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ABSTRACT

In the AdS/CFT correspondence, we try to answer questions about bulk

physics by reconstructing bulk fields in terms of boundary CFT operators.

We develop the representation of spin one bulk gauge fields in anti de-Sitter

space in Rindler lightcone coordinates, as non-local observables in the dual

CFT. After studying the bulk reconstruction of scalar fields in Rindler co-

ordinates, we employ a similar method to obtain the bulk reconstruction

of spin one gauge fields in Rindler coordinates. Finally, we use these re-

sults to obtain the representation of bulk Wilson lines extending from one

boundary of the Rindler patch to the other in terms of the CFT spin one

currents on both the boundaries. We also find the bulk reconstruction

for scalar fields in Rindler coordinates whose boundary counterpart (scalar

conformal primary) has conformal dimension � “ d ´ 1.
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1
Introduction

Our understanding of one of the four fundamental forces of nature

gravity is based on Albert Einstein’s general theory of relativity, which

is a classical theory. However, although general relativity has been the

most successful in describing gravity, this description is incomplete. For

instance, the space-time curvature at the center of a black hole diverges,

which indicates the breakdown of the general theory of relativity and the

need for a theory that goes beyond general relativity into the quantum

realm, a quantum theory of gravity. A theory of quantum gravity seeks

to describe gravity according to the principles of quantum mechanics. By

far, most promising candidate for a theory of quantum gravity is “String

Theory”.

One of the most remarkable developments in the field of quantum

gravity in the past few decades is the relation between gravity theories

in asymptotically Anti de-Sitter space-times and conformal field theories

living in the boundary of the AdS space-time. This is the AdS/CFT cor-

respondence which was conjectured by Juan Maldacena in his paper [1] in

1997. He proposed that large N limits of certain conformal field theories in

d dimensions can be described in terms of super-gravity (and string theory)

on the product of d+1-dimensional AdS space-time with a compact mani-

fold. One of the most prominent examples of the AdS/CFT correspondence

is the AdS5/CFT4 correspondence (which was studied in [1]) which relates

N “ 4 Super Yang-Mills theory in 3+1 dimensions and IIB superstring

theory in AdS5ˆS5. Within this duality, the string theory is defined on the

1



product of AdS5ˆS5 involving five-dimensional Anti-de Sitter space and a

five-dimensional sphere. The type IIB superstring theory is the AdS side of

the AdS/CFT correspondence while N “ 4 Super Yang-Mills theory, which

is a conformally invariant theory, is the CFT side of this correspondence.

A review of Maldacena’s original work can be found in [2].

The AdS/CFT correspondence helps us to answer questions about

bulk physics in AdS space-time by studying the boundary conformal field

theory. In principle all bulk observables are encoded in correlation func-

tions of local operators in the CFT. In practice, however, many of the

quantum gravity questions we would like to address are not simply related

to local boundary correlators. Thus, in [3], the authors Hamilton, Kabat,

Lifschytz and Lowe developed a set of tools for recovering bulk physics from

the boundary CFT. This formalism is known as the HKLL prescription of

bulk reconstruction from boundary CFT named after the authors. The

results obtained in this paper by the authors were generalized for higher

dimensions in Poincaré , global and Rindler coordinates in [4] and in [5] the

authors obtained the smearing function with compact support by working

in complexified spatial boundary coordinates. In [5], it was also shown that

scalar smearing functions in Rindler coordinates can only be constructed by

analytically continuing the boundary coordinates to complex values, since

the naive expression derived from mode sums (given in [4]) was divergent.

Some interesting reviews on the HKLL prescription of bulk reconstruction

are [6], [7] and [8].

The main purpose of this thesis is to find expressions for smearing

functions for gauge fields and Wilson lines in Rindler AdS3 and AdSd`1.

A general outline of this thesis is a follows. In chapter 2, we introduce

some basic concepts like AdS space-time, di↵erent coordinate systems of

AdS space used in this thesis and review the AdS/CFT duality. Chapter

3 is dedicated as review of scalar field bulk reconstruction in Poincaré co-

ordinates as done in [3], [4]. We then study how scalar conformal primary

operators transform under conformal transformations and use this relation

and the transformation relations between Poincaré coordinates pt, x, zq

2



and Rindler coordinates pt̃, r, �̃q to obtain a relation for scalar smearing

function in Rindler coordinates. Similar result was obtained by the authors

in [5] but while working in pt̂, r, �̂q Rindler coordinates. In [5], however, the

bulk reconstruction for scalar fields with boundary counterpart having con-

formal dimension � “ d ´ 1 was not done, so in section 3.2.1 we obtain

this trivial yet new result. Chapter 4 starts with the review of gauge field

reconstruction in Poincaré coordinates as done in [9]. However, we find

that it is easier find the relation between Poincaré boundary current and

Rindler boundary current in lightcone coordinates, so we work in lightcone

coordinates from this point onwards and in section 4.2 we write expres-

sions bulk reconstruction of gauge fields in Poincaré lightcone coordinates.

Then, in section 4.3 we use the transformation relation between Poincaré

boundary current and Rindler boundary current in lightcone coordinates

and relations between Poincaré lightcone coordinates and Rindler light-

cone coordinates defined in (4.13) to obtain expressions for gauge fields

ARindler
w˘ . In section 4.4, we use the expressions for the representation of

all the components of bulk gauge fields at all wedges in Rindler lightcone

coordinates in terms of boundary spin one primary operators, to find the

expression for a Wilson line which connects the left boundary of the Rindler

patch with the right boundary. In appendix A, we show the relations be-

tween Poincaré coordinates and Rindler coordinates. Appendix B presents

an alternate derivation of bulk reconstruction for scalar fields in Rindler

coordinates as done in [5]. Finally, in appendix C, we derive expressions

for bulk reconstruction for gauge fields in Rindler coordinates but not in

lightcone coordinates pw`, w´, rq, but in Rindler coordinates pt̃, r, �̃q.

3



2
Basic concepts

2.1 AdS (Anti de-Sitter) space-time

AdS space-time is a maximally symmetric solution of Einstein’s equa-

tions of general relativity with a negative cosmological constant. AdS

space-time has a constant negative curvature, which means it is a hyper-

bolic space and has many of the same properties of two dimensionless hy-

perbolic plane.

pd ` 1q-dimensional AdS space-time is represented by hyperboloid

X2
0 ` X2

d`1 ´
dÿ

i“1

X2
i “ R2 (2.1)

(with R being the AdS radius) embedded in a pd`2q-dimensional flat space

pR2,dq with the metric

ds2 “ ´dX2
0 ´ dX2

d`1 `
dÿ

i“1

dX2
i (2.2)

An AdS invariant distance function is provided by

�px|x1q “ 1

R2
XµX

1µ (2.3)
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Figure 2.1: Image of (1 + 1)-dimensional anti-de Sitter space embedded in
flat (1 + 2)-dimensional space (Source [10]).

2.1.1 Coordinate systems

Since, all calculations throughout this thesis would be carried out

either in Poincaré or Rindler coordinates or both, so, the following subsec-

tions are dedicated as an introduction to Poincaré and Rindler coordinates

of AdS space-time.

Poincaré coordinates

The Poincaré coordinates pz, t, ~xq with z ° 0, ~x P Rd´1 are parame-

terized by:

X0 “ 1

2z

“
z2 ` R2 ` ~x2 ´ t2

‰
(2.4a)

Xi “ Rxi

z
(2.4b)

Xd “ 1

2z

“
z2 ´ R2 “ ~x2 ´ t2

‰
(2.4c)

Xd`1 “ R t

z
(2.4d)

where, i = 1,2,....,d ´ 1.

Using these coordinate relations between the embedding coordinates and

the Poincaré coordinates, we get the pd ` 1q-dimensional AdS metric in

5



Poincaré coordinates as the following:

ds2 “ R2

z2
`
´dt2 ` d~x2 ` dz2

˘
(2.5)

which can also be written as

ds2 “ R2

z2
`
⌘µ⌫dx

µdx⌫ ` dz2
˘

(2.6)

where, ⌘µ⌫ is the Minkowski metric and µ, ⌫ “ 0, 1, ....., d ´ 1. For d “ 2,

the AdS3 metric in Poincaré coordinates is

ds2 “ R2

z2
`
´dt2 ` dx2 ` dz2

˘
(2.7)

Using (2.3), we can calculate the AdS invariant distance in Poincaré co-

ordinates. The AdS invariant distance between pz, ~x, tq and pz1, ~x1, t1q in

Poincaré coordinates is

�pz, ~x, t|z1, ~x1, t1q “ z2 ` z12 ` |x ´ x1|2 ´ pt ´ t1q2
2zz1 (2.8)

The invariant distance diverges as z1 Ñ 0. So, we can define a regulated

bulk-boundary distance as

p�z1qz1Ñ0 “ z2 ` z12 ` |x ´ x1|2 ´ pt ´ t1q2
2z

(2.9)

6



Rindler coordinates

Rindler coordinates of AdS3 pt, r,�q are parameterized as the follow-

ing:

X0 “ Rr

r`
cosh

r`�
R

(2.10a)

X1 “ R

d
r2

r2`
´ 1 sinh

r`t
R2

(2.10b)

X2 “ Rr

r`
sinh

r`�
R

(2.10c)

X3 “ R

d
r2

r2`
´ 1 cosh

r`t
R2

(2.10d)

Figure 2.2: A slice of constant � in AdS3, drawn as an AdS2 Penrose
diagram. The four Rindler wedges are separated by horizons at r “ r`.
Here, 1 is the future Rindler wedge, 2 is the Right Rindler wedge, 3 is the
past Rindler wedge and 4 is the left Rindler wedge.

