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Abstract 

The shuttle effect is a major issue in Lithium Sulfur battery that impedes 

practical implementation due to rapid capacity loss. The discovery of 

novel cathode host materials through complex experimental techniques is 

inefficient to find suitable cathode anchoring materials. Here, we propose 

a combined approach of machine learning (ML) and density functional 

theory (DFT) to discover appropriate sulfur host cathode materials that can 

effectively suppress the shuttle effect in Li-S batteries. This method aims 

to improve the search for suitable materials and enhance the efficiency of 

the discovery process. We applied a classification model to investigate the 

adsorption of polysulfides (Li2S, Li2S2, Li2S4, Li2S6, Li2S8, S8) on various 

layered double hydroxide (LDH) materials. We have found that Gradient 

Boosting model is suitable for predicting cathode host materials with 

optimum adsorption energy, while the perfectly fitted Adaboost model 

predicts stable cathode host materials. By combining two classification 

models 22 materials have been screened out through ML having high 

potential to be suitable sulfur host cathode materials. Finally, we cross-

validated with DFT and proposed 16 cathode host materials out of 74 

LDH materials are highly viable for the suppression of the shuttle effect. 

The combined ML-DFT method delivers high-precision and quick 

solutions for high-throughput screening based on adsorption energy. 
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CHAPTER 1 

 

1. Introduction 

The expansion of the worldwide economy has stimulated a surge in 

industrialization and commercialization, necessitating substantial amounts 

of energy to fuel factories, offices, and other infrastructures. The demand 

for energy is projected to escalate in the forthcoming years. Hence, it is 

imperative to explore high performance and suitable materials for 

electrochemical energy storage systems. Lithium-ion batteries are 

becoming popular as a preferred option for portable electronic devices 

because they offer rechargeability, relatively long lifespan with high 

energy density. There are some shortcomings such as safety concerns for 

thermal runways, and fires caused by overheating, toxic heavy metals 

containing cathode materials, scarcity of raw Li etc., making its use 

difficult for electronic devices.[1] Hence, researchers and manufacturers 

are exploring alternatives, such as lithium-sulfur (Li-S) batteries, solid-

state batteries, and flow batteries to develop safer and more sustainable 

solutions for storing energy. Due to high theoretical energy density (~2600 

Wh Kg-1) and non-toxicity, Li-S batteries have arisen as promising battery 

systems. Additionally, sulfur is an abundant and low-cost material, which 

could potentially reduce the cost of Li-S batteries.[2-5] Nevertheless, 

there are some technical hurdles yet to be overcome before Lithium-Sulfur 

(Li-S) batteries can be extensively used, including low cyclic efficiency, 

poor conductivity, shuttle effect, and a significant volumetric change in 

sulfuric content..[6-8] We are principally concerned with the major issue 

of suppressing the shuttle effect. One crucial step is to stop the dissolution 

of lithium polysulfide into the electrolyte that further renders the battery 

dead. To tackle this limitation, scientists have been looking for host 
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materials that can bind to trap polysulfides, preventing their dissolution 

into the electrolyte and elevating battery performance.[9-14] A plethora of 

works have posited several materials and concepts as viable suppressors of 

the shuttle effect, including S and O-based functionalized MXene, many-

body effect, and layered double hydroxide.[10-13] While the carbon 2-D 

stacked material boasts superior electron transportation, it exhibits a lack 

of efficacy in capturing lithium polysulfide and demonstrates low AE. 

Even after structural morphology changes carbon materials still face 

problems in establishing a secure effective bond with polysulfide. Recent 

investigations have explored layered double hydroxide (LDH) as a 

potential material for use as host material in Li-S batteries as they provide 

more surface area and strong binding affinity with polysulfides.[15-16] 

LDH, also known as ionic clay, boasts a wide range of applications, 

promising AE, and electrocatalytic properties, distinguishing it from other 

host materials. However, intense investigation on the LDH materials as 

host materials for the Li-S battery is yet to be explored. LDH powers can 

easily exfoliate monolayer on the substrate with a thickness of 0.48 nm 

and act as a barrier for polysulfide to dissolve into electrolyte.[17-22] 

LDH has certain advantages like intercalation, surface modification, and 

hybridization with noble and rare earth elements that can replace one 

metal (M2+/M3+) component with a new metal component. The reason 

behind choosing LDH is strong adsorption energy (AE), dual metal 

electrocatalytic different customizable nanostructures.[16] However, 

exploring a large number of possible LDH materials as a host material for 

Li-S battery through conventional DFT calculation is highly time 

demanding process.[23-27] Thus, machine learning (ML), known for its 

ultrafast refining of cathode host materials in a concise time with 

minimum computational cost can be used as a tool to overcome these 

limitations.[28-31] 

Here, we have considered 74 sulfur host cathode materials and 6 lithium 

polysulfides having overall, 444 possible systems for this study. Among 
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all the possibilities, we have selected well sampled 61 materials and 

performed ML classification. By using trained best fitted model on 

complete set, we screen the stable LDH monolayer having optimum AE 

required to be suitable sulfur host cathode material for Li-S battery to 

prevent the shuttle effect. We have set a minimum threshold of -1 eV for 

the adsorption energy criterion in selecting an effective sulfur cathode host 

material.[31] The Gradient Boosting Classifier (GBC) and AdaBoost 

Classifier (ABC) were shown to be the best model fits for Class A and B, 

with an average accuracy of 89% and 92.75%, respectively. After that, we 

combine both sets and refine all possible stable LDH materials which bind 

with all polysulfides effectively. Further DFT has been carried out on the 

ML screened LDH materials to validate the ML predicted result. The 

flowchart of the work has been provided in Figure 1.1.  

 

Figure 1.1: The flowchart of the work. 

1.1. Lithium Sulfur Battery 

The Li-S battery operates through an intricate electrochemical process that 

involves the synergistic interaction between lithium metal and sulfur, 

culminating in the creation of lithium sulfide (Li2S) as the ultimate 
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discharge byproduct. As the battery discharges, lithium ions undergo 

oxidation at the anode, followed by their combination with sulfur, leading 

to the formation of lithium polysulfides. These ions and polysulfides then 

traverse the electrolyte to reach the cathode, where the polysulfides 

undergo reduction, resulting in their transformation into Li2S and 

deposition of sulfur onto the cathode's surface. However, the emergence of 

lithium polysulfides during the discharge process of Li-S battery can give 

rise to their solubility in the electrolyte and consequent interaction with 

the solvent molecules, leading to potential issues with battery performance 

and stability. Given below is the demonstrated step-by-step mechanism of 

reaction for the Li-S battery.[8] 

 Li-S battery electrochemical reaction 

*S8 + 2Li+ + 2e- →  *Li2S8, 

3*Li2S8 + 2Li+ + 2e-→  4*Li2S6, 

2*Li2S6 + 2Li+ + e-→  3*Li2S4, 

2*Li2S4 + 2Li+ + 2e-→  2*Li2S2, 

2*Li2S2+ 2Li+ + 2e-→  2*Li2S 

1.2. Layer Double Hydroxide (LDH) 

The LDH hydrotalcite-like compound, which acts as the cathode host 

material, has a general formula [M2+
1-x M

3+
x (OH)2]

 a+. [Aa/n]
 n-. yH2O, 

where M2+ is divalent cation and M3+ is trivalent cation, occupying the 

centre of octahedral sites in hydroxide layers.[15,16] Recent studies have 

demonstrated that 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) 

exhibit weak adsorption of lithium polysulfides, whereas carbon-based 

materials are incapable of effectively capturing them. To curb the shuttle 

effect and ensure efficient polysulfide retention, adsorption energy 

exceeding that of DOL and DME (-0.83 and -0.99 eV, respectively) is 



5 
 

required. As carbon-based materials display feeble adsorption properties, a 

minimum adsorption energy of -1.0 eV is needed to effectively capture 

polysulfides. Accordingly, class A is classified into materials with strong 

and weak binding energies based on this criterion. Total of 8 divalent 

cations M+2 (Ca+2, Mg+2, Mn+2, Fe+2, Co+2, Ni+2, Cu+2, Zn+2) and 5 

trivalent cations M+3 (Al+3, Ni+3, Ti+3, Co+3, Fe+3) were studied. Our 

decision to select this material stems from the wide range of 

functionalization possibilities it offers, as well as its ability to exhibit high 

adsorption energy with Li-S batteries. It is observed that presence of 

hydroxyl groups adsorbs strongly with polysulfides, further amplifying its 

efficacy. 

