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Abstract

Quantum computing is based on quantum mechanics and its phenomena.
It promises to provide high computational power, high speed compared to
classical computers and solve unsolvable problems of classical computers.
However it would take a while before we have fault-intolerant quantum
computers. The most prominent application of Noisy-Intermediate Scale
Quantum (NISQ) era is Variational Quantum Eigensolver (VQE) which is
used to approximate ground state energy eigenvalues of various physical
systems. In this thesis the main idea is to explore various aspects of Quan-
tum Computing keeping the deuteron problem at the core, starting from
its basics and slowly moving on to VQE and then studying the impact of
various Quantum Noise on it. An algorithm named Subspace Search Vari-
ational Quantum Eigensolver which is also used to infer meaningful results
about the excited state of deuteron. We also explore a diagonalisation tech-
nique named Schrieffer-Wolff transformation which opens door for future
work.
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1
Introduction

Richard Feynman gave a speech at Caltech in 1959 named ”There is plenty
of room at the bottom” to motivate people to start thinking incredibly
small. He believed that it is theoretically possible to simulate Quantum
materials as nature by default behaves Quantum mechanically. We can
simulate Quantum systems with Quantum computers. It is not a tur-
ing machine but is fundamentally different. More ideas about simulating
physics using computers can be found in[1].

1.1 The building blocks of Quantum Computers-

Qubits

The computational elements required for the simulation must be propor-
tional to the space time volume of the physical system. As the system size
grows in size, the computational cost grows exponentially and it becomes
intractable. While a classical bit can only be in state 0 or state 1, a quan-
tum bit can stay in a simultaneous superposition of state |0⟩ and |1⟩ as
shown in the figure below.

Figure 1.1: Classical bit vs Quantum bit.
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1.2 Superposition and Entanglement

Superposition and Entanglement are the key features providing power to
Quantum Computers to potentially solve classical intractable problems.
An array of quantum bits obeys the same Quantum Mechanical laws as an
wavefunction of electrons. An entangled state is one which can never be
written as the tensor product of two different states. When two particles are
entangled, measurement on one state reveals information about the other
particle as well. In Quantum computing, we can create an entangled qubit
state using Quantum gates known as Hadamard gate and CNOT gate. In
the figure below we have shown an entangled qubit state also called Bell’s
state. It is significant to note that before any measurement is made, both
the qubits have 50 percentage chance of being in state 0 or 1. However,
after a measurement is made on a single qubit, it changes the probability
of finding the other qubit in either of the state from 50 percentage to 100
percentage by collapsing in a particular state. Entanglement and Bell state
finds application in Quantum Teleportation[2]

Figure 1.2: Creating an entangled state.

1.3 Quantum circuits

The two most important requisites for classical computing are classical
bits and gates which does the operation on the bits. Similarly in Quantum
computing, we need Quantum gates which operates on qubits. Quantum
gates are unitary matrix which transform qubit from one state to another.

Figure 1.3: Few examples of Quantum gates.

So in a Quantum circuit the gates are applied on the input qubits to
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change their state as per the requirements of computation then measure-
ments are made to extract the information.

Figure 1.4: Quantum Circuit.

1.4 Structure of the thesis

This thesis is organised as follows: first we briefly talk about the physical
realization of a qubit, then comes the main part of our project which is
called Variational Quantum Eigensolver(VQE). We explored every aspect
of VQE keeping the deuteron problem at the back of our mind. Some
discussions on Quantum Noise and its impact on our simulation is also
discussed in the later parts of this thesis. We even tried to extend the
work by implementing Subspace Search Variational Quantum Eigensolver
(SSVQE) algorithm on the deuteron problem to infer the experimental fact
that deuteron has no excited state. The last chapter is dedicated to a model
type approach for heavier nuclei. Finally in the appendix, a diagonalising
technique named Schrieffer-Wolff transformation is discussed which opens
door to our future works in this field.
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2
Physical Realisation of Qubits

We can approximate any two level system as a potential qubit storing
information of one state as state |0⟩ and information of another state as
state |1⟩ say for example:-
i)The ground and excited state of an atom
ii)The horizontal and vertical polarization of light
iii)The up and down state of spin

Figure 2.1: Physical two level systems.

Different hardware companies focus on different approaches for making
qubits with long coherence time. The most successful ones till date are:-
i) Ion trap (used by Honeywell)
ii) Superconducting qubits (used by IBM)

Although both the qubits making involves a great detail of information
and knowledge, in the next section we would briefly explain the process of
trapping an ion.

2.1 Ingredients to trap an ion and seperate

it from surroundings

For this technique, we mainly use Calcium atom which has 20 electrons and
20 protons. There are two valence shell electrons. If we shine a purple/blue
laser, we can kick out one of the electrons and turn it into an ion.
Once it has become an ion, it is easy to manipulate using charged electrodes.

4



Figure 2.2: Left-a single trapped ion and Right- a superconducting qubit
chip.

As we know like charges repel and unlike charges attract, so we can keep on
flipping the signs of the electrodes as shown in the figure below to ensure
the ion is trapped in the center. The picture of gold chip shown below
has the electrodes projected on the surface and a similar configuration of
charges are used to trap the ions just above it. The last picture below
shows four trapped ion over a gold chip.
Now the lone outermost electron has an intrinsic property known as spin
which we might think of a bar magnet. We can consider the up spin
as our state |0⟩ and the down spin as state |1⟩ of the qubit. Now we
can use microwave as an external stimulus, which being electromagnetic
has constantly oscillating magnetic field. The moment of the spin starts
rotating so as to align itself with the direction of the magnetic field. So
depending on the time for which microwave is kept on, we might stop the
spin along a direction somewhere in between up and down state. Thats a
superposed state!
Note that we have to make sure the ion doesnot interact with surrounding
atoms of the atmosphere so we have place the gold chip and an oven which
would produce vapours of calcium atom inside an ultra-high vacuum system
as shown in the figure below

5



Figure 2.3: Process of trapping a Calcium ion.
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3
Variational Principle and Variational Quantum

Eigensolver

3.1 Mathematical Background

VQE utilizes the variational method in quantum mechanics to approxi-
mate the eigenvectors and eigenvalues of a given matrix, such as matrix A.
The eigenvector, denoted as |ψi⟩, remains unchanged up to a scalar multi-
ple when transformed by matrix A, where the corresponding eigenvalue is
represented by λi.

A|ψi⟩ = λi|ψi⟩ (3.1)

Furthermore a matrix H is said to be hermitian if its equal to its own
conjugate transpose

H = H† (3.2)

The spectral theorem states that eigenvalues associated with a Hermi-
tian matrix, such as matrix H, are always real numbers. Therefore, any
eigenvalue, denoted as λi, possesses the property that it is equal to its
complex conjugate, represented as λi = λ†i . This property arises from the
requirement that any physically measurable quantity must be real. Hence,
hermitian matrices provide a suitable mathematical framework for describ-
ing the hamiltonians of quantum systems. Moreover H may be expressed
as

H =
N∑
i=1

λi|ψi⟩⟨ψi| (3.3)

where λi is the eigenvalue corresponding to each ψi. The expectation
value of H can be written as

⟨H⟩ψ = ⟨ψ|H|ψ⟩ (3.4)

Substituting H as the weighted sum of its eigenvectors it can be shown
that

⟨H⟩ψ = ⟨ψ|

(
N∑
i=1

λi|ψi⟩⟨ψi|

)
|ψ⟩
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(3.5)

⟨H⟩ψ =
N∑
i=1

λi⟨ψ|ψi⟩⟨ψi|ψ⟩ (3.6)

⟨H⟩ψ =
N∑
i=1

λi|⟨ψi|ψ⟩|2 (3.7)

The above equation states that the expectation value of an observable
on any state can be expressed as a linear combination using the eigenvalues
associated with H as weights. Moreover each of the weights in the linear
combination is greater than or equal to 0 as |⟨ψi|ψ⟩|2 ≥ 0 so it is clear that

λmin ≤ ⟨H⟩ψ = ⟨ψ|H|ψ⟩ = |⟨ψi|ψ⟩|2 (3.8)

where we have considered |ψ⟩ to be normalised. This is the Variational
Principle.