So, the induced metric is

ds2 “ ´r2 ´ r2`
R2

dt2 ` R2

r2 ´ r2`
dr2 ` r2d�2 (2.11)

7



Here, ´8 † t,� † 8 and r` † r † 8. r “ r` is the position of the

Rindler horizon. Re-scaling the coordinates as

t̂ “ r`t
R2 and �̂ “ r`�

R

we get the AdS3 metric as the following:

ds2 “ R2

r2`

#
´ pr2 ´ r2`qdt̂2 ` r2`

r2 ´ r2`
dr2 ` r2d�̂2

+
(2.12)

However, we find that for most of our cases it is easier to work with pt̃, r, �̃q1

coordinates where t̃ “ Rt̂ and �̃ “ R�̂, which gives our AdS3 metric to be:

ds2 “ 1

r2`

#
´ pr2 ´ r2`qdt̃2 ` R2r2`

r2 ´ r2`
dr2 ` r2d�̃2

+
(2.13)

(2.13) is the AdS3 metric in Rindler coordinates, the AdSd`1 metric is thus:

ds2 “ 1

r2`

#
´ pr2 ´ r2`qdt̃2 ` R2r2`

r2 ´ r2`
dr2 ` r2d⌦2

d´1

+
(2.14)

Using (2.3) the AdS invariant distance between two points in the right

Rindler wedge for the metric (2.13) is found out to be

� “ rr1

r2`
cosh p �̃

R
´ �̃1

R
q ´

ˆ
r2

r2`
´ 1

˙ 1
2

ˆ
r12

r2`
´ 1

˙ 1
2

cosh p t̃
R

´ t̃1

R
q (2.15)

while for a point pt̃, r, �̃q inside the future Rindler wedge 1 in figure 2.2 and

a point pt̃1, r, �̃1q in the right Rindler wedge 2, the AdS invariant distance

is

�IR “ rr1

r2`
cosh p �̃

R
´ �̃1

R
q ´

ˆ
1 ´ r2

r2`

˙ 1
2

ˆ
r12

r2`
´ 1

˙ 1
2

sinh p t̃
R

´ t̃1

R
q (2.16)

similarly, for a point pt̃, r, �̃q inside the future Rindler wedge 1 in figure 2.2

and a point pt̃1, r, �̃1q in the left Rindler wedge 4, the AdS invariant distance

1
This is because the coordinates pt̂, �̂q are dimensionless, whereas the new coordinates

pt̃, �̃q are of one length dimension.

8



is

�IL “ rr1

r2`
cosh p �̃

R
´ �̃1

R
q `

ˆ
1 ´ r2

r2`

˙ 1
2

ˆ
r12

r2`
´ 1

˙ 1
2

sinh p t̃
R

´ t̃1

R
q (2.17)

The AdS invariant distance for the metric (2.12) is the following:

� “ rr1

r2`
cosh p�̂ ´ �̂1q ´

ˆ
r2

r2`
´ 1

˙ 1
2

ˆ
r12

r2`
´ 1

˙ 1
2

cosh pt̂ ´ t̂1q (2.18)

2.2 Conformal field theory

Most quantum field theories have Poincaré symmetry, i.e they are

invariant Lorentz transformations (xµ Ñ xµ1 “ ⇤µ
⌫ x

⌫) and translations

(xµ Ñ xµ1 “ xµ ` aµ). Any QFT which in addition to Poincaré symmetry

is also invariant under dilations ( xµ Ñ xµ1 “ �xµ) and under special con-

formal transformation
´
xµ Ñ xµ1 “ xµ`aµx2

1`2a⌫x⌫`a2x2

¯
is known as a conformal

field theory. We know under the transformation of x Ñ x1, the metric

gµ⌫pxq transforms as

gµ⌫pxq Ñ g1
µ⌫px1q “ Bx↵

Bx1µ
Bx�

Bx1⌫ g↵�pxq (2.19)

For conformal transformations, the metric remains invariant up to a scale

change,

gµ⌫pxq Ñ g1
µ⌫px1q “ ⌦ g↵�pxq (2.20)

We employ the jacobian,

ˇ̌
ˇ̌Bx1

Bx

ˇ̌
ˇ̌ “ 1b

detpg1
µ⌫q

“ ⌦´d{2 (2.21)

to describe conformal transformations.

2.3 AdS/CFT duality

In 1997, Juan Maldacena in his paper [1] proposed that large N limits

of certain conformal field theories in d dimensions can be described in terms

9



of super-gravity (and string theory) on the product of d+1-dimensional AdS

space with a compact manifold. In other words any theory of quantum

gravity in the bulk (M or AdS space) can be corresponded to a quantum

field theory with conformal symmetry in the boundary (BM) having one

less number of dimensions. This is the well known “AdS/CFT correspon-

dence”. AdS/CFT duality is also known as holographic duality. The basic

idea of this duality is that a gravity theory in AdS space is equivalent to

a quantum field theory with conformal symmetry on the boundary of that

space. There are several advantages to embracing the AdS/CFT approach.

2.3.1 AdS/CFT dictionary

The map between observables on both sides of the AdS/CFT duality

is known as AdS/CFT dictionary. The most basic way to view this du-

ality is an isomorphism between the Hilbert spaces: � : HAdS Ñ HCFT .

Another way to view the AdS/CFT duality is the extrapolate dictionary

[11], [12]. According to the extrapolate dictionary, for scalar field in d+1

dimensions in pure AdS we have:

lim
rÑ8

rn� h�pr1, t1,⌦1q�pr2, t2,⌦2q.......�prn, tn,⌦nqi “ h0 |Opt1,⌦1q

Opt2,⌦2q........Optn,⌦nq | 0i (2.22)

Here, O is the scalar primary with conformal dimensions � which is

dual to the bulk scalar field � with mass m, with � “ d
2 ` 1

2

?
d2 ` 4m2.

10



3
Bulk reconstruction of scalar fields

Any local bulk field can be expressed in terms of non-local operators

in the boundary. Bulk scalar field �pt, ~x, zq in Poincaré coordinates is

related to the boundary scalar field �0pt, ~xq as:

�0pt, ~xq “ lim
zÑ0

1

z�
�pt, ~x, zq (3.1)

Here, z is the radial coordinate that vanishes in the boundary.

AdS/CFT correspondence imply that the boundary behaviour of the field

corresponds to an operator of conformal dimensions � in the CFT (�0pxq
Ø Opxq). This implies a correspondence between local fields in the bulk

and non-local operators in the boundary CFT with conformal dimensions

�, which is given as follows:

�pt, ~x, zq “
ª
dt1dd´1~x1K pt1~x1 | t, ~x, zqOpt1~x1q (3.2)

This is the HKLL prescription of bulk reconstruction given in literature [3],

[4].

3.1 Scalar field reconstruction in Poincaré

coordinates

A scalar field of mass m satisfies the Klein-Gordon equation, which is

pl ´ m2q� “ 0. In Poincaré coordinates, the box/d’Alembertian operator

11



is:

l “ z2

R2
⌘µ⌫BµB⌫ ` z2

R2
B2
z ´ pd ´ 1q z

R2
Bz (3.3)

This gives the scalar field equation in an AdSd`1 background in Poincaré

coordinates as:

ˆ
z2

R2
⌘µ⌫BµB⌫ ` z2

R2
B2
z ´ pd ´ 1q z

R2
Bz ´ m2

˙
�pt, ~x, zq “ 0 (3.4)

Doing Fourier transform on �pt, ~x, zq, we can write

�pt, ~x, zq “
ª
d! dd´1~k a!~k e

´i!t ei
~k~x f!~kpzq (3.5)

Using (3.4) in (3.5) we obtain,

z2f 2pzq ` p1 ´ dqzf 1pzq `
”
p!2 ´ |~k|2qz2 ´ m2

ı
fpzq “ 0 (3.6)

z2f 2pzq `
ˆ
1 ´ 2.

d

2

˙
zf 1pzq `

#
p!2 ´ |~k|2qz2 ´

ˆ
m2 ` d2

4

˙
` d2

4

+
fpzq “ 0

(3.7)

We know the conformal dimension � of the CFT operator is related to

dimension d and mass m of the bulk scalar field �pt, ~x, zq as � = d
2 +

?
d2`4m2

2 . Thus we can write d2

4 ` m2 = p� ´ d
2q2. The equation (3.7) then

becomes,

z2f 2pzq `
ˆ
1 ´ 2.

d

2

˙
zf 1pzq `

#
p!2 ´ |~k|2qz2 ´

ˆ
� ´ d

2

˙2

` d2

4

+
fpzq “ 0

(3.8)

A Bessel’s di↵erential equation of the form:

z2w2pzq ` p1 ´ 2sqzw1pzq ` ra2r2z2r ´ ⌫2r2 ` s2swpzq “ 0 (3.9)

has the solution wpzq = C1zsJ⌫pazrq + C2zsY⌫pazrq. Comparing equations

(3.8) and (3.9), we get r “ 1, s “ d
2 , a

2 “ p!2 ´ |~k|2q, ⌫ “ p� ´ d
2q.

This gives the solution of the radial part of the scalar field equation pl ´

12



m2q�pt, ~x, zq “ 0 in (d+1)-dimensional AdS in Poincaré coordinates to be:

fpzq “ C1z
d
2J⌫

ˆb
!2 ´ |~k|2z

˙
` C2z

d
2Y⌫

ˆb
!2 ´ |~k|2z

˙
(3.10)

with ⌫ “ � ´ d
2 .

For ⌫ ° 1, only Bessel’s function of the first kind J⌫pxq is normalizable

i.e. any arbitrary well behaved function fpxq can be expanded in a Bessel

series. Therefore,

�pt, ~x, zq “
ª

|!|°|~k|
d! dd´1~k a!~k e

´i!t ei
~k~xz

d
2 J⌫

ˆb
!2 ´ |~k|2z

˙
(3.11)

Using the expression of the bulk field obtained in (3.11) in the bulk-

boundary correspondence (3.1), we get:

�0pt, ~xq “ lim
zÑ0

1

z�

ª

|!|°|~k|
d! dd´1~k a!~k e

´i!t ei
~k~xz

d
2 J⌫

ˆb
!2 ´ |~k|2z

˙

(3.12)

We use a few identities of Bessel’s functions and hyper-geometric functions:

1.

J⌫pxq “
`
1
2

˘⌫

�p⌫ ` 1q 0F1

ˆ
; ⌫ ´ 1;´1

4
z2

˙
(3.13)

where, 0F1p; a; zq “ ∞8
k“0

zk

ak k! is the hyper-geometric function of the

first kind.

