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ABSTRACT OF THE DISSERTATION 
 
 

Performance Assessment of Tunneling based Transistors for Capacitorless Dynamic 

Memory Applications 

 

With the advent of Moore’s law and Dennard’s scaling theory, the performance of processor 

units in computers improved. However, the overall system performance which was based on 

the interaction between the processor and memory units, didn’t improve with the same pace 

due to the lack of focus on memory. Thus, in the last decade, the emphasis has been directed 

to enhance the speed and density of memory with operation at low power. This necessitated 

reduction in the size of the capacitor in the conventional Dynamic Random Access Memory 

(DRAM) based on one transistor and capacitor (1T-1C). However, capacitor scaling 

adversely affects the charge retention, requires more refresh cycles, and consequently, 

dissipates more power. The problem was circumvented with the introduction of the single 

transistor (1T) as DRAM cell. While conventional Metal Oxide Semiconductor Field Effect 

Transistor (MOSFET) based 1T-DRAMs have shown promising results, the focus has 

shifted towards use of devices with potential to operate at low power. Thus, the thesis work 

focuses on an energy efficient device, Tunnel FET (TFET) as DRAM, improving its 

Retention Time (RT), Sense Margin (SM), speed, and scalability at low power.  

Through the TFET design presented in previous works, the RT achieved was lower than the 

target of 64 ms, specified by International Technology Roadmap for Semiconductors 

(ITRS). Therefore, a careful reinvestigation is required to enhance the RT of TFET based 

DRAM. The work in the thesis provides insights into the understanding of the performance 

and behaviour of TFET devices for memory applications by means of comprehensive 

physical device simulations. The key contribution of this research is to provide insights into 

the physical phenomenon occurring in the device, which influences the operation of TFET 

as dynamic memory. The thesis work demonstrates device perspective, where various 

metrics of DRAM are regulated by device architecture (misaligned, twin, and planar tri-gate 

TFET), geometry (gate lengths, film thickness), parameters (oxide thickness, gate 

workfunctions), biases and temperature. These govern hole generation and recombination in 

the storage region that defines distinct operations (write, read and hold) of DRAM.  
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The functionality of TFET based dynamic memory is based on the distinct roles of the gates, 

where the first gate (G1), aligned to source at top surface, is utilized for read mechanism 

based on band-to-band tunneling, while the second gate (G2) is responsible for creation of a 

dedicated volume for charge storage. G2 is aligned to drain, positioned at the bottom, at the 

front un-gated region in misaligned DG, and at the front adjacent to the first gate in twin 

gate and planar tri-gate topologies. The non-overlapping of G1 and G2 result into a profound 

well formation that enhances the charge retention. The p
+
 poly G2 creates a deep potential 

well that sustains charges for longer duration. Results demonstrate RT in few seconds for all 

proposed architectures with length of G1 (Lg1) as 400 nm and length of G2 (Lg2) as 200 nm 

at 85 C, which shows a remarkable improvement over previously proposed structures.  

The drawback of low SM has been overcome through incorporation of a symmetric G1 as in 

planar tri-gate TFET. The improved electrostatic control of G1 over channel, improves the 

SM, and also, scalability of G1 (down to 25 nm) and drain voltage (0.8 V) with acceptable 

SM and RT in planar tri-gate topology. Exploring TFET for functionality at shorter gate 

lengths, the design optimization through incorporation of a lateral spacing between the gates 

(Lgap) and an underlap (Lun) between the drain and G2, can further enhance retention and 

scalability. While scaling G2 reduces RT, scaling G1 degrades SM. Therefore, an analysis of 

each individual length (Lg1, Lg2, Lgap, Lun) estimates the minimum length required to attain RT 

> 64 ms. While the total length (Ltotal = Lg1+ Lg2+ Lgap+ Lun) for misaligned DG and twin gate 

TFET can be scaled down to ~160 nm, planar tri-gate show an improved scalability down to 

~115 nm. Other than improved SM and RT at reduced size and high temperature, 

functionality at lower drain voltage with low write time, nominates TFET for embedded 

applications.  

The work presented in the thesis showcases new viewpoints for TFET to function efficiently 

as dynamic memory. The physical insights and analysis of different attributes with optimal 

utilization of each lead to improved metrics as well as suppressed trade-offs. The systematic 

analysis through innovative approaches leads to capacity, retention, at low energy with 

operation at reduced size. The use of an energy optimized DRAM memory with RT > 64 ms 

is well-suited for standalone applications, and as well as, for integrated circuits embedded 

with logic devices. 
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Chapter 1 

 

Introduction 

 

1.1 Motivation for memory  

Since last 50 years, the trend in the semiconductor industry is directed towards 

device scaling for increasing both, speed and density along with reduction in 

power dissipation, intended to increase device functionality [1-13]. The concept of 

miniaturization was guided by Moore‘s law [2,3] in conjugation with scaling 

theory proposed by Dennard et al. [4]. In 1965, Gordon Moore postulated that the 

number of transistors would double annually, which was subsequently revised to 

18 months [3]. The vision of Moore continued to increase the transistor count 

[5,6], which on integration with Dennard‘s scaling [7] resulted in improvement in 

switching speed as well as power dissipation [8-13], indicative in Table 1.1.  

 

Table 1.1 Dennard‘s scaling results for device performance [3]. 

Device and Circuit Parameter Scaling Factor 

Device dimensions, Wg, Lg, Tox 1/α 

Doping Concentration, Na α 

Voltage, V 1/α 

Current, I 1/α 

Capacitance, εA/Tox 1/α 

Delay time, CV/I 1/α 

Power dissipation, VI 1/α
2
 

 is the unitless scaling constant. 

Wg, Lg, and Tox, represent the gate width, length, and oxide thickness, respectively. 

ε is the dielectric permittivity. 

A is the area of the associated capacitance. 

 

The advent of Moore‘s law and Dennard‘s scaling enhanced the speed and 

scalability of Central Processing Unit (CPU) in computers [13-22]. While the 
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microprocessors have been emphasized for high performance, memories were 

aimed at being cost-effective [18,19]. The processors have benefited from the use 

of advanced transistors, metal and packaging technology, in the quest for high 

speed and processing. Additionally, computer architecture included larger caches, 

multithreading, deeper pipelines, innovations that transited finally to multicore 

processors for improving the performance [20-24]. However, the improved speed 

through multicore increased the burden on memory as the memory controllers per 

core decreased [14, 19]. Thus, the overall system performance which is based on 

the interaction between the processor and memory units, didn‘t improve with the 

same pace due to the lack of focus on memory system. Thus, in the last decade the 

focus has been directed to enhance the memory performance [25-28].  

 

 

Fig. 1.1 Classification of various solid-state memories [25]. 

 

1.2 Memory technology 

1.2.1 Types of memory 

The quest for improved memory performance resulted into invention of various 

memory technologies over the past decades [25-34]. Broadly classified as volatile 

and non-volatile memory (Fig. 1.1), which includes, Static Random Access 

Memory (SRAM), Dynamic RAM (DRAM), Non-volatile Random Access 

Memory (NVRAM), NOR flash, Erasable Programmable Read Only Memory 

(EPROM), Electrically Erasable Programmable Read Only Memory (EEPROM), 

and NAND flash [32-34]. A volatile memory does not retain data when power is 
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turned off, while, a non-volatile memory retains data even after the power is 

turned off. Their utility in real-time applications is based on various parameters, a 

few of them are illustrated in Table 1.2. 

 

Table 1.2 Comparison of various metrics of memory technologies [25,31,32]. 

Memory Volatility Density Write 

Speed 

Read 

Speed 

Cost/bit 

Flash No High Slow Fast Moderate 

EPROM No High Slow Fast Moderate 

EEPROM No Moderate Slow Fast Expensive 

SRAM Yes Low Fast Very Fast Expensive 

DRAM Yes Very High Moderate Moderate Moderate 

 

1.2.2 Evolution of memory 

The semiconductor industry has evolved remarkably in the past few years with 

memory technology as an essential and crucial component of electronic system. A 

tremendous change has been observed in the usage and applicability of the solid-

state memories [35]. The paradigm shift is attributed to invention of various 

mobile multimedia applications and advanced cell phones along with computing 

segment [29,30-36]. Current smartphones and tablets require much more memory 

than previous mobile devices [38]. The need is also driven by the continuous 

growth in the digital information and internet applications that generates immense 

amount of data which are stored in a cloud [39-41]. Hence, the focus of the 

devices is shifting from computational to data intensive applications that further 

demands innovation [18,20,42,43].  

 

Another requirement is due to shift in the trend of memory devices from stand-

alone applications to embedded applications, where the memory system is 

incorporated with logic devices on an integrated circuit [17,44-46]. The 

technology metrics for memory are stability, reliability, data retention, on–off 

ratio, power and endurance [32]. Thus, the key contributors necessitating the need 

for innovative technology includes, Internet of Things (IoT), mobility, 

networking, cloud computing and big data application [18,29,30,36-43] that 

drives the need for ease of system integration, lower power consumption, 
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increased storage and memory density, faster storage and retrieval, real time 

analytics [47-49]. The major barrier is trade-off between these metrics, and hence, 

optimization is crucial to design application specific memory devices.  

 

1.2.2.1 Memory technology in market 

The dominating memory technologies in the semiconductor market today are 

SRAM and DRAM (volatile) [14,19,29], and NAND flash (non-volatile) [29,46]. 

Amongst non-volatile memories, flash memory is the leading memory as along 

with capability to electrically erase and programme like EPROM and EEPROM, it 

features lower cost, better scaling perspective and faster read [13,18,32]. Amongst 

the volatile memory, SRAM is exploited for high speed applications, and is 

usually utilized as cache memory [19]. Unlike DRAM, SRAM doesn‘t require 

refresh cycles and thus, retains the information with power-on [19,29]. DRAM is 

usually used as main memory, and sometimes, as embedded cache memory 

[19,35,45], but requires a controller to refresh its data after a fixed time interval. 

However, DRAM is a dense memory, and thus, high integration capability along 

with low power and cost, nominates it as a memory to be explored further [18].  

 

1.3 Dynamic Memory 

1.3.1 Motivation for DRAM 

DRAM is a fast and robust memory with high density, low power and cost [50-

56], that could be used for the data management [39-43], but need further 

innovations to compete with cheap and low power NAND memory [46]. The 

various applications of DRAM in the past and prospects in the future have 

motivated continuous and evolutionary, as well as revolutionary changes in the 

DRAM technology [18,29,55,56]. Despite the introduction of new memory 

devices, the need for main memory and scratch pad memory would continue the 

demand for DRAM in future [47].  

1.3.1.1 Evolution of dynamic memory in semiconductor industry 

Apple II was the first commercially successful desktop computer built with DRAM 

[19]. In 1990s, DRAM used a data paging system for faster memory access [14,17]. 

Further, need for enhanced capacity and speed, invented a new form of DRAM which 

featured multitasking, where the memory device would read data while fetching new 
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information from hard drive [19].  The next significant upgrade was the Synchronous 

Dynamic Random Access Memory (SDRAM), which was synchronized to a 

computer‘s internal clock, resulting in faster processing than its asynchronous 

predecessors [19]. The next generation utilized series of Double Data Rate (DDR) 

SDRAM with increased speed [50] that led to development of laptop and notebook 

[38,47]. Further notable advancement was observed with the introduction of 

smartphone. Since 2012, most of the memory sector‘s strength can be attributed to 

consolidation within the crowded DRAM segment [38,48]. DRAM has 

established as a leading memory device in the semiconductor industry. World 

Semiconductor Trade Statistics (WSTS) [48] reports dynamic memory as 13% 

contributor for the revenue generated in the semiconductor market, and maximum 

amongst the memories (Fig. 1.2). The sources [37,38,47], also indicate increase in 

the demand for DRAM due to major growth in mobile market [47]. Thus, DRAM 

application is not only limited to various applications for computers, including email, 

video streaming, but also, wide range of smart products, including mobile devices, 

high definition television and MP3 players [18]. 

 
*Memory includes DRAM, NAND and NOR 

Fig. 1.2 Pie-chart demonstrating the income earned in 2015 World semiconductor 

market (Total: 334 billion$) through various segments of industry [48]. 

The popularity of IoT and cloud computing is shifting manufacture‘s Research 

and Development (R&D) to develop higher-density DRAM [37,39,40,42]. In fact, 

according to a survey by Forbes [57], amongst top new areas of Information 

Technology (IT) in 2015, 32% has been invested for IoT application, while the 

rest is spend on high performance computing (22%), and energy-saving and 

carbon-reducing technologies (16%). Thus, IoT application is consistently 

evolving within the industry. Therefore, the advent of mobile, cloud computing, 

virtual reality, and IoT applications, thus, require the exploitation of devices to 

DRAM Non-Volatile Discrete Logic Analog Others

1

2

3

4

5

6

Logic 

Discrete

Others 

DRAMNon-Volatile

Analog
55 %

13 %
11 %

10 %

(5 %)

(6 %)

Memory



6 

 

boost characteristics of DRAM [18,38,47]. An energy-optimized DRAM array 

provides efficient access to memory bits, providing an ―intelligent‖ memory 

device [18,29,30]. The use of intelligent memory in the integrated circuits, 

embedded with logic device would definitely enhance performance. Thus, 

demand is of devices that are compatible with Complementary Metal Oxide 

Semiconductor (CMOS) and possess capability to deliver capacity, high speed, 

high functional bit density, and low energy at reduced size [47]. 

      
Fig. 1.3 (a) Cell design of 1T-1C DRAM [60]. (b) Qualitative demonstration of 

timing diagram for read operation for 1T-1C DRAM. SA indicates the signal at 

the sense amplifier. 

 

1.3.2 History of conventional dynamic memory  

In 1966, Robert Dennard perceived an idea of storing data in the form of charge in 

the capacitor along with a transistor to access the stored data [30]. In 1967, a patent 

application was filed for the single-transistor (1T) and capacitor (1C) based DRAM 

(1T-1C) [58-61], and the same was issued in 1968 [58]. The invention by Dennard 

remarkably improved the mainframe computers and led to development of 

personal computers [14,19,58]. In early 70‘s, the commercial DRAM was released 

by Intel for 1 Kilobyte of storage, but with 3 transistors and a capacitor (3T-1C) 

[58]. However, in late 70‘s 1T-1C based DRAM was commercially introduced 

and till now, there have been various modifications in the design of 1T-1C [19].  

 

1.3.2.1 Operation of conventional dynamic memory 

The operation of 1T-1C dynamic memory (Fig. 1.3(a)) is based on charging and 

discharging of the storage capacitor (Cs) [58-61]. Bit ―1‖ is the state with high 
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voltage across the capacitor, while bit ―0‖ is the state with storage of zero volts. 

The bitlines (BLs) are precharged (PRE) to 0.5 × VA, where VA is an array voltage 

which is the maximum positive voltage applied to BLs. The transistor is accessed 

during write and read operation by applying a high voltage (≥ VA + Vth) at the 

wordline (WL), where Vth is the threshold voltage of Metal Oxide Semiconductor 

Field Effect Transistor (MOSFET) [61]. During write, ‗VA‘ (‗0‘) is applied at 

bitline that stores state ‗1‘ (‗0‘) at Cs, respectively. After write operation, WL is 

reset at 0 V and BL to 0.5 × VA which cuts off the MOSFET, and thus, DRAM is 

in its hold state.  

 

During read, the transistor is accessed again and based on the data stored in the 

storage capacitor; the charge is distributed among storage capacitance (CS) and 

bitline capacitance (CB). As shown in Fig. 1.3(b), the wordline, is activated to a 

boosted voltage, VA + Vth. This turns on the access device, and charge sharing 

occurs between the cell capacitor, CS, and the bitline-parasitic capacitance, CB. If 

the cell to be read stores ‗1‘ (‗0‘), then the cell capacitor, CS, will be initially 

charged (discharged) to ‗VA’ (‘0‘) V and thus the bitline voltage, VB, rises 

(decreases) from ‗VA/2‘ to ‗VA/2 + ∆VB1’ (‗VA/2 − ∆VB0’). Upon activating the 

sense amplifier by the SA signal, the small differential voltage, ∆VB1 (∆VB0), 

between the two bitlines will be amplified until the BL voltage rises (decreases) 

to ‗VA’ (‗0‘) V. The final bitline voltage, ‗VA’ (‘0‘) V, is used to write back the 

stored data on the memory cell as the access transistor is still activated. Thus, the 

stored data is sensed based on the voltage at the bitline after read operation [60]. 

An efficient memory should retain the stored data for longer duration. The pursuit 

to attain higher charge sustenance along with high density led to adaption of 

various designs of 1T-1C cell. 

 

1.3.2.2 Evolution of 1T-1C DRAM 

Scaling the physical capacitor reduces the charge storage capability and hence, 

applicability as dynamic memory. Thus, the capacitor has evolved from planar to 

complex three dimensional (3D) structures [14,16,17]. The planar capacitor used 

in early DRAMs (1970-80) was located adjacent to the transistor and consumed 

30% of the cell area and thus, scalability was an issue [50]. The design was 

improved by use of a trench capacitor, invented by Hideo Sunani in 1974 [62]. 
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The storage capacitor in such topology was fabricated in trench etched into 

substrate. Although, the area was reduced, there were issues related to fabrication, 

degraded oxide uniformity on the trench wall, trench to trench leakage associated 

with parasitic MOS of two memory cells and soft errors that includes impact of 

high energy particles such as alpha particles [14]. Trench capacitors are also less 

suitable for integration with high-permittivity () dielectrics, because they are 

formed before the transistors with their associated high temperature anneals 

[14,18]. Along with trench capacitors, stacked capacitors were also introduced, 

with the concept proposed by Mistu Koyangi et al. [63]. 

 

The stacked capacitor has been fabricated using a thin insulator rounded by two 

polysilicon layers to reduce the area, and thus, improves the device integrity. 

However, fabrication and the metal layers used as interconnects increase the 

complexity and cost [14]. Recently, the focus has diverted towards complex 3D 

structures [42]. The stacked 3D structures increase the chip density, but with 

fabrication cost as an overhead [51]. The other requirements of the capacitor for 

efficient memory operation include, low series resistance for fast memory, and 

low inter-cell coupling [14,64,65]. Other limitations of 1T-1C DRAM include 

increase in leakage current associated with transistor scaling that affects the 

charge retention, and also, the increase in off-current reduces the operating speed 

[14,19,52-55]. The drawbacks of the 1T-1C, motivated invention of innovative 

technology to overcome the problem associated with capacitor scaling, and thus, 

the concept of capacitorless dynamic memory was proposed in 1990‘s [68]. 

1.4 Evolution of MOSFET Architectures  

1.4.1 Bulk MOSFETs 

The conventional silicon wafers, called bulk wafers were ~ 800 micrometer (μm) 

thick with a thin top region (0.1% of wafer) utilized for conduction, while the rest 

inactive bottom region of silicon provides strength [69]. However, this unused 

substrate of a bulk MOSFET (Fig. 1.4) resulted into parasitic effects [69-73] that 

included, 

(1) The latch up, which is superposition of p-n-p and n-p-n transistors in the 

same diffused regions. It serves as thyristor causing uncontrollable high 

current and hence, failure of circuit [71]. 
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(2) Interconnection with other device that require lateral isolation technique, 

Shallow Trench Isolation (STI) or channel stop implantation that increase 

fabrication steps and also, consumes larger area [71].  

(3) Capacitance between source/drain and the substrate. The device scaling 

reduces the gate controllability and hence, enhances the Short Channel 

Effects (SCEs) [74]. The problem can be suppressed with heavier channel 

doping. However, higher doping further increase the parasitic junction 

capacitances and has an unfavourable impact on mobility, threshold 

voltage, transconductance and device variability [69,71].  

 

 
Fig. 1.4 Schematic diagram of an n-type bulk MOSFET, with a gate length of Lg, 

gate oxide thickness of Tox and width of Wg. The doping of substrate is moderate 

p-type and source and drain are heavily doped with n-type of impurities (n
+
) [71]. 

 

1.4.2 Silicon-on-Insulator (SOI) MOSFETs 

The issues related to parasitic effects in bulk MOSFETs was addressed by the 

isolation of active region from substrate through a dielectric film. The technology 

introduced, known as Silicon-on-Insulator (SOI) [75-78] with active region 

resting on a Buried Oxide (BOX), as shown in Fig. 1.5. Various advantages 

[69,71] obtained from SOI technology included, 

[1] Dielectric isolation: The isolation between substrate and active region 

offers following benefits over bulk MOSFETs [79], 

(i) No latch up, 

(ii) Lower power consumption, 

(iii) Reduced leakage current, 

(iv) Higher transconductance, and 

(v) Reduction in parasitic capacitances 
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[2] Random Dopant Fluctuations (RDF): Undoped/lower body doping 

reduces device variability, and thus, is more immune to RDFs [69]. 

[3] Improved integrity: The capability of integrating different devices 

(CMOS, power devices, etc) on same wafer. The device structure also shows 

possibility of stacking more than one layer of devices [73]. 

[4] Reliability: SOI MOSFETs offer excellent tolerance to radiation effects    

[71,79]. The incoming particles generate electron-hole pairs in proportion to the 

device volume exposed to carrier generation, which is 2-3 orders of magnitude 

smaller than in bulk Si [69].  

[5] Short channel effects: The extension of source/drain depletion regions is 

restricted by the junction size (vertical) and by the dual-gate control (via front-

gate and silicon substrate), and thus, SOI devices are more immune to short 

channel effects and avail better subthreshold slope, when compared with bulk 

devices [71,80]. 

[6] Circuit design and processing:  Fabrication of CMOS circuits on SOI is 

much easier than in bulk silicon [73]. The number of fabrication process steps is 

reduced due to the absence of wells and inter device trenches which were present 

in bulk design [72,73].  

 

The benefits offered by SOI technology are numerous, but the device suffers from 

interconnection issues and problems related to self-heating [69]. The other 

constraints include (i) large series resistance which can be reduced by use of 

raised source/drain [73] and (ii) the Floating Body Effects (FBEs) [78,81-87] 

which can be eliminated by use of fully depleted device. 

 

1.4.2.1 Partially and fully depleted SOI MOSFETs 

Depending upon the thickness and doping concentration of silicon film, the SOI 

can be classified [71] as: 

(1) Partially Depleted Silicon-on-Insulator (PDSOI): The top film is depleted of 

carriers while the bottom region remains neutral at zero bias. 

(2) Fully Depleted Silicon-on-Insulator (FDSOI): Complete silicon film is 

depleted of charge carriers at zero bias. 
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Fig. 1.5 Schematic diagram of an n-type Silicon-on-Insulator MOSFET, with a 

gate length of Lg, gate oxide thickness of Tox, silicon film thickness of Tsi, buried 

oxide thickness of TBOX, width of Wg, and substrate below buried oxide with 

thickness of Tsub. The doping of channel region is moderate p-type (p
-
) and source 

and drain are heavily doped with n-type of impurities (n
+
) [69]. 

 

Table 1.3 Comparison between Bulk, PDSOI, and FDSOI technologies [69,71]. 

Parameters Bulk PDSOI FDSOI 

S/D resistance  Low Moderate High 

On-current, Ion High Moderate High 

Off-current, Ioff Moderate Very Low Low 

Drain induced barrier lowering Moderate Low Very Low 

Subthreshold Swing, S High Moderate Very Low 

FBE, Kink effect, history effect No Yes Conditional 

Coupling channel No No Yes 

 

Table 1.3 compares bulk, PDSOI and FDSOI technologies. FDSOI, being 

completely depleted of carriers exhibit the most interesting properties, such as low 

electric fields, high transconductance (gm), excellent immunity to short channel 

effects, and better subthreshold swing characteristics that nominates it better than 

other comparable technology [69]. FDSOI can also be utilized for circuit 

operation with high performance and at relatively lower bias [71]. However, fully 

depleted transistors are very sensitive to silicon thickness compared to partially 

depleted MOSFETs, and thus, require efficient control during fabrication to 

prevent process variations [71].  
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Fig. 1.6 Schematic representation of drain current-voltage characteristics, showing 

hysteric behaviour with memory window (∆Ids-∆Vth), depicting write and read 

mode of operation. ∆Vth and ∆Ids demonstrates the shift in threshold voltage, and 

current levels for same set of bias applied. 

 

In PDSOI devices, a neutral region exists, called as body, and if connected to 

ground through a body contact, the characteristics of the device is similar to that 

of a bulk device [71,78]. However, if the body is left electrically floating [80], the 

charges will be accumulated in the neutral region of semiconductor film. There 

are various consequences of this charge confinement in the body of PDSOI 

devices, which are generally attributed to Floating Body Effects (FBEs) [81-87], 

such as kink effect, hysteresis, negative conductance and transconductance, single 

transistor latch, bipolar transistor action, premature breakdown. Besides, FDSOI 

devices are virtually free of FBEs, provided their back interface is not in 

accumulation [85]. The hysteric behaviour observed in Fig. 1.6 due to FBE shows 

two threshold voltages for same device and bias parameters. The Reverse Sweep 

(RS) triggers impact ionization or tunneling that accumulates holes in the silicon 

film at the floating body contact [78]. The hole accumulation develops a positive 

body potential that lowers the threshold voltage in comparison the threshold 

voltage observed in Forward Sweep (FS). Thus, distinct current jumps are 

observed for the two directions of the voltage sweep, and their separation is 

governed by the drain-voltage magnitude [69]. The two different thresholds 

reflect state ‗1‘ and ‗0‘ of the memory [58]. The other prominent FBE is the kink 

effect that is symbolized as an abrupt increase in the saturation current of PDSOI 

when operated in strong inversion [71]. Although FBEs are undesirable for device 

operation, they are advantageous for memory applications [84]. 
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1.5 Floating Body (FB) for dynamic memory applications 

1.5.1 Evolution of FB-DRAM 

The operation of FB-DRAM is based on charging and discharging the capacitor 

associated with floating body [88-127]. The concept of FB-DRAM was 

implicated by a start-up company, Innovative Silicon in 2003 [88]. The idea was 

introduced with the name as Zero capacitor RAM (Z-RAM) cell [88-90]. Over the 

time, the use of PDSOI as Z-RAM cell [89-91] was minimized as the industry was 

progressing towards thin or ultra-thin FDSOI [92-100]. FDSOI doesn‘t virtually 

show FBE due to low barrier between source and channel that lead to rapid 

recombination of the holes, hence inhibiting hole confinement in the body [71]. 

However, FDSOI with Ultra-Thin Buried Oxide (UTBOX < 20 nm) along with 

back bias facilitates the creation of potential well for charge storage [101]. Thus, 

FDSOI technology has been evolving as capacitorless DRAM, thereby replacing 

PDSOI based memory devices. The advantage of using FDSOI is the improved 

SCE due to thinner silicon film, and reduced RDF due to intrinsic channel [69]. 

The first generation Floating Body Cells (FBCs) were based on impact ionization 

[89-102] or Gate Induced Drain Leakage (GIDL) [101-111], while the second 

generation FBCs utilizes bipolar effect [111-122] that showed a higher retention 

time
 
as compared to the previous methods and also, a low current condition during 

the erase operation that minimizes the power consumption [58]. Body charge 

dynamics were also improved due to dynamic coupling between the front and 

back interfaces in FBCs [123,124]. The devices with trenched body [125] are also 

utilized to achieve desirable performance in terms of a larger programming 

window and longer RT. 

