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Abstract 

The development of cost-effective electrocatalysts to substitute expensive 

platinum group metals (PGMs) in catalyzing the hydrogen evolution 

reaction (HER) holds immense promise for advancing sustainable energy 

solutions. In recent years, machine learning (ML) techniques have opened 

up new possibilities for smart screening and prediction of efficient 

heterogeneous catalysts. ML methods offer powerful tools that can analyze 

large datasets, extract meaningful patterns and correlations, and make 

accurate predictions based on the learned information. We utilized 

combined density functional theory (DFT) with supervised machine 

learning methods to discover earth abundant, durable, low-cost, efficient, 

transition metal carbides (TMCs) based active heterogeneous catalyst for 

HER. The study utilizes a Kernel Ridge Regression (KRR) model that has 

been optimized to identify the catalyst that is most active towards HER. The 

study demonstrates that this approach enables the efficient screening of a 

vast array of catalysts, identifying the most active HER catalysts. Hence, 

our methodology offers an effective means to find heterogeneous catalysts 

suitable for diverse electrochemical reactions.  
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Introduction  

The world is experiencing an energy shortage currently.[1] Natural gas, 

fossil fuels, and other non-renewable sources have been unable to meet the 

country's energy needs because of their limited availability. [1,2] The 

continuing quest to realise this demand has found an excellent alternative in 

hydrogen because of its high energy density, minimal emissions of 

greenhouse gases or pollution, and renewable nature. [3,4] Today, methane, 

or natural gas, is reformatted using steam to produce the majority of the 

hydrogen used for industrial purposes. Due to natural gas's high availability 

and low cost, this production technology is favoured, however, natural gas 

can’t be termed as a sustainable energy source, and the issue of CO2 release 

is yet to be resolved. Although producing hydrogen through the 

interconversion of hydrogen and water offers a carbon-free, eco-friendly 

option [5], conducting the hydrogen evolution reaction (HER), (2H+ + 2e- 

= H2) is still challenging without the aid of noble metal catalysts. For 

effective conduction of the HER process, a highly active catalyst is required. 

This catalyst is supposed to reduce the potential barrier of the catalytic 

process and also expedite the reaction.  

1.1. Hydrogen Evolution Reaction (HER) 

 HER comprises two fundamental steps: the adsorption of hydrogen atoms 

onto the electrode surface and their subsequent detachment as a hydrogen 

molecule (H2). The kinetics of HER involve three well-known reactions: 

Volmer, Heyrovsky, and Tafel. The adsorption process is associated with 

the Volmer reaction, where hydrogen atoms are adsorbed onto the metal 

surface of the electrode due to the interaction between an electron and a 

proton in the surrounding medium. [6] On the other hand, both the 

Heyrovsky and Tafel reactions are primarily linked to desorption processes. 

In the Heyrovsky reaction, adsorbed two hydrogen atoms react with each 

other, resulting in the production of a hydrogen molecule. In the Tafel 

reaction, a hydrogen molecule has been formed from two adsorbed 
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hydrogen atoms and emerged from the electrode surface without the 

involvement of an electron. It is possible for HER to occur in both acidic 

and alkaline environments, the only difference lying in the source of 

protons. In an acidic medium, H3O
+ serves as the proton source, while in an 

alkaline medium, H2O provides the protons. Both acidic and alkaline 

environments support the HER, enabling the efficient generation of 

hydrogen gas.  

 

 

Figure 1.1 Systematic representation of HER in acidic and alkaline 

medium 

 

1.2. Choice of Catalysts 

According to Sabatier's principle [7], the efficiency of catalytic phenomena 

is maximized when there is an optimal interaction between the catalytic 

surface and intermediate hydrogen atoms (H*), neither too weak nor too 

strong. This can be indicated by a low Gibbs free energy (∆G ~ 0) or a 
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moderate M-H bonding, which facilitates favorable H*adsorption. Platinum 

(Pt) can be said to be an optimum choice. Pt is regarded as the most 

sustainable and effective catalyst, also because of its low overpotential and 

acceleration of reaction rates. Unfortunately, its limited availability and 

skyrocketing costs limit its usage. Two major limitations of Pt-based 

materials, aside from their high catalytic activity, need to be addressed for 

them to become viable for industrial use: (1) decreased catalyst loading; and 

(2) prevention against corrosion in harsh alkaline or acidic electrolytes. [8] 

As a result, the effective and efficient conduct of HER faces a lot of 

challenges. As this is happening, significant research is being done to find 

new non-noble metal electrocatalysts that are affordable, stable, and active 

to replace these priceless noble metals. In the field of electrocatalysis, a 

plethora of new material classes have recently emerged, including metal 

carbides, [9,10] nitrides, [11,12,13] and phosphides, as well as two-

dimensional (2D) materials such as layered double hydroxides (LDHs), 

metal oxides, MXenes, graphene, phosphorene, TM dichalcogenides 

(TMDs), and graphitic carbon nitride (g-C3N4). [14] These materials have 

been extensively used in various electrocatalytic reactions and have 

demonstrated outstanding activity for HER. Although the previous studies 

have utilized TMCs for HER, our perspective is to investigate the combined 

effect of alkaline earth and alkali metals as promoters to further increase the 

efficiency, which still remains an unexplored area. There have been many 

thorough reviews of the many TMC properties. From earlier studies, we 

have observed many experimental findings for TMCs. [15,16,17,18] 

Moreover, TMCs of groups IV–VI early transition metals exhibit a variety 

of distinctive and fascinating catalytic characteristics. The catalytic 

capabilities of TMCs are the focus of numerous studies in the disciplines of 

surface science ever since the publication of seminal work by Levy and 

Boudart regarding the Pt-like properties of tungsten carbides. [19] 

According to Fujita and co-workers, as well as Li and co-workers, group 

IV–VI transition metal carbides have developed immense interest among 
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the scientific community to investigate their potential role in HER because 

they have the same properties as Pt group metals. [2] The merging of carbon 

atoms with the metal lattices results in the formation of TMCs. These 

carbide materials combine the distinguishing characteristics of three 

separate material classes— ionic crystals, covalent solids, and transition 

metals—to provide special physical and chemical properties. They exhibit 

the severe brittleness and hardness of covalent solids, the high melting point 

and basic crystal structures alike ionic crystals, and they resemble transition 

metals in terms of their electronic and magnetic properties. [20] The parent 

metal's d-band is changed by the creation of carbides, which results in 

catalytic characteristics that are distinct from the parent metals yet 

comparable to those of group VIII noble metals. The fact that the metal 

lattice extends and the metal-metal distance rises as a result of the 

development of interstitial compounds is one straightforward explanation. 

For instance, during carbide production, the lattice parameters of 

molybdenum and vanadium are respectively enlarged from 0.27 to 0.30 nm 

and from 0.26 to 0.42 nm. [21] Heine et al. have shown that the contraction 

of the metal d-band, is proportional to the inverse fifth power of the metal-

metal distance, would occur when the metal-metal bond distance increased. 

[22,23] Despite the fact that there was a charge transfer from the parent 

metal to the carbon atoms, it is thought that a d-band contraction of this kind 

would produce a higher density of states (DOS) around the Fermi level than 

the parent metal. 

An analysis of these compounds both theoretically and experimentally, 

supports the inclusion of carbon in the early transition metals' lattice. 

According to the calculations using DFT, the hybridization between the 

carbon s- and p-orbitals and metal d-orbitals lead to the broadening of the 

d-band structure which results properties similar to those of the d-band of 

Pt. These substances frequently exhibit greater catalytic efficiencies over 

their parent metals in terms of selectivity, activity, and toxin resistance. 

Therefore, in our work, we have taken 9 different TMCs from groups IV–
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VI (TiC, ZrC, HfC, VC, NbC, TaC, CrC, MoC, WC) with (111) and (100) 

surfaces as an electrocatalyst for HER. 

1.3. Promoters Selection  

To increase the efficiency of the chemical reactions, promoters are added to 

the solid catalyst. These species do not exhibit any propensity to form 

conventional chemical connections with the electrode surface's active site. 

