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Abstract

The analysis of non-stationary characteristics present in electroencephalogram

(EEG) signal requires a crucial analysis which can reveal a method for diagnosis of

neurological abnormalities, especially epilepsy. This thesis presents a new

technique for automated classi�cation of epileptic EEG signals into two classes and

three classes based on iterative �ltering of EEG signals. In this work EEG epochs

are decomposed into their intrinsic mode functions (IMFs) using iterative �ltering.

Amplitude envelope (AE) and instantaneous frequency (IF) functions are

extracted from these modes, using discrete separation energy algorithm (DESA).

The features are extracted from these IMFs and AE-IF functions. Our feature set

includes K-nearest neighbor entropy estimator (KNNE), log energy entropy (LEE),

Shannon entropy (SE), Poincaré plot parameters (width, length, and area of plot)

of extracted AE functions and IMFs. These features are tested for their

discriminative strength, on the basis of their p-values, for classi�cation of EEG

signals into seizure, seizure-free, and normal. Our proposed method has given a

classi�cation accuracy (ACC) of 98% with random forest classi�er and 97% with

C4.5 decision tree for three class classi�cation and ACC of 99.5% for a two class

classi�cation problem, using mentioned feature set. This proposed methodology

has obtained a high ACC in the classi�cation of seizure, seizure-free, and normal

EEG epochs, which can be useful in more accurate diagnosis of epilepsy.
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plots; (a) Plot width SD2; (b) Plot length SD1; (c) Plot area. . . . . 43

4.2 Box plots for �rst three IMFs for obtained features (a) LEE; (b)

KNNE with 11 neighbors; (c) KNNE with 15 neighbors. . . . . . . . 43

4.3 Box plots for �rst three IMFs for obtained features (a) KNNE with

15 neighbors; (b) KNNE with 5 neighbors; (c) SE. . . . . . . . . . . . 44

4.4 Plot of results obtained (a) ACC comparison of iterative �ltering and

EMD based proposed methodology for case 1; (b) ACC comparison

of iterative �ltering and EMD based proposed methodology for case 2. 46

4.5 Plot of results obtained (a) ACC comparison of iterative �ltering and

EMD based proposed methodology for case 3; (b) ACC comparison

of iterative �ltering and EMD based proposed methodology for case 4. 47

vi



4.6 Plot of results obtained: (a) ACC comparison of iterative �ltering

and EMD based proposed methodology for case 5; (b)Comparison

of ACC using RF and C4.5 classi�ers for seizure, seizure-free, and

normal classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Plot of results obtained: Comparison of ACC using random forest

and Naïve Bayes classi�ers for seizure, seizure-free, and normal classes. 49

4.8 Plot of results obtained: Variation of ACC with varying number of

trees in random forest classi�er (a) 3-class classi�cation for sets (AB-

CD-E); (b) 2-class classi�cation for sets (A-E). . . . . . . . . . . . . . 49

vii





List of Abbreviations

ACC Accuracy

AE Amplitude envelope

AM Amplitude modulation

ANOVA Analysis of variance

CAD Computer aided diagonistics

CT Computerized tomography

DESA Discrete energy separation algorithm

ECG Electrocardiogram

EEG Electroencephalogram

EEMD Ensemble empirical mode decomposition

EMD Empirical mode decomposition

EMU Epilepsy monitoring unit

EMG Electromyogram

ERS Event-related synchronization

FMRI Functional magnetic resonance imaging

FLP Fraction linear prediction

FM Frequency modulation

FN False negative

FP False positive

FT Fourier transform

HOS Higher order spectra

HHT Hilbert-Huang transform

IF Instantaneous frequency

IMF Intrinsic mode function

KNN K-nearest neighbor

KNNE K-nearest neighbor entropy

KW Kruskal-Wallis

LBP Local binary pattern

LEE Log energy entropy

LP Linear prediction

LTM Long term monitoring

ix



LS-SVM Least square support vector machine

MF Margin function

MLPNN Multilayer perceptron neural network

PCA Principal component analysis

PET Positron emission tomography

PSR Phase space representation

PWVD Pseudo Wigner-Ville distribution

RBF Radial basis function

ROC Receiver operating characterstics

RQA Recurrence quali�cation analysis

SE Shannon entropy

SEEG Stereo electroencephalogram

STFT Short-time Fourier transform

SUDEP Sudden unexplained death in epilepsy

SVM Support vector machine

TN True negative

TP True positive

x



Chapter 1

Introduction

Electroencephalogram (EEG) monitoring helps in identifying the exact location of

brain regions involved in epilepsy. This observation enhances the success rate of

epilepsy treatment. EEG, a record of brain activity, is a highly nonlinear and

dynamic signal that has a lot of information content about functioning of brain

and disorders related to it. A neurological disorder de�ned by the recurrence of

seizures is labeled as epilepsy. EEG segments are studied for three classes namely

seizure, seizure-free, and normal [1]. Methods for automatic monitoring of epileptic

activities have been adopted, as visual inspection of EEG signals for diagnosis is

strenuous and time consuming for long recordings of data. Development of

computer aided diagnostic (CAD) techniques can address these issues. An easier,

faster, more e�ective, and a�ordable way to study epileptic activity is o�ered by

these automated techniques. This way of diagnosis mainly involves epileptic

seizure detection in EEG signals [2].

In this chapter, we present some basic details about EEG signal and epileptic

seizure, problem background, and motivation behind our research. Finally, an

organization of the thesis has been presented.

1.1 Electroencephalogram and epilepsy

EEG is an extensively used electrophysiological assessment technique for clinically

recognizing and managing various neurological disorders, including epilepsy. In

1



order to measure neurophysiological activity of brain, electrodes are placed on the

scalp or intracranially on the cerebral cortex or in special case on deeper brain

tissues. Measured activity in the form of traces is known as EEG or brain waves

[2, 3]. Based on the position of electrode used for measuring the activity, EEG are

of two types: Non-invasive EEG, in which electrodes are placed on the scalp and

other type is intracranial EEG, in which electrodes are implanted on deep brain.

Subdural EEG electrodes are used as scalp electrodes and intracranial EEG

electrodes are inserted in the brain [4].

Epilepsy is one of the chronic and common neurological ailment known to

mankind. Di�erent causes may lead to variety of disorders and malfunctioning of

brain, giving re�ections as ailments. Epilepsy is one collective term for such

disorders [4]. Abnormal discharges in large group of brain neurons are observed

during an epileptic seizure [4]. Diminished consciousness, motor activity loss, loss

of senses, behavioral changes, are some of the clinical symptoms of a person

su�ering with epilepsy. In many cases epilepsy may cause sudden death due to

unknown reason, clinically termed as sudden unexplained death in epilepsy

(SUDEP) [5, 6]. Medically intractable seizures usually require a surgical resection

(removal of epileptic foci in brain), which need a better seizure localization

technique. As surgical removal of epilepsy is not an easy task to be performed, nor

all epilepsy a�ected persons bene�t from surgery, a prolonged monitoring of EEG

signal from such patients can give an insight in providing a cure through

neuroimaging and electrophysiological assessment.

Activity monitoring during epilepsy and determining exact information about the

time of occurrence, nature, and the center of neural discharge, all can be done with

ease using EEG [7]-[9]. Positron emission tomography (PET), functional magnetic

resonance imaging (FMRI), and computerized tomography (CT) scans are some

advanced imaging techniques useful in providing anatomical information about the

abnormal growth in the brain, but these techniques are discontinuous in nature

i.e scanning cannot be done during an on going seizure, thereby fail in continuous

scanning of patient [10, 11]. Only practical solution is EEG recordings for long

2



durations. EEG has helped in detecting seizure and aborting their progression

by triggering focal treatment (drug release, electrical stimulation or focal cooling)

[12, 13].