1.3.Artificial Intelligence (AI) 

AI systems leverage a blend of algorithms, machine learning, and deep 

learning to effectively handle vast quantities of data and detect patterns. 

Such systems are engineered to progressively enhance their performance, 

by learning from their experiences and refining their algorithms to 

augment their accuracy and efficiency. In the year 1950, the erudite 

British mathematician, Alan Turing, published a seminal paper entitled 

"Computing Machinery and Intelligence," in which a momentous concept 

was introduced, the Turing test. In contemporary times, Artificial 

Intelligence (AI) is progressively being utilized to mechanize monotonous 

tasks, scrutinize intricate data sets, and prognosticate and endorse 

solutions founded on patterns perceived in the data. As AI technology 

advances, it carries the potential to revolutionize almost every facet of our 

existence, starting from the way we communicate and work to the means 

by which we avail ourselves of healthcare and transportation. ML 

(Machine Learning) and DL (Deep Learning) are both subfields of AI 

(Artificial Intelligence) on the other hand DL is a more specialized form of 

Machine Learning that involves training neural networks with large 

amounts of data to recognize patterns and make predictions (Figure 1.2). 
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Figure 1.2: The depiction of the domain comprising DL, ML, and AI. 

 

1.3.1. Machine Learning (ML) 

Machine Learning (ML) is a specialized domain within the wider field of 

Artificial Intelligence (AI) that concentrates on the creation of intricate 

algorithms and statistical models that empower computer systems to 

process data, detect patterns, and make decisions without the need for 

explicit programming. These algorithms are engineered to scrutinize vast 

volumes of data and progressively enhance their accuracy and predictive 

capabilities over time. ML is a subset of both statistics and computer 

science, as it involves the use of statistical methods and algorithms from 

computer science to develop models that can learn from data. While AI 

and data science encompass broader areas that include machine learning as 

one of the components or techniques used in their applications. 

Using the game of checkers by Arthur Samuel, published in 1959, is a 

pioneering paper in the machine learning field. Samuel took help of a self-

learning program to play checkers and demonstrated the potential of 

machine learning to make decisions based on experience and improve over 

time. ML (Machine Learning) algorithms are further categorized into 3 
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main parts: supervised learning, unsupervised learning, and reinforcement 

learning. There can also be a fourth category, known as semi-supervised 

learning. 

1.3.1.1. Supervised Learning 

 

Supervised machine learning is an effective methodology for addressing 

problems that can be solved using labeled data. By leveraging labeled 

data, the model can learn patterns and establish relationships that enable it 

to make precise predictions on new, previously unseen data. Supervised 

machine learning has found application in diverse fields, including 

materials science where it excels in predicting the molecular adsorption 

energy on surfaces. In context of batteries, accurate projections of 

adsorption energies are pivotal in developing materials with improved 

performance characteristics. Researchers work on supervised machine 

learning to predict the adsorption energies for battery cathode materials. 

By training a model on labeled data of previously calculated adsorption 

energies, the model can learn to make accurate predictions for new, 

unseen cathode materials. 

 

1.3.1.1.1. Classification 

Classification is a sub-class of supervised machine learning algorithm that 

speculates class or category of a given input data point based on its 

features or attributes. Classification can be used for both binary 

classifications, where the goal is to predict one of two possible classes, 

and multi-class classification, where there are more than two possible 

classes. Here we used binary classification for our study to demonstrate 

the potential of machine learning techniques using multiple classification 

algorithms, for predicting the compatibility of materials for battery 

electrodes. These techniques could be useful in accelerating the research 

of new battery materials, ultimately leading to the discovery and 

production of more efficient and high-performance batteries. 
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1.3.1.2. ML models 

• Logistic Regression: It is a classification algorithm that predicts the 

probability of an instance belonging to a specific class. It uses a 

sigmoid function to estimate the probability based on the output of a 

linear regression function, hence the name "logistic regression". Given 

below is the general equation of logistic regression (1.1). 

o 𝜎(𝑡) =
1

1−ⅇ𝑡
 

(1.1) 

• Multilayer Perceptron: It is a type of neural network that comprises 

of multiple layers of fully connected neurons. These layers are 

designed to transform input data into the desired output format. By 

combining neurons, the network can process complex input data and 

learn to make predictions or classifications. A schematic diagram of a 

Multi-Layer Perceptron (MLP) is depicted below figure 1.3. 

Multilayer Perceptron is a type of neural network that consists of 

multiple layers of fully connected neurons. These layers are designed 

to transform input data into the desired output format. By combining 

neurons, the network can process complex input data and learn to 

make predictions or classifications. Multi-Layer Perceptron (MLP) is 

depicted diagrammatically below Figure 1.3. 
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Figure 1.3: A schematic diagram of a Multi-Layer Perceptron (MLP). 

 

• Gaussian Naïve Bayes: The Gaussian model assumes that input 

features are continuous and normally distributed. This model estimates 

the mean and variance of the distribution, which can be used to 

calculate probability density function (PDF) of input features. 

However, this assumption may not always hold true, especially if the 

data is skewed or has outliers. Where, P(c) signify the probability 

function of gaussian naïve bayes (1.2). 

P(c) = 
1

√2𝜋𝜎𝑐
2

𝑒
−(𝑥−𝜇𝑐)2

2𝜎𝑐
2

 

(1.2) 

• Bernoulli Naïve Bayes: It is a binary classification algorithm that 

assumes the input features are binary. It models the probability of each 

feature given the class variable using a Bernoulli distribution and 

computes the prior probability of each class based on frequency of 

each class in training data. To make a prediction, it evaluates the 

posterior probability of each class given input features applying Bayes' 

theorem and chooses class with highest probability as predicted class. 

Bernoulli Naive Bayes is commonly used in text classification tasks. 
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• Perceptron: Perceptron classification is a linear binary classification 

algorithm that learns a decision boundary separating two classes by 

iteratively updating weights of input features. Perceptron is linear 

binary classification algorithm that iteratively updates weights of input 

features to learn a decision boundary separating two classes. It 

computes dot product of weights and input features and applies a step 

function to the result. If output is incorrect, weights are adjusted in 

direction of misclassification. Given below presents a visual 

representation of a perceptron. (Figure 1.4) 

 

Figure 1.4: A visual representation of a perceptron. 

 

• Stochastic Gradient Descent (SGD): SGD Classifier is a linear 

binary classification algorithm that uses Stochastic Gradient Descent 

(SGD) optimization to update the weights of input features. It works 

by arbitrarily selecting a small batch of training examples for each 

iteration and updating the weights based on the gradient of loss 

function with respect to the weights. Advantage of SGD is that it 

converges faster than Gradient Descent and is more efficient for large 

datasets. However, it can be more sensitive to noise and may require 

more iterations to converge to the optimal solution. Here, θj denotes 

the parameters of the machine learning model being optimized. 