 

1.5.2 Operating principle as DRAM  

1.5.2.1 Write Operation 

The hole storage is defined as write ‗1‘ or programming operation and is 

performed using following approaches: 

1 Write through impact ionization [88-102]: The principle operation of 

impact ionization is based on the avalanche breakdown, where a high electric 

field at the channel/drain transition region creates Electron-Hole Pairs (EHPs) 

on collision with bound electrons [70]. The generated electrons drift towards 
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positively biased drain while holes are stored at lower potential region, which 

is the neutral body of the film [78]. Write ‗1‘ based on impact ionization is 

demonstrated in Fig. 1.7. This is a simple and fast carrier injection method. 

However, the need of high drain bias is a concern [71]. The high electric field 

may give rise to hot electrons that can inject into gate oxide, thereby damaging 

the oxide-silicon interface [71]. Thus, reliability of device is an issue 

associated with write using impact ionization. 

 

Fig. 1.7 Schematic representing write ‗1‘ operation through impact ionization 

[90]. The electrons accelerated towards drain strike the bonded electrons to 

generate EHPs. The holes are accumulated at the lower potential region, 

representing state ‗1‘ [88]. 

 

 
Fig. 1.8 Schematic diagram illustrating program through bipolar action, where 

impact ionization is enhanced with a feedback mechanism triggered through 

parasitic bipolar transistor [88]. 

 

2 Write through bipolar action [112-122]: This method is based on impact 

ionization along with a feedback loop that generates more electron-hole pairs. 
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The feedback action is triggered through forward biasing the intrinsic bipolar 

transistor with p-type body, n
+
 source and n

+ 
drain as base, emitter and 

collector, respectively. The accumulated holes forward bias base-emitter 

junction, that enhances the channel current (IBipolar + IMOS). Therefore, more 

electrons are accelerated towards drain that further trigger generation of EHPs 

and thus, speed up the write mechanism (Fig. 1.8). Impact ionization enhanced 

by parasitic bipolar transistor is a very fast write mechanism. However, the 

use of high drain bias and reliability can be a concern [71].  

 

 
Fig. 1.9 Schematic representation showing write ‗1‘ through band-to-band 

tunneling of electrons from channel region towards drain that generates holes, 

being confined at the channel region [88]. 

 

3 Write through Band-to-Band Tunneling (BTBT) [101-111]: Tunneling 

operation is based on the concept of Zener tunneling, where a negative bias at 

the gate and a positive bias at drain reverse biases the channel/drain junction 

[58]. The negative bias at gate with a positive bias at drain creates a large 

electrostatic potential barrier between the regions that cease the charge 

transfer through thermionic emission [72] and hence, the transport of charge 

carriers is possible through tunneling. The electrons tunnel towards the drain, 

thereby, accumulating holes into the potential well [101]. This tunneling is 

usually categorized as GIDL [105], and is utilized with gate/drain overlap as 

illustrated in Fig. 1.9. Although this write mechanism require high drain bias, 

the write current is smaller compared to previous methods (write through 

impact ionization and bipolar action) and thus, is a power efficient mechanism 

with minimized reliability concerns [58]. 
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Fig. 1.10 Schematic representation showing write ‗0‘ through forward biasing 

drain/source and channel region [58]. 

 

While hole accumulation defines write ‗1‘, their depletion constitutes write ‗0‘ or 

erase operation, which requires hole removal from the storage region [58]. The 

holes are evacuated from the body through forward bias as illustrated in Fig. 1.10. 

For an nMOS, the positive potential at gate removes the holes from the body 

through capacitive/dynamic coupling [14]. Dynamic coupling between the front 

and back gate can be understood as the impact of gate bias, where increase in 

front gate bias increases the body potential above equilibrium and naturally, turns 

on the junctions. Another way of forward biasing the junction is through 

application of negative bias at drain/source [58]. The forward biased body and 

source/drain junction results in the recombination of holes at the heavily doped n
+ 

region, and thus, holes are depleted from the storage region.  

 

1.5.2.2 Read Operation 

The presence of excess holes develops a positive potential at the back. This lowers 

the threshold voltage of the front gate, and thus, enhance the Read current for state 

‗1‘ (Fig. 1.11(a)) as compared to state ‗0‘ (Fig. 1.11(b)). Thus, two different front 

gate thresholds are observed based on the presence and absence of the excess 

charge that distinguishes the two states [101]. Fig. 1.11(c) shows the threshold 

shift (∆Vth), between the two states that lead to two different current levels (∆Ids) 

for same set of bias.  
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Fig. 1.11 Schematic diagram of a SOI device, illustrating the read mechanism, 

where presence of excess holes in the neutral body region lead to higher current 

for (a) state ‗1‘, compared to (b) state ‗0‘ and the variation is observable in drain 

current – gate voltage characteristics through (c) shift in threshold voltage (∆Vth) 

and difference in the current levels (∆Ids) [58]. 

 

1.5.2.3 Hold operation 

As mentioned before, the two states are stored through write operation and are 

distinguished based on the read operation. However, hold operation is performed 

between write and read operation that determines the retention of a state [101]. 

The charge sustenance is regulated through hole generation and recombination 

that is controlled through device architecture, geometry, bias and temperature [88-

127]. State ‗0‘ is degraded due to thermal generation and BTBT of electrons 

towards drain/source that generates holes in the potential well [88]. State ‗1‘ is 

disturbed due to decrement in hole concentration in the storage region due to 

thermal recombination and hole diffusion [88]. Thus, to attain high retention time, 

which is one of the key metrics defining DRAM performance, the regulation of 

hole recombination and generation is essential. 

 

MOSFETs have proven to be a promising architecture as a 1T dynamic memory 

[88-127], achieving retention time that satisfies the 64 ms specification for 
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standalone DRAM
 
[13]

 
with acceptable read sensitivity. However, the rapidly 

growing semiconductor industry demands evolution and innovative 

methodologies to enhance performance with improvement in speed, power and 

density [18].  Thus, the focus has shifted towards steep switching devices for 

various applications to facilitate a high speed operation, while maintaining the 

need for low power and high density. 

 

1.6 Steep Switching Devices 

1.6.1 Motivation for steep switching devices 

Silicon CMOS technology is the most promising technology that has been 

continuously evolving with downscaling. However, increase in power dissipation 

with the scaling of CMOS transistors is one of the basic concerns in 

semiconductor industry [1,128]. The downscaling of transistor size improves the 

device functionality, speed, density and cost [1-13,128,129]. It necessitates 

reduction in the threshold voltage (Vth) along with supply voltage (Vdd), to 

maintain a high overdrive voltage (Vdd - Vth), so as to achieve a high on-current 

(Ion) [130]. However, the reduction in Vth increase off-current (Ioff), and thus, the 

static power dissipation. The increase in Ioff, also reduces the switching speed 

(Ion/Ioff), and hence, degrades the device performance. Therefore, the requirement 

is to maintain the performance of device in terms of speed, while accomplishing 

the need of low power and high density [131,132].  

 

The dynamic and static power of the device is proportional to Vdd [133-135]. In 

advanced technology, the static power (~Ioff  Vdd) can be a significant contributor 

to total power consumption, and even dominant over dynamic power [128,132]. 

Therefore, computing systems should address both issues related to dynamic, as 

well as, static power. This can be achieved by reducing the supply voltage and 

also, increasing the turn-on steepness, being quantified through a parameter, 

Subthreshold Swing (S), which is defined as the gate voltage required to change 

the drain current by an order with transistor operation in sub-threshold region, and 

is evaluated [70,133] as, 

   
   

    
  

    

 (        )
   (   

  

   
)     

  

 
                        (1.1) 
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where Vg is the gate voltage, Id is the drain current, Ψs is the surface potential, 

kT/q is the thermal voltage, which is ~ 60 mV/decade for MOSFET at 300 K and 

Cd and Cox are the depletion and the oxide capacitances, respectively. 
   

    
 is the 

transistor body factor, defined as m, and 
    

 (        )
 is denoted as n, a factor that 

characterizes the change of the drain current with the surface potential, reflecting 

the conduction mechanism in the channel. The significance of S can be 

understood through equation [136], 

        
   

   (       )⁄
                                  (1.2) 

Equation 1.2 suggests that reduction in supply voltage is possible while 

maintaining the switching characteristics through reduction in subthreshold slope. 

However, the switching capability of conventional MOS is restricted by 

Boltzmann limit (~kT/q), with subthreshold swing limited to 60 mV/decade at 

room temperature [133]. However, the steepness can be improved through 

emerging energy efficient devices [136] with a transport mechanism different 

from conventional MOS devices [133].  

 

1.6.2 Various steep switching devices 

Equation 1.1 demonstrates that the sub-thermal swing (< 60 mV/decade) can be 

obtained by modifying the factor m or n. The factor m can be altered to a value, 

lower than 1. This is possible through modification in the electrostatics of gate 

through Negative Capacitance (NC) effect [137-143], showing S of ~13 

mV/decade [152] or using electromechanical gates [144-148] with S of ~2 

mV/decade) [144]. The operation of NCFETs depends on polarization, and 

therefore, material optimization and its integration are essential [137]. The voltage 

amplification in NCFETs depends on the viscosity coefficient of ferroelectric. 

However, a low viscosity coefficient is required for a steep switch, which makes it 

unsuitable for high speed applications [141]. Also, their practical use in hysteretic 

[140] or non-hysteretic [143] applications is still under investigation. The 

electromechanical gates use movable electrodes, where instability points between 

electrical and mechanical points define transition. Although, devices have 

experimentally demonstrated a swing < 2 mV/decade, with less temperature 
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dependency, the issues related to reliability, voltage scaling and the requirement 

of a controlled environment during packaging, limits its use [128,129]. 

 

Another way of reducing S is by modulating the factor n that can be reduced by 

utilizing a different carrier injection method. It includes the transport mechanism 

based on (i) impact ionization, as in Impact Ionization Metal Oxide 

Semiconductor (IMOS) [149-151] and (ii) quantum mechanical Band-to-Band 

tunneling (BTBT), as in Tunnel Field Effect Transistor (TFET) [134,135]. Both 

these mechanisms occur at high electric field. IMOS devices have a very steep 

transition with experimentally reported value of swing, ~6 mV/decade [150]. 

However, scaling the operating voltage in IMOS is challenging and also, the 

device suffer from hot carrier injection that can result into reliability issues [128].  

 

Compared to all other steep switching devices, TFET has larger S of ~30 

mV/decade [152,153], and one of the main limitations of the device is low on-

current (Ion) [134]. However, various techniques that include modification in 

architecture and material have been proposed to improve its driving capability and 

are still under investigation by various research groups for further improvement 

[128,134]. The advantage of TFET device is low off-current Ioff (except 

electromechanical switches) and highest potential for voltage scaling amongst 

CMOS compatible devices [13,129]. Before discussing the applicability of TFET 

as memory, understanding its operating principle, limitations and benefits is 

essential. 

 

1.6.3 Tunnel Field Effect Transistor (TFET) 

TFET is a gated p-i-n diode with heavily doped p and n on either side of the 

intrinsic region (Fig. 1.12). The evolution of tunneling and the associated devices 

is summarized in Table 1.4 [154-172]. The concept of gated p-i-n structure was 

proposed by Quinn et al. [173], and its study was further extended by Banerjee et 

al. [174] with three terminal silicon based TFET. The prospect of device 

scalability was studied first by Takeda et al. [175]. Further, surface tunneling 

transistors were fabricated with III-V material [176]. In 1996, a forward biased 

silicon tunneling device was proposed by Koga and Torumi [177]. In 2000, 

reverse biased based tunneling device were proposed in vertical structure [178], 
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and in 2006, Aydin et al. [179] proposed a lateral tunneling based device with 

operating principle similar to TFET, but without intrinsic region. Recently, TFET 

has emerged as a promising candidate with different geometry and materials [152, 

180-184]. 

 
Fig. 1.12 Schematic diagram of a TFET, with a gate length of Lg, gate oxide 

thickness of Tox, silicon film thickness of Tsi, buried oxide thickness of TBOX. The 

device has an intrinsic channel doping, while source and drain are heavily doped 

with p and n-type of impurities, respectively [134]. 

 

1.6.3.1 Operation of TFET 

The operation of TFET is based on interband tunneling with the concept based on 

Zener tunneling, where carriers are transferred from a heavily doped p
+
/n

+
 regions 

[167]. TFET is an ambipolar device where electron dominant conduction signifies 

n-type TFET, while that hole dominant, as the p-type TFET. Fig. 1.13(a) shows a 

qualitative comparison of a MOSFET and a Tunnel FET. At moderate 

performance requirements (@ Vg1), TFETs offer improved Ion/Ioff, and also 

superior performance (higher Ion at the same voltage) or power savings at the 

same performance (lower voltage for the same Ion) over MOSFETs [14]. 

However, when a much higher performance (@ Vg2) is required, a MOSFET is the 

better solution.  Other than low Ion, the performance of TFET is also affected by 

the traps that result into threshold shift and subthreshold slope degradation 

[128,135]. The low Ioff offers better energy efficiency at lower or moderate 

performance level. The steeper swing for TFET demonstrates operation at lower 

supply voltage for same Ion/Ioff, as illustrated in Fig. 1.13(b) that nominates TFET 

as an energy efficient device that could possibly replace MOSFETs without 

performance loss [134].  
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Table 1.4 Selected history of tunneling and devices [154]. 

Advances in tunneling and devices Investigators Year 

 Observation of field-emission from 

metals 

Lilienfield [155] 1922 

 Explaination of field-emission Fowler and Nordheim [156] 1928 

 Theory of interband tunneling in 
solids 

Zener [157] 1934 

 Field emission microscope  Muller [158] 1937 

 Observation of Zener breakdown Chynoweth and Mckay [159] 1957 

 Tunneling in degenerate pn junctions 

 Extension of Zener‘s theory to tunnel 
diodes 

Esaki [160] 

Keldysh, Kane, et al.[161-162] 

1958 

1958-

1961 

 Measurement of energy gap of 

superconductors 

 Pertubation treatment of tunneling 

 Tunneling of Cooper particles 

 Floating gate memory 

Giaver [163] 

 

Bardeen [164] 

 

Josephson [165] 

Kahng and Sze [166] 

1960 

 

1961 

 

1962 

1967 

 Double barrier Resonant Tunneling 
Diode  

 Scanning Tunneling Microscope  

 Resonant Tunneling Transistor  

 RTD SRAM 

Chang, Esaki, and Tsu [167] 

 

Binning [168] 

Capasso, Frensley, Reed [169] 

Van der Wagt [170] 

1974 

 

1981 

1986 

1998 

 Tunnel FET 

 Graphene-Insulator-Graphene  tunnel 
junctions 

Bhuwalka, et al. [171] 

Feenstra, Jena [172] 

2004 

2012 

 

Fig 1.14 indicates the operating principle of an n-type TFET, where a positive 

bias at the gate modifies band energy such that the valence band of source region 

lie adjacent to conduction band of channel region [134]. The narrow barrier 

between the two regions lead to tunneling of electron, as demonstrated in the 

figure. The energy bands are controlled by the applied gate bias and depend on the 

transmission probability. Assuming a triangular potential barrier and 

approximated using Wentzel–Kramer–Brillouin (WKB) equation [133], 

transmission probability (TWKB) can be expressed as, 

         ( 
  √     

 

   (      )
)    (1.3) 

where m* is the effective mass of the carrier and Eg is the bandgap. λ is the 

screening tunnelling length that describes the spatial extent of the transition region 

at the source–channel interface. ΔΦ is the energy difference between the valence 

band of source and the conduction band of channel (Fig. 1.13).  
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Fig. 1.13 (a) Drain current-gate voltage characteristics of an ideal MOSFET and 

TFET with a qualitative comparison. Ioff of TFET < MOS, Ion of TFET > MOS at 

lower gate voltage (Vg1), while Ion of TFET < MOS at higher gate voltage (Vg2) 

[147]. (b) Qualitative comparison of the minimum switching energy, Emin, and the 

corresponding voltage supply, VDDmin, for a TFET and the ideal MOSFET at the 

same Ion/Ioff [134]. 

 

 

Fig. 1.14 Schematic energy band profile for the off (dashed) and on state in an n-

type TFET [134]. Ec, Ev, Efs represents the conduction band energy, valence band 

energy, and the fermi-level of the semiconductor, respectively. 

 

1.6.3.2 Improving performance of TFET 

At a constant drain voltage, Vd, the increase in Vg reduces λ and increases the 

energy window (ΔΦ), thereby increasing the tunneling probability [128]. Equation 

1.3 demonstrates that lower values of m*, λ and Eg will enhance the tunneling 

probability. While Eg and m* are material properties, λ depends on the electric 

field at the tunneling junction that is regulated by device geometry, doping, 

dimensions and gate capacitance [184,185]. Thus, enhancement in tunneling 

current is feasible through the following options: 
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 (i) a high- gate dielectric with an equivalent oxide  thickness as low as 

possible [128,135],  

 (ii) a thinner body [136,184],  

 (iii) abruptness at the tunnel junction [134],  

 (iv) high source doping with  intrinsic channel [134], 

 (v) a shorter intrinsic region [134],  

 (vi) alignment of gate oxide with the intrinsic region, and  

 (vii) multiple gate operation [134, 136]. 

Other than the above, decreasing m* and Eg through use of materials with small 

m* and different band edge alignments, like strained Silicon (Si), Germanium 

(Ge), SiGe materials, III-V materials, carbon nanotubes and graphene ribbons, are 

viable option to boost the driving capability of TFET. Other techniques adopted to 

further enhance the on-current, includes insertion of tunnel dielectric, spacer 

engineering, use of dopant pockets, and alternative gate positioning [128,134,186-

189]. The low off-current, which is one of the prominent features of TFET, when 

incorporated with higher Ion show steep switching.  

  

1.6.3.4 Applications of TFET 

Further studies, reflect the advantage of TFET in terms of less sensitivity to 

temperature [171,190-193] and random dopant fluctuations [128,133], and also, 

better potential to scale compared to conventional MOS transistor. Based on the 

performance metrics, the potential of device was further explored by circuit 

designers for digital as well as analog applications [186, 194-196]. Although less 

explored, TFETs can pave a way forward in analog design that requires high gain 

at low voltage and less dependency on temperature [191]. TFET have shown an 

improvement in the transconductor efficiency [128], ratio between 

transconductance (gm) and current (Id), i.e. gm/Id, and has overcome the 

fundamental limit of gm/Id imposed by conventional MOS devices. gm/Id signifies 

the efficiency of the MOS transistor to translate given current (power) into an 

equivalent transconductance. The other analog applications that include several 

building blocks such as Operational Transconductance Amplifiers (OTAs), 

current mirrors, and track-and-hold circuits have been examined by Sedighi et al. 

[196], which confirms enhanced power and gain than conventional MOS. 
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Although TFETs have shown promising results as ―Beyond-CMOS‖ options, 

there are various other applications for which feasibility assessment is required. 

Recent studies have paved a way towards utility of TFET for dynamic memory 

applications [197-200]. The topologies suggested either used an asymmetric 

architecture [197,198] or a precise p-type doping [199,200] to create the 

electrostatically induced potential well. Although, previous works [197-199] 

provided opportunity for DRAM, the retention time, which is the most crucial 

metric for memory application is limited. Moreover, the physical insights and 

impact of various parameters affecting their performance require analysis to be 

employed in real-time applications. The research work presented in the thesis 

provides insights into the understanding of the performance and behaviour of 

TFET for application as memory device, by means of comprehensive physical 

device simulations [201]. The research shows comparative analysis with other 

TFET based DRAM [197-200] and also, similar architectures [201-215] that 

highlights the limitations and the benefits of the proposed architectures. 

 

1.7 Organisation of thesis 

The research work in this thesis has focused on evaluation and feasibility of TFET 

for application as dynamic memory. A systematic attempt has been made to 

present insights into device physics and operation for functionality as DRAM. The 

work showcases various attributes to enhance the performance of TFET for 

dynamic memory applications. The significance of device architecture, geometry, 

parameters, biases, temperature has been evaluated. The optimal design have 

shown improved retention, scalability, read sensitivity, reliability at low power, 

which is a significant improvement over the previous proposed TFET based 

DRAM [197-199]. The thesis presents advancement in TFET based DRAM while 

progressing from an UTBOX TFET to dual gate, and finally, to a planar tri-gate 

topology. The concept, design and operation of various architectures proposed 

provide valuable viewpoints for tunneling based DRAM. The thesis present a 

systematic methodology to enhance various DRAM metrics with prime focus on 

improving retention characteristics, and further progressing towards scalability, 

speed, power and sense margin. 
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Following is the chapter wise organization of the thesis: 

 

Chapter 1 introduces dynamic memory as an essential component for 

semiconductor industry. The investigation with emphasis on its requirement in the 

past and the prospects in the future, reflects the need for replacing conventional 

DRAM (1T-1C) with capacitorless DRAM. Further, the quest for low power 

dynamic memory demonstrates use of steep switching devices as a substitute to 

conventional MOS devices. Among various steep switching devices, TFET has 

shown promising results and potential as energy efficient device, and therefore, 

our thesis work explores tunneling based transistors for capacitorless dynamic 

memory applications. 

 

Chapter 2 demonstrates various limitations and the possible outcomes for 

utilizing TFET as DRAM. The previous work on TFET presented opportunity as 

dynamic memory [197-199], but low retention (< 64 ms, target specified by ITRS 

[13]) was a critical issue. Therefore, a topology with misaligned architecture has 

been proposed. The work focuses on creating a profound potential well, achieved 

through appropriate use of back gate workfunction, position, and bias to improve 

retention characteristics. Thus, chapter 2 reports on a misaligned structure, 

traditionally considered detrimental for device design, as an advantage for charge 

retention in tunneling based transistors. 

 

Chapter 3 extends the idea of a misaligned architecture to further improve 

retention time as well as scalability of the device, possible through optimization in 

three steps. This includes (i) misalignment, (ii) lateral spacing (Lgap) between the 

gates and an underlap (Lun) between the back gate and drain region shows better 

scaling and retention perspective. The work presents a systematic analysis of 

individual lengths (length of front and back gates, Lgap, Lun) as well as total length 

that can serve as a guideline for future design.  

 

Chapter 4 demonstrates the significance of device architecture, design, and bias 

through a twin gate topology. Although, the operating principle is similar to 

misaligned DG TFET, the device is also examined for embedded applications. 

The assessment of twin gate focuses on speed and power, while maintaining with 
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high retention at scaled devices. The work highlights different operating principle 

compared to other devices with similar topology (p
+
-i-n

+
 structure), such as Field 

Effect Diode (FED). The optimal design exhibit enhanced retention, speed, 

reliability and operation at higher temperature (> 85 °C) with low power 

consumption. Other than these DRAM metrics, sense margin is also a crucial 

metric that defines memory read sensitivity. However, retention time and sense 

margin show trade-off and thus, the device architecture is further modified to 

preserve both the important DRAM metric. 

 

Chapter 5 explores a planar tri-gate TFET to enhance the sense margin and 

scalability and thereby, overcome the critical bottleneck faced by TFET based 

dynamic memories. Insights into device operation demonstrate that the choice of 

appropriate architecture and biases not only limit the trade-off between sense 

margin and retention time, but also result in improved scalability of drain voltage 

and total length. Along with sense margin and retention time, current ratio of 

device is also an important DRAM metric. The work further demonstrates two 

composite metrics (M1 and M2), namely, product of (i) Sense Margin (SM) and 

Retention Time (RT) i.e. M1 = SM  RT, and (ii) Sense Margin and Current Ratio 

(CR) i.e. M2 = SM  CR, where their values show optimal performance. The 

planar tri-gate shows advancement in TFET based dynamic memory with high 

charge retention and read sensitivity, improved scalability and operation at lower 

drain bias and thus, as a low power dynamic memory. 

  

Chapter 6 summarizes the key results and contributions of this dissertation and 

proposes the scope for future work. 
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Chapter 2 

 

Improving Retention Time in Tunnel Field Effect 

Transistor based DRAM through Back Gate 

Engineering 

 

2.1 Introduction 

The ever increasing demand of high speed and dense memory necessitates 

reduction in the size of DRAM cell [1-8]. However, scaling the capacitor is the 

most critical issue in DRAM as it reduces the charge storage [1-12]. This 

adversely affects the charge retention, and thus, requires more refresh cycles [3-

6]. In the conventional DRAM cell data is stored in the capacitor as electrical 

charge, but electrical charge leaks over time. Therefore, DRAM must be refreshed 

periodically to preserve the stored data. Refresh negatively impacts DRAM 

performance and power dissipation [4]. As the speed and size of DRAM devices 

continue to increase with each new technology, the performance and power 

overheads are increasing significantly [3-8]. Moreover, transistor scaling leads to 

higher leakage current that result into higher power dissipation and also, reduction 

in retention time. Thus, a high retention is essential to reduce refresh cycles that 

consumes ~40-50% of energy in off-chip memory hierarchy [3,10]. Due to 

difficulty in scaling the capacitor associated with the conventional DRAM cell [1-

7,9-12], the single transistor (1T) cells [13-30] have been proposed. Further, the 

quest for DRAM with high retention and low power necessitates use of steep 

switching devices as dynamic memory [31-43]. 

 

2.2 Steep-switching devices as dynamic memory 

The devices with steep switching have shown the potential to replace 

conventional with applicability in logic circuits [44-45] and thus, have been 
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exploited as dynamic memories [31-43]. These devices include, Thin-Capacitively 

Coupled Thyristor (TCCT) [31-33], Field Effect Diode (FED) [34-36], Zero sub-

threshold swing and Zero impact ionization FET (Z
2
-FET) [37-40], and Tunnel 

Field Effect Transistor (TFET) [41-43]. These devices have different type of 

dopants for source and drain. TCCT, FED and Z
2
-FET operate in forward bias and 

utilize the positive feedback mechanism for conduction. Z
2
-FET, FED and TCCT 

based dynamic memories have shown high operating current, current sensing 

margin, retention time and speed [40]. The devices have been evolving with 

further modifications to improve the performance metrics and needs further 

investigation to improve the scalability, applicability and operation at higher 

temperature.  

 

 

TCCT, FED and Z
2
-FET (Figs. 2.1(a)-(c)) are variants of Feedback Field Effect 

Transistor (FB-FET) [44-46] that exhibits a very steep transition from off-to-on 

state. The device forms a p-n-p-n structure and can be presented as pnp-npn latch 

[47-50] (Fig. 2.1(d)) with an electron (Vn) and hole (Vp) injection barriers (Fig. 

2.1(e)) created through various methodologies. The latch state defines a feedback 

loop, where conduction of a transistor triggers another transistor [48].  FB-FET 

utilizes positive and negative surface charge densities, generated at underlap 

regions, in spacers adjacent to the gates to form the barriers [44]. When electrons 

are injected into the channel, few of the holes accumulated in the barrier reduce 

the barrier height for electrons and so does the electron accumulation for 

conduction due to holes [38,44]. The charge reposition increases the conduction 

that further reduces the barrier heights, and thus, a feedback mechanism is 

triggered. The feedback mechanism makes the threshold voltage of FBFET 

strongly dependent on the surface density which is difficult to control [44].  

 

In thyristor based feedback action, the injection barriers are formed through 

precise doping of p-type and n-type regions in the channel (Fig. 2.1(a)).  This 

triggers a doping dependent bipolar action [47-49]. The device utilizes the p-type 

doped region in the channel for charge storage. The successor of FB-FET without 

spacers is FED that utilizes two independent front gates to create different 

injection barriers (Fig. 2.1(b)) [34-36,44,51,52]. The freedom to operate two gates 
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independently enable their operation as p-i-n diode as well thyristor. FED has 

been explored for Electrostatic Discharge (ESD) protection [51,52], and recently 

as dynamic memory [34-36] with semiconductor film under p
+
 poly gate as 

storage region. The anode current characteristic goes through a negative resistance 

region [34,44], and finally, snaps back to distinguish between the states of 

memory (Fig. 2.1(f)). The device characteristics are similar to that of TCCT. 