1.2 Amplitude and spectral characteristics of EEG

signal

Signals from both cerebral and non-cerebral origins are present in EEG. Depending

on the vicinity of electrodes to neurons, as in case of subdural electrodes, the

amplitude of depth electrodes is usually larger than that of scalp electrode

[14]-[16]. It has been observed that the amplitude of scalp electrode signals varies

from 20 µV to 100 µV, while depth electrode amplitude varies from 100 µV to 2

mV. Frequency range of EEG (seizure and seizure free) is from 0.5 Hz to about 500

Hz. Five frequency bands out of this spectral bandwidth are of clinical

importance: (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma, which are

explained below [17].

1. Delta waves: These waves have a spectral content of about 3 Hz. It is a

wave with least frequency and highest amplitude [17].

2. Theta waves: These slow waves have a frequency content ranging from 4 Hz

to 7 Hz. Closing of eyes with relaxation emerges these waves. This is normally

found in EEG signals of young children and adults [17].

3. Alpha waves: Commonly found in adults with a spectral range from 7 Hz

to 12 Hz. These waves arise in rhythms on both sides of the head. On

non-dominant side it has slightly higher amplitude. They disappear with

stress/opening of eyes and are regarded as normal waveform [17].

4. Beta waves: Characterized by small amplitude and fast activity, these waves

have a frequency range of 14 Hz to 30 Hz. These dominant rhythms are present

in patients, who are alert or anxious with their eyes open. These are usually

seen on both the sides with symmetrical distribution, dominant in frontal area.

3



In areas of cortical damage, it may be absent or diminished. These waves are

mostly dominant in frontal and central portion of brain. Amplitude of beta

waves is less than 30 µV [17].

5. Gamma waves: Fastest of all brain waves, these waves have a spectral

content in the range of 30-45 Hz. These are also known as fast beta waves.

These waves are rarely present and have very small amplitude. these rhythms

play a crucial role in neurological disease diagnosis. These waves usually occur

in central part of brain. Event-related synchronization (ERS) of the brain is

suggested by these waves [17].

1.3 Clinical approach for EEG classi�cation

Epileptic activities are visually inspected by an expert by looking at prolonged

recordings. In prolonged recordings, time between normal and epileptic seizure, is

known as seizure-free period. Normal rhythmic discharges like alpha rhythms as

well as abnormal (high frequency oscillations, spikes, etc.) patterns are present in

this recording [18]-[20].

EEG from a patient is generally characterized by rhythmic discharge of large

amplitude or a low amplitude unsynchronized signal at the onset of seizure and

also with repetitive spikes. A general de�nition for seizures is that, during an

epileptic seizure, a new type of random EEG signal appears in an unsure manner

and soon it becomes prominent in the entire EEG trace. EEG trace tends to

become slower with an increasing amplitude and with more distinct spiky phases

of the rhythmical waves [21]. Figure 1.1 shows one example of such seizure and

di�erent epochs from a prolonged recording showing separately seizure,

seizure-free, and normal activities.

A clinically signi�cant information about epileptic focus is provided by early

stages of an epileptic seizure. Depending on the clinical signi�cance of epileptic

seizures, they are divided into two distinct categories; (a) clinical and (b)

sub-clinical. Certain behavioral changes are associated with clinical seizures. In

case of sub-clinical seizures, there are minimal or no behavioral changes visible. In
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Figure 1.1: Plots of EEG epochs for: (a) Seizure activity; (b) Normal EEG with
eyes open; (c) Normal EEG with eyes closed; (d) Seizure-free activity EEG taken

from epileptic zone; (e) Seizure-free activity EEG taken from hippocampal
formation from opposite hemisphere of the brain.

both the types of seizures, abnormal activity is captured by EEG. In order to come

up with a medical cure for preventing irreversible secondary brain damages,

patients are monitored on a long term basis (continuous long term monitoring

(LTM)) [22, 23]. Time frame chosen for this LTM ranges from days to weeks in the

epilepsy monitoring unit (EMU). A neurologist or brain expert tags EEG

recording during the period of epileptic attack. As the procedure is tedious and

prone to errors in prediction, an automated detection of epileptic event on EEG

recording and classi�cation of various EEG segments into seizure, seizure-free, and

normal is needed [24, 25].
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1.4 Literature review

Signal processing techniques are useful in EEG signal analysis before any surgical

operation of brain. In automated diagnostic techniques, signi�cant features from

EEG signals are extracted using time-based, frequency-based or time-frequency

based methods for developing classi�cation models. These models provide a best

possible combination of classi�er and feature sub-set, that will yield the highest

possible accuracy (ACC).

Many time-domain based methods for detection and classi�cation of the epileptic

seizures from EEG signals have been proposed. Methods using linear prediction

(LP) error energy for epileptic EEG detection has been proposed in [25].

Fractional linear prediction (FLP) error as features for EEG classi�cation have

been proposed in [26]. In this work FLP based features with support vector

machine (SVM) as classi�er using linear, radial basis function (RBF), and

polynomial kernels, ACC of 88.67%, 95.33%, and 94.67% respectively are obtained

for three classes (seizure, seizure-free, and normal) classi�cation. FLP coe�cients

with SVM, trained using RBF, have given ACC of 95.33% for classi�cation of

seizure and seizure-free classes [26]. Authors in [27] have developed a methodology

based on principal component analysis (PCA) with enhanced cosine radial basis

function neural network, for seizure detection.

Discrimination between seizure and seizure-free EEG signals has been done on

the basis of Lyapunov exponent in [28]. EEG classi�cation into normal,

seizure-free, and seizure classes has been done using recurrence quanti�cation

analysis (RQA) based features in [29]. Multi-level local pattern based seizure and

seizure- free classi�cation has been performed in [30]. ACC of 98.67% has been

obtained using these extracted features with nearest neighbor classi�er.

Empirical mode decomposition (EMD) has been proposed to analyze

non-stationary signals [31]. Mean frequency, obtained using Fourier-Bessel series

expansion, of intrinsic mode functions (IMFs), has been used as a feature to

discriminate between seizure and seizure-free EEG signals [32]. Amplitude

modulation (AM) and frequency modulation (FM) bandwidths of IMFs, obtained
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using EMD, have been calculated and used as a feature for classi�cation of seizure

and non-seizure EEG signals [33]. Also in [34], 95% con�dence area of ellipse �tted

in second order di�erence plots of calculated IMFs is used as a discriminatory

feature for seizure and seizure-free classi�cation. Using this 95% area feature with

multilayer perceptron neural network (MLPNN) as classi�er, a maximum ACC of

100% has been achieved in [34]. Descriptors from 3-D and 2-D phase space

representation of IMFs have been used as feature for classi�cation of EEG signals

in [35]. Using Hilbert-Huang transform (HHT), time-frequency images of EEG

signals have been obtained and histogram based features are used for classi�cation

of signals. A combination scheme of k-means clustering with ensemble empirical

mode decomposition (EEMD) has resulted in 98% ACC for seizure and normal

EEG signals classi�cation case [36].

Fourier transform (FT) has been used to extract features from spectral

components of EEG signals [37]. Spectral representation of higher order statistics

i.e. moments and cumulants of third and higher orders, is called higher order

spectra (HOS). Features extracted from HOS have been employed for classi�cation

of the normal, seizure-free, and seizure EEG signals. ACC of 98.5% has been

achieved using HOS features with SVM in [38]. However, assumption associated

with FT analysis is that the signal is stationary i.e invariant in amplitude, phase

or frequency with time. Earlier studies have shown that frequency components of

EEG signal change with time i.e. EEG signal is a non-stationary process [39]-[42].