11 
 

𝜃𝑗 = 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(̅𝜃) 

(1.3) 

• K-Nearest Neighbors (KNN): is a non-parametric machine learning 

algorithm that utilizes distance metric to classify new instances by 

comparing them with the labeled instances in the training data. By 

finding the K nearest labeled instances, KNN allocates the class that is 

most common among them to the new instance. Hyperparameter K, 

the number of nearest neighbors, can be adjusted to fine-tune the 

model's accuracy. KNN is prevalent in diverse fields, including image 

classification, anomaly detection, and recommendation systems. There 

are several types of distance metrics used in KNN and other machine 

learning algorithms. Euclidean distance calculates the straight-line 

distance between two points in Euclidean space. Whereas Manhattan 

distance measures the distance between two points by adding the 

absolute differences of their coordinates. Minkowski distance is a 

more general distance metric that incorporates a parameter to regulate 

the "order" of the distance, which may be adjusted to calculate either 

the Euclidean or Manhattan distance. 

(∑(|𝑥𝑖 − 𝑦𝑖|)
𝑞

𝑘

𝑖=1

)

1 𝑞⁄

− − −  𝑀𝑖𝑛𝑖𝑘𝑜𝑤𝑠𝑘𝑖 

(1.4) 

√∑(𝑥𝑖 − 𝑦𝑖)2

𝑘

𝑖=1

− − −  𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 

(1.5) 

∑|𝑥𝑖 − 𝑦𝑖| − − −  𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 

𝑘

𝑖=1

 

(1.6) 
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• Gradient Boosting Classifier (GBC): Ensemble learning algorithm 

that combines weak prediction models to create a stronger model. The 

algorithm builds models sequentially, with each model improving on 

the errors of its predecessor. Gradient Boosting optimizes a loss 

function by iteratively adding new models to the ensemble, where each 

new model has been trained to diminish the residual errors of previous 

model as much as possible. The optimization is performed using 

gradient descent, hence the name "Gradient" Boosting. Final 

prediction is attained after combining predictions of every model in the 

ensemble. Gradient Boosting is popularly applied in both regression 

and classification problems and is known for its high accuracy and 

robustness against overfitting. 

 

• Decision Tree: It is a powerful supervised learning algorithm that 

works on classification and regression tasks. It creates hierarchical 

model where each node corresponds to a feature, and each branch 

constitutes of a possible value or outcome of that feature. The 

algorithm recursively partitions the data by selecting the feature that 

maximizes information gain or minimizes impurities such as Gini 

impurity or entropy. The goal is to create a tree with high accuracy and 

low complexity which also extrapolates well to new data. To make 

predictions on new data, the input features are traversed through the 

branches of the tree until a leaf node is reached, which corresponds to 

the predicted outcome or class. Decision Trees are capable of handling 

both categorical and continuous features and are known for their 

interpretability. They can also handle missing values and outliers in 

the data. However, Decision Trees can be prone to overfitting and can 

be unstable when the data changes slightly. To mitigate these issues, 

techniques such as pruning and ensemble methods like Random 

Forests can be used. Given below shows the entropy and Gini formula. 
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ −𝑝𝑖 × log2 𝑝𝑖

𝑐

𝑖=1

 

(1.7) 

𝐺𝑖𝑛𝑖 =  1 − ∑ 𝑝𝑖
2

𝑐

𝑖=1

 

(1.8) 

• Xtreme Gradient Boosting (XG Boost): XGBoost is a gradient 

boosting algorithm that uses regularization, parallel processing, and 

tree-pruning to reduce overfitting and improve performance. It builds 

decision trees iteratively and optimizes a loss function by adjusting the 

model's parameters based on the gradient and Hessian of the loss 

function. Final prediction is attained after combining the predictions of 

all trees in ensemble. XGBoost is popular algorithm for classification 

and regression tasks due to its speed, accuracy, and flexibility. 

 

• Random Forest Classifier (RFC): Ensemble learning algorithm 

works by building multiple decision trees on subsets of training data 

and features, selected randomly. The algorithm aggregates the 

predictions of all the trees to make a final prediction, providing a more 

accurate and stable prediction than a single decision tree. Each 

decision tree is built independently, and the randomness introduced 

during the process reduces the risk of overfitting. Random Forest is 

commonly applied in classification and regression tasks, and its 

popularity is due to its high accuracy, interpretability, and ability to 

handle large datasets with many features. 

 

• Support Vector Classifier (SVC): It is a supervised learning 

algorithm for classification and regression tasks, which forms a 

hyperplane or a set of hyperplanes in a high-dimensional space. The 

hyperplane is determined to have the maximum margin between 

classes, which is the distance between the hyperplane and closest data 
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points from each class. SVM is effective in handling high-dimensional 

data and can deal with non-linearly separable data by transforming the 

input space into a higher-dimensional space via kernel functions. SVM 

is operated in various areas such as image and text classification, and 

bioinformatics due to its efficiency and flexibility. 

 

• AdaBoost Classifier (ABC): AdaBoost is an ensemble learning 

algorithm that combines multiple weak learners to form a stronger 

model. It functions by training weak learners sequentially, where each 

learner corrects the errors of its predecessor. The algorithm assigns 

weights to training examples based on their performance in previous 

iterations, with misclassified examples receiving higher weights. 

 

The final model is an aggregation of all weak learners, weighed by 

their importance. AdaBoost is capable of handling high-dimensional 

data and can be exercised for classification, regression, and other 

prediction tasks. It has been employed in various fields, including 

computer vision, natural language processing, bioinformatics, and is 

known for its ability to improve the performance of weak learners. A 

flow diagram demonstrating the functionality of an Adaboost classifier 

is shown Figure 1.5. 
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Figure 1.5: The working mechanism of an Adaboost classifier is 

depicted in a flowchart format. 

• Linear Discriminant Analysis (LDA): It is a supervised machine 

learning algorithm used for classification tasks. It analyzes the 

differences between classes and creates a linear combination of 

features that maximizes separation between them. The aim of LDA is 

projection of data onto a lower-dimensional space while preserving as 

much information as possible about the class labels. The algorithm 

calculates the mean and covariance matrix of each class and uses these 

statistics to determine the projection direction. LDA deduces the data 

to be normally distributed and that the classes have equal covariance 

matrices. LDA can also be helpful in dimensionality reduction and 

visualization. 
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1.3.1.3. Testing and Validation 

In developing machine learning models for computational chemistry, 

testing and validation are crucial steps to ensure accurate predictions of 

chemical properties and behavior. Testing evaluates the model's 

performance on new data, while validation verifies its reliability and 

accuracy. These steps are necessary to identify any errors or limitations in 

the model. 

