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ABSTRACT 

 

Here, we have designed and synthesised aza-BODIPY dyes 6a and 6b by BF2 

complexation using boron trifluoride diethyl etherate (BF3.OEt2) respectively. The aza-boron 

dipyrromethene (aza-BODIPY) is a class of BODIPY dyes that contain heteroatoms with a 

nitrogen atom at meso position instead of carbon, displays strong electron accepting nature 

with near infrared (NIR) absorption, low band gap and low lying LUMO levels. Aza-BODIPY 

has shown great potential for photothermal therapy (PTT) in organic photosensitizers due to 

excellent NIR absorption and photothermal conversion efficiency. The photophysical and 

electrochemical properties as well as their density functional theory (DFT) studies were 

explored which shows good donor–acceptor interaction and successful tuning of the HOMO-

LUMO gap. Aza-BODIPY shows various applications in organic photovoltaics, photodynamic 

cancer therapy, photothermal properties, organic field-effect transistor (OFET) and organic 

light emitting diode (OLED). 
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1. INTRODUCTION 

Near-infrared (NIR) absorbing dyes have been widely used in 

biomedical applications because of its penetration of NIR light is deep 

into most biological tissue compared to the visible light.1 NIR 

fluorescent dyes displayed superior advantages in both the bioimaging 

and environmental fields.2 Recent advances in bioapplications such 

as phototherapy, photoacoustic (PA) and fluorescence bioimaging have 

mostly focused on the production of various high-performance organic 

materials.3-5 Efficiency of organic dyes is highly altered by light 

harvesting in the NIR band.6 These dyes show excellent properties, such 

as high quantum yield, low photobleaching, and deep tissue 

penetration.7-9 NIR dyes have various applications in bioimaging 

studies.10 

Invitrogen commercializes boron-dipyrromethene (BODIPY) 

are an organo-boron fluorescent dye which reflects ultraviolet (UV)-

visible light.11 Mostly at wavelengths below 600 nm, BODIPY strongly 

absorb UV radiation and then re-emit it in very narrow frequency 

along with high quantum yield.12 Many BODIPY derivatives display 

high fluorescence, small stoke shift, and good photostability.13-15 

BODIPY has several applications in solar cell, supramolecular 

fluorescent liquid, light harvesting system, and light-emitting sensor.16-

19  
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    Figure 1. General structures of BODIPY and aza-BODIPY dyes. 

The aza-BODIPY typically has higher wavelength absorption 

and emission maxima as compared to the BODIPY dyes.20 Aza-

BODIPYs have garnered a lot of attention more lately due to their high 

transmittance and red shifted absorption.21 Aza-BODIPY derivatives 

have a benefit of having red shifted absorption and emission profiles 

over BODIPY dyes in terms of flexibility for structural change, 

photostability, and chemical stability.22 It has been due to the  high 

electronegetivity of nitrogen atom in the aza-BODIPY analogue as 

compared to meso-carbon atoms in the BODIPY analogue.23 

The aza-BODIPY dyes  have found an exponentially increasing 

number of large applications due to their excellent photophysical 

properties such as intense absorption/fluorescence into NIR region, high 

molar extinction coefficient, and relatively high quantum yield with 

large photostability.24 These dyes have tremendous potential in 

fluorescence imaging and phototherapy due to their improved 
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penetration depth, lower photon scattering, and reduced 

autofluorescence in biological tissues.25 Aza-BODIPY red shifted 

absorption and emission appear to be influenced by the presence of aryl 

substituent at positions 1, 3, 5, and 7 which make the heterocycles very 

hydrophobic and prone to aggregation in aqueous conditions.26 Thus 

aza-BODIPY shows various applications in fluorescent chemosensors, 

activated solar cell, photodynamic treatment (PDT), photothermal 

therapy (PTT), organic field-effect transistor (OFET),27 organic light 

emitting diode (OLED),28 therapeutics, and photosenitizers used in 

phototherapeutic.29         

 

      Figure 2. Chemical structures of aza-BODIPY dyes 6a and 6b 

Herein, we report the design and synthesis of two different aza-

BODIPY dyes 6a and 6b to study its photophysical and computational 

properties.  
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2. LITERATURE REVIEW 

Different Synthetic methods for the preparation of aza-BODIPYs 

analogues:  