Time-frequency based methods like short-time Fourier transform (STFT) [42],

wavelet transform (WT) [43], the multiwavelet transform [44] and the smoothed

pseudo-Wigner-Ville distribution (PWVD) [45], have been proposed for epileptic

seizure detection from EEG signals. EEG signal is decomposed into sub-band

signals and sub-band frequencies of these sub-band signals are used as features for

classi�cation of normal and seizure EEG signals. Using mixture of experts (ME)

model, classi�er ACC of 94.5% has been achieved for seizure and normal EEG

signals classi�cation. This method with MLPNN based classi�er has yielded ACC

as 93.2% [46]. The line length feature, of discrete wavelet transform (DWT)

coe�cients, has been used for classi�cation of normal and epileptic seizure EEG
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signals. In this work, with MLPNN as classi�er, ACC of 99.6% for two classes

(seizure and normal) and ACC of 97.5% for three classes (seizure, seizure-free, and

normal) have been achieved [47]. Eigenvalue decomposition of Hankel matrix along

with Hilbert transform [48, 49] is used as a time-frequency technique for

classi�cation of seizure and seizure-free EEG signals. In this method, the extracted

features with least square SVM (LS-SVM), has given a ACC of 100% for seizure

and seizure-free classes [48].

1.5 Motivation

The EEG can be used for the following purposes in epilepsy studies:

• Clinical diagnosis of epilepsy.

• Classi�cation of epileptic and normal durations of EEG recordings.

• Identi�cation of epileptic zone for pre-surgical patients.

• To deduce the absence of epileptic seizure.

A large storage space is needed for storing EEG data for a single patient.

Therefore, automated signal analysis, classi�cation, and prediction methods are

needed to be explored. A good insight into neurophysiological state just prior to

an epileptic seizure, is needed to devise a reliable prediction algorithm for epilepsy

detection. So testing and training of automated learning system, which perform

EEG signal analysis and classi�cation is very important.

Many studies have been proposed for gaining insight to EEG signal analysis by

visual inspection but these studies require a prolonged inspection time and are

many times prone to come up with false detection. Therefore, some more re�ned

and better techniques for automated classi�cation of EEG signals are still required.

It is clear for section 1.4 that many time-series based, frequency domain based,

and time-frequency based detection and classi�cation techniques have been

proposed. Time-frequency domain based proposed methodologies are complex in

their implementation. There is a need for a time-series based technique, which

8



when applied to EEG signal, will yield maximum information about the signal in

time-domain itself. EMD is one such attempt for non-stationary signal analysis

[50]. Shortcoming of EMD is its convergence analysis. Unavailability of proper

convergence criteria may lead to over sifting or under sifting of data which leads to

extraction of improper IMFs. Iterative �ltering replaces the mean of upper and

lower envelope obtained by using cubic-spline interpolation, as used in traditional

EMD, by some moving average of the signal to solve this convergence issue. In this

method, mean is calculated by convolving the signal with a perfectly weighted

variant of signal itself [51]. Our work emphasizes on decomposition of EEG signal

segments using iterative �ltering and then extracting features from the obtained

IMFs for classi�cation of EEG signals. Iterative �ltering has been applied on EEG

signals for automated sleep stages classi�cation in [52]. This thesis presents an

application of iterative �ltering on classi�cation of EEG signals. As EEG signals

can be used for multiple other purposes, the focus of the thesis will be

classi�cation of EEG signals into seizure, seizure-free, and normal classes.

1.6 Objectives

Main objective of our work is to analyze the acquired raw data set using signal

processing tools and extract features from them for their classi�cation into

di�erent classes. Our work focuses on decomposition of EEG signal using iterative

�ltering and then extracting some non-linear highly discriminative features from

the decomposed signal, so that maximum ACC can be obtained. In order to

achieve this: (i) EEG signals are decomposed into IMFs using iterative �ltering,

(ii) Discrete energy separation algorithm (DESA) is applied to obtained IMFs for

obtaining amplitude envelope (AE) and instantaneous frequency (IF) functions

from them, and �nally, (iii) non-linear entropy based features are extracted from

these AE-IF functions and given to arti�cial neural network (ANN) for

classi�cation.

Time series based features like area of Poincaré plots, length of Poincaré plots,

width of Poincaré plots along with some nonlinear entropy features, namely
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K-nearest neighbor entropy estimator (KNNE), log energy entropy (LEE), and

Shannon entropy (SE) are computed from these IMFs and AE-IF functions, which

reveal the complexity present in various IMFs of seizure, normal, and seizure-free

EEG signals.

1.7 Thesis organization

The rest of the thesis is organized as follows:

Chapter 2 deals with detailed description of iterative �ltering algorithm and

DESA, where signal decomposition using these algorithms is discussed.

Chapter 3 contains the description of database used and proposed approach.

Chapter 4 contains results and discussion of the proposed approach and

comparison of obtained results with other existing methodologies.

Chapter 5 discusses the conclusions drawn and scope of future work.

1.8 Summary

Epilepsy is a neurological disorder characterized by abnormal neurological

discharges leading to loss of consciousness, behavioral changes, and even death

under some chronic conditions. Therefore, detection of epileptic seizure before the

occurrence of epileptic event is of clinical importance. Automated seizure detection

through EEG recordings and their classi�cation is one solution in this direction.

In literature, many techniques for EEG signal classi�cation are presented but still

a better technique is needed. In this work we have studied the acquired raw EEG

signals and proposed a technique for their classi�cation.
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Chapter 2

Iterative �ltering and DESA methods

In the proposed methodology, acquired EEG signals are �rst decomposed into their

IMFs using iterative �ltering algorithm. Then, DESA is used to extract AE-IF

functions from these obtained IMFs and features from these functions are used for

signal classi�cation. In this chapter, a detailed description about iterative �ltering

and AE-IF functions extraction using DESA is given.

2.1 Empirical mode decomposition method and

need for iterative �ltering

Practical research applications essentially require signal and data analysis. As data

gathered today from numerous sources is chaotic in nature and large in volume,

understanding of collected data is important and challenging. Estimation of

parameters or con�rming a certain model for extracting hidden information from

large volumes of data is one of the potent challenge before any data analyst.

Di�culties faced during analysis of large data include short span of data,

non-linearity and non-stationarity present in data, and mingling of essential

information with noise or other irrelevant information.

Spectral analysis using FT, is an earlier attempt in this direction, providing a

general method of analysis of signals and data. Limitation of Fourier analysis is

that it does not work well with for non-stationary data or data from non-linear

systems. Also information about spatial and temporal localization, which may be
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useful for some applications in signal processing is absent in Fourier analysis. To

extract spatial-temporal localization information, WT was proposed. This method

captures discontinuities in data, but su�ers from leakage of data due to limited

length of wavelets used [50].

Also in case of wavelets, a locally occurring change has to be looked into high

frequency range, as time resolution has to be high and if the change is of higher

frequency range, basic wavelet will be more localized. But if the event is occurring

in low frequency range, then also one has to look for change in higher frequency

range. This is the basic drawback of wavelets.

The EMD, proposed in [50], is a data adaptive complement to existing

methodologies. Motivation behind the study of EMD is a requirement of an

e�ective way for extracting the IF of signals for an in-depth analysis of data.

Hilbert transform of a signal de�nes its IF. Hilbert transform of a signal g(t) is

de�ned as [50]

GH(t) =
1

Π
PV

∫
G(s)

t− s
ds (2.1)

where PV is the principal value of the integral. FT of Hilbert transform of signal

also gives useful information about Hilbert transform [50]. Taking Fourier transform

of (2.1) yields

ĜH(β) = −jsign(β)Ĝ(β) (2.2)

where sign(β) is the standard signum function. De�ning

Q(t) = G(t) + jGH(t) = a(t) exp(jθ(t)) (2.3)

where a(t) is the magnitude of Q(t). The IF at time t is given as: ω(t)=
dθ(t)

dt
.
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EMD decomposes data set into a �nite, often small, number of components called

IMFs, satisfying following two conditions [50]:

• The number of the zero-crossings and the number of extrema of an IMF must

be equal or di�er at most by one.

• The mean value of the envelopes de�ned by the local extrema is zero, at any

point of IMF.