However, FED exhibits better stability as compared to TCCT due to doping 

independent operation [44]. 

 

 

    

Fig. 2.1 Schematic diagram of (a) TCCT, (b) FED, and (c) Z
2
-FET along with 

their storage region, represented by shaded region [44]. Equivalent schematic 

representation of (d) these devices along with their (e) feedback mechanism, 

demonstrated through energy band diagrams, and (f) drain-current characteristics 

illustrating snapback action with state ‗1‘ and ‗0‘ of memory device [44]. Vn and 

Vp are the electron and hole injection barriers, respectively. 
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Another p
+
-i-n

+
 structured device that incorporates the feature of FB-FET and 

FED with operation in forward bias is Z
2
-FET (Fig. 2.1(c)) [37-40]. The device 

uses front and back gates to control the carrier injection barriers, and exploits the 

region under front gate, near n
+
 doped drain region for charge storage. The back 

gate is biased positively, while the front gate negatively to create a p-n-p-n 

structure. A similar asymmetric Double Gate (DG) TFET utilized as DRAM is 

demonstrated in Fig. 2.2(a) [37,38]. Unlike Z
2
-FET, TFET operates in reverse bias 

[41] in the read operation and utilizes the underlap region (Lin) for charge storage. 

 

     
Fig. 2.2 (a) Schematic diagram of asymmetric DG FDSOI TFET with gate length 

(Lg) of 400 nm and a front un-gated region (Lin) of 200 nm [41]. (b) Schematic 

diagram of a fin-based TFET with Lg = 100 nm and a p-doped pocket (Ls) of 25 

nm with 10
18

 cm
-3 

doping concentration [43].  

 

Biswas et al. presented the concept of exploiting asymmetric TFET for DRAM 

applications [41,42]. The semiconductor film underneath the front gate of the 

TFET structure (Fig. 2.2(a)) remains in inversion due to a constant high front gate 

bias, while the back gate was extended all over the intrinsic region. The holes are 

accumulated in the induced potential well (created at the front ungated region, Lin) 

by applying a negative bias at the back gate and a small positive bias at the source 

that push the holes into the body [41]. In another programming scheme, the front 

gate and source are kept at zero bias, while a negative bias is applied at the back 

gate along with a small drain bias to prevent the holes from recombining at the 

drain side [42]. The sense margin, which is defined as the difference in the read 

currents for state ‗1‘ and ‗0‘ [14] was reported in the range of 10 nA to 20 nA 

[41,42], which could be improved to 500 nA by employing a
 
fin based tunnel FET 

[43]. The time required to reduce the maximum sense margin (∆I) by 50% is 

assessed as retention time [14,15]. Few papers define RT as the time when SM = 0 
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nA/μm [30,42]. However in our work, the earlier definition of the change in 

current (∆I) by 50% [14] is referred for the evaluation of RT.  

 
Fig. 2.3 Schematic diagram of (a) UTBOX SOI, and (b) DG TFET device. X 

indicates the direction along the channel length and Y indicates the direction 

perpendicular to the channel length. 

 

Retention time achieved through the first design [41] was in the order of 100‘s of 

microseconds to few milliseconds could be achieved at room temperature. The 

second approach of utilizing a p
+ 

doped pocket (Fig. 2.2(b)) as storage region 

required a precise control on doping of p
+ 

region and the retention time reported is 

in the orders of 100 µs at 85 °C [43]. Although Biswas et al. presented an original 

concept showing DRAM characteristics using TFET, the retention time attained 

was still lower than the target specified by ITRS (64 ms) [8] at 85 C. Therefore, a 

careful reinvestigation necessitates the use of a misaligned architecture utilized as 

Ultra-thin Buried Oxide (UTBOX) and Double Gate (DG) FDSOI TFET for 

improved retention characteristics. The chapter investigates on TFET based 

DRAM and presents an approach to enhance charge retention DRAM by back 

gate engineering through misalignment, optimal bias and workfunction values at a 

temperature of 85 °C. The impact of carrier lifetime, temperature, voltage and 

gate length scaling are also analysed. Thus, the chapter provides insight into 
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understanding the functioning of TFET based DRAM along with the physical 

phenomenon occurring in the device. DRAM optimally utilizes various attributes 

to improve the retention time in fully depleted SOI technology. 

 

2.3 Device description and simulation  

As shown in Figs. 2.3 (a) and (b) TFET structures used in the analysis is a p
+
-i-n

+
 

UTBOX and DG FDSOI n-type TFET device, respectively, with intrinsic channel 

having a total length of 600 nm of which the front gate region (Lg) is 400 nm and 

the back gate region (Lin) is 200 nm. The n
+
 polysilicon front gate controls the 

partial region of the silicon film while the p
+
 poly back gate controls the front un-

gated region near the drain that results in the formation of an electrically induced 

potential well. A device with n
+ 

poly front gate and p
+
 poly back gate can be 

fabricated as suggested by Tanaka et al. [53]
 
with several gate materials available 

for achieving higher workfunction values [20,54]. The device specifications are 

given in Table 2.1.  

 

Device analysis has been carried out using Atlas [55] simulation software with 

calibrated models for tunneling phenomenon. The work throughout the thesis is 

based on TFET [56-60], and therefore, it is imperative to analyse various 

tunneling models used by the simulator. The tunneling models are basically 

classified as local and non-local model [55]. The local tunneling models, assume 

either an average or maximum electric field which is constant throughout the 

tunneling path [55,56,60].  In non-local model, the current depends on the band-

edge profile along the entire path, and thus, the electric field is evaluated at each 

point [57]. The electric field is changing dynamically and thus, it makes tunneling 

a non-local process (Fig. 2.4). Under the assumption of a uniform electric field, 

the generation/recombination rate is reduced to the well-known Kane and Keldysh 

models [61,62]. The tunneling generation rate (GBBT) is [55] expressed as: 

             
           (

     

 
)                    (2.1) 

   

where E is the magnitude of the electric field, D is a statistical factor, and BB.A, 

BB.B, and BB.GAMMA are user-definable parameters. The model parameters can 

be set by specifying BBT.STD or BBT.KL on the as the standard tunneling models 

[55]. In applications, BBT.STD is generally used with direct transitions while 
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BBT.KL [63] with indirect. The other commonly used local model for tunneling 

includes models proposed by Kane [61], Schenk [64], and Hurkx [65].  

 

Table 2.1 Device specifications 

Specifications UTBOX TFET DG TFET 

Front gate region (Lg) 400 nm 400 nm 

Back gate region (Lin) 200 nm 200 nm 

Width (W) 1 µm 1 µm 

Source/Drain (S/D) doping  10
20 

cm
-3

 10
20 

cm
-3

 

Silicon thickness (Tsi) 20 nm 20 nm 

Oxide thickness (Tox) 3 nm (HfO2) 3 nm (HfO2) 

Box thickness (Tbox) 10 nm  - 

Front gate workfunction (φm1) n
+
  poly (4.15 eV) n

+
  poly 

Back gate workfunction (φm2)  p
+
  poly (5.25 eV) p

+
  poly 

Temperature (T) 85 °C 85 °C 

 

 

Tunneling can thus, be analysed using local or non-local methods. However, 

default parameters of both the models might require calibration with the available 

experimental data. Therefore, in this work, a more realistic approach of specifying 

a local model along with a non-local model is adopted, as was suggested by few 

authors
 
[59,60]. The local model is not applied inside the region specified by 

quantum meshes [55]. Thus, to capture the essential characteristics of TFET 

devices as shown by experimental results, non-local model simultaneously with 

Klaassen model [63] is utilized.
 
The user defined parameters (Table 2.2) BB.A and 

BB.B are modified to achieve the best fit to the experimental data [56]. This is 

similar to that suggested by Biswas et al., [57]
 
and Fukuda et al.,

 
[58]. Therefore, 

in our approach, the tunneling parameters of Klaassen model are calibrated to 

capture the essential characteristics of TFET. The other modules used are band 

gap narrowing, Shockley Read Hall (SRH) recombination model [63], Fermi 

statistics [66] and Lombardi mobility model.  

 

Our simulation results along with the available experimental data published in the 

literature
 
[56]

 
are shown in Fig. 2.5. Fig. 2.5(a) shows the schematic of TFET 
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being simulated and its drain-current characteristics in Fig. 2.5(b). To study the 

DRAM characteristics, electron and hole lifetimes are very crucial as they govern 

generation/recombination [63,67] and are modeled according to the SRH model, 

where the default values of both, electron and hole lifetime is assumed to be equal 

(with τn0/p0 (300 K) = 100 ns) as utilized in various works [19,27,28]. The 

temperature (T) dependent carrier lifetime was as described in equation 2.2 by 

Schenk with α = 1.5 [67], 

       ⁄ (            )        ⁄ (     ) (
   

 
)
 

            (2.2) 

       

 

       
Fig. 2.4 Schematic representation of energy band diagrams illustrating variation in 

the evaluation of electric field with local and non-local band-to-band tunneling 

models. 

 

Table 2.2 User-defined Klaassen band-to-band tunneling parameters [55,63]. 

Parameter name Default value Units 

BB.A 4  10
14 

 cm
-3

s
-1

 

BB.B 1.9  10
7
 Vcm

-1
 

BB.GAMMA 2.5 none 

 

 

Further, their doping dependence was according to the Scharfetter relation in 

equation 2.3 (with τmax = τn0/p0 (T) τmin = 0 ns, Nreff = 5 x 10
16

 cm
-3

 and γ = 1) [52], 

      
           

   (      )⁄                                       (2.3) 

where N is the total doping density. Incorporation of all the models discussed in 

this section lead to a systematic analysis of DRAM characteristics, illustrating 

various and unique attributes of TFET for functionality as DRAM, which will be 

discussed in the next sections. 
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Fig. 2.5 (a) Schematic diagram of Tunnel FET along with its (b) drain current-

gate voltage characteristics calibrated with experimental data [56] at 300 K. 

Parameters: Lg = 400 nm, Tsi = 20 nm, Tox = 3 nm (HfO2) and 6 nm (SiO2) Tbox = 

140 nm, and Vd = 1 V. Vd is the drain voltage. 

 

       
Fig. 2.6 Variation in electrostatic potential along the channel direction (X) for (a) 

conventional n-type MOS and (b) TFET along with their schematic diagrams. 

 

2.4 Misaligned TFET as dynamic memory 

2.4.1 Device design for operation as DRAM 

An essential requirement for all types of dynamic memories is the storage area for 

charge carriers. An electrostatic potential well can be created with a low potential 

region amidst two regions with higher potential. nMOSFETs have an n
+
-p-n

+
 

structure in which the p-type body with holes accumulated behaves as low 

potential region between two heavily doped n
+
 region having high potential [25]. 

Thus, p-type body implicitly behaves as the storage region (Fig. 2.6 (a)) in 

conventional MOS devices [25]. For TFET, with a p
+
-i-n

+
 structure, the creation 

of potential well is critical as electrostatic potential well is not implicitly formed, 
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as shown in Fig. 2.6(b). Therefore, the architecture is modified and used as 

asymmetric FET, where in previous work [41,42] front gate is aligned at a partial 

portion of intrinsic film and back gate at complete intrinsic region. In our work, 

the back gate is misaligned and positioned at front un-gated region. The basic 

principles governing the operation of back gate engineered TFET as a DRAM 

have been analysed through an UTBOX TFET structures, and then the same are 

applied to the DG TFET. The use of a thin box at the back increases the 

electrostatic control of the back gate [47] that permits voltage scaling as well as 

formation of a deeper potential well that could sustain charges for longer duration. 

Therefore, by back gate engineering through location, workfunction and bias 

values, the performance of TFET for DRAM cell can be optimized. 

 

Table 2.3 Programming Scheme for UTBOX TFET 

Operation Vd
 

Vfg
a 

Vbg
b 

Time 

Write 1 0 V 0 V -5 V 50 ns 

Write 0 0 V 0 V  5 V 50 ns 

Read 1 V 4 V  1 V 50 ns 

Hold 0 V 0 V -0.25 V  - 

Vfg is the front gate voltage. 

Vbg is the back gate voltage. 
 

 

2.4.2 Operating mechanism 

The programming scheme adopted for the UTBOX FDSOI TFET to perform as 

DRAM is given in Table 2.3 and the operating mechanism is described as below: 

2.4.2.1. Write operation 

Storage of the majority excess carriers (holes) is defined as write ‗1‘ or program 

operation and the removal of excess carriers is termed as write ‗0‘ or erase 

operation
 
[13,14]. Write ‗1‘ operation is performed by applying a negative bias at 

the back gate that increases the potential depth (Fig. 2.7(a)) that signifies an 

increase in the hole concentration (~10
18

 cm
-3

) in the storage region (Fig. 2.7(b)). 

The erase operation is carried out by applying a positive back bias that raises the 

potential as shown in Fig. 2.7(a). It expels holes from the potential well which 

recombines at the drain side [14]
 
and the concentration is reduced (~ 10

4
 cm

-3
). 
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Thus, the difference in the hole concentration in the storage area after write ‗1‘ 

and ‗0‘ operation can be clearly observed in Fig. 2.7(b). 

 

  
Fig. 2.7 Variation of (a) electrostatic potential, and (b) hole concentration along 

the channel direction (X) after state ‗1‘ and ‗0‘ are stored. The cutlines are taken at 

a cross-section 3 nm above the back interface (Y = Tsi). 

 

2.4.2.2. Read operation 

The read mechanism is based on BTBT between source and channel regions. 

Electrons tunnel from the p
+
 source into the channel region. In order to drift them 

into the drain region, the energy barrier at the Lin that resists the flow of electrons 

has to be lowered. Therefore, a positive potential is applied at the back gate. The 

presence of more holes at the back, increase the effective potential at the front 

interface of the Lin region for state ‗1‘ compared to state ‗0‘ [13]. This results into 

a lower barrier, and hence, into a higher drain current for read ‗1‘ as compared to 

read ‗0‘, as shown in Fig. 2.8(a). Thus, the presence or absence of majority 

carriers affects the drain current, whereas the concentration of the holes depends 

on the bias applied during the hold operation as demonstrated in Fig. 2.8(b). 

 

2.4.2.3. Hold operation 

Hold time is defined as the maximum time between write and read, where state is 

still being read correctly [13]. The generation of holes in the storage region 

degrades state ‗0‘, while their recombination leads to degradation of state ‗1‘. For 

lower back gate voltage, state ‗0‘ is degraded due to thermal generation and 

tunneling at the drain junction that accumulates holes in the storage region, while 

for higher back gate voltage due to thermal recombination and diffusion of holes 
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from the potential well, the state ‗1‘ degrades [13-15]. Thus, based on the bias 

applied disturb ‗1‘ and ‗0‘ conditions prevail.  

 

  

  
Fig. 2.8 (a) Variation in the band energy for read ‗1‘ and ‗0‘ along the channel 

direction (X) at a cross-section 3 nm below Y = 0. (b) Dependence of read 

currents, I1 and I0 on the back gate bias during hold state, with the time. Variation 

of (c) hole concentration, and (d) electrostatic potential with the hold time. 
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observed in the storage region is ~10
4
 cm

-3 
(Fig 2.7(a)) that increases to 10

13
 cm

-3
 

while holding it for 1 µs at a back gate bias of -0.25 V. The presence of more 

holes keeps state ‗1‘ at a higher potential [13] in the Lin region, as shown in Fig. 

2.8(d). Thus, state ‗0‘ degrades while state ‗1‘ maintains at a constant hole 

concentration of ~ 10
17

 cm
-3 

(Fig. 2.8(c)). This is also evident from Fig. 2.8(d) 

where we can observe that state ‗0‘ degrades, and finally, around 450 ms both the 

states are indistinguishable. An optimized bias (back gate voltage of -0.25 V 

during hold operation) attain the best retention time of 170 ms (Fig. 2.9(a)). The 

results have been compared with UTBOX SOI TFET with back gate positioned at 

complete intrinsic region (Fig. 2.9(a)) similar to that analysed by Biswas et al. 

[41]. The optimized bias shows a lower retention time of ~ 80 μs (Vbg_hold = 0 V) 

which verifies that along with the optimized bias, the topology of the device 

utilized as DRAM is crucial. 

 

2.4.3.2. Sense Margin (SM) 

The back gate controls the energy barrier formed at the storage region. A higher 

back gate voltage (> 1 V) lowers the energy barrier, increasing the read currents 

(I0 and I1) that can lower the sense margin (I1 – I0) whereas a lower back gate 

voltage (< 0.5 V) would have an enhanced barrier that would result into lower 

read currents and thus, a degraded SM. Therefore, we need to optimize the bias 

value to achieve a good SM. As shown in Fig. 2.9(b) for a more negative bias hole 

generation degrades SM  [18,26]. For bias below 1 V the read current for state ‗1‘ 

is low, decreasing the sense margin. As the bias is increased beyond 1 V, read 

current for state ‗0‘ increases, thereby decreasing the sense margin. Therefore, the 

best SM is obtained at 1 V with I0 having the
 
value of 0.3 nA and I1 as ~61 nA 

with difference of about 60 nA between the two states. 

 

The memory operations were performed in the sequence as shown in Fig. 2.9(c) 

with programming scheme specified in Table 2.3. The read currents for state ‗1‘ 

and ‗0‘ are shown in the Fig. 2.9(d). It shows a sense margin of ~60 nA and the 

retention time achieved is ~170 ms. Although the sense margin obtained is low in 

the range of nano-Amperes, we can observe that the current ratio (I1/I0) obtained is 

~ 10
2  

(Fig. 2.9(c))
 
which provides a good read sensitivity. Thus, by optimizing the 

back gate voltages, an acceptable sense margin along with high retention time at 
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85 °C could be achieved, which is higher compared to the previous work
 
[42] 

(range of few ms at room temperature). Even for same set of bias values, the RT 

achieved for misaligned architecture is higher than architecture with back gate at 

complete intrinsic region (Fig. 2.9(a)). Thus, back gate position is crucial and will 

be discussed in the subsequent section. 

 

  

  
Fig. 2.9 (a) Variation of RT with the Vbg applied during hold operation on UTBOX 

TFET with back gate at the underlap region (our work) and at the complete 

intrinsic region (conventional) [41].  (b) Dependence of I1, I0 and ∆I on Vbg during 

read operation. (c) Drain current transients in the sequence of operation. (d) I1 and 

I0 showing a RT of 170 ms estimated when read margin is ∆I/2. 

 

2.4.4 Impact of back gate position 

Fig. 2.10 highlights the impact of back gate alignment on the potential well, 

indicating the significance of back gate position to operate as DRAM. A perfectly 

aligned back gate with respect to front gate (Case A) doesn‘t form a dedicated 

volume for charge storage and, thus, the design is not suited as DRAM (Fig. 

2.10(a)). Figs. 2.10(b) show asymmetric TFET with back gate at complete 

intrinsic region (Case B).  
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Fig. 2.10 Schematic diagrams for various possibilities of back gate alignment in 

UTBOX TFET with their respective electrostatic potential. The back gate is 

aligned at (a) position symmetric to front gate (Case A) (b) complete intrinsic 

channel region (Case B) (c) front un-gated region (Case C) underlap region 

elongated partially towards (d) front gate (Case D) and (e) drain (Case D).  
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Fig. 2.10(c) shows a completely misaligned back gate (front un-gated region: 

Case C). Case C results into more profound well (~0.8 V) as compared to back 

gate located at complete intrinsic region.Conventionally, the back gate covering 

the complete intrinsic region (Lg + Lin) as suggested by Biswas et al.
 
[41] results in 

a potential well of depth 0.5 V (Case B) ranging from 0.1 V to -0.4 V. The 

potential depth (∆V) can be expressed as in equation 2.4, 

                                                          (   ) 

where, Lg_back and Lin_back are the potential at the back surface of the front gated 

(Lg) and front ungated (Lin) region, respectively. The front gate being n
+
 poly 

(~4.2 eV) creates a high potential region (`0.4 V) in the film corresponding to its 

location, while back gate being p
+
 poly (~5.2 eV) forms a low potential region (~ -

0.4 V). The overlapping of these two gates, result into a potential of ~0.1 V due to 

coupling. The same is reflected in Table 2.4.  

 

Table 2.4 Potential depth (∆V) with varying gate positions 

Gate position Lg_back Lin_back ∆V Case 

Front and back gate symmetric  ~ 0.1 V No gate 0 V A 

Front and back gate overlap (partial) ~ 0.1 V ~ -0.4 V ~ 0.5 V B,D 

Front and back gate misaligned 

completely 

~ 0.4 V ~ -0.4 V ~ 0.8 V C,E 

 

Figs. 2.10(d) and (e) indicates the potential well depth when the back gate extends 

at a partial region (Lext = 200 nm) of front gate (Case D) and drain (Case E) 

showing depth of 0.5 V and 0.8 V, respectively. Thus, back gate alignment is an 

essential component to evaluate the profoundness of physical well, which 

highlights the back gate positioned with no overlap with the front gate region 

(Case C and E) results into a deeper storage region. The retention time for all 

different back gate positions, illustrated in Fig. 2.10 have been evaluated in Fig. 

2.11 with optimized bias set, and it confirms the deeper potential well (Case C and 

E) result into enhanced retention characteristics (RT = 170 ms). However, Case E 

with back gate extended towards drain results into an increased tunneling during 

hold ‗0‘ for a more negative bias and thinner back gate oxide. This degrades state 

‗0‘ at a quicker rate and hence, the retention time. 
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Fig. 2.11 RT as a function of back gate position for different cases in Fig. 2.10. 

 

 
Fig. 2.12 (a) Schematic illustration of UTBOX TFET during hold ‗0‘. (b) 

Variation in hole concentration as a function of back gate alignment with position 

shifting towards source along X. 

 

Although for Case B and D, potential well depth is same (0.5 V) the retention 

time is different due to variation in the extent of alignment with front gate region. 

Case D with back gate positioned at Lin + Lext has partial overlap with front gate 

region (Lext) that result into higher RT (in ms) than Case B (in μs) with back gate 

positioned at Lg + Lin. This is governed by the hole generation during hold ‗0‘. A 

negative back gate bias is applied during Hold operation that forward biases the 

p
+
/i region and holes are accumulated in the storage region (Fig. 2.12(a)). A 

higher degree of back gate alignment towards source result into increased hole 

generation in the back gate region. This is evident from Fig. 2.12(b) that shows 

increased hole concentration with increase in the length of back gate towards 

source region. The above observations clearly support the choice of the position 

of the back gate in the present work. Further analysis is based on the design 
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shown in Case C with complete back gate misalignment with respect to front gate 

positioned at intrinsic region. 

 

The possibility of back gate misalignment for dual bit operation exhibiting 

retention characteristics was also shown in Z
2
-FET [37]. While gate misalignment 

is often considered as a drawback for device design due to loss of gate 

controllability, the present work highlights the potential benefit of the back gate 

misalignment (position) in TFET which results into creation of deeper well which 

is advantageous in improving the retention time of the proposed DRAM. 

Intentional misalignment between the front and back gates can be obtained by 

shifting the electrical vernier as demonstrated by Widiez et al.[68]. Using the 

same approach, it is possible to shift back gate as a whole with the assistance of 

the electron beam position accuracy. 

 

2.4.5 Impact of back gate workfunction 

Apart from location, the workfunction of the back gate is also crucial. A p
+
 poly 

back gate (~5.25 eV) accumulates holes in the storage region. The use of a p
+ 

poly 

back gate have been utilized in dynamic memory to enhance the retention time, 

[18,25] and also to form the injection barriers, [34] used as potential well. The 

present work uses a p
+ 

poly gate to create as well as maintain the physical well for 

charge storage and to replace the conventional TFET based DRAM that utilized a 

p-doped region as the storage area [42]. Therefore, without the need of 

conventional pocket implantation or doping the p-region, a hole concentration of 

~ 10
17

 cm
-3

 can be obtained by the use of a p
+
 poly back gate. While for an n

+
 poly 

gate, the hole concentration in the underlap region is very low (~10
6
 cm

-3
).  

 

Fig. 2.13(a) shows that a p
+
 poly gate forms a potential well of depth 0.8 V 

whereas an n
+
 poly gate (4.15 eV) doesn‘t form the potential well at the back. 

Thus, a p
+
 poly back gate is opted to have a deeper storage region that could 

facilitate longer retention, while an n
+ 

poly front gate is selected to control the 

tunneling mechanism during read operation. A higher workfunction of the back 

occurs into an increased barrier height over the Lin region. Fig. 2.13(b) shows an 

injection barrier of 0.8 eV for p
+
 poly gate while an n

+
 poly gate has an energy 
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barrier of only 0.1 eV. This would result into lower current values for p
+
 poly 

gate, affecting the sense margin. 

 

   
Fig. 2.13 Variation of (a) electrostatic potential, and (b) energy band profile along 

X for n
+ 

poly
 
and p

+ 
poly back gates. The cutline for (a) is taken at a cross-section 

3 nm above the back interface. The cutline for (b) is taken at a cross-section 3 nm 

below the front interface, where conduction occurs. 

 

The same has been verified using the topology being proposed previously [41,42] 

having back gate at complete intrinsic region and box thickness of 145 nm (Fig. 

2.14(a)). A higher back gate workfunction (p
+ 

poly) results into a deeper potential 

(Fig. 2.14(b)) that preserve charges for longer duration, and hence, results into 

improved retention time of 20 ms as compared to n
+
 poly back gate with RT of 2 

ms (Fig. 2.14(c)). The storage region serves as the barrier for electrons during 

read operation, and, therefore, the deeper potential well shows increased barrier 

that reduces the read currents for state ‗0‘ and state ‗1‘, thereby resulting into 

reduced sense margin (Fig. 2.14(d)).  

 

Although sense margin degrades for p
+ 

poly back gate, the current ratio is well 

maintained above 10
2
 that shows an acceptable read sensitivity. The results also 

demonstrate, a trade-off between sense margin and current ratio and also, between 

sense margin and retention time. Thus, the significance of back gate workfunction 

and intentional misalignment has been justified for charge retention in TFET 

based DRAM which needs to be accompanied with optimized bias values to 

achieve an improved performance. Thus, a p
+ 

poly back gate positioned at front 

un-gated region is selected for further investigation. 
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Fig. 2.14 (a) Schematic diagram of TFET as DRAM. (b) Variation of electrostatic 

potential with back gate workfunction along  X. (c) Change in ∆I with time where 

50% variation indicates RT. (d) Dependence of SM and CR on the back gate 

workfunction. Bias scheme: write ‗1‘: Vbg = -15 V, write ‗0‘: Vbg = 15 V, hold: 

Vbg = -3 V, read: Vbg = -1.5 V, Vfg = 4 V, Vd = 1.5 V.  

 

2.5 Improved retention time using Double Gate TFET   

As mentioned before, the back gate is responsible for the formation of the storage 

region. Therefore, DG TFET (Fig. 2.3(b)) having a thinner back oxide (3 nm) 

with HfO2 as gate dielectric has a higher influence of back gate over the storage 

region as compared to the UTBOX DG FDSOI and permits use of lower voltages 

[47]. This results into a deeper potential well for DG architecture (Fig. 2.15(a)). 

Therefore, for write ‗1‘ operation, the bias applied at the back gate is -2 V that 

shows hole concentration of 310
18  

cm
-3

,
 
whereas for an UTBOX TFET a back 

gate bias of -5 V resulted into hole concentration of 10
18 

cm
-3

 (Fig. 2.7(b)). The 

underlap region with a larger storage capacitance results into a higher hole 

concentration (~10
18 

cm
-3

) for DG architecture as compared to UTBOX TFET (~ 

10
17

 cm
-3

) at zero bias condition (Fig. 2.15(b)). Thus, a deeper potential well with 

a higher hole concentration retains the charges for longer duration, and therefore, 
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a higher retention time could be achieved by the double gate architecture. The 

programming scheme for the DG architecture is shown in Table 2.5.  

