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Abstract

Ramanujan’s notebooks contain many elegant identities and one of the well-

known identities is a formula for ζ(2k+1). Grosswald [8] gave an extension of the

aforementioned formula for ζ(2k+1) which contains a polynomial of degree 2k+2.

This polynomial is now known as the Ramanujan polynomial R2k+1(z). Murty,

Smith and Wang [10] proved that all the complex zeros of R2k+1(z) lie on the

unit circle. Recently, Chourasiya, Jamal, and Maji [5] found a new polynomial

while obtaining a Ramanujan-type formula for Dirichlet L-function and named it

as Ramanujan-type polynomial R2k+1,p(z). In the same paper, they conjectured

that all the complex zeros of R2k+1,p(z) will lie on the unit circle. One of the

main goals of this thesis is to present a proof of their conjecture.
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CHAPTER 1

Prerequisites

1.1 Bernoulli numbers and its properties

The history of Bernoulli numbers goes back to the problem of finding a formula

for the sum of kth powers of first ‘n − 1’ natural numbers. The coefficient of

‘n’ in the formula is defined as the kth Bernoulli number Bk. So it is clear that

all the Bernoulli numbers are rational, as we know that the sum of kth power

of first ‘n − 1’ natural numbers is a polynomial of degree ‘k + 1’ with rational

coefficients. The sequence of Bernoulli numbers can also be obtained from the

following generating function:

z

ez − 1
=
∞∑
k=0

ckz
k, |z| < 2π, (1.1)

where

ck =
Bk

k!
.
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A few Bernoulli numbers are listed below.

{Bk}∞k=0 =

{
1,−1

2
,
1

6
, 0,− 1

30
, 0,

1

42
, 0,− 1

30
, 0,

5

66
, · · ·

}
.

Definition 1.1. For k ∈ N and x ∈ R, Bernoulli polynomials Bn(x) are defined

as
zezx

ez − 1
:=

∞∑
n=0

Bn(x)zn

n!
|z| < 2π. (1.2)

Now we mention some properties of Bernoulli polynomials which are going

to be handy in proving our main results.

Bk(1) = Bk(0) = Bk, ∀k 6= 1, (1.3)

Bk

(
1

2

)
= (21−k − 1)Bk, (1.4)

B2k−1

(
1

2

)
= 0, ∀k, (1.5)

B2k = (−1)k+1|B2k|. (1.6)

(1.7)

The following bounds [1, p. 805] hold for Bernoulli numbers.

Lemma 1.1. For n ∈ N, we have

2(2n)!

(2π)2n
< |B2n| <

2(2n)!

(2π)2n(1− 21−2n)
. (1.8)

We are now going to mention one useful identity about the convolution of

Bernoulli polynomials [7, p. 31, eq. (3.2)].

Lemma 1.2. For m ∈ N, we have
m∑
j=0

(
m

j

)
Bj(a)Bm−j(b) = m(a+ b+ 1)Bm−1(a+ b)− (m− 1)Bm(a+ b).

1.2 Riemann zeta function

The German mathematician Bernhard Riemann [14], in 1859, instigated Riemann

zeta function while he was trying to understand the behavior of prime numbers.
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The theory of the zeta function continuously motivated mathematicians to produce

many elegant results. This zeta function is considered as one of the most important

special functions in number theory due to its enormous applications in different

branches of mathematics. This zeta function is defined as

ζ(s) :=
∞∑
n=0

1

ns
, <(s) > 1. (1.9)

The analytic continuation of ζ(s) to the whole complex plane except at s = 1 has

been shown by Riemann. Moreover, he showed that ζ(s) satisfies the following

beautiful functional equation:

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s). (1.10)

In the same paper, he conjectured that all the non trivial zeros of ζ(s) will lie on

the line <(s) = 1
2
. This conjecture turned into the most celebrated hypothesis

known as the Riemann hypothesis, which is one of the long standing Millennium

Problems.

An exact formula for ζ(2k) was established by Euler. He represented the

following formula for all even zeta values, for k ∈ N,

ζ(2k) = c2kπ
2k, (1.11)

where c2k = (−1)k+1 22kB2k

2(2k)!
. The above identity instantly gives transcendentality

of ζ(2k). But we dot know a similar looking an exact formula for ζ(2k + 1).

