet

and super-wavelet systems associated with an induced action of the group G on `2(ZdN).

For the purpose of defining such systems, we consider Ψ(p) := {ψ(p)
j }

q−1
j=0 ⊂ `2(ZdN) and

P := {1, 2, . . . , P}, for some q, P ∈ N, and also, we define the following collection:

(6.12) B̃F (g, A,Ψ(p)) :=
{
θ̃(g, TAkψ

(p)
j ) : k ∈ DÃ ; 0 ≤ j ≤ q − 1

}
⊂ `2(ZdN),

for each g ∈ G and p ∈ P. Thus, we have the following definition:
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Definition 6.24. For each g ∈ G and p ∈ P = {1, 2, . . . , P}, assume the collection

B̃F (g, A,Ψ(p)) as defined in (6.12). Then for a finite sequence {Ψ(p)}p∈P in
⊕
p∈P

`2(ZdN) ≡

`2(ZdN ,CP ), we say that

(6.13) B(g, A, {Ψ(p)}p∈P) :=
(
B̃F (g, A,Ψ(1)), B̃F (g, A,Ψ(2)), . . . , B̃F (g, A,Ψ(P ))

)
,

is a super g-FS (respectively Parseval super g-FS, super g-ONWS ) for the super-space

`2(ZdN ,CP ) if the collection

(6.14) B̃(g, A, {Ψ(p)}p∈P) =
{
θ̃(g, TAkψ

(1)
j )⊕ . . .⊕ θ̃(g, TAkψ

(P )
j ) : k ∈ DÃ ; 0 ≤ j ≤ q − 1

}
,

forms a frame (respectively Parseval frame, orthonormal basis) for the super-space

`2(ZdN ,CP ).

Remark 6.25. Note that in order to make the collection (6.13) an orthonormal basis

for the space `2(ZdN ,CP ), we need to assume q = P | det(A)| in the collection defined in

(6.12). Therefore, we should consider q ≥ P | det(A)| to study super g-FS for `2(ZdN ,CP ).

For each p ∈ P = {1, 2, . . . , P}, let Ψ(p) = {ψ(p)
j }

q−1
j=0 and Φ(p) = {ϕ(p)

j }
q−1
j=0 be subsets of

`2(ZdN), where q ≥ P | det(A)|, and let {Ψ(p)}p∈P and {Φ(p)}p∈P be sequences in `2(ZdN ,CP ).

Then, for each g ∈ G, the collection B̃(g, A, {Φ(p)}) (defined in (6.14)) will form a super

dual g-framelet system (super dual g-FS ) for the super g-framelet system B̃(g, A, {Ψ(p)})
in `2(ZdN ,CP ), if for all f ∈ `2(ZdN ,CP ), the following reconstruction formula holds:

f =
∑
k∈D

Ã

q−1∑
j=0

〈
f,

P⊕
p=1

θ̃(g, TAkψ
(p)
j )
〉 P⊕
p=1

θ̃(g, TAkϕ
(p)
j )

=
∑
k∈D

Ã

q−1∑
j=0

〈
f,

P⊕
p=1

θ̃(g, TAkϕ
(p)
j )
〉 P⊕
p=1

θ̃(g, TAkψ
(p)
j ).

In this case, we say that the systems B̃(g, A, {Ψ(p)}) and B̃(g, A, {Φ(p)}) form a super

g-dual pair in `2(ZdN ,CP ) or {Ψ(p)} is a super g-dual of {Φ(p)}. Similarly, for g = e, we

say that the collections B̃(g, A, {Ψ(p)}) and B̃(g, A, {Φ(p)}) form a super e-dual pair in

`2(ZdN ,CP ).