Basically, there are two types of interactions between the electrodes and 

adsorbates. First, is the direct bonding of adsorbates and electrodes, which 

entails electron transfer, chemisorption, and the release of the ion hydration 

shell. Second, relatively mild electrostatic metal-ion forces that do not 

directly interact with the adsorbate but may have an impact on the ion 

concentration near the electrode. These two kinds of bonds are connected 

with an extraordinarily wide variety of physicochemical activities, 

including as electron-charge transfer processes, ionic hydration, adsorption, 

and catalysis. [24] In order to increase HER efficiency, we use alkali and 

alkaline earth metals in our study as promoters that interact electrostatically 

with the TMCs. Nowadays, the promoter's role has grown far too much. 

Alkali and alkaline earth metals were frequently used in reactions as 

promoters to speed up the process. Markovic and co-workers reported the 

direct role of non-covalent interaction of alkali metal cations in hydrogen 

oxidation reaction (HOR) and oxygen reduction reaction (ORR). [24] 

Herasymenko et al. made several findings and claimed that the Li+, Na+, K+, 

and other purportedly "inert" cations had an effect on the kind and 

concentration of the hydrogen overpotential on mercury electrodes. Shortly 

after, Tokuoka discovered that putative cation adsorption of (Mg2+, Ca2+, 

Sr2+, Ba2+, and La3+) [25] significantly altered the electroreduction rates of 

XO3
- type anions (e.g.; BrO3

-
, NO3

-
, and IO3

-). [26] Li-et-al reported that in 

various electrode materials, specific alkaline earth metals (e.g., Ba+2, Sr+2)-

based cations tend to segregate on the surface, significantly influencing the 

electrodes catalytic activities. [27] Moreover, Stoffelsma et al. observed 
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that the effect of Be2+ on the adsorption phenomena on Pt is comparable to 

that of Li+. [28] Alkali metal cations are thought to indirectly alter the HER 

kinetics by boosting the Volmer step kinetics. Bandarenka and co-workers 

reported that HER activity patterns of various Pt electrodes, regardless of 

their surface shape, are in tune with the hydration energy of the alkali metal 

cations that is present in the electrolyte, and it shows the following 

sequence: Li+ > Na+ > K+ > Rb+ > Cs+. [29] Moreover, it is suggested that 

promoters may modify the hydrogen binding energy (HBE), which further 

modify the HER activity. In case of Pt catalyst respective to any surface, 

presence of Li+ increases HER activity 4 times as compared to Cs+. [29] As 

a result, metal promoters significantly influence the hydrogen's optimal 

binding energy, which in turn regulates the reaction's thermodynamics.  We 

want to demonstrate in our work how the combination of alkali and alkaline 

earth metals as promoters affects the metal carbide surfaces for the HER. 

1.4. Artificial Intelligence (AI) 

Artificial Intelligence (AI) is an important subfield of computer science and 

engineering dedicated to the creation of intelligent systems capable of 

performing tasks that traditionally require human intelligence. These tasks 

encompass a wide range of capabilities, such as visual perception, speech 

recognition, decision-making and natural language. AI utilizes various 

techniques including deep learning, machine learning, and natural language 

processing, and computer vision, among others. The ultimate objective of 

AI research is to develop machines that possess the ability to learn, reason, 

and perceive the world in a manner similar to humans. This would enable 

them to autonomously solve intricate problems and make decisions. The 

concept of AI was introduced by the renowned British mathematician Alan 

Mathison Turing in his influential publication "Computing Machinery and 

Intelligence" in 1950. [30] Since then, numerous researchers and scientists 

have contributed to the advancement of AI. This progress led to the 

establishment of deep learning (DL) and machine learning (ML) 
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methodologies, which have achieved remarkable accomplishments in the 

field. 

                    

Figure 1.2 Schematic representation of AI, ML and DL domain.  

 

1.4.1. Machine Learning 

Machine learning is a subset of AI that emphases on imparting machines 

with the ability to learn and enhance their performance through data 

analysis. This implies that machines can autonomously acquire knowledge 

and improve based on their experiences, without direct human involvement. 

Numerous experts and researchers have made significant contributions to 

the advancement of machine learning. Among them, Arthur Samuel stands 

out as one of the trailblazers in the field. In 1959, Samuel introduced the 

notion of ML and gained recognition for creating the initial self-learning 

program designed for playing checkers.  
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Figure 1.3   Different types of methods in machine learning   

1.4.1.1. Supervised Learning 

Supervised machine learning refers to a category of machine learning 

techniques that utilize labeled datasets for training. In this approach, the 

machine is exposed to a dataset in which the correct output is already 

provided, allowing it to learn from these labeled examples. By 

understanding the relationships between inputs and outputs in the training 

data, the machine develops a mapping mechanism, which subsequently 

applies to execute predictions on unknown data. Supervised learning has 

proven to be valuable in a range of domains, including image classification, 

natural language processing, and predictive modeling. Supervised machine 

learning techniques are commonly categorized into two types, regression 

and classification. In recent studies, regression models in supervised 

machine learning have been effectively optimized and utilized to forecast 

the adsorption energies associated with heterogeneous catalysts, which 

offers a convenient means of screening active and selective catalysts. 

Furthermore, the adsorption energy is identified as a crucial signifier for the 

activity of catalysts in previous research studies that have utilized 

supervised machine learning. [31-35] 

1.4.1.2. Features 
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 In ML, the features (also known as input variables or predictors) are the 

characteristics of the data that are used to make predictions or 

classifications. The choice of features is critical to the success of a ML 

model, as the model’s performance and accuracy heavily depend on the 

quality and relevance of the features. Selecting the appropriate features 

requires understanding of the problem and domain knowledge. The features 

must be informative and should be able to capture the underlying patterns 

in the data. Additionally, the features should be independent of each other 

and not be redundant, as including redundant or correlated features can lead 

to overfitting and deteriorate model performance. Furthermore, some 

machine learning algorithms are sensitive to the scale or type of features 

used. For example, decision trees may not perform well with continuous 

variables, while neural networks may require normalization of the input 

data. Thus, it is important to consider the nature of the features and the 

algorithm being used when selecting and preparing the input data. The 

choice and quality of features play a crucial role in machine learning, as 

they directly impact the performance of the model. The selection of 

informative, independent, and relevant features is essential for achieving 

optimal model results. 

1.4.1.3 ML models:  

There are several types of regression models, including linear regression, 

kernel ridge regression (KRR), Gradient Boosting Regressor (GBR), 

eXtreme gradient boosting regression (XGBR) and many more. These 

regression models can be found and installed from various sources 

depending on the programming language, tools, and frameworks used. 

Some common sources include Python packages such as scikit-learn, [36] 

TensorFlow, and Keras, and R packages such as caret, glmnet, and MASS. 

Cloud-based platforms such as AWS, GCP, and Azure also offer machine 

learning models as a service or provide tools to build and deploy machine 

learning models. Standalone software such as SAS and SPSS also offer 
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regression modeling capabilities. When selecting a regression model, it is 

essential to consider the nature of the data and the specific problem being 

addressed, as different models may be more suitable for different situations. 

• Linear Regression:  

Linear regression is a supervised learning technique employed to forecast a 

continuous output variable by utilizing one or more input variables. It 

assumes that there exists a linear correlation among the input variables 

(features), and the output variable. The equation of a linear regression model 

can be expressed in terms of the following equation: 

         𝑦 =  𝑏0 +  𝑏1𝑥1 +  𝑏2𝑥2 + ⋯ + 𝑏𝑚𝑥𝑚    (1.1)  

where y is the predicted output variable, b0 is the intercept, b1 to bm are the 

coefficients of the input variables x1 to xm, respectively. The coefficients 

represent the relation between input and the output variables, and the 

intercept represents the value of y when all input variables are equal to zero. 

The objective of linear regression is to determine the optimal coefficients 

that reduce the disparity among the predicted and observed values of the 

output variable. This is commonly achieved by minimizing the sum of 

squared errors between the predicted and observed values through a method 

known as least squares regression. Linear regression models can be used for 

various applications, including sales forecasting, weather forecasting, and 

stock price prediction, among others However, it is crucial to acknowledge 

that linear regression presupposes a linear correlation between the input and 

output variables, which may not be appropriate for all kinds of data or 

situations. 