When the hamiltonian of the system is described by a hermitian matrix
H then the lowesst eigen value Egs is the ground state energy value. We
can select any wavefunction |ψi⟩ as the initial guess trial wavefunction
(also called ansatz), calculate the expectation value of the hamiltonian and
then iteratively update the wavefunction to reach the minimum posssible
eigenvalue.

3.2 The Variational Quantum Eigensolver

We repeat the same exact procedure with an initial guess of ansatz using a
parametrized circuit in quantum computer. Such a circuit is also called a
variational form and its action is represented as an unitary transformation
U(θ) acting on the on the vacuum state of qubits |0⟩ or Hartree fock state
to generate |ψ(θ)⟩.

U(θ)|ψ⟩ = |ψ(θ)⟩ (3.9)

Figure 3.1: An example of parametrized circuit.

The step wise requisites which are required to solve any problem in
VQE is as follows:-

i)Operator (Hamiltonian in our case) in the second quantized form.

8



ii)Map the second quantized form into Pauli operators.

iii)Parameterised circuit to do the unitary operation on the initial state.

iv)A classical optimizer to optimise the value of the parameter which
minimises the expectation value of ⟨ψ(θ)|H|ψ(θ)⟩.

This clearly implies VQE is a hybrid algorithm where we create the
parametrized ansatz using quantum computer and calculate the expecta-
tion value ofH and then the parameter θ is optimized by classical optimizer
to reach a |ψ(θ)⟩ which corresponds to the lowest energy eigenvalue.

Figure 3.2: Pipeline of VQE for Molecular simulation.

3.2.1 Jordan Wigner Transformation

To enable the implementation of second-quantized hamiltonians on a quan-
tum computer, a mapping is required to express the creation (a†) and an-
nihilation (a) operators in terms of unitary matrices. In this case, the
Pauli matrices (X, Y, Z, I) serve as the appropriate unitary matrices for
this purpose. The Jordan Wigner mapping gives such a map[3].The main
advantage of Jordan Wigner mapping over other types of mapping such
as Bravyi–Kitaev representation is its simplicity. It is easy to verify the
transformation rule given in the figure below.

Figure 3.3: JW transformation, where σ’s correspond to Pauli X,Y,Z.
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3.3 Summarizing the VQE process

From the above discussions it is clear that VQE is one of the most prominent
applications of NISQ era. The starting point is the hamiltonian(H) which is
given as an input. It should however be noted that the hamiltonian should
be converted in the form of Pauli operators which is the form understood by
quantum computers. The second most crucial step as we have seen above
is the preparation of the parametrised wavefunctions through the circuit
where an unitary operation U(θ) is done over the state of input qubits |ψ⟩
to convert it to |ψ(θ)⟩. Once we have the H in the desired form along with
|ψ(θ)⟩, we take the expectation value ⟨H⟩θ = ⟨ψ(θ)|H|ψ(θ)⟩. Upto this
is done by the quantum computer. Next a classical optimizer optimises
the value of θ to give us a |ψ(θ)⟩ for which the expectation value of the
of H is the lowest. Here the variational principle is used as we know that
whatever may be the value of θ we would always have an expectation value
whose lower bound is the ground state energy of the physical system. So in
conclusion we understand that it is purely a hybrid algorithm where both
quantum and classical computing is involved.

10



4
The Deuteron Problem

In this section we talk about the Quantum Computation of deuteron, a
bound state consisting of a neutron and a proton. It is the simplest exam-
ple to study nucleon-nucleon interaction. First we used the hamiltonian in
second quantised form from the reference paper[4]. Substituting the experi-
mental values and doing JW transformation, we converted the hamiltonian
in the form of Pauli operator. Then we designed variational ansatz and
used an optimizer in the IBM platform. The entire thing was created and
coded on Qiskit. We used VQE principle to get the ground state energy
eigenvalues by increasing the number of qubits which has a one isto one
correspondence with the dimension of harmonic oscillator basis. Below are
shown the steps and the results of simulation.

4.1 Calculations and Results

HN =
N−1∑
n,m=0

⟨m|(T + V )|n⟩a†mana (4.1)

⟨m|T |n⟩ = ℏω
2

[
(2n+ 3/2)δmn −

√
n(n+ 1/2)δm+1

n −
√

(n+ 1)(n+ 3/2)δm−1
n

]

⟨m|V |n⟩ = V0δ
0
nδ

m
n (4.2)

where V0=-5.68658111MeV (experimentally)
Using JW transformation given below

a†n =
1

2

[
n−1∏
k=0

Zk

]
(Xn − iYn) (4.3)

an =
1

2

[
n−1∏
k=0

Zk

]
(Xn + iYn) (4.4)

Doing the necessary steps by increasing the value of n,m we get the
below expressions for hamiltonian.
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For N=1:-

H1 =
3ℏω
8

(I − Z0) +
V0

2
(I − Z0)

For N=2:-

H2 =
3ℏω
8

(I −Z0) +
V0

2
(I −Z0) +

ℏω
4

√
3

2
(X0X1 + Y0Y1) +

7ℏω
8

(I −Z1)

ForN=3:-

H3 =
3ℏω
8

(I − Z0) +
V0

2
(I − Z0) +

ℏω
4

√
3

2
(X0X1 + Y0Y1) +

7ℏω
8

(I − Z1)

−
√
5ℏω
8

(X1X2 + Y1Y2) +
11ℏω
8

(I − Z2)

For N=4:-

H4 =
3ℏω
8

(I − Z0) +
V0

2
(I − Z0) +

ℏω
4

√
3

2
(X0X1 + Y0Y1) +

7ℏω
8

(I − Z1)

−
√
5ℏω
8

(X1X2 + Y1Y2) +
11ℏω
8

(I − Z2)−
ℏω
4

√
21

2
(X2X3 + Y2Y3)

+
15ℏω
8

(I − Z3)

Similar calculations were done upto N=5 with ℏω = 7MeV using the
concept of cutoff [5][6] and the expression of hamiltonian keeps getting
longer and corresponding depth of circuit also increases with the number
of qubits.
The results of the simulation are given in the table below

Figure 4.1: Optimsed Ground state energy values of Deuteron with increas-
ing N.
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It is evident that with increasing N, the value approaches the experi-
mental value of deuteron ground state energy which is −2.22MeV . The
accuracy of the results are indeed very satisfactory.
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5
Comparative study of various VQE

components

After simulating the deuteron problem using VQE successfully in the previ-
ous chapter, we started exploring various ansatzes, encoding and entangle-
ment type between qubits in the circuit which are available in Qiskit. We
explored different combinations of ansatzes with various entangling pat-
terns to compare which one converges to the reference value faster. On
top of that we used three different encoding or mapping techniques to map
the hamiltonian from creation and annihilation form to pauli operators to
compare the results. Before we list the result, lets understand the theory
behind different methods a bit.