In order to find conditions on {Ψ(p)} and {Φ(p)} such that B̃(g, A, {Ψ(p)}) form a super

dual g-FS for B̃(g, A, {Ψ(p)}) in `2(ZdN ,CP ), we need to prove a result on orthogonal g-

framelet systems. We define these g-framelet systems as follows:

Definition 6.26. For each p ∈ P = {1, 2, . . . , P}, we assume Ψ(p) = {ψ(p)
j }

q−1
j=0 ⊂ `2(ZdN)

for some q ∈ N. Then, for each g ∈ G and p1 6= p2 ∈ P, the g-framelet systems
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B̃F (g, A,Ψ(p1)) and B̃F (g, A,Ψ(p2)) in `2(ZdN) will be termed as orthogonal g-framelet

systems if, for all f ∈ `2(ZdN), we have

q−1∑
j=0

∑
k∈D

Ã

〈f, θ̃
(
g, TAkψ

(p1)
j 〉θ̃

(
g, TAkψ

(p2)
j ) =

L−1∑
j=0

∑
k∈D

Ã

〈f, θ̃
(
g, TAkψ

(p2)
j 〉θ̃

(
g, TAkψ

(p1)
j ) = 0.

Lemma 6.27. For each p ∈ P = {1, 2, . . . , P}, we assume Ψ(p) = {ψ(p)
j }

q−1
j=0 ⊂ `2(ZdN)

for some q ∈ N. Then, for each g ∈ G and p1 6= p2 ∈ P, the g-framelet systems

B̃F (g, A,Ψ(p1)) and B̃F (g, A,Ψ(p2)) form orthogonal g-framelet systems in `2(ZdN) if, and

only if, the following equality holds:

(6.15)

q−1∑
j=0

θ̃
(
g, ψ̂

(p1)
j

)
(ξ + γ1)θ̃

(
g, ψ̂

(p2)
j

)
(ξ + γ2) = 0,

for all γ1, γ2 ∈ P and ξ ∈ D∗
Ã

.

Proof. Let g ∈ G and p1 6= p2 ∈ P. Then, the g-framelet systems B̃F (g, A,Ψ(p1)) and

B̃F (g, A,Ψ(p2)) form orthogonal g-framelet systems in `2(ZdN) if, and only if, by equivalent

form of Definition 6.26, we have
(
Θ

(p1)
g

)∗
Θ

(p2)
g = 0, where

(
Θ

(p1)
g

)∗
and Θ

(p2)
g are respec-

tively the synthesis and analysis operators corresponding to the collections B̃F (g, A,Ψ(p1))

and B̃F (g, A,Ψ(p2)), which in turn holds if, and only if,
(
Θ

(p1)
g

)∗
Θ

(p2)
g f = 0, for all

f ∈ `2(ZdN), equivalently, it represents the following identity:

(6.16)
〈(

Θ(p1)
g

)∗
Θ(p2)

g f, h
〉

= 0, for all f, h ∈ `2(ZdN).

Moreover, by recalling the technique used in computing the equation (∗) in the proof of

Theorem 6.13, we can write

〈(
Θ(p1)

g

)∗
Θ(p2)

g f, h
〉

=
L−1∑
j=0

∑
k∈D

Ã

〈
f, θ̃
(
g, TAkψ

(p2))
〉〈
h, θ̃
(
g, TAkψ(p1)

)〉

=
1

Nd

L−1∑
j=0

∑
ξ∈D∗

Ã

〈T gf(ξ),Kg(ψ
(p2)
j )(ξ)〉〈T gh(ξ),Kg(ψ

(p1)
j )(ξ)〉,(∗∗)

for all f, h ∈ `2(ZdN). Hence, from (6.16) and (∗∗), we get

0 =
L−1∑
j=0

∑
ξ∈D∗

Ã

〈T gf(ξ),Kg(ψ
(p2)
j )(ξ)〉〈T gh(ξ),Kg(ψ

(p1)
j )(ξ)〉, for all f, h ∈ `2(ZdN),
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which in view of the fact proved in the converse of Theorem 6.13 is if, and only if, for

each ξ ∈ D∗
Ã

,

0 =
L−1∑
j=0

〈T gf(ξ),Kg(ψ
(p2)
j )(ξ)〉〈T gh(ξ),Kg(ψ

(p1)
j )(ξ)〉, for all f, h ∈ `2(ZdN).