In HHT, Hilbert transform of the obtained IMFs is computed for meaningful

estimation of IF from data. EMD and HHT are useful for analyzing a very wide

range of data sets in astronomy, medical sciences, engineering, geology, and other

�elds dealing with large data sets [53]-[56].

EMD is orginally an algorithm known as the sifting process. Cubic splines are used

to connect local minima and maxima in the process are connected to form lower

and upper envelopes. The average of the two envelopes is then subtracted from the

original data. Iteratively applying this process yields EMD [50]. Due to highly data

adaptive nature, sifting algorithm is subjected to instability, as any small change

in data often lead to di�erent IMFs. Fundamental mathematical issues related to

EMD, like convergence of sifting algorithm, de�nition of suitable stopping criteria

have not been established. This is due to highly adaptive nature of sifting algorithm

and only using cubic splines for envelope development. One such attempt was made

by replacing cubic splines by B-splines, giving another way for EMD, but certain

issues remained unresolved [57].

Iterative �ltering is another such attempt of replacing mean of envelopes by certain

moving average in the sifting algorithm. Moving average can be adaptive as it is

data dependent. An added advantage of iterative �ltering over traditional EMD is

that it can be generalized to higher dimensions [58].

2.1.1 Iterative �ltering algorithm

De�ning an operator Ψ(p) which calculates the moving average of any signal p(t),

where t ∈ <, using a double averaging �lter d(t). Moving average of the signal p(t)
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is given by the convolution de�ned as [58] :

Ψ(p)(t) =

∫ m

−m
p(τ + t)d(τ)dτ (2.4)

De�ning p1 and the operator Θ1,n=pn - Ψ
(1)
n (pn) = pn+1 which captures the

�uctuating parts of pn, then �rst IMF is given by I1 = limn→∞Θ1,n(pn), where

operator Ψ
(1)
n depends on mask length (mn) of the �lter at nth step of sifting

algorithm, superscript refers to the �rst IMF. Applying the operator Θ to the

remainder of signal (p − I1), second IMF I2. Iterating the process we get the kth

IMF as Ik = limn→∞Θk,n(rn) = rn+1, where r = p− (I1 + I2 + .....+ Ik).

Iterative method stops when the remainder signal is a trend signal .i.e having at

most one maximum or minimum. Finally signal can be represented as follows [58]:

p(t) =
k∑

j=1

Ij(t) + r(t) (2.5)

where k represents number of IMFs into which signal is decomposed. r(t) is the

remainder trend signal. There are two methods by which the moving average can be

calculated for iterative algorithm. One way of calculating it is by taking the average

function of the lower and upper envelope, given by cubic splines connecting local

minima and maxima of p(t). This method is similar as EMD process and su�ers from

instability under perturbation. Other method is to calculate the average derived by

the convolution of signal p(t) with a double averaging �lter d(t), given by [59]:

d(t) =
m+ 1− |t|)

(m+ 1)2
(2.6)

Discrete version of double averaging �lter with mask coe�cients cj can be expressed

as [58]:

cj =
m+ 1− j
(m+ 1)2

(2.7)

where m is the mask length and j is the sample about which �ltering is done.

14



Iterative �ltering algorithm [59] can be summarized in a below mentioned

stepwise manner, which consists of two nested `while' loops: an inner `while' loop,

in which each single IMF is calculated, and an `while' outer loop, which derive all

the IMFs. Pseudo code for iterative �lterng algorithm for any discrete signal p[n] is

given below [58].

Algorithm 1 Iterative �ltering [59]

1: IMFs to be calculated IMF = {}
intialize the remaining signal r=p
outer while loop

2: while Number of maximas of f ≥ 2 do check for condition
3: calculation of data dependent �lter coe�cients of �lter hx.
4: inner while loop for extracting IMF
5: while stopping criteria not satis�ed do
6: set pnj = 0 for j 6= 0, ......m− 1, m is the �lter length.
7: compute the moving average lm of pn
8: lm = 1

m−1

∑
j(pmj)hx(xi − xj), i=0,......m-1

9: pm+1 = p− lm
10: m = m+ 1

inner while loop ends
11: IMF = IMF ∪ f

12: extracted IMF IMF = IMF ∪ pm
13: residue signal left after �rst IMFr = p− pm

outer while loop ends

We can compute mask length (mn) using the formula [58]: mn = 2b(λN
i
)c, where λ

is the parameter with value 1.5-3.5; N is number of sample points in signal; i

represents number of its extreme points. b(.)c rounds a positive integer close to

zero.

In iterative �ltering algorithm updating of mask length (mn) is done at each step

of inner loop, but in the presented algorithm we calculated the mask length in the

�rst step and then used the same value throughout. Same mask length at all steps

of inner loop is used to ensure that the IMFs produced by this method should

contain a well-de�ned set of IMFs. To make this happen, operators θ and Ψ are

made independent of step number n. `hx', which is used in the algorithm is a

suitable discrete double averaging �lter same as d(t), as discussed earlier.
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Also in the implemented algorithm, some stopping criteria is used for stopping

the inner loop instead of letting n to go to in�nity. One such stopping criteria can

be de�ned as [58]:

δ :=
||I1,n − I1,n−1||2
||I1,n−1||2

(2.8)

.

Certain threshold value of δ can be used as a stopping criteria [59] or maximum

number of iterations can be set in the inner loop for stopping the algorithm.

Convergence of inner loop of algorithm is guaranteed for periodic signals and

studied for l∞ functions in [59].

Example

Here is one illustration on working of iterative �ltering for signal decomposition. A

synthetic sequence s(n) = 4y(n)+3z(n)+7u(n) is generated as a linear combination

of three linear frequency modulated signals, with y(n) = cos[2π(f1
n
Fs

+ 0.4( n
Fs

)2)],

z(n) = cos[2π(f2
n
Fs

+0.4( n
Fs

)2)], and u(n) = cos[2π(f3
n
Fs

+0.4( n
Fs

)2)], where f1 = 40 Hz,

f2 = 10 Hz, f3 = 180 Hz, and Fs = 1000 Hz. Figure 2.1 shows the generated signal.

Iterative �ltering is applied on the generated signal s(n) to decompose it into its

IMFs, which are shown in Figure 2.2. In this experiment, value of δ is chosen as 0.01

and mask length mn of each iteration is calculated using mn = 2b(λN
i
)c, where value

of λ is taken as 3. Value of λ can be varied for generating a di�erent set of IMFs for

the same generated signal s(n). MATLAB codes used here for implementation of the

algorithm using double averaging �lters are available at http://www.mathworks.

com/matlabcentral/fileexchange/53405-iterative-filters.

Better separation of IMFs can be obtained by further lowering the value of δ,

but limitation of lowering is that it will produce more number of IMFs if noise in

data is present. Also tuning of mask length by changing value of λ a�ects the

separation of IMFs. This method of signal decomposition has been used for sleep

stage classi�cation in [52].
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Figure 2.2: Plots of IMFs of generated signal s(n): (a) IMF1; (b) IMF2; (c) IMF3;
(d) IMF4; (e) IMF5

2.1.2 AE and IF functions estimation using DESA

Amplitude and frequency modulations of sine wave are frequently used in

communication systems. Basic knowledge of AM and FM systems can be used in

modeling many of the naturally occurring signals like speech [60]. Time varying

amplitude and frequency patterns present in the signal can be represented by these

AM-FM models. Non-linear modelling of speech has been done in [61]-[65].

As variations in AE function of signal is due the AM component of signal, so

extracting AE from signal can give information about the AM component.

Similarly, IF function extraction provides information about FM component of
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signal. Extraction of AM and FM components can be done using Teager operator

which estimates the AE and IF functions of AM-FM based on �energy-tracking �.