1.3 Reciprocal polynomials and their properties

In this thesis, our main results mostly concern with a special type of polynomials,

namely, reciprocal polynomials. So we begin with the following definition.

Definition 1.2. Given an nth degree polynomial

p(z) = a0 + a1z + a2z
2 + . . .+ anz

n,

where a0, a1,. . . an are from any arbitrary field, we say that p(z) is reciprocal or

self-inverse polynomial, if there exists a fixed complex number ω such that |ω| = 1

3



so that,

p(z) = ωp∗(z),

where

p∗(z) =znp̄

(
1

z̄

)
= ān + ān−1z + . . .+ ā0z

n.

Looking at the definition of reciprocal polynomial, we can make the following

observations. The coefficients of a self-inverse or reciprocal polynomial satisfy the

relation

aj = ωān−j.

For a reciprocal polynomial with real coefficients the following observation can

be easily made. Let p(x) ∈ R[x] be a non-zero polynomial of degree n with

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n.

We say that p(x) is reciprocal polynomial if and only if

xnp

(
1

x

)
= an + an−1x+ an−2x

2 + . . .+ a0x
n = p(x).

That implies that the coefficients of real reciprocal polynomials satisfy

ak = an−k, ∀ k = 0, 1, · · · , n.

Let us illustrate the reciprocal polynomials with some examples.

Example 1.1 (Examples of some reciprocal polynomials). For x ∈ R and z ∈ C

p1(x) = 1 + 7x2 + 3x3 + 7x4 + x5,

p2(z) = z4 +
(

1√
2

+ i1
2

)
z3 + 7z2 + z +

(
1√
2

+ i 1√
2

)
.
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CHAPTER 2

Ramanujan type polynomials

2.1 Ramanujan’s formula for ζ(2n + 1)

Srinivasa Ramanujan (1887 - 1920) is considered as one of the most genius

mathematicians of all time. He has enormous contribution in the field of number

theory. Ramanujan has gifted many elegant formulas to the world of mathematics

throughout his life, especially in his famous notebooks and lost notebook. In the

second notebook [33, p. 173, Ch. 14, Entry 21(i)] as well as in the lost notebook

[34, p. 319, Entry (28)], Ramanujan mentioned the following remarkable identity

about ζ(2k + 1): For a > 0 and b = π2

a
and non-zero integer k, we have

Gk(a) = (−1)kGk(b)− 22k

k+1∑
j=0

(−1)j−1
B2j

(2j)!

B2k+2−2j

(2k + 2− 2j)!
ak+1−jbj, (2.1)

where

Gk(x) = x−k

{
1

2
ζ(2k + 1) +

∞∑
n=0

n−2k−1

e2xn − 1

}
.
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In 1972, Emil Grosswald [8] gave a notable extension of Ramanujan’s formula

(2.1). Let us recall the divisor function σz(m) =
∑

d|m d
z for any z ∈ C. For

ξ ∈ H, k ∈ Z− {0}, we define

Fk(ξ) :=
∞∑
n=1

σ−k(n)e2πinξ.

Then we have

F2k+1(ξ)− ξ2kF2k+1

(
−1

ξ

)
=

1

2
ζ(2k + 1)(ξ2k − 1)

+
(2πi)2k+1

2ξ

k+1∑
j=0

ξ2k+2−2j B2j

(2j)!

B2k+2−2j

(2k + 2− 2j)!
, (2.2)

Substituting ξ = ib/π, ab = π2, with a, b > 0, the identity (2.2) is same as

Ramanujan’s identity (2.1) for ζ(2k+ 1). Later Gun, Murty and Rath [9] studied

the finite sum involving Bernoulli numbers present on the right hand side of (2.2)

and named it as Ramanujan polynomial. In the following section, we will discuss

the properties of Ramanujan polynomials in detail.

2.2 Ramanujan polynomials

Definition 2.1. For k ∈ N and z ∈ C, the Ramanujan polynomials are defined

as follows:

R2k+1(z) :=
k+1∑
j=0

z2k+2−2j B2j

(2j)!

B2k+2−2j

(2k + 2− 2j)!
. (2.3)

Let us look at some examples of the Ramanujan polynomials followed by

their properties studied by Murty, Symth and Wang [10], in order to get a good

idea about them.

Example 2.1 (Ramanujan polynomials). A few examples of Ramanujan polynomials

are listed below.