5.1 Fermionic space to spin space transfor-

mations

A parameterized ansatz wavefunction is used to evaluate the expectation
value of the Hamiltonian operator at the heart of the VQE algorithm.
Second quantization is favoured over first quantization in the current era
of Noisy Intermediate-Scale Quantum (NISQ) devices, which have limited
qubit resources. Following the guidelines of anti-commutation algebra, the
fermionic creation and annihilation operators are used in second quantiza-
tion. These operators allow for a concise representation of many-particle
quantum states and facilitate the analysis of complex following the guide-
lines of anti-commutation algebra, the fermionic creation and annihilation
operators are used in second quantization.ermionic systems within the VQE
framework.

In contrast to classical bits, qubits are spin-1/2 entities and serve as the
fundamental units of measurement on Quantum Processing Units (QPUs).
The Pauli X, Y, and Z operators, which act on qubits, follow a distinct
algebra defined by their Lie bracket. Consequently, in the VQE algorithm,
it becomes necessary to convert the hamiltonian from its second quanti-
zation representation into a linear combination of Pauli strings. These

14



Pauli strings consist of tensor products of Pauli operators acting on mul-
tiple qubits. This transformation enables the efficient utilization of qubits
for the measurement and manipulation of quantum states within the VQE
loop.

It is important to highlight that operators in second quantization must
satisfy the requirements of wavefunction antisymmetry and anti-commutation
rules. Unlike Pauli operators, which do not inherently adhere to these re-
lationships, special considerations must be taken when mapping fermionic
operators in the context of second quantization. The transformation in-
volves mapping the operator space, acting on a Fock space with ”n” or-
bitals, to a Hilbert space with a dimension of ”2n”. Interestingly, well be-
fore the advent of quantum computers, Jordan and Wigner demonstrated
the existence of one to one map between fermionic space and qubit space,
preserving the desired algebraic structure. This insight has paved the way
for establishing the connection between fermionic systems and qubit-based
quantum computing approaches.

The factors that help us in deciding a specific encoding are as follows:-

1)Number of qubits:The number of spin-orbitals or sites taken into
account in a quantum simulation often determines the number of qubits
required. However, a number of methods have been devised to compress
and combine the data held within the wavefunction onto a smaller number
of qubits. These techniques leverage the symmetries inherent in the Hamil-
tonian under study. By exploiting these symmetries, it becomes possible
to reduce the number of qubits needed for an accurate representation of
the system, enabling more efficient quantum simulations and computations.

2)Pauli weight: The biggest count of non-identity operators in any
mapped Pauli string, which is the maximum number of qubits that are
impacted by any Pauli string.

3)Number of Pauli-strings: The count of distinct Pauli strings ob-
tained through the mapping process. The quantity of Pauli strings sig-
nificantly influences the computational overhead of implementing VQE.
Therefore, all else being equal, it is preferable to minimize the number of
Pauli strings to be measured, aiming for computational efficiency.

5.2 Generalized encodings

Our attention is directed towards encodings that encompass the entire Fock
space, which corresponds to the domain of the hamiltonian. The number of
qubits, denoted as N, required for such encodings is theoretically equivalent
to the number of spin orbitals, represented as n, present in the hamiltonian
(excluding any potential reductions due to symmetries).These encodings
are agnostic to specific hamiltonian structures and provide a general ap-
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proach for representation and manipulation of quantum systems.

5.2.1 The Jordan-Wigner encoding

The Jordan-Wigner encoding technique transforms the electronic wave-
function into an array of qubits by linking the occupation number of spin
orbitals to the states of the qubits. To be more precise, ”N” qubits are
used to represent the number of spin-orbitals that are occupied by ”n.”
The state |0⟩j indicates the j-th orbital is unoccupied, while |1⟩j signifies
the j-th orbital being occupied. Here, the index ”j” combines the spatial
and spin orbital indices, providing a unified representation within the en-
coding scheme.

In the scenario of a single orbital, the actions of fermionic operators on
the j-th qubit can be expressed as spin operators as :

a†j =

[
0 0
0 1

]
=
Xj − iYj

2

aj =

[
0 1
0 0

]
=
Xj + iYj

2

where Xj and Yj are Pauli gates acting on the j-th qubit. The fermionic
anticommutation relation is not by default enforced by the Pauli operators.
Including a series of Z operators that operate on all the other qubits before
the j-th location is one way to tackle this problem. This additional set of
Z operators ensures that states with eigenvalues of +1 correspond to those
that have an even number of inhabited orbitals up to the j-th position
and those with eigenvalues of -1 to those that have an odd number of
inhabited orbitals up to the j-th position. This restoration of the fermionic
sign prescription accounts for the necessary anticommutation properties
within the encoded fermionic system. So ultimately the Jordan-Wigner
transformation is as follows

a†j =
Xj − iYj

2
⊗ Z0 ⊗ ...⊗ Zj−1 (5.1)

aj =
Xj + iYj

2
⊗ Z0 ⊗ ...⊗ Zj−1 (5.2)

As Zj anticommutes with Xj and Yj, one can easily check that this
modification ensures that the fermionic anticommutation relations among
creationa nd annihilation operator is restored that is now we have aia

†
j =

−a†jai for i ̸= j

5.2.2 The Parity Encoding

We can achieve a concept known as parity encoding by using the j-th qubit
to encode data related to the orbital’s parity till the j-th position rather
than immediately signalling the occupancy of the j-th orbital. The state
|0⟩j denotes an even number of inhabited orbitals up to and including the
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j-th position in this encoding method, whereas |1⟩j denotes an odd number
of filled orbitals.

Given this definition, if we are provided with the fermionic state |v0v1....vn⟩,
we can translate it into the qubit state |p0p1....pn⟩ within the parity encod-
ing framework by applying the following mapping:

pi =
∑
j

vj (5.3)

When the parity of the j-th qubit changes, meaning a transition occurs
from |0⟩j−1 to |1⟩j or from |1⟩j−1 to |0⟩j, it indicates that the j-th orbital
is inhabited. In contrast, if the parity remains unchanged, then the j-th
orbital is unoccupied.

The encoding of information regarding the parity of qubits up to the
j-th position is performed in the (j-1)-th qubit.When the (j-1)th qubit is in
the state |1⟩j−1, the fermionic operators aj and a

†
j introduce a minus sign,

and when it is in the state |0⟩j−1, a plus sign. This enables us to establish
the mapping for isolated fermionic operators as follows:

a†j =
Zj−1 ⊗Xj − iYj

2

aj =
Zj−1 ⊗Xj + iYj

2

However, the parity recorded in the succeeding qubits that follow the
j-th location must also be adjusted appropriately when an electron is added
to or removed from the j-th orbital. This update involves flipping those
qubits to reflect the revised parity. To achieve this, a string of X operators
can be employed. Thus, the transformation of parity is expressed as follows:

a†j =
Zj−1 ⊗Xj − iYj

2
⊗Xj+1 ⊗ ....⊗Xn−1

aj =
Zj−1 ⊗Xj + iYj

2
⊗Xj+1 ⊗ ....⊗Xn−1

5.2.3 The Bravyi-KItaev encoding

Let’s briefly delve into the concept behind this encoding, which involves a
complex mapping process.

The primary objective of this encoding is to reduce the Pauli weight
associated with the qubit operators. This is achieved by storing a combi-
nation of parity and occupation numbers within the qubits.

5.3 Different Ansatzes in VQE

The most important part of VQE is the unitary circuit which forms our
wavefunction over which the expectation value of the hamiltonian terms
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are measured. There are some ansatzes available in Qiskit. We explored
few of them to see the rate of covergence of the expectation value to the
reference value. Below are three of them which was explored:-

1) Two Local:-The two-local circuit is a parameterized circuit that
comprises alternating layers of rotation and entanglement operations. In
the rotation layers, single-qubit gates are applied to each qubit in the cir-
cuit. The entanglement layer utilizes two-qubit gates to entangle the qubits
according to a specified entanglement strategy. The choice of rotation and
entanglement gates can be specified using different formats such as strings
(e.g., ’ry’ or ’cx’), gate types (e.g., RYGate or CXGate), or even as com-
plete quantum circuits (e.g., a circuit with one qubit or a circuit with two
qubits).