Since for f, h ∈ `2(ZdN), h1 = T gf(ξ) and h2 = T gh(ξ) are elements of `2(P), for all

ξ ∈ D∗
Ã

, the above equation can be rewritten as

(6.17)

0 =
L−1∑
j=0

〈h1,Kg(ψ
(p2)
j )(ξ)〉〈h2,Kg(ψ

(p1)
j )(ξ)〉 = 〈G(p1)(p2)

g (ξ)h2, h1〉, for all h1, h2 ∈ `2(P),

where G
(p1)(p2)
g (ξ) represents the cross dual Gramian operator corresponding to the collec-

tions K̃(g, ξ,Ψ(p1)) and K̃(g, ξ,Ψ(p2)). Now, (6.17) holds if, and only if, for all ξ ∈ D∗
Ã

, we

have G
(p1)(p2)
g (ξ) = 0 , which by using Proposition 6.11 holds if, and only if, the relation

(6.15) is satisfied.

Our next result provides necessary and sufficient conditions on {Ψ(p)} and {Φ(p)} such

that they form a super g-dual pair.

Theorem 6.28. For each p ∈ P = {1, 2, . . . , P}, let Ψ(p) = {ψ(p)
j }

q−1
j=0 and Φ(p) = {ϕ(p)

j }
q−1
j=0

be subsets of `2(ZdN), where q ≥ P | det(A)|, and let {Ψ(p)}p∈P and {Φ(p)}p∈P be se-

quences in `2(ZdN ,CP ). For each g ∈ G, consider the collections B̃(g, A, {Φ(p)}) and

B̃(g, A, {Ψ(p)}) in `2(ZdN ,CP ). Then, {Ψ(p)} is a super g-dual of {Φ(p)} if, and only if,

both of the following hold:

(i) For each 1 ≤ p ≤ P and m ∈ D∗
Ã

, we have

q−1∑
j=0

θ̃(g, ψ̂
(p)
j )(m+ γ1)θ̃(g, ϕ̂

(p)
j )(m+ γ2) = | det(A)|δγ1,γ2 , for all γ1, γ2 ∈ P .

(ii) For each 1 ≤ p1 6= p2 ≤ P and m ∈ D∗
Ã

, the following equality is satisfied:

q−1∑
j=0

θ̃
(
g, ψ̂

(p1)
j

)
(m+ γ1)θ̃

(
g, ϕ̂

(p2)
j

)
(m+ γ2) = 0, for all γ1, γ2 ∈ P .

In particular, for each p ∈ P, by using Ψ(p) = Φ(p) in the above result, we get a character-

ization of {Ψ(p)} such that for each g ∈ G, the system B̃F (g, A, {Ψ(p)}) forms a Parseval

super g-FS for `2(ZdN ,CP ), which in addition by considering q equals to the P | det(A)|

leads to a super g-ONWS in `2(ZdN ,CP ).
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Proof. Let {Ψ(p)} be a super g-dual of {Φ(p)}, which is if, and only if, G̃(p1)(p2), that

is, the cross dual Gramian operator corresponding to the collections B̃(g, A, {Ψ(p)}) and

B̃(g, A, {Φ(p)}), is identity on `2(ZdN ,CP ), where G̃(p1)(p2) : `2(ZdN ,CP ) → `2(ZdN ,CP ) is

defined by

G̃(p1)(p2)f =
∑
k∈D

Ã

q−1∑
j=0

〈
f,

P⊕
p=1

θ̃(g, TAkψ
(p)
j )
〉 P⊕
p=1

θ̃(g, TAkϕ
(p)
j ),

for all f = (f (1), f (2), · · · , f (P )) ∈ `2(ZdN ,CP ), where f (i) ∈ `2(ZdN) for 1 ≤ i ≤ P . Since