 

  

    

  
Fig. 2.15 Variation of (a) electrostatic potential, and (b) hole concentration at zero 

bias condition along X for UTBOX SOI and DG TFET. (c) Drain current 

transients for DG TFET in the sequence of the operation. (d) I1 and I0 showing a 

RT of ~2 s. Dependence of (e) I1 and I0, SM and CR, and (f) RT on the back gate 

bias applied during read operation. The cutlines for (a) and (b) are taken at a 

cross-section 3 nm above the back interface. 
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The read operation is performed with the same set of bias values as used for 

UTBOX FDSOI TFET. As shown in Figs. 2.15(c) and 2.15(d) the sense margin 

obtained is 20 nA and the RT achieved is ~ 2 seconds. A higher sense margin 

could be achieved by optimizing the back gate voltage during read operation. As 

shown in Fig. 2.15(e) the back gate bias in the range of 1 V-1.4 V can be applied 

to achieve an acceptable sense margin (in nano-Amperes) for TFET based 

DRAM. A maximum SM of ~ 170 nA is achieved with a back gate bias of 1.3 V 

during read operation. Although the sense margin is higher in the voltage range of 

1.1 V-1.4 V, there is a gradual degradation in the retention time in this voltage 

range as compared to the back gate bias of 1 V applied during the read operation 

(Fig. 2.15(f)). Thus, the SM obtained with a back gate voltage of 1 V is low (~ 20 

nA) but the current ratio (I1/I0) obtained is ~ 10
2 

(Figs. 2.15(c) and 2.15(e))
 
and 

also, the
 
retention time attained is high (~ 2 s) (Figs. 2.15(d) and 2.15(f)). Thus, a 

DG TFET structure provides a larger storage capacitance that maintains the 

charges for a longer period, and hence, improves the RT. 

 

Table 2.5 Programming Scheme for DG TFET based DRAM 

Operation Vd Vfg Vbg Time 

Write 1 0 V 0 V -2 V 50 ns 

Write 0 0 V 0 V 2 V 50 ns 

Read 1 V 4 V 1 V 50 ns 

Hold 0 V 0 V 0 V - 

 

2.6. Other parameters influencing DRAM retention 

This section introduces various factors, other than device architecture and bias 

that influence the retention characteristics of DRAM. The device parameters that 

affect retention include doping, gate length and operating temperature.  

 

2.6.1. Impact of carrier lifetime 

The temperature (equation 2.2), material, and the doping (equation 2.3) affects the 

carrier lifetime, which impacts the recombination rate [50,63]. Doping dependent 

carrier lifetime (equation 2.3) shows an intrinsic channel (10
15 

cm
-3
) doesn‘t 

degrade carrier lifetime and thus, is beneficial for attaining longer charge 
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sustenance [34]. For silicon as channel material, previous literatures have reported 

carrier lifetime in the range of 10 ns -1 μs [15,19,24,27,28,34,37]. The reduced 

carrier lifetime decreases state ‗1‘ retention due to increased recombination rate 

[63]. Although for the present work, the simulations are done with τn0/p0 as 100 ns 

at 27 °C, the dependence of RT on the carrier lifetime in DG TFET with low τn0/p0 

of 10 ns at 85 °C, has been shown in the Fig. 2.16(a). This default values are 

further varied according to temperature [67] and doping by using Scharfetter 

relation [38,55] described in section 2.3. The carrier lifetime is also influenced by 

the traps [24], where the traps lead to decrease in carrier lifetime and thus, 

reduced retention. This affect can also be observed through use of lower carrier 

lifetime than that proposed in previous works [15,24], in the range of μs. A 

degraded RT of ~ 350 ms with τn0/p0 of 10 ns in comparison to 2 sec with τn0/p0 = 

100 ns (Fig. 2.15(d)) is achieved, but it is still higher than 64 ms. This shows a 

significant influence of carrier lifetime on RT, where an order decrease in τn0/p0, 

reduces RT by ~ 6 times. 

 

2.6.2. Impact of gate length scaling 

As shown in the Fig. 2.16(b) TFET operates successfully as DRAM with RT > 64 

ms [8], with the front gate region (Lg) and back gate region (Lin) scaled down to 

100 nm. Further scaling of Lg and Lin degrade the performance of the dynamic 

memory. Scaling modifies the barriers formed by the front gate (n
+
 poly) and back 

gate (p
+
 poly) that regulates SM and RT. The back gate region (Lin) serves as the 

physical well for the charge storage. Therefore, its scaling reduces the storage 

area, and thus, the storage capacitance (Fig. 2.16(c)) which decreases the retention 

time. This is evident from Fig. 2.16(b) that shows the degradation of RT from few 

seconds (Lin = 200 nm) to few ms (Lin = 50 nm) with reduced storage area.  

 

The downscaling of Lg results in the formation of a narrow potential barrier (Fig. 

2.16(d)). However, with the scaling of Lg till 100 nm, DRAM qualitatively 

performs similar to the longer devices (Lg = 400 nm) (Fig. 2.16(b)). Further Fig. 

2.16(d) demonstrates downscaling Lg below 100 nm, decreases the barrier height 

[39] that results in decrease in the depth of potential well, and thus, reduces the 

RT. Also, the reduced gate controllability due to narrow barrier affects the read 

mechanism and degrades the SM. The decrease in effective gate length increases 
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the read currents with significant impact on read current of state ‗0‘ more 

significantly, and thus, reduces SM. The influence of barrier narrowing or SCE 

that decreases the energy barrier between the front and back gates has been 

explained in detail in the subsequent chapters. Thus, the scalability of the TFET 

DRAM depends on the control of the regions formed by the gates and considering 

RT > 64 ms as criteria, both the gates can be scaled down till 100 nm.  

 

  

  
Fig. 2.16 (a) I1 and I0 showing RT of ~ 350 ms, estimated with τn0/p0 = 10 ns. (b) 

Dependence of RT on storage region (Lin) for various values of front gate lengths 

(Lg). Variation of electrostatic potential as a function of (c) Lin, and (d) gate length 

(Lg) along the channel direction (X).   

 

2.6.3 Impact of operating temperature 

The generation/recombination increases with temperature that degrades charge 

retention [39,50,63]. The functionality of DG TFET DRAM at 125 C is similar to 

that at 85 C, but its performance deteriorates.
 
This is evident from Fig. 2.17(a) 

which shows decrease in retention time to 120 ms at 125 °C from 2 seconds at 85 

°C. The reduction in RT at higher temperatures of DRAM has also been observed 
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in the conventional MOSFET structures [13-30] and other p
+
-i-n

+
 structures [34-

40]. For DG TFET based DRAM, although the performance degrades, the 

retention time attained is still higher than 64 ms. Moreover, the advantage of 

utilizing TFET device with weak temperature dependency is reflective in sense 

margin, which will be discussed in detail in the later part of thesis. 

 

  

Fig. 2.17 Variation in the RT as a function of (a) temperature, and (b) device 

architecture (UTBOX with two different locations of the back gate, and DG) 

estimated when maximum sense margin (∆I) is changed by 50%.  

 

2.7 Comparative analysis 

Fig. 2.17(b) shows the comparison of conventional UTBOX FDSOI (back gate is 

across Lg + Lin region) misaligned UTBOX and DG TFET (back gate is across Lin 

region) highlighting the transition of retention time from ~ 80 μs to ~ 2 s, from 

conventional TFET (UTBOX) to misaligned DG TFET. For conventional 

UTBOX TFET, along with thermal generation and tunneling at the drain junction, 

holes are accumulated in the storage region due to forward biased p
+
-i junction 

leading to rapid degradation of state ‗0‘. Therefore, TFET device with deeper 

potential well (misaligned p
+ 

poly back gate) is implemented which increases 

retention time to 5 ms, with the same bias values. Further, the retention 

characteristics can be improved with DG architecture.  

 

The results, also demonstrate higher retention capability than similar architecture 

that includes FED [34] and Z
2
-FET [37]. While use of Z

2
-FET [34] for a total 

length (Lg+ Lin) of 600 nm report retention  time of ~5.5 s at 27 °C, FED with total 

length of 840 nm show retention of ~1 s at 27 °C, use of TFET have also, resulted 
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in charge sustenance for ~2 s at 85 °C (Fig. 2.18). However, few issues that need 

to be resolved for tunneling based read mechanism are low sense margin and use 

of higher bias values. Although, sense margin is low, high current ratio 

compensates for it. The work explores the possibility of exploiting TFET further 

as dynamic memory, highlighting its capability to compete with other similar 

architectures. The flow for analysing and optimizing the operation as DRAM can 

be summarized as in Fig. 2.19. 

 

 

Fig. 2.18 Comparison of RT of various p
+
-i-n

+
 based architectures (FED [34], Z

2
-

FET [37], TFET [42]) with a gate length of 400 nm with the proposed misaligned 

DG TFET architecture (our work). 

 

2.8 Conclusion 

An in-depth analysis of different attributes of FDSOI TFET governing the DRAM 

characteristics has been presented. The results have demonstrated that through an 

insightful optimization of the position, workfunction and bias values of back gate, 

a retention time higher than the target of 64 ms can be achieved in DG tunnel 

FETs. The n
+ 

poly front gate primarily controls the read mechanism based on 

band-to-band tunneling. The p
+
 poly back gate is intentionally misaligned away 

from the front gate and positioned at the front un-gated region near the drain to 

create a deeper potential well for the charge storage. The deeper physical well 

results into prolonged storage of charges, thereby increasing the retention time 

which can be further improved by the selection of optimal back gate bias. The 

retention time of ~ 170 ms is attained for an UTBOX FDSOI TFET, which can be 

enhanced through a DG TFET structure that operates similar to UTBOX FDSOI 

TFET and achieves a retention time of ~ 2 seconds at a temperature of 85 °C.  
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Fig. 2.19 Flow chart demonstrating a probable methodology, to evaluate device 

performance as dynamic memory.  
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The proposed optimized TFET based DRAM has performed better in terms of 

retention time as compared to the previously reported (in ms at room temperature) 

DRAMs utilizing TFET. The work highlights the opportunity in the design of an 

optimized TFET for dynamic memory with improved retention characteristics, 

achieved through back gate engineering. Further evaluation is based on enhancing 

other DRAM performance metrics that includes device scalability, sense margin, 

current ratio, speed and power which will be discussed in subsequent chapters.  
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Chapter 3 

 
 

Sub-100 nm Misaligned Double Gate Tunnel FET 

based DRAM: Design Perspective for Improved 

Retention and Scalability 

 

 

3.1 Introduction 

The prediction of Moore has been credited with being the engine of the revolution 

in electronics [1-6], that led to components with improved speed and high density. 

Predictions using the law became the basis for future production goals, which in 

turn showcases the validity of the law as a measurement of industry progress [6]. 

DRAM and microprocessors were the two most crucial semiconductor products 

that followed the Moore‘s prediction. DRAM has been a critical component in 

semiconductor market due to utility as large repetitive cells with easier design, 

and thus, has been often used as indicators to reflect the progress in 

semiconductor industry [3]. In fact, in early 1980s, the Moore‘s curve was viewed 

as rule about the densities of dynamic memories [3].  

 

DRAM being a stable technology was utilized for standardization as well as 

validation of the Moore‘s law. Thus, DRAM progress has been continuously 

fuelled with aggressive scaling, thereby following Moore‘s predictions. In the past 

decade, the problems associated with capacitor scaling in the conventional 

DRAMs [7-11], introduced capacitorless DRAM [12-14] with single transistor for 

charge storage as well as accessing the data stored. In real world, one of the most 

critical aspects is the low power operation that necessitates device scaling [3,15]. 

Therefore, it is essential to analyse the scaling capability of the DRAM cell while 

maintaining the retention time of 64 ms [6]. This facilitates the use of TFET as 

dynamic memory, which is focus of our work. The innovative design has been 

optimally structured as well as biased to function efficiently as dynamic memory. 
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Although, misaligning the front and back gates have shown the way forward to 

improve retention time, the applicability of TFET for DRAM is limited by the 

lower RT values, especially for sub-100 nm regime. Also, the use of a high front 

gate voltage during read operation in the misaligned DG TFET (chapter 2) 

requires voltage scaling.  

 

The previous chapter had presented insights into device operation, highlighting 

the influence of back gate for functionality as DRAM. In this chapter, the role of 

each gate is discussed, focusing on methodologies to overcome limitation for 

scaling down that would serve as a design guideline in future. The chapter 

investigates on the scaling capability of memory, considering retention as the 

criteria. Through an in-depth analysis and design optimization, a systematic 

analysis shows the significance of total length as well as individual gate lengths 

(Lg1 and Lg2) lateral spacing between the gates and underlap length (Lun) on two 

important parameters of DRAM, namely SM and RT. The work provides new 

opportunities to realize TFET based DRAM with improved RT, scalability and 

high temperature operation. 

 

3.2 Design and operating principle 

3.2.1 Device description 

Fig. 3.1(a) illustrates the DG TFET based p
+
-i-n

+
 structure used in the analysis 

using Atlas [16] with parameters as introduced in chapter 2. The front gate (Lg1) 

and back gate (Lg2) are both 100 nm. The distinct functionality of the gates is the 

principle basis for operation of TFET based DRAM. The device design is further 

modified to achieve better DRAM characteristics by using a lateral spacing (Lgap) 

between the gates and an underlap (Lun) between the drain and back gate which 

can be implemented using a dual spacer process [17]. The operation of DG TFET 

based DRAM (Fig. 3.1(a)) is based on the storage of charges at the back gate 

capacitor, that serves as the potential well (Fig. 3.1(b)). The sustenance of charges 

stored in the physical well determines the retention time, where an increased 

storage region results into improved retention characteristics. This concept is 

implied by the use of a lateral spacing (Lgap) between the gates (Fig. 3.1(c)) 

designated as Case-II that increases the effective length of the front as well as 
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back gate region (Fig. 3.1(d)) thereby, contributing to larger storage capacitance. 

The idea is extended by including an underlap (Lun) between the back gate and 

drain (Fig. 3.1(e) and 3.1(f)) designated as Case-III that further increases the 

effective channel length associated with back gate, and thus, the retention time.  

  

  

  
Fig. 3.1 Schematic diagram of a misaligned Double Gate (DG) TFET (a) without 

gap between the gates (Lgap) and an underlap (Lun) region between the back gate 

and drain (Case-I) (c) with Lgap (Case-II) (e) with Lgap and Lun (Case-III). Variation 

of electrostatic potential for (b) Case-I, (d) Case-II, and (f) Case-III. The cutline is 

taken at a cross-section 2 nm above the back interface for all the cases.  

 

Other than storage capacitor being determined by device dimension, the retention 

time is also dependent on the applied bias and temperature that governs the 

leakage current due to thermal generation and BTBT between the gates and back 

gate/drain region [18-22] for state ‗0‘ (Fig. 3.2(a)) and recombination for state ‗1‘ 
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(Fig. 3.2(b)). Thus, the present work utilizes structural modification with 

optimized bias to increase the storage capacitance and reduce the leakage current 

that improves the retention time. The equivalent schematic representation of the 

device is as shown in Fig. 3.1(c)) where CG1, and CG2 are the gate capacitance 

with storage capacitance, Cs = CG2. 

 

       

 
Fig. 3.2 Band energy demonstrating (a) disturb ‗0‘ due to hole generation in the 

storage region based on thermal generation and band-to-band tunneling of 

electrons towards drain, and (b) disturb ‗1‘ due to hole recombination based on 

thermal recombination and hole diffusion from the storage region. The band 

energy is at zero bias at cutline 1 nm above the back interface (Y = Tsi). (c) The 

equivalent schematic representation of the misaligned DG TFET. Cg1 and Cg2 (= 

Cs) are the gate capacitances. 

 

3.2.2 Operating Mechanism 

The operating principle is similar to that described in chapter 2 with bias scheme 

as illustrated in Fig. 3.3. The figure illustrates the schematic representation of 

TFET device during write ‗1‘, where capacitance associated with back gate, 

serves as storage capacitance (Cs). This gate capacitance is similar to that 
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described in [23,24]. The change in the stored charge is reflective in the effective 

potential of the body (∆Vb = ∆Qs/ Cs) [25-27], where Qs is the stored hole charge. 

This impacts the read currents and thus, differentiates the two states. Fig. 3.4(a) 

reflects the same, where presence of higher hole concentration results into higher 

effective potential at complete channel region. Consequently, it shows a higher 

conduction density for read ‗1‘ compared to read ‗0‘ (Fig. 3.4(b)).  

 

    

 

              

Fig. 3.3 Schematic illustration of DG TFET indicating (a) write ‗1‘ (W1) (b) write 

‗0‘ (W0) (c) hold ‗1‘ (H1) (d) hold ‗0‘ (H0) through charging and discharging of 

the storage capacitor (Cs) associated with back gate.  

 

The discussion demonstrates that the sense margin is estimated based on the 

positive charge stored in the capacitor associated with back gate during read 

operation. The charge present at read operation depends on (i) the charge stored in 

the capacitor in the previous operation and (ii) the bias applied in the previous as 

well as performed operation. The same has been demonstrated in Fig. 3.5 where 

the maximum difference in the charge stored between state ‗1‘ and state ‗0‘ is 

during write operation (∆QW = QW1 – QW0) which decays during hold operation 

(∆QH = QH1 – QH0; ∆QW > ∆QH) due to hole recombination (-∆Qhh1) for state ‗1‘ 

and hole generation (+∆Qhh0) for state ‗0‘. The maintenance of charges (QH1 and 
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QH0) during hold determine the retention characteristics. Further during read, the 

hole concentration decreases for state ‗1‘ due to diffusion and thermal 

recombination and the charge difference observable during read (∆QR = QR1 – 

QR0; ∆QW > ∆QH > ∆QR) determine the sense margin. The choice of bias at back 

gate during read (1.2 V) is based on the maximum values of sense margin and 

retention time achieved, as shown in Figs. 3.6(a)-(c). 

 

        
Fig. 3.4 Variation of (a) hole concentration and potential (after a hold time of 1 

ms) (b) current density for state ‗1‘ and ‗0‘, during read operation along the 

channel length at a cross-section 1 nm below Y = 0. 

 

3.2.3 Significance of bias during read 

The bias applied affects the recombination and generation that directly influences 

the read currents. For a lower back gate bias (< 0 V) the electron and hole 

generation at back gate region lead to an increase in read currents (Fig. 3.6(a)). 

State ‗0‘ is depleted of charge carriers, and therefore, the impact of generation is 

more prominent for state ‗0‘ (Fig. 3.7(a)). Thus, for lower bias values, a higher 

degree of change is observed for read ‗0‘ as compared to read ‗1‘. For a higher 

bias voltage (> 1.2 V) the increasing bias voltage drifts more holes towards the 

front gate. The significant change in the hole concentration is observed for bias > 

1.2 V which lowers the band energy at front gate region, irrespective of the same 

bias applied at Vg1. It is influenced by the holes drifted towards front gate due to 

application of higher bias at back gate, and thus, results into higher conduction.  
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Fig. 3.5 Schematic illustration of charge distribution in the potential well with 

consecutive operation in the sequence as write, hold and read operation. QINIT 

indicates the charge in the storage region at zero bias, which increases to QW1 = 

QINIT + ∆Qhw1 during write ‗1‘ and decreases to QW0 = QINIT - ∆Qhw0 during write 

‗0‘. Further charge during hold ‗1‘ decreases to QH1 = QW1 - ∆Qhh1 and during hold 

‗0‘ increases to QH0 = QW0 + ∆Qhh0. The charge during read ‗1‘ is QR1 and during 

read ‗0‘ is QR0, and the difference between the two is used to indicate SM in terms 

of current. GEN and REC represent generation and recombination, respectively. 

 

The same is reflected in Fig. 3.7(b) that highlights lower band energy for electrons 

to drift towards drain for higher back gate bias values and the change is significant 

for state ‗0‘ and thus, read current for state ‗0‘ shows more increase when 

compared to state ‗1‘. Thus, a low sense margin is observed for Vg2 < -0.4 V and 

Vg2 > 1.3 V (Fig. 3.6(b)). Figure also demonstrates decrease in I1 and I0 for Vg2 

between 0 V - 0.8 V. However, the influence is more for I0, which is reflective 

through current ratio. The analysis shows a wider programming window with Vg2 

ranging from -0.4 V to 1.3 V, highlighting the values of sense margin to be the 

range of 50-60 nAs. Fig. 3.6(b) shows a high current ratio (I1/I0) for a back gate 

bias of 0.8 V. However, state retention is negligible. RT > 64 ms is observable for 

back gate bias of 1.1-1.2 V. A back gate bias of 1.2 V is opted that yields the 

maximum retention time (Fig. 3.6(c)). 
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Fig. 3.6 Variation in (a) I1 and I0, (b) SM and CR, and (c) RT as a function of back 

gate voltage applied during read operation.  

 

           
Fig. 3.7 Variation in (a) electron concentration (ne) and conduction band energy 

for R1 and R0 as a function of back gate bias, < 0 V for (a) and > 1.2 V for (b) 

along X at a cross-section 1 nm below the front interface.   

 

The RT is pre-dominantly controlled by the charge sustenance in the storage 
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bias applied during read is also crucial for DRAM characteristics. The charge loss 
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optimized back gate bias of -0.2 V is applied that gives the maximum RT of ~ 80 

ms at 85 C and ~ 300 ms at room temperature (Fig. 3.8(b)) for Lg1 = Lg2 = 100 

nm, which highlights the device capability to operate as DRAM. The SM observed 

is ~ 60 nA at 85 C (Fig. 3.8(c)).  Thus, recombination and generation 

phenomenon regulated by capacitance associated with back gate and bias plays a 

vital role in charge storage and retention (∆Q  Cs ∆Vg2). 

 

      

 
 Fig. 3.8 (a) Dependence of RT on the back gate bias applied during hold 

operation for Case-I and Case III (with Lgap and Lun). (b) Variation in SM for Case-

I at 27 C and 85 C, showing RT at a change of ∆I by 50%. (c) Variation in read 

currents for state ‗1‘ and ‗0‘ with hold time. 
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further enhance the retention characteristics (RT > 80 ms) and device scalability at 

85 C. This is accomplished by introducing a lateral spacing (Lgap) between the 

gates and including an underlap region (Lun) between the back gate and drain 

interface. Inclusion of Lgap, designated as Case-II (Fig. 3.1(c)) results into a wider 

potential well due to longer effective length of storage region (Fig. 3.1(d)). A 

longer length increases the storage capacitance, hence the charge retention. More 

significantly, it reduces the generation of holes due to leakage from virtually 

induced n-type front gate region, as demonstrated in Fig. 3.9 thereby, increasing 

the retention time. This is evident from Fig. 3.10(a) that shows inclusion of Lgap, 

irrespective of its length (25-80 nm) increases the retention time from 80 ms 

(Case-I) to ~ 300 ms (Case-II).  

 

 
Fig. 3.9 Variation in generation rate for Case-I and Case-II for hold ‗0‘ 

along the channel length.  

 

Further, including an underlap region (Lun) of 20 nm (Case-III) between back gate 

and drain along with Lgap (Fig. 3.1(e)) as adopted in conventional MOS based 

DRAM [18,19,30] enhances retention characteristics. Fig. 3.10(a) clearly 

highlights the impact of using an Lgap and Lun on the sense margin and retention 

time. Fig 3.8(a) shows similar retention characteristics for Case-III as obtained in 

Case-I, for bias varied during hold operation and maximum RT at -0.2 V, but with 

an enhanced performance. Fig 3.10(b) summarizes the improved retention 

characteristics from 80 ms with a misaligned gate (Case-I) to ~300 ms with the 

use on a lateral spacing between the gates (Case-II) and finally, to ~600 ms with 

an underlap (Case –III) for Lg1 = Lg2 = 100 nm at 85 C. 
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Fig. 3.10 (a) Dependence of RT and SM on Lgap and Lun regions. (b) Percentage 

change in SM with hold time, where 50% variation reflect RT of 80 ms, 300 ms, 

and 600 ms for design with Case I, II, III, respectively. 

 

      

 
Fig. 3.11 Variation in (a) hole concentration for Case-I and Case-III for state ‗0‘ 

with the time. (b) Variation of BTBT rate at the back gate and drain interface 

during write ‗1‘ operation with and without the underlap regions. (c) Variation in 

I0 for Case-I and Case-III with hold time. 
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gate and heavily doped n
+
 drain region. It results into increased depletion width at 

the junction, and thus, lowers the electric field at G1/G2 and G2/drain interface. 

This reduces BTBT of electrons into drain for hold state ‗0‘. This decrease the 

hole generation rate (Fig. 3.11(b)), and hence, lower the current during read ‗0‘, as 

demonstrated in Fig. 3.11(c). The longer sustenance of state ‗0‘ (which was 

significantly degraded for a back gate bias of -0.2 V) during hold, increases the 

RT to ~ 600 ms.  

 

3.3.1.2 Impact on sense margin  

Further, focusing on the another DRAM metric, sense margin, Fig. 3.10(a) shows 

the use of Lgap is benefited with a higher retention while maintaining the sense 

margin as in Case-I (~ 60 nA). This is due to tunneling based read mechanism that 

doesn‘t vary the read currents for a longer effective length. Also, the barrier height 

between both the gates that governs diffusion is not affected with the presence of 

Lgap for Lg1 = Lg2 = 100 nm. The impact on sense margin is prominent at shorter 

gate lengths, which has been demonstrated in subsequent chapters, but doesn‘t 

show variation for the gate length investigated in the present chapter. Thus, as 

shown in Fig. 3.10(a) Lgap doesn‘t affect the sense margin as the potential barriers 

are unaltered; however including a Lun reduces the SM. 

 

      
Fig. 3.12 (a) Variation in SM with write time for Case-II and Case-III. (b) 

Dependence of RT and SM on write time for Case-II and Case-III. QW1 indicates 

the hole charge generation during write ‗1‘. 
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between these region, reduces the tunneling rate, thereby reducing the hole 

generation at the storage region. The charge generation during write ‗1‘ (QW1), 

lead to an increase in hole concentration, which reduces during read operation 

(QR1). Although, hole concentration at read is lower than that at write ‗1‘, it is 

higher than the concentration at steady state. These excess charge carriers, 

increase the effective potential, and thus, result into higher read current that 

defines state ‗1‘. As shown in Fig. 3.12(a) for Case-II, that is for Lun = 0, for a 

write time > 50 ns, a constant read current for state ‗1‘ is obtained. This is due to 

the fact that the hole concentration during read saturates (~ 8 × 10
18 

cm
-3

) for a 

particular bias applied at the back gate (1.2 V) during read [14]. Thus, irrespective 

of the holes generated during write ‗1‘, the read current is constant with write 

time; if a hole concentration of ~ 8 × 10
18 

cm
-3 

is retained during read ‗1‘. 

However, for the case with underlap, the reduced hole generation during write ‗1‘ 

leads to a lower hole concentration during read (< ~ 8 × 10
18 

cm
-3

) and hence, 

result into a reduced sense margin (Fig. 3.12(a)). 

 

      
Fig. 3.13 (a) Variation in retention time and sense margin for (i) Case-I, (ii) Case-

II (Lgap = 50 nm) and (iii) Case-III (Lgap = 50 nm and Lun = 20 nm). (b) Variation in 

RT with the temperature for Case-I and Case-III.  
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margin (~30 nA) is more prominent due to reduced hole generation (for write time 

= 50 ns) rather than that due to increased resistance associated with underlap. 