 

1.3.1.4. Hyperparameter Tuning 

Hyperparameter tuning is a process in machine learning that involves 

optimizing the settings of model parameters, known as hyperparameters, 

to improve the performance of the model. Hyperparameters are set prior to 

training the model and can significantly impact its accuracy. The process 

of hyperparameter tuning involves adjusting the values of hyperparameters 

and evaluating the resulting model performance. This is typically done 

through a combination of manual adjustments and automated methods 

such as grid search or Bayesian optimization. Proper hyperparameter 

tuning can help ensure that the model is performing optimally and can lead 

to better predictions in computational chemistry applications.  
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CHAPTER 2 

 

2. Computational Methods and 

Approximations 

 

2.1. Many Body Schrödinger Equation 

The Schrodinger equation is an essential equation that forms the basis of 

quantum mechanics. It is used to describe the behavior of particles, 

including electrons, within a quantum system. Specifically, Schrodinger 

equation (time-independent) has been valuable tool to calculate electronic 

structure in given molecules and materials. That equation is represented 

by: 

𝐻𝜓 = 𝐸𝜓(𝑟, 𝑅) 

(2.1) 

Here, H (Hamiltonian operator) contains information about the properties 

of the system, including its energy. The 𝜓 symbol gives the wave function 

of system in consideration, which provides information regarding 

likelihood of finding a particle in a specific location. Finally, E denotes 

total energy of a given system. Using Hamiltonian operator of a quantum 

system, researchers can gain insight into the system's properties, such as 

its energy levels, momentum, and position. Additionally, the many body 

Schrödinger equation can be expressed as,  
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𝐻 =
−ℎ2

2𝑚ⅇ
∑ ∇𝑖

2

𝑖

− ∑
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2𝑀𝐼

𝐼
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1

2
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|
𝑖≠𝑗

+
1

2
∑

𝑍𝐼𝑍𝐽𝑒2

|𝑅𝑖 − 𝑅𝑗|
− ∑

𝑍𝐼𝑒2

|𝑟𝑖 − 𝑅𝐼|
𝑖,𝐼

𝐼≠𝐽

 

(2.2) 

Here, h-Planck's constant, I-imaginary unit. Solving the Schrodinger 

equation is a crucial tool in modern physics, particularly in the areas of 

quantum computing and materials science, as it allows researchers to 

make accurate predictions about the behavior of quantum systems. The 

many-body effect equation can be expressed in terms of interactions 

occurring between electrons and nuclei, as well as among nuclei 

themselves. Here, the first term denotes kinetic energy of electrons, which 

arises due to their motion within the electrostatic potential produced by the 

nuclei. Second term symbolizes the electron-nucleus potential energy and 

refers to the interactions among electrons and nuclei. Here, third term 

relates to repulsive energy between electrons, because of their negative 

charge causing repulsion. The fourth term refers to the attractive energy 

between nuclei and the electrons, because they carry opposite charges. The 

fifth and final term refers to the repulsive energy between nuclei in the 

system, which are positively charged and therefore repel each other. By 

incorporating all of these interactions, the many-body effect equation can 

accurately describe the behavior of particles in a complex electronic 

system and provide insights into their properties and behavior. 
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2.2. Born-Oppenheimer Approximation 

The Born-Oppenheimer approximation is a theoretical concept that 

simplifies many-body Schrodinger equation by separating movement of 

electrons from positions of atomic nuclei. It is formulated on the basis of 

significant difference observed in mass between nuclei and electrons, 

where the latter can be considered stationary during the movement of 

electrons.[32] Thus, kinetic energy of nuclei has been neglected, and 

nuclear-nuclear Coulomb interaction is assumed to be constant.  

𝐻 =
−ℎ2

2𝑚ⅇ
∑ ∇𝑖

2

𝑖

+
1

2
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|
𝑖≠𝑗

+
1

2
∑

𝑍𝐼𝑍𝐽𝑒2

|𝑅𝑖 − 𝑅𝑗|
− ∑

𝑍𝐼𝑒2

|𝑟𝑖 − 𝑅𝐼|
𝑖,𝐼

𝐼≠𝐽

 

(2.3) 

By using this approximation, the many-body Schrodinger equation can be 

solved    exclusively for electrons, while considering the nuclear-nuclear 

interactions explicitly. This simplification leads to a more practical 

solution reducing the complexity of problems. The Born-Oppenheimer 

approximation, also known as the clamped nuclei approximation, has been 

identified as a helpful tool in quantum chemistry. 

2.3. Hartree-Fock Method 

Hartree proposed a way to extend the mean-field approximation to 

describe the wavefunction of electron of an n-electron system by 

expressing it as product of one-electron wavefunctions, known as the 

Hartree product.[33] The wavefunction can be solved for each electron by 

considering the one-electron repulsion of only that electron and averaging 

the total interactions from all other electrons to create an average 

electrostatic field. This process is continued until a self-consistent 
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wavefunction is reached. However, this method is not taking into account 

the Pauli Exclusion Principle that requires total wavefunction to be 

antisymmetric when electrons exchange positions. This was resolved by 

Fock, who proposed using a determinant with the one-electron 

wavefunctions as elements to describe the electronic wavefunction of a 

system of two-electron system. 

 

2.4. Density Functional Theory (DFT) 

It is widely used in chemistry in order to understand the structure of 

electrons as well as properties of molecules and materials. It is a quantum 

mechanical method that utilizes the electron density of the system to 

compute various properties like energy, electronic structure, and 

reactivity, instead of the wavefunction. This approach is computationally 

less expensive compared to other methods. 

In DFT, total energy of system is given as sum of kinetic energy (ET), 

Coulombic interactions (EJ), electron-nuclear potential energy (EV), and 

exchange/correlation energy (EXC).  

𝐸𝐷𝐹𝑇 =  𝐸𝑇 + 𝐸𝑉 + 𝐸𝐽 + 𝐸𝑋𝐶 

(2.4) 

The electronic density acts as the main variable in DFT, and all the terms 

in the energy equation except the kinetic energy depend on it. The orbitals 

in DFT are like molecular orbitals in Hartree-Fock theory. Development 

of DFT marks close relation with the work of P. C. Hohenberg and W. 

Kohn. These researchers proposed two crucial theorems that provided the 

basis for the theory. According to these theorems, the energy of ground 

state and electron density of system are solely determined by external 

potential acting on the system. DFT has revolutionized the approach to 

electronic structure calculations in chemistry, enabling the study of 

complex systems that were previously too computationally expensive to 

investigate.  
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𝜌(𝑟) = 2 ∑ |𝜓𝑖(𝑟)|2

𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠

𝑖

 

(2.5) 

2.4.1. Hohenberg-Kohn Theorems 

The Hohenberg-Kohn Theorems play a crucial role in the developing 

Density Functional Theory (DFT); have significantly impacted the way 

chemists conduct electronic structure calculations. The First Theorem 

asserts that system’s ground state properties can be distinctly resolved by 

ground state electronic density as a functional of the system.[34] This 

implies that if both the electron density and functional form are known, all 

the system properties can be obtained. However, the theorem does not 

provide any guidance on how to determine the functional density of 

electrons. 

𝐸 = 𝐹(𝜌(𝑟)) 

(2.6) 

The Second Theorem of Hohenberg and Kohn asserts that true ground 

state electronic density corresponds to minimum energy of system. Energy 

obtained from any trial electronic density of system will be the upper 

bound estimation of true energy. [35] This theorem suggests using a 

variational approach where an initial guess of electronic density and 

corresponding energy is minimized iteratively until it reaches the exact 

electronic density of ground state and minimum energy within a 

convergence scale. This approach serves as a fundamental working 

principle of many self-consistent DFT-based codes. 

𝐸[𝜌] ≥ 𝐸0[𝜌0(𝑟)] 

(2.7) 

In second theorem of Hohenberg and Kohn, trial electron density and 

corresponding energy are denoted as ρ and E, respectively, while the true 

ground state electronic density and system’s energy are represented as ρ0 

and E0. 
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2.4.2. Kohn-Sham Formulation 

W. Kohn and L. J. Sham formulated a new approach which applies the 

Hohenberg-Kohn theorems, simplifying the many-body problem into non-

interacting particle problem. This is achieved by defining each single 

particle with an effective potential, known as the Kohn-Sham potential. 

Total energy of ground state is stated as a function of Kohn-Sham orbitals 

and their associated density. 