2.

lim
zÑ0

0F1

ˆ
; ⌫ ´ 1;´1

4
p!2 ´ |~k|2q ⌫

2 “ 1

˙
(3.14)

Using (3.13) and (3.14) in (3.12), we obtain:

�0pt, ~xq “ 1

2⌫�p⌫ ` 1q

ª

|!|°|~k|
d!dd´1~ka!~ke

´i!tei
~k~xp!2 ´ |~k|2q ⌫

2 (3.15)

Performing inverse Fourier transform on (3.15) gives the mode coe�cients

to be,

a!~k “ 2⌫ �p⌫ ` 1q
p!2 ´ |~k|2q ⌫

2

ª
dt dd´1~x ei!t e´i~k~x �0pt, ~xq (3.16)

13



Using (3.16) in (3.11), we obtain the representation of bulk scalar field

�pt, ~x, zq in terms of boundary field �0pt, ~xq as

�pt, ~x, zq “
ª
dtdd´1~xKpt1, ~x1|t, ~x, zq�0pt1, ~x1q (3.17)

where

Kpt1, ~x1|t, ~x, zq “ 2⌫�p⌫ ` 1q
p2⇡qd

ª

|!|°|~k|
d! dd´1~k e´i!pt´t1q ei

~kp~x´~x1qz
d
2

J⌫p
b
!2 ´ |~k|2zq

p!2 ´ |~k|2q ⌫
2

is the scalar smearing function in Poincaré coordinates. Following cal-

culations along the lines of [3], [4], one obtains a smearing function with

support on the entire boundary of the Poincaré patch, however by complex-

ifying the boundary spatial coordinates one can obtain a smearing function

with compact support. By representing bulk operators as operators on the

boundary with compact support in fact with support that is as small as

possible – we can have bulk operators whose dual boundary operators are

spacelike separated. Such bulk operators will manifestly commute with

each other just by locality of the boundary theory. In the following sub-

section, we discuss how to find scalar smearing function by complexifying

the boundary spatial coordinates as done in [5].

3.1.1 Scalar smearing function

The bulk scalar field �pt, ~x, zq can also be written as

�pt, ~x, zq “ 2⌫�p⌫`1q
ª

|!|°|~k|
d!dd´1~ke´i!tei

~k~xz
d
2

J⌫

ˆb
!2 ´ |~k|2z

˙

´
!2 ´ |~k|2

¯ ⌫
2

�0p!,~kq

(3.18)

We use two identities of Bessel’s polynomials:

1.

p2⇡q d
2J0

ˆ
r
b
!2 ´ |~k|2

˙
“

ª 2⇡

0

d✓e´i|~r|!sin✓´~k.~rcos✓
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2.

2⌫´ d
2�p⌫ ´ d

2
` 1qb´⌫J⌫pbq “

ª 1

0

rdd´1~rp1 ´ r2qp⌫´ d
2 qJ0pbrq

Using these two identities we get,

J⌫

ˆb
!2 ´ |~k|2z

˙

p!2 ´ |~k|2q ⌫
2

“ 1

p2zq⌫⇡ d
2�p⌫ ´ d

2 ` 1q

ª

t12`|~y|12†z2
dt1dd´1~y1

pz2 ´ t12 ` |~y|12q⌫´ d
2 e´i!t1´~k.~y1

(3.19)

Since ⌫ = � ´ d
2 , therefore �p⌫ ` 1q “ �p� ´ d

2 ` 1q and �p⌫ ´ d
2 ` 1q “

�p� ´ d ` 1q.
Using (3.19) in (3.18), we obtain the following expression for bulk field

�pt, ~x, zq “ �p� ´ d
2 ` 1

⇡
d
2�p� ´ d ` 1q

ª

t12`|~y|12†z2
dt1dd´1~y1

ˆ
z2 ´ t12 ` |~y|12

z

˙�´d

�0pt ` t1, ~x ` i~y1q (3.20)

The Poincaré AdS invariant distance (2.8) with boundary coordinates ~x1 “
~x ` i~y1 and t1 “ t ` t1 and z1 “ 0 becomes limz1Ñ0

´
2�pz, ~x, t|z1, ~x1, t1qz1

¯
=

z2´t12`|~y|12
z . Thus,

�pt, ~x, zq “ �p� ´ d
2 ` 1

⇡
d
2�p� ´ d ` 1q

ª

t12`|~y|12†z2
dt1dd´1~y1 lim

z1Ñ0
p2�z1q�´d �0pt`t1, ~x`i~y1q

(3.21)

However, for the case of conformal dimension � “ d ´ 1, �p� ´ d ` 1q is

undefined. Using an integral representation for Bessel function,

J⌫paq “
`
a
2

˘⌫
?
⇡�p⌫ ` 1

2q
1

VolpSd´2q

ª

|~n|“1

d~n e´i~a.~n

we obtain:

J⌫

ˆb
!2 ´ |~k|2z

˙

p!2 ´ |~k|2q ⌫
2

“
`
z
2

˘⌫

�
`
d
2

˘
VolpSd´1q

ª

t2`|~y|2“1

dtdd´1~ye´i!zt´z~k.~y (3.22)
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Thus, the bulk reconstruction for a scalar field when � “ d ´ 1 is

�pt, ~x, zq “ 1

VolpSd´1q

ª

t12`|~y|12“z2
dt1dd´1~y1�0pt ` t1, ~x ` i~y1q (3.23)

The integral is over a sphere of radius z on the complexified boundary,

with the center of the sphere located at pt, ~xq. This can be written in the

covariant form using the regulated bulk-boundary distance (2.9) as

�pt, ~x, zq “ 1

VolpSd´1q

ª

t12`|~y|12“z2
dt1dd´1~y1�p�z1q�0pt ` t1, ~x ` i~y1q (3.24)

Thus for general � ‰ d´1, the reconstructed bulk field in terms of bound-

ary field is given by (3.20) with scalar smearing function

Kpt ` t1, ~x ` i~y1|t, ~x, zq “ �p� ´ d
2 ` 1

⇡
d
2�p� ´ d ` 1q

ˆ
z2 ´ t12 ` |~y|12

z

˙�´d

(3.25)

While for � “ d´1, the reconstructed bulk field in terms of boundary field

is given by (3.24) with scalar smearing function

Kpt ` t1, ~x ` i~y1|t, ~x, zq “ 1

VolpSd´1q�p�z1q (3.26)

3.2 Scalar field reconstruction in Rindler co-

ordinates

Under global conformal transformations, scalar quasi-primary oper-

ators of conformal dimensions �j transform as the following:

�jpxq Ñ �1
jpxq “

ˇ̌
ˇ̌Bx1

Bx

ˇ̌
ˇ̌
�j{d

�jpx1q “ ⌦´�j{2 �jpx1q (3.27)

Using the value of conformal factor ⌦ from (A.14) in going from Poincaré

boundary coordinates pt, xq to Rindler boundary coordinates pt̃, �̃q, the

boundary scalar operator transforms as

�Poincaré
0 pt, xq “ lim

rÑ8

ˆ
r`R
r z

˙�

�Rindler
0 pt̃, �̃q (3.28)
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We know the transformation between bulk scalar fields �Poincarepxq and �Rindlerpx1q
and boundary behaviour of bulk scalar field in Poincaré coordinates to be

the following:

�Poincaré
0 pt, xq “ lim

zÑ0

1

z�
�Poincarépt, z, xq

�Poincarépxq “ �Rindlerpx1q
(3.29)

Using the relations in (3.29) and the relation between boundary scalar oper-

ators �Poincaré
0 and �Rindler

0 given in (3.28), we have the boundary behaviour

of bulk scalar field in Rindler coordinates to be the following:

�Rindlerpt̃, r, �̃q “ lim
rÑ8

ˆ
Rr`
r

˙�

�Rindler
0 pt̃, �̃q (3.30)

From here onwards, we will be working in AdS3/CFT2. Setting d “ 2 in

(3.21), we obtain the bulk reconstruction of scalar fields in AdS3 in Poincaré

coordinates

�pt, x, zq “ p� ´ 1q 2�´2

⇡

ª

t12`y12†z2
dt1dy1 lim

z1Ñ0
p�z1q�´2

�Poincaré
0 pt ` t1, x ` iy1q

(3.31)

From (A.13) we have the boundary change of coordinates to be:

dt dx “ lim
rÑ8

ˆ
r z

r`R

˙2

dt̃ d�̃ (3.32)

Using the relations (3.28) and (3.32) (and using primed coordinates for

boundary) in (3.31), we obtain

�pt̃, r, �̃q “ p� ´ 1q 2�´2

⇡

ª

�°0

lim
r1Ñ8

ˆ
r1z1

r`R

˙
dt̃1d�̃1 lim

z1Ñ0
p�z1q�´2

lim
r1Ñ8

ˆ
r1z1

r`R

˙�

�Rindler
0 pt̃ ` t̃1, �̃ ` i�̃1q

ñ �pt̃, r, �̃q “ p� ´ 1q 2�´2

⇡

ª

�°0

dt̃1d�̃1 lim
r1Ñ8

ˆ
r`R
r1 �

˙�´2

�Rindler
0 pt̃ ` t̃1, �̃ ` i�̃1q

(3.33)
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where as r1 Ñ 8 the AdS-invariant distance (2.15) becomes

�pt̃, r, �̃|t̃ ` t̃1, r, �̃ ` i�̃1q “ rr1

r2`

«
cos

�̃1

R
´

ˆ
1 ´ r2`

r2

˙ 1
2

cosh
t̃1

R

�
(3.34)

and the integration is over space-like separated points on the boundary and

� ° 0. A similar result but while working in Rindler coordinates (t̂, r, �̂)

was also obtained in [5] and we show this derivation in appendix B. These

results can also be obtained in a similar way as in [4] alternatively starting

from Rindler mode sum and defining it via an analytic continuation, or

alternatively from a de Sitter Green’s function.