Kernel Ridge Regression (KRR): 

Kernel ridge regression is a type of regression algorithm that uses the kernel 

trick to fit a nonlinear model to the data. It is a regularized version of least 

squares regression that incorporates a penalty term to regulate the 
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complexity of the model and avoid overfitting. The equation for kernel ridge 

regression can be written as: 

                              𝑓(𝑥) =  ∑𝑖 =  ln 𝛼𝑖 𝐾(𝑥𝑖 , 𝑥)                                                (1.2) 

where f(x) is the predicted output for a given input 𝑥, 𝛼𝑖 are the coefficients 

for the support vectors, n is the number of support vectors, and 𝐾(𝑥𝑖, 𝑥)  is 

the kernel function that measures the similarity between xi and x in the 

feature space. The kernel function can be chosen based on the features of 

the data and the problem at hand. Kernel ridge regression seeks to minimize 

the following objective function: 

minimize,                𝛼 ‖𝑦 − 𝑋𝛼‖2 + 𝜆 ‖𝛼‖2                                                 (1.3) 

where 𝑋𝛼  is the design matrix, y is the vector of target values, 𝛼  is the 

vector of coefficients. Here, regularization parameter λ controls the trade-

off among fitting the data and keeping the model simple. In summary, 

kernel ridge regression is a powerful regression algorithm that can handle 

nonlinear relationships between the input and output variables by modifying 

the data into a higher-dimensional feature space using a kernel function. 

The regularization parameter helps to avoid overfitting and increase the 

model performance in general. 

• Gradient Boosting Regressor (GBR): 

In machine learning, GBR is the abbreviated from of Gradient Boosting 

Regressor, which is a popular ensemble learning algorithm utilized for 

regression tasks. Gradient Boosting is a technique where multiple weak 

prediction models, often referred to as "weak learners" (e.g., decision trees), 

are combined to create a stronger predictive model. The idea behind 

gradient boosting is to iteratively train new models that focus on the errors 

made by the previous models, gradually reducing the overall prediction 

error. The Gradient Boosting Regressor specifically applies gradient 

boosting for regression problems. It works by fitting a regression model to 
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the residuals (i.e., the differences among the target values and the predicted 

values) of the previous model in the ensemble. Each subsequent model is 

trained to predict the residuals of the previous models, allowing the 

ensemble to gradually improve its prediction accuracy. 

eXtreme Gradient Boosting Regression: 

XGBoost is classified as an ensemble learning technique, which belongs to 

a group of methods that merge multiple weak learners (basic models that 

perform slightly better than random guessing) to create a robust learner. 

Within the XGBoost framework, decision trees serve as the weak learners, 

and the algorithm functions by progressively incorporating decision trees 

into the model. Every new tree aims to rectify the mistakes made by the 

former trees. The key innovation of XGBoost is that it uses a gradient-based 

optimization technique to find the best splits in the decision trees. This 

allows the algorithm to optimize not only the accuracy of the model, but 

also its complexity, by penalizing overly complex models that are prone to 

overfitting. 

1.4.1.4. Testing and Validation 

In machine learning, testing and validation are important steps for 

evaluating the performance of a model and ensuring that it generalizes well 

to new data. Testing refers to the process of evaluating the performance of 

a trained model on an unforeseen dataset. The goal of testing is to estimate 

the generalized performance of the model on unknown data. Testing is 

typically done using a separate, held-out dataset that is not used during 

training. Validation, on the other hand, refers to the process of tuning the 

hyperparameters of a model for achieving the best possible performance on 

a validation dataset. The validation dataset is typically a subset of the 

training dataset that is held out for this purpose. During the validation 

process, different combinations of hyperparameters are tested, and the one 

that gives the best performance on the validation dataset is selected. Both 
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testing and validation are important steps in machine learning, as they help 

to ensure that a model is not overfitting to the training data and can 

generalize well to new data. It is important to keep in mind that the 

performance of a model on the training data solely can’t indicate its 

generalizability i.e., the performance of it to new data. Testing and 

validation provide a more reliable estimate of a model's performance on 

unseen data. However, it should be noted that these terminologies of test 

and validation data are sometimes changed purposefully by different 

authors. 

1.4.1.5. Hyperparameter Tunning 

Hyperparameter tuning in machine learning involves the selection of 

optimal hyperparameter values for a given model. Hyperparameters are 

parameters that are predetermined and not learned from the training data. 

They are set before the training phase begins, and their values significantly 

impact the performance and behaviour of the model. They control aspects 

of the model such as its complexity, regularization, and learning rate, among 

others. The choice of hyperparameters can be significant for the 

performance of a ML model, and finding the best set of hyperparameters is 

often a critical step in building an effective machine learning model. 

Hyperparameter tuning is typically done using a validation dataset, which 

is a subset of the training dataset that is used to evaluate the performance of 

different hyperparameter settings. The process of hyperparameter tuning 

can be done manually or automatically. There are a number of libraries and 

tools available for hyperparameter tuning in machine learning, such as 

scikit-learn, TensorFlow, Keras, and PyTorch. These tools provide a range 

of options for hyperparameter tuning, from simple grid search to more 

advanced techniques like Bayesian optimization. Overall, hyperparameter 

tuning is a critical step in building effective machine learning models, and 

can have a significant impact on their performance. 
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Chapter-2 

Schrödinger Equation 

The equation proposed by Schrödinger, is a pivotal equation in quantum 

mechanics. It serves as a mathematical framework to describe the time-

dependent evolution of a quantum system's wavefunction. This equation is 

fundamental to our understanding of the behaviour and properties of 

particles at the quantum level  

                                        iℏ∂ψ/∂t=Hψ                                                                  (2.1) 

where ψ, i, H, t and ℏ represent the wavefunction of a system, imaginary 

unit, Hamiltonian operator, time, and reduced Planck constant, respectively. 

This partial differential equation relates the time derivative of the 

wavefunction with the Hamiltonian operator acting on the wavefunction. 

The total energy of the system can be described by a quantum mechanical 

operator that is Hamiltonian operator, Schrödinger equation depends upon 

both space and time, and the time independent equation is given by: 

                                              Hψ = Eψ                                                            (2.2) 

 E, represents the total energy of the system. Time-independent Schrödinger 

equation is used to determine the allowed energy levels of a quantum 

system. Solving the time-independent Schrödinger equation and 

Schrödinger equation the is a fundamental problem in quantum mechanics, 

as it allows us to predict the behaviour of quantum systems and understand 

their properties. The time-independent Schrödinger equation enables us to 

find the allowed energy levels of a quantum system, which are important in 

understanding the behaviour of atoms, molecules, and other quantum 

systems. 

Born-Oppenheimer Approximation: 
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The Born-Oppenheimer approximation is a widely used concept in quantum 

chemistry, which allows for the separation of the nuclear and electronic 

degrees of freedom in a molecule. In essence, it assumes that speed of 

electron is faster than speed of nucleus, and thus the electrons can be treated 

as if they were moving in a static potential generated by the fixed nuclei. 

Mathematically, this approximation is expressed by the following equation: 

Hψ = Eψ, , H represents Hamiltonian operator of the system, which includes 

both electronic and nuclear contributions. The wave function ψ is separated 

into an electronic part Φ, which depends on the electronic coordinates only, 

and a nuclear part Χ, which depends on the nuclear coordinates only: 

                 𝛹 =  𝛷(𝑟1,𝑟2, … . , 𝑟𝑁,) × (𝑅1,𝑅2, … . , 𝑅𝑀,)                                     (2.3) 

where 𝑟𝑖 denotes the electronic coordinates, 𝑅𝑖 denotes the nuclear 

coordinates, and N and M represent the number of  electrons and nuclei, 

respectively. 

By using this separation of variables, the Hamiltonian can be rewritten as a 

sum of electronic and nuclear Hamiltonians: H = 𝐻𝑒 + 𝐻𝑛. Where 𝐻𝑒 is the 

electronic Hamiltonian, which depends on the electronic coordinates only, 

and 𝐻𝑛  is the nuclear Hamiltonian, depends solely on the nuclear 

coordinates. This approximation easily calculate total wave function and 

energy of a system even for larger molecules 

Hartree-Fock (HF) Approximation 

 Hartree-Fock (HF) approximation is a technique used to solve the 

electronic structure problem of a molecule or atom in quantum chemistry. 