𝐸[𝜌(𝑟)] = 𝑇0[𝜌(𝑟)] +
1

2
∬

𝜌(𝑟)𝜌(𝑟)′𝑑𝑟𝑑𝑟′

|𝑟 − 𝑟′|

+ ∫ 𝑉ⅇ𝑥𝑡(𝑟)𝜌(𝑟)𝑑𝑟 + 𝐸𝑥𝑐[𝜌(𝑟)]𝑑𝑟 + 𝐸𝐼𝐼 

(2.8) 

The energy comprises several terms that describe kinetic energy of non-

interacting electrons, electron-electron Coulomb interaction, interaction 

between core and valence electrons, exchange-correlation interaction, and 

the nuclei-nuclei interaction. 

The effective potential, containing external potential, Coulomb interaction, 

and exchange-correlation interaction, can be determined by knowing 

exchange-correlation potential. However, exchange-correlation interaction 

has proven to be a challenge to solve exactly, and therefore various 

approximations are used for simulating molecular and solid-state 

problems. [36,37] 

 

2.4.3. Local Density Approximation (LDA) 

LDA is drafted on the assumption that exchange-correlation energy of 

system is approximated by exchange-correlation energy of a homogenous 

electron gas with same electronic density. [37-39] The functional that 

describes exchange-correlation energy within local density approximation 

(LDA) is represented by, 

𝐸𝑋𝐶
𝐿𝐷𝐴 = −

3

4
(

3

𝜋
)

1
3⁄ ∫ 𝜌(𝑟)

4
3⁄ 𝑑𝑟 

(2.9) 
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where p(r) represents the electron density of such a system. This 

approximation is valid for systems with slowly varying electron densities, 

such as solids. However, for molecules, the electron density varies 

significantly, leading to inaccurate predictions of properties of molecules 

such as dissociation energy, bond-lengths, and electron distribution. 

Hence, LDA is often replaced by more accurate approximations, such as 

the Generalized Gradient Approximation (GGA) or hybrid functionals, 

which comprises of a fraction of exact exchange. These higher accuracy 

approximations provide a more reliable description of molecular 

properties. 

 

2.4.4. Generalized Gradient Approximation (GGA) 

GGA (Generalized Gradient Approximation) is an exchange-correlation 

functional that is widely employed in density functional theory. GGA 

considers both electron density as well as gradient of the electron density. 

By including gradient term, GGA significantly mitigates the over binding 

error that occurs in LDA and offers more precise predictions for various 

molecular and solid-state properties. Several widely used GGA functionals 

include Perdew, Burke, and Ernzerhof (PBE), Perdew and Wang (PW91), 

PBEsol, and revised PBE (RPBE). These functionals have undergone 

extensive testing and are known to provide accurate results for a variety of 

systems. Due to its ability to deliver accurate and reliable predictions 

while remaining computationally efficient, GGA has emerged as the most 

commonly used exchange-correlation functional. [41-43] 

 

2.5. Basic Sets 

"Basic sets" is a term used in computational chemistry to describe a 

collection of mathematical functions combined in a linear combination to 

approximate the wavefunction of an atom or molecule in quantum 

mechanical calculations. The complexity of basic sets can vary from 

minimal basis sets to double- and triple-zeta basis sets. It is important to 
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choose the right basic set as it can significantly affect the accuracy of the 

results obtained. Different basic sets are more suitable in case of different 

types of molecules or chemical reactions, but choosing the appropriate 

basic set is a critical aspect of designing a computational study.  

 

2.5.1. Projector Augmented Wave (PAW) Method 

In computational chemistry, wavefunctions near the atomic core exhibit a 

discontinuous nature, which requires plane waves in large numbers to 

describe the core electrons accurately. This results in noticeable increase 

in cost of computation of simulations of periodic systems. However, for 

many chemically and physically relevant problems, the valence electrons 

are the most significant contributors to material properties. Due to which 

plane-wave basis functions can be selectively employed to describe only 

the valence electrons. An effective potential, known as a pseudopotential, 

is a method that helps in expressing the interactions of core electrons and 

nuclei, [44] a method also referred to as the frozen-core approximation. 

There are various types of pseudopotentials, such as norm-conserving 

pseudopotentials and ultrasoft pseudopotentials (USPP), which differ in 

their energy cutoff and can be utilized in plane-wave based DFT 

calculations. 

 

To reduce the dependency on empirical parameters for constructing 

pseudopotentials, Bloch proposed projector augmented wave (PAW) 

method, but Kresse and Joubert imposed it. The PAW method smooths the 

oscillating wavefunction between core and valence region by introducing 

a linear transformation. This is achieved by representing the all-electron 

function as a combination of the pseudo wavefunction, all-electron plane 

waves, pseudo plane waves, and a projector p'. As a result, the PAW 

method enhances the transferability of pseudopotentials and improves 

computational efficiency while reproducing results in agreement with all-

electron calculations. In this thesis work, we utilize the PAW method 
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{implemented in Vienna ab-initio simulation package (VASP)} for 

working out calculations on periodic systems. 

 

2.6. GPAW and ASE 

GPAW and ASE are Python-based software packages used in material 

science and computational chemistry. GPAW is an electronic structure 

code that takes help from the projector augmented wave (PAW) method in 

order to deduce Kohn-Sham equations of density functional theory (DFT). 

ASE is toolkit that provides a wide range of modules and tools to interface 

with GPAW and other electronic structure codes, enabling users to 

perform a variety of computational tasks such as geometry optimization, 

molecular dynamics, and analysis of simulation results. Both GPAW and 

ASE are open-source and actively maintained by the scientific community. 

[45] 

 

2.7. DFT Computations  

The computations were executed through the utilization of Density 

Functional Theory (DFT) by means of the Vienna Ab initio Simulation 

Package (VASP) with the Perdew-Burke-Ernzerhof (PBE) functional 

predicated upon the generalized Gradient approximation (GGA) in case of 

electronic property and geometry optimization analyses.[46-48] The 

interactions taking place between ion cores and valence electrons were 

addressed through projector augmented wave (PAW) method.[49,50] 

Total energy was determined with great accuracy to a precision of 10-5 eV, 

while plane wave cut-off energy was fixed at 470 eV. Atomic structures 

were meticulously optimized by thoroughly relaxing the atomic positions 

till the value of force (Hellmann-Feynman) on all atoms was < 0.01 eV Å-

1. Prior to being bound with lithium polysulfides, all LDH materials were 

optimized. Each slab adsorption structure, which was situated above 15 Å 

in the Z-direction, was incorporated by vacuum layer to preclude potential 

layer-layer interactions. The DFT-D3 method was helpful in taking into 
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account the van der Waals interactions accurately. [51] Equation that 

computes the adsorption energy of the host material is presented below. 

𝐴𝐸 =  𝐸ℎ𝑜𝑠𝑡 + 𝐸𝑝𝑜𝑙𝑦𝑠𝑢𝑙𝑓𝑖𝑑ⅇ − 𝐸ℎ𝑜𝑠𝑡+𝑝𝑜𝑙𝑦𝑠𝑢𝑙𝑓𝑖𝑑ⅇ 

(2.10) 

It should be noted that the symbol 𝐸ℎ𝑜𝑠𝑡refers to the potential energy of an 

isolated LDH material layer without any substances present. On the other 

hand, the symbol 𝐸𝑝𝑜𝑙𝑦𝑠𝑢𝑙𝑓𝑖𝑑ⅇ  represents the energy of the polysulfide, 

while 𝐸ℎ𝑜𝑠𝑡+𝑝𝑜𝑙𝑦𝑠𝑢𝑙𝑓𝑖𝑑ⅇ gives optimized energy of entire system after the 

polysulfide has been bound. It is to be noted that the negative value of AE 

indicates the successful anchorage of the host material. Additionally, it is 

worth observing that the more negative the AE, the more potent the 

adsorption energy that exists between the cathode host material and host 

material and polysulfide. 
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CHAPTER 3 

 

3. Results and Discussion 

3.1. Materials selection 

Here, we have considered a monolayer of LDH with two distinct types. 

