
Möbius Transformation and the Cassinian

Metric

M.Sc. Thesis

by

Arun Kumar

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY INDORE

JUNE 2023





Möbius Transformation and the Cassinian Metric

A THESIS

Submitted in partial fulfillment of the requirements for the award of the degree of

Master of Science

by

Arun Kumar

(Roll No.2103141013)

Under the guidance of

Prof. Swadesh Kumar Sahoo

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY INDORE

JUNE 2023





INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled
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Abstract

In this thesis, we mainly consider Möbius transformations and the Cassinian met-

ric in the complex plane. In view of the importance of the hyperbolic metric on

the unit disk, we have focused on some results associated with Möbius transfor-

mation, the Cassinian metric and the hyperbolic metric.

The concept of inverse (or symmetric) points in circles plays a crucial role

in Möbius transformation setting. Some of the basic results such as Ptolemy’s

identity, characterization of disk automorphism, finding Möbius transformations

from a pair of circles onto concentric circles, are proved using the concept of

inverse points in circles.

The construction of the Cassinian distance between two points in a subdo-

main of the complex plane is studied in two ways: (i) identifying the maximal

Cassinian ovals inside the domain with the two points as its foci, and (ii) com-

puting the Euclidean distance between the inversions of those two points in the

unit circle circle centred at the boundary point at which the maximal Cassinian

oval meets. Various classical properties of the Cassinian metric are presented.

Some of them are listed below:
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• The Cassinian metric defines a complete metric in bounded domains.

• The Cassinian metric is not Möbius invariant, however, it is Möbius quasi-

invariant.

• The geodesics of the Cassinian metric, if exist, are nothing but part of some

circular arcs.

Note that the hyperbolic metric is Möbius invariant whereas we already stated

that the Cassinian metric does not satisfy the Möbius invariant property. There-

fore, it is important to investigate how these two metrics are comparable. The

thesis is ended with such comparisons followed by some problems for future di-

rections.
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CHAPTER 1

Introduction

This thesis comprises of six chapters. The present chapter is of introductory

type. The second chapter contains certain elementary properties and examples

on Möbius transformations. The Cassinian metric, with it computations and

several basic properties, is considered in Chapter 3. Most of the main results

that we wish to highlight are covered in Chapter 4. The Poincare’s hyperbolic

metric of the unit disk, which got special attention in Chapter 5, is compared

with the Cassinian metric. Finally, the last chapter concludes the thesis.

The Möbius transformation is one of the important mappings in complex

analysis. This map is composed with certain elementary transformations such

as translation, rotation, magnification, inversion. The concept of cross ratio and

inverse (or symmetric) points play crucial roles in Möbius transformation setting.

Both the concepts have interesting geometric behaviours. For instance, a Möbius

transformation carries circles onto circles. Here, a circle with infinite radius is

treated as a straight line. Also, the classical Ptolemy’s identity which states that
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the product of two diagonals in a quadrilateral equals the sum of product of its

two opposite sites provided the four vertices lie on a circle. This can also be

proved by using the idea of symmetric points in a circle. One of the important

applications of the classical symmetric principle is that it characterizes the most

general Möbius transformation of the unit disk onto itself and to half-planes.

Moreover, reflection of a circle in another circle can also be computed. This idea

also helps us to find Möbius transformations from a pair of circles onto concentric

circles.

The Cassinian metric [5] was introduced by Ibragimov in 2009 and it was fur-

ther considered later in different prospectives (see [4, 9]). The classical Cassinian

ovals play important roles in computing the Cassinian metric. The Cassinian

ovals are very important in real life problems (see [7, 10]). Some of the applica-

tions are listed in Chapter 3. It defines a complete metric in bounded domains.

This metric is not Möbius invariant, however, it is Möbius quasi-invariant. The

geodesics of the Cassinian metric, if exist, are nothing but part of some circular

arcs. One may ask a question about how the Cassinian metric is compared with

the Poincare’s hyperbolic metric [8] on the unit disk. Note that the hyperbolic

metric is Möbius invariant whereas we already stated that the Cassinian metric

does not satisfy the Möbius invariant property. Therefore, it is important to in-

vestigate how these two metrics are comparable. The thesis is ended with such

comparisons followed by some problems for future directions.

We now list some of the common notations that are used in this thesis. The

symbols R and C respectively stand for the real line and complex plane. The

extended complex plane or the Riemann sphere is denoted by C∞ = C ∪ {∞}.