Although, SM enhances with write time, the rapid degradation of state ‗1‘ with 

increased recombination due to underlap result into a reduced RT (Fig. 3.12(b)). 

The incorporation of underlap, thus, leads to a trade-off between sense margin and 

retention time (Fig. 3.13(a)). However, the investigation gives a broader 

perspective of selecting the bias values and write time to achieve DRAM 

characteristics. This is similar to MOS with underlap in [30] that shows a trade-off 

between high operating bias for charge generation (based on impact ionization) 

and improved RT.  However, the primary focus is improving RT for which the 

proposed write time of 50 ns is adopted that shows an acceptable SM and a 

significant improvement in RT. Additionally, the results highlight that device with 

an Lgap (Case-II) can be utilized, which maintains the SM and a higher RT 

(compared to Case-I) thereby, balancing between the two important parameters of 

DRAM.  

 

3.3.1.3 Impact of temperature 

DRAM operation may be limited at higher temperatures due to the increased 

recombination/generation rate that leads to loss of retention characteristics [18]. 

Many military as well as industry applications require DRAM with operation at 

higher temperatures. Therefore, the performance of dynamic memory at elevated 

temperatures has been investigated and it is observed that with the adopted 

architecture that includes an Lgap and Lun, RT > 64 ms at temperature till 125 C is 

observed. As shown in Fig. 3.13(b) for device design without Lgap and Lun (Case-I) 

RT > 64 ms could be achieved till 85 C while for Case-III, operation till 125 C 

is permissible which gives a wide range of operating temperature. Thus, along 

with down scaling capability, functionality at elevated temperatures demonstrates 

additional benefits of using Lun and Lgap in TFET based DRAM. 

 

3.3.2 Significance of gate lengths  

3.3.2.1 Gate length scaling 

The scaling of device is considerably limited by BTBT at the drain/source and 

gate region [26], which can be resolved by using an underlap between drain and 
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back gate region [30] and a lateral spacing between the gates. Analysis shows Lg1 

can be scaled down to 75 nm, while reducing Lg1 below it doesn‘t distinguish the 

two read currents. Thus, utilizing Lg1 = 75 nm, for Case-III, RT > 64 ms can be 

attained with storage region of 50 nm. Therefore, Fig. 3.14(a) demonstrates the 

scaling limit of 25 nm and 50 nm with Lg1 as 100 nm, and 75 nm, respectively. 

Thus, the device design incorporated with Lun and Lgap upgrade the device 

scalability, evident from Fig. 3.14(b) that shows with the front gate (Lg1) of 100 

nm, the storage region (Lg2) can be scaled down to 75 nm for Case-I, 50 nm for 

Case-II and finally, downscaling till 25 nm is possible for Case-III, achieving RT 

> 64 ms [6]. Fig. 3.14(c) shows impact of reduced Lg2 on RT and SM. Lg2 acts as 

potential barrier for the electrons and also, potential well for charge storage. Its 

reduction decreases the storage capacitance, hence, the retention time, and also, 

reduces the barrier for electrons, thereby increasing the read currents, and hence, 

sense margin. The results demonstrate a remarkable improvement in scaling as 

compared to previous work [27-29] and also, the design presented in the previous 

chapter, highlighting the significance of design optimization. 

 

                

 
Fig. 3.14 Dependence of RT on Lg2 for (a) various values of Lg1 (b) different cases 

with Lg1 = 100 nm. (c) Dependence of RT and SM on Lg2 for Lg1 = 100 nm. 

10

100

1000

25 50 75 100

Lg2 (nm)

R
e
te

n
ti
o
n
 t
im

e
 (

m
s
)

rt 75_rt refere Series3

■ Lg1 = 100 nm

Case III T = 85 °C

● Lg1 = 75 nm

10
1

10
2

10
3

64 ms

(a)

0

200

400

600

800

25 50 75 100

Lg2 (nm)

R
e

te
n

ti
o

n
 t
im

e
 (

m
s
)

rt Case1 Case 2 ref

○ Case I

 T = 85 °C

(b)

Lg1 = 100 nm

 64

∆ Case II

Scalability criteria: 

RT > 64 ms 
○ Case I

∆ Case II

□ Case III
□ Case III

0

150

300

450

600

30 35 40 45

Sense margin (nA)

R
e

te
n

ti
o

n
 t
im

e
 (

m
s
)

rt refere

Lg1 = 100 nm

Case III

 T = 85 °C

64 ms

(c)

100

75

50

25

Lg2



96 

 

   

   
Fig. 3.15 Variation in RT as a function of gate lengths (Lg1 and Lg2) with total 

length (LTotal) as 200 nm for (a) Case-I, (b) Case-II, and (c) Case-III. (d) 

Dependence of RT on lateral spacing (Lgap) and back gate length (Lg2) for Lg2 + 

Lgap + Lun (= 20 nm) = 125 nm and front gate length (Lg1) of 75 nm with a total 

length of 200 nm. Case I: LTotal = Lg1 + Lg2, Case II: LTotal = Lg1 + Lgap (= 25 nm) + 

Lg2, and Case III: LTotal = Lg1 + Lgap + Lg2 + Lun (= 20 nm). 

 

3.3.2.2 Total length as scaling criteria 

The above discussion highlights that for DRAM scalability, along with the 

systematic approach that utilized Lgap and Lun, the optimization of individual 

lengths as well as total length (LTotal = Lg1 + Lg2 + Lgap + Lun) is also crucial. The 

significance of each with a constant total length of 200 nm is evaluated that shows 

the extent of downscaling for Lg1, Lg2 and Lgap. As shown in Figs. 3.15(a)-(c) for 

Case I, the front gate length of 125 nm with a back gate region of 75 nm shows 

the maximum RT of ~ 100 ms, while for Case II, maximum RT (200 ms) is 

attained with Lg1 = 100 nm, Lg2 = 75 nm and Lgap = 25 nm. In Case III, having 

Lg1=100 nm, Lg2= 55 nm, Lgap = 25 nm and Lun= 20 nm, the maximum RT of 300 

ms is achieved. The result shows the device progresses from a RT of 100 ms to 
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300 ms from Case I to Case III, with total length of 200 nm. Figs. 3.15(a)-(c) also 

demonstrate that retention time is regulated by front as well as back gate with the 

front gate predominantly governing the read mechanism. 

 

Fig. 3.15(c) shows the front gate length (Lg1) cannot be scaled below 75 nm. The 

scaling of front gate length narrows the n-type induced barrier due to n
+ 

poly front 

gate, resulting into reduced gate controllability [24], and thus, short channel 

effects result into decreased sense margin. Therefore, for further estimation, 

(Lg1)min = 75 nm with constant Lg2 + Lgap + Lun (= 20 nm) = 125 nm is considered. 

Fig. 3.15(d) illustrates that Lg2 can be scaled down to 40 nm and Lgap to 25 nm. 

For, Lgap ≥ 25 nm, the reduction in Lg2 reduces the storage capacitance and thus, 

leads to decrease in retention time. However, reducing Lgap below 25 nm, permits 

a higher tunneling towards front gate region, thereby degrading state ‗0‘ and thus, 

reduces retention time. The variation in RT for a constant total length of 200 nm 

shows individual gate lengths are crucial for RT evaluation while Lgap ≥ 25 nm 

(Fig. 3.10(a)) suffices the minimum requirement, as RT decreases below Lgap = 25 

nm. Thus, rather than the length of lateral spacing (for ≥ 25 nm) its utilization 

affects RT due to reduction in the generation rate for state ‗0‘. 

 

Considering, total length as the scaling criteria, Fig. 3.16(a) demonstrates Case-I 

(LTotal = Lg1 + Lg2) and Case-III (LTotal = Lg1 + Lgap + Lg2 + Lun) with Lg1 = 75 nm. 

The figure illustrates improved RT as well scalability with the total length scaled 

down to 160 nm for Case-III, in comparison to Case-I that shows LTotal to be 

scaled down to 220 nm for RT to be higher than 64 ms. Although, inclusion of Lgap 

= 25 nm and underlap Lun = 20 nm increases the effective gate length, they allow 

back gate to be scaled down to 40 nm which is much higher when compared to 

Case-I having back gate scaled to 145 nm with front gate length of 75 nm. 

Focusing on RT > 64 ms, Fig. 3.16(b) demonstrates variation in RT with the ratio 

of gate lengths (Lg1/Lg2) and also, signifies the maximum limit of scaling that can 

serve as a guideline for device design. The device can efficiently perform as 

DRAM with RT > 64 ms for Lg1/Lg2  4 for Lg1 = 100 nm and Lg1/Lg2  2 for Lg1 = 

75 nm. Although, total gate length is important for practical area scaling, but 

individual gate lengths also serve as key scaling parameters. Thus, the scalability 
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of the TFET DRAM depends on the control of the regions formed by the gates 

and the device can perform efficiently i.e. (RT > 64 ms) with minimum value of 

Lg1 = 75 nm, Lg2 = 40 nm, Lgap = 25 nm and Lun = 20 nm, showing LTotal = 160 nm.  

 

         
Fig. 3.16 (a) Dependence of RT on total length for a front gate length (Lg1) of 75 

nm for Case-I and Case-III (Lgap = 25 nm and Lun = 20 nm). (b) Variation in RT 

with ratio of gate lengths (Lg1/ Lg2) for Case-III, indicating the maximum ratio of 

gate lengths for memory design with RT  > 64 ms.   

 

The present chapter highlights an innovative device design to improve the 

retention characteristics and scalability, showing an enhanced performance as 

compared to previous TFET based DRAM [27,28], evident from Fig. 3.17(a). In 

the previous work with misaligned DG TFET, the RT achieved was ~ 2 s with the 

gate length of 400 nm and storage region of 200 nm at 85 C, which showed 

improvement over the TFET with same gate length and storage region but with an 

over-sized back gate [27]. Also, for shorter gate length of 100 nm with a storage 

region of 25 nm, the fin-based TFET proposed in the past could only attain a 

retention time of ~ 100 μs at 85 C [29]. However, in the present work 

considerable improvement in terms of higher RT for scaled lengths at 85 C. 

Moreover, the proposed TFET advances as the device that can probably compete 

with similar structures, FED [31,32] and Z
2
-FET [23-24] in terms of RT, although 

they operate in forward bias with a feedback mechanism whereas TFET operates 

in reverse bias based on BTBT for read mechanism. The tunneling mechanism 

limits on-current, resulting into lower sense margin compared to the other similar 

structures (Fig. 3.17(b)) but has shown a significant improvement as DRAM in 

terms of RT and scalability. 
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Fig. 3.17 Comparison of various p

+
-i-n

 +
 structures in terms of RT as a function of 

(a) total length and (b) SM. In our work, Case I: LTotal = Lg1 + Lg2, Case III: LTotal = 

Lg1 + Lg2 + Lgap + Lun with Lgap= 25 nm and Lun = 20 nm has been considered and 

filled symbol () indicate Lg1 = 100 nm, and open symbol () represent a device 

with Lg1 = 75 nm. (b) show SM for the total length indicated in (a). 

 

3.4 Conclusion 

The chapter demonstrates the functionality of a sub-100 nm double gate TFET as 

dynamic memory where the capacitance associated with back gate is utilized to 

store the charges. The front gate is positioned at a partial region of the intrinsic 

film and primarily controls the read mechanism based on BTBT, while the back 

gate is located beneath the front un-gated region. The work showcases a 

methodological assessment that highlights optimization of device design in three 

steps: misalignment, lateral spacing between the gates (Lgap) and an underlap (Lun) 

between the back gate and drain region that improves: 

(i) the retention time to ~ 600 ms (from ~ 80 ms without Lgap and Lun) at 85 C 

for gate length (Lg1) and storage region (Lg2) of 100 nm; 

(ii) the device scalability with Lg2 being scaled down to 25 nm with Lg1 = 100 nm;  

(iii) the total length scalability from 220 nm (without Lgap and Lun) to 160 nm for 

Lg1 = 75 nm; 

(iv) the device functionality at elevated temperatures with RT > 64 ms till 125 C. 

 

The chapter systematically analyses significance of individual gate lengths, Lgap 

and Lun, their extent of scaling and impact on SM and RT. It shows for a fixed Lun 

(= 20 nm) and Lgap (= 25 nm) Lg1/Lg2  4 @ Lg1 = 100 nm, or Lg1/Lg2  2 @ Lg1 = 

0.1

1

10

100

1000

10000

100 300 500 700 900

R
e

te
n

ti
o

n
 t

im
e

 (
m

s
)

Z2FET Z2 FED TFET TFET_2 TFET_our Series7 Series8 Series9 Series10 FED

■ Lg1 = 100 nm

Case III
85 °C

64 ms

10
-1

10
1

10
4

(a)

10
0

10
2

10
3

(27 °C)

(L= 600 nm)

□ Z
2
-FET [23]

∆ FED [31] 

TFET [29]

 TFET [28]

misaligned DG

■: Case 
●,○: Case III

Our work:

27 °C

(85 °C)

(27 °C)

Total length (nm)

(85 °C)

0.1

1

10

100

1000

10000

1 10 10

0

10

00

10

00

0

1E

+0

5

R
e

te
n

ti
o

n
 t

im
e

 (
m

s
)

Z2FET FED TFET TFET_2 TFET_our Series7 Series9 Series10

■ Lg1 = 100 nm

Case III

85 °C

64 ms

10
-1

10
1

10
4

(b)
10

0

10
2

10
3

(27 °C)

(L= 600 nm)
□ Z

2
-FET [23]

∆ FED [31] 

TFET [29]

 TFET [28]

misaligned DG

■: Case 

●,○: Case III

Our work:
27 °C

(85 °C)

(27 °C)

Sense margin (nA)

(85 °C)

10
0

10
1 10

2
10

3
10

4 10
5

■: Case I



100 

 

75 nm must be maintained, with minimum LTotal (= Lg1 + Lg2 + Lgap + Lun) of 160 

nm to 170 nm for DRAM functionality. Thus, minimum LTotal and individual 

lengths (Lg1, Lg2, Lgap, Lun) are critical for RT > 64 ms. The device performance is 

better, attributed to increased storage capacitance due to increase in effective 

length of storage region with the integration of Lgap, supported by Lun and most 

importantly, reduced leakage current associated with tunneling during hold state 

‗0‘. Through a methodical analysis, insightful analysis, and device design, the 

investigation highlights the potential of TFET to operate as DRAM with optimal 

bias values in sub-100 nm regime. The work emphasizes the opportunity for 

TFET for dynamic memory with improved retention characteristics and better 

scaling perspective, achieved through design optimization.  
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Chapter 4 

 

 

Twin Gate Tunnel FET based Capacitorless 

Dynamic Memory 

 

4.1 Introduction 

The need of portable smart electronic products demands low power devices 

compatible with conventional CMOS along with technological competency [1-

13]. The choice is governed by the selection of applications such as cellular 

phones, personal digital assistants, medical electronics, and other portable 

computing and smart devices [8,9] that not only demands high density, but also, 

minimization of energy and improved speed per operation [14-17]. One of the 

crucial components in these electronic devices is the memory. The usage of 

memory devices has extensively widened with the introduction of data intensive 

applications. Along with computing segment, the various mobile multimedia 

applications, advanced cell phones, applications based on big data, cloud 

computing, virtual reality, and Internet of Things (IoT) [18-24] require innovation 

in memory to achieve high performance and density with low power consumption.  

Focusing on dynamic memory, the need for high speed has always been the quest 

that led to invention of various series of Double Data Rate (DDR) Synchronous 

Dynamic Random Access Memory (SDRAM). This led to development of laptop and 

notebook and further, smartphones [1,8,9,13]. Thus, DRAM application is not only 

limited to various applications for computers, including email, video streaming, but 

also, wide range of ―smart‖ products, including mobile devices, high definition 

television and MP3 players [8]. Among all integrated circuits, embedded memory 

[2-6] has an important in today‘s application as high performance computing, low 

power consumer electronics [9]. Therefore, the focus has been diverted towards 

improving eDRAM, being denser and power efficient than Static RAM [25]. 

However, speed is a critical issue. The development is aimed at using eDRAM to 

replace SRAM to achieve cheaper and lower voltage embedded chips. The present 
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DRAM technology utilizes LPDDR4 (Low Power Double Data Rate-4) as 1T 1C 

DRAM. LPDDR4 show enhanced speed than its predecessor with operation a 

lower voltage of 1.1 V [1,10,13,27]. The device is compatible with existing cell-

libraries, and are considered well suited for present mobile technologies and IoT 

based devices, but along with cost overhead [25]. Therefore, the devices with 

elimination of external storage capacitor could serve as a substitute.  

Capacitorless DRAMs can therefore be utilized due to its simple structure with 

low cost, if it meets the following expectations [28], 

(i) Low write time,  

(ii) High retention,  

(iii) Ultra low voltage operation. 

However, the  aggressive scaling of conventional MOS devices worsened the 

device performance, thereby increasing the standby power [7,12,29]. To address 

this, innovative low power devices have been commonly introduced [30-50] as 

FETs with polarity control [30-32], FED [33-37], Z
2
-FET [38-41], TFET [41-44], 

Heterostructure-FED (H-FED) [45], Modified-FED (M-FED) [46], Side-

Contacted FED (SFED) [49]. With an intrinsic channel, metal gates with suitable 

workfunction are required to achieve application specific performance. The 

analysis based on these devices use two independent gates that will substantially 

benefit in replacing the conventional MOS devices. 

 

The devices have been implemented for logic circuits and have shown 

applicability for high speed as well as low power operation [46-50]. In few digital 

applications, the device with three gates has been proposed for steep switching 

and has been implemented as basic logical operations [48]. Thus, the 

incorporation of two gates independently has been proposed for various 

applications that include its utilization for: 

i) Electrostatic Discharge (ESD) protection [33,34],  

ii) Memory devices[35-44],  

iii) Steep-switching devices [33-41],  

iv) Digital and logic circuits [45-50].  

Expending the idea of incorporating additional electrodes permits the selection of 

charge-carrier types in nanowire transistors, and thus, creation of compact logic 
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gates [31]. The devices utilize the ambipolar conduction to enhance logic 

functionality, where results have shown fabrication of complex circuits (XOR, a 

full adder) using less resources than conventional CMOS [31,50]. The 

investigation has shown improved gate controllability with independent operation 

that result into faster operation at reduced gate lengths. Moreover with scaling, 

ESD of integrated circuits is a concern, where FED is suitable as a local clamping 

ESD device due to high current capability and fast operation [32,33]. Thus, 

devices with independent gate operation can be used for power management and 

innovative logical function design [31]. Therefore, the applicability of such 

devices at circuit level may be welcomed as post-CMOS devices.  

 

Among these devices, TFET needs exploitation to perform as high speed, 

energy efficient dynamic memory for embedded memory applications that will 

also be the focus on this chapter. Thus, along with stand-alone applications, the 

device capability to operate at low power with low write time and high 

retention is studied that could be useful for embedded applications as well. The 

ideology presented in Chapter 2 and 3 is further realized as a twin gate topology 

in this chapter. The analysis is based on controlling the energy barriers, 

regulated by device structure, dimensions, bias values and temperature. The 

concept, design and operation as DRAM are explained through band diagrams 

by decoupling each operation and highlighting the underlying device physics. 

The twin gate architecture has structure similar to FED [33-37], but operates 

with different mechanism. Also, the operating principle of twin gate is similar 

to misaligned DG TFET, introduced in chapter 2, but with a different gate 

positioning. Therefore, the device operation is compared with two architectures, 

with first focus on variation with FED and subsequently, with misaligned DG 

TFET at the concluding section after discussing the operating principles and 

results of twin gate. 

 

4.2 Comparison with Field Effect Diode (FED) 

Twin gate TFET has similar architecture as that of FED [37], utilized for dynamic 

memory applications. The twin gate structure can be fabricated as shown by [51-

57]. FEDs have been previously explored for Electrostatic Discharge (ESD) 
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protection and DRAM applications. The FED resembles a thyristor when operated 

as a memory device [37], where current characteristics exhibit a snapback to 

distinguish between the states. For DRAM, FED showed RT of ~ 1 s with Lg1 = 

Lg2 = 400 nm at 27 °C [36]. The two front gates, Gate-1 (G1) and Gate-2 (G2) are 

utilized to virtually induce n-region, and p-region, respectively. The virtually 

induced p-type region is used as storage region (Fig. 4.1). However, the operating 

principle for both the devices is different. 

 

             
Fig. 4.1 Schematic diagram of twin gate TFET. (b) Variation of electrostatic 

potential profile at zero bias along the channel direction (X). The cutline is taken 

at 2 nm below the front silicon surface (Y = 0). 

 

The prime difference is in the read mechanism, where FED operates with a 

feedback mechanism in forward blocking state [33-37,40], with a positive bias at 

anode (VA) while a positive and negative bias are applied at G1 and G2, 

respectively to maintain the induced pn regions (Fig. 4.2). The cathode voltage is 

ramped down to zero volts from a positive bias in the previous operation (write 

‗1‘) that diffuses electrons towards G2. The electrons from cathode accumulate 

under G1, being biased positive and further lowers the barrier for hole diffusion 

from anode towards G1. Similarly, positive bias at anode reduce the hole barrier 

between anode and G1 region, the holes accumulate under G2, lowering barrier 

for electrons originating from cathode. The electrons transit from cathode towards 

anode, while the holes from anode towards cathode [40]. The feedback 

mechanism result into a high on-current. Thus, the read operation in FED, as well 

as in a similar architecture, Z
2
-FET [38-40] is based on forward mechanism, while 

TFET operates in reverse bias [41-44].  

 

    p+                                         n+ i Y 

X 

Oxide Oxide 

Tsi 

Tbox 

Gate 1 Gate 2 
Tox 

Lgap 

(a) 

Lg1 Lg2 

-0.65

-0.25

0.15

0.55

0 0.1 0.2 0.3 0.4
X (nm)

P
o

te
n

ti
a

l 
(V

)

lg=50_lup=20 hole_ref

0
.9

 V
0 100 200 300 400

L
g
a
p

Lg2

(b)
10

5

10
10

10
15

10
20

Lg1

Lg1 Lg2 DS

10
18



107 

 

 
Fig. 4.2 Schematic representation showing read mechanism in FED based DRAM 

through energy band diagram. Read is based on drift-diffusion mechanism with a 

feedback action that results into high on-current. 

 

The virtually induced n-type region in TFET is positively biased that tunnel 

electron from source towards G1 (Fig. 4.3). These electrons diffuse towards 

silicon film under G2, the positive bias at G2 lowers the barrier for higher electron 

diffusion, and finally, the electrons are drifted towards drain with a positive bias 

at drain. The tunneling based read mechanism limits the on-current of the 

memory. In FED, during write ‗1‘, the bias at the G1 which is held at positive bias 

is pulsed down to zero volt and then back to positive value. This lowers the hole 

barrier from anode and the hole are accumulated under G2, while in TFET the 

hole accumulation is based on forward biasing the p
+
/i region [41-43] and in our 

work through reverse biasing the n
+
/i region. The presence of both types of 

carriers avails better option. The current during write ‗1‘ in FED is in the range of 

milli-Amperes, while that in reverse-biased write ‗1‘ in TFET is in the micro-

Amperes. Thus, the tunneling based write mechanism in TFET is more power 

efficient than that utilized in FED [37]. 

 

The other characteristic that distinguishes the FED and the twin gate TFET as 

DRAM is the distinction between the two states. The carrier profile for FED after 

write ‗1‘ (W1) and ‗0‘ (W0) demonstrate that the interpretation of physical 

memory as the accumulation (state ‗1‘) and depletion (state ‗0‘) is inappropriate 

[37]. This is evident from Fig. 4.4 that shows the hole concentration (nh) in the 

storage region after write ‗1‘ and ‗0‘ are almost similar. In reference [37], for 

memory state ‗1‘ nh = ~ 3×10
19 

cm
-3 
and ‗0‘ nh = ~ 10

19 
cm

-3
 in the region under 
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G2 that serves as storage area of FED structure. The states are distinguished based 

on presence (state ‗1‘) and absence (state ‗0‘) of deeply depleted regions (as 

defined in [37]) associated with two pn-junctions on the sides of the virtually 

induced p-type region (under G2) as illustrated in schematic representation of 

FED in Fig. 4.4. 

 

 
Fig. 4.3 Schematic representation showing read mechanism based on Band-to-

Band Tunneling (BTBT) in TFET based DRAM.  

 

 
Fig. 4.4 Schematic illustration of hole concentration (nh) in the FED structure after 

write ‗1‘ (W1) and ‗0‘ (W0) showing the states are distinguished based on the 

deeply depleted (state ‗1‘) and depleted (state ‗0‘) regions at the pn-junctions on 

either side of G2 (highlighted regions).  

 

This is observed due to dynamic forward biasing of anode with the falling edge of 

G2 in write ‗0‘ operation that accumulates holes in the film region under G2 [37]. 

For TFET, as shown in Fig. 4.5, after write operations, the states are distinguished 

based on the presence of excess holes that is, accumulation (state ‗1‘) and 
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shortage of holes that is, depletion region (state ‗0‘) in the storage region, under 

G2. The analysis provides a qualitative comparison.  

 

 

Fig. 4.5 Schematic illustration of hole concentration in the TFET structure after 

write ‗1‘ and ‗0‘, showing the states are distinguished based on the accumulated 

(state ‗1‘) and depleted (state ‗0‘) regions under G2.  

 

 
Fig. 4.6 Variation in hole concentration (nh) in the potential well showing DRAM 

functionality in the sequence of operation. 

 

4.3 Twin gate as Dynamic Memory 

Fig. 4.1(a) illustrates tunneling based twin gate p
+
-i-n

+
 TFET device that employs 

two gates with different functionality for each to operate as DRAM. As discussed 

in chapter 2 and 3, the n
+ 

poly first front gate (G1) aligned to the source junction 

governs the read based on BTBT. The p
+ 

poly second front gate (G2) with a gap 

(Lgap) of 50 nm between the gates creates and preserves the physical well for 

charge storage (Fig. 4.1(b)).  
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Table 4.1 Operating mechanism 

Operation Action under G2  

(Fig. 4.6) 

Bias Mechanism 

W1 Hole accumulation (~10
19

 

cm
-3

) Fig. 4.7(a) 

Vg2 = -2 V  

potential at G2 

lowers, Fig. 4.7(b) 

BTBT, Fig. 