One of these types comprises 20 divalent metal cations and 4 trivalent 

metal cations, which are located at the center of octahedral sites and 

surrounded by 48 hydroxyl groups. Another contains 16 divalent metal 

cations and 12 trivalent metal cations which are situated in the center of 

the 56 hydroxyl groups arranged in a closed-packed structure. The top and 

side view of [M+2
20M

+3
4(OH)48]-LDH and [M+2

16M
+3

12(OH)56]-LDH 

material is provided in two distinct types are shown in Figure 3.1. We 

drop out the material having common divalent and trivalent cations. So, 

we left with 37 materials of each type A and B makes a total of 74 LDH 

materials. For our research, we extensively examined the complete range 

of polysulfide species (S8, Li2S8, Li2S6, Li2S4, Li2S2, and Li2S). In total, we 

scrutinized 74 LDH materials with all possible lithium polysulfides, 

resulting in 444 sets of possibilities for calculating adsorption energy. Out 

of these, we selected 61 random sets for training and testing our 

sophisticated machine learning (ML) model and whole datasets were used 

into two distinct classes based on their different output. Class A involved 

predicting the adsorption energy of a material with 14 features, while class 

B contained information about the disintegration of the monolayer after 

anchoring, also comprising 14 features. 
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Figure 3.1: Illustrating the top and side views of two distinct types of 

LDH material. 

We have examined the adsorption of complete range of polysulfide (S8, 

Li2S8, Li2S6, Li2S4, Li2S2, and Li2S) on LDH. In total, we scrutinized 74 

LDH materials with all possible lithium polysulfides, resulting in 444 sets 

of possibilities for classifying the adsorption energy. The adsorption 

configuration of all the considered lithium-polysulfides on a sample LDH 

material ([Mg20Al4(OH)48]) has been shown in Figure 3.2. 
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Figure 3.2: Adsorption configuration of lithium-polysulfides on 

[Mg20Al4(OH)48]-LDH host material. 

Ensuring the stability of the host material throughout the complete charge 

and discharge process is of paramount importance as it directly impacts 

the material's performance and cycle life in electrochemical energy storage 

devices. While optimizing monolayers, it was observed that certain 

materials exhibited instability, some monolayers disintegrating during the 

empty stage and others after adsorbing the polysulfides. The monolayers 

that disintegrated prior to anchoring were classified as unstable 

monolayers, such as (5CuCo, 5CuNi, 4Ca3Al, 4Ni3Al)-LDH, etc. 

Conversely, the monolayers that disintegrated after adsorbing the 

polysulfides proved challenging to restore also classified as unstable 

monolayer, such as (5MnAl, 5NiFe, 5NiCo, 5FeNi)-LDH, etc. To classify 

the disintegration/intact of LDH monolayers, we have created a new class, 

termed class B. LDH materials consist of cations with ionic radii similar to 

that of Mg+2 (0.72 Å), which can be incorporated into a brucite-like layer 

of closed-packed OH groups to form the LDH structure.[32] Material 

containing Ca+2 (1 Å) having a slight large radius difference is found to be 

unstable in most of the LDH material which is confirmed by DFT and also 

perfectly predicted by machine learning except in the case of 
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[Ca16Ti12(OH)56]-LDH. We observed that all monolayers are effective at 

capturing Li2S, but they may disintegrate when in contact with other 

polysulfides (Li2S2, Li2S4, Li2S6, Li2S8, S8). Therefore, Li2S may not play a 

significant role in class B prediction. LDH materials containing hydroxyl 

groups readily bind to lithium polysulfides, and by placing the 

polysulfides at the top of the layer, we can calculate the adsorption energy. 

In most cases, the lithium atom strongly binds to the oxygen atom of the 

hydroxyl group, providing a stable bond. However, in some instances, 

sulfur may detach the hydrogen atom from the hydroxyl group. 

 

3.2. Features Engineering 

In this study, we considered the chemical elemental properties of a 

material as a means of selecting pertinent features. Prior reports have 

relied on descriptors to appraise the multifaceted performances of 

materials.[38,39] We have specifically examined the lattice parameters 

and molecular properties of materials and polysulfides, resulting in 18 

distinct features (Table S1). Upon constructing a Pearson correlation 

coefficient (PCC) heat map for these 18 features (Figure A1), we 

eliminated highly correlated features having a correlation coefficient 

above 0.95. Following this analysis, we constructed Pearson correlation 

coefficient (PCC) heat map of 15 features shown in Figure 3.3. Thus, 

creating a set of features that is optimal for machine learning models. 
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Figure 3.3: Pearson correlation coefficient (PCC) heat map of the 

considered features for this work. 

In our feature selection process, we took into consideration 8 elemental 

properties, encompassing the likes of the atomic weight of divalent and 

trivalent cations, the radius of divalent and trivalent cations (M+2 and 

M+3), the electronegativity of divalent cation (ENM2), the molecular 

weight of the system, the fraction of Lithium atom present, as well as the 

lattice parameters (a, b, c, α, β, and ϒ). We also included electronic 

properties, like optimized energy of the bereft LDH monolayer and 

polysulfide, to fully capture the material's properties. Table A1 shows the 

list of 15 features that were taken for this study. 

 

3.3. Host material prediction via ML classification  

We selected 61 well sampled materials covering adsorption of all the 

possible polysulfides and LDH for training and testing our sophisticated 

machine learning (ML) model. The whole dataset has been used into two 

distinct classification criteria based on their different output. Class A 

involved the identification of suitable sulfur host cathode materials based 

on the optimum adsorption energy criteria while class B contained 
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information about the disintegration of the monolayer after anchoring. 

These datasets were studied into two distinct forms classified as classes A 

and B. Class A focused on adsorption energy, categorized as either 0 (AE 

> -1eV) or 1 (AE < -1eV), while the class B contained data on LDH 

monolayer disintegration, classified as either 0 (monolayer disintegrates 

either before or after adsorption) or 1 (monolayer remains intact even after 

adsorption with polysulfide). Effective feature engineering was necessary 

to achieve optimal performance in training machine learning models. 

Upon applying feature engineering to 18 features, only 15 features were 

deemed suitable and consequently utilized in both classes. A supervised 

ML approach was adopted using a classification method, and 14 ML 

models were evaluated to identify the optimal model. The selected models 

were trained and tested using four different techniques, as demonstrated in 

Table 3.1. 

Table 3.1: Accuracy score of distinct models based on 4 different train 

and test split (Set-1, Set-2, Set-3, and Set-4). 