{Ψ(p)} is a super g-dual of {Φ(p)}, this means,∑
k∈D

Ã

q−1∑
j=0

〈
f,

P⊕
p=1

θ̃(g, TAkψ
(p)
j )
〉 P⊕
p=1

θ̃(g, TAkϕ
(p)
j ) = f, for all f ∈ `2(ZdN ,CP ),

which is if, and only if, we can write

(f (1), f (2), · · · , f (P ))

=
∑
k∈D

Ã

q−1∑
j=0

〈
(f (1), f (2), · · · , f (P )),

P⊕
p=1

θ̃(g, TAkψ
(p)
j )
〉 P⊕
p=1

θ̃(g, TAkϕ
(p)
j )

for all f (i) ∈ `2(ZdN); 1 ≤ i ≤ P , which in turn is equivalent to ∑
k∈DÃ

q−1∑
j=0

〈
f (1), θ̃(g, TAkψ

(1)
j )
〉
θ̃(g, TAkϕ

(1)
j ), . . . ,

∑
k∈DÃ

q−1∑
j=0

〈
f (P ), θ̃(g, TAkψ

(P )
j )

〉
θ̃(g, TAkϕ

(P )
j )


if, and only if, the collections B̃F (g, A,Ψ(p1)) and B̃F (g, A,Ψ(p2)) form orthogonal g-

framelet systems in `2(ZdN). Comparing both sides of the above equation, it leads us to

conclude that {Ψ(p)} will be a super g-dual of {Φ(p)} if, and only if, each Ψ(p) is a g-dual of

Φ(p) for each 1 ≤ p ≤ P , and B̃(g, A,Ψ(p1)) and B̃(g, A,Ψ(p2)) are orthogonal g-framelet

systems for 1 ≤ p1 6= p2 ≤ P. Hence, by using Lemma 6.27 and Theorem 6.13, we obtain

the required result.

Further, we establish the following relation between a super g-dual pair and a super

e-dual pair:

Theorem 6.29. For each p ∈ P = {1, 2, . . . , P}, let Ψ(p) = {ψ(p)
j }

q−1
j=0 and Φ(p) = {ϕ(p)

j }
q−1
j=0

be subsets of `2(ZdN), where q ≥ P | det(A)|, and let {Ψ(p)}p∈P and {Φ(p)}p∈P be se-

quences in `2(ZdN ,CP ). For each g ∈ G and 1 ≤ j ≤ q − 1, assume that the tuple(
θ̃(g, ψ̂

(p)
j ), θ̃(g, ϕ̂

(p)
j )
)

is in the circle orbit of
(
ψ̂

(p)
j , ϕ̂

(p)
j

)
. Then, the following statements

are equivalent:
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(i) The collections B̃(g, A, {Ψ(p)}) and B̃(g, A, {Φ(p)}) form a super g-dual pair in

`2(ZdN ,CP ).

(ii) The collections B̃(e, A, {Ψ(p)}) and B̃(e, A, {Φ(p)}) form a super e-dual pair in

`2(ZdN ,CP ).

Proof. Let g ∈ G, p ∈ P and 1 ≤ j ≤ q−1. Then, it is given that
(
θ̃(g, ψ̂

(p)
j ), θ̃(g, ϕ̂

(p)
j )
)

is

in the circle orbit of
(
ψ̂

(p)
j , ϕ̂

(p)
j

)
, therefore by using Definition 6.17, we get the existence

of some βj,g,p ∈ [0, 2π) such that
(
θ̃(g, ψ̂

(p)
j ), θ̃(g, ϕ̂

(p)
j )
)

= eiβj,g,p
(
ψ̂

(p)
j , ϕ̂

(p)
j

)
. Hence, we

conclude the required result from the Theorem 6.28.
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

The first chapter of this thesis gives an introduction to the research area, the motiva-

tion used for this work, and available literatures along with a basic introduction to each

of the chapters presented in the thesis. In the second chapter, we introduce the notion of

pre-Gramian operator associated to Γ-TI systems over LCA groups, and discuss the fiber-

ization of operators associated with these systems. By using the fiberization approach,

we study orthogonal Γ-TI Bessel (frame) systems, and apply our results on co-compact

Gabor frame systems over LCA groups.