The disk centered at a with radius r is denoted by D(a, r) and its boundary

circle is denoted by S(a, r). We denote by D := D(0, 1), the unit disk, and by

S := S(0, 1), the unit circle.
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CHAPTER 2

Möbius Transformation

2.1 Definition

A Möbius transformation (linear fractional transformation or bilinear transfor-

mation) is a rational function of the form

T (z) =
az + b

cz + d
, ad− bc 6= 0,

where a, b, c, d are complex numbers. In general, it is a function T : C∞ → C∞
defined by

T (z) =



az + b

cz + d
, z ∈ C \ {−d/c};

a

c
, z =∞;

∞, z = −
d

c
;
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where a, b, c, d ∈ C with ad − bc 6= 0. The Möbius transformation T (z) is well-

defined and bijective. Indeed, we have

T (z1) = T (z2)⇐⇒
az1 + b

cz1 + d
=
az2 + b

cz2 + d

⇐⇒ acz1z2 + adz1 + bcz2 + bd = acz1z2 + bcz1 + adz2 + bd

⇐⇒ (ad− bd)z1 = (ad− bc)z2

⇐⇒ z1 = z2,

since ad− bc 6= 0. This shows that T is well-defined and one-one.

Secondly, w = T (z) has exactly one root and we have

z = T−1(w) =
dw − b
−cw = a

, ad− bc 6= 0.

Thus, T is also onto.

The following elementary transformations are nothing but special cases of

Möbius transformation:

• Translation: T (z) = z + b;

• Dilation/Magnification: T (z) = az, a 6= 0;

• Rotation: T (z) = αz, |α| = 1 or T (z) = eiθz for some θ ∈ R;

• Inversion: T (z) = 1/z.

Proposition 2.1.1. [11, pp. 66-68] A Möbius transformation is the composition

of elementary transformations.

2.2 The Cross Ratio

Given three distinct points z2, z3, z4 in C∞, there exists a transformation T which

carries them into 1, 0,∞ in this order. Such a transformation is represented in
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terms of cross ratio defined by

T (z) = (z, z2, z3, z4) =



(z − z3)(z2 − z4)
(z − z4)(z2 − z3)

, z2, z3, z4 6=∞;

z − z3
z − z4

, z2 =∞;

z2 − z4
z − z4

, z3 =∞;

z − z3
z2 − z3

, z4 =∞.

We now present some well-known results which are indeed used in the thesis.

The cross ratio is invariant under Möbius transformations. More precisely, we

have

Theorem 2.2.1. [1, p. 79] If z1, z2, z3, z4 are distinct points in C∞ and T (z) is

a Möbius transformation, then (Tz1, T z2, T z3, T z4) = (z1, z2, z3, z4).

The following theorem describes the positions of the four distinct points if

their cross ratio is real.

Theorem 2.2.2. [1, p. 79] The cross ratio (z1, z2, z3, z4) is real if and only if the

four points lie on a circle.

Proof. Let S(z) = (z, z2, z3, z4) be a Möbius transformation. It follows that

z = S−1(z, z2, z3, z4) and hence we have

S−1(R) = {z ∈ C : (z, z2, z3, z4) ∈ R}.

We shall prove that this collection is a circle. In fact, we are proving that image

of the real axis under any Möbius transformation is a circle. Let w = S−1(R).

Since Möbius transformation are bijective, there exists a point x ∈ R such that

S−1(x) = w. Thus, S(w) ∈ R. This is equivalent to S(w) = S(w). Since S(w) is

of the form (aw + b)/(cw + d), the identity S(w) = S(w) is equivalent to

(ac− ac)|w|2 + (ad− bc)w + (bc− ad)w + (bd− bd) = 0,
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which represent a circle. Indeed, after a simple computation we obtain∣∣∣∣z +
ad− cb
ac− ca

∣∣∣∣ =

∣∣∣∣ad− bcac− ca

∣∣∣∣,
which is the equation of a circle. Taking z = z1, we conclude that z1 lies on

the circle. By considering M(z) = (z1, z, z3, z4), one can similarly verify that the

collection

N−1(R) = {z ∈ C : (z1, z, z3, x4) ∈ R}

describe a circle. Choosing z = z2, we show that z2 lies on the circle. Similarly,

we can see that z3 and z4 lie on the circle. This completes the proof.

We next provide a very important geometry of Möbius transformations.