4.7(c) 

W0 Hole depletion (~10
6
 cm

-3
) 

Fig. 4.7(a) 

Vg2 = 2 V  potential 

raise, Fig. 4.7(b) 

Forward bias, 

Fig. 4.7(d) 

H1 Holes recombine with time 

(~10
19

 cm
-3

 @ 100 ns) 

Vg2 = -0.2 V  

barrier lowering with 

time, Fig. 4.8 (a) 

Thermal REC 

+ diffusion of 

holes [13] 

H0 Holes generate with time 

(~10
13

 cm
-3

 @ 100 ns) 

Vg2 = -0.2 V  

barrier rise with time, 

Fig. 4.8 (b) 

Thermal 

GEN + 

BTBT [13] 

 

4.3.1. Physical insights into operating mechanism 

The functionality as dynamic memory is based on redistribution of the generated 

holes to perform distinctly as write, read and hold operation for state ‗1‘ and ‗0‘ 

along with the optimized set of bias.  Thus, regulating the hole concentration in 

the storage region defines the different operating regions of DRAM as 

demonstrated in Fig. 4.6 for twin gate. The work aims at describing different 

mechanism through energy band diagrams. Table 4.1 illustrates the operating 

principle, the phenomenon occurring and its consequence. The storage of excess 

holes define write ‗1‘, which is based on the generation of holes (dQG2/dt > 0) in 

the region under G2 [58,59] QG2 is the stored charge in the potential well, given 

by QG2 = Q0 + ∆Q, where Q0 is the induced hole charge at zero bias condition due 

to p
+ 
poly gate (G2) and ∆Q is the excess hole charge accumulated in the potential 

well, during write ‗1‘. Storage of bit ‗0‘ or write ‗0‘, is based on the 

recombination (dQG2/dt < 0) that removes the holes from the physical well. The 

charge sustenance is evaluated through hold time, classified as RT. A more 

negative bias shows more hole generation than recombination, confirmed through 

the difference in barrier heights of the hold ‗0‘ (~0.3 eV) and hold ‗1‘ (~0.1 eV) 

for hold time from 1 ms to 500 ms for a hold bias of -0.2 V at G2. Thus, 

maintaining the well-defined barrier for each state shows longer charge retention. 
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Fig. 4.7 Variation in (a) hole concentration, and (b) electrostatic potential for 

write ‗1‘ (W1) and write ‗0‘ (W0) compared to initial case at zero bias, along X. 

Energy band profile showing (c) W1 and (d) W0 operation in TFET along X. The 

cutlines are taken 1 nm below the front surface. 

 

 
Fig. 4.8 Dependence of band energy during (a) hold ‗0‘ (H0) and (b) hold ‗1‘ (H1) 

on the hold time.  

 

An optimized bias of -0.2 V at G2 is applied to balance the generation and 

recombination that shows maximum retention (Fig. 4.9). Fig. 4.10 reflects the 

variation in hole concentration with time, where subsequently with increasing 

hold time, hole generation increases, while hole concentration is almost 

maintained for state ‗1‘ in the storage region due to application of a negative bias 
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of -0.2 V at G2. Presence of excess holes or application of a positive bias results 

into barrier lowering that reduces hole concentration, while deficiency of holes or 

a negative bias at G2 lead to hole generation in the storage region. 

 

 

Fig. 4.9 Variation in RT with bias applied at G2 during hold operation.  

 

   

   

   

 

 

 

 

 

 

 

Fig. 4.10 Contour plots of TFET based DRAM illustrating hole concentration (nh) 

for hold times of (a)-(b) 10 μs, (c)-(d) 1 ms, and (e)-(f) 100 ms for hold ‗0‘ and 

‗1‘, respectively for Lg1 = Lg2 = 100 nm. An optimized negative bias of -0.2 V 

maintains state ‗1‘, while state ‗0‘ retention is gradually reduced with hole 

generation. 

 

Further, as illustrated in Fig. 4.11(a) during read a positive potential of Vg1 = 2 V 

results into tunneling of electrons from heavily doped source region towards 
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which is lowered through a bias of Vg2 = 1.2 V and finally, the electrons are 

drifted towards drain with Vd = 1.0 V. Presence of excess holes in the potential 

well for state ‗1‘ is evident from maintenance of higher electrostatic potential 

during read ‗1‘, compared to read ‗0‘ (Fig. 4.11(b)). 

 

     

Fig. 4.11 (a) Conduction Band (CB) and Valence Band (VB) energy along X 

during read operation, where electron tunneled from source is drifted towards 

drain through biases: Vg1 = 2 V, Vg2 = 1.2 V, Vd = 1 V (b) Variation in potential 

for state ‗1‘ and ‗0‘ during read operation with time. 

 

The lowering of hole barrier at film under G2 from write ‗1‘ to read ‗1‘, as 

illustrated in Fig. 4.12(a) result into hole diffusion from storage region and 

therefore, an optimal bias at G2 should be adopted to sense the difference between 

the two states. The channel corresponding to G2 during read ‗1‘ is formed at back 

gate, demonstrated through Fig. 4.12(b) that shows a higher barrier for electrons 

at the front surface. The same has been verified in Fig. 4.13(a)-(b) through 

electron current density that shows an inclined channel formation during read ‗1‘ 

(Fig. 4.13(a)). A higher potential under the silicon film at G2 region due to excess 

positive charges, result into a lower barrier of for electrons in read ‗1‘ as 

compared to read ‗0‘. The reduced barrier allows more electron diffusion from 

G1, which are further drifted towards drain. This can also be concluded from Fig. 

4.13(a) and (b) showing higher current density for state ‗1‘, compared to state ‗0‘, 

and  thus, difference in read currents. Thus, the elevation and reduction in the 

energy barrier underneath G2 distinguishes the states. The sustenance of each 

state is determined as retention time, shown in Fig. 4.14(b) where a RT = ~370 ms 

is observed for gate lengths of 100 nm each with a SM of ~30 nA at 85  C.   
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Fig. 4.12 (a) Dependence of band energy from W1 to read ‗1‘ (R1) along the 

channel direction at a cross-section 1 nm below front surface (Y = 0). (b) 

Variation in CB profile for R1 at 1 nm below front surface (FS, Y = 0 nm) and 1 

nm above back surface (BS, Y = Tsi) at the film under G2. 

 

 
Fig. 4.13 Contour plots illustrating electron current density in the channel for (a) 

read ‗1‘ and (b) read ‗0‘.  

  

      
Fig. 4.14 Transient currents with SM (∆I) of ~ 30 nA/µm and write time of 5 ns. 

Read currents at 85 C with RT = ~ 370 ms, for Lg1 = Lg2 = 100 nm. 

 

4.4 Other DRAM metrics 

4.4.1 Write speed and power 
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memory. The write ‗1‘ mechanism basically speeds up the hole generation, while 

the excess charges that quantifies the read current is based on hold mechanism 

[62]. The state ‗1‘ and ‗0‘ are distinguished based on their currents determined 

during read operation, followed after the hold operation. Figs. 4.15(a) and (b) 

show the variation in the hole concentration from write ‗1‘ to hold ‗1‘ for write 

voltages of -3 V and -2 V, respectively. Most of the excess charges generated 

during Write ‗1‘ operation with bias voltage as -3 V are lost due to Gate to 

Source/Drain leakage and finally, during hold operation the hole concentration for 

both the bias voltages are almost same. The reason for hole loss during hold is 

explained in chapter 3, illustrated through Fig. 3.5. Thus, we obtain similar 

retention characteristics as well as sense margin for a write voltage of -2 V and -3 

V. Therefore, the hole concentration represented as state ‗1‘ doesn‘t depend on the 

charges accumulated in the potential well during write ‗1‘ operation, but on the 

holes present during hold operation.  

  

   

 
Fig. 4.15 Variation in the hole concentration after write ‗1‘ and hold ‗1‘ operation 

with a write bias of (a) -3 V and (b) -2 V at G2 and hold bias of -0.2 V for storage 

region of 200 nm. (c) Variation of read currents and SM with write time. 
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However, as we increase the write ‗1‘ bias to -1 V with the same write time, the 

hole generation decreases significantly resulting into lower hole concentration. 

The same hole concentration with a bias of 1 V can be obtained through increase 

in write time. Write time for a particular set of bias value is evaluated when SM 

attained is constant (Fig. 4.15(c)). Thus, either the write time or bias can be 

optimized for hole generation. While write time determine the speed of the 

DRAM operation, write voltage estimate the power consumed. Thus, power and 

speed associated with write operation of DRAM are another crucial DRAM 

metrics and must be optimized to reduce trade-off between them.  

 

 

 
Fig. 4.16 Schematic illustration of charge storage during write (W) for state ‗1‘ 

through (a) reverse bias and (b) forward bias mechanism with the drain currents 

during the operation.  

 

The two write mechanisms that can be utilized for hole accumulation is based on 

forward and reverse bias action. The p
+
/i junction on being forward biased with a 

positive bias at source and negative bias at G2 accumulate holes under G2, while 

n
+
/i junction is reversed with a positive bias at drain and a negative bias at G2 to 

perform as in Fig 4.7(c). To demonstrate their impact, the bias difference between 

G2 and drain/source is maintained at -2 V as shown in Fig. 4.16(a) for reverse 

bias and Fig. 4.16(b) in forward bias. Although both mechanisms provide better 

reliability in comparison to W1 based on impact ionization [63], and also, 

improves the speed with write time reduced to 5 ns for storage region of 100 nm. 
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However, reverse biased based methodology is power efficient (drain current, Ids 

in μA) than forward bias mechanism (Ids in mA). Considering the Ids in μAs as 

compared to previous method [44] with comparable write time (Fig. 4.17) reverse 

bias based operation is useful for low power operation. Thus, write mechanism 

based on BTBT is a power efficient methodology with low write time and reliable 

compared to that based on impact ionization. The write time with power 

consumed is compared with previous architectures in Table 4.2, according to 

methodology suggested in [60]. Thus, the device shows feasibility for eDRAM. 

 

 
Fig. 4.17 Variation in write time for various TFET based DRAM. Iw1 is the current 

during write ‗1‘. Our work is for twin gate with Lg1 = Lg2 = 100 nm with bias 

voltage described in previous section. 

 

Table 4.2 Comparison of write time and power during write ‗1‘ for twin gate, 

compared to previous architectures. 

Device architecture 

[Reference] 
Ls (nm) │Vd│ (V) 

Id 

(μA) 

Power 

(μW) 

Write 

time (ns) 

FDSOI (n
+
-p

+
-n

+
) [60] 65 1.1 314 345 5 

DG finFET (n
+
-p

+
-n

+
) [61] 60 2.0 400 800 1 

FED (p
+
-i-n

+
) [36] 400 1.2 ~100 120 4 

Z
2
-FET (p

+
-i-n

+
) [38] 400 1.3 500 650 1 

Our work (twin gate) 100 1.0 0.3 0.3 5 

 

4.4.2 Temperature dependent retention characteristics 

Temperature analysis is essential due to application specific requirements. The 

testing for DRAM cells is performed at 85 °C, specifically for stand-alone 

applications. However, in real time applications the temperature raises to ~100 °C 
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due to heating up in the computing systems, and thus, verification of DRAM cells 

is required at higher temperature [13]. Usually, DRAM performance is evaluated 

till 125 °C. On the other hand, mobile based embedded memory applications [8] 

operate reliably at even lower temperatures can be well-suited for eDRAMs 

[9,13], but with high speed operating capability. Analysing the retention 

characteristics for wide range of temperature shows the device performance 

degrades at 125 °C due to increased recombination/generation rate [65], the 

retention time for Lg1 = 100 nm is > 64 ms up till 105 C (Fig. 4.18).  The RT 

attained at room temperature is ~1.3 s that shows a significant improvement over 

previous results [42-44].   

 

 
Fig. 4.18 Variation in RT with temperature for Lg1 = Lg2 = 100 nm. 

 

4.4.3 Results at longer gate lengths 

The results shown above are for shorter gate lengths of 100 nm. However, the 

concept has been first verified at longer gate lengths with G1 as 400 nm and G2 as 

200 nm, as utilized in previous topologies [42] and chapter 2. The results for 

longer gate lengths have been summarized in Fig. 4.19, where a negative bias at 

the second gate (Vg2 = -3 V) increases the hole concentration in the potential well 

due to BTBT between drain and G2, during write ‗1‘. A positive bias at G2 (Vg2 = 

3V) applied during write ‗0‘ removes holes from the well which recombine at the 

drain. During hold operation a small negative bias is applied at Gate-2 (Vg2 = -0.2 

V) that retain holes (~10
19 

cm
-3

) in the physical well after write ‗1‘ (~10
20 

cm
-3

) 

whereas after write ‗0‘ (~10
6 

cm
-3

) the potential well is depleted of holes (Fig. 

4.19(a)). A deep dedicated volume created using p
+ 

poly G2 along with an 

optimum bias sustains holes for several seconds at 85 °C (Fig. 4.19(b)). Fig 4.19 
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(c) shows a SM of ~ 140 nA with a current ratio (> 10
2
) exhibiting an acceptable 

read sensitivity. RT achieved is ~1.5 s (Fig. 4.19(d)) for the optimized bias values 

at 85 °C with Lg1 = 400 nm and Lg2 = 200 nm. Further analysis at these gate 

lengths indicates, RT > 64 ms, at a higher temperature of 125 °C (Fig. 4.19(e)). 

 

             

               

 
Fig. 4.19 Variation of hole concentration in the storage region (a) during write and 

hold (1 μs) and (b) in the hold state, with time. (c) Drain current transients in the 

sequence of operation with bias scheme: write ‗1‘: Vg2 = -3 V, hold: Vg2 = -0.2 V, 

read: Vg1 = 2 V, Vg2 = 1.2 V, Vd = 1 V, write ‗0‘: Vg2 = 3 V, Vg1 = Vd = 0 V. (d) 

Variation of read currents at optimized bias voltages with hold time. (e) 

Percentage variation in SM, where 50% change indicates RT of 170 ms at 125 °C. 
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Fig. 4.20 Variation in DRAM metrics, RT and SM on length of (a) Gate-2 with Lg1 

= 100 nm, (b) Gate-1 with Lg2 = 100 nm. (c) Variation in RT with Lg2 and with 

Lg1. (d) Dependence of RT and SM on Lgap. 

 

4.4.4 Gate length scalability 

The key functionality of the gates is well illustrated in Figs. 4.20(a) and (b) that 

shows the SM is more influenced by G1 while RT by G2. The RT has significant 

effect of Gate-1 for Lg1 < 100 nm. The scaling of Lg1 results into reduced 

controllability of Gate-1 due to narrow barrier [55] that affects the read 

mechanism and degrades the SM. Further evaluation demonstrates negligible 

sense margin for Lg1 beyond 75 nm.  Scaling of Gate-2 beyond 50 nm reduces the 

storage region, thereby decreasing the RT (< 64 ms). The evaluation of device 

performance highlights its capability to scale Lg1 till 75 nm with Lg2 = 50 nm, still 

with RT > 64 ms at 85 C (Fig. 4.20(c)). The device shows a good downscaling 

due to longer effective length of the storage region (Lgap + Lg2). Fig. 4.20(d) 

demonstrates the impact of Lgap, showing its scalability down to 20 nm without 

affecting SM and RT. While RT > 64 ms [18] is the criteria set for stand-alone 
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cache memory are refreshed frequently (hundreds of μs to few ms) and therefore, 

can be scaled down to even lower values. 

 

4.4.5 Improved metrics through underlap 

As demonstrated in previous chapter, RT can be further enhanced by reducing the 

generation rate for state ‗0‘, through the use of an underlap between Gate2/Drain 

regions. This reduces the lateral electric field and thus, the tunneling rate. This 

effect becomes prominent for the shorter gate lengths, and therefore, we have 

analyzed the same on scaled devices (Lg1 = 100 nm, Lg2 = 50 nm) by using an 

optimal underlap (Lun) of 15 nm between Gate-2 (G2) and Drain (D) (Fig. 4.21). 

 

 
Fig. 4.21 Variation in RT with G2/D underlap for different Lg1 

 

4.5 Comparison with Misaligned DG TFET 

The configuration described in the previous chapters having misaligned topology 

work can also be realized as twin front gate TFET. The functionality of the 

devices as DRAM is based on the well-defined role of each gate, where the first 

gate in twin gate or the front gate in the misaligned DG TFET pre-dominantly 

regulates the read mechanism. The second gate or the back gate governs the 

creation and maintenance of potential well. However, the difference lies in 

location of second gate that affects the conduction channel, and the associated 

fabrication. The channel corresponding to p
+
 poly gate is formed at the surface 

opposite to its location, therefore, for twin front gate, an inclined channel (from 

front interface for Gate-1 to back interface for Gate-2) is formed (Fig. 4.22(a)) 

while a horizontal channel at front surface is observed for misaligned topology 

(Fig. 4.22(b)). The inclined conduction channel has higher resistance (increases 
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with Tsi) for twin gate topology as compared to top-down (misaligned) gate 

structure.  

 

The impact might be observable for current values higher in magnitude and in 

future, top-down architecture could be beneficial. However, at present tunneling 

based phenomenon limits the variation and also, for DRAM operation in sub-100 

nm regime with a silicon film thickness of 20 nm as utilized in our work, both the 

architectures yield similar results with the first gate utilized for read mechanism 

based on band-to-band tunneling while the second gate responsible for creation 

and maintenance of potential well for charge storage. Although the performance is 

similar, chapter 3 demonstrates misalignment architecture to show systematic 

design optimization in three steps to show a progress over earlier work [18:T] at 

scaled gate lengths in sub-100 nm regime.  

 

The planar process for fabricating misaligned DG may be difficult than twin front 

gate TFET [51-52], but is feasible through shifting of the electrical vernier [57]. 

The lateral spacing and underlap can be implemented using dual spacer process 

[51]. However, if we realize these topologies (twin gate and misaligned DG) 

based on the fabrication technique adopted for vertical finFET- like structures, 

 

 
Fig. 4.22 Schematic illustration of (a) twin gate TFET and (b) misaligned DG 

showing an inclined and horizontal conduction channel, respectively. 
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which is regarded as the mainstream for lower technology nodes and beyond 

[65,66], then both the topologies could be fabricated with similar processes. The 

requirement will be of different masks for the structures. The cross-section and 

top view of the vertical finFET is illustrated in Figs. 4.23(a) and (b). It should be 

also noted that the top gate oxide is much thicker than that of the sidewall gate 

oxide, which can be used as the hard-mask for the gate patterning. After the poly-

gate deposition in a vertical finFET structure, the top gate is removed by the 

Chemical Mechanical Polishing (CMP) process as described in [66] to obtain a 

finFET-like double-gate structure. The double gate separation can also be 

achieved by a local etch-back gate process [66]. After that, the respective top-

down gates structure and the twin-gate structure can be formed by same gate 

patterning process using different masks.  

 

(a)  (b)  

Fig. 4.23 The (a) cross-section and (b) top view of conventional finFET structure. 

 

(a) (b)   

Fig. 4.24 (a) The top view of DG structure before gate patterning. The blue line 

indicates the gate-patterning masks for top-down gates structure. (b) The top view 

of misaligned DG after gate patterning.  
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(a)  (b)  

Fig. 4.25 The side view, (a) left and (b) right of misaligned DG structure.  

 

Fig. 4.24(a) indicate the top view of double gate topology, which on gate 

patterning results into a misaligned double gate (Fig. 4.24(b)). Fig. 4.25 illustrates 

the side view of misaligned double gate after patterning. Further comparing twin 

gate topology with other similar architectures show remarkable improvement over 

the previous TFET based DRAM [41-43] and also, highlights the potential to 

compete with other steep switching devices [36-40]. The results show improved 

retention compared to similar architecture, FED with RT of ~1.0 second at room 

temperature for storage region of 400 nm. 

 

Table 4.3 Various TFET structures utilized as DRAM 

Device Topology 

[Reference] 

Length (nm) RT  Temperature 

Gate Storage 

Planar TFET  [42] 400 200 in ms 27 °C 

Fin-TFET [43] 100 25 100 µs  

 

85 °C 

 

Present work (w/o Lun) 

400 200 1.5 s 

100 50 80 ms 

Present work (with Lun) 100 50 260 ms 

Present work (w/o Lun) 100 50 250 ms 27 °C 

 

Present work (w/o Lun) 

400 200 180 ms  

 

125 °C 

 

100 

200 35 ms 

50 15 ms 

Present work (with Lun) 100 50 30 ms 
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4.6 Performance assessment and feasibility 

Table 4.3 summarizes the results, featuring the enhanced retention time, better 

scalability, impact of G2/D underlap and improved performance at higher 

temperature as compared to the previous results [42-44]. A possible layout of twin 

gate topology is as shown in Fig. 4.26. The operation at circuit level gates will use 

gates (G1, G2) as wordline (WL) 1 and 2, while the drain as bitline (BL) as 

adopted in few circuits [67,68]. The unit cell area estimated as 7F
2
 for the present 

architecture (Lg1 = 400 nm, Lg2 = 200 nm) along with high retention time (~1.5 s) 

is remarkable improvement over the previous results [42,43].  

 

 
Fig. 4.26 A possible layout of TFET based DRAM. The block highlighted shows 

a single unit cell. 

 

4.6 Conclusion 

In summary, the chapter presents insights into optimized twin gate TFET based 

capacitorless dynamic memory with improved retention characteristics. The 

ideology, design and functionality as DRAM are explained through band 

diagrams by decoupling each operation and highlighting the underlying device 

physics. The operation is based on controlling the energy barriers with the 

optimized bias values and architecture that aid to attain a RT of ~ 1.5 sec at 85 °C 

exhibits an improved RT at higher temperature (125 °C) for Lg1 = 400 nm and Lg2 

= 200 nm. Further evaluation at shorter gate lengths with each gate 100 nm long 

demonstrates, 

(i) An improved RT (370 ms at 85 C and ~ 1.3 s at 27 C)  

(ii) Speed (write time of 5 ns)  

(iii)  Reliability (Write ‗1‘ without impact ionization and operation at 

higher temperature)  

(iv)  Better scalability (Lg1 = 75 nm and Lg2 = 50 nm) and, 
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(v) Low power operation due to reduced refresh cycles and tunneling 

based W1 and read mechanism.  

 

Other than reduced refresh cycles, emphasis on write bias and time reflect a 

low power, and high speed operation, respectively. The results show enhanced 

performance that could facilitate its applicability as stand-alone as well as 

embedded applications. However, with technological advancement another 

important DRAM metric that further needs improvement is the sense margin 

that will be discussed in the following chapter. 
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Chapter 5 

 

 

Planar Tri-gate Tunnel Field Effect Transistor for 

Enhanced Performance Metrics 

 

 

5.1 Introduction 

The single transistor capacitorless DRAM [1-10] has overcome scalability issue 

associated with traditional capacitor in the conventional 1T-1C configuration [11-

17]. Further, the voltage scalability concerns of conventional MOS transistor can 

be circumvented using TFETs [18-22] which exhibit a sub-60 mV/decade off-to-

on transition. Although, the tunneling mechanism limits the on-current (Ion) a high 

on-to-off ratio makes it a viable candidate for low power applications. TFET also 

benefits from reduced short channel effects, weak temperature dependency and 

enhanced scalability. With technological advancement, the focus has been shifting 

towards the memory applications which require energy efficient device exhibiting 

improved performance in terms of speed, retention time, read sensitivity, 

scalability, and reliability [23].  

 

Previous chapters have underlined various architecture modifications in TFET 

based dynamic memories. Although, the previous works
 
outlined an opportunity 

to utilize TFET as DRAM, showed a compromise between sense margin and 

retention time (Table 5.1). The first concept for TFET based DRAM utilized an 

oversized back gate where the storage region of 200 nm was created at the front 

un-gated region [24,25]. The result showed a Sense Margin (SM) of 10-20 nA/μm 

with a Retention Time (RT) in few milliseconds at room temperature. The 

architecture was modified to misaligned Double Gate (DG)
 

TFET, as 

demonstrated in chapter 2, that resulted into improved retention time of 2 s at 85 

C achieved through back gate engineering. The sense margin was further 

enhanced to 140 nA by bias optimization in twin gate architecture (chapter 4) with 

RT = 1.5 s at 85 C. Maximum SM of 500 nA could be attained through a fin-
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based TFET with p-doped pocket as the storage region [26]. However, this 

topology resulted in a low retention time of 100 μs at 85 C.  

 

Table 5.1 Previous works on TFET based DRAM 

Architecture Ltotal
a 

SM RT 

DG FDSOI [25] 600 nm 20 nA Few ms at 27 C 

Fin-TFET [26] 125 nm 500 nA 100 μs at 85 C 

Twin gate TFET  650 nm 140 nA 1.5 s at 85 C 

Misaligned DG TFET  600 nm 20 nA 2 s at 85 C 

Misaligned DG TFET  160 nm 20 nA 85 ms at 85 C 

a
Ltotal is the length between source and drain. 

 

A higher SM facilitates better read sensitivity, simplifying the sensing circuit, and 

also, improves the device scalability that extends its applicability as high density 

memory [8,10], while a high RT indicates low refresh rates, thereby, signifying 

low power operation [11]. Therefore, maintenance of both, high RT and SM is 

imperative for an operational DRAM. However, there exists a trade-off between 

SM and RT. The storage of excess holes for state ‗1‘, shows an improved SM, but 

its sustenance requires a more negative bias during hold that increases hole 

generation for state ‗0‘, and hence, results in its degradation that consequently 

lowers RT. The retention time can be improved by reducing the hole generation 

associated with BTBT between gate and drain by introducing an underlap (Lun). 

However, an underlap reduces the SM or requires higher voltage to uphold the 

same SM [9]. Therefore, a careful investigation and optimization is required to 

minimize the trade-off between SM and RT.  

 

Although, previous architectures proposed in this thesis work have shown a 

noteworthy improvement in terms of RT, the limitation in lower SM demands 

insightful understanding and analysis of the associated constraints to overcome 

the technological obstruction for feasible DRAM operation. Also, insights into 

chapter 3 and 4 suggests, the first gate of misaligned DG and twin gate could be 

scaled down to 75 nm, but the SM attained was low (< 50 nA) thereby being a 

hindrance for further scalability. In the previous chapters, the scaling limit was 
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due to low sense margin, and therefore, further investigation as well as device 

optimization is required to improve the tunneling process. Thus, this chapter 

investigates a planar tri-gate TFET with two gates controlling the tunneling 

mechanism which leads to enhanced SM, scalability, while maintaining the 

retention characteristics and current ratio at lower bias values. The benefit of the 

device is ascertained through comparison with twin gate TFET.  

 

5.2 Device design for operation as DRAM 

The planar tri-gate p
+
-i-n

+ 
structure, shown in Fig. 5.1(a) has a p

+
 doped source 

and n
+
 doped drain with a concentration of 10

20 
cm

-3
 and a lightly doped (10

15
 cm

-

3
) p-type channel region between them. The silicon film thickness (Tsi) is 20 nm 

and physical oxide thickness (Tox) of 3 nm is used with HfO2 as the dielectric 

layer. The two gates (G1) are aligned symmetrically to the source junction at a 

partial portion of the intrinsic film and are electrically connected, while the second 

gate (G2) is located at the front interface, adjacent to first gate with a lateral 

spacing (Lgap). The proposed device can be fabricated by adopting the approach as 

demonstrated in [27-32].  

 

The transmission of carriers in a TFET is based on inter-band tunneling,
 
which is

 

directly proportional to the energy difference (ΔΦ) between the valence band in 

the source and the conduction band in the channel, and has inverse dependence on 

screening tunneling length (λ) [21].
 
 The tunneling length is regulated by the 

device dimensions, architecture, doping profile and gate capacitance. The 

tunneling barrier is strongly governed by the electric field associated with the 

gate, and therefore, increasing the gate controllability over the tunneling junction 

through use of multiple gate architecture can enhance the drain current [33]. The 

concept has been utilized in this work to improve the Sense Margin (SM) of TFET 

based dynamic memory, where the two gates are symmetrically aligned at a 

partial portion of the intrinsic film near the source to control the tunneling of 

electrons. The concept, design and operation of planar tri-gate architecture 

provide valuable viewpoints for TFET based DRAM. 
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Fig. 5.1 (a) Schematic diagram of planar tri-gate TFET. Variation of (b) band 

energy, (c) electron concentration (ne) and (d) hole concentration (nh) with 

distance along the channel direction (X) at no bias condition. The cut-lines are 

taken at a cross-section 1 nm below Y = 0.  

 

The key functionality as dynamic memory is based on controlling the barriers 

formed through the gates (G1 and G2). The injection barriers corresponding to the 

gates are demonstrated through the band energy in Fig. 5.1(b). As shown in Fig. 