R1(z) = 1
2·3!(z

2 + 1),

zeros of R1(z)are : ±i.

R3(z) = 1
6!

(−z4 + 5z2 − 1),
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zeros of R3(z)are : ±
√

5±
√
21

2
.

R5(z) = 1
12·7!(−2z6 + 7z4 + 7z2 − 2),

zeros of R5(z)are : ±i,±
√

9±
√
65

4
.

R7(z) = 1
10!

(−3z8 + 10z6 + 7z4 + 10z2 − 3),

zeros of R7(z)are : ±ρ, ±ρ̄,±
√

13±
√
133

6
.

R9(z) = 1
10!

(10z10 − 33z8 − 22z6 − 22z4 − 33z2 + 10),

zeros of R9(z)are : ±i, ±
√

43
40

+ 3
√
210
40
± 1

2

√
1029
200

+ 129
√
210

200
, ±
√

43
40
− 3

√
210
40
± i

2

√
−1029
200

+ 129
√
210

200
,

where ρ = −1
2

+
√
3
2
i.

Properties of Ramanujan polynomials

In the paper [10], the authors proved some properties of Ramanujan polynomials

which motivated us to look for similar behaviour for Ramanujan-type polynomials.

Upon looking at the characteristics of Ramanujan polynomials we observe that

indeed they resemble with the characteristics of Ramanujan-type polynomials.

Here we mention some characteristics of Ramanujan polynomials and their similarity

with the Ramanujan-type polynomials.

Theorem 2.1. Ramanujan polynomials R2k+1(z) are self-inverse.

Later we will see that Ramanujan-type polynomials R2k+1,p(z) are also self-

inverse.

Theorem 2.2. The largest real root of Ramanujan polynomial R2k+1(z) approaches

2 and does not surpass 2.2 as k →∞.

Subsequently, we will prove that that for any prime number p and k ∈ N,

R2k+1,p(z) has only one repeated real root which is 0.

Theorem 2.3. All complex roots of Ramanujan polynomial R2k+1(z) lie on unit

circle.

7



In this thesis, we will prove that all the complex roots of R2k+1,p

(
z
p

)
are

on the unit circle.

2.3 Ramanujan-type polynomials

After discussing about Ramanujan polynomials and their properties, now we are

ready to define Ramanujan-type polynomials. Recently Chourasiya, Jamal and

Maji [5] found a new polynomial which is an analogue of Ramanujan polynomial

R2k+1(z), they named it as Ramanujan-type polynomial. Let us define Ramanujan-

type polynomials formally.

Definition 2.2. Let k ∈ N, z ∈ C and p be any prime number,

R2k+1,p(z) :=
k∑
j=1

(p2j − 1)(p2k+2−2j − 1)
B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
(pz)2k+2−2j. (2.4)

In the same paper [5, p. 7] authors have given one conjecture about the

R2k+1,p(z).

Conjecture 1. For k ∈ N and p be any prime number, the only real root of

Ramanujan-type polynomial R2k+1,p(z) is z = 0 of multiplicity 2. Also the non-

real roots are simple with all of them lying on the circle |z| = 1
p
.

In this thesis, we prove this conjecture. Next we illustrate some examples

of R2k+1,p(z).

Example 2.2 (Ramanujan-type polynomials). For k ∈ {1, 2, 3, 4} and fixing

p = 2 and p = 3.

R3,2(z) = z2

4
,

zeros : 0, 0.

R5,2(z) = − z4

12
− z2

48
,

zeros : 0, 0,± i
2
.
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R7,2(z) = z6

30
+ z4

144
+ z2

480
,

zeros : 0, 0,±
√
− 5

48
− i
√
119
48

,±
√
− 5

48
+ i
√
119
48

.

R9,2(z) = −17z8

1260
− z6

360
− z4

1440
− 17z2

80640
,

zeros : 0, 0,± i
2
,±
√

3
136
− i
√
1147
136

,±
√

3
136

+ i
√
1147
136

.

R3,3(z) = 4z2,

zeros : 0, 0.

R5,3(z) = −6z4 − 2z2

3
,

zeros : 0, 0,± i
3
.

R7,3(z) = 117z6

10
+ z4 + 13z2

90
,

zeros : 0, 0,±
2
3
+i√
13
,±

2
3
−i√
13
.