Classification 

Model 

(Class A) 

Set-1 Set-2 Set-3 Set-4 

Train 

(48) 

Test 

(13) 

Train 

(45) 

Test 

(16) 

Train 

(42) 

Test 

(19) 

Train 

(40) 

Test 

(21) 

Logistic 

Regression 

0.89 0.92 0.86 0.81 0.88 0.89 0.85 0.9 

Multilayer 

perceptron 

(ANN) 

0.72 0.53 0.88 0.87 0.57 0.78 0.6 0.71 

Gaussian 

 Naïve Bayes 

(NB) 

0.85 0.46 0.75 0.87 0.78 0.68 0.72 0.76 

Bernoulli 

Naïve Bayes 

(NB) 

0.68 0.46 0.64 0.62 0.61 0.78 0.65 0.71 

Perceptron 

(Linear 

Model) 

0.68 0.46 0.35 0.37 0.42 0.21 0.40 0.28 

Stochastic 

Gradient 

descent 

0.68 0.46 0.64 0.62 0.42 0.21 0.60 0.71 
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K-Nearest 

Neighbors 

0.79 0.84 0.75 1.00 0.76 0.84 0.70 0.80 

Gradient 

Boosting 

1.00 0.84 1.00 0.93 1.00 0.84 1.00 0.95 

Decision 

Tree 

1.00 0.84 1.00 0.87 1.00 0.78 1.00 0.85 

XG-Boost 1.00 0.84 1.00 0.93 1.00 0.84 1.00 0.90 

Random 

Forest 

1.00 0.84 1.00 0.93 1.00 0.84 1.00 0.90 

Support 

Vector 

0.91 0.84 0.91 0.87 0.90 0.89 0.85 0.95 

AdaBoost 1.00 0.76 1.00 0.93 1.00 0.78 1.00 0.90 

Linear 

Discriminant 

Analysis 

0.91 0.84 0.91 0.75 0.90 0.89 0.95 0.76 

 

The datasets underwent training and testing at varying splits (48-13, 45-

16, 42-19, 40-21). The resulting models utilized the given features and 

labels to classify the adsorption energy of LDH material, yielding varying 

levels of accuracy. In the case of Gradient Boosting Classifier (GBC), the 

model was trained and tested with a significant average accuracy of (100% 

and 89%) after considering all splits. We trained the model using set-4 

with train test split of 66:33, having the highest training and testing 

accuracy of (100% and 95%), respectively. The model that achieved the 

highest accuracy consisted of 40 datasets for training and 21 datasets for 

testing. Using the GBC, a predictive model for the adsorption energy of 

the monolayer was established based on the obtained accuracy. The 

presented (Figure 3.4(a)) depicts a confusion matrix for a predicted 

dataset, indicating that the model correctly predicted the value of 0 on five 

instances and the value of 1 on fifteen instances. However, there was only 

one instance where the algorithm incorrectly predicted the value of 0 as 1. 

Moreover, during the training phase, feature importance scores were 

obtained implicitly, and the scores for each feature are provided (Figure 

3.4(b)). The feature importance score is a valuable metric to assess the 

impact of a particular feature on the target variable. A higher score 
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denotes a stronger influence, making it more significant. It is noteworthy 

that the lattice parameter ϒ has the most substantial impact on the training 

outcomes, as evidenced by its impressive f-score of 0.44. In contrast, the 

lattice parameters (a, b, α, and β), fraction of lithium atom, 

electronegativity of a divalent cation, radius of trivalent cation, radius of 

trivalent cation, and energy of a polysulfide having less impact than ϒ but 

still possess noteworthy importance with moderate f-scores. The 

remaining features have negligible influence. 

 

Figure 3.4: (a) Confusion matrix of test dataset and (b) feature importance 

scores of the considered features for class-A classification.  

 

The preservation of the cathode host material's structural integrity in 

batteries is a crucial consideration. Class B output is classified as either 0 

or 1, representing the disintegration and non-disintegration of the 

monolayer, respectively. We employed 14 distinct supervised ML models, 

using a classification approach. The models underwent training and testing 

using the same methodology across multiple splits (48-13, 45-16, 42-19, 

40-21). The accuracy of each model varied across different splits, as 

depicted in the accompanying (Table 3.2). In case of AdaBoost Classifier 

(ABC), the model was trained and tested with a remarkable average 

accuracy of (100 and 92.75) % after considering all splits. We trained the 

model using set-4 with train test split of (66:33) % stands out as the 
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preeminent model for classification, exhibiting unparalleled mastery with 

flawless training and testing accuracy of 100%.  

 

Table 3.2: Accuracy score of various ML models for the classification of 

stable and unstable LDH materials on four distinct train and test splits. 

 

Classification 

Model 

(Class B) 

Set-1 Set-2 Set-3 Set-4 

Train 

(48) 

Test 

(13) 

Train 

(45) 

Test 

(16) 

Train 

(48) 

Test 

(13) 

Train 

(45) 

Test 

(16) 

Logistic 

Regression 
0.81 0.76 0.82 0.68 0.95 0.73 0.72 0.90 

Multilayer 

perceptron 

(ANN) 

0.79 0.69 0.77 0.75 0.80 0.73 0.77 0.76 

Gaussian 

Naïve Bayes 

(NB) 

0.81 0.76 0.84 0.68 0.80 0.78 0.75 0.90 

Bernoulli 

Naïve Bayes 

(NB) 

0.79 0.69 0.77 0.75 0.78 0.73 0.77 0.76 

Perceptron 

(Linear 

Model) 

0.79 0.69 0.77 0.75 0.78 0.73 0.77 0.76 

Stochastic 

Gradient 

descent 

0.68 0.53 0.22 0.25 0.28 0.26 0.77 0.76 

K-Nearest 

Neighbors 
0.72 0.76 0.88 0.93 0.80 0.73 0.72 0.80 

Gradient 

Boosting 
1.00 0.84 1.00 0.93 1.00 0.84 1.00 0.95 

Decision 

Tree 
1.00 0.84 1.00 0.68 1.00 0.84 1.00 0.90 

XG-Boost 1.00 0.76 1.00 0.93 1.00 0.84 1.00 0.90 

Random 

Forest 
1.00 0.76 1.00 0.84 1.00 0.84 1.00 0.90 

Support 

Vector 
0.87 0.84 0.88 0.68 0.88 0.84 0.85 0.90 

AdaBoost 1.00 0.84 1.00 0.93 1.00 0.94 1.00 1.00 

Linear 

Discriminant 

Analysis 

0.95 0.92 0.95 0.75 0.95 0.84 0.97 0.85 
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The best-fitted model comprises of well sampled 40 training datasets, 

while the remaining 21 datasets are used for testing. The correlation 

matrix (Figure 3.5(a)) indicates that the algorithm flawlessly predicted 5 

times 0 and 16 times 1. The feature importance plot (Figure 3.5(b)) reveals 

that certain attributes, such as ϒ, β, a, and the divalent cation radius, have 

a considerably higher feature importance greater than 0.10. Conversely, 

some features, such as electronegativity of the divalent cation, energy of 

the host material without substance, and α, have negligible feature 

importance. Additionally, some attributes such as the radius of the 

trivalent cation, molecular weight of the system, fraction of lithium atom, 

atomic weight of divalent and trivalent cation, b, c, optimized energy of 

polysulfide, the radius of trivalent cation, and molecular weight of the 

system, have a moderate impact. 

 

Figure 3.5: (a) Confusion matrix of test dataset and (b) feature importance 

scores of the considered features for class-B classification. 

The optimized hyperparameters used to fit the GBC and ABC ML models 

for Class A and B have been provided in Table A2 and A3, respectively. 

Further, both models are cross verified by 10-fold cross-validation (CV) in 

which, the 61 datasets are partitioned into 10 equal-sized subsets 

randomly. Then, model is trained and evaluated 10 times, where each 

time, different subset is taken as test set, and other nine subsets are taken 
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to train the model. The results of the 10 iterations are then averaged to 

obtain estimate of performance of model on complete dataset. The 

advantage of using 10-fold cross-validation is that it produces better 

estimate of performance of model than a single train-test split, as it 

evaluates entire available data for both training and testing. Specifically, 

the arithmetic mean of the ten-fold cross-validation results indicate an 

81% level of accuracy in testing for GBC for Class A which nearly 

matched with our average accuracy of model 89%, while ABC attains a 

92% level of accuracy in cross-validation for Class B perfectly matched 

with our average accuracy of 92.75%. (Table 3.3) 

Table 3.3: Mean accuracy for each fold of 10-fold cross-validation using 

GB-classifier for class A classification and AB-classifier for class B 

classification. 