Scalar fields in the future Rindler wedge

But if we consider a scalar field at a point inside the Rindler horizon

i.e. in the wedge 1 of figure 2.2, the smearing function extends outside the

Rindler wedge, and covers points on the boundary which are to the future of

the right Rindler patch1, so [5] uses an antipodal map, A : t̃ Ñ t̃`i⇡, �̃ Ñ
�̃ ` i⇡ under which the AdS invariant distance transform as �IRpx|Ax1q “
´�ILpx|x1q and the boundary fields transform as �R

0 pAxq “ p´1q��L
0 pxq to

find the bulk reconstruction of a scalar field inside the Rindler horizon,

�pt̃, r, �̂q “p� ´ 1q2�´2

⇡

„ª

�IR°0

dt̃1d�̃1 lim
r1Ñ8

´�IR

r1

¯�´2

�Rindler,R
0 pt̃ ` t̃1, �̃ ` i�̃1q

`
ª

�IL†0

dt̃1d�̃1 lim
r1Ñ8

´´�IL

r1

¯�´2

p´1q� �Rindler,L
0 pt̃ ` t̃1, �̃ ` i�̃1q

⇢

(3.35)

Here as r Ñ 8, the AdS invariant distance (2.16) and (2.17) both become,

�IRpt̃, r, �̃|t̃ ` t̃1, r, �̃ ` i�̃1q “ rr1

r2`

«
cos

˜
�̃1

R

¸
`

c
r2`
r2

´ 1 sinh

ˆ
t̃1

R

˙�

�ILpt̃, r, �̃|t̃ ` t̃1, r, �̃ ` i�̃1q “ rr1

r2`

«
cos

˜
�̃1

R

¸
´

c
r2`
r2

´ 1 sinh

ˆ
t̃1

R

˙�

(3.36)

1
To visualize this we can choose a bulk point in the future Rindler wedge of figure

(2.2) and follow the light rays to the right Rindler boundary.
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3.2.1 Rindler smearing function when � “ d ´ 1 “ 1

Scalar field reconstruction in Poincaré coordinates when boundary

scalar primary has conformal dimensions � “ d ´ 1 is given by (3.25),

putting d “ 2 i.e. � “ 1 there we obtain:

�pt, z, xq “ 1

2⇡

ª

t12`y12“z2
dt1dy1 �p�z1q�0pt, xq (3.37)

Putting � “ 1 in (3.28) we have,

�Poincare
0 pt, xq “ lim

rÑ8

ˆ
r`R
r z

˙
�Rindler
0 pt̃, �̃q (3.38)

Using the relations (3.32) and (3.38) in (3.37) (and using primed for bound-

ary coordinates) we have the following:

�pt̃, r, �̃q “ 1

2⇡

ª

S

dt̃1d�̃1 lim
r1Ñ8

ˆ
r1z1

r`R

˙2 ˆ
r`R
r1z1

˙
�p�z1q�Rindler

0 pt̃`t̃1, �̃`i�̃1q

ñ �pt̃, r, �̃q “ 1

2⇡

ª

S

dt̃1d�̃1 lim
r1Ñ8

ˆ
r1z1

r`R

˙
�

ˆ
r1�z1

r1

˙
�Rindler
0 pt̃ ` t̃1, �̃ ` i�̃1q

Using a property of �-function which is �paxq “ 1
|a|�pxq in the above ex-

pression, we get

�pt̃, r, �̃q “ 1

2⇡

ª

S

dt̃1d�̃1 �

ˆ
r`R
r1 �

˙
�Rindler
0 pt̃ ` t̃1, �̃ ` i�̃1q (3.39)

here, the region of integration S is cos �̃1
R “

b
1 ´ r2

r2`
cosh t̃1

R .

For a bulk scalar field at the point inside the Rindler horizon, we use the

same antipodal mapping used in the above section to obtain the result

(3.35) and obtain,

�pt̃, r, �̃q “ 1

2⇡

„ª

S1

dt̃1d�̃1 �

ˆ
r`R
r1 �IR

˙
�Rindler,R
0 pt̃ ` t̃1, �̃ ` i�̃1q ´

ª

S2

dt̃1d�̃1 �

ˆ
r`R
r1 �IL

˙
�Rindler,L
0 pt̃ ` t̃1, �̃ ` i�̃1q

⇢ (3.40)
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here, the regions of integration S1 and S2 are respectively

S1 : cos

˜
�̃1

R

¸
“ ´

c
r2`
r2

´ 1 sinh

ˆ
t̃1

R

˙

S2 : cos

˜
�̃1

R

¸
“

c
r2`
r2

´ 1 sinh

ˆ
t̃1

R

˙
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4
Bulk reconstruction of gauge fields

4.1 Gauge field reconstruction in Poincaré

coordinates

In [9], the authors reconstructed the bulk Maxwell field AMpx, zq in

terms of boundary current jµpxq, via a kernel of the form

AMpx, zq “
ª
ddx1Kµ

Mpx, z|x1qjµpx1q (4.1)

Thus, bulk gauge field can be represented in terms of a non-local operator

in the dual CFT.

4.1.1 Gauge smearing function in Poincaré coordi-

nates

The source free Maxwell equation in the bulk is

rMFMN “ 0 (4.2)

In the holographic gauge we set Az “ 0 and use a residual gauge transfor-

mation to set BµAµ “ 0.

The remaining Maxwell equations then simplify to

Bµp⌘µ⇢B⇢qA⌫ ` zd´3

ˆ
1

zd´3
BzA⌫

˙
“ 0 (4.3)
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Defining �⌫px, zq “ zA⌫px, zq, one finds that

z2pBµ⌘µ⇢B⇢q�⌫ ` z2B2
z�⌫ ´ pd ´ 1qzBz�⌫ ` pd ´ 1q�⌫ “ 0 (4.4)

Equation (4.4) is just the scalar field equation pl ´m2q� “ 0 with the AdS

radius R “ 1 in the box operator (3.3) and mass term m2 “ 1 ´ d. Using

� = d
2 +

?
d2`4m2

2 we obtain, � “ d´1. Thus, bulk field �µpx, zq is related
to boundary current jµpxq (according to (3.1)) as

�Poincaré
µ px, zq „ zd´1jPoincaré

µ pxq as z Ñ 0

Since the field �µpx, zq satisfies the scalar field equation and � “ d ´ 1,

we obtain the reconstruction of bulk field in terms of boundary current

by (3.23) and thus APoincaré
µ pt, ~x, zq can be written in terms of boundary

current jPoincaré
µ pt ` t1, ~x ` i~y1q as

zAPoincaré
µ pt, ~x, zq “ 1

VolpSd´1q

ª

t12`|~y|12“z2
dt1dd´1~y1jPoincaré

µ pt ` t1, ~x ` i~y1q
(4.5)

In the covariant form (3.24), we have

zAPoincaré
µ pt, ~x, zq “ 1

VolpSd´1q

ª

t12`|~y|12“z2
dt1 dd´1~y1 �p�z1q

jPoincaré
µ pt ` t1, ~x ` i~y1q

(4.6)

Thus, the gauge smearing function is �p�z1q
zVolpSd´1q .

4.2 Gauge smearing function in AdS3 Poincaré

lightcone coordinates

Since, we are working in AdS3/CFT2, we find that it is easier for

us to work with Poincaré and Rindler lightcone coordinates to obtain a

simpler boundary current transformation between Poincaré and Rindler

coordinates. We define Poincaré lightcone coordinates as x˘ “ x˘ t. Thus
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the bulk AdS3 metric in Poincaré lightcone coordinates is:

ds2 “ R2

z2
`
dx`dx´ ` dz2

˘
(4.7)

And the boundary CFT2 metric in lightcone coordinates is

ds2 “ dx`1dx´1 (4.8)

Putting d “ 2 in (4.5), we get the bulk reconstruction of gauge fields in

AdS3 in Poincaré coordinates as the following

zAPoincaré
µ pt, x, zq “ 1

2⇡

ª

t12`y12“z2
dt1dy1jPoincaré

µ pt ` t1, x ` iy1q (4.9)

Now, on going from pt1, y1q coordinates to px`1, x´1q in the boundary, we

have the following jacobian of transformation

dt1dy1 “ 1

2
dx`1dx´1 (4.10)

We can also write the boundary spin-one primary jPoincaré
µ alternatively as

jPoincarépx`, x´q (there may be some overall, convention dependent con-

stant factors between jPoincaré
µ and jPoincarépx`, x´q, but in our case that is

not that important). Thus in Poincaré lightcone coordinates the expres-

sions of bulk reconstruction of gauge fields are the following:

zAPoincaré
x` px`, x´, zq “ 1

4⇡

ª

x`12`x´12“2z2
dx`1dx´1 jPoincaré

x` px`1, x´1q
(4.11)

zAPoincaré
x´ px`, x´, zq “ 1

4⇡

ª

x`12`x´12“2z2
dx`1dx´1 jPoincaré

x´ px`1, x´1q
(4.12)
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4.3 Bulk reconstruction of gauge fields in

AdS3 Rindler lightcone coordinates

In Rindler coordinates, the boundary conformal metric is ds2 “
´dt̃2 ` d�̃2. We can forget about the conformal factor, as the theory is

invariant under an overall conformal factor (as the theory is conformal

itself). We define lightcone Rindler coordinates as:

w˘ “ �̃ ˘ t̃ (4.13)

thus, the Rindler boundary conformal metric in the lightcone coordinates

is then ds2 “ dw`1dw´1.1

4.3.1 Poincaré to Rindler transformation of bound-

ary current

The transformation relations between the Poincaré lightcone coordi-

nates px`, x´, zq and Rindler lightcone coordinates pw`, w´, rq are:

x´ “ R

#
r̃ sinh

´
w``w´

2R

¯
´

?
r̃2 ´ 1 sinh

´
w`´w´

2R

¯

r̃ cosh
`
w``w´

2R

˘
`

?
r̃2 ´ 1 cosh

`
w`´w´

2R

˘
+

(4.14)

x` “ R

#
r̃ sinh

´
w``w´

2R

¯
`

?
r̃2 ´ 1 sinh

´
w`´w´

2R

¯

r̃ cosh
`
w``w´

2R

˘
`

?
r̃2 ´ 1 cosh

`
w`´w´

2R

˘
+

(4.15)

z “ R

r̃ cosh
`
w``w´

2R

˘
`

?
r̃2 ´ 1 cosh

`
w`´w´

2R

˘ (4.16)

where, r̃ “ r
r`
. In the limit r Ñ 8 in the above relations we obtain

the transformation relation between the boundary lightcone coordinates

px`1, x´1q and pw`1, w´1q to be the following:

w`1 “ R log

ˆ
x`1 ´ R

x`1 ` R

˙
(4.17)