R9,3(z) = −3321z8

140
− 29z6

20
− 13z4

60
− 41z2

1260
,

zeros : 0, 0± i
3
,±
√

16
1107
− i
√
14873
110

,±
√

16
1107

+ i
√
14873
110

.

9



CHAPTER 3

Main Results

In this chapter, we state a few results that we found while observing the behavior

of Ramanujan-type polynomials. First we mention the conjecture given by Chourasiya,

Jamal and Maji [5, p. no. 7], which is our main theorem.

Theorem 3.1. For k ∈ N and any prime number p, the only real root of

Ramanujan-type polynomial

R2k+1,p(z) =
k∑
j=1

(p2j − 1)(p2k+2−2j − 1)
B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
(pz)2k+2−2j, (3.1)

is at z = 0 of multiplicity 2. Moreover, all the non-real roots are simple and lie

on the circle |z| = 1
p
.

Let us mention some important lemmas in this direction.

Lemma 3.2. Let fp : [0, 2k − 2]→ R be a function defined as

fp(x) := (px+2 − 1)(p2k−x − 1), (3.2)

where k ≥ 1 and p be any prime number. Then fp(x) has its minima at x =

0, 2k − 2, with the same minimum value (p2 − 1)(p2k − 1) at both of the points.

10



Proof of Lemma 3.2. For a fixed prime p and k ≥ 1, we have defined

fp(x) := (px+2 − 1)(p2k−x − 1).

Computing derivatives with respect to x, we have

f ′p(x) = −px+2 log(p) + p2k−x log(p),

⇒ f ′′p (x) = −
(
px+2 + p2k−x

)
log2(p).

We can check easily that f ′′p (x) is always negative in the given domain, so all the

extrema points obtained by equating f ′p(x) to zero will correspond to the local

maximum values. Now we find extrema points of the function fp(x) by equating

f ′p(x) to zero, that is,

f ′p(x) = 0⇒ px+2 = p2k−x.

Therefore,

x = k − 1.

Thus, x = k−1 is the only local maxima point in the interval [0, 2k−2]. Since the

function is continuously differentiable, so we conclude that x = 2k− 2 and x = 0

are the only points of minima. Moreover,

fp(0) = fp(2k − 2) = (p2 − 1)(p2k − 1).

Hence the result follows.

Lemma 3.3. Let p be a fixed prime number. The function g : [0, 2k − 2] → R

defined as

g(x) :=
(px+2 − 1)

(2x+2 − 1)

(p2k−x − 1)

(22k−x − 1)
, ∀k ≥ 1, (3.3)

has an upper bound (pk+1−1)2
3(22k−1) .

Proof of Lemma 3.3. We can write g(x) in terms of fp(x) as follows:

g(x) =
fp(x)

f2(x)
.

Therefore, the ratio of maximum value of fp(x) and the minimum value of f2(x)

will provide us the upper bound for g(x). From Lemma 3.2, we know that the

11



maxima of fp(x) is attained at x = k − 1 and the corresponding maximum value

is,

fp(k − 1) = (pk+1 − 1)2. (3.4)

Also the minimum value of fp(x) is attained at x = 0 and in particular for p = 2

the minimum value will be,

f2(0) = (22 − 1)(22k − 1) = 3(22k − 1). (3.5)

Hence, from (3.4) and (3.5), we have

g(x) ≤ (pk+1 − 1)2

3(22k − 1)
.

12



CHAPTER 4

Some well known results

In this chapter, we mention some familiar results which are going to be useful in

proving the main theorem.

Theorem 4.1 (Lakatos [11]). If a reciprocal polynomial

p(x) =
k∑
i=0

aix
i

of degree k with real coefficients satisfies the condition

|ak| ≥
k∑
i=0

|ai − ak|, (4.1)

then the polynomial p(x) certainly bears all its zeros on the unit circle. If the

inequality (4.1) is strict then the multiplicity of all the zeros of p(x) is one.

Later, this theorem has been modified by many mathematicians, thus the

condition (4.1) for reciprocal polynomials has many improvements. Schinzel [16]

gave one generalization of Theorem 4.1 for any reciprocal polynomial over C.