It assumes that the electrons move independently in an effective potential 

created by the average electron density of various other electrons. The HF 

wave function can be written in terms of single Slater determinant, which is 

a function of the molecular orbitals (MOs) that are created by linear 

combinations of atomic orbitals (LCAOs). The solution of Schrödinger 
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equation with the effective potential gives MOs and are chosen to minimize 

the system energy. The HF energy is the addition of  kinetic energy of the 

electrons and the electron-electron Coulomb repulsion energy. This is 

known as the HF energy expression:  

 𝐸(𝐻𝐹) =  ∑ 𝑖 ∑ 𝑗 ⟨𝛹𝑖|
−1

2𝛻2
|𝛹𝑗⟩ + ∑ 𝑖 ∑ 𝑗 ⟨𝛹𝑖𝛹𝑗|

1

|𝑟1−𝑟2|
|𝛹𝑗𝛹𝑗⟩ (2.4)                 

where 𝛹𝑖 and 𝛹𝑗  are the MOs, 𝑟1and 𝑟2 are the positions of two electrons, 

and the brackets denote integration over all space. The HF method provides 

a good initialization for more accurate methods that include electron 

correlation effects beyond the HF approximation. However, its simplicity 

and efficiency make it widely popular in calculating the electronic structure 

of small and medium-sized molecules. 

Density Functional Theory (DFT) 

Density Functional Theory (DFT) used in quantum chemistry to solve the 

solid or molecular electronic structure problem. According to it, functional 

of the electron density can express the total energy of the system rather than 

the more complicated wave function, which simplifies the calculations 

significantly. The Kohn-Sham equation plays central role in DFT, which 

defines a set of auxiliary non-interacting electrons that exhibit electron 

density that is at par with that of  true interacting electrons. The Kohn-Sham 

equation is mentioned below: 

          [−
1

2𝛻2
+ 𝑣(𝑟) + 𝑣𝐻(𝑟) + 𝑣𝑥𝑐(𝑟)] 𝜙𝑖(𝑟) =  𝜀𝑖𝜙𝑖(𝑟)                        (2.5) 

Where 𝜙𝑖(𝑟), 𝑣(𝑟), 𝑣𝐻(𝑟), and 𝑣𝑥𝑐(𝑟)  are the Kohn-Sham orbitals, external 

potential, Hartree potential because of the electron-electron Coulomb 

repulsion, and exchange-correlation potential that accounts for the electron-

electron correlation effects, respectively. Moreover, εi are the Kohn-Sham 

eigenvalues, which correspond to the energy levels of the auxiliary 
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electrons. The sum of all occupied Kohn-Sham orbitals gives the electron 

density which can be calculated with the following equation (2.6) 

                                  р(𝑟) =  ∑ |𝜙𝑖(𝑟)|𝑖
2
                                                    (2.6) 

𝑣𝑥𝑐(𝑟)   is typically approximated using an electron density dependent 

functional. The most widely used functional is the local density 

approximation (LDA), which presumes that the exchange-correlation 

potential is a function of the electron density at every point in space. DFT 

is the most widely used methods in quantum chemistry and solid-state 

physics due to its efficiency and accuracy in computation of the electronic 

structure of large systems. However, the selection of the exchange-

correlation functional can bear a substantial impact on results, and more 

advanced functionals are being developed to make DFT calculations more 

efficient. 

The Hohenberg-Kohn Theorems 

The Hohenberg-Kohn theorems are fundamental theorems of DFT that 

establish the mathematical foundation of the theory. There are two 

theorems: The Hohenberg-Kohn’s first theorem asserts that the ground-state 

electron density has an effect on the external potential of a system uniquely. 

Mathematically, this theorem can be expressed as: For any two external 

potentials, V1(r) and V2(r), that produce identical ground-state electron 

density ρ(r), the two potentials must be identical up to an additive constant:  

      𝑉1(𝑟) =  𝑉2(𝑟) + 𝐶  , where C is a constant.                      (2.7) 

The Hohenberg-Kohn’s second theorem states that the ground-state energy 

of a system is a unique functional of the electron density. Mathematical 

expression of the theorem is as follows: The ground-state energy of a 

system, E[ρ], is a unique functional of the electron density, ρ(r), and is 

determined by energy functional’s minimum value, E[ρ], over all possible 

electron densities that have the same normalization and external potential:  
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                                         E[ρ] = min {F[ρ]}                                        (2.8) 

where F[ρ] is the energy functional that depends on the external potential 

and the electron density, and is calculated as: 

        F[ρ] = ∑ 𝑖 𝜀𝑖 𝑛𝑖 − ∫ 𝑝(𝑟) [𝑣(𝑟) + 𝑣𝐻 (𝑟) + 𝑣𝑥𝑐(𝑟)] dr                 (2.9) 

Where 𝜀𝑖, ni, 𝑣𝐻(𝑟), 𝑣𝑥𝑐(𝑟), are the measures of Kohn-Sham eigenvalues, 

occupation numbers, Hartree potential due to the electron-electron 

Coulomb repulsion, and the exchange-correlation potential that accounts for 

the electron-electron correlation effects respectively. 𝑣(𝑟)  is the measure 

of the external potential. These theorems provide the basis for the practical 

implementation of DFT to mathematically compute the electronic structure 

of molecules and materials.  

Kohn-Sham Formulation 

The Kohn-Sham formulation is a widely used method in DFT for 

approximating the ground-state electronic structure of a many-electron 

system. The basic idea behind the Kohn-Sham method is to potentially 

substitute the interacting system with a non-interacting system with similar 

electron density. This non-interacting system is then solved using standard 

techniques from quantum mechanics. These equations are a set of self-

consistent equations that are used to compute the system’s electronic 

properties. The equations are derived by introducing a set of fictitious non-

interacting particles that occupy the same electronic density of interacting 

system. These particles are referred to as Kohn-Sham orbitals, and they 

satisfy a set of equations that are similar to the Schrödinger equation. The 

Kohn-Sham equations are given by: 

               (−
1

2
) 𝛻2𝛹𝑖(𝑟) + 𝑉𝑒𝑓𝑓(𝑟)𝛹𝑖(𝑟) =  Ɛ𝑖𝛹𝑖(𝑟)                                 (2.10) 

where 𝛹𝑖(𝑟) is the value of i-th Kohn-Sham orbital, εi denotes energy of the 

i-th Kohn-Sham orbital, and 𝑉𝑒𝑓𝑓(𝑟) denotes effective potential that 
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includes the exchange-correlation potential and the external potential. The 

effective potential 𝑉𝑒𝑓𝑓(𝑟)  can be computed with the help of following 

expression: 

                 𝑉𝑒𝑓𝑓(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + ∫
ρ(r′)

|𝑟−𝑟′|
𝑑𝑟′ + 𝑉𝑥𝑐𝑝                                     (2.11) 

Where 𝑉𝑒𝑥𝑡(𝑟)  is the external potential, ρ(r) is an electron density, and 𝑉𝑥𝑐𝑝 

is the exchange-correlation potential that accounts for the exchange and 

correlation interactions between electrons. These equations are solved self-

consistently, meaning that the electron density is assessed with the 

assistance of the Kohn-Sham orbitals, and then the new electron density is 

used to recalculate the effective potential. This process is continued to 

achieve the convergence. The following approximations are widely 

employed in simulating both molecular and solid-state problems. [37] 

Exchange-correlation Functional 

Exchange-correlation functional in DFT is a term that accounts for the 

exchange and correlation interactions between electrons in a many-electron 

system. It is typically denoted as 𝐸𝑥𝑐 (ρ), where ρ represents the electron 

density, and it can be parted into two functional components: the exchange 

and the correlation. The most commonly used XC functional is LDA. 

Local Density Approximation (LDA). 