2)Efficient SU2:-The EfficientSU2 circuit is composed of layers that
involve both single-qubit operations from the special unitary group SU(2)
and entanglement operations. This circuit pattern serves as a heuristic ap-
proach for preparing trial wave functions in variational quantum algorithms
or constructing classification circuits for machine learning tasks.

In SU(2), which represents the special unitary group of degree 2, the
elements are 2×2 unitary matrices with a determinant of 1. These elements
include familiar gates like the Pauli rotation gates, which play a crucial role
in the EfficientSU2 circuit.

3)Real Amplitudes ansatz:The RealAmplitudes circuit is a com-
monly employed heuristic trial wave function used as an Ansatz in various
applications, such as chemistry simulations and machine learning classi-
fication circuits. This circuit is structured with alternating layers of Y-
rotations and CX-entanglements.

The entanglement pattern within the RealAmplitudes circuit can either
be user-defined or selected from a predetermined set. The name ”RealAm-
plitudes” stems from the characteristic that the resulting quantum states
prepared by this circuit exclusively possess real amplitudes, with a complex
part that is always zero.

5.4 Entanglement pattern in the VQE cir-

cuit

In the context of the variational circuit, one can select from a range of
available options, such as the Efficient SU2 circuit provided by Qiskit. By
utilizing this method, it becomes possible to construct a variational circuit
consisting of SU(2) gates, including well-known gates like Pauli X, Y, and
Z, as well as arbitrary rotation gates (rx, ry, rz). Between the layers of the
circuit, cx gates are applied to introduce entanglement among the qubits,
thereby enhancing the expressive power of the variational model.

We are allowed to specify the entanglement structure. Assuming that
we have N qubits in the system, the available options are:
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1) Full- each qubit qn is entangled using a C-X gate qm for m = n +
1.......N .

Figure 5.1: Ansatz-EfficientSU2, SU(2) gates-Rx, X, Qubits-3, Entangle-
ment pattern-full.

2) Linear- each qubit qn is entangled using a C-X gate qm form = n+1.

Figure 5.2: Ansatz-EfficientSU2, SU(2) gates-Rz, Ry, Qubits-3, Entangle-
ment pattern-linear.

3) Circular- It is similar to ’linear’ but also entangling the first and
last qubit together using CX-gate.

Figure 5.3: Ansatz-EfficientSU2, SU(2) gates-Rz, Ry, Qubits-3, Entangle-
ment pattern-circular.

5.5 Results

In the tables below we compare the results of convergence to reference
binding energy for the above three types of ansatzes with varying encoding
and varying entanglement pattern. It is evident from the tables below that
Jordan Wigner mapper gives best result when the entanglement pattern of
CX gates are circular. Finally, I show below a plot comparing the number of
counts taken by three different mappers to converge to the reference value
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of energy for 4-qubit hamiltonian. It clearly shows that Jordan Wigner
mapper produces the best result in least number of counts. This validates
our decision of choosing Jordan Wigner for the initial parts of this thesis
as a correct decision.

Figure 5.4: Table of comparison for Two local ansatz.

Figure 5.5: Table of comparison for Efficient SU2 ansatz.
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Figure 5.6: Table of comparison for Real Amplitude ansatz.

Figure 5.7: Comparing the evaluation counts taken by three different map-
pers to reach the reference value of ⟨H4⟩. The topmost plot is for Jordan
Wigner mapper, the middle one is for Parity mapper while the bottom
most plot is for Bravyi Kitaev mapper.
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6
Subspace-search variational quantum

eigensolver for excited states

6.1 Introduction

VQE, as a variational algorithm, holds significant promise for near-term
quantum computers as it enables the approximate determination of ground
states for a given Hamiltonian. This application extends beyond ground
states to encompass excited states of molecules, which play crucial roles in
various chemical and physical phenomena. Understanding the transitions
between ground and excited states, for example, sheds light on the funda-
mental processes underlying phenomena such as luminescence. Therefore,
VQE offers a valuable tool for exploring and characterizing a broader range
of quantum states beyond just ground states.

Given the increasing computational cost and relatively poor results ob-
tained by classical computation when it comes to analyzing excited states,
the motivation to leverage quantum computers for this task arises. Quan-
tum computers offer the potential to overcome these challenges and provide
more accurate solutions.

In the context of NISQ devices, the conservation of unitary transfor-
mation is harnessed to identify excited states. The Subspace Search Varia-
tional Quantum Eigensolver (SSVQE) algorithm is employed, which takes
two or more orthogonal states as inputs and utilizes a parametrized quan-
tum circuit. The objective is to minimize the expectation value of the
energy within the space spanned by these states. By ensuring the orthogo-
nality of the output states, the SSVQE algorithm facilitates the discovery
of the k-th excited state through optimization of the circuit parameters,
which only needs to be performed twice. This approach greatly enhances
the efficiency and accuracy of finding excited states using NISQ devices.[7].
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6.2 Algorithm of Subspace-search variational

quantum eigensolver

The key idea is to establish orthogonality at the input of the quantum cir-
cuit instead of the output. The algorithm for identifying the k-th excited
state on an n-qubit quantum computer involves a series of steps. It is es-
sential to emphasize that, within this context, the ground state is regarded
as the 0-th excited state.

6.2.1 Algorithm:-

1.Construct an ansatz circuit U(θ) and choose input states |ϕj⟩ where
j=0....k which are orthogonal (⟨ϕi|ϕj⟩ = δij).

2.Minimize L1(θ) =
∑k

j=0⟨ϕj|U †(θ)HU(θ)|ϕj⟩.We denote the optimal value
of θ as θ∗.
3.Construct another parametrized quantum circuit V (ϕ) that only acts on
the space spanned by |ϕj⟩kj=0.
4.Choose an arbitrary index sϵ0, ....k and maximize
L2(ϕ) = ⟨ϕs|V †(ϕ)U †(θ∗)HU(θ∗)V (ϕ)|ϕs⟩.

In practice the orthogonal states |ϕj⟩kj=0 are chosen from a set of easily
preparable othogonal states such as the computational basis.

In short what we are doing is that for n qubit quantum computer we
would have 2n eigenstates for Hamiltonian H. As hermitian operators have
orthogonal eigenstates so supplying different orthogonal states as input and
then taking the expectation values, we are getting distinct energy eigenval-
ues of the Hamiltonian. In step-2, we are using VQE for each input state to
get the optimized values which gives the set of distinct energy eigenvalues
like ground state, first excited state , second excited state and so on till kth
excited state. In step-3 we search for the maximum value out of the set of
energy eigenvalues which is our k-th excited state. Ultimately by using a
two step optimization process we can extract our kth excited state.

6.3 Using SSVQM in the Deuteron Problem:-

Next we tried to implement this SSVQM algorithm on the deuteron prob-
lem to see the result of the first excited state. We followed the steps
discussed above starting from the hamiltonian in the second quantized
form.The results upto 5 qubits hamiltonian are given below

We notice that the results of the ground state matches well with the
reference values and with the values of the VQE results in Chapter 4. On
the other hand, the observation that there are no excited states of deuteron
aligns with experimental findings. Deuteron is a weakly bound system, and
the only ”excited state” it possesses is an unbound configuration comprising
a free proton and a free neutron. The deuteron ground state represents the
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Figure 6.1: Value of first excited state energy of deuteron with increasing
N.

sole stable bound system composed of two nucleons. Therefore, the absence
of excited states in the deuteron is consistent with experimental evidence.
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7
Quantum Noise

Thus far, our focus has primarily been on the dynamics of closed quan-
tum systems, which do not experience any undesired interactions with the
external environment. While we can derive fascinating insights about the
potential information processing capabilities of these ideal systems, it is im-
portant to acknowledge that real-world systems are never perfectly closed,
with the possible exception of the entire universe.