This can be proved by a general technique, however, here we provide its proof

using the concept of cross ratio. Indeed, we use Theorems 2.2.1 and 2.2.2.

Theorem 2.2.3. [1, p. 80] A Möbius transformation carries circles onto circles.

Proof. Consider a circle containing the three distinct points z2, z3, z4. Let z be an

arbitrary point on that circle. Let S(z) be a Möbius transformation. By Theorem

2.2.1, we know that the cross ratio is invariant under Möbius transformations.

Then, we have

(z, z2, z3, z4) = (S(z), S(z2), S(z3), S(z4)).

Since z, z2, z3, z4 lie on a circle, by Theorem 2.2.2, the cross ratio (z, z2, z3, z4) ∈

R and hence (S(z), S(z2), S(z3), S(z4)) ∈ R. This implies that all the points

S(z), S(z2), S(z3), S(z4) lie on a circle. Since S(z) lies on a circle and z was an

arbitrary point on the circle, conclusion follows.

As an application of Theorems 2.2.1, 2.2.2 and 2.2.3, we now provide a proof

of the classical Ptolemy’s identity (see [1, p. 80, Exc. 3]).

Theorem 2.2.4 (Ptolemy’s Theorem). If the consecutive vertices z1, z2, z3, z4 of

a quadrilateral lie on a circle, then

|z1 − z3||z2 − z4| = |z1 − z2||z3 − z4|+ |z2 − z3||z1 − z4|.
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If the vertices of the quadrilateral do not lie on a circle, then the inequality

|z1 − z3||z2 − z4| ≤ |z1 − z2||z3 − z4|+ |z2 − z3||z1 − z4|.

holds.

Figure 2.1: A cyclic quadrilateral

Remark. In the above inequality, the equality may also hold for some choices of

points z1, z2, z3, z4 not lying on a circle. Indeed, one can find four such complex

numbers. However, at this moment, we do not have a specific choices on this.

Proof of Theorem 2.2.4 Let C be the circle passing through z1, z2, z3, z4. Let

T be the Möbius transformation such that

T (z2) = 1, T (z3) = 0, T (z4) =∞.

Since the Möbius transformation T preserves C (see Theorem 2.2.3) and also all

the four points lie on C, by Theorem 2.2.2 it follows that T (z1) = a (> 1) ∈ R.

Then the invariance property of the cross ratio under a Möbius transformation

(Theorem 2.2.1) yields

(z2, z3, z1, z4) = (T (z2), T (z3), T (z1), T (z4)) = (1, 0, a,∞) =
a− 1

a
> 0.

Taking modulus on both sides, we have

|(z2, z3, z1, z4)| =
∣∣∣∣(z2 − z1)(z3 − z4)(z2 − z4)(z3 − z1)

∣∣∣∣ =
a− 1

a
. (2.1)

Further, we have

(z2, z1, z3, z4) = (T (z2), T (z1), T (z3), T (z4)) = (1, a, 0,∞) =
1

a
,

7



and thus

|(z2, z1, z3, z4)| =
∣∣∣∣(z2 − z3)(z1 − z4)(z2 − z4)(z1 − z3)

∣∣∣∣ =
1

a
. (2.2)

Adding the expressions in equations (2.1) and (2.2), we get∣∣∣∣(z2 − z1)(z3 − z4)(z2 − z4)(z3 − z1)

∣∣∣∣+

∣∣∣∣(z2 − z3)(z1 − z4)(z2 − z4)(z1 − z3)

∣∣∣∣ =
a− 1

a
+

1

a
= 1.

This implies that ∣∣∣∣(z2 − z1)(z3 − z4)(z2 − z4)(z3 − z1)

∣∣∣∣ = 1−
∣∣∣∣(z2 − z3)(z1 − z4)(z2 − z4)(z1 − z3)

∣∣∣∣
and hence∣∣∣∣(z2 − z1)(z3 − z4)(z2 − z4)(z3 − z1)

∣∣∣∣ =
|(z2 − z4)(z1 − z3)| − |(z2 − z3)(z1 − z4)|

|(z2 − z4)(z1 − z3)|
.

Equivalently, we finally obtain

|z1 − z3||z2 − z4| = |z1 − z2||z3 − z4|+ |z2 − z3||z1 − z4|.

For the inequality, we consider the vertices z1, z2, z3, z4 as complex numbers.