5.2(c) G1 with workfunction as 4.15 eV induces a virtual n-type region with 

electron concentration (ne) of ~ 10
18 

cm
-3 

and primarily controls the read 

mechanism based on BTBT. The symmetric gate (G1) at the back interface, 

results into formation of a second conduction channel. Incorporation of gate (G1) 

at the back surface enhances the gate controllability of the semiconductor film 

[21] and increases the individual tunneling current for read '0' and '1' states along 

with the difference between them, and hence, a higher sense margin is expected to 

be achieved. The use of an additional back gate to regulate the tunneling, not only 

increases the driving capability of device, but reduces short channel effect with 

operation at lower bias values. The second gate (G2) with gate length Lg2 and 

workfunction of ~5.25 eV accumulates a hole concentration (nh) of ~ 10
18 

cm
-3 

at 
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surface that serves as an electrostatic potential well for charge storage (Fig. 

5.1(d)). Although G1 controls BTBT, governing the electrons in the channel, 

further drifting of electrons towards drain is regulated by G2 and distinguished 

based on the positive charges stored in that region. Therefore, for a high sense 

margin, it is beneficial to have the front surface beneath silicon film at G2 with 

higher hole accumulation that increases the potential at the back surface of G2 

region, and hence, read ‗1‘ current. 

 

5.3 Insights into operation of planar tri-gate 

Through an insightful analysis, the proposed tri-gate topology and its applicability 

as DRAM is evaluated to overcome the bottleneck of low SM without 

compromising charge retention. In order to achieve improved metrics, 

understanding the significance of each operation and contributing factors is 

indispensable, and the same is described in the following sub-sections.  

 

5.3.1 Operating mechanisms 

The functioning of TFET requires insights into various operations (write, read and 

hold) performed by dynamic memory. The analysis is based with Lg1 = 400 nm, 

Lg2 = 200 nm and Lgap = 25 nm and is further reduced to evaluate the scaling 

capability for memory operation. Tunneling based write mechanism through a 

negative bias at G2 (Vg2 = -2 V) facilitates storage of excess holes beneath G2 

(Fig. 5.2(a)) while holes are evacuated from storage region through a positive 

potential at G2 (Vg2 = 2 V). While an optimized bias of -0.3 V at G2 has been 

adopted for hold operation for maximum RT, the biases for read operation also 

need to be focused for SM. Before assessing the importance of read biases, the 

role of each gate for estimation of SM is discussed. After write ‗1‘, during read ‗1‘ 

(Fig. 5.2(a)) the hole concentration (nh) reduces beneath G2, influenced by 

thermal recombination and more positive bias applied at G2 [10]. 

 

A positive bias applied at G2 (Vg2 = 1.2 V) reduces the potential barrier between 

G1 and G2 that facilitates the flow of holes towards the source. This increases nh 

(~ 10
15 

cm
-3

) at the centre of film under G1 region. The presence of excess carriers 

for state ‗1‘ increases the electrostatic potential of intrinsic film region covered by 
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both the gates, G1 and G2 (Figs. 5.2(b) and (c)) and the same is higher as 

compared to state ‗0‘. This results into a lower barrier for electrons (Fig. 5.2(d)) 

and also, a higher tunneling window for state ‗1‘ as compared to state ‗0‘ and 

consequently, an increased current for read ‗1‘ is observed as compared to read 

‗0‘. Fig. 5.2(c) also illustrates a higher potential at the back surface of the silicon 

film underneath G2, justifying the channel at the back surface. Thus, the work 

demonstrates the significance of read operation in determining state ‗1‘ and ‗0‘, 

contributed not only by the excess charge carriers, but gate biases and gate 

coupling. Thus, bias optimization is very crucial in DRAM, and therefore, it is 

essential to comprehend the role of read biases for DRAM performance metrics. 

 

              

        
Fig. 5.2 (a) Variation in nh in write (W) and read (R) operation for state ‗1‘, along 

the channel at 1 nm below the front interface (Y = 0). Dependence of nh and 

potential in the semiconductor film beneath (b) G1 and (c) G2 during read 

operation along Y with X at the centre position of G1, and G2, respectively. (d) 

Variation in band energies for read ‗1‘ and ‗0‘ at a cross-section of 1 nm above 

the back interface (Y = Tsi). Bias during read: Vg1 = 1.5 V, Vg2 = 1.2 V, Vd = 0.9 V.  
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Fig. 5.3 Variation in (a) surface potential of G1 (f_g1) (b) sense margin, (c) 

surface potential of G2 (f_g2) (d) retention time and current ratio, with the bias 

applied at G2 (Vg2) during read operation, with Vg1= 2 V and Vd = 1 V. Bias 

applied at G2 during hold is -0.3 V. 

 

5.3.2 Significance of read biases 

As discussed before, the bias applied at G2 influences the energy barrier between 

G1 and G2 that affects the hole concentration under G1, and thus, impacts the 

electrostatic potential of the semiconductor film under G1. This is evident from 

Fig. 5.3(a) that shows variation in surface potential under G1 with bias at G2. For 

a positive lower bias at G2 (< 0.4 V) a lower surface potential for read ‗1‘ is 

observed which is almost constant for a wider range of (0.4 - 1.3 V) for both the 

states (‗1‘ and ‗0‘) and increases significantly for read ‗0‘ for Vg2 > 1.3 V. Similar 

trend is observed in Fig. 5.3(b) with the read currents. As observed in Fig. 5.3(c) 

the surface potential under G2 during read ‗0‘ is more sensitive to bias applied at 

G2 than read ‗1‘. State ‗0‘ is depleted of holes during erase operation and thus, a 

lower positive bias applied at G2 during read from 2 V (for write '0') results into 

hole generation, which increases the surface potential of G2. For state ‗1‘, the 

accumulated excess holes already maintains the film under G2 at a higher 
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energy barrier between G1 and G2, thereby reducing the concentration of excess 

charge carriers contributing the positive potential. Therefore, a linear change in 

surface potential under G2 is not observed for read ‗1‘. Thus, a higher increment 

in surface potential for read ‗0‘ compared to read ‗1‘, influencing the read 

currents, results into decrease in CR with increasing bias at G2 (Fig. 5.3 (d)).  The 

analysis shows a programming window between 0.4 V - 1.6 V for SM > 500 nA. 

However, RT > 64 ms is achievable for a bias range of 1.1 - 1.5 V (Fig. 5.3(d)). It 

is also apparent from the figure, for bias > 1.2 V, a CR < 10
2 

is attained,
 
and thus, 

it eliminates the choice of bias between 1.3 V- 1.5 V applied at G2. Based on the 

investigation, an optimized bias of 1.2 V at G2 during read has been selected that 

shows maximum SM of ~1.4 μA/μm with CR > 10
2 
and RT of ~ 200 ms for Vg1 = 2 

V and Vd = 1 V at 85 C. 

 

                  

                
Fig. 5.4 Dependence of (a) SM, RT and (b) CR on the bias applied at G1 (Vg1) 

during read operation, for Vg2 = 1.2 V and Vd = 1 V.  (c) Variation in SM and RT 

with drain bias during read operation with Vg2 = 1.2 V and Vg1 = 2 V. (d) Transient 

current for the optimized bias set: Vg2 = 1.2 V and Vg1 = 1.5 V, Vd = 0.9 V. ∆I 

indicates the SM. 
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Figs. 5.3(b) and (d) also, highlights device capability to operate with a CR of 

~10
4
,
 
SM of ~ 900 nA/μm and RT > 64 ms with Vg2 = 1.1 V. This is an appreciable 

improvement over the previous TFET based DRAM [24-25], misaligned DG, twin 

gate, with Lg1 = 400 nm and Lg2 = 200 nm. The operation is further analysed 

through the variation in bias at G1 (Fig. 5.4(a) and (b)) and drain (Fig. 5.4(c)) that 

illustrates a gradual variation in DRAM characteristics with an improved CR and 

RT for lower bias at G1. Additionally, with Vg1 = 2 V and Vg2 = 1.2 V, it is 

observed that the DRAM operation is feasible at a drain bias of 0.8 V with SM > 

500 nA, CR >10
2 

and RT > 64 ms. Along with focus on improved SM, the biases 

are opted to obtain a high RT as well as CR. Therefore, further analysis is 

performed with Vg1_read = 1.5 V, Vg2_read = 1.2 V and Vd_read = 0.9 V that shows a 

SM = 575 nA, RT = 430 ms and CR > 10
3 

for
 
Lg1 = 400 nm, Lg2 = 200 nm and Lgap 

= 50 nm at 85 C (Fig. 5.4(d)).  

 

5.4 Comparative analysis with twin gate architecture 

The benefit of integrating a bottom gate to the previous reported twin gate 

architecture can be analysed through potential profile of the two architectures, 

with (planar tri-gate) and without the back gate (twin gate). The comparison 

presents the physical insights that distinguish the performance metrics.  

 

5.4.1 Physical insights and operating principle 

As illustrated in Fig. 5.5(a) the presence of back gate raises the potential by ~160 

mV at zero bias condition. Fig. 5.5(b) shows a higher steady state drain current for 

planar tri-gate as compared to twin gate, contributed by the two channels, at top 

and bottom surface. Also, a higher potential at 3 nm below the front surface in 

planar tri-gate TFET reflects on the impact of gate coupling and higher tunneling. 

At front surface, both the architectures will show same tunneling rate. Also, at 

back surface and sub-front surface a higher tunneling probability is observed for 

planar tri-gate, as demonstrated in Figs. 5.5(c) and 5.5(d). Fig. 5.5(c) highlights 

increased tunneling window (ΔΦ) and decreased tunneling barrier (λ) at surface 

below the front interface for planar tri-gate. Therefore, an increased gate control 

over the tunneling junction shows higher tunneling probability and an increased 

tunneling area that result into improved current drive. Before evaluating the 
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impact of potential and band modulation on the absolute values of drain current, 

physical insights into device operation as dynamic memory is essential.  

 

       

       
Fig. 5.5 Comparison of a planar tri-gate TFET with twin gate architecture, 

illustrating their (a) electrostatic potential along Y at X = Lg1/2, and (b) drain 

current characteristics with gate voltage (G1) with Vg2 = 1.2 V and Vd = 0.9 V at 

85 C, (c) band energy during R1 along X at a depth of 6 nm below the front 

surface, and (d) BTBT rate along Y at the source/G1 tunneling junction.  

 

Fig. 5.6 illustrates the variation in hole concentration in the storage region (under 

G2) as a function of time with each subsequent operation. The variation in hole 

concentration is reflective for read ‗1‘ operation, which is due to variation in 

potential under G1 that regulates the barrier between G1 and G2. A negative bias 

at W1 raises the barrier under G2 region, but positive bias from write ‗1‘ to read 

‗1‘ (R1) lowers the barrier (Fig. 5.7(a)) that decreases the hole concentration 

underneath G2. A higher potential under the silicon film at G2 region due to 

excess positive charges, result into a lower barrier of ~0.3 eV for electrons (Fig. 

5.7(a)) in read ‗1‘ as compared to read ‗0‘ (Fig. 5.7(b)). The reduced barrier 

allows more electron diffusion from G1, which are further drifted towards drain.  
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As shown in Fig. 5.5(a) for the twin gate, the lowest potential under G1 is 

observable at the back surface with a value ~330 mV at no bias condition, while 

that for planar tri-gate at the centre of film (~400 mV at zero bias). The planar tri-

gate exhibits a higher potential in the film under G1, maintaining a raised barrier 

between G1 and G2, and thus, permits an increased sustenance of holes during 

read in the potential well. The barrier difference affects the read mechanism where 

the bias applied at G1 exhibit a higher potential at film under G1 for planar tri-

gate (due to incorporation of dual gates) compared to twin gate. This is evident 

from Fig. 5.6 with hole concentration of ~ 2  10
19 

cm
-3

 for planar tri-gate and ~ 6 

 10
18 

cm
-3 

for twin gate. The variation in the presence of excess holes in the 

potential well for planar tri-gate and twin gate is reflective in the current for read 

‗1‘ and an increased tunneling area that shows higher currents. 

 

 
Fig. 5.6 Variation of hole concentration (nh) in the storage region for each 

operation in twin gate and planar tri-gate TFET with probe positioned at mid 

of G2, 1 nm below front surface.  

 

Fig. 5.7(c) shows a high SM of ~200 nA which is a significant improvement in 

comparison to twin gate (Fig. 5.7(d)) with a sense margin of ~ 20 nA for Lg1 = Lg2 

= 100 nm and Lgap = 50 nm. For same set of bias values (Table 5.2) the RT 

observed is lower by ~ 1.4, but a remarkable improvement in sense margin (~ 

10) is achieved. Thus, the planar tri-gate show enhanced sense margin with 

similar retention characteristics and also, maintains the CR. As discussed earlier, 

the incorporation of an additional bottom gate to the twin gate, (a) creates a 

second conduction channel, and (b) results into enhanced tunneling due to 

coupling with the top gate [20-22]. Therefore, the symmetric double gate 
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positioned near source at a partial region of intrinsic film to regulate the read 

mechanism, which results into a higher tunneling probability. 

 

 
Fig. 5.7 Energy band profile for (a) R1 and (b) R0 operation for planar tri-

gate and twin gate, evaluated at a cross-section 1 nm above the back 

surface (Y = Tsi). Dependence of read currents for state ‗1‘ (I1) and state 

‗0‘ (I0) on hold time for (c) planar tri-gate TFET and (d) twin gate TFET. 

 

Table 5.2 Programming Scheme for Planar Tri-gate TFET 

Operation Vd
 

Vg1
 

Vg2
 

Time 

Write 1 0 V 0 V -2.0 V 50 ns 

Write 0 0 V 0 V  2.0 V 50 ns 

Read 0.9 V 1.5 V  1.2 V 50 ns 

Hold 0 V 0 V -0.2 V - 

 

5.4.2 Scalability 

5.4.2.1 Evaluation through composite metrics 

A high SM and RT paves a way toward better scalability at lower bias values, 

indicating applicability as low power dynamic memory. As discussed in section 
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2.4.5, trade-offs exist between SM and RT as well as between SM and CR. 

Focusing on each metric, two composite metrics (M1 and M2) namely, product of 

(i) Sense Margin (SM) and Retention Time (RT) i.e. M1 = SM  RT, and (ii) Sense 

Margin and Current Ratio (CR) i.e. M2 = SM  CR are introduced in this section. 

This is evident from Fig. 5.8(a) where improved performance is achieved for 

planar tri-gate TFET compared to twin gate and the same is demonstrated through 

M1, factor governing scalability, and M2, parameter which determines the read 

sensitivity.
 
Higher values of composite metrics reflect on the suppression of trade-

off between various constraints for an optimal DRAM design. 

 

 
Fig. 5.8 (a) Variation in DRAM metrics (M1 and M2) with variation in total 

length (Lg1 + Lg2 + Lgap) where M1 indicates RT  SM and M2 is CR  SM, Lgap is 

fixed at 50 nm. Dependence of electrostatic potential on length of G1 (Lg1) for (b) 

twin gate and (c) planar tri-gate along X at a cross-section of 2 nm below the front 

surface (Y = 0). (d) Variation in electrostatic potential with length of G2 (Lg2) for 

planar tri-gate along X at 1 nm below the front surface (Y = 0). 

 

Enhanced values of M1 and M2 at shorter gate lengths signify enhanced 

scalability. Figure shows that M1 and M2 decrease with downscaling gate lengths. 
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The performance is better for planar tri-gate with higher values of both the metrics 

as compared to twin gate at lower gate lengths. Thus, planar tri-gate is more 

suitable at reduced gate lengths.The decrease in performance metrics (M1 and 

M2) with gate length scaling can be analysed through Figs. 5.8(b)-(d). The 

reduction in the length of G2 reduces the storage capacitance (Fig. 5.8(d)) that 

decreases the retention time. Figs. 5.8(b) and (c) show a reduced potential with 

lower Lg1, for both, planar tri-gate and twin gate, thereby lowering the barrier for 

electrons to drift towards G2. This results into significant increase in current for 

state ‗0‘, thereby reducing the SM. However, a prominent change for Lg1 = 25 nm 

is observed between the architectures with a difference of ~50 mV in the potential 

at zero bias condition. Thus, planar tri-gate TFET establishes as an improved 

architecture with reduced short channel effects due to improved electrostatic 

control over the region aligned, demonstrating enhanced sense margin and 

scalability.  

 

 
Fig. 5.9 Percentage change in RT for planar tri-gate and twin gate architecture 

with varying length of G2 for Lg1 = 100 nm and Lgap = 50 nm. 

 

The scaling of G2 region reduces the storage capacitance that decreases the 

retention capability. The architectures, twin gate as well as planar tri-gate utilize 

the region under G2 to create a dedicated volume for charge storage. Therefore, 

the trend of retention and the degradation in both the architectures with gate 

length scaling is similar (Fig. 5.9). The same trend is followed with Lg1 = 75 nm. 

However, for shorter gate lengths (Lg1 < 75 nm) twin gate fails to perform as 

dynamic memory. Additionally, planar tri-gate benefits with a higher sense 
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Lg1 = 75 nm, while planar tri-gate till Lg1 = 25 nm with a retention > 64 ms for Lg2 

= 50 nm. This shows advancement in TFET based DRAM with the utilization of 

planar tri-gate.  

 

 
Fig. 5.10 (a) Dependence of conduction band on the workfunction of G1 (φm1) and 

G2 (φm2). Variation in various DRAM metrics, (b) SM, I1, I0, (c) RT and CR, and 

(d) M1 and M2 with φm1 for φm2 = 5.25 eV. 

 

5.5 Factors affecting performance of planar tri-gate DRAM 

DRAM performance metrics are influenced by recombination (thermal 

recombination and diffusion) and generation of holes (thermal generation and 

BTBT) that is regulated by device dimensions, architecture, bias applied and 

temperature. For an optimized set of bias values (Table 5.2) at 85 C with gate 

lengths of 100 nm, the work shows the impact of device parameters that affects 

the gate controllability. Thus, use of optimal values maintain the energy barriers 

for respective states, induced by gates showing improved read sensitivity and RT. 

 

5.5.1 Impact of workfunction 

As discussed before in chapter 2, workfunction engineering is essential to create a 

potential well. The gate with a lower workfunction value results into a high 
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potential under the gate while the higher value into a low potential region. A 

lower workfunction value of G1 (φm1) increases the maximum electric field at the 

tunneling junction (p
+
/i) that reduces the tunneling width [21]. This improves the 

tunneling between source and G1 (Fig. 5.10(a)) and thus, enhances read currents. 

Fig. 5.10(b) demonstrates increase in currents for both the states with lower φm1 

that improves the SM, but simultaneously reduces the current ratio (Fig. 5.10(c)). 

However, higher φm1 reduces barrier between G1 and G2 that enhance hole 

recombination, thereby degrading state ‗1‘ and thus, the RT. Thus, decrease in SM 

and RT show reduction in M1 with higher φm1. Although, M2 increases with 

increase in φm1, value > 10
4 

(φm1 ≥ 4.15 eV) along with high M1 shows utilization 

of lower workfunction values for G1. The results demonstrate φm1  4.4 eV as a 

preferable choice to achieve high DRAM metrics. Thus, the design proposed 

utilizes an n-type gate (φm1 = 4.15 eV) for tunneling based read operation.  

 

The impact of workfunction value of G2 (φm2) on DRAM performance metrics is 

illustrated in Fig. 5.11. A lower φm2 reduces the energy barrier between G1 and 

G2. This enhances the current for both the states. However, state ‗0‘ being 

depleted of charges is influenced more. It results into a decreased SM and CR with 

lower workfunction values (Fig. 5.11(a)). Moreover, the reduced barrier between 

G2 and G1/drain increases recombination, thereby degrading state ‗1‘. A higher 

φm2 results into a deeper potential well (Fig. 5.10(a)) that retain holes for a longer 

duration, maintaining state ‗1‘, while it degrades state ‗0‘ due to increased 

tunneling between G2 and drain/G1. Thus, workfunction regulates the barrier 

heights that directly affect the generation/recombination mechanism. Fig. 5.11(b) 

demonstrates the potential change between Write and Hold operation for state ‗1‘ 

and ‗0‘ that indicate a higher variation in state ‗1‘ for lower φm2 due to higher 

recombination. A higher potential change in state ‗0‘ is observed for higher φm2 

due to increased generation. RT along with CR are shown in Fig. 5.11(c). A RT > 

64 ms is attained for φm2 ≥ 4.9 eV. However, a lower CR and SM, reflective in 

metric M2 show φm2 ≥ 5.1 eV as the optimal value (Fig. 5.11(d)). 
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Fig. 5.11 Dependence of (a) SM, I1 and I0 with φm2. (b) Variation in potential (∆) 

from write to hold operation for state ‗1‘ and ‗0‘, respectively. Variation in 

DRAM metrics, (c) RT and CR, and (d) M1 and M2 with φm2 for φm1 = 4.15 eV. 

 

5.5.2 Impact of silicon film thickness 

Fig. 5.12(a) illustrates increase in SM with reduction in film thickness. Fig. 

5.12(b) shows increase in maximum electric field at the source gate tunneling 

junction with decrease in film thickness that results into higher read currents. 

Decrease in silicon film thickness improves the electrostatic control of the gate 

over the channel that results in more band-bending at source/channel junction [20-

22]. This results into improved gate coupling, reflective in tunneling rate at 

subsurface region (5 nm below front surface) in Fig. 5.12(c). The increase in 

maximum electric field at the source gate tunneling junction with decrease in film 

thickness results into higher read currents, and thus, higher SM but at the expense 

of a lower CR (Fig. 5.12(c)). The decrease in film thickness also increases the 

hole generation in the storage region during Hold ‗0‘. This is due to increased 

BTBT at G2 (virtual p region) and drain (n
+ 

region) that degrades the retention 

characteristics (Fig. 5.13(a)). The analysis has been performed for Tsi ≥ 10 nm and 

therefore, no quantum effects have been considered [2]. A thicker film reduces 

gate control over the channel region, thereby increasing short channel effects that 
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increase the hole diffusion and thus, the recombination, which further decreases 

retention time [2]. However, for evaluation Tsi  30 nm is considered that shows 

RT > 64 ms. Results highlight an optimal range of Tsi between 20-30 nm for high 

DRAM performance metrics (Fig. 5.13(b)). 

 

  

 
Fig. 5.12 Dependence of (a) SM, I1 and I0, (b) maximum electric field at the 

tunneling junction, 1 nm below the front surface along X, (c) BTBT rate along the 

channel direction (X) at 5 nm below the front surface, on Tsi. 

 

5.5.3 Impact of oxide thickness 

The oxide thickness regulates the transverse electric field, where a thicker oxide 

shows reduced gate controllability, showing requirement of higher bias or time for 

achieving specific range of DRAM characteristics. The thicker oxide reduces gate 

capacitance responsible for creation and maintenance of potential well, and thus, 

leads to a shallower potential well. Secondly, it also reduces the current driving 

capability [34]. Write ‗1‘ mechanism is based on BTBT where the tunneling is 

regulated by the bias applied at G2. The reduced electric field with thicker oxide 

of G2 (Tox2) requires longer write time. As demonstrated in Fig. 5.14(a) the write 

time for Tox2 = 6 nm increases to a few sec. Although, DRAM performance 
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metrics in Fig. 5.14(b) show high values of M1 and M2 for Tox2 between 3 to 6 

nm, a higher write time is required for thicker oxide. 

 

   
Fig. 5.13 Dependence of (a) RT and CR, and (b) M1 and M2, on Tsi 

 

 
Fig. 5.14 Variation in (a) SM and write time, and (b) M1 and M2 with oxide 

thickness of G2 (Tox2) for Tox1 = 3 nm (HfO2). Dependence of (c) SM, I1 and I0, 

and (d) M1 and M2 on oxide thickness of G1 (Tox1) for Tox2 = 3 nm (HfO2). 
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shows SM < 20 nA and thus, has been eliminated for further evaluation (Fig. 5.14 

(c)). SM can be improved with a higher bias for Tox1 = 6 nm. However, this will 

require high bias. The improved current ratio with increased oxide (Tox1) shows an 

improved value of M2, but M1 decreases (Figs. 5.14(c) and (d)). This is due to 

lower potential energy barrier between G1 and G2, showing higher 

recombination.  Thus, based on the analysis 3-5 nm for Tox1 is acceptable and 

therefore, Tox1 = 3 nm is used in the analysis. Based on the analysis we have an 

optimal range of design parameters for an improved DRAM performance metrics 

(Table 5.3). 

 

Table 5.3 Optimal design parameters for DRAM operation at 85 C 

Parameters Optimal values
 

Selected values
 

φm1  4.4 eV 4.15 eV 

φm2 ≥ 5.1 eV 5.25 eV 

Tsi 20 - 30 nm 20 nm 

Tox1 3-5 nm 3 nm 

Tox2 3-6 nm 3 nm 

 

 

5.5.4. Impact of temperature 

The DRAM performance metrics is also, influenced by the temperature, as 

demonstrated in Fig. 5.15. Temperature impacts the generation and recombination 

that influences the RT, reducing it from 1.5 s at 27 C to ~60 ms at 125 C (Fig. 

5.15(a)). TFET has weak dependency on temperature which is reflective in the 

read currents, and therefore, SM changes gradually (Fig. 5.15(b)). TFET is 

benefited with weak temperature dependency on the drain characteristics [21], that 

is reflective in SM, showing variation from ~180 nA at 27 C to ~220 nA at 125 

C. The DRAM performance is degraded with temperature, which can be 

estimated through composite DRAM metrics, where M1 and M2 reduce by an 

order of two from 27 C to 125 C. Although, performance metrics degrade with 

temperature, an acceptable sense margin (~220 nA) and retention time (~60 ms) at 

125 C, indicates planar tri-gate TFET as a reliable dynamic memory. The 

proposed topology shows a high retention time of 1.5 s at room temperature, and 
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also, enhanced DRAM metrics, M1 = ~10
5 
ms.nA/μm and M2 = ~10

4 
nA/μm at 85 

C for Lg1 = Lg2 = 100 nm, which highlights the potential of device to operate 

efficiently and better than previous TFET based DRAM [24-26] 

 

             
Fig. 5.15 Variation in (a) RT and (b) SM as a function of temperature. 

 

 

Fig. 5.16 Dependence of RT and SM on gate lengths (Lg1 and Lg2) indicating 

minimum value of Lg1 and Lg2 for operation as DRAM with Gate-2 voltage of -0.3 

V during hold. 
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effects. The same is observed in Figs. 5.16 and 5.17 with hold voltages of -0.3 V 

and -0.2 V, respectively. Also, figures highlight Lg1 scalability down to 25 nm 

with SM of ~ 60 nA due to double gate (G1) architecture that has better 

electrostatic control over the film. As discussed before, the performance metrics 

(M1 and M2) reduces with gate length scaling (Fig. 5.8(a)). Further analysis 
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highlights the device capability to scale Lg2 down to 50 nm with Lg1, min  Lg2, 

min/2, depicting an acceptable read sensitivity with RT > 64 ms [23] at 85 C (Fig. 

5.17) which translates into M1 ~10
3 
ms.nA/μm, M2 ~150 nA/μm. The scalability 

for twin gate architecture, demonstrated in chapter 4 can be approximated as Lg1, 

min  2Lg2, min, and thus, the comparison shows an improved scalability of Lg1 for 

planar tri-gate TFET. Thus, the minimum total length of planar tri-gate TFET 

based dynamic memory can be scaled down to 125 nm (Lgap = 50 nm) with high 

retention characteristics as well as improved SM compared to previous 

architectures [24-26], twin gate and misaligned DG TFET.  