Quantum information processing systems in real-world settings unavoid-
ably experience undesired interactions with the external environment, lead-
ing to the emergence of noise in the system. To construct practical and
effective quantum information processing systems, it becomes essential to
comprehend and manage these noise processes. Understanding and control-
ling noise are vital components in the development of reliable and efficient
quantum information processing systems.[8][9].

How can we tell an open system from a closed one? Consider a nearly
ideal closed system, such as a swinging pendulum like those used in mechan-
ical clocks. The pendulum exhibits minimal interaction with its surround-
ings, primarily through friction. However, to fully capture the pendulum’s
dynamics and elucidate the reasons behind its eventual cessation, it is vital
to take into account the dampening effects brought on by air friction and
flaws in its suspension system.

Likewise, quantum systems, including quantum computers, can never
achieve perfect isolation. For a desired series of operations, quantum com-
puters rely on exact programming from an external source. For instance,
if an electron’s locations are used to represent the state of a qubit, interac-
tions with other charged particles are bound to occur, leading to unavoid-
able noise that affects the qubit’s state.

An open system is essentially one that interacts with another system,
typically referred to as the environment. In the case of open quantum
systems, we often wish to neglect or average over the dynamics of the
environment while focusing on the system of interest. It is important to

25



acknowledge these interactions with the environment as they can introduce
noise and undesired effects in quantum systems.

7.1 Classical noise

To enhance our comprehension of quantum noise, it can be beneficial to de-
velop an intuitive understanding of noise in classical systems. Let’s consider
the scenario of storing a bit on a hard drive connected to a conventional
computer. Initially, the bit is in a well-defined state of either 0 or 1. How-
ever, as time progresses, there is an increasing likelihood of stray magnetic
fields interfering with the bit, potentially causing it to become scrambled or
flip its state. This situation can be represented by assigning a probability,
denoted as p, for the bit to flip, and a complementary probability of 1− p
for the bit to remain unchanged. The accompanying figure illustrates this
concept:

Figure 7.1: The probabilities with which the bit may flip or remain un-
flipped.

The conditional probabilities of the bit flipping to a particular state
when it was initially in a particular state are called transitional probabil-
ities. Writing these equations explicitly for the bit on the hard drive we
get [

q0
q1

]
=

[
1− p p
p 1− p

] [
p0
p1

]
(7.1)

In conclusion, the framework of stochastic procedures can be used to
characterise noise in classical systems. When examining processes with
multiple stages, it is often appropriate to assume Markov processes, where
the noise at each step operates independently of the environment. This
implies that the noise introduced into the system by various sources or
components remains unaffected by the behavior of other sources or com-
ponents. In the context of faulty gates, the performance of each gate is
entirely independent of whether other gates are functioning correctly or
not.

The matrix in equation 6.1, when multiplied with vector p⃗, is referred
to as the evolution matrix (E). The evolution matrix exhibits two crucial
properties. Firstly, all entries of E must be non-negative, satisfying the
positivity requirement. This condition ensures that negative probabilities
cannot arise from the product Ep⃗. Secondly, all columns of E must sum to
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one, fulfilling the completeness requirement. If this condition were violated,
for instance, if the first column did not sum to one, the product E⃗p⃗ would
not represent a valid probability distribution.

To summarize, the fundamental attributes of classical noise can be sum-
marized as follows: a linear correlation between input and output probabil-
ities, regulated by a transition matrix with non-negative entries (positivity)
and columns that sum up to one (completeness). Assuming that the noise
is influenced by separate surroundings, Markov processes can be used to
characterise classical noise processes with many stages. These crucial char-
acteristics have significant counterparts in the domain of quantum noise.
However, quantum noise also introduces unique and intriguing properties
of its own.

7.2 Examples of Quantum noise

Quantum systems are susceptible to various types of errors beyond simple
bit flips. One such type is phase errors, which arise due to continuous
evolution of the quantum state. While the overall phase is unimportant,
relative phases play a crucial role. In addition to bit and phase flip error
channels, we will explore the concept of depolarizing channels and delve into
their geometrical interpretation. By understanding these error channels,
we can gain insights into the mechanisms that introduce errors in quantum
states and devise strategies to mitigate their impact.

7.2.1 Geometric picture of single qubit quantum op-
erations

There exists a visually appealing geometric approach to visualize single
qubit’s quantum operations. This method provides an intuitive under-
standing of how quantum operations affect the qubit’s state by considering
their impact on the Bloch sphere. The state of a single qubit can be ele-
gantly represented as a point on the Bloch sphere, offering a comprehensive
depiction of its quantum properties.

ρ =
I + r⃗.σ⃗

2

where r is the three component real vector and σs are the Pauli matri-
ces. It is revealed that any trace-preserving quantum operation (ϵ) can be
expressed as an equivalent map of the following form.

r⃗
ϵ−→ r⃗′ =Mr⃗ + c⃗

where M is a 3× 3 real matrix which generally takes into account the
deformation and rotation of the Bloch sphere and c⃗ is a constant vector.

7.2.2 Bit flip and Phase flip

The geometric picture helps in visualizing the impact of noise on quantum
state and becomes very important in quantum information theory. The bit
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flip channel flips the state of a qubit from |0⟩ to |1⟩ (and vice versa) with
probability 1− p. It has operation elements

E0 =
√
pI =

√
p

[
1 0
0 1

]
, E1 =

√
1− pX =

√
1− p

[
0 1
1 0

]

Figure 7.2: The effect of bit flip channel for p=0.3

It is important to note that the X operation is responsible for inducing
the bit flip. As a result, the states along the x-axis remain unchanged,
while the states along the y-axis and z-axis experience contraction by a
factor of 1− 2p.

It is simpler to check specific details regarding quantum operations us-
ing this geometric image. It is simple to demonstrate that tr(ρ2) is equal

to 1+|r|2
2

, where r is the bloch vector length. The contraction of the bloch
sphere implies that the length of the bloch vector can only decrease so
tr(ρ2) can only ever decrease and the pure states get coverted to mixed
states.

The phase flip channel has the following operation elements

E0 =
√
pI =

√
p

[
1 0
0 1

]
, E1 =

√
1− pZ =

√
1− p

[
1 0
0 −1

]

From a geometric perspective, the Bloch vector undergoes a projection
along the z-axis, resulting in the loss of its x and y components.

The bit-phase flip channel, as its name suggests, combines both the
bit flip and phase flip operations, given that Y = iXZ. The operation
elements associated with this channel are presented below.
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Figure 7.3: The effect of phase flip channel for p=0.3

E0 =
√
pI =

√
p

[
1 0
0 1

]
, E1 =

√
1− pY =

√
1− p

[
0 i
−i 0

]

Figure 7.4: The effect of bit-phase flip channel for p=0.3

Notice that while the states along the x and z axes are reduced by a
factor of 1-2p, the states along the y-axis are left unchanged.