 It has been reported that three different synthetic methods of aza-

BODIPY dye have been reported (scheme 1–3) owning to 

investigations. O'Shea's et al. combined a cyclization reaction of 

substituted ketones and aldehydes with the use of trifluoride complexes 

to create symmetrical and asymmetrical aza-BODIPY products by 

employing a method involving a cyclization reaction followed by boron 

trifluoride complexation to produce the desired product.30 

O'shea’s method: 

 O'Shea's group was the first to develop simple methods for 

preparing aza-BODIPY compounds.31 O'shea et al. discovered a new 

and improved synthetic route of symmetric aza-BODIPY derived from 

1,3-diaryl-4-nitrobutan-1-one.32 The key intermediates are formed 

through 1,4-Michael addition of nitromethane with readily available 

chalcones via aldol condensation reaction between respective 

benzaldehydes and acetophenones.33 This key intermediate is further 

condensed with nitro butanone derivatives in refluxed ethanol in 

presence of ammonium acetate.34 Finally, aza-BODIPY dyes is formed 

when react with BF2 complexation in presence of diisopropylethylamine 

for 4 hr (scheme 1).35 Through the synthesis following this method and 

the condition used are mild, the yield of the product is low (15-30%). 
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  Scheme 1. O’Shea’s method for aza-BODIPY synthesis. 

Lukyanets and Shen’s method: 

A study shows that aza-BODIPY can be synthesised by reacting 

phthalonitrile with aryl magnesium bromide as described by Shen and 

Lukyanets et al. method (scheme 2).36                                                    

 

Scheme 2. Lukyanet’s method for aza-BODIPY synthesis. 

Carreira’s method: 

 Zhao and Carreira et al. demonstrated a modern and successful 

technique of asymmetric symmetric synthesis of aza -BODIPY using a 

single 2,4-diaryl pyrrole which includes a direct cyclization of 

substituted pyrrole followed by boron trifluoride complexation (scheme 

3).37 This implies that the key requirement for the synthesis of aza-

BODIPY in Carreira's method is the presence of an aryl unit at the α and 

β positions in pyrrole ring.38 
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Scheme 3. Carreira’s method for aza-BODIPY synthesis. 
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3. EXPERIMENTAL SECTION:  

3.1 General methods  

All the chemicals that were used in the experiment were obtained 

unless indicated specifically. Using the conventional Schlenk method, 

all moisture responsive reactions were carried out in an argon 

environment. CDCl3 was used as a solvent to record 1H NMR (500 

MHz) and 13C NMR (125 MHz) spectra of both the compounds. The 

Chemical shifts are measured in parts per million (ppm) in reference to 

the solvent residual peak (CDCl3, 7.26 ppm). In addition, s (singlet), d 

(doublet), and m (multiplet) are given in terms of Hz and coupling 

constants J. The chemical shifts in 13C NMR are measured in reference 

to the solvent residual peak (CDCl3, 77.36 ppm). The HRMS data were 

investigated using an ESI-TOF mass spectrometer. In dichloromethane, 

UV-visible spectrophotometer was used to measure the absorption 

spectra of aza-BODIPY.  

3.2 Experimental Procedure 

Synthesis of compound 1: 

Phenothiazine (0.500 g, 2.5 mmol) and propyl iodide (0.25 ml, 

2.5 mmol) were dissolved in dimethyl sulfoxide (DMSO) then sodium 

hydroxide (NaOH) was added as a base at RT for 24 hr. After 

completion of reaction compound layer was separated using 

dichloromethane (DCM) and water. After then solvent was evaporated 

using rota evaporator. Pure compound was obtained via column 

chromatography using hexane as solvent. Yield: 90%; 1H NMR (500 

MHz, CHLOROFORM-d): 7.15 - 7.17 (m, 4 H), 6.92 - 6.94 (d, J=7.78 
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Hz, 4 H), 3.82 (m, 2 H), 1.84 - 1.85 (st J=7.29 Hz, 2 H), 1.01 (t, J=7.40 

Hz, 3 H) 13C NMR (125 MHz, CHLOROFORM-d): 127.3, 127.1, 

124.9, 122.4, 115.6, 49.3, 20.0, 11.2; HRMS (ESI) m/z [M + nH] + calcd 

for C15H16NS: 242.0998 found 242.0964.  

Synthesis of compound 2: 

A 250 ml two neck round bottom (RB) flask was taken and dried. 