Then applying the triangle inequality to the simple identity

(z1 − z3)(z2 − z4) = (z1 − z2)(z3 − z4) + (z2 − z3)(z1 − z4),

we get the required inequality. �

Ptolemy’s Theorem can also be proved using the inverse point technique,

however, we skip that method of proof.

2.3 Inverse (or Symmetric) points

In order to generate the idea of inverse points with respect to a circle (which is

not a line), we need to initiate the concept of inverse points with respect to a

line.

Definition 2.3.1. (Symmetric/Inverse points with respect to a line) Let L be

a line in C. Two points z and z∗ are called the inverse points (or symmetric

points) with respect to L if L is the perpendicular bisector of [z, z∗], the line

segment joining z and z∗.

8



Definition 2.3.2. (Reflection/Inversion with respect to a line) The mapping

which carries z onto its inverse point z∗ with respect to the line L is a one-one

correspondence. This correspondence is called a reflection/inversion with respect

to L.

Example 2.3.3. The points z and z∗ = z are the inverse points with respect to

the real axis. So, the correspondence f(z) = z is the reflection/inversion with

respect to the real axis.

Using a simple high school geometry, one can easily show that

Lemma 2.3.4. Every circle passing through the inverse points z and z∗ with

respect to L intersects L at right angles.

Definition 2.3.5. (Inverse points with respect to a circle) Two points z and z∗

in C are said to be inverse points with respect to a circle Γ ⊂ C if every circle

passing through z and z∗ intersects Γ at right angles.

The following lemma says that a and 1/a are inverse points with respect to

the unit circle.

Lemma 2.3.6. [1, Exc. 5, p. 17] All circles that pass through a and 1/a intersect

the unit circle |z| = 1 at right angles.

Proof. Let |z − α| = r be an arbitrary circle that pass through a and 1/a. We

need to show that |z − α| = r and |z| = 1 are orthogonal, i.e. |α|2 = 1 + r2. By

the assumption, we compute

|a− α| = r ⇐⇒ |a|2 + |α|2 − 2Re [αa] = r2

and ∣∣∣∣1a − α
∣∣∣∣ = r ⇐⇒ 1 + |α|2|a|2 − 2Re [αa] = r2|a|2.

Solving these two equations, we obtain the required orthogonality conditions:

|α|2 = 1 + r2.

9



Geometric view of the inverse points in a circle goes like this. Let Γ be a

given circle centred at z0. If z is a point inside Γ, then the point z∗ can be located

outside Γ lying on the line L passing through z0 and z. The construction follows

like this: take a line perpendicular to L at z. This meets Γ at a point, say, P .

Then z∗ is obtained by the point of intersection of the tangent line at P and L.

See the figure below.

Figure 2.2: Construction of inverse points

For the detailed discussion about the geometric view of the inverse points z

and z∗ in a circle, first we provide a characterization which helps us to compute

z∗ when z is given.

Theorem 2.3.7. [11, p. 78] Let Γ := {ζ ∈ C : |ζ − z0| = R} be a circle. Two

points z and z∗ are inverse points with respect to Γ if and only if the following

two geometric properties hold

(i) z and z∗ are collinear with center z0;

(ii) |z − z0||z∗ − z0| = R2.

Proof. By Definition 2.3.5, every circle passing through z and z∗ is orthogonal

to Γ. In particular, the line passing through z0, z and z∗ is also orthogonal to Γ.

Thus, z and z∗ are collinear with the center z0, proving (i).

10



For the proof of (ii), cosider the circle

Γ′ := {ζ ∈ C : |ζ − z′0| = R′}

passing through the inverse points z and z∗ which is orthogonal to the circle Γ

such that z0, z, z
′
0, z
∗ are collinear (see the figure in the next page).

Thus, it has the orthogonality condition:

|z0 − z′0|2 = R2 +R′2.

This, along with a simple geometry, yields

|z − z0||z∗ − z0| = (|z0 − z′0| −R′)(|z0 − z′0|+R′)

= |z0 − z′0|2 −R′2 = R2,

the relation (ii).

For the converse part, we provide two techniques.

Figure 2.3: Construction of inverse points

Method-1: We require to show that any circle passing through z and z∗ is

11



orthogonal to Γ, i.e. to show the orthogonality condition |z0 − c|2 = r2 +R2.

Here, two cases arise.

Case-1: z = z∗.

By the given condition, the points z and z∗ lie on the circle |ζ − z0| = R,

and the circles passing through them merge into the line passing through z0 and

z. Trivially, this is orthogonal to Γ. So, there is nothing to analyse in this case.