Kaiser �rst introduced these operators [66, 67] for tracking energy of simple

oscillators. Teager further developed these operators for non-linear speech

processing both in continuous and discrete domains [68]. For continuous domain

this energy operator is given by :

Υc[x(t)] = [ ˙x(t)]2 − x(t) ¨x(t) (2.9)

where x(t) is a continuous-time signal and ẋ = dx(t)
dt

and for discrete-domain it is

given as :

Υ[x(n)] = x2(n)− x(n− 1)x(n+ 1) (2.10)

with x(n) as discrete-time sequence where n = 0,±1,±2, ...

The AE and IF functions of the IMFs, obtained using iterative �ltering, can be given

as follows [68]:

AE ≈
√

Υ[I(n)]

[1− (Υ[H(n)]+Υ[H(n+1)]
4Υ[I(n)]

)2]
(2.11)

IF ≈ arccos(1− Υ[H(n)] + Υ[H(n+ 1)]

4Υ[I(n)]
) (2.12)

where H(n) is the time-domain di�erence signal of IMF I(n) given as H(n) =

I(n)− I(n− 1), I(n) is the IMF [68].

An illustration of DESA on extraction of AE-IF functions of signal is presented

here. DESA is applied on IMFs of the signal s(n) which are shown in Figure 2.2.

The extracted AE and IF functions of each IMF are shown in Figure 2.3. The AE

functions are shown in Figure 2.3(a) and Figure 2.3(b) contains the normalized IF

of signal s(n).
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Figure 2.3: Plots of (a) AE functions; (b) IF functions of �rst �ve IMFs of
generated signal s(n).
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2.2 Summary

Iterative �ltering can be used as a variant of EMD by replacing the cubic spline

interpolation technique with moving average double �lter. Spurious nature present

in data can be dealt e�ectively by using this technique. Iterative �ltering can better

handle issues of horizontal comparison, which means IMFs of di�erent signals with

same index contain almost equal information content [52]. AE and IF functions of

the signal can be extracted using DESA. AE and IF functions are an indicator of

AM and FM components of signal respectively. DESA has been used for modeling

of non-stationary signals in [61].
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Chapter 3

Database and methodology

This chapter presents the methodology used for designing an automated technique

for classi�cation of EEG signals into di�erent classes. Chapter also contains the

information of database used in our work. Block diagram representing the steps

involved in methodology is shown in Figure 3.1. Initially, the EEG signals are

collected from the database, as mentioned in the next section. Then acquired EEG

signals are decomposed into IMFs using iterative �ltering, a detailed description

of which is given in chapter 2. After obtaining IMFs, their AE and IF functions

are obtained using DESA. Obtained AE and IF functions are used for extracting

features from them for classi�cation of EEG signals. In our work, we have conducted

experiments on clinically signi�cant classi�cation cases, which involves two-class and

three-class classi�cation problems, which are discussed in upcoming sections. We

have used 3 di�erent classi�ers namely; Random forest, C4.5 decision tree, and

Naïve Bayes, in our classi�cation task and compared the performance of the three

classi�ers on the basis of performance parameters [69] like ACC, sensitivity (SEN),

receiver operating characteristics (ROC) area, and speci�city (SPF). The tabulated

values of all these parameters with di�erent classi�cation cases are presented in next

chapter.
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Table 3.1: Description of dataset used with number of signals

A and B C and D E
Subject 5 normal 5 epileptic 5 epileptic

Electrode type surface intracranial intracranial
State Eyes open and eyes closed Seizure-free Seizure

Epoch duration 23.6 sec 23.6 sec 23.6 sec
Number of epochs 200 200 100

3.1 Database

In the present work, we have used publicly available database which consists of

clinically recorded EEG time series data ( consists of �ve sets A, B, C, D and E) at

the Bonn University and is publicly available at [70] and its details are given in

[71]. EEG epochs, each 23.6 sec long, are taken from �ve healthy and �ve epileptic

patients. A total of 500 EEG epochs belonging to three categories: normal, seizure

and seizure-free are present in the database. Each segment was treated as separate

EEG signal accounting to 500 EEG signals in total. EEG data used here is

recorded using standard 10-20 electrode placement scheme. Sampling rate of

signals is 173.61 Hz, resulting 4097 samples in single channel recording.

Detail information about di�erent sets in database can be given as: A (Recorded

from healthy persons in awake state with their eyes open) and B (Recorded from

healthy persons in awake state with their eyes closed) subsets were captured extra

cranially. Sets C (epochs were recorded during seizure-free duration using from the

intracranial electrodes that were implanted into the hippocampal formations of

opposite hemisphere of brain ), D (epochs were recorded during seizure-free

duration using intracranial electrodes in the epileptic zone), and E (seizure epochs

were recorded from all cerebral locations displaying seizure activity using

intracranial and strip electrodes by implanting them into the lateral and basal

regions of the neocortex) were captured using in depth electrodes. Table 3.1 gives

a description of database used in this work.
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Figure 3.1: Block diagram for the proposed methodology.

3.2 Proposed methodology

Figure 3.1 shows the block diagram of the proposed methodology. In the

methodology, iterative �ltering is adapted as a variant of EMD for signal

decomposition. Steps involved in extracting the IMFs from any signal have been

discussed in iterative �ltering algorithm in the previous chapter. Using low pass

�lters with a revised sifting algorithm, iterative �ltering decomposes a signal into

its corresponding IMFs. Mask length after completion of each while loop is

calculated using parameter λ using the formula mn = 2b(λN
i
)c. Values of λ used in

our work are in 1.5-3.5 range. Five IMFs of each epoch taken from data set are

computed. As �rst IMF has more information content than other higher index

IMFs, we have used only 3 out of 5 IMFs for further processing. These chosen 3

IMFs are decomposed into their AE and IF functions using DESA, which is

discussed in chapter 2. Obtained AE-IF functions are used for extracting the

feature set.
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Figure 3.2: Plots of seizure activity EEG epoch and its IMFs: (a) Seizure activity
epoch; (b) IMF1; (c) IMF2; (d) IMF3; (e) IMF4; (f) IMF5; (g) Residual signal.
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Figure 3.3: Plots of normal EEG with eyes open epoch and its IMFs: (a) Normal
EEG epoch; (b) IMF1; (c) IMF2; (d) IMF3; (e) IMF4; (f) IMF5; (g) Residual

signal.
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Figure 3.5: Plots of seizure-free EEG epoch taken from hippocampal formation
from opposite hemisphere of the brain and its IMFs: (a) seizure-free EEG epoch;

(b) IMF1; (c) IMF2; (d) IMF3; (e) IMF4; (f) IMF5; (g) residual signal.
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Figure 3.6: Plots of seizure-free EEG epoch taken from epileptic zone and its
IMFs: (a) seizure-free EEG epoch; (b) IMF1; (c) IMF2; (d) IMF3; (e) IMF4; (f)

IMF5; (g) residual signal.

Figure 3.2-Figure 3.6 show IMFs obtained from EEG epochs for the signals of

each sub-set from (A, B, C, D, and E) using iterative �ltering. Figure 3.7-Figure

3.11 represent AE and IF functions of obtained IMFs respectively. The (a) parts

of Figure 3.7-Figure 3.11 represent the corresponding AE functions of IMFs and (b)

parts of Figure 3.7-Figure 3.11 show IF functions of the obtained IMFs.
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Figure 3.7: Plots of (a) AE functions; (b) IF functions of �rst �ve IMFs of seizure
EEG epoch.
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Figure 3.8: Plots of (a) AE functions; (b) IF functions of �rst �ve IMFs of Normal
EEG epoch taken with eyes open.
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Figure 3.9: Plots of (a) AE functions; (b) IF functions of �rst �ve IMFs of normal
EEG epoch taken with eyes closed.
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Figure 3.10: Plots of (a) AE functions; (b) IF functions of �rst �ve IMFs of
seizure-free EEG epoch taken from hippocampal formation from opposite

hemisphere of the brain.
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Figure 3.11: Plots of (a) AE functions; (b) IF functions of �rst �ve IMFs of
seizure-free EEG Epoch taken from epileptic zone.
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3.2.1 Classi�cation objective

In our thesis proposed methodology is studied on the EEG signals obtained from

publicly database available at [70] to determine the e�ciency of it in terms of

classi�cation parameters [69]. Number of epochs used in this thesis are mentioned

in Table 3.1. Performance parameters using proposed methodology are evaluated

for each multi-class classi�cation case and compared with the other existing

methods. The earlier mentioned features namely KNNE [75], SE [76], LEE [77],

width of Poincaré plot [78], length of Poincaré plot [78], and area of Poincaré plot

[78], are computed from �rst three modes obtained using iterative �ltering

decomposition. For the �ve sets of EEG recordings described in section 3.1, we

have considered �ve di�erent cases of classi�cation problems in this work.