7.2.3 Depolarizing channel

The depolarizing channel is a significant form of quantum noise that plays
a crucial role in quantum information processing. Consider a single qubit,
where there is a probability p that the qubit undergoes depolarization.
In this case, the qubit is transformed into the completely mixed state,
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represented by I/2, where I is the identity matrix. On the other hand,
with a probability of 1 − p, the qubit remains unaffected. Consequently,
the resulting state of the quantum system after the application of this noise
can be described as a combination of the original state and the completely
mixed state as given below:

ϵ(p) =
pI

2
+ (1− p)ρ (7.2)

The effect of depolarizing channel on the bloch sphere is shown below. It
is clear that the entire bloch sphere contracts as a function of p.

Figure 7.5: The effect of depolarizing channel for p=0.5

For an arbitrary ρ it is evident that we can write

I

2
=
ρ+XρX + Y ρY + ZρZ

4
(7.3)

ϵ(p) = (1− 3p

4
)ρ+

p

4
(XρX + Y ρY + ZρZ) (7.4)

which implies that the operation elements of the channel are
√

1− 3/4I,√
pX/2,

√
pY/2,

√
pZ/2 which after conveniently parametrizing can be

written as
ϵ(p) = (1− p)ρ+

p

3
(XρX + Y ρY + ZρZ) (7.5)

which has the interpretation that the density operator ρ is left alone with
a probability (1− p) and X,Y,Z operators are applied with probability p/3
which causes the entire bloch sphere to contract symmetrically.

The depolarizing channel can be expanded to encompass quantum sys-
tems with dimensions beyond two. The channel of depolarisation functions
in a d-dimensional quantum system by replacing the quantum state with
the fully mixed state I/d with a probability of p and keeping the state
unchanged with a probability of 1-p. The quantum operation correspond-
ing to this depolarizing channel can be described as follows: it transforms
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the input state into a convex combination of the original state and the
completely mixed state which is stated below:

ϵ(p) =
pI

d
+ (1− p)ρ (7.6)

7.3 Applying noise model in Deuteron sim-

ulation

We can simply design our own noise model based on the characteristics
of an actual quantum device using IBM’s Qiskit Aer primitives. As we
dont have the access to use the real hardware for many qubits so the most
realistic result of the vqe simulation of deuteron is got by implementing a
noise model to our otherwise nearly ideal simulation and then compare the
results for fewer qubit hamiltonians in a real hardware. In this section first
we would show the impact of a realistic noise model on the binding energy
of deuteron for different qubit hamiltonian then implement two simple noise
model designed by us on our simulation.

7.3.1 Impact of a realistic noise model on binding
energy

In the chapter of deuteron we saw that using VQE for different qubits
hamiltonian we got the binding energy value which was very close the
experimental value. However it would not be the case if we run the same
process on a real quantum hardware.There would be a significant deviation
from the experimental result and sometimes the result may seem absurd.
This happens because the simulation we are doing is like a closed quantum
system where every process is unitary but when we are using real qubit
hardware, the system qubits interacts with the environment and due to
interaction the system is no longer closed and it becomes an open system
and the dynamics is no longer governed fully by unitary. These interactions
termed as noise can be modelled to be used in our simulation. Here we
extract a realistic noise model data from the device(fake) backend which
mimics real hardware. Shown below in the table are the binding energy
results after adding noise.
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Figure 7.6: Comparison of expectation value of hamiltonian with and with-
out noise.

Given below are the plots of simulation comparing the effect of noise
on the outcome of energy eigenvalue:-

Figure 7.7: Comparing convergence of the expectation value of 1-qubit
hamiltonian with and without noise.
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Figure 7.8: Comparing convergence of the expectation value of 2-qubit
hamiltonian with and without noise.

Figure 7.9: Comparing convergence of the expectation value of 3-qubit
hamiltonian with and without noise.
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Figure 7.10: Comparing convergence of the expectation value of 4-qubit
hamiltonian with and without noise.

7.4 Implementing our own simple noise model

After implementing the realistic noise model from device backend, we tried
building my own noise model starting first with depolarising noise on all
qubits and then using a all qubit bit flip noise channel to see how the result
changes.

7.4.1 All qubit depolarising noise model

As discussed above the depolarising noise channel converts a pure state to a
completely mixed state where X, Y ,Z gates applied with same probability.
We build a depolarising channel where all the X,Y,Z gates act as an error
with 5 percent on all qubits. Given below are the results of simulation after
implementing this noise model.

Figure 7.11: Comparison of expectation value of hamiltonian with and
without 5% depolarising noise on all qubits.
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7.4.2 All qubit bit-flip noise model

Next we built a noise model where every bit is flipped from 0 to 1 and
vice-versa with 5% probability. Basically the operator behind this noise
model is X Pauli gate. Given below are the results of simulation after
implementing this noise model.

Figure 7.12: Comparison of expectation value of hamiltonian with and
without 5% bit-flip noise on all qubits.

7.5 Remarks on the above results

It should be noticed here that without noise we are almost reaching the
expected reference value. The accuracy increases with increasing qubit as
more Pauli terms have contribution. With noise the results are significantly
deviated and may seem absurd as sometimes the result of binding energy
is coming out positive which conflicts the idea that deuteron is a bound
system. However these would be nearly the results when we would be
using a real quantum hardware as we did upto 3 qubits.With proper error
mitigation schemes which is beyond the scope of this thesis. This results
can be filtered to give meaningful outcomes.
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8
A Model type approach

As extending the above method for a nucleus with more than two nucleon
would be very complicated, the Potential energy term in the hamiltonian
which is derived from Pionless Effective Field theory would involve three,
four and even more body interaction terms. So we came across recent
papers in Nature [10] and [11] where they thought of alpha as building
block of some of the nucleus as Be-8, C-12. The obtained physical quantities
exhibited good agreement with experimental data. This encouraged us to
think if we could use Deuteron as the building block for Helium and do
Quantum Simulation.

8.1 Deuteron clustering to form Helium

Helium has 2 protons and 2 neutrons. The angular momentum quantum
no (l) is 0 from Shell Model calculations. So the Kinetic energy term would
remain unchanged. Now for the potential energy we did grouping of nucleon
into pairs to get the net interaction value.

Figure 8.1: Deuteron clustering to form Helium.
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Figure 8.2: Ground state energy values of helium for different qubit hamil-
tonian

So the value of V0 changes to V
′
0 which is evident from the figure(8.1)given

below. 6 different pairs can be formed taking two at a time. We repeated
the above same calculation of Deuteron with an updated value of Potential
energy matrix and hence updated hamiltonian which was mapped using
JW transformation and created a variational circuit in Quantum computer
upto N=6 to extract the results.

V ′
0 = 4C2 ∗ V0 = 6 ∗ (−5.68658111)MeV (8.1)

Notice that although the results in Fig (8.2) are not very accurate, still
the range of energy values are near experimental values which is −28.3MeV
which shows this the direction taken might be right!
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9
Conclusion and Outlook

We have successfully explored the various aspects of the Variational Quan-
tum Eigensolver algorithm , implementing it in the light nuclei like deuteron.
The results are very satisfactory and indeed matches with the experimen-
tal values. This is not a novel work and previously there has been efforts
along the same line. However, we extended this simulation to include cer-
tain types of Quantum noises. We studied the impact of these noise models
on our simulated deuteron binding energy values. We even explored the im-
pact of different ansatzes, encoding and entanglement pattern and studied
their impact on the convergence of my results. Inspite of limiting ourself
to only the ground state, we explored an algorithm called Subspace Search
Variational Quantum Eigensolver for excited states and implemented it on
our deuteron problem to infer that deuteron becomes unbounded system
when it is not in the ground state. Towards the end we tried applying
VQE to heavier nuclei with a model type approach of deuteron clustering.
Although the results of the heavier nuclei are not exact like deuteron, the
range looks very optimistic. Recent efforts have been made on a diago-
nalisation process, theory and calculations of which are discussed in the
Appendix would be part of future works of implementing Quantum com-
puters in high energy physics. It should also be noted that at this time
we are in the NISQ era and are bound by the no of quantum processors.
However there are continuous efforts in increasing the powers of Quantum
processors by increasing the number of stable qubits. So the days are not
far away when Quantum computers can do non trivial tasks which be-
comes intractable for classical computers and all these works would help
the mankind to explore new things.