 

 
Fig. 5.17 Variation in SM and RT with length of G1 (Lg1) for Lg2 = 50 nm with 

Gate-2 voltage of -0.3 V during hold. 

 

The other significant advantage of using a planar tri-gate other then the dual gate 

for improving SM is, the well-defined G2 that dedicatedly serves as storage 

region, and thus, does not degrade retention characteristics. The retention trend 

observed in both the architectures (planar tri-gate and twin gate TFET) with 

scaling of G2 is similar. However, for shorter gate lengths (Lg1 < 75 nm) twin gate 

fails to perform as dynamic memory. Additionally, planar tri-gate benefits with 

from a higher sense margin and better scalability. This shows advancement in 

TFET based DRAM with the utilization of planar tri-gate. 
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Fig. 5.18 Variation in drain characteristics with gate voltage for varying Lgap with 

Lg1 = Lg2 = 100 nm. 

 

   

             
Fig. 5.19 Variation in (a) SM and read currents, and (b) M1, M2 and RT with 

lateral space between the gates (Lgap) for Lg1 = Lg2 = 100 nm. Dependence of (c) 

M1 and M2, and (d) SM and RT on Lgap for minimum gate lengths to operate as 

DRAM (Lg1 = 25 nm and Lg2 = 50 nm). 
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effective lengths due to incorporation of Lgap reduce the drain current. However, 

tunneling based current doesn‘t show a strong dependence on gate length (Fig. 

5.18) [20]. Thus, read currents are almost maintained along with DRAM metrics, 

SM, RT, CR, M1, M2 evident in Figs. 5.19(a)-(b) for Lg1 = Lg2 = 100 nm. For 

lower gate lengths, variation in Lgap is more critical, as increasing the effective 

gate lengths show improved retention, but also, reduced sense margin. Therefore, 

Lgap ≥ 30 nm is preferable to maintain the DRAM performance metrics (Figs. 

5.19(c)-(d)). Although Fig. 5.17 demonstrates, SM is maintained for Lg1 = 25 nm 

with Lg2 ≥ 50 nm, design optimization is required to improve the retention 

characteristics for the same geometry. This can be achieved through the use of 

underlap between Gate-2 and drain, as discussed in the following section. 

 

5.5.6 Impact of underlap/overlap 

RT can further be improved by incorporating an underlap region (Lun) between 

drain and G2, adopted in conventional MOS devices [9]. However, inclusion of 

Lun results in reduced tunneling during write ‗1‘ that lowers SM due to lower hole 

accumulation, affecting read ‗1‘ appreciably. Thus, a different approach (Method 

B) based on forward biasing the p
+
-i region with a source bias of 1 V along with 

Vg2 = -0.5 V is adopted. It increases the charge storage during write ‗1‘ along with 

an underlap, sufficient to differentiate with state ‗0‘. Therefore, SM degradation 

due to write mechanism using tunneling (Method A) can be recovered by Write 

‗1‘ through Method B, as illustrated in Fig. 5.20(a). SM, although marginally 

degraded due to the increased resistance contributed by Lun, maintains acceptable 

values. The most distinguishing result of the tri-gate architecture is the remarkable 

improvement is observed in RT ( ~7) with the adopted methodology, while 

maintaining nearly same SM. The optimum choice of underlap is essential for 

retention which is reflective in Fig. 5.20(b) and thus, an underlap of 15 nm at 

drain/channel junction is considered for further investigation. The read currents 

can also be recovered when an underlap is incorporated, by increasing the write 

time. Fig. 5.20(c) demonstrates the same, where the write time is increased to 30 

μs to attain the same sense margin as shown in Fig 5.20(a) for read bias Vg1 = 1.5 

V. Thus, design optimization with use of Lun and a different write mechanism 
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(Method B) in planar tri-gate topology reduces the trade-off between SM and RT, 

which is one of the key challenges for DRAM performance. 

 

               

 
Fig. 5.20 (a) Variation in RT with an underlap (Lun) between second gate and drain 

as a function of Vg1 with same SM achieved through two different Write 

mechanisms. Method A: Vg2 = -2 V, Method B: Vg2 = -0.5 V and Vs = 1 V. (b) 

Dependence of RT on the Lun at drain/channel interface. (c) Variation in SM with 

write time for Lun (15 nm) at drain/channel junction with write bias of -2 V at G2.  
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current ratio of DRAM. Fig. 5.21(a) demonstrates that although overlap reduces 

both the currents, significant impact on read ‗0‘ influences current ratio more, 

while sense margin is almost maintained >10
2 
nA/μm. An underlap at G1/source 

junction degrades both the read currents, and hence, the sense margin, but current 
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bias will enhance read ‗1‘, thereby increasing the sense margin (Fig. 5.21(b)). 

Thus, it is very crucial to optimize bias values with the device architecture 

adopted for DRAM. The advantage we achieve from underlap at source is a high 

CR, but SM is a compromise. Thus, the analysis highlights variation in device 

performance with gate to source/drain extensions, and the significance of bias 

optimization.  In our work, we have a nominal overlap of 2 nm at source/channel 

region.    

 

    
Fig. 5.21 (a) Variation in SM and CR with (a) source to channel underlap 

(indicated by negative values) and overlap, (b) gate voltage (G1) for source to 

channel underlap of 6 nm.  

 

        
Fig. 5.22 (a) Variation in RT with Lg2 for cases, with and without Lun (15 nm) for 

Lg1 = 25 nm. (b) Dependence of SM and RT on the lateral spacing (Lgap) between 

the gates, highlighting scalability of Lgap up to 25 nm and total length scaling 

down to 115 nm with RT  > 64 ms. 
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modification through the incorporation of an underlap between G2 and drain for 

Lg1 = 25 nm. This permits G2 scaling down to 50 nm (RT > 64 ms) with Method B 

as write mechanism that shows similar SM with an improved RT.  The previous 

results utilized a Lgap = 50 nm. However, Lgap can be scaled down to 25 nm with 

RT > 64 ms for Lg1 = 25 nm and Lg2 = 50 nm, without degrading SM (Fig. 5.22(b)). 

Lgap not only reduces the state ‗0‘ degradation, associated with tunneling between 

G1 and G2, but also, increases effective lengths. Therefore, reducing Lgap reduces 

the storage region and also, increases the tunneling, thereby reducing RT. 

However, for Lg1 = 25 nm and Lg2 = 50 nm,  the scalability of Lgap down to 25 nm 

with a 15 nm underlap shows device potential to scale the total length ( Lg1 + Lg2 + 

Lgap + Lun ) down to 115 nm.  

 

5.5.7 Impact of interface charges 

The device performance can also be affected by interface charges (Qif). The 

oxide/silicon interface can consist of donor and acceptor states, considered as 

positive and negative charges, respectively [39]. Fig. 5.23(a) demonstrates the 

impact of interface charges that are similar to that shown in the previous works 

[39-41]. The positive charge on the interface result into more band bending at 

tunneling junction, and also, lowers the barrier for electrons at film under G2, 

thus, increases the current. The negative charge interface, on the other hand, 

decreases the electric field at tunneling junction, thereby reducing the current (Fig. 

5.23(b)). Thus, the positive interface charges increase both the read currents, 

thereby enhancing the sense margin (Fig. 5.24(a)).  

 

              
Fig. 5.23 Variation in drain current characteristics with Vg1 as a function of charge 

interface (Qif) with (a) donor states (positive) and (b) acceptor states (negative).  
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Fig 5.24(b) show improvement in retention characteristics with positive interface 

charges, but degrade the current ratio (Fig. 5.24(c)). However, beyond Qif ≥ 10
12 

cm
-2
, Read ‗0‘ being influenced more, decreases the sense margin. The trend is 

similar to that observed in Fig. 5.3(b) where the read characteristics are modified 

due to the bias applied. The negative interface charges, on the other hand, 

decreases current, and thus, the SM. However, as explained before, Read ‗0‘ is 

more sensitive as compared to Read ‗1‘ that increases CR with increase in 

interface charges, associated with acceptor states. The DRAM performance with 

interface charges has been analysed for the same set of bias values for all the 

operations.  

 

      

 
Fig. 5.24 Variation in (a) SM, (b) RT, and (c) CR with interface charges. 
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phenomenon. The positive interface charges lower the band energy, thereby 

decreasing the tunneling probability between G2 and G1/drain. The variation in 

DRAM characteristics (SM, CR and RT) are significantly observable for Qif  ≥ 5 

10
11 

cm
-2

. 

 

 
Fig. 5.25 Comparison of DRAM metrics for twin gate and planar tri-gate structure 

showing better performance of planar tri-gate TFET with improved (a) SM for 

same RT = ~ 420 ms (read: Vg1 = 1.5 V, Vg2 = 1.2 V, Vd = 0.9 V) voltage scaling 

for SM = 300 nA, Vg1 = 1.5 V and Vg2 = 1.2 V, and (b) length scalability for Lg1 

and Ltotal (total length) with RT > 64 ms. 

 

5.6 Comparative Analysis 

In this section, we summarize the comparison between two architectures, planar 

tri-gate and twin gate. For the same set of bias values (Read: Vg1 = 1.5 V, Vg2 = 

1.2 V, Vd = 0.9 V) Fig. 5.25(a) illustrates a considerable improvement in SM (~  

5) for a planar tri-gate TFET with similar retention characteristics (~ 420 ms). 

Secondly, for Vg1 = 1.5 V and Vg2 = 1.2 V, a sense margin of ~ 300 nA is obtained 

with Vd = 0.8 V for planar tri-gate while the same value is attained at Vd =1.5 V for 

twin gate architecture. Thus, it highlights better voltage scalability.  Focusing on 

length scaling, G1 for twin gate could be scaled down to 75 nm while for planar 

tri-gate, downscaling G1 up to 25 nm is possible (Fig. 5.22(b)). The reduction in 

the barrier between G1 and G2 lead to a decrease in the stored charges that 

differentiates the states, thereby reducing the SM, and thus, limiting G1 to be 

scaled up to 75 nm for twin gate. Thus, a planar tri-gate architecture is adopted 

with the two gates controlling Lg1 region, that reduces the short channel effects, 

and thus, show Lg1 scaling down to 25 nm. Scalability analysis highlights the total 
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length scalability (Lg1 + Lgap + Lg2 + Lun) for the planar tri-gate down to 115 nm, 

while twin gate is scalable up to 165 nm at 85 C (Fig. 5.25(b)) 

 

 
Fig. 5.26 Comparison of various TFET based DRAM in terms of RT and SM with 

total length (L) = Lg1 + Lg2 + Lgap + Lun with Lgap= 25 nm and Lun = 15 nm. Filled 

symbol () indicate L = 600 nm with Lg1= 400 nm, Lg2 = 160 nm, and open symbol 

() represent a device of L = 115 nm with Lg1= 25 nm, Lg2 = 75 nm. The results are 

for T = 85 C, except for DG FDSOI [25] with operation at room temperature. 

Programming set in planar tri-gate TFET: write ‗1‘: Vg2 = -2 V, write ‗0‘: Vg2 = 2 

V, hold: Vg2 = -0.2 V, read: Vg1 = 2 V, Vg2 = 1.2 V, Vd = 1 V. 

 

The previous results with a total length of 600 nm for a DG TFET with back gate 

at complete intrinsic region [25] showed a SM = 10 nA with RT in few 

milliseconds at room temperature while incorporation of intentionally misaligned 

back gate at front un-gated region resulted in a SM = 20 nA with RT = 2 sec at 85 

C. The twin gate design exhibited a SM = 140 nA with RT = 1.5 sec at 85 C. 

Although, the improvement in RT from few milliseconds to seconds is 

commendable, the SM of TFET with Lg1 = 400 nm and Lg2 = 200 nm was a 

shortcoming (< 150 nA). The planar tri-gate TFET has succeeded in overcoming 

the limitation associated with SM, improving it to few micro-Amperes (Read 

biases: Vg1 = 2 V, Vg2 = 1.2 V, Vd = 1 V) for a total length of 600 nm with RT in 

seconds at 85 C. It is important to note that the systematic methodology and 

design resulted in a tenfold improvement in SM along with similar retention 

characteristics. In addition, the total length can be scaled down to 115 nm with RT 

> 64 ms. As shown in Fig. 5.26, for shorter gate lengths, SM achieved is lower in 
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comparison to p-doped fin based TFET [26], but an improvement in RT (  ~10
3
) 

provides an opportunity to adopt planar tri-gate TFET topology as low power 

DRAM. 

 

 
Fig. 5.27 Comparison of DRAM metrics: (a) SM and (b) RT with total length for 

various Tunnel FET devices based dynamic memory at 85 C.  

 

Figs. 5.27(a) and (b) compares various TFET based DRAM with their Sense 

Margin (SM) and Retention Time (RT) along with scaling perspective. Fin-based 

TFET [26] show maximum sense margin, but the low retention characteristics 

limit its utility. On the other hand, twin gate TFET with maximum retention, 

shows reduced sense margin that indicates trade-off and thus, lower values of 

performance metrics. Thus, planar tri-gate balances the trade-off between SM and 

RT, highlighting better performance compared to previous architectures at lower 

bias. This can be verified from the value of DRAM metrics (M1) which is ~10
2 

higher than fin-based TFET for Ltotal = 125 nm, while ~6 times higher than twin 

gate for Ltotal = 250 nm. The improvement in metrics is more significant for 

shorter gate lengths, as observed in Fig. 5.22(a). Also, planar tri-gate shows better 

scalability with total length scaled down to 105 nm. Misaligned Double Gate 

(DG) topology have also succeeded in attaining RT > 64 ms for a total length of 

160 nm, but the SM achieved is also low (~20 nA). Thus, results showcase the 

opportunities of utilizing a planar tri-gate as an energy efficient DRAM with 

reduced bias, gate lengths, improved SM and long charge sustenance at 85 C. 
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5.7 Conclusion 

In this chapter, an in-depth analysis of the planar tri-gate TFET as DRAM is 

presented with physical insights into device operation. The functionality as 

DRAM is based on distinctly defining the role of the gates and controlling the 

barriers induced. The use of an additional gate at the bottom surface, symmetric to 

the first front gate enhances the extent of tunneling and the transmission 

probability that result into improved performance metrics for planar tri-gate in 

comparison to twin gate architecture. This is achieved due to creation of a second 

conduction channel, associated with the back gate, and its coupling with the front 

gate. The utility of three gates, where the two gates control the Read mechanism, 

results in SM of ~1.2 μA/μm, and the third gate efficiently controls the charge 

sustenance with a RT in seconds at 85 C, for a total length of 600 nm.  

 

The improved gate controllability allows the device operation at lower biases with 

an enhanced value of (RT  SM) and (SM  CR) thereby permitting memory 

functionality at total length of ~115 nm. The analysis highlights planar tri-gate 

TFET as an efficient low power memory that outperforms the previous TFET 

based DRAM while balancing the two important metrics, sense margin and 

retention time. Thus, the work overcomes critical bottleneck in terms of 

scalability and performance metrics exhibited by previous TFET DRAM 

architectures. The drain bias can be scaled down to 0.8 V for the proposed tri-gate 

TFET which is nearly half of that required for twin gate architecture for achieving 

nearly the same SM. The planar tri-gate TFET has the potential to outperform the 

previous TFET based DRAM with better sense margin and scalability (length and 

voltage) while maintaining the retention characteristics. 
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Chapter 6 

 

Conclusion and Scope for Future Work 

 

6.1 Conclusion 

This chapter presents the summary of different aspects related to the functioning 

of TFETs as DRAM. TFET devices were introduced to replace drift-diffusion 

based conventional Metal Oxide Semiconductor (MOS) that sets a fundamental 

limit to subthreshold slope (60 mV/decade at room temperature) [1]. The device is 

benefited with low off-current (Ioff) a high Ion/Ioff, reduced short channel effects, 

weak temperature dependency and enhanced scalability [1]. Being a promising 

candidate for low power applications, TFET has recently been explored as 

capacitorless DRAM [2-4]. Although, previously published work [2-4] led 

towards tunneling based device as DRAM, the RT which is the most crucial 

metric of DRAM showed values lower than the target of 64 ms, specified by ITRS 

[5]. Therefore, a careful reinvestigation was required to enhance the charge 

retention of TFET based DRAM. The research work presented in the thesis 

provides insights into the understanding of the performance and behaviour of 

TFET devices for memory applications through comprehensive physical device 

simulations [6].  

 

The key contribution of this research is to provide insights into the physical 

phenomenon occurring in the device, which influences the operation of TFET as 

dynamic memory, with a focus on improving retention and scaling capability. The 

thesis work demonstrates device perspective, where various DRAM metrics are 

regulated by device architecture (misaligned, twin, and planar tri-gate TFET) 

geometry (Lg1, Lg2, Lgap, Lun, Tsi) parameters (Tox, gate workfunctions) biases and 

temperature. These parameters govern hole generation and recombination in the 

storage region that defines distinct operations (write, read and hold) of DRAM. 

The three architectures present a systematic advancement in TFET based DRAM, 
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while analysing various DRAM performance metrics.  The key conclusions of the 

work are as follows: 

 

I. Design Perspective of Tunnel FET based DRAM 

The functionality of architectures as DRAM is based on the distinct role of each 

gate, where the first gate (G1) is an n
+
 poly gate (~4.15 eV) and is primarily used 

to control the read mechanism based on BTBT. The second gate (G2) is a p
+
 poly 

gate (~5.25 eV) and is used to create an electrically induced potential well for 

charge storage. While the first gate is aligned to source at top surface, the second 

gate is aligned to drain, positioned at the bottom at the front un-gated region in 

misaligned DG, and at the front, adjacent to the first gate in twin gate and planar 

tri-gate topology. The non-overlapping of G1 and G2 along with a higher 

difference in the workfunctions of the two gates result into a profound well 

formation. The regulation of barriers created by the gates (G1 and G2) through the 

optimal use of device parameters and bias lead to better performance, with 

significant improvement at scaled lengths as compared to other tunneling based 

dynamic memory architectures [2-4].  

 

II. Misaligned Tunnel FET based DRAM 

The work shows innovative viewpoints of transforming gate misalignment, 

traditionally considered detrimental into a unique opportunity, coupled with 

appropriate selection of back gate workfunction and bias to significantly enhance 

the charge sustenance in capacitorless DRAM. The back gate is engineered by 

positioning it intentionally at the region uncovered by the front gate and using a 

gate with high workfunction value (p
+
 poly G2). This creates a more profound 

potential well that aids sustain charges for longer duration. However, along with 

formation of a deeper physical well, optimal bias values are also essential to 

preserve charges for longer duration, and hence, improve RT. During hold, a more 

negative back gate bias results into significant hole generation, while a more 

positive bias into hole recombination from the storage region, and thus, optimal 

bias is required to balance hole generation and recombination [7-9]. Optimal back 

gate workfunction, alignment and bias result into high RT of ~ 170 ms at 85 °C 

for an UTBOX TFET with BOX thickness of 10 nm. This can be further enhanced 
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by utilizing a Double Gate (DG) TFET with RT of ~ 2 seconds at 85 °C for Lg1 = 

400 nm and Lg2 = 200 nm, which is a significant improvement over previous 

works [2-4]. 

  

In addition, the thesis showcases a methodological assessment at 85 C that 

highlights optimization of device design through three steps: misalignment, lateral 

spacing between the gates (Lgap) and an underlap between the G2 and drain region 

(Lun) that improves,  

(i) the total length scalability from 220 nm (without Lgap and Lun) to 160 nm for Lg1 

= 75 nm, (considering RT > 64 ms [5] as the criteria) 

(ii) RT from ~ 80 ms to ~ 300 ms with the use of Lgap, which can be further 

improved to ~ 600 ms with the introduction of Lun for gate length (Lg1) and 

storage region (Lg2) of 100 nm, 

(iii) G2 scalability down to 25 nm with Lg1 = 100 nm, (considering RT > 64 ms  as 

the criteria) 

(iv)   RT by a factor of 3, compared to case without Lgap and Lun for a constant total 

length (200 nm). 

The improvement in device performance is attributed the increase in effective 

length of storage region (Lg2+Lgap+Lun). More significantly, Lgap and Lun, reduces 

the generation of holes associated with tunneling during hold state ‗0‘ between 

G1-G2 and G2-drain regions, respectively, that enhances state ‗0‘ sustenance, and 

hence, the RT.  

 

III.  Twin gate Tunnel FET based DRAM 

The applicability of TFET based dynamic memory is further extended through use 

of twin gate device that demonstrates RT = 1.5 s with SM = 140 nA for Lg1 = 400 

nm and Lg2 = 200 nm. The device can be scaled down to Lg1 = 75 nm and Lg2 = 50 

nm with use of an underlap at 85 C. Besides, temperature assessment shows the 

decrease in retention with increasing temperature due to higher generation and 

recombination. However, twin gate can be operated efficiently up till 105 C with 

Lg1 = Lg2 = 100 nm with RT > 64 ms. Additionally, its applicability for embedded 

memory is explored due to compatibility with conventional MOS devices and 

process [1,10,11]. Improved RT reduces the refresh rates, which along with 
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tunneling based write mechanism demonstrate low power operation. The low 

write time of 5 ns, indicates its use for high speed applications, which further 

nominates it as eDRAM. Thus, improved retention, scalability, speed, and 

operation at high temperature, demonstrates device applicability for both, 

standalone as well as embedded applications. Although, low on-current is a 

limitation in TFET device that results into low Sense Margin (SM) in TFET based 

DRAMs, the high current ratio achieved makes it a viable option with acceptable 

read sensitivity. However, further analysis reflects the drawback of low SM can be 

overcome through incorporation of a symmetric G1 as in planar tri-gate TFET. 

 

IV. Planar Tri-gate Tunnel FET as Dynamic Memory 

The use of an additional gate at the bottom surface, symmetric to the first front 

gate enhances the extent of tunneling and the transmission probability that result 

into improved SM and scalability. G2 is dedicated for creating a deep potential 

well that enables charge sustenance for longer duration, and thus, benefits RT. 

These results in,  

(i) SM of ~1.2 μA/μm, with RT in seconds at 85 C, for a total length of 600 nm.  

(ii) drain bias scaling down to 0.8 V, which is nearly half of that required for twin 

gate architecture for achieving nearly the same SM, 

(iii) scalability of G1 down to 25 nm and that of G2 down to 50 nm with RT > 64 

ms and acceptable SM, 

(iv)  total length scalability down to ~115 nm, which is better than twin gate and 

misaligned DG TFET showing scalability down to ~160 nm, 

Thus, while twin gate and misaligned DG TFET outperforms the previous TFET 

based DRAM architectures [2-4] in terms of retention and scalability, planar tri-

gate showcase improved DRAM metrics than twin gate as well as misaligned DG 

TFET. The thesis showcases the opportunities of utilizing a planar tri-gate as an 

energy efficient dynamic memory with reduced bias, gate lengths, improved SM 

and long charge sustenance at 85 C. Thus, the work presented in the thesis 

presents insights and new viewpoints for TFET to function efficiently as DRAM. 

 

The physical insights and analysis of different attributes with optimal utilization 

lead to improved performance metrics as well as suppressed trade-offs. The 



173 

 

systematic analysis through innovative approaches leads to capacity, retention, at 

low energy with operation at reduced size. The use of an energy optimized 

DRAM memory with RT > 64 ms is well-suited for standalone applications, and 

as well as, for the integrated circuits embedded with logic devices. Although 

device analysis highlights its applicability for memory applications, the 

fabrication is an overhead due to requirement of additional procession steps, as 

described in chapter 4. Also, the low sense margin due to tunneling based 

transport mechanism as compared to MOS based architectures [7-9], and other p
+
-

i-n
+
 architecture [12,13] needs further investigation, and also, development of 

alternative device topologies. 

 

6.2 Scope for future work 

6.2.1. Applicability as eDRAMs 

The scalability of TFET has improved in comparison to other similar structures 

[2-4], but still need exploitation to compete with conventional DRAM. 

Conventional 1T-1C DRAM [14,15] has been investigated since several decades 

and has been continuously scaled. The major issue associated with conventional 

DRAM include capacitor scaling, which has been resolved in recent years with 

the use of 3D cell storage capacitor and vertical array transistors. However, the 

fabrication cost and uniformity issues are challenging [15]. Tunneling based 

DRAMs or even other 1T DRAMs could be a substitute to conventional DRAMs, 

but are not yet competitive to replace them commercially. However, the utility of 

TFETs as cheap embedded memory with CMOS process compatibility is also 

expected to be of interest.  

 

eDRAMs are being developed to replace SRAM to achieve cheaper and lower 

voltage embedded chips [11,16,17]. Also, the advancement of various 

technologies with IoT, cloud computing and big data, requires evolution in the 

computing landscape [11,16,17]. The fabrication cost associated with capacitor in 

1T-1C for embedded applications can be reduced through use of TFETs, which 

have been demonstrated as reliable, low power and high speed DRAM cells. 

Although, TFET shows a possibility as embedded applications, further 

investigation and validation of its functionality at circuit level, considering 
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different bitline disturbance could serve as guideline for device and circuit 

designers. It would be useful for the semiconductor industry in the developing of 

dynamic memories. 

 

6.2.2 Study of other factors affecting DRAM metrics 

Dynamic memories are sensitive to Random Dopant Fluctuations (RDFs) ionizing 

and radiation effects, and traps [7,8]. These factors affect the retention 

characteristics of the device, which is significantly controlled by carrier lifetime. 

The carrier lifetime depends upon film material, doping and the traps.  

(a) From retention perspective, the requirement is of material with high carrier 

lifetime [9,10]. Germanium can be utilized due to higher carrier lifetime than 

Silicon. However, lower energy band gap could lead to increased BTBT, 

affecting retention characteristics. Therefore, requirement is of hetero-

structures and strained Silicon material that performs optimally through band 

gap as well as carrier lifetime engineering. The material properties on 

integration with devices having ease of fabrication can be well-suited for real 

time applications.  

(b) While TFETs require additional fabrication steps, Junctionless transistors 

having same type of dopant throughout the film show simpler fabrication 

process [18]. Although Junctionless devices have a heavy channel doping that 

will degrade carrier lifetime, and thus, retention, the availability of more 

charge carriers could lead to low write time, and thus, better speed. Such 

characteristics would show applicability as eDRAMs, where speed is prime 

concern with retention in few milliseconds [14,15]. Thus, exploitation of an 

optimal material-device co-design would be a choice for memory in future.  

(c) Other than these factors, the effect of traps in tunneling based devices is under 

investigation [19,20]. The impact of traps is based on its distribution in the 

energy band gap and thus, needs insightful exploration.  The traps affect the 

carrier lifetime as well as the sub-threshold swing [20]. The degraded 

subthreshold swing (being quantified through ratio of Ion/Ioff) indicates either 

decrease in Ion that decreases sense margin, or enhanced Ioff that decreases 

charge retention. Although our work focussed on design optimization, 

understanding the impact of carrier lifetime reduction (chapter 2) along with 

calibration with degraded S (> 60 mV/decade) [21], reflects on the impact of 
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traps. The effect of traps can be added after understanding their type (donor 

and acceptor) and position in the energy band gap. Thus, exploiting their 

impact could further throw light on the viability of TFET as DRAM with 

better physical insights.  

6.3.3. Improved performance through hybrid memories 

Recently, the hybrid memories are evolving that combines the benefits of different 

memory technologies into a single device to show efficient performance [22]. 

Hybrid memories have been introduced to reduce the energy consumption of a 

system that consumes ~40% of the total and thus, the device integrates non-

volatile memory and DRAM in one chip [11,22]. The thesis work presents the 

advantages as well as shortcomings of TFET for memory applications. The 

limitations of these devices can be overcome through a hybrid structure, which 

could be of interest in near future.  
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