Based on their clinical relevance as well as their wide usage by various researchers

these cases are formulated for EEG signal classi�cation [72, 73, 74]. The Case 1

corresponds to classifying the EEG signals into three di�erent categories. The

EEG segments from sets A and B are grouped together forming normal class, sets

C and D are grouped as seizure-free class, and set E signals belong to seizure class.

In Case 2, the signals in sets A, D, and E are classi�ed as healthy, seizure-free,

and seizure classes respectively. In Case 3, the signals from sets A and E are used

in classi�cation between healthy and seizure classes respectively. Case 4, contains

sets A, B, C, and D grouped together as the non-seizure class whereas the set E is

considered as seizure class and classi�cation among the two classes has been done.

Case 5, contains sets D and E, which are classi�ed as seizure-free and seizure

classes respectively. All cases discussed here are tabulated in Table 3.2.
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Table 3.2: Cases based on di�erent clinical purposes for classi�cation

Cases Grouping of sets Classi�cations

Case 1 Sets A,B Normal
Sets C,D Seizure-free
Set E Seizure

Case 2 Set A Normal
Set D Seizure-free
Set E Seizure

Case 3 Set A Normal
Set E Seizure

Case 4 Sets A,B,C,D Non-seizure
Set E Seizure

Case 5 Set D Seizure-free
Set E Seizure

3.3 Feature set

Feature extraction from EEG signal is a crucial task for classi�cation. In this work,

we have used KNNE [75], SE [76], LEE [77], and Poincaré plot descriptors [78] as

features. These features are summarized as follows:

3.3.1 Entropies

Coifman and Wicker Hauser [79] presented entropy-based wavelet packet

decomposition used to compute the SE and LEE. Information content of signal is

computed by entropy. In other words, degree of randomness present in a signal is

represented by entropy of signal. For a �nite length discrete random variable

X = [x(0), x(1), x(2), ..........x(N − 1)], with probability distribution function

denoted by p(x) entropy is de�ned by following equation:

H(X) = −
∞∑
i=1

pi(x) log2[pi(x)] (3.1)

.

where i indicates one of the discrete states.

The KNNE is a measure of scattering of the signal [79]. The central idea in
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KNEE estimator is to estimate the probability mass around each sample point by

a local Gaussian approximation. Its computation is based on the distances of a

sample from its k nearest neighbors [79]. The value of k = 5, 11, 15 are considered

in this work. In our work, maximum value of ACC is obtained for k = 11. The SE,

introduced by Shannon [79], is an functional of p(x) in the sense of expectation in

the following form:

HSE(X) = −E[log2(p(x)] (3.2)

where E denotes expectation operator. The SE is the average information content

of any random variable X. The SE is used as a measure of uncertainty in the system

and can be given as follows [76]:

HSE(X) = −
∞∑
i=1

[pi(x)]2[log2 pi(x)]2 (3.3)

. Similarly LEE [77] is de�ned as:

HLEE(X) = −
∞∑
i=1

(log2 pi(x))2 (3.4)

In this work, entropies namely LE, SE and KNNE are computed to analyze the

regularities in EEG signals. The more regular the data, lower is the calculated SE.

3.3.2 Poincaré plot

Poincaré plot is a return map depicting each measured value as a function of

previous value. It is a simple method that describes the evolution of a system and

helps in �nding out the variability measure of any time series [78]. Idea of return

map can be given as follows [80]: for a given time series y(n) represented as

y(n) = y(0), y(1), y(2), ...... then its return map can be given as map of points

(y(0), y(1)), (y(1), y(2)), (y(2), y(3)) and so on. Poincaré plot gives an idea of how

much repeatability is present in the time series, so that some recurring property of

time series, especially non-stationary time series like electrocardiogram (ECG),

electromyogram (EMG) signal, can be tracked. By �tting an ellipse on the
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Poincaré plot, two standard descriptors of plot, namely length of ellipse (SD1 )

and width of ellipse (SD2) , can be used to quantify the plot. Also these

parameters can be used as discriminative factor for classifying the two time series

with di�erent characteristics.
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Figure 3.12: (a) Sinusoidal signal y(n) ; (b) Poincaré of y(n) and ellipse �tting in
plot

Figure 3.12(a) shows a generated sinusoidal y(n) of 1 Hz with sampling frequency

Fs = 100 Hz and its Poincaré plot is shown in Figure 3.12(b). Poincaré plot generated

here is by plotting one sampled advanced time series y(n+ 1) with respect to y(n).

A perfect ellipse can be �tted if the data series(original series and its time shifted

version) is well correlated. Larger the area of Poincaré, higher is the repeatability

present in the time series. Figure 3.13(a) shows a plot of normally distributed

random noise, with amplitude range [-3,3] and Figure 3.13(b) shows its Poincaré

plot. Ellipse �tting on Poincaré plot is shown in Figure 3.12(b) and in Figure

3.13(b). As random noise is highly uncorrelated, no ellipse can be �tted to plot and

the area of ellipse is nearly zero.

In our work, we have used length of Poincaré plot SD1, its width SD2 and area

of the �tted ellipse given as, Area=π× SD1× SD2 [78], as features for classi�cation

between seizure, normal and seizure-free EEG classes.
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Figure 3.13: (a) Generated random noise p(n) (b) Poincaré plot of p(n) and ellipse
�tting in plot

3.4 Kruskal-Wallis test

The Kruskal-Wallis (KW) [81, 82] test is similar to classical one-way analysis of

variance (ANOVA) except that it is non-parametric in nature. In this method,

medians of the groups of given data, are compared to determine if the samples come

from same population or populations who have similar distributions. This process

results in probability p-value for the hypothesis. Lower the p-value, better will be

the discriminative property available in data columns. In our work, all suggested

features are found to be signi�cant, with lower p-values (p<0.05), indicating their

suitability for good discrimination of seizure, seizure-free, and normal EEG signals.

KW test has been used for feature analysis in [83].

3.5 Classi�ers

Features extracted from EEG signals (seizure, seizure-free, and seizure) are given to

various classi�ers for classi�cation. The performance of the classi�er is measured in

terms of ACC, SEN, SPF, and area under ROC [84]. The classi�ers employed in

this work are brie�y discussed in this section.
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3.5.1 Naïve Bayes

Naïve Bayes [85] uses Bayes theorem approach for classi�cation. Simpler approach

for accurate prediction of test instances based on probabilistic information is used

in Naïve Bayes classi�er. Conditional independence of predictive attributes and

absence of unknown attributes, which can a�ect the prediction process, are the

assumptions used with this classi�cation algorithm [85].

3.5.2 C4.5 decision tree classi�er

This is a most commonly used, logically inductive, and interpretive classi�cation

method [86]. A top-down approach is followed for tree construction, which starts

from a tuple [87]. Collection of attributes and a class value is called a tuple. An

attribute may have continuous as well as discrete values but only discrete values

must be present in a class. A tree consists of nodes and leaves. Classi�cation

ability of an attribute is tested by specifying a node to it. Whole training set is

initially connected to root node and each weight value is set to unity. This algorithm

employs a divide and conquer approach to construct a decision tree [88]. At any

node, highest information gain attribute is selected for test and for each possible

outcome of particular class, a child node is created. Selection of best attribute for

the node is done by repeating the process for each attribute.