1
Primed quantities are used to represent the boundary coordinates to be integrated

over.
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w´1 “ R log

ˆ
x´1 ´ R

x´1 ` R

˙
(4.18)

Thus, the jacobian of transformation between the boundary coordinates is

dw`1dw´1 “
ˆ
dw`1

dx`1

˙ ˆ
dw´1

dx´1

˙
dx`1dx´1 (4.19)

From [13], we know that the transformation relation of spin-s primary

operator jpz, z̄q with conformal dimension � is

jpz, z̄q ›Ñ
ˆBf

Bz

˙h ˆBf̄
Bz̄

˙h̄

jpfpzq, f̄pz̄qq (4.20)

where, h “ 1
2p� ` sq and h̄ “ 1

2p� ´ sq. In our case, z “ x`1, z̄ “
x´1 and fpzq “ w`1, f̄pz̄q “ w´1. For jPoincaré

x` px`1, x´1q, we have � “
1, s “ 1 thus, h “ 1, h̄ “ 0 and jPoincaré

x´ px`1, x´1q, we have � “ 1, s “
´1 thus, h “ 0, h̄ “ 1, hence the transformation of jPoincaré

x˘ to jRindler
w˘ are

as follows:

jPoincaré
x` px`1, x´1q “

ˆ
dw`1

dx`1

˙
jRindler
w` pw`1, w´1q (4.21)

jPoincaré
x´ px`1, x´1q “

ˆ
dw´1

dx´1

˙
jRindler
w´ pw`1, w´1q (4.22)

We know Aµ’s are bulk spin-one gauge fields and should transform as vector

under Lorentz transformation from Rindler to Poincaré coordinates i.e.

as ARindler
µ px1q “ Bx↵

Bxµ1APoincaré
↵ . Thus, we can write ARindler

w˘ in terms of

APoincaré
x˘ as

ARindler
w` “ Bx`

Bw`APoincaré
x` ` Bx´

Bw`APoincaré
x´

ARindler
w´ “ Bx`

Bw´APoincaré
x` ` Bx´

Bw´APoincaré
x´

ARindler
r “ Bx`

Br APoincaré
x` ` Bx´

Br APoincaré
x´

(4.23)
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Using the transformation relations (4.14) and (4.15) in (4.23), we obtain

ARindler
w` “ 1

2

#
r̃ cosh

`
w``w´

2R

˘
`

?
r̃2 ´ 1 cosh

`
w`´w´

2R

˘
+2

”
APoincaré

x´ `
´
2r̃2 ´ 1 ` 2r̃

?
r̃2 ´ 1 cosh pw´{Rq

¯
APoincaré

x`

ı

ñ ARindler
w` “ 1

2

#
r̃ cosh

`
w``w´

2R

˘
`

?
r̃2 ´ 1 cosh

`
w`´w´

2R

˘
+

”
zAPoincaré

x´ `
´
2r̃2 ´ 1 ` 2r̃

?
r̃2 ´ 1 cosh pw´{Rq

¯
zAPoincaré

x`

ı

(4.24)

We can write (4.24) as the following expression

ARindler
w` “ 1

C

”
zAPoincaré

x´ `
´
2r̃2 ´ 1 ` 2r̃

?
r̃2 ´ 1 cosh pw´{Rq

¯

zAPoincaré
x`

‰
(4.25)

where, C “ 2R

#
r̃ cosh

´
w``w´

2R

¯
`

?
r̃2 ´ 1 cosh

´
w`´w´

2R

¯+
. Similarly, we

can write ARindler
w´ in terms of APoincaré

x` and APoincaré
x´ as:

ARindler
w´ “ 1

C

”
zAPoincaré

x` `
´
2r̃2 ´ 1 ` 2r̃

?
r̃2 ´ 1 cosh pw`{Rq

¯

zAPoincaré
x´

‰
(4.26)

Using (4.19) and (4.21) in (4.11), we have

zAPoincaré
x` “ 1

4⇡

ª

S

1`
dw`1
dx`1

˘ `
dw´1
dx´1

˘dw`1dw´1
ˆ
dw`1

dx`1

˙
jRindler
w` pw`1, w´1q

zAPoincaré
x` “ 1

4⇡

ª

S

1`
dw´1
dx´1

˘dw`1dw´1jRindler
w` pw`1, w´1q

zAPoincaré
x` “ 1

4⇡

ª

S

dw`1dw´1
«

pew´1{R ´ 1q2
2ew´1{R

�
jRindler
w` pw`1, w´1q

(4.27)
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Similarly, we find

zAPoincaré
x´ “ 1

4⇡

ª

S

dw`1dw´1
«

pew`1{R ´ 1q2
2ew`1{R

�
jRindler
w´ pw`1, w´1q (4.28)

Thus, the representation of bulk field ARindler
w` pw`, w´, rq in terms of bound-

ary spin-one conformal operators jRindler
w` pw`1, w´1q and jRindler

w´ pw`1, w´1q is

ARindler
w` pw`, w´, rq “ 1

4⇡C

«ª

S

dw`1dw´1
«

pew`1{R ´ 1q2
2ew`1{R

�
jRindler
w´ pw`1, w´1q

`
´
2r̃2 ´ 1 ` 2r̃

?
r̃2 ´ 1 cosh pw´{Rq

¯

ª

S

dw`1dw´1
«

pew´1{R ´ 1q2
2ew´1{R

�
jRindler
w` pw`1, w´1q

�

(4.29)

Similarly, the representation of bulk field ARindler
w´ pw`, w´, rq in terms of

boundary spin-one conformal operators jRindler
w` pw`1, w´1q and jRindler

w´ pw`1, w´1q
is

ARindler
w´ pw`, w´, rq “ 1

4⇡C

«ª

S

dw`1dw´1
«

pew´1{R ´ 1q2
2ew´1{R

�
jRindler
w` pw`1, w´1q

`
´
2r̃2 ´ 1 ` 2r̃

?
r̃2 ´ 1 cosh pw`{Rq

¯

ª

S

dw`1dw´1
«

pew`1{R ´ 1q2
2ew`1{R

�
jRindler
w´ pw`1, w´1q

�

(4.30)

where, the region of integration S is cos
´

w``w´
2R

¯
“

?
1 ´ r̃2 cosh

´
w`´w´

2R

¯
.

The expressions (4.29) and (4.30) give the bulk reconstruction of bulk gauge

fieldsARindler
w˘ pw`, w´, rq which are inside the right Rindler wedge in Rindler

lightcone coordinates. As shown in figure (4.1), these bulk fields are recon-

structed in terms of only right Rindler boundary currents. Even though we

have ARindler
r , the radial component of bulk gauge field in Rindler coordi-

nates, but a deeper look in the holographic gauge condition APoincaré
z “ 0

in Poincaré coordinates reveals that ARindler
r is dependent on ARindler

w` and
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ARindler
w´ as:

ARindler
r “ ´

# ˜
Bw`

Bz
Br
Bz

¸
ARindler

w` `
˜

Bw´
Bz

Bw`
Bz

¸
ARindler

w´

+

Thus, by finding the bulk reconstruction of ARindler
w` and ARindler

w´ , we can

find the bulk reconstruction of ARindler
r .

Figure 4.1: Diagram of a gauge field inside the right Rindler wedge repre-
sented by the black dot and its support on the boundary.
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Figure 4.2: Diagram that shows how the smearing function support on
the boundary changes for gauge fields inside the Rindler horizon when we
impose an antipodal mapping.

Gauge fields inside the Rindler horizon

For bulk gauge fields inside the Rindler horizon pr “ r`q, we im-

pose an antipodal mapping A which acts on w` and w´ as A : w` “
w` ` 2i⇡ and w´ “ w´. Fields with integer conformal dimension �

transform simply under the antipodal map as,

jRindler,RpAxq “ p´1q�jRindler,Lpxq (4.31)

Thus, in our case we have,

jRindler,R
w˘ pAxq “ ´jRindler,L

w˘ pxq (4.32)
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This gives the bulk reconstruction of gauge field ApIqRindler
w` pw`, w´, rq in-

side the Rindler horizon to be

ApIqRindler
w` pw`, w´, rq “

1

4⇡C

«ª

S1

dw`1dw´1
«

pew`1{R ´ 1q2
2ew`1{R

�
jRindler,R
w´ pw`1, w´1q

´
ª

S2

dw`1dw´1
«

pew`1{R ´ 1q2
2ew`1{R

�
jRindler,L
w´ pw`1, w´1q

`
´
2r̃2 ´ 1 ` 2r̃

?
r̃2 ´ 1 cosh pw´{Rq

¯

ª

S1

dw`1dw´1
«

pew´1{R ´ 1q2
2ew´1{R

�
jRindler,R
w` pw`1, w´1q

´
´
2r̃2 ´ 1 ` 2r̃

?
r̃2 ´ 1 cosh pw´{Rq

¯

ª

S2

dw`1dw´1
«

pew´1{R ´ 1q2
2ew´1{R

�
jRindler,L
w` pw`1, w´1q

�
(4.33)

Similarly, the bulk reconstruction of gauge field ApIqRindler
w´ pw`, w´, rq inside

the Rindler horizon is

ApIqRindler
w´ pw`, w´, rq “

1

4⇡C

«ª

S1

dw`1dw´1
«

pew´1{R ´ 1q2
2ew´1{R

�
jRindler,R
w` pw`1, w´1q

´
ª

S2

dw`1dw´1
«

pew´1{R ´ 1q2
2ew´1{R

�
jRindler,L
w` pw`1, w´1q

`
´
2r̃2 ´ 1 ` 2r̃

?
r̃2 ´ 1 cosh pw`{Rq

¯

ª

S1

dw`1dw´1
«

pew`1{R ´ 1q2
2ew`1{R

�
jRindler,R
w´ pw`1, w´1q

´
´
2r̃2 ´ 1 ` 2r̃

?
r̃2 ´ 1 cosh pw´{Rq

¯

ª

S2

dw`1dw´1
«

pew`1{R ´ 1q2
2ew`1{R

�
jRindler,L
w´ pw`1, w´1q

�
(4.34)

The regions of integration S1 is �IR “ 0 or cos
´

w``w´
2R

¯
“ ´

?
r̃2 ´ 1

sinh
´

w`´w´
2R

¯
and S2 is �IL “ 0 or cos

´
w``w´

2R

¯
“

?
r̃2 ´ 1 sinh

´
w`´w´

2R

¯
.