In DFT, the method of Local density approximation (LDA) assists in 

approximating the XC energy functional by assuming that it solely depends 

on the electron density at every point in the space. The LDA is the simplest 

form of XC functional and is widely used in DFT calculations. It supposes 

that the XC energy density and 𝜀𝑥𝑐  is a function of the electron density 

ρ[(r)] at each point in space:   

                                    𝜀𝑥𝑐 [ρ(r)] = 𝑓[ρ(r)]                                         (2.12) 
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Where the electron density is the sole determinant of function 𝑓. The total 

exchange correlation energy 𝐸𝑥𝑐 is calculated by integrating the XC energy 

density over all space: 

                                     𝐸𝑥𝑐 =  ∫ 𝜀𝑥𝑐[𝑝(𝑟)]𝑑3 𝑟                                            (2.13)       

by using the LDA, the XC energy can be computed with the help of 

following equation: 

        𝐸𝑥𝑐 =  ∫ 𝑝(𝑟)𝜀𝑥𝑐[𝑝(𝑟)]𝑑3 𝑟 =  ∫ 𝑝(𝑟)𝑓[𝑝(𝑟)]𝑑3 𝑟                        (2.14)                                    

Where, 𝑝(𝑟) represents electron density at every point in space. The LDA 

can be described as an approximation that neglects the non-local effects of 

the XC functional, which can lead to errors in the calculated electronic 

properties. However, it is computationally efficient and can provide 

reasonable results for many systems. 

Generalized Gradient Approximation (GGA) 

The generalized gradient approximation (GGA) is a procedure for 

approximating the exchange-correlation (XC) energy functional in DFT by 

considering the electron density and its gradient. The GGA is more accurate 

than the LDA, but it is more computationally expensive. The Perdew-

Burke-Ernzerhof (PBE), Perdew and Wang (PW91), PBEsol and revised 

PBE (RPBE) functionals are mostly used GGA functionals in DFT 

calculations. 

Basis Sets 

Basis sets can be described as a set of mathematical functions which assist 

to approximate the wave function of a molecule or system. Gaussian-type 

orbitals (GTOs) and Slater-type orbitals (STOs) are two commonly used 

orbitals. STOs are more complex but more flexible and can better describe 

the behaviour of electrons close to the nucleus, while GTOs are simpler but 

less flexible and can only approximate the behaviour of electrons near to 
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the nucleus. Other types of basis sets include polarized, diffuse, and mixed 

basis sets, which combine STOs and GTOs to balance the advantages and 

disadvantages of each type. Basis sets are essential for accurately 

calculating molecular properties such as energy, structure, and 

spectroscopic properties in quantum chemistry. 

Projector Augmented Wave (PAW) Method 

The Projector Augmented Wave(PAW)is a technique used in computational 

studies and quantum chemistry for accurately modeling the electronic 

structure of various complex systems, like solids and surfaces. The PAW 

method merges the accuracy of all-electron methods with the efficiency of 

pseudopotential methods. In this method, the true all-electron wave function 

is replaced with a pseudo wave function that is expanded in a set of auxiliary 

basis functions. The pseudo wave function is constructed such that it has 

the similar core electron density to the true all-electron wave function, while 

the valence electron density is modified to account for the core-valence 

interaction. This allows for the use of a smaller basis set for the valence 

electrons, that minimize the computing cost of the calculations. 

The pseudo wave function is defined as: 

                              𝛹𝑝(𝑟) =  𝛹𝑣(𝑟) + ∑ 𝛹𝑐 (𝑟)𝛷𝑟                                         (2.15)       

where 𝛹𝑣(𝑟) is the true valence electron wave function, 𝛹𝑐(𝑟) is the core 

electron wave function, and 𝛷𝑟 is the smooth step function that smoothly 

transitions from 0 to 1 as r approaches the atomic radius. The projection 

operator, P(r), is equated as: 

                           𝑃(𝑟) = 𝛹𝑣(𝑟)𝛹𝑝(𝑟)/𝛹𝑣(𝑟)𝛹𝑣(𝑟)                                   (2.16)       

The PAW method uses the projection operator to project the density and 

potential from the all-electron space to the pseudo space and back. The 

overall energy of the system is calculated as the addition of total kinetic 
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energy, potential energy, and electron-electron repulsion energy. The PAW 

method has become a popular approach in both materials science and 

quantum chemistry due to its ability to accurately model complex systems 

while maintaining computational efficiency 

GPAW and ASE 

GPAW (Grid Based Projector Augmented Wave) is a software program that 

used PAW (Projector Augmented Wave) method for first principle 

calculations. It can be used in combination with the Atomic Simulation 

Environment (ASE) and is open source. Users interact with GPAW through 

command scripts, which are primarily written in the programming language 

Python. [38,39] 

Computational Details. 

GPAW algorithm in the projector augmented wave (PAW) method is 

utilized for all the DFT calculations. The exchange-correlation potential, 

implemented in the atomistic simulation environment (ASE), was chosen to 

use the Perdew–Burke–Ernzerhof generalized gradient approximation 

(GGA–PBE) [40,41] functional. In order to calculate the adsorption energy 

and conduct additional studies, periodic surface slabs (4×4×4) having 4 

layers for (100) and (111) surfaces were taken into account. For the plane-

wave expansion of the electronic wave function, a cut-off of 400 eV has 

been taken. Iterative diagonalization of the Kohn-sham Hamiltonian 

calculations has used the Davidson (DAV) eigen solver method with the 

Monk horst-pack k-point sampling of the Brillouin zone of (3,3,1). To 

eliminate any periodic image interactions, a ~15Å vacuum was added to the 

catalyst surface in the z-direction. During the geometry optimization 

process, the upper and the lower two layers were allowed to relax and fix, 

respectively and a convergence criterion of 0.09 eV/Å was used for force 

minimization. 
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Figure 2.1 The 4×4×4 periodic slab of Hafnium carbide with (100) surface. 

a)  Top view and, b) side view. The crossed spheres of the lower two layer 

signifies the fixed atoms, and uncrossed spheres represents the relaxed 

atoms for the adsorption energy calculations. Cyan colour represents Hf 

atoms and grey colour represents carbon atoms.  

 

 

Figure 2.2 The 4×4×4 periodic slab of Hafnium carbide with (111) 

surface in which metal is present on the top layer and followed by carbon 

layer. a)  Top view and, b) side view. The crossed spheres of the lower 

two layer signifies the fixed atoms, and uncrossed spheres represents the 
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relaxed atoms for the adsorption energy calculations. Cyan colour 

represents Hf atoms and grey colour represents carbon atoms.    

 

 

Figure 2.3 The 4×4×4 periodic slab of Hafnium carbide with (111) surface 

in which carbon is present on the top layer and followed by metal layer. a)  

Top view b) side view. The crossed spheres of the lower two layer signifies 

the fixed atoms, and uncrossed spheres represents the relaxed atoms for the 

adsorption energy calculations. Cyan colour represents Hf atoms and grey 

colour represents carbon atoms. 

The adsorption energy of H (∆𝐸𝐻) has been computed using the following 

equation: 

                                                    (∆𝐸𝐻) = 𝐸𝑠𝑝∗- (𝐸𝑠𝑝 + 𝐸𝐻∗) 

𝐸𝑠𝑝∗  represents the corresponding DFT energy of the adsorbed surface 

when a promoter is present,𝐸𝑠𝑝  is merely the surface and promoter's DFT 

energy and energy of adsorbed H is denoted by 𝐸𝐻∗. 
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Result and Discussions 

Firstly, we created 64 atom slabs consisting of different transition metal 

carbides, with each slab containing 16 atoms arranged in four layers 

(4x4x4). The top two layers of these 64 atom slabs were allowed to relax 

during the reaction, while the other two layers were kept fixed. To 

accomplish this, we generated a set of 81 structures using computed DFT 

values as training data. Subsequently, we determined the importance of each 

feature in relation to the output data (adsorption energy) to gain insight into 

their relationship. We, then, optimized several supervised regression 

models through hyperparameter tuning using the training data and evaluated 

their performance with the calculation of test data in order to identify the 

best model for prediction. Lastly, we screened for active catalysts by 

considering and comparing the adsorption energies of total 1485 structures, 

with the adsorption energies of the pure platinum metal carbide slab model 

and similar systems. 

3.1.Catalyst Modelling 

To analyze the adsorption of H atom on different transition metal carbides, 

we focused on two types of surfaces, such as (100) and (111). These 

surfaces exhibit different arrangements of carbon and transition metals. In 

the (100) surface, both the metal and carbon atoms reside on the same layer, 

leading to a single type of available hollow site for adsorption, known as 

four-fold hollow (ffh). On the other hand, the (111) surface consists of 

alternating layers of metal and carbon, resulting in two types of top 

configurations: metal on top and carbon on top. Consequently, two types of 

hollow sites are present: hollow fcc and hollow hcp. Firstly we considered 

different hollow sites of all the chosen catalytic surfaces for H adsorption. 