3.5.3 Random forest

Di�erent classi�cation trees make collective decision to perform a classi�cation in

random forest classi�er [89]. A decision about a particular class is done by each

individual tree and �nal decision about any class is done by assigning a weight to

each tree. Overall classi�cation decision output about a class is done by taking

each tree into consideration. A random tree is employed for constructing a tree

[90]. In this algorithm, nth tree is assigned a random vector. This random vector ρn

is generated without disturbing the previous distribution of vectors and is created

independently of other vectors. A decision tree is grown based on the input vectorh

and vector ρn, resulting in a tree classi�er T (h, ρn) [89]. On the basis of the margin
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function (MF), a class is determined, which can be de�ned for training through two

randomly selected vector distribution U , Z as [89]:

MF(U,Z) = µβnI[Tn(U) = Z]−max
j 6=Q

µβnI[Tn(U) = j] (3.5)

where Tn(U) = T (h, ρn) and I(:) denotes indicator function[89]. The operator µβn

indicates the average value. Higher con�dence in classi�cation is obtained by large

margin value of a particular class. The generalization error (GE) is obtained as :

GE = Pu,z[MF(U,Z) < 0] (3.6)

where Pu,z indicates probability over U,Z space. Accuracy of individual classi�er

and dependency are determined by two parameters namely, strength and

correlation. In this work, Waikato environment for knowledge analysis (WEKA)

software implementation [91] of Naïve Bayes, C4.5 decision tree, and random forest

classi�er for classi�cation of seizure, seizure-free, and normal EEG signals is used.

WEKA has been used for classi�cation task in coronary artery disease diagnosis in

[92]. Evaluation of a classi�er can be done using some performance parameters.

With test data set having TP number of correctly identi�ed samples, TN number

of true negative samples, FP number false positive samples, and FN number of

false negative samples, some parameters can be de�ned as follows :

• SEN: This parameter measures ratio of correctly identi�ed positive samples

present in test set to the total number of positive samples [69] in the data set

that can be given as follows:

SEN =
TP

TP + FN
× 100(%) (3.7)

• SPF:Parameter evaluates classi�er on the basis of ratio of ratio of correctly

identi�ed negative samples present in test set to the total number of negative

samples [69] in the data set which can formulated as follows:

SPF =
TN

TN + FP
× 100(%) (3.8)
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• ACC: It is the ratio of correctly identi�ed samples by the classi�er to total

number of samples [69] in test set. It can be formulated as follows:

ACC =
TN + TP

TP + FN + TN + FP
× 100(%) (3.9)

ROC area, along with above mentioned parameters, has been taken into

consideration for performance evaluation of classi�ers.

Development of robust classi�ers, which perform well with new data sample, is

done by using ten-fold cross validation, a data re-sampling technique for training

and testing purposes. In this re-sampling technique, ten-part splitting of data is

done with approximately same proportion of data in each part. Training of the

classi�er is done using nine parts and left one part is used for testing. This

procedure is repeated nine more times. Results obtained in each fold are used for

calculating SEN, SPF, area under ROC curve and classi�cation ACC. Performance

of classi�er is estimated by averaging the values of performance measures over

these ten folds.

3.6 Summary

Proposed methodology of this work can be used for e�cient EEG signal classi�cation.

Nonlinear entropy based feature set as well as Poincaré plot descriptors are used

as attributes for classi�cation. A brief description, about each of the feature and

classi�er used in this work has been given in this chapter. Ten-fold data re-sampling

technique is used for a robust classi�cation scheme.
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Chapter 4

Results and discussion

4.0.1 Results

A total 500 EEG epochs (100 from each set) are used in this work. Signi�cant

features (mentioned in earlier section) have been selected from these data to form

classi�cation data set. Classi�cation algorithms are selected on the basis of this

data set. Suggested features from AE and IF fucntions of IMFs are extracted and

their discriminative strength is obtained by performing KW statistical test [81] on

the feature set. This test results in the p-values. All suggested features are found

to be signi�cant with less p-values (p<0.05) indicating their suitability for good

discrimination of seizure, seizure-free, and normal EEG signals. Obtained p-values

are mentioned in Table 4.1. Box plots for the suggested features using �rst three

IMFs of epochs are shown in Figures 4.1-4.3. In these �gures, S denotes seizure, N

denotes normal, and SF denotes seizure-free class. Features obtained by suggested

descriptors are used for classi�cation using random forest classi�er, C4.5 decision

tree, and Näive Bayes classi�er. Through experiments, we have observed that

classi�cation done using suggested features has outperformed many other existing

methods in terms of ACC. All the calculated values are tabulated in Table 4.2.

The best performance has been achieved using random forest classi�er. For three

class classi�cation KNNE yielded best results with random forest classi�er.
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Figure 4.1: Box plots for �rst three IMFs for features obtained from Poincaré
plots; (a) Plot width SD2; (b) Plot length SD1; (c) Plot area.
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Figure 4.2: Box plots for �rst three IMFs for obtained features (a) LEE; (b) KNNE
with 11 neighbors; (c) KNNE with 15 neighbors.
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Table 4.2: Classi�cation results for studied cases on the basis of classi�er e�ciency
parameters with �ve di�erent epoch lengths.

Sample Case ACC (%) SEN (%) SPF (%) ROC
length area

4000 samples

Case 1 98.0 97.8 99.0 0.998
Case 2 98.0 97.8 99.0 0.990
Case 3 99.5 99.5 99.5 1.000
Case 4 98.6 98.6 96.4 0.992
Case 5 96.0 96.0 96.0 0.969

2000 samples

Case 1 98.0 97.8 99.0 0.998
Case 2 97.6 97.6 96.8 0.997
Case 3 99.5 99.5 99.5 1.000
Case 4 98.4 98.4 95.0 0.997
Case 5 96.0 96.0 96.0 0.969

1000 samples

Case 1 96.0 95.8 97.5 0.995
Case 2 97.0 97.0 98.5 0.997
Case 3 99.5 99.5 99.5 1.000
Case 4 98.4 98.4 95.1 0.997
Case 5 96.0 96.0 96.0 0.969

500 samples

Case 1 93.2 93.2 96.0 0.991
Case 2 97.0 97.0 98.5 0.997
Case 3 98.0 98.0 98.0 1.000
Case 4 96.8 96.8 91.7 0.995
Case 5 93.5 93.5 93.5 0.991

Figures 4.4(a), 4.5(a), 4.6(a) represent the performance on the basis of ACC

of proposed methodology and EMD using random forest classi�er for all �ve cases

of clinical imporatnce as discussed in earlier chapter. Figure 4.6(b) represents a

comparison of performance between random forest classi�er and C4.5 decision tree

classi�er on the basis of ACC for case 1. Figure 4.7 represents a comparison of

performance between random forest classi�er and Naïve Bayes classi�er on the basis

of ACC for case 1. Figure 4.8(a) and (b) shows the variation of ACC with the

number of trees used for classi�cation in random forest classi�er for case 1 and case

3, respectively.
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Figure 4.4: Plot of results obtained (a) ACC comparison of iterative �ltering and
EMD based proposed methodology for case 1; (b) ACC comparison of iterative

�ltering and EMD based proposed methodology for case 2.
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Figure 4.5: Plot of results obtained (a) ACC comparison of iterative �ltering and
EMD based proposed methodology for case 3; (b) ACC comparison of iterative

�ltering and EMD based proposed methodology for case 4.
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Figure 4.6: Plot of results obtained: (a) ACC comparison of iterative �ltering and
EMD based proposed methodology for case 5; (b)Comparison of ACC using RF

and C4.5 classi�ers for seizure, seizure-free, and normal classes.