Thus, we obtain the representation of bulk field present at a point in the
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future Rindler wedge inside the Rindler horizon in terms of spin one confor-

mal operators jRindler,R
w` pw`1, w´1q, jRindler,R

w´ pw`1, w´1q on the right bound-

ary and spin one conformal operators jRindler,L
w` pw`1, w´1q, jRindler,L

w´ pw`1, w´1q
on the left boundary. In (4.11) and (4.12), we see that APoincaré

x` and

APoincaré
x´ are represented in terms of jPoincaré

x` and jPoincaré
x´ respectively, but

in Rindler light-cone coordinates both ARindler
w` and ARindler

w´ are represented

as a function of both jRindler
w` and jRindler

w´ as seen in (4.29), (4.30), (4.33)

and (4.34). This is because the authors in [9] worked in the holographic

gauge in Poincaré coordinates i.e. APoincaré
z “ 0, but in our case in Rindler

coordinates we have not chosen any gauge to work with. Also, while work-

ing in Rindler lightcone coordinates we can obtain the bulk reconstruction

for light-like components of the bulk gauge fields only. We will be working

in Rindler coordinates (t̃, r, �̃) in appendix C to resolve this limitation and

to represent the space-like and time-like components of bulk gauge fields

in terms of space-like and time-like boundary spin one conformal operators

(j�̃ and jt̃).

4.4 Bulk reconstruction of Wilson line

In [14], [15], the authors suggested that in the presence of two bound-

aries, the expression for a charged operator inside the Rindler horizon in

the future Rindler wedge must contain a contribution from a new gauge

invariant operator which is a boundary-to-boundary Wilson line WLR, in

addition to well known smeared boundary operator contributions. In this

section, we want to find the representation of this new operator WLR in

terms of spin one operators in both the boundary CFTs. Alternately, we

can also study Wilson lines which connect charged scalar operators in the

right/left Rindler wedges of the bulk to points in the right/left boundary to

make the entire thing a gauge invariant bulk operator (but we will not fo-

cus on these Wilson lines in this section). Wilson loops are gauge invariant
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operators which are defined as:

W r�s “ exp

ˆ
i

ª

�

Aµdx
µ

˙
(4.35)

where, � is a closed loop. Wilson lines can be defined in a similar fashion

where the start and end points of the loop � are not the same, thus Wilson

lines are defined as

W rxi, xf s “ exp

ˆ
i

ª xf

xi

Aµdx
µ

˙
(4.36)

Let us consider a Wilson line WLR “ W rA,Es going from the left

CFT2 boundary of the AdS3 Rindler patch to the right CFT2 boundary.

Since, we know representation of all the components of bulk gauge fields of

all wedges in Rindler lightcone coordinates in terms of boundary spin one

primary operators, we can easily obtain the representation of Wilson lines

in terms of these boundary operators.

Figure 4.3: Wilson line going from a point A on the left CFT2 boundary
of Rindler patch to a point E on the right boundary. The dotted lines
represent the Rindler horizon at r “ r`.

From the point A on the left CFT2 boundary of the AdS3 Rindler

32



patch to the point B on the left Rindler horizon, we have

W rA,Bs “ lim
rÑr`

#
exp

ˆ
i

ª B

A

f1
´
ApLqRindler

w` , ApLqRindler
w´

¯
dr

˙+
(4.37)

here, f1 is a function of the light-like components of a bulk gauge field in

the left Rindler wedge. Using (4.29) and (4.30), we can express W rA,Bs
as a function of spin one conformal operators jRindler,L

w` and jRindler,L
w´ on the

left boundary.

Again from B to C and from C to D, we have,

W rB,Cs “ lim
rÑr`

#
exp

ˆ
i

ª C

B

f2
´
ApIqRindler

w` , ApIqRindler
w´

¯
dr

˙+

W rC,Ds “ lim
rÑr`

#
exp

ˆ
i

ª D

C

f3
´
ApIqRindler

w` , ApIqRindler
w´

¯
dr

˙+ (4.38)

here, f2 and f3 are two di↵erent functions of the light-like components of a

bulk gauge field in the future Rindler wedge. Using (4.33) and (4.34), we

can express W rB,Cs andW rC,Ds as functions of both spin one conformal

operators jRindler,L
w` and jRindler,L

w´ on the left boundary and spin one con-

formal operators jRindler,R
w` and jRindler,R

w´ on the right boundary. Similarly,

from a point D on the right Rindler horizon to a point E on the right CFT2

boundary of the AdS3 Rindler patch, we have,

W rD,Es “ lim
rÑr`

#
exp

ˆ
i

ª E

D

f4
´
ApRqRindler

w` , ApRqRindler
w´

¯
dr

˙+
(4.39)

here, f4 is a function of the light-like components of a bulk gauge field in

the left Rindler wedge. Using (4.29) and (4.30), we can express W rD,Es
as a function of spin one conformal operators jRindler,R

w` and jRindler,R
w´ on the

right boundary.

Thus, using the expressions for W rA,Bs, W rB,Cs, W rC,Ds, and

W rD,Es from (4.37), (4.38) and (4.39) in (4.36), we can find the expres-

sion for the entire Wilson line W rA,Es which connects the left boundary

of the Rindler patch with the right boundary. Thus, we have an expres-

sion for the representation of a Wilson line that stretches between the two
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boundaries of the Rindler patch in terms of some functions of spin one

CFT operators of the right boundary of the Rindler patch (jRindler,R
w` and

jRindler,R
w´ ) and spin one CFT operators of the left boundary of the Rindler

patch (jRindler,L
w` and jRindler,L

w´ ).
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5
Summary and outlook

In this thesis, we found out expressions for the representation of

bulk gauge fields in Rindler lightcone coordinates pw`, w´, rq in terms

of boundary spin one conformal operators jRindler
w˘ . In chapter 4, we started

with the revision of bulk reconstruction of gauge fields in Poincaré coor-

dinates as done in [9] in section 4.1. Then, we define Poincaré lightcone

coordinates as x˘ “ x ˘ t and obtained the bulk reconstruction result

for gauge fields in Poincaré lightcone coordinates as given in (4.11) and

(4.12) of the section 4.2. Since in [9], the authors used the holographic

gauge conditions in Poincaré coordinates i.e. APoincaré
z “ 0, we can see

in (4.11) that APoincaré
x` is represented only in terms of jPoincaré

x` and simi-

larly in (4.12), APoincaré
x´ is represented only in terms of jPoincaré

x´ . In sec-

tion 4.3, we define the Rindler lightcone coordinates w˘ “ �̃ ˘ t̃, where

�̃ is the Rindler spatial coordinate and t̃ is the Rindler temporal coordi-

nate. Equations (4.14), (4.15) and (4.16) are the relations between the

Poincaré lightcone coordinates px`, x´, zq and Rindler lightcone coordi-

nates pw`, w´, rq. Using these coordinate transformation relations and the

relation between Poincaré boundary spin one conformal operators jPoincaré
x˘

and Rindler boundary spin one conformal operators jRindler
w˘ given in (4.21)

and (4.22), we obtain the representation of both the light-like components

of bulk gauge field in Rindler coordinates in terms of Rindler boundary spin

one conformal operators. (4.29) and (4.30) are the expressions which repre-

sent bulk fields in the right/left Rindler wedge ARindler
w` and ARindler

w´ in terms

of combinations of jRindler
w` and jRindler

w´ . Similarly, (4.33) and (4.34) are ex-
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pressions which represent bulk fields in the future Rindler wedge ApIqRindler
w`

and ApIqRindler
w´ in terms of jRindler,L

w` , jRindler,R
w` , jRindler,L

w´ and jRindler,R
w´ . Un-

like in Poincaré coordinates, we find that in Rindler light-cone coordinates

both ARindler
w` and ARindler

w´ are represented as a function of both jRindler
w` and

jRindler
w´ , this is because unlike in Poincaré coordinates we have not worked

with any particular gauge in Rindler coordinates. Finally in section 4.4,

we try to find the representation of a Wilson line (figure 4.3) that stretches

from the left CFT2 boundary to right CFT2 boundary of the AdS3 Rindler

patch in terms of boundary spin one operators using (4.29), (4.30), (4.33)

and (4.34).

In [14], Harlow suggests that cutting of Wilson lines requires the

existence of bulk fields of fundamental charge. These oppositely charged

Figure 5.1: Cutting a Wilson line by a pair of oppositely charged fields.

fields are related to “edge modes” [16]. As possible future work, we want

to check for the existence of these edge modes. We want to develop a full

mathematical formulation of this cutting of Wilson lines. We want to check

while cutting the Wilson line W rA,Es which connects the left boundary of

the Rindler patch with the right boundary, whether the bulk reconstruction

result obtained in the previous section reduces to bulk reconstruction of

gauge fields coupled with charged scalar fields as done in [17].
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A
Poincaré to Rindler transformation

(t, x, z) are the Poincaré coordinates and (t̂, r, �̂) are the Rindler

coordinates of AdS3. The coordinate transformation between these two

sets of coordinates is given the following relations:

t “ R
?
r̃2 ´ 1 sinhpt̂q?

r̃2 ´ 1 coshpt̂q ` r̃ coshp�̂q
(A.1)

x “ R r̃ sinhp�̂q?
r̃2 ´ 1 coshpt̂q ` r̃ coshp�̂q

(A.2)

z “ R?
r̃2 ´ 1 coshpt̂q ` r̃ coshp�̂q

(A.3)

where, r̃ “ r
r`
.