 

The Gradient Boosting ML model's predictions for 444 datasets regarding 

class A. Probability can effectively aid in identifying and selecting 

K fold Class A Class B K fold Class A Class B 

K-1 0.84 0.91 K-6 0.83 0.97 

K-2 0.82 0.85 K-7 0.81 0.93 

K-3 0.72 0.92 K-8 0.82 0.91 

K-4 0.79 0.93 K-9 0.83 0.91 

K-5 0.79 0.95 K-10 0.83 0.92 

Mean Accuracy: Class A: 0.81; Class B: 0.92 
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materials that have a high likelihood of satisfying specific criteria. As a 

result, Gradient Boosting screened 29 cathode host materials that exhibit a 

probability greater than 0.99% and possess effective binding energy, 

making them promising candidates for further analysis. Furthermore, the 

predicted outcome for class B by the AdaBoost algorithm. To ensure high 

screening we filtered 44 intact LDH monolayers with a probability greater 

than 85%.  Finally, we consolidate the cathode host materials predicted for 

both classes and conduct a screening process to identify the 22 most viable 

options. Due to the crucial role played by Li2S6 in Lithium Sulfur battery 

charge and discharge processes,[31] we used this species to validate the 

accuracy of predicted results obtained through Density Functional Theory 

(DFT) calculations on 22 refined Layered Double Hydroxide (LDH) 

monolayers. Our DFT analysis identified 16 of the LDH monolayers as 

optimal cathode host materials (Table 3.4) that can effectively mitigate the 

shuttle effect during battery cycling, indicating their high potential for 

practical application. Here, A and B refers the predicted outcome of ML 

model for class A and class B. Notably, these selected LDH monolayers 

exhibit a high degree of effective adsorption energy, enabling them to 

serve as a stable adsorption surface for all polysulfides. Cohesive energy 

greater than AE shows that our LDH material remains stable after 

adsorption which we can observe from Table 3.4.   
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Table 3.4: Predicted outcome by ML model with probability of getting 1 

for each class and cross verified by DFT predicted AE.  

S. 

NO. 

Cathode host 

material 
A B PA(1) PB(1) 

DFT 

result 

AE 

(eV) 

Cohesive 

Energy 

(eV) 

1 [Mg20Al4(OH)48] 1 1 0.9995 0.8518 -3.89 4.15 

2 [Mg20Fe4(OH)48] 1 1 0.9986 0.8514 -1.96 4.07 

3 [Fe16Co12(OH)56] 1 1 0.9922 0.9867 -5.22 2.62 

4 [Mn16Co12(OH)56] 1 1 0.9984 0.9388 -2.98 3.95 

5 [Ni16Co12(OH)56] 1 1 0.9997 0.9361 -1.21 3.92 

6 [Co16Ni12(OH)56] 1 1 0.9998 0.9364 -2.16 3.92 

7 [Fe16Ni12(OH)56] 1 1 0.9998 0.9650 -4.05 3.84 

8 [Zn16Ni12(OH)56] 1 1 0.9995 0.8701 -2.08 3.67 

9 [Mg16Fe12(OH)56] 1 1 0.9996 0.9855 -6.25 2.47 

10 [Mn16Fe12(OH)56] 1 1 0.9991 0.9482 -1.88 3.93 

11 [Ni16Fe12(OH)56] 1 1 0.9998 0.9459 -3.49 3.92 

12 [Zn16Fe12(OH)56] 1 1 0.9998 0.9441 -6.59 3.69 

13 [Ca16Ti12(OH)56] 1 1 0.9923 0.9433 -1.30 4.46 

14 [Mg16Ti12(OH)56] 1 1 0.9991 0.9855 -4.42 4.29 

15 [Mn16Ti12(OH)56] 1 1 0.9993 0.9758 -4.38 4.11 

16 [Ni16Ti12(OH)56] 1 1 0.9994 0.9482 -4.49 4.18 
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CHAPTER 4 
 

 

4. Conclusion 

Here, combined ML-DFT approach has been applied to screen out stable 

and suitable cathode host materials from two different classes of LDH 

monolayers for Li-S battery in order to minimize the shuttle effect. First, we 

have performed different classification algorithms for identifying cathode 

host materials having optimum adsorption energy criteria upon Li-S 

polysulfide adsorption. Among the applied algorithms Gradient Boosting 

model has been found to be the most suitable ML model for class A 

classification with 95% accuracy. On applying Gradient Boosting model, 

we have identified 29 materials having strong adsorption with polysulfides. 

Further, another classification has been performed to detect the stability of 

all the cathode host materials upon Li-S adsorption where AdaBoost 

classification model has shown 100% accuracy for the identification of 

stable cathode materials and leads us to 44 structurally stable cathode host 

LDH monolayers. Combining both Gradient Boosting and AdaBoost 

classifier models we have screened out 22 effective viable cathode host 

materials with strong adsorption energy along with structural integrity. 

Further, we have carried out DFT calculation on all 22 filtered LDH 

monolayers by adsorbing Li2S6 to validate the ML predicted result. Among 

the 22 LDH monolayers, 16 LDH monolayers have been found to be 

suitable host cathode materials from DFT result which can suppress the 

shuttle effect effectively. We have used ML models followed by DFT for 

the superfast screening of cathode host materials from a huge dataset (444) 
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for Li-S battery. We believe our combined ML-DFT approach will ontribute 

to the experimental field by providing a right direction to the experimental 

researchers to design suitable cathode host materials which can suppress 

shuttle effect in Li-S battery. 
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APPENDIX -A 

 

Supporting Information 

 

 

 

Figure A1: Pearson correlation coefficient (PCC) heat map plot 

considered before features engineering. 
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Figure A2: Optimized structures of Li2S6 adsorbed on 16 substrates. 

 

Table A1: List of features that were used for the ML model. 

Abbreviations used in the manuscript to represent the features are given in 

parentheses. 

 

1 Lattice parameter along x-axis (a) 

2 Lattice parameter along y-axis (b) 

3 Lattice parameter along z-axis (c) 
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4 Molecular weight of a material (MW of system) 

5 Fraction of lithium present in lithium polysulfide intermediates 

(Fraction of Li atom) 

6 Fraction of Sulfur present in lithium polysulfide intermediates 

(Fraction of S atom) 

7 Electronegativity of divalent cation (ENM2) 

8 Electronegativity of Trivalent cation (ENM3) 

9 Polysulfide energy 

10 Angle between y-z axis (α) 

11 Angle between x-z axis (β) 

12 Angle between y-x axis (ϒ) 

13 Atomic weight of divalent cation (AtwtM2) 

14 Atomic weight of trivalent cation (AtwtM3) 

15 Molecular weight of lithium polysulfide intermediates (LiPswt) 

16 Ionic radius of divalent cation (R(+2)) 

17 Ionic radius of trivalent cation (R(+3)) 

18 Optimized energy of bereft monolayer (E (eV)) 

19 Optimized energy of polysulfide (Polysulfide energy) 

 

Table A2: Hyperparameter used in tunning the Gradient Boosting model. 

Hyperparameter Gradient Boosting 

loss Log_loss 

n_estimators friedman_mse 

criterion friedman_mse 

min_samples_split 2 

max_depth 3 

Random_state 43 
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Table A3: Hyperparameter used in tunning the AdaBoost model. 

Hyperparameter AdaBoost 

algorithm SAMME.R 

learning_rate 1 

n_estimators 50 
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