To enhance the efficiency of the HER, we introduced alkali and alkaline 

earth metals as promoters in nearby hollow sites of H atom. These 

promoters interact electrostatically with the TMCs. Considering different 

combinations of alkali, alkaline earth, and pure promoters, we obtained a 
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total of 1485 possible catalyst-promoter combinations. However, even with 

the fastest ab initio tools available, calculating DFT values for such a large 

number of combinations is practically infeasible. This limitation is the 

principal reason for employing machine learning (ML) techniques.  

  

 

 

Figure 3.1 (a) and (b) are the Top and side view of (100) TMC surface, 

where cyan colour represents Hf and grey colour represent carbon. (c) 

represents, adsorption of H atom in a four-fold hollow (ffh) site present in 

(100) surface and (d) represents, adsorption of promoters near the adsorbed 

hydrogen in the hollow site of metal carbide (100) surface. Here, cross sign 

indicates fixed atoms. 
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Figure 3.2 (a) and (b) are the Top and side view of (111) TMC surface, 

when metal is present on the top and cyan colour represents Hf and grey 

colour represent carbon. (c) and (d) represents, adsorption of H atom in fcc 

and hcp hollow site present in (111) surface, whereas (d) and (e) represents, 

adsorption of promoters near the adsorbed hydrogen in the fcc and hcp 

hollow sites of metal carbide (111) surface. Here, cross sign indicates fixed 

atoms. 
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Figure 3.3 (a) and (b) are the Top and side view of (111) TMC surface, 

when carbon is present on the top and cyan colour represents Hf and grey 

colour represent carbon. (c) and (d) represents, adsorption of H atom in fcc 

and hcp hollow site present in (111) surface, whereas (d) and (e) represents, 

adsorption of promoters near the adsorbed hydrogen in the fcc and hcp 

hollow sites of metal carbide (111) surface. Here, cross sign indicates fixed 

atoms. 

3.2.Feature Selection 

 

Figure 3.4 Graphical representation of different sets of input features. Each 

set consists of different elemental features of carbon, metal and promoters . 

 

Feature importance reveals the weighting assigned to each descriptor by the 

model. The selection of input features plays a crucial role in ML-based 

studies. By constructing and training a machine using these input features 

and their corresponding output data, we can predict outcomes for unknown 

data, significantly reducing computational costs. In this work, our objective 

is to investigate an approach for predicting the adsorption energy of 

unidentified materials in the context of the HER. Additionally, based on the 

metals under consideration, we aim to identify active and selective catalysts. 

By examining the characteristics (chemical properties) of 3d, 4d, and 5d 
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TMCs and promoters, we gain computational insights into the relationship 

between these parameters and the HER. When employing alkali and 

alkaline earth metals as promoters for TMCs, we can better understand how 

compositional parameters influence the reaction. These insights provide 

valuable chemical knowledge regarding the most important traits for 

predicting synthesizability data. Since, TMCs consist of both transition 

metals and carbon, the features of both components are equally significant. 

Therefore, certain compositional and elemental characteristics hold 

particular importance. We consider various explanatory variables (chemical 

properties) such as atomic mass, atomic radius, Pauling electronegativity, 

electron affinity, valence electrons, Mendeleev number, first ionization 

energy, dipole polarizability, and Martynov-Batsanov electronegativity for 

the transition metal, carbon, and promoter. We also consider the 

coordination numbers of both (100) and (111) metal surfaces. In the case of 

the metal-on-top (111) surfaces, we calculate the feature difference between 

the metal and promoter for all explanatory variables, and similarly for the 

carbon-on-top surfaces. When both carbon and metal are present on the 

surfaces, as in the case of (100) surfaces, we calculate the difference 

between average of the promoters and the metal of TMCs as an explanatory 

variable. These characteristics enable us to differentiate between various 

constituent transition metal carbides with different promoter combinations 

and understand their electronic behavior. Among these explanatory 

variables, we must identify those that contribute most significantly to the 

output, specifically the adsorption energy. To accomplish this, we employ 

machine learning techniques, primarily supervised machine learning, to 

train a model using these explanatory variables. 

 

Table 3.1 List of all the selected input features 

 



30 
 

 

 



31 
 

 



32 
 

 

 

 

Figure 3.5  Representation of the feature importance of datasets containg 

(111) and (100) surfaces having hcp and ffh hollow sites by considering 28 

input Features of carbon, metal and promoters. 
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Figure 3.6  Representation of the feature importance of datasets containg 

(111) and (100) surfaces having fcc and ffh hollow sites by considering 70 

input Features of carbon, metal and promoters 
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In this study, we have considered two types of surfaces such as (100) and 

(111) surfaces. In the case of (100) surfaces, both metal and carbon exist on 

the top layer where adsorption takes place. However, in the case of (111) 

surfaces, metal and carbon alternate between layers. Initially, catalytic 

surfaces have been modelled for hydrogen adsorption at the hollow site, as 

previously discussed. Then, the reaction's efficiency enhancement by 

introducing promoters from alkali and alkaline earth metals in nearby 

hollow sites in both (100) and (111) surfaces has been assessed. For this, 

ML algorithms are employed, and various input features are considered. For 

instance, in the case of (100) surface, when both carbon and metal are 

present on top, we have considered the average of their properties to define 

the surface properties. In the case of (111) surface, we considered carbon 

and metal-based features separately when there are corresponding carbon-

on-top or metal-on-top structures, respectively. Additionally, we evaluate 

the promoters' features individually and combined by averaging them to 

determine whether the individual promoter property has a greater influence. 

Upon analyzing the feature importance plot from ML, we have found that 

the input feature such as dipole polarizability of (metal – promoter average), 

dipole polarizability of individual metal and carbon, mass of individual 

carbon and metal and atomic radii of metal and carbon dominate in both of 

the considered datasets. The dominance of dipole polarizability as a feature 

in TMCs for the HER is linked to their electronic structure. When a 

promoter is adsorbed in the vicinity of the transition metal carbide, the 

dipole moment of the promoter induces an electrostatic interaction which 

can influence the electronic structure and reactivity of the carbide surface, 

thus affecting the HER activity and also the presence of a promoter with a 

significant dipole moment can induce charge. This charge redistribution can 

lead to a modification of the electronic density and local bonding 

environment at the catalytic sites, which in turn affects the HER activity 

that’s why dipole polarizability influenced the most in case of individual 

elemental features of carbon and metal or in a combined way with the 
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promoters as in our both the datasets. When it comes to mass, the adsorption 

of hydrogen species on TMC surfaces involves the electrostatic attraction 

between the hydrogen atoms and the active sites. The mass-promoting 

elements, such as transition metals with higher atomic masses, can provide 

additional binding sites and increase the overall binding energy of the 

adsorbed species. This higher binding energy enhances the stability of the 

intermediates involved in the HER and lowers the energy barriers for the 

reaction. As we have taken 9 different types of transition metal carbides 

having different masses so carbides with larger masses influenced more. In 

case of promoters the introduction of alkali or alkaline earth metal atoms 

into the TMCs surface can induce charge subsequently reorients electronic 

properties, enhancing the adsorption and reactivity of hydrogen species. In 

TMCs, the metal atom forms a strong bond with the carbon atoms. The bond 

length and bond strength are influenced by the atomic radii of the 

participating atoms. As the atomic radii of the transition metal atoms 

increases, the metal-carbon bond length generally increases. This longer 

bond length weakens the metal-carbon bond, making it easier to break and 

facilitate the release of hydrogen gas during the HER. Overall, all these 

features have significant physicochemical influence with the output 

adsorption energy and thus can be treated as the important parameters for 

the prediction of H adsorption energy in HER. 

3.3.ML Model Selection 

We have considered three supervised machine learning regressors for the 

prediction task. We explored the utilization of kernel-based and gradient 

boosting framework algorithms, specifically Kernel Ridge Regression 

(KRR) and Gradient Boosting Regression (GBR), which are implemented 

in the Scikit-learn package. Additionally, we employed a gradient boosting 

framework called eXtreme gradient boosting regression (XGBR). All of 

these algorithms are readily available in their respective open-source 

libraries. In our study, we applied these algorithms to two datasets. The first 
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dataset containg (111) and (100) surfaces, which includes four-fold hollow 

site and hcp site for the adsorption of hydrogen. The second dataset involves 

(111) and (100) surfaces , which also consists a four-fold hollow site but an 

fcc hollow site for adsorption. 