13



Theorem 4.2 (Schinzel [16]). Let p(z) be a reciprocal polynomial, say,

p(z) =
k∑
j=0

ajz
j

of degree k with aj ∈ C,∀j. If

|ak| ≥ inf
c,d∈C
|d|=1

k∑
j=0

|caj − dk−jak|, (4.2)

then all the zeros of p(z) will be located on |z| = 1.

In 2011, Lalin and Roger [13] used these above mentioned theorems to prove

that various reciprocal polynomials have all their roots on |z| = 1.

Theorem 4.3 (Lalin and Roger [13]). If Bn denotes the nth Bernoulli number,

then for k ≥ 2 the polynomial

Pk(z) = π2k

k∑
j=0

(22j − 1)(22k−2j − 1)
B2jB2k−2j

(2j)!(2k − 2j)!
zj, (4.3)

is a reciprocal polynomial with all its complex zeros lying on |z| = 1.

For p = 2, our Theorem 3.1 resembles with Theorem 4.3, so we can easily

observe that Theorem 4.3 is a particular case of our main Theorem 3.1. This

encouraged us to prove Theorem 3.1 for any prime number p.

14



CHAPTER 5

Proof of main theorem

Before proving our main theorem, we need the following lemma.

Lemma 5.1. For k ∈ N, we have

|Ak−1| ≥ inf
c,d∈C
|d|=1

k−1∑
j=0

|cAj − dAk−1|,

where Aj is the (2k − 2− 2j)th coefficient of z−2R2k+1,p

(
z
p

)
.

Proof. By appropriate shifting, from the definition (3.1) of R2k+1,p(z), we can

write

R2k+1,p(z) =
k−1∑
j=0

(p2j+2 − 1)(p2k−2j − 1)
B2j+2B2k−2j

(2j + 2)!(2k − 2j)!
(pz)2k−2j. (5.1)

Replacing z by z
p
, we have

R2k+1,p

(
z

p

)
= z2

k−1∑
j=0

(p2j+2 − 1)(p2k−2j − 1)
B2j+2B2k−2j

(2j + 2)!(2k − 2j)!
(z)2k−2−2j

= z2H(z), (5.2)

15



where H(z) is defined as

H(z) :=
k−1∑
j=0

(p2j+2 − 1)(p2k−2j − 1)
B2j+2B2k−2j

(2j + 2)!(2k − 2j)!
(z)2k−2−2j. (5.3)

We denote the coefficient of z2k−2−2j in (5.3) as

Aj = (p2j+2 − 1)(p2k−2j − 1)
B2j+2B2k−2j

(2j + 2)!(2k − 2j)!
. (5.4)

Now we show that the polynomialH(z) satisfies Theorem 4.2, that is, the coefficients

of H(z) satisfy the following inequality:

|Ak−1| ≥ inf
c,d∈C
|d|=1

k−1∑
j=0

|cAj − dk−1−jAk−1|. (5.5)

In particular, for d = 1, we only need to show

|Ak−1| ≥
k−1∑
j=0

|cAj − Ak−1|. (5.6)

Using the lower bound for Bernoulli numbers i.e., Lemma 1.1 in (5.3), we have

|Aj| = (p2j+2 − 1)(p2k−2j − 1)
|B2j+2||B2k−2j|

(2j + 2)!(2k − 2j)!

>
4(p2j+2 − 1)(p2k−2j − 1)

(2π)2k+2
. (5.7)

Similarly, using the upper bound for B2k, we get

|Ak−1| = (p2k − 1)(p2 − 1)
|B2k||B2|
(2k)!2!

< (p2k − 1)(p2 − 1)
2.(2k)!

(2π)2k(1− 21−2k)(2k)!

2.2!

(2π)2(1− 21−2)2!

=
8(p2k − 1)(p2 − 1)

(2π)2k+2(1− 21−2k)
. (5.8)

Since the sign of B2n is (−1)n+1, thus the sign of Aj is (−1)k+1,∀ j. Therefore,

|cAj − Ak−1| = (−1)k+1(cAj − Ak−1).