Alkylated Phenothiazine (0.500 g, 2.07 mmol), was added to the RB and 

some ice was kept around the RB. Dichloroethane (DCE) (40 ml) and 

N,N-dimethylformamide (DMF) (0.64 ml) was added to the reaction 

mixture. Finally, POCl3 (0.77 ml, 8.20 mmol) was added dropwise to the 

reaction mixture. After 5 minutes reaction mixture was put on heat bath 

for 16 hr at 80 oC. After 16 hr reaction was stopped and some ice-cold 

water was added to the RB slowly. Then organic layer was extracted 

using DCM and ice. After then solvent was dried using rota evaporator. 

Pure compound was obtained by column chromatography (silica gel, n-

hexane: DCM; 1:9) as eluent. Yield: 80%; 1H NMR (500 MHz, 

CHLOROFORM-d): 9.82 (s, 1 H), 7.61 - 7.66 (m, 2 H), 7.13 - 7.18 (m, 

2 H), 6.89 - 6.93 (m, 3 H), 3.88 - 3.91 (m, 2 H) 1.85 - 1.91 (m, 2 H), 

1.04 - 1.07 (t, J=7.40 Hz, 3 H). 13C NMR (125 MHz, CHLOROFORM-

d) :190.0, 170.8, 143.4, 131.0, 128.4, 127.5, 125.0, 123.6, 116.0, 49.7, 

20.0, 11.2; HRMS (ESI) m/z [M+nH]+ calcd for C16H16NSO: 270.0947 

found 270.0923. 
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Synthesis of aza-BODIPY 6a: 

In a 250 mL RB, aza-dipyrromethene 5a (0.500 gm, 0.64 

mmol) was dissolved in 100 mL of dry DCM (30 mL). Then, DIPEA 

(1.5 ml) was added dropwise to this solution over 15 min, and the 

mixture was stirred for 5 min at RT. Then, BF3.OEt2 (1.58 ml, 12.8 

mmol) was added to the flask, and the resulting solution was stirred 

for at RT under argon for 4 hr. The organic layer was extracted with 

DCM, and water. In order to dry the organic layer, sodium sulfate was 

added and the layer was dried over the sodium sulfate. Pure compound 

was obtained by column chromatography (silica gel, n-hexane: DCM; 

2:3) as eluent. Yield: 45%; 1H NMR (500 MHz, CHLOROFORM-d): 

7.96 – 8.01 (m, 5 H), 7.89 (d, J = 2.0 Hz, 2 H), 7.45 - 7.48 (m, 5 H), 

7.15 - 7.19 (m, 3 H), 7.12 (dd, J = 1.4, 7.5 Hz, 3 H), 7.03 (d, J = 8.5 

Hz, 2 H), 6.89 - 6.95 (m, 6 H), 3.90 - 3.93 (m, 4 H), 1.90 - 1.94 (m, 4 

H), 1.05 (t, J = 7.4 Hz, 6 H). 13C NMR (125 MHz, CHLOROFORM-

d): 158.8, 146.4, 145.5, 144.2, 142.5, 132.0, 130.6, 129.5, 128.9, 

128.5, 127.7, 127.4, 127.4, 127.0, 124.6, 124.1, 122.9, 117.0, 115.7, 

115.6, 58.5, 49.5, 30.3, 20.2, 18.4, 11.3, 1.0; HRMS (ESI) m/z 

[M+nH] + calcd for C50H41BF2N5S2: 824.2867 found 824.2838. 

Synthesis of aza-BODIPY 6b: 

In a 250 mL flat RB, aza-dipyrromethene 5b (0.500 gm, 0.60 

mmol) was dissolved in 100 mL of dry DCM (30 mL). Then, DIPEA 

(1.5 ml) was added dropwise to this solution over 15 min, and the 

mixture was stirred for 5 min at RT. Then, BF3.OEt2 (1.6 mL, 26.7 
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mmol) was added to the flask, and the resulting solution was stirred for 

at RT under argon for 4 hr. The organic layer was extracted with DCM, 

and water. In order to dry the organic layer, sodium sulfate was added 

and the layer was dried over the sodium sulfate. Pure compound was 

obtained by column chromatography (silica gel, n-hexane: DCM; 2:3) 