38



A
Schrieffer Wolff Transformation on Quantum

devices

Controlling quantum many-body system is highly importance in various
fields of physics. In most of the application low energy effective Hamiltonian(Heff )
is enough in describing the required physics for applications. Schrieffer-
Wolff transformation is such a perturbative approach which is used in con-
densed matter, quantum optics and quantum electrodynamics to calculate
the low energy effective Hamiltonian by comprehending the renormalization
effects of strong correlations in the quantum many-body models. However,
the most crucial part in SWT is the calculation of the generator which is
generally done by heurestic method. Here inspired by the recent papers
[12]and [13], we would show the mathematical steps and discuss the al-
gorithm using which the generator can be easily calculated and would be
explicitly be shown for Single Impurity Anderson model and Jayes Cum-
mings model. The authors of the above papers are the first to carry out a
fully quantum algorithm of this kind. Taking inspiration from the above
work, we do all the necessary mathematical steps and would try to imple-
ment the above ideas in solving some high energy physics hamiltonians or
in exploring nuclear structures in the near future.

A.1 Mathematical steps:-

U = eεS =
∞∑
k=0

(εS)K

k!
≈ 1 + εS +

ε2S2

2

Similarly,

U = e−εS =
∞∑
k=0

(−εS)K

k!
≈ 1− εS +

ε2S2

2

Here we ensure S† = −S so that U †U = I
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Transforming the hamiltonian, we can write

H ≈ (1 + εS +
ε2S2

2
)H(1− εS +

ε2S2

2
) (A.1)

≈ H + ε(SH −HS) +
ε2

2
(S2H +HS2 − 2SHS) (A.2)

≈ H + ε[S,H] +
ε2

2
[S, [S,H]] (A.3)

The above equation is the special result of BCH formula which allows
us to handle exponential of operators in quantum mechanics as due to the
non-commuting nature of operators, we cant simply use exponent laws.
Let us define a hamiltonian which involves a diagonal term H0 and an off
diagonal perturbative term H1 and the small perturbation parameter be ε.
Next we transform the hamiltonian to a different frame H ′ which makes
the problem easier to solve and might give better insights of the Quantum
mechanical system.

H = H0 + εH1 (A.4)

H ′ = eεSHe−εS

H ≈ H + ε[S,H] +
ε2

2
[S, [S,H]]

≈ H0 + εH1 + ε[S,H0 + εH1] +
ε2

2
[S, [S,H0 + εH1]]

≈ H0 + ε(H1 + [S,H0]) +
ε2

2
[2[S,H1], [S, [S,H0]]]

By choosing S(anti hermitian) we can make the second term 0 which
means H1 = −[S,H0] transforms the hamiltonian into the frame of our con-
venience. We can also choose ε = 1 then the final form of the hamiltonian
is

H ′ = H0 +
[S,H1]

2
(A.5)

We see that the above equation is not exactly equal to H but does give
some insights of the complex Quantum mechanical system by absorbing
the information of the off-diagonal part into the original diagonal chunk
to give a new diagonal matrix. Thus SWT is an operator version of the
second order perturbation theory whose approximation helps us go very far
in describing the system’s time evolution.

A.2 Quantum Algorithm for SWT

In reference with the paper[12], a fully quantum algorithm is made which
helps in calculating the generator using quantum devices. The steps are as
follows: 1)First we have take the hamiltonian in the second quantised form

of the many body problem which we are interested in.
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2)To convert the above hamiltonian to quantum operators form (Hq) which
can be well understood by quantum computers, we do Jordan Wigner map-
ping.
3)The qubit hamiltonian form can be written into two parts which are the
diagonal(Hd

q )and off-diagonal (Hod
q ).

Hq = Hd
q +Hod

q

4)Next the commutation relation ηq = [Hd
q , H

od
q ] should be calculated which

gives the qubit form of the generator Sq but the coefficients remain un-
known.
5)To know the coefficient the second term of the BCH formula which we
equated to 0 should be calculated Hod

q = −[S,Hd
q ].

6)After we have the final form of the generator in the qubit form we in-
corporate that in the eqn(9.5) to get the effective hamiltonian in the qubit
operator form.

Heff = Hd
q +

[S,Hod
q ]

2
(A.6)

.

A.3 Implementation of SWT and its quan-

tum algorithm

The SWT was implemented in the Single Impurity Anderson Model(SIAM)
and Jayes Cummings model to find the generator. Also the quantum algo-
rithm of the SWT for implemented in the SIAM model using Qiskit. Given
below are few steps of the calculations and results:-

A.3.1 Analytical calculation on Single Impurity An-
derson model’s hamiltonian

The hamiltonian of the SIAM model consisting of electron in conduction
band and impurities is given below:-

H =
∑
k,σ

ϵkc
†
kσckσ +

∑
σ

ϵdd
†
σdσ +

∑
k,σ

Vk(c
†
kσdσ + d†σckσ) + Und↑nd↓ (A.7)

The first term in the hamiltonian corresponds to electron in the conduc-
tion band. The second term corresponds to the impurity while the third
term is called the coupling part of the hamiltonian showing the coupling
between electron and the impurity. The last term corresponds to coulom-
bic repulsion. The above hamiltonian can be broken into a diagonal and
off-diagonal part which are

Hd =
∑
k,σ

ϵkc
†
kσckσ +

∑
σ

ϵdd
†
σdσ + Und↑nd↓
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Hod =
∑
k,σ

Vk(c
†
kσdσ + d†σckσ)

Next following the step of the algorithm we calculate the value of

η = [Hd, Hod]

=
∑
k,σ

(ϵk − ϵd − Undσ̄)Vk(c
†
kσdσ − d†σckσ)

So the generator of the SWT should be

s ==
∑
k,σ

(Ak −Bkndσ̄)Vk(c
†
kσdσ − d†σckσ) (A.8)

where the unknown coefficients would be determined by imposing the con-
dition which removes the off diagonal term to the first order of BCH formula

[S,Ho] = −Hod (A.9)

Calculating the above equation and comparing it with the off diagonal part
of hamiltonian we get the following value of the unknown coefficients.

Ak =
1

ϵk − ϵd
(A.10)

Bk =
1

ϵk − ϵd − U
− 1

ϵk − ϵd
(A.11)

Now these unknown coefficients can be put in the generator to calculate
the effective hamiltonian Heff .

A.3.2 Analytical calculation on Jaynes Cummings hamil-
tonian in rotating wave approximation

The hamiltonian is given as:-

H

ℏ
= ωra

†a− 1

2
ωqZ + g(a†σ− + aσ+)

(A.12)

Here the first term in the hamiltonian corresponds to number of photons
in the resonator, the second term corresponds to the state of the qubit and
the final term is the coupling term. a and a† are the photon annihilation and
creation operator, σ+and σ−)are the qubit raising and lowering operator
such that σ+ = X+iY

2
and σ− = X−iY

2
. The diagonal and off-diagonal term

of the hamiltonian are:-

Hd = ωra
†a− 1

2
ωqZ

42



Hod = g(a†σ− + aσ+)

Using proper commutation relations between Pauli operators, we cal-
culate the value of

η = [Hd, Hod] (A.13)

= g(ωr + ωq)a
†σ− − g(ωr + ωq)aσ

+ (A.14)

So the generator of the SWT should be

S = Aa†σ− +B(ωr + ωq)aσ
+ (A.15)

The value of the unknown constants can be found by using the same
eqn(9.9),

A =
g

ωr + ωq
, B =

−g
ωr + ωq

So the generator S is obtained and now substituting S in eqn(9.6) the
value of Heff can be found.