These coordinate transformations in the boundary where r Ñ 8 reduces

to the following relations between the (t, x) and (t̂, �̂) coordinates.

t “ R sinhpt̂q
coshpt̂q ` coshp�̂q

(A.4)

x “ R sinhp�̂q
coshpt̂q ` coshp�̂q

(A.5)

The jacobian of transformation between Poincaré boundary coordinates to

Rindler boundary coordinates is the following:

dt dx “

������

dt
dt̂

dt
d�̂

dx
dt̂

dx
d�̂

������
dt̂ d�̂
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which gives,

dt dx “ lim
rÑ8

ˆ
r z

r`

˙2

dt̂ d�̂ (A.6)

However, while doing the bulk reconstruction for scalar and gauge fields in

Rindler coordinates, we find that it is easier to work with dimension-full

coordinates defined as t̃ “ R t̂ and �̃ “ R �̂, as this makes the conformal

factor ⌦ in the transformation from Poincaré to Rindler coordinates di-

mensionless. The the coordinate transformation relations (A.1), (A.2) and

(A.3) then becomes,

t “ R
?
r̃2 ´ 1 sinhpt̃{Rq?

r̃2 ´ 1 coshpt̃{Rq ` r̃ coshp�̃{Rq
(A.7)

x “ R r̃ sinhp�̃{Rq?
r̃2 ´ 1 coshpt̃{Rq ` r̃ coshp�̃{Rq

(A.8)

z “ R?
r̃2 ´ 1 coshpt̃{Rq ` r̃ coshp�̃{Rq

(A.9)

and, the boundary coordinate transformation relations (A.4) and (A.5)

then becomes,

t “ R sinhp t̃
Rq

coshp t̃
Rq ` coshp �̃

Rq
(A.10)

x “ R sinhp �̃
Rq

coshp t̃
Rq ` coshp �̃

Rq
(A.11)

The Poincaré boundary metric is ds2 “ ´dt2 ` dx2.

Using the transformation relation gµ⌫pxq Ñ g1
µ⌫px1q “ Bx↵

Bx1µ
Bx�

Bx1⌫ g↵�pxq and

(A.10) and (A.11), we get,

gRindler
µ⌫ pxq “ 1

”
coshp t̃

Rq ` coshp �̃
Rq

ı2

¨

˝´1 0

0 1

˛

‚ (A.12)

Thus, the conformal factor is ⌦ “ 1”
coshp t̃

R q`coshp �̃
R q

ı2 . Using the coordi-

nate relations (A.10) and (A.11) the Jacobian of transformation between

Poincaré boundary coordinates to Rindler boundary coordinates is the fol-
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lowing:

dt dx “

������

dt
dt̃

dt
d�̃

dx
dt̃

dx
d�̃

������
dt̃ d�̃

which gives,

dt dx “ lim
rÑ8

ˆ
r z

r`R

˙2

dt̃ d�̃ (A.13)

And, conformal factor ⌦ can be written in terms of r, z, r`, R as the

following:

⌦ “ 1
”
coshp t̃

Rq ` coshp �̃
Rq

ı2 “ lim
rÑ8

ˆ
r z

r`R

˙2

(A.14)
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B
Alternate derivation for bulk reconstruction of

scalar fields in Rindler coordinates

In this appendix, we obtain the representation of bulk scalar fields

in Rindler coordinates pt̂, r, �̂q in terms of scalar primary operators in

the CFT2 boundary of the AdS3 Rindler patch by using the coordinate

transformation relations between the Poincaré coordinates pt, z, xq and

Rindler coordinates pt̂, r, �̂q as done by the authors in [5]. According to

the HKLL prescription [5], we can express the value of bulk field anywhere

in the right Rindler wedge in terms of data on the right Rindler boundary.

We define the boundary field in Rindler coordinates as

�Rindler,R
0 pt̂, �̂q “ lim

rÑ8
r� �pt̂, r, �̂q

ˇ̌
ˇ
right boundary

(B.1)

B.1 Rindler smearing function

We start with the bulk scalar field reconstruction in Poincaré coor-

dinates (3.21) and set d “ 2 for AdS3 and obtain

�pt, x, zq “ � ´ 1

⇡

ª

t12`y12†z2
dt1dy1 lim

z1Ñ0
p2�z1q�´2�0pt ` t1, x ` iy1q (B.2)

The right boundary field in Rindler coordinates given by (B.1) is related

to the Poincare boundary field (3.1) as

�Rindler,R
0 pt̂, �̂q “ lim

rÑ8
przq��Poincaré

0 pt, zq (B.3)
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We also have the boundary change of coordinates from (A.6)

dt dx “ lim
rÑ8

ˆ
r z

r`

˙2

dt̂ d�̂ (B.4)

Using the relations (B.3) and (B.4) in equation for bulk field (B.2)

�pt̂, r, �̂q “ p� ´ 1q2�´2

⇡r2`
lim
z1Ñ0

ª
r12z12dt̂1d�̂1p�z1q�´2 lim

r1Ñ8

ˆ
1

z1r1

˙�

�Rindler,R
0 pt̂ ` t̂1, �̂ ` i�̂1q

ñ �pt̂, r, �̂q “ p� ´ 1q2�´2

⇡r2`

ª

Spacelike

dt̂1d�̂1 lim
r1Ñ8

´�

r1

¯�´2

�Rindler,R
0 pt̂ ` t̂1, �̂ ` i�̂1q

(B.5)

where as r1 Ñ 8 the AdS-invariant distance (2.18) becomes

�pt̂, r, �̂|t̂ ` t̂1, r, �̂ ` i�̂1q “ rr1

r2`

«
cos �̂1 ´

c
1 ´ r2`

r2
cosh t̂1

�
(B.6)

and the integration is over space-like separated points on the boundary and

� ° 0. This result in these coordinates was obtained by the authors in [5].

B.1.1 Scalar fields inside the Rindler horizon

For scalar fields inside the Rindler horizon we impose an antipodal

mapping: A : t̂ Ñ t̂ ` i⇡, and �̂ Ñ �̂ ` i⇡, under which the AdS

invariant distance transform as �IRpx|Ax1q “ ´�ILpx|x1q and the boundary

scalar primary transform as �Rindler,R
0 pAxq “ p´1q��Rindler,L

0 pxq to find the

bulk reconstruction of a scalar field inside the Rindler horizon,

�pt̂, r, �̂q “ p� ´ 1q2�´2

⇡r2`

„ª

�IR°0

dt̂1d�̂1 lim
r1Ñ8

´�IR

r1

¯�´2

�Rindler,R
0 pt̂ ` t̂1, �̂ ` i�̂1q

`
ª

�IL†0

dt̂1d�̂1 lim
r1Ñ8

´´�IL

r1

¯�´2

p´1q� �Rindler,L
0 pt̂ ` t̂1, �̂ ` i�̂1q

ı

(B.7)
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where, as r Ñ 8, the AdS invariant distance �IR in pt̂, r, �̂q coordinates

is:

�IRpt̂, r, �̂|t̂ ` t̂1, r, �̂ ` i�̂1q “ rr1

r2`

«
cos �̂1 `

c
r2`
r2

´ 1 sinh t̂1
�

(B.8)

and the AdS invariant distance �IL in pt̂, r, �̂q coordinates is:

�IRpt̂, r, �̂|t̂ ` t̂1, r, �̂ ` i�̂1q “ rr1

r2`

«
cos �̂1 ´

c
r2`
r2

´ 1 sinh t̂1
�

(B.9)

B.2 Rindler smearing function when � “ d´
1 “ 1

Scalar field reconstruction in Poincaré coordinates for bulk scalar

fields whose boundary counterpart has conformal dimensions � “ d´ 1 is

given by (3.25), putting d “ 2 i.e. � “ 1 there we obtain:

�pt, z, xq “ 1

2⇡

ª

t12`y12“z2
dt1dy1 �p�z1q�0pt, xq (B.10)

Using the relations (B.3) and (B.4) in equation for bulk field (B.10),

we obtain,

�pt̂, r, �̂q “ 1

2⇡r2`

ª

S

dt̂1d�̂1 lim
r1Ñ8

r1z1�p�z1q�Rindler
0 pt̂ ` t̂1, �̂ ` i�̂1q

�pt̂, r, �̂q “ 1

2⇡r2`

ª

S

dt̂1d�̂1 lim
r1Ñ8

r1z1�

ˆ
r1�z1

r1

˙
�Rindler
0 pt̂ ` t̂1, �̂ ` i�̂1q

�pt̂, r, �̂q “ 1

2⇡r2`

ª

S

dt̂1d�̂1 �
´�

r1

¯
�Rindler
0 pt̂ ` t̂1, �̂ ` i�̂1q (B.11)

(B.11) above represents the bulk reconstruction of scalar fields �pt̂, r, �̂q in

the right Rindler wedge with conformal dimension � “ d ´ 1, where, the

region of integration S is � “ 0 or cos �̂1 “
b
1 ´ r2`

r2 cosh t̂
1.

For a bulk scalar field at the point inside the Rindler horizon, we use the

same antipodal mapping used in the above section to obtain the result
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(B.7) and obtain,

�pt̂, r, �̂q “ 1

2⇡r2`

„ª

S1

dt̂1d�̂1 �
´�

r1

¯
�Rindler,R
0 pt̂ ` t̂1, �̂ ` i�̂1q ´

ª

S2

dt̂1d�̂1 �
´´�

r1

¯
�Rindler,L
0 pt̂ ` t̂1, �̂ ` i�̂1q

⇢ (B.12)

where, the regions of integration S1 and S2 are respectively,

S1 : cos �̂1 “ ´
c

r2`
r2

´ 1 sinh t̂1

S2 : cos �̂1 “ `
c

r2`
r2

´ 1 sinh t̂1
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C
Gauge field reconstruction in Rindler

coordinates pt̃, r, �̃q

In this appendix, we want to find the representation of the time-like

and space-like components ARindler
t̃

and ARindler
�̃

of bulk gauge fields in the

AdS3 Rindler patch in terms of boundary spin one conformal operators

jRindler
t̃

and jRindler
�̃

. In section 4.3, while working in Rindler lightcone

coordinates, we obtained only the expressions for bulk reconstruction of

light-like components of bulk gauge fields in Rindler coordinates. This

method is useful to find the representation of a Wilson line that stretches

between the two boundaries of the Rindler patch in terms of functions of

the time-like and space-like components of spin one CFT operators of the

boundary.