Now we shall try to find a value of positive c for which

|cAj − Ak−1| = (−1)k+1(cAj − Ak−1) > 0

⇔ c|Aj| − |Ak−1| > 0. (5.9)
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Now use properties (1.3), (1.4) of Bernoulli numbers to see that

B2j+2

(
1

2

)
−B2j+2(0) = B2j+2(2

1−2j−2 − 1)−B2j+2 = B2j+2(2
1−2j−2 − 2)

⇒ B2j+2 =
B2j+2(

1
2
)−B2j+2(0)

2(2−2j−2 − 1)
. (5.10)

Similarly,

B2k−2j =
B2k−2j(

1
2
)−B2k−2j(0)

2(2−2k+2j − 1)
. (5.11)

Now employing the above identities (5.10) and (5.11) in (5.26), we obtain

Aj =(p2j+2 − 1)(p2k−2j − 1)
B2j+2B2k−2j

(2j + 2)!(2k − 2j)!

=

(
2k + 2

2j + 2

)
(p2j+2 − 1)(p2k−2j − 1)

B2j+2B2k−2j

(2k + 2)!

=

(
2k + 2

2j + 2

)
(p2j+2 − 1)(p2k−2j − 1)

(2k + 2)!

B2j+2(
1
2
)−B2j+2(0)

2(2−2j−2 − 1)

B2k−2j(
1
2
)−B2k−2j(0)

2(2−2k+2j − 1)
.

(5.12)

Recall that the sum on the right hand side of (5.6) is
k−1∑
j=0

|cAj − Ak−1| = (−1)k+1

k−1∑
j=0

(cAj − Ak−1) .

Using (5.12), we can write

(−1)k+1

k−1∑
j=0

cAj =
k−1∑
j=0

c|Aj|

=
k−1∑
j=0

c

(
2k + 2

2j + 2

)
(p2j+2 − 1)(p2k−2j − 1)

(2k + 2)!

∣∣∣∣∣B2j+2(
1
2
)−B2j+2(0)

2(2−2j−2 − 1)

B2k−2j(
1
2
)−B2k−2j(0)

2(2−2k+2j − 1)

∣∣∣∣∣
=

k−1∑
j=0

D(j)

(
2k + 2

2j + 2

)∣∣∣∣∣
(
B2j+2

(
1

2

)
−B2j+2(0)

)(
B2k−2j

(
1

2

)
−B2k−2j(0)

) ∣∣∣∣∣,
(5.13)

where

D(j) =
c

4(2k + 2)!

(p2j+2 − 1)(p2k−2j − 1)

(2−2j−2 − 1)(2−2k+2j − 1)
=

22kc

(2k + 2)!

(p2j+2 − 1)

(22j+2 − 1)

(p2k−2j − 1)

(22k−2j − 1)
.

(5.14)

Using the definition (3.3) of g(x) and Lemma 3.3, one can find the following upper
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bound for D(j):

D(j) =
22kc

(2k + 2)!
g(2j) <

22kc

(2k + 2)!

(pk+1 − 1)2

3(22k − 1)
. (5.15)

Utilize (5.15) in (5.13) to obtain
k−1∑
j=0

c|Aj| <
22kc

(2k + 2)!

(pk+1 − 1)2

3(22k − 1)

k−1∑
j=0

(
2k + 2

2j + 2

)
∣∣∣∣∣
(
B2j+2

(
1

2

)
−B2j+2(0)

)(
B2k−2j

(
1

2

)
−B2k−2j(0)

) ∣∣∣∣∣. (5.16)

Now we will use Lemma 1.2 to calculate the value of the sum given in (5.16).

That is,

k−1∑
j=0

(
2k + 2

2j + 2

)∣∣∣∣∣
(
B2j+2

(
1

2

)
−B2j+2(0)

)(
B2k−2j

(
1

2

)
−B2k−2j(0)

) ∣∣∣∣∣
= (−1)k−1

k−1∑
j=0

(
2k + 2

2j + 2

)[
B2j+2

(
1

2

)
B2k−2j

(
1

2

)
−B2j+2

(
1

2

)
B2k−2j(0)

−B2j+2(0)B2k−2j

(
1

2

)
+B2j+2(0)B2k−2j(0)

]
= (−1)k4(2k + 1)(1− 2−2k−2)B2k+2. (5.17)

Employing (5.17) in (5.16), we get
k−1∑
j=0

c|Aj| <
22k+2c

(2k + 2)!