3.4.Model Optimization 

These algorithms which come with default parameters, can be fine-tuned to 

better suit the user's needs. In our study, we adjusted the hyperparameters 

of these algorithms using two commonly employed techniques: 

Randomized Search CV and Grid Search CV, both implemented in the 

Scikit-learn package. By applying these techniques, we were able to find 

the optimal values for the hyperparameters, resulting in highly optimized 

algorithms. 

To assess the effectiveness of each model, we conducted training and testing 

using separate test and train datasets. Subsequently, we assessed the Mean 

Absolute Error (MAE)  and also Root Mean Square Error (RMSE) for each 

model, which is a common evaluation metric in machine learning. As is 

typical in ML, for a given dataset, one of the optimized algorithms usually 

outperforms the others, exhibiting the lowest RMSE and MAE values 

providing the best predictions. Therefore, based on the RMSE and MAE  

values obtained for all the considered optimized regressors, we selected the 

best individual models for each dataset. These models were then used for 

the final prediction, as they demonstrated superior performance compared 

to the others. 
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3.5.Prediction Evaluation  

Among the various algorithms considered, we observed that the optimized 

Kernel Ridge Regression (KRR) achieved the lowest test and train RMSE 

and MAE values for datasets containing hcp and ffh hollow sites, as well as 

for datasets containing fcc and ffh hollow sites. the optimized eXtreme 

gradient boosting regression (XGBR) showed better performance in terms 

of test RMSE and MAE. However, it's important to note that the XGBR 

model exhibited very low training RMSE and MAE, indicating potential 

overfitting issues. On the other hand, the KRR model displayed a 

scientifically acceptable training RMSE and MAE. 

Considering these factors, we decided to utilize the optimized KRR model 

for both datasets, as it demonstrated superior performance in terms of test 

RMSE and MAE and avoided overfitting concerns. 

The range of DFT-calculated adsorption energies in both datasets was 

relatively narrow. However, as mentioned earlier, we expanded our analysis 

to include a well-sampled dataset consisting of 55 combinations, which 

represented a subset of the complete 1485 combinations. We assessed the 

performance of our models and found them to be satisfactory and 

acceptable, particularly for the datasets containg fcc and ffh hollow sites. 

Among the models, the Kernel Ridge Regression (KRR) model performed 

relatively better than XGBR and GBR in this dataset. 
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Figure 3.7 Plot of predicted adsorption energies (∆Epred) versus DFT 

calculated adsorption energies (∆Ecalc) using optimized KRR model for the 

datasets containing (111) surfaces with fcc hollow sites and 100 surfaces 

with ffh   

 

Figure 3.8  Plot of predicted adsorption energies (∆Epred) versus DFT 

calculated adsorption energies (∆Ecalc) using optimized KRR model for the 
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datasets containing (111) surfaces with hcp hollow sites and 100 surfaces 

with ffh   

Table 3.2  Optimization of  hyperparameters with their corresponding 

RMSE and MAE values for datasets containing (111) and (100) surfaces 

having fcc and ffh sites with the three considered regression models KRR, 

GBR and XGBR. 

 

ML 

models 

                  Optimized  

Hyperparameters 

RMSE(eV) MAE(eV) 

KRR kernel=laplacian, gamma=0.00001, 

degree=3, coef0=0, alpha=0.01 

0.34 0.27 

GBR n_estimaters=1100,  

min_samples_split = 5, max_depth = 5 

min_samples_leaf = 2, learnig_rate = 

0.2 

0.24 0.14 

XGBR n_estimators =1100, 

min_child_weight = 2, max_depth = 5, 

learning_rate = 0.15, booster = gbtree, 

base_score = 1 

0.18 0.19 

 

Table 3.3  Optimization of  hyperparameters with their  corresponding 

RMSE and MAE values for datasets containing (111) and (100) surfaces 
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having hcp and ffh sites with the three regression models KRR, GBR and 

XGBR. 

 

 

ML 

models 

                  Optimized  Hyperparameters RMSE(eV) MAE(eV) 

KRR kernel = laplacian,  gamma = 0.001, 

degree = 2, coef0 = 4, alpha =  0.1 

0.35 0.29 

GBR n_estimators=1100, min_samples_split 

= 5, min_samples_leaf = 2, max_depth 

= 5, learning_rate = 0.2 

0.50 0.39 

XGBR n_estimators =1100, min_child_weight 

= 1, max_depth = 10, learning_rate = 

0.15, booster = gbtree, base_score = 1 

0.39 0.28 

 

For the datasets containg fcc and ffh hollow sites, the test RMSE and MAE 

was lower for GBR and XGBR compared to KRR. However, we observed 

that the training RMSE and MAE for GBR and XGBR was extremely low, 

which is not considered acceptable due to the potential issue of overfitting. 

Consequently, we determined that the KRR model was the best fit 
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optimized model for both the for datasets containing hcp and ffh hollow 

sites, as well as for datasets containing fcc and ffh hollow sites. 

3.6 Stability 

To check whether our model work with unseen data we did cross validation 

for  KRR. Cross-validation is a technique used in machine learning (ML) to 

assess the performance and generalization ability of a model on unseen data. 

It involves partitioning the available dataset into various subsets, or "folds," 

and iteratively evaluating and training the model on different combinations 

of these folds. For this we have divided our both  for datasets containing 

hcp and ffh hollow sites, as well as for datasets containing fcc and ffh 

hollow sites into 5 mutually exclusive folds  labelled as fold1, fold2, fold3, 

fold4, fold5. Firstly we use fold2, fold3, fold4, fold5 as our training datasets 

and then check the model's performance on fold1 (the validation set) and 

record the evaluation metrics. Then in next we take  fold1, fold3, fold4, fold 

as training datasets and again check the model's performance on fold2 this 

time. we did this thing for 5 times for each fold and record its cross score. 

Actually this helps in identifying overfitting, which generally happen when 

a model performs well on the training data but poorly on newly data. By 

testing the model on various parts of the data, cross-validation helps us 

determine if the model is too focused on the specific details of the training 

set. 
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Figure 3.9 Representation of MAE scores for datasets (111) and (100) 

surfaces  having hcp and ffh hollow sites, at 5 fold cross validation 

. 

 

Figure 3.10  Representation of MAE scores for datasets (111) and (100) 

surfaces  having fcc and ffh hollow sites, at 5 fold cross validation 

. 

3.7.Catalysts screening 

Our work involves using TMCs as catalysts for the HER instead of the 

currently available Pt benchmark catalyst. To screen catalysts, we set the 

screening criteria using the equation 

                                   [∆𝐸𝐻
𝑃𝑡 − 1] < ∆𝐸𝐻

𝑥 < [ ∆𝐸𝐻
𝑃𝑡+1] 

over 1485 adsorption energy values. The screening criteria range was set at 

(∆𝐸𝐻
𝑃𝑡± 1), and we will further study the catalysts that fall within this range. 

However, calculating the DFT values for transition metal carbides is time-

consuming, and currently, we only have 60 out of the previously decided 81 

datasets. Therefore, we need to calculate the remaining 21 datasets in the 

future and compare them with Pt carbide for the final result. We will use 
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the same DFT tool (GPAW) and computational conditions on a pure Pt(111) 

and Pt (100) slab of 64 atoms (4×4×4) with the considered lattice constants. 
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Table 3.4 Adsorption energies of different combination of TMCs and 

promoter for 100 surfaces containing ffh site. 