From [9], we know that bulk gauge field APoincaré
µ satisfies the follow-

ing equation

pl ´ m2qzAPoincaré
µ “ 0 with, m2 “ 1 ´ d (C.1)

and, the boundary behaviour of bulk gauge field APoincaré
µ is the following:

APoincaré
µ “ lim

zÑ0
z�´1jPoincaré

µ

or, zAPoincaré
µ “ lim

zÑ0
z�jPoincaré

µ

Thus, it can be interpreted that zAPoincaré
µ behaves like a scalar field �Poincaré

µ

with a boundary counterpart Oµ, which behaves as a scalar primary with
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conformal dimension � “ d ´ 1 and Oµ ” jPoincaré
µ . From (3.27), we know

how scalar primary operators transform under conformal transformations

and using the value of conformal factor ⌦, we find the relation between

jPoincaré
µ and jRindler

µ to be

jPoincaré
µ pt, xq “ lim

r1Ñ8

ˆ
Rr`
r1z1

˙�

jRindler
µ pt̃, �̃q (C.2)

For AdS3, we have d “ 2 and � “ 1, thus

jPoincaré
µ pt, xq “ lim

r1Ñ8

ˆ
Rr`
r1z1

˙
jRindler
µ pt̃, �̃q (C.3)

which can be interpreted as jµpxq “ Bx1
↵

Bxµ
j↵px1q, thus

jPoincaré
t pt, xq “ lim

r1Ñ8

ˆ
Rr`
r1z1

˙ #
jRindler
t̃ pt̃, �̃q ` jRindler

�̃
pt̃, �̃q

+

jPoincaré
x pt, xq “ lim

r1Ñ8

ˆ
Rr`
r1z1

˙ #
jRindler
t̃ pt̃, �̃q ` jRindler

�̃
pt̃, �̃q

+ (C.4)

Putting d “ 2 in (4.5), we get the bulk reconstruction of gauge fields in

AdS3 in Poincaré coordinates as the following

zAPoincaré
µ pt, x, zq “ 1

2⇡

ª

t12`y12“z2
dt1dy1�p�z1qjPoincaré

µ pt` t1, x` iy1q (C.5)

Using (C.4) and (A.13) in (B.4), we get:

zAPoincaré
t pt, x, zq “ 1

2⇡

ª

⌃

dt̃1d�̃1 �

ˆ
Rr`
r1 �

˙ ”
jRindler
t̃ pt̃ ` t̃1, �̃ ` i�̃1q `

jRindler
�̃

pt̃ ` t̃1, �̃ ` i�̃1q
ı

zAPoincaré
x pt, x, zq “ 1

2⇡

ª

⌃

dt̃1d�̃1 �

ˆ
Rr`
r1 �

˙ ”
jRindler
t̃ pt̃ ` t̃1, �̃ ` i�̃1q `

jRindler
�̃

pt̃ ` t̃1, �̃ ` i�̃1q
ı

(C.6)

We know Aµ’s are bulk spin-one gauge fields and should transform as vector

under Lorentz transformation from Rindler to Poincaré coordinates i.e.

as ARindler
µ px1q “ Bx↵

Bxµ1APoincaré
↵ . Thus, we can write ARindler

t̃,�̃
in terms of
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APoincaré
t,x as

ARindler
t̃ “ Bt

Bt̃A
Poincaré
t ` Bx

Bt̃ A
Poincaré
x

ARindler
�̃

“ Bt
B�̃

APoincaré
t ` Bx

B�̃
APoincaré

x

(C.7)

Using the transformation relations (A.7) and (A.8) in (C.7), we obtain

ARindler
t̃ “ 1

D2

# ´
r̃2 ´ 1 ` r̃

?
r̃2 ´ 1 cosh pt̃{Rq cosh p�̃{Rq

¯
APoincaré

t

´
´
r̃
?
r̃2 ´ 1 sinh pt̃{Rq sinh p�̃{Rq

¯
APoincaré

x

+

(C.8)

and,

ARindler
�̃

“ 1

D2

# ´
r̃2 ` r̃

?
r̃2 ´ 1 cosh pt̃{Rq cosh p�̃{Rq

¯
APoincaré

x

´
´
r̃
?
r̃2 ´ 1 sinh pt̃{Rq sinh p�̃{Rq

¯
APoincaré

t

+ (C.9)

where, D “
?
r̃2 ´ 1 cosh pt̃{Rq ` r̃ cosh p�̃{Rq. Using the expressions of

bulk gauge fields APoincaré
t and APoincaré

x from (C.6) in (C.8), we get the

representation of bulk gauge field ARindler
t̃

in terms of boundary spin-one

currents jRindler
t̃

and jRindler
�̃

ARindler
t̃ pt̃, r, �̃q “ 1

2⇡D

#
r̃2 ´ 1 ` r̃

?
r̃2 ´ 1 cosh

˜
t̃ ´ �̃

R

¸+

ª

⌃

dt̃1d�̃1 �

ˆ
Rr`
r1 �

˙ ”
jRindler
t̃ pt̃ ` t̃1, �̃ ` i�̃1q `

jRindler
�̃

pt̃ ` t̃1, �̃ ` i�̃1q
ı

(C.10)
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Similarly, we have,

ARindler
�̃

pt̃, r, �̃q “ 1

2⇡D

#
r̃2 ` r̃

?
r̃2 ´ 1 cosh

˜
t̃ ´ �̃

R

¸+

ª

⌃

dt̃1d�̃1 �

ˆ
Rr`
r1 �

˙ ”
jRindler
t̃ pt̃ ` t̃1, �̃ ` i�̃1q `

jRindler
�̃

pt̃ ` t̃1, �̃ ` i�̃1q
ı

(C.11)

with D “
?
r̃2 ´ 1 cosh pt̃{Rq ` r̃ cosh p�̃{Rq and the region of integration

p⌃q is cos p �̃1
R q “

b
1 ´ r2

r2`
cosh p t̃1

Rq. Thus, we find that the reconstructed

expression for both the time-like and space-like components of bulk gauge

field ARindler
t̃

pt̃, r, �̃q and ARindler
�̃

pt̃, r, �̃q respectively depends on combina-

tions of both the time-like and space-like components of the spin one bound-

ary conformal operator jRindler
t̃

pt̃, �̃q and jRindler
�̃

pt̃, �̃q.

Gauge fields inside the Rindler horizon in the future Rindler

wedge

For a bulk gauge field at the point inside the Rindler horizon, we use

an antipodal mapping A : t̂ Ñ t̂ ` i⇡, and �̂ Ñ �̂ ` i⇡, under which

the AdS invariant distance transform as �IRpx|Ax1q “ ´�ILpx|x1q and the

boundary spin one primary transform as jRindler,R
µ pAxq “ p´1q�jRindler,L

µ pxq.
For our case of AdS3/CFT2 we have:

jRindler,R
t̃

pAxq “ ´jRindler,L
t̃

pxq
jRindler,R

�̃
pAxq “ ´jRindler,L

�̃
pxq

Thus, the expression for bulk field ApIqRindler

t̃
pt̃, r, �̃q in terms of boundary

spin one CFT operators is:

ApIqRindler

t̃
pt̃, r, �̃q “ 1

2⇡D

#
r̃2 ´ 1 ` r̃

?
r̃2 ´ 1 cosh

˜
t̃ ´ �̃

R

¸+

ª

⌃1

dt̃1d�̃1 �

ˆ
Rr`
r1 �IR

˙ ”
jRindler,R
t̃

pt̃ ` t̃1, �̃ ` i�̃1q ` jRindler,R

�̃
pt̃ ` t̃1, �̃ ` i�̃1q

ı

´
ª

⌃2

dt̃1d�̃1 �

ˆ
Rr`
r1 �IL

˙ ”
jRindler,L
t̃

pt̃ ` t̃1, �̃ ` i�̃1q ` jRindler,L

�̃
pt̃ ` t̃1, �̃ ` i�̃1q

ı

(C.12)
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and, the expression for bulk field ApIqRindler

�̃
pt̃, r, �̃q in terms of boundary

spin one CFT operators is:

ApIqRindler

�̃
pt̃, r, �̃q “ 1

2⇡D

#
r̃2 ´ 1 ` r̃

?
r̃2 ´ 1 cosh

˜
t̃ ´ �̃

R

¸+

ª

⌃1

dt̃1d�̃1 �

ˆ
Rr`
r1 �IR

˙ ”
jRindler,R
t̃

pt̃ ` t̃1, �̃ ` i�̃1q ` jRindler,R

�̃
pt̃ ` t̃1, �̃ ` i�̃1q

ı

´
ª

⌃2

dt̃1d�̃1 �

ˆ
Rr`
r1 �IL

˙ ”
jRindler,L
t̃

pt̃ ` t̃1, �̃ ` i�̃1q ` jRindler,L

�̃
pt̃ ` t̃1, �̃ ` i�̃1q

ı

(C.13)

Here, the regions of integration ⌃1 and ⌃2 are respectively:

⌃1 : cos �̂1 “ ´
c

r2`
r2

´ 1 sinh t̂1

⌃2 : cos �̂1 “ `
c

r2`
r2

´ 1 sinh t̂1

In the bulk reconstruction for gauge fields Poincaré coordinates as done in

[9], the authors used holographic gauge i.e. APoincaré
z “ 0 due to which they

found the representation time-like and space-like components of the bulk

gauge field in Poincaré coordinates in terms of the time-like and space-like

components of the boundary spin one conformal operators jPoincaré
t and

jPoincaré
x respectively. However, in our calculations in Rindler coordinates

we haven’t used any particular gauge choice, thus we can see from (C.10),

(C.11), (C.12) and (C.13) that the representation of the time-like and space-

like components of bulk gauge fields of any wedge of the Rindler patch

depends on combinations of both the time-like and space-like components

of the boundary spin one conformal operators jRindler
t̃

and jRindler
�̃

.
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