as eluent. Yield: 40%; 1H NMR (500 MHz, CHLOROFORM-d): 7.98 - 

8.03 (m, 4 H), 7.92 (dd, J = 2.0, 8.5 Hz, 2 H), 7.81 (d, J = 2.0 Hz, 2 H), 

7.10 - 7.16 (m, 2 H), 7.04 (dd, J = 1.4, 7.6 Hz, 2 H), 6.92 - 6.98 (m, 6 

H), 6.86 - 6.91 (m, 2 H), 6.79 - 6.85 (m, 4 H), 3.85 (s, 6 H), 3.81 - 3.84 

(m, 4 H), 1.78 - 1.93 (m, 4 H), 1.00 (t, J = 7.3 Hz, 6 H). 13C NMR (125 

MHz, CHLOROFORM-d) :161.6, 157.4, 146.0, 145.1, 144.2, 141.3, 

131.5, 131.4, 131.4, 129.0, 127.5, 127.3, 127.2, 127.0, 124.4, 124.3, 

124.1, 116.6, 115.5, 115.4, 55.4, 49.4, 32.0, 30.3, 23.7, 20.1, 11.32; 

HRMS (ESI) m/z [M+nH]+ calcd for C52H44BF2N5O2S2: 884.3079 

found 884.3056. 
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4. RESULTS AND DISCUSSION 

4.1 Synthesis  

The phenothiazine and propyl iodide dissolve in DMSO was 

added in 100 ml two-necked RB and then added NaOH at RT for 24 hr. 

The compound layer was separated using DCM and water. Crude oils 

obtained by removing the remaining solvent were purified via column 

chromatography to obtain compound 1.   

N
H

S
I DMSO, NaOH

RT, 24 hr N

S

POCl3
DMF, DCE
16 hr, 80 oC

N

S CHO

2

90%

80%

1

   

Scheme 4. Synthetic route of compound 1 

The POCl3 was added dropwise to distilled DMF at 0 oC. A 

solution of compound 1 in DMF was added slowly to the POCl3/DMF 

complex at 0 oC. The reaction mixture was stirred at 80 oC for 16 hr. 

After the completion of reaction (monitoring TLC), the reaction mixture 

was cooled down to RT and poured into an ice–water solution. The crude 

product was purified via column chromatography to obtain compound 

2. 
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Synthetic scheme 2 

To synthesize the donor-acceptor functionalized aza-BODIPY 

dyes, nitrochalcones are required as the precursors. An aldol 

condensation of 10-propyl-10H-phenothiazine-3-carbaldehyde and 4-

methoxy acetophenone in ethanol under basic conditions using 

potassium hydroxide (KOH) at RT for 24 hr followed by 

recrystallization generates chalcone. Further, chalcone was subjected to 

nitration with nitromethane under basic conditions using diethyl amine 

in methanol solvent at 70 oC via Michael addition produces 

nitrochalcone (Scheme 5).    

Scheme 5. Synthetic route of aza-BODIPY dyes 6a and 6b 

Now, further nitrochalcones and ammonium acetate were added 

to ethanol solvent to reflux for 48 hr at 80 oC to give aza-dipyrromethene 

5. It was kept at RT for half an hour and after that excess solvent was 

removed. After that aza-dipyrromethene was dissolved in DCM   and 

treated with DIPEA as a base followed by dropwise addition of boron 



22 
 

trifluoride diethyl etherate (BF3.OEt2) at RT of for 4 hr to give aza-

BODIPY dyes 6a, and 6b.  

The final compounds were purified via column chromatography 

using hexane and DCM as eluent to obtain the pure product.  The aza-

BODIPY dyes 6a, and 6b were characterized by 1H NMR, 13C NMR, 

and HRMS. These dyes are soluble in various organic solvents such as 

DCM, chloroform, toluene etc. 
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4.2. PHOTOPHYSICAL PROPERTIES 

 The absorption spectra of donor-acceptor functionalized aza-

BODIPY dyes 6a and 6b were recorded in DCM at room temperature 

(RT) and are shown in Figure 3. The corresponding data is listed in 

Table 1. 
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Figure 3. The normalized electronic absorption spectra of donor-

acceptor functionalized aza-BODIPY derivatives 6a and 6b in DCM 

(1×10-5M). 

The absorption spectra of aza-BODIPY dyes 6a and 6b exhibited 

absorption peaks in the vis-NIR region. The aza-BODIPY 6a showed 

dual absorption maximum in NIR region (600-800 nm) while aza-

BODIPY 6b showed dual absorption in NIR region (650-800 nm). Aza-

BODIPY 6b shows red shifted absorption spectra as compared to the 

aza-BPODIPY 6a due to the methoxy donor unit. The molar extinction 
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coefficients for aza-BODIPY dyes 6a and 6b are 26,266 and 24,549 M-

1 cm-1 respectively. 