 

Surface On top atoms Promoters 
Adsorption 

Energy 

HfC (100) Hf, C (Li, Cs) -0.75 

HfC (100) Hf, C (Rb, Mg) -0.45 

HfC (100) Hf, C (Rb, Ba) -0.57 

CrC (100) Cr, C (Ca, Cs) -0.27 

CrC (100) Cr, C (Li, Rb) -0.23 

NbC (100) Nb, C (Na, Rb) -0.52 

NbC (100) Nb, C (Sr, Ba) -0.60 

NbC (100) Nb, C (Na, Ca) -0.78 

TiC (100) Ti, C (Be, Be) -1.00 

TiC (100) Ti, C (Li, Be) -0.40 

TiC (100) Ti, C (K, Mg) -0.33 

TaC (100) Ta, C (Na, Sr) -0.68 

TaC (100) Ta, C (Cs, Mg) -0.53 

TaC (100) Ta, C (K, K) -0.72 

ZrC (100) Zr, C (K, Ba) -0.71 
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Surface On top atoms Promoters Adsorption 

Energy (eV) 

ZrC (100) Zr, C (Sr, Sr) -0.59 

ZrC (100) Zr, C (Li, K) -0.74 

ZrC (100) Zr, C (Li, Ba) -1.06 

VC (100) V, C (Rb, Cs) -0.08 

VC (100) V, C (Mg, Ba) -0.19 

VC (100) V, C (Be, Ca) -1.05 

VC (100) V, C (Na, Cs) -0.15 

WC (100) W, C (Li, Ba) -0.93 

WC (100) W, C (Be, Ba) -1.00 
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Table 3.5 Adsorption energies of different combination of transition metal 

carbides and promoter for (111) surfaces in which metal is on top 

containing fcc hollow site. 

 

Surface 

On top 

atoms 

Promoters Adsorption Energy (eV) 

CrC (111) Cr (Ca, Sr) -0.64 

CrC (111) Cr (K, Mg) -0.73 

CrC (111) Cr (Rb, Mg) -0.74 

CrC (111) Cr (Li, Sr) -0.66 

WC (111) W, C (Ca, Cs) -1.19 

WC (111) W, C (Rb, Rb) -1.06 

WC (111) W, C (K, Cs) -1.07 

HfC (111) Hf (Ca, Be) -1.13 

HfC (111) Hf (Mg, Ba) -1.42 

VC (111) V (K, Ca) -1.01 

VC (111) V (Mg, Mg) -1.02 

VC (111) V (Rb, Be) -0.75 

VC (111) V (K, K) -1.01 

MoC (111) Mo (Na, K) -1.74 

NbC (111) Nb (Ca, Ba) -1.09 

TaC (111) Ta (Na, Ba) -1.12 

TaC (111) Ta (Mg, Ca) -1.17 
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Surface 

On top 

atoms 

Promoters Adsorption Energy (eV) 

TiC (111) Ti (Cs, Be) -0.91 

ZrC (111) Zr (Cs, Sr) -1.04 
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Table 3.6 Adsorption energies of different combination of transition metal 

carbides and promoter for (111) surfaces in which metal is on top 

containing hcp hollow site. 

 

     Surface On top atoms Promoters Adsorption Energy (eV) 

CrC (111) Cr (Ca, Sr) -0.35 

CrC (111) Cr (K, Mg) -0.44 

CrC (111) Cr (Rb, Mg) -0.46 

CrC (111) Cr (Li, Sr) -0.39 

WC (111) W, C (Ca, Cs) -1.19 

WC (111) W, C (Rb, Rb) -1.06 

WC (111) W, C (K, Cs) -1.07 

HfC (111) Hf (Ca, Be) -0.59 

HfC (111) Hf (Mg, Ba) -0.68 

VC (111) V (K, Ca) -0.79 

VC (111) V (Mg, Mg) -0.52 

VC (111) V (Rb, Be) -0.52 

VC (111) V (K, K) -0.78 

MoC (111) Mo (Na, K) -1.24 

NbC (111) Nb (Ca, Ba) -0.69 

TaC (111) Ta (Na, Ba) -1.07 

TaC (111) Ta (Mg, Ca) -0.73 
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     Surface On top atoms Promoters Adsorption Energy (eV) 

TiC (111) Ti (Cs, Be) -0.81 

ZrC (111) Zr (Cs, Sr) -1.07 

ZrC (111) Zr (Li, Cs) -1.02 
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Table 3.7 Adsorption energies of different combination of transition metal 

carbides and promoter for (111) surfaces in which carbon is on top 

containing fcc hollow site. 

 

Surface On top atoms Promoters Adsorption Energy (eV)  

HfC (111) C (Na, Ba) -1.95 

HfC (111) C (Na, Na) -2.02 

CrC (111) C (K, Sr) -1.34 

NbC (111) C (Be, Ba) -1.14 

NbC (111) C (K, Ba) -1.20 

MoC (111) C (Rb, Be) -1.17 

VC (111) C (Li, K) -1.25 

VC (111) C (Cs, Mg) -1.30 

WC (111) W, C (Rb, Sr) -0.84 

WC (111) W, C (Cs, Cs) -0.51 

WC (111) W, C (K, Ca) -0.90 

WC (111) W, C (Li, Na) -0.61 

TaC (111) C (Li, Sr) -1.53 

TiC (111) C (Na, Rb) -1.59 

TaC (111) C (Be, Sr) -3.76 

TiC (111) C (Mg, Sr) -3.24 
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Surface On top atoms Promoters Adsorption Energy (eV) 

ZrC (111) C (K. Cs) -0.98 

ZrC (111) C (Na, Cs) -0.89 

ZrC (111) C (Rb, Ba) -0.67 

ZrC (111) C (Ca, Ba) -1.16 
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Table 3.8 Adsorption energies of different combination of transition metal 

carbides and promoter for (111) surfaces in which carbon is on top 

containing hcp hollow site. 

 

Surface On top atoms Promoters 

Adsorption Energy 

(eV) 

HfC (111) C (Na, Ba) -1.9 

HfC (111) C (Na, Na) -1.71 

CrC (111) C (K, Sr) -2.48 

NbC (111) C (Be, Ba) -1.34 

NbC (111) C (K, Ba) -1.58 

VC (111) C (Li, K) -1.3 

VC (111) C (Cs, Mg) -1.14 

WC (111) W, C (Rb, Sr) -0.84 

WC (111) W, C (Cs, Cs) -0.51 

WC (111) W, C (K, Ca) -0.90 

WC (111) W, C (Li, Na) -0.61 

TiC (111) C (Na, Rb) -1.38 

TaC (111) C (Be, Sr) -1.72 

TiC (111) C (Mg, Sr) -1.55 

ZrC (111) C (K. Cs) 0.65 
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Surface On top atoms Promoters 

Adsorption Energy 

(eV) 

ZrC (111) C (Na, Cs) 0.47 

ZrC (111) C (Rb, Ba) 0.46 

ZrC (111) C (Ca, Ba) 0.40 
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Conclusion 

We have developed a methodology to identify active transition metal 

carbide catalysts for the HER from a set of nine considered carbides (TiC, 

ZrC, HfC, VC, NbC, TaC, CrC, MoC, WC). Our approach incorporates the 

promoter effect by combining transition metal carbides with alkali and 

alkaline earth metals as promoters to determine the optimal catalyst-

promoter combinations for the HER. Initially, we planned to analyze 81 

combinations from a total of 1485 possibilities. However, due to the time-

consuming nature of the calculations, we were only able to compute DFT 

results for 60 combinations, which served as the training dataset for the 

supervised ML models. Among the ML models employed, the Kernel Ridge 

Regression (KRR) models demonstrated accurate predictions of the 

adsorption energy for both the datasets. Both the datasets contain combined 

(111) and (100) surfaces whereas, one of them contain adsorption energy 

data on (111) surface at hcp-hollow sites and for other cases, adsorption 

takes place at the fcc-hollow sites of (111) surfaces. All (100) surfaces only 

have ffh sites. RMSE and MAE values for the datasets having fcc and ffh 

sites from KRR are 0.34eV and 0.27eV repectively and for datasets having 

hcp and ffh sites are 0.35eV and 0.29eV. Among these predictions, the 

prediction accuracy of the dataset having adsorption energy on fcc and ffh 

sites, is slightly better. Although we know that this much accuracy is not 

enough to screen the active catalysts. Hence, in future, we are planning to 

use active learning technique to reduce the cost of producing training data 

and to achieve better accuracy. It also can help us to choose the datapoints 

with more uncertainty which may subsequently help in the process of the 

prediction for unknown search space of the catalysts. For this, we will 

utilize the DFT results of Pt as a reference to screen the catalysts. By 

minimizing the reliance on extensive DFT calculations and leveraging 

intelligent ML algorithms, our approach significantly expedites the 

discovery of heterogeneous catalysts We envision that this methodology 
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will facilitate the rapid design of various other heterogeneous catalysts 

within a shorter timeframe. 
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