(pk+1 − 1)2

3(22k − 1)
(2k + 1)(1− 2−2k−2)|B2k+2|. (5.18)

Our main aim is to find a positive c such that (5.6) holds. From (5.6), we have

|Ak−1| >
k−1∑
j=0

|cAj − Ak−1|

⇒ (−1)k+1Ak−1 > (−1)k+1

k−1∑
j=0

(cAj − Ak−1)

⇒ (1 + k)(−1)k+1Ak−1 > (−1)k+1

k−1∑
j=0

cAj

⇒ (1 + k)|Ak−1| >
k−1∑
j=0

c|Aj|. (5.19)

To prove (5.19), we shall show that the left hand side of (5.19) is bigger than the
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upper bound of
∑k−1

j=0 c|Aj|, which we have already found in (5.18). So we need

to find a positive c such that the following inequality holds:

(1 + k)|Ak−1| >
c

(2k + 2)!

(pk+1 − 1)2

3(22k − 1)
(2k + 1)(22k+2 − 1)|B2k+2|. (5.20)

This implies that c should satisfy the below inequality:

3(1 + k)(22k − 1)(2k + 2)!|Ak−1|
(2k + 1)(pk+1 − 1)2(22k+2 − 1)|B2k+2|

> c. (5.21)

Moreover, using the lower bound (5.7) of |Ak−1| and upper bound (1.1) for |B2k+2|,

one can show that

3(1 + k)(22k − 1)(2k + 2)!|Ak−1|
(2k + 1)(pk+1 − 1)2(22k+2 − 1)|B2k+2|

> cp,k (5.22)

where

cp,k :=
(1 + k)(p2k − 1)(p2 − 1)(22k − 1)(22 − 1)(22k+1 − 1)

22k(2k + 1)(pk+1 − 1)2(22k+2 − 1)
. (5.23)

Note the constant cp,k is a positive constant. Thus for any positive c < cp,k will

satisfy the equation (5.19). This proves the inequality (5.6) for the polynomial

H(z) and consequently the result follows.

Now we are ready for proving the main theorem.

Proof of Theorem 3.1. From (5.2), we know

R2k+1,p

(
z

p

)
= z2

k−1∑
j=0

(p2j+2 − 1)(p2k−2j − 1)
B2j+2B2k−2j

(2j + 2)!(2k − 2j)!
(z)2k−2−2j

= z2H(z), (5.24)

where H(z) is defined as

H(z) =
k−1∑
j=0

Ajz
2k−2−2j, (5.25)

and

Aj = (p2j+2 − 1)(p2k−2j − 1)
B2j+2B2k−2j

(2j + 2)!(2k − 2j)!
. (5.26)

We can easily check that Aj and Ak−1−j are same. Hence the Ramanujan-type

polynomial (5.24) is reciprocal. Now from equation (5.24), we can easily see that

R2k+1,p

(
z
p

)
has degree 2k containing only even powers of z, with z2 being the

least power of z. Therefore, R2k+1,p

(
z
p

)
has a real zero at z = 0 of multiplicity
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2. Utilizing Lemma 5.1, we can see that H(z) satisfies Theorem 4.2, so we can

conclude that H(z) has all its roots on the unit circle. Also, since the inequality

(5.6) is strict so all the zeros of H(z) are simple. Thus, the Ramanujan-type

polynomial R2k+1,p

(
z
p

)
has all the zeros on the unit circle except z = 0.

Next we show that there is no real root except zero. Let us suppose

R2k+1,p

(
z
p

)
has a real root except z = 0, then by Lemma 5.1 it will be on

the unit circle. Consequently, the possibility of the non-trivial real root will be

either z = 1 or z = −1 or both. So, putting z = 1 in (5.3), we get

H(1) = 0,

⇒
k−1∑
j=0

(p2j+2 − 1)(p2k−2j − 1)
B2j+2B2k−2j

(2j + 2)!(2k − 2j)!
= 0,

⇒
k−1∑
j=0

Aj = 0. (5.27)

We have already seen that the sign of Aj is (−1)k+1 for all j. Note that all even

Bernoulli numbers are never zero, therefore depending on the parity of k the sum∑k−1
j=0 Aj is either negative or positive. This is a contradiction to (5.27). This

completes the proof that z = 1 is not a root of H(z). Also, since H(z) is an even

function, so by the same argument we can conclude that z = −1 is not a root

of H(z) as well. Hence, all roots of H(z) are complex and simple, and lie on the

unit circle. This completes the proof.
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