Table 1. Photophysical and theoretical properties of aza-BODIPY dyes 

6a and 6b 

Dye λabs (nm)a      ɛ 

(M-1.cm-1)a 

Eg
b  

(eV) 

6a 620 
 

26,266 1.82 

6b 732 

 

24,549 1.86 

aAbsorbance measured in DCM at a concentration of 1 × 10-5 M, ε; molar extinction 

coefficient, bTheoretical values of the HOMO-LUMO gap calculated from the DFT 

calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

4.3 DENSITY FUNCTIONAL THEORY 

The geometry and electronic structure of the aza-BODIPY dyes 

6a and 6b were studied with DFT calculations using Gaussian 09W 

program at the B3LYP/6-31G(d, p) level. Structure optimization was 

carried out in gas phase to estimate the structure as well as electronic 

properties. Figure 5 shows the calculated FMO diagram of aza-BODIPY 

6a and 6b. 

 

Figure 4. The FMOs of aza-BODIPY dyes 6a and 6b at the B3LYP/6-     

31G(d, p) level. 

 The optimized structures of aza-BODIPY dyes 6a and 6b have 

distorted geometry. In the aza-BODIPYs 6a and 6b, the HOMO orbital 

electron density is localised on the donor and aza-BODIPY unit, while 

the LUMO is localised on the aza-BODIPY core. The DFT calculations 

of aza-BODIPYs 6a and 6b, the HOMO energy level values are -4.88 

eV, -4.75 eV and the corresponding LUMO energy level values are -
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3.06 eV, -2.89 eV respectively. Theoretical calculations reveal that aza-

BODIPY 6a display a band gap of 1.82 eV while, aza-BODIPY 6b 

display a band gap of 1.86 eV. Aza-BODIPY  6a shows a lower band 

gap as compared to the aza-BODIPY 6b. 

 

Figure 5. Energy level diagram of aza-BODIPY dyes 6a and 6b. 

TD–DFT calculations were performed on aza-BODIPY dyes 6a 

and 6b at the B3LYP/6-31G(d, p) level to obtain correlation with 

absorption studies. The TD-DFT calculations provided the determined 

electronic transition in aza-BODIPYs 6a and 6b, as well as their 

composition and oscillator strength. The DFT predicted energy level 

diagram has shown in figure 6. Furthermore, the TD–DFT approach was 

employed to determine the excitation energies of the aza-BODIPY dyes 

6a and 6b. According to TD–DFT calculations in the vis-NIR region, 

aza-BODIPY dye 6a shows two main electronic transitions in HOMO-

2→ LUMO, and HOMO-6→ LUMO whereas aza-BODIPY 6b shows 

two main electronics transitions in HOMO-2→ LUMO-7, and HOMO-

7 → LUMO transitions. 
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5. Conclusion 

In summary, aza-BODIPY dyes 6a and 6b were synthesized by 

BF2 complexation reaction using boron trifluoride diethyl etherate 

(BF3.OEt2). The effects of the donor and acceptor groups on the 

photonic and electrochemical properties of the aza-BODIPY dyes 6a 

and 6b were explored. In contrast to photophysical properties, aza-

BODIPY dyes 6a and 6b shows absorption in UV-visible NIR region. 

According to DFT study in the aza-BODIPYs 6a, and 6b the HOMO is 

localised on the donor and aza-BODIPY unit, while the LUMO is 

localised on the aza-BODIPY core. The UV-visible absorption spectra 

of aza-BODIPY can be further shifted to NIR region by attaching 

various strong donor substituents such as methoxy, methyl, ether, thiol 

etc. Thus, the synthesized aza-BODIPY dyes molecule can be used in 

various optoelectronic applications such as optoelectronic devices, 

sensing, etc. 
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  6. Supporting Figure 

 

     

                              Fig. 6 1H NMR spectrum of compound 1 
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Fig. 7 13C NMR spectrum of compound 1  
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Fig. 8 HRMS of compound 1 
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Fig. 9 1H NMR spectrum of compound 2 
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                Fig. 10 13C NMR spectrum of compound 2 
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Fig. 11 HRMS of compound 2 
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      Fig. 12 1H NMR of aza-BODIPY 6a 
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                                   Fig. 13 13C NMR of aza-BODIPY 6a 
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                                         Fig. 14 HRMS of aza-BODIPY 6a 
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                            Fig. 15 1H NMR of aza-BODIPY 6b 
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Fig. 16 13C NMR of aza-BODIPY 6b 
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Fig. 17 HRMS of aza-BODIPY 6b 
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