A.3.3 Implementing the quantum algorithm

Next we show the calculation of the quantum algorithm of SWT on 2-site
SIAM hamiltonian which is given below:-

H = Un1↑n1↓ − ϵ1
∑
σ

n1σ +
∑
σ

c†2σc2σ +
∑
σ

V (c†1σc2σ + c†2σc1σ) (A.16)

Hq = U(a†1a1×a
†
3a3)+V (c†1c2+c

†
2c1+c

†
3c4+c

†
4c3)−ϵ1(a

†
1a1+a

†
3a3)+ϵ2(c

†
2c2+c

†
4c4)

(A.17)
Next we map the hamiltonian into the pauli operators (X,Y,Z) form

using Jordan Wigner transformation so that it can be understood by the
quantum computer.

Hq =
U

4
(Z1Z3)+(

ϵ1
2
−U

4
)(Z1+Z3)−ϵ2(Z2+Z4)+

V

2
(X1X2+Y1Y2+X3X4+Y3Y4)

(A.18)
The diagonal and off diagonal part of the hamiltonian are:-

Hd
q =

U

4
(Z1Z3) + (

ϵ1
2
− U

4
)(Z1 + Z3)− ϵ2(Z2 + Z4)

Hod
q =

V

2
(X1X2 + Y1Y2 +X3X4 + Y3Y4)

Next we calculate the commutation relation and use the appropriate
pauli operators commutation relations below

ηq = [Hd
q , H

od
q ]
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ηq =
iUV

4
(Z3(Y1X2−X1Y2)+Z1(Y3X4−X3Y4))+(iV (

ϵ1
2
−U

4
)+
iϵ2V

2
)(Y1X2−X1Y2+Y3X4−X3Y4)

(A.19)
Thus the generator of SWT should be of the form:-

Sq = A(Y1X2 −X1Y2)(1− Z3) +B(Y3X4 −X3Y4)(1− Z1) (A.20)

The above coefficients acn be determined using the relation

Hod
q = −[S,Hd

q ]

Thus the unknown coefficients are:-

A =
−iV

4U(1− Z3)

B =
−iV

4U(1− Z1)

Once we got the generator we can now easily get the effective hamilto-
nian in the qubit form which can be given as an input to quantum com-
puters to study the underlying physics.

A.4 Remarks on the above results

The above results show that using the fully quantum algorithm we can
find the generator of SWT easily which in turn helps us in diagonalising
the difficult hamiltonian keeping the underlying physics intact. So yet
again quantum computer finds an interesting application in physics. Our
goal would be to use this algorithm developed by the authors of the above
papers in a complex high energy physics hamiltonian in the near future.

44



References

[1] R. P. Feynman, “Simulating physics with computers,” in Feynman
and computation, CRC Press, 2018, pp. 133–153.

[2] S. Popescu, “Bell’s inequalities versus teleportation: What is nonlo-
cality?” Physical review letters, vol. 72, no. 6, p. 797, 1994.

[3] M. A. Nielsen et al., “The fermionic canonical commutation relations
and the jordan-wigner transform,” School of Physical Sciences The
University of Queensland, vol. 59, 2005.

[4] T. Papenbrock, “Quantum computing of atomic nuclei,” Bulletin of
the American Physical Society, vol. 63, 2018.

[5] S. A. Coon and M. K. Kruse, “Properties of infrared extrapolations in
a harmonic oscillator basis,” International Journal of Modern Physics
E, vol. 25, no. 05, p. 1 641 011, 2016.

[6] S. König, S. Bogner, R. Furnstahl, S. More, and T. Papenbrock, “Ul-
traviolet extrapolations in finite oscillator bases,” Physical Review C,
vol. 90, no. 6, p. 064 007, 2014.

[7] K. M. Nakanishi, K. Mitarai, and K. Fujii, “Subspace-search varia-
tional quantum eigensolver for excited states,” Physical Review Re-
search, vol. 1, no. 3, p. 033 062, 2019.

[8] A. Rivas and S. F. Huelga, Open quantum systems. Springer, 2012,
vol. 10.

[9] M. A. Nielsen and I. Chuang, Quantum computation and quantum
information, 2002.

[10] T. Otsuka, T. Abe, T. Yoshida, et al., “α-clustering in atomic nu-
clei from first principles with statistical learning and the hoyle state
character,” Nature Communications, vol. 13, no. 1, p. 2234, 2022.

[11] D. Jenkins, “Alpha clustering in nuclei: Another form of shape coex-
istence?” Journal of Physics G: Nuclear and Particle Physics, vol. 43,
no. 2, p. 024 003, 2016.

45



[12] R. U. Haq, B. Iqbal, M. Illahi, B. Ahmad, et al., “Schrieffer-wolff
transformation on ibm quantum computer,” arXiv preprint arXiv:2208.04746,
2022.

[13] R. U. Haq and K. Singh, “A systematic method for schrieffer-wolff
transformation and its generalizations,” arXiv preprint arXiv:2004.06534,
2020.

[14] J. Tilly, H. Chen, S. Cao, et al., “The variational quantum eigen-
solver: A review of methods and best practices,” Physics Reports,
vol. 986, pp. 1–128, 2022.

[15] S. More, A. Ekström, R. Furnstahl, G. Hagen, and T. Papenbrock,
“Universal properties of infrared oscillator basis extrapolations,” Phys-
ical Review C, vol. 87, no. 4, p. 044 326, 2013.

46


	Introduction 
	The building blocks of Quantum Computers- Qubits
	Superposition and Entanglement
	Quantum circuits
	Structure of the thesis

	Physical Realisation of Qubits
	Ingredients to trap an ion and seperate it from surroundings

	Variational Principle and Variational Quantum Eigensolver
	Mathematical Background
	The Variational Quantum Eigensolver
	Jordan Wigner Transformation

	Summarizing the VQE process

	The Deuteron Problem
	Calculations and Results

	Comparative study of various VQE components
	Fermionic space to spin space transformations
	Generalized encodings
	The Jordan-Wigner encoding
	The Parity Encoding
	The Bravyi-KItaev encoding

	Different Ansatzes in VQE
	Entanglement pattern in the VQE circuit
	Results

	Subspace-search variational quantum eigensolver for excited states
	Introduction
	Algorithm of Subspace-search variational quantum eigensolver
	Algorithm:-

	Using SSVQM in the Deuteron Problem:-

	Quantum Noise
	Classical noise
	Examples of Quantum noise
	Geometric picture of single qubit quantum operations
	Bit flip and Phase flip
	Depolarizing channel

	Applying noise model in Deuteron simulation
	Impact of a realistic noise model on binding energy

	Implementing our own simple noise model
	All qubit depolarising noise model
	All qubit bit-flip noise model

	Remarks on the above results

	A Model type approach
	Deuteron clustering to form Helium

	Conclusion and Outlook
	Schrieffer Wolff Transformation on Quantum devices
	Mathematical steps:-
	Quantum Algorithm for SWT
	Implementation of SWT and its quantum algorithm
	Analytical calculation on Single Impurity Anderson model's hamiltonian
	Analytical calculation on Jaynes Cummings hamiltonian in rotating wave approximation
	Implementing the quantum algorithm

	Remarks on the above results