In the third chapter, we characterize pairwise orthogonal GTI frame systems in L2(G)

and deduce similar results for several function systems including the case of TI systems,

GSI systems and GTI systems on compact abelian groups. We also discuss applications

of our characterization result on the Bessel families with wave-packet, Gabor, and wavelet

structure over LCA groups. By using recent unitary extension principle (techniques of

Christensen and Goh on LCA groups), the resulting characterizations (from Chapter 3)

are used to develop construction procedures for orthogonal frames, which are recorded in

the fourth chapter. The fourth chapter also consists of the construction of dual frame

pairs over super-spaces.

The fifth and sixth chapters relate the theory developed in Chapters 2-4 to the finite

dimensional Hilbert spaces by letting LCA group G of the form ZdN . The connection

of work with finite-dimensional set-up is necessary since in this day and age of comput-

ers, processing can be done only when the signal can be stored in memory. Therefore,

the importance of discrete and finite signals cannot be ignored. The chapters are actually

devoted to investigate a finite collection of functions in `2(ZdN) that satisfies some localiza-

tion properties in a region of the time-frequency plane using the group theoretic approach

based on the set of digits. Using these functions, we first introduce an orthonormal wavelet

system (ONWS) in `2(ZdN) and then provide a characterization for its generators in the



fifth chapter. Further, we present some results on the uncertainty principle corresponding

to this ONWS.

The sixth chapter is the continuation of our work on the construction of a time-

frequency localized ONWS which is discussed in Chapter 5. We generalize the above-

mentioned construction to the g-framelet systems associated with an induced group ac-

tion in Chapter 6. Along with this, we focus on developing the theory required to study

the duality properties of the g-framelet systems for `2(ZdN). Further, we investigate the

structure of canonical dual for a g-FS. At last we concentrate on characterizing the gener-

ators of two super g-framelet systems associated with an induced group action such that

they form a super g-dual pair.

Note that we have characterized orthogonality of TI and GTI frame systems in Chap-

ter 2 and Chapter 3, respectively. The characterizations are further useful in Chapter 4

to construct orthogonal GSI systems via the approach of unitary extension principle on

LCA groups. It would be interesting to use results discussed in Chapter 4 to study general

constructions of orthogonal frames, based on B-splines on the group itself as well as on

characteristic functions on the dual group. Moreover, we do expect that using the results

of Chapter 5 and by considering a number of concrete groups, one can derive explicit

constructions of the resulting orthogonal frames. These constructions might be useful

in multiplexing of signals via super-frames, in the synthesis of new frames from existing

ones, in the construction of super-frames, etc. Along with this, we expect that some of

the investigations would lead to new results in different areas of research in frame theory.
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tions, Birkhäuser, 233-266.

[30] Feichtinger H. G., Kozek W., Luef F. (2009), Gabor analysis over finite abelian

groups, Appl. Comput. Harmon. Anal., 26(2), 230-248.

[31] Frazier M., Kumar A. (1994), An introduction to the orthonormal wavelet transform

on discrete sets, Wavelets: Mathematics and Applications, Stud. Adv. Math., CRC,

Boca Raton, FL, 51-95.

[32] Goodman T. N. T. (1994), Construction of wavelets with multiplicity, Rend. Mat.

Appl. (7), 14(4), 665-691.
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mon. Anal., Birkhäuser Boston, Inc., Boston, MA.

[35] Guo X. (2014), Characterizations of disjointness of g-frames and constructions of

g-frames in Hilbert Spaces, Complex Anal. Oper. Theory, 8(7), 1547-1563.

[36] Guo X. (2014), Constructions of frames by disjoint frames, Numer. Funct. Anal.

Optim., 35(5), 576-587.

[37] Ghobber S., Jaming P. (2011), On uncertainty principles in the finite dimensional

setting, Linear Algebra Appl., 435(4), 751-768.

[38] Gabardo J. P., Han D. (2003), Frames associated with measurable spaces, Adv.

Comput. Math., 18(3), 127-147.
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