48



500 1000 2000 4000
90

91

92

93

94

95

96

97

98

99

100
ACC comparison for AB−CD−E set classification

Sample length

A
C
C

(%
)

 

 

Classification done using Naive Bayes classifier
Classification done using random forest classifier

(a)

Figure 4.7: Plot of results obtained: Comparison of ACC using random forest and
Naïve Bayes classi�ers for seizure, seizure-free, and normal classes.
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Figure 4.8: Plot of results obtained: Variation of ACC with varying number of
trees in random forest classi�er (a) 3-class classi�cation for sets (AB-CD-E); (b)

2-class classi�cation for sets (A-E).

Performance comparison of our proposed methodology with other existing

methods for three class classi�cation for set (AB-CD-E) and two class classi�cation

for sets (ABCD-E) and (A-E), is tabulated in Table 4.3. Comparison between

di�erent methods has been done on the basis of ACC.
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Table 4.3: Performance comparison of our proposed methodology with other
existing methods for sets (A-E), (ABCD-E) and (AB-CD-E) classi�cation. Epoch

sample length = 4000 samples.

Authors Techniques used Experiment type ACC (%)

Tzallas Time frequency analysis A-E 100
et al. [42] (2007) and ANN ABCD-E 97.73

AB-CD-E 97.72
Orhan K-means clustering and A-E 100
et al. [94] (2011) multilayer perceptron (MLP) ABCD-E 99.60

neural network model AB-CD-E 95.60
Tiwari Key-point-based A-E 100
et al. [93] (2017) local binary pattern (LBP) ABCD-E 99.30

and SVM AB-CD-E 98.80
This work Iterative �ltering with SE, A-E 99.50

LEE, KNNE, and ABCD-E 98.40
Poincaré plot features with AB-CD-E 98.00
random forest classi�er

Table 4.4: Performance comparison of our proposed methodology with other
existing methods for sets (D-E) and (A-D-E) classi�cation. Epoch sample length =

4000 samples.

Authors Technique used Experiment type ACC (%)

Kaya 1D-LBP D-E 95.50
et al. [95] (2014) and Bayes Net A-D-E 95.67
Twa�k Weighted permutation D-E 97.50
et al. [96] (2016) entropy and SVM A-D-E 97.70
This work Iterative �ltering with

SE, LEE, KNNE, and D-E 96.00
Poincaré plot features A-D-E 98.00
random forest classi�er
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4.0.2 Discussion

A comparative study of proposed methodology with other existing methods, on the

basis of ACC obtained for various cases, on same database is shown in Table 4.3 and

Table 4.4. In [42] time-frequency based methods with ANN are used for EEG signal

analysis and have achieved ACC of 100% for seizure and normal classes classi�cation

problem, 97.7% for seizure and non-seizure classes classi�cation with epochs taken

from sets (A, B, C, D) for non-seizure epoch and set (E) for seizure epoch. The

methodology proposed in [42] has achieved ACC of 97.7% for normal, seizure-free,

and seizure classi�cation i.e. sets (AB-CD-E) classi�cation case. A DWT based

methodology has been proposed in [94] and features from decomposed coe�cients

are used for EEG signal classi�cation. With k-means clustering and multilayer

perceptron (MLP) classi�er ACC of 100%, 99.6% and 95.6% has been achieved

for epoch sets (A-E), (ABCD-E) and (AB-CD-E) classi�cation cases respectively.

Methodology in [93] resulted in a ACC of 99.31% and 98.8% for (ABCD- E) and

(AB-CD-E) sets classi�cation cases respectively. Our proposed method has achieved

a highest ACC of 99.5% for seizure and seizure-free with epochs taken from (A and

E) and sample length of 4000 samples. With a epoch length of 4000 samples, ACC

of 98.4% has been achieved for seizure, seizure-free, and normal classes classi�cation

with epochs taken from sets (A and B) for normal, (C and D) for seizure-free,

and from set (E) for seizure. The proposed method has achieved 98.00% ACC for

sets (AB-CD-E), which is better as compared to the methods proposed in [94] and

[42]. However, the proposed method achieved comparable ACC in comparison to

the method proposed in [93] for sets (AB-CD-E). Similarly, the proposed method

achieved 98.00% ACC for sets (A-D-E) which is superior to the methods presented

in [95] and [96]. Therefore, it can be stated that the proposed method is suitable

for epileptic seizure EEG signal classi�cation for di�erent combination of sets.
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4.1 Summary

Iterative �ltering, a variant of EMD, is used for signal decomposition in this work.

Features extracted from AE-IF functions of signal IMFs are used for classi�cation

of EEG signals. Two and three classes classi�cation, for various cases of clinical

importance, have been done. Values of parameters obtained using classi�ers with

ten-fold cross validation are tabulated in Table 4.2. The obtained p-values of the

features, by performing KW test on feature set, are tabulated in Table 4.1. A

comparative study of our methodology and other proposed works on same database

is tabulated in Table 4.3 and Table 4.4 for di�erent classi�cation cases. Our proposed

method has proved to be quite e�cient for the studied cases. On comparison of ACC

obtained using random forest classi�er, Nave Bayes, and C4.5 decision tree, random

forest has given best results.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Non-stationary nature of EEG signal requires an e�cient signal analysis technique

for gaining a key insight to brain functioning, classi�cation of epileptic and normal

durations of EEG recordings, identi�cation of epileptic zone for pre-surgical

patients, and to deduce the absence of epileptic seizure. In our work we have used

an online available EEG data set. Iterative �ltering is used for decomposition of

EEG epochs into their respective IMFs. From these obtained IMFs, features with

good discriminative strength are selected on the basis of p-values obtained using

KW test. Obtained features are given to classi�ers for classi�cation of EEG

epochs. In our work we have used three classi�ers namely, random forest classi�er,

J48 classi�er, and Naïve Bayes classi�er. We have obtained highest ACC of 99.5%

for a two class problem, normal and seizure classes (sets (A-E)), and 98% for a

three class problem normal, seizure-free, and seizure classes (sets (AB-CD-E))

using random forest classi�er with epoch lengths of 4000 samples. All the

mentioned cases are also tested for di�erent epoch lengths of 2000, 1000, and 500

samples and results obtained in terms of classi�er parameters have been tabulated.

It is observed that with decreasing the sample length ACC also decreases. Also we

have compared random forest classi�er and Nave Bayes classi�ers on the basis of

ACC. Comparison result shows that random forest classi�er has a better

classi�cation ability than Naïve Bayes classi�er for the feature set obtained in our
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work. Variation of ACC using di�erent number of trees in random forest

classi�cation has also been reported in this thesis. ACC obtained using EMD and

our methodology on same database have also been compared. The comparison of

ACC, obtained by using proposed methodology with EMD and iterative �ltering

for decomposition, has been reported. A slightly higher ACC has been obtained

using iterative �ltering. Therefore, iterative �ltering can be further explored for

better results. Several other features can be extracted using AE and IF functions.

5.2 Future work

Classi�cation accuracy for 3 class problem, sets (AB-CD-E), can be further

increased by combining our feature set with other non-linear features. Changing of

mask length by tuning the length parameter λ a�ects the nature of decomposed

modes. So, iterative �ltering can be explored for better decomposition of signal,

which can be used for extraction of more discriminative features. This can increase

the ACC for smaller epoch length, which will help in automated epileptic seizure

prediction with small number of samples available. Tuning of mask length can also

provide a method to use iterative �ltering for real time non-stationary signal

processing. Adapted methodology can also be used for classi�cation of long

duration EEG signals, which will be helpful in long term monitoring. Other

biomedical signals like speech, ECG, EMG etc. can be analysed using proposed

methodology. Hardware implementation of methodology can also be done for real

time EEG classi�cation.
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