Case-2: z 6= z∗.

We refer to the figure below. On the one hand, the cosine rule for the

triangle 4z0zc produces

r2 = |z − z0|2 + |z0 − c|2 − 2|z − z0||z0 − c| cos∠zz0c. (2.3)

On the other hand, the cosine rule for 4z0z∗c gives

r2 = |z∗ − z0|2 + |z0 − c|2 − 2|z∗ − z0||z0 − c| cos∠z∗z0c. (2.4)

Solving the expressions obtained in (2.4) and (2.3), we obtain

0 = |z − z0|2 − |z∗ − z0|2 + 2 cos∠z∗z0c |z0 − c|(|z∗ − z0| − |z − z0|),

because ∠zz0c = ∠z∗z0c. This implies

|z∗ − z0|2 − |z − z0|2 = 2 cos∠z∗z0c |z0 − c|(|z∗ − z0| − |z − z0|),

and hence

|z∗ − z0|+ |z − z0| = 2 cos∠z∗z0c |z0 − c|.

Squaring both sides and using Theorem 2.3.7(ii), we have

|z∗ − z0|2 + |z − z0|2 + 2R2 = 4 cos2∠z∗z0c |z0 − c|2. (2.5)

Also, Theorem 2.3.7(i) says that the points z0, z, z
∗ are collinear. It follows that

|z0 − z∗| = |z0 − z|+ |z − z∗|.

Squaring both sides, Theorem 2.3.7(ii) produces

|z − z∗|2 = |z0 − z∗|2 + |z0 − z|2 − 2R2. (2.6)

Solving the equations (2.5) and (2.6), we have

|z0 − c|2 =
|z − z∗|2 + 4R2

4 cos2∠z∗z0c
. (2.7)

12



Applying the sine rule for the triangle 4z0zc, we have

sin∠z0zc

|z0 − c|
=

sin∠zz0c

r
.

A simplification after squaring it leads to

|z0 − c|2 =
r2 sin2∠z0zc

sin2∠zz0c
(2.8)

Again the cosine rule for the triangle 4zz∗c gives

r2 = |z − z∗|2 + r2 + 2r|z − z∗| cos(π − ∠z0zc).

This simplifies to

0 = |z − z∗|(|z − z∗|+ 2r cos∠z0zc) =⇒ |z − z∗|+ 2r cos∠z0zc = 0,

since z 6= z∗. An easy simplification leads to

r2sin2∠z0zc = r2 −
|z − z∗|2

4
.

Substituting this in (2.8) and simplifying, we obtain

|z − z∗|2 = 4r2 − 4|z0 − c|2sin2∠zz0c. (2.9)

Eliminating the term |z − z∗|2 from (2.7) and (2.9), we have

4|z0 − c|2 cos2∠zz0c = 4r2 − 4|z0 − c|2 sin2∠zz0c+ 4R2.

By a simple calculation, the required orthogonality condition

|z0 − c|2 = r2 +R2

follows.

Method-2: This method is based on the geometric view of the inverse points

in a circle explained above (see Figure 2.2). In Figure 2.2, the line PQ is the

tangent to the circle and it passes through z∗. Denote line which is joining the

points P and z by Pz. Now to prove that the points z and z∗ are inverse points

with respect to the circle, it is sufficient to prove that the line Pz is perpendicular

to the line z0z
∗.

From the hypothesis (ii) we have

|z − z0||z∗ − z0| = R2.
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Since |z0 − P | = R, it simplifies to

|z − z0|
|z0 − P |

=
|z0 − P |
|z∗ − z0|

. (2.10)

Now we consider the two triangles 4Pz0z∗ and 4Pz0z. Since the angles ∠Pz0z∗

and ∠Pz0z are common to both the triangle, considering (2.10), the SAS prop-

erty suggests that the triangles 4Pz0z∗ and 4Pz0z are similar. It follows that

∠z∗Pz0 = ∠z0zP . Since PQ is the tangent at P and z0P is a radius, the

∠z∗Pz0 = π/2 = ∠z0zP . That is, the line Pz is perpendicular to the line

z0z
∗. This completes the proof.

One of the importances of Theorem 2.3.7 is to compute z∗ if z is given to

us. Since z and z∗ lie on the same ray through z0, it follows that

Arg (z∗ − z0) = Arg (z − z0) = θ (say).

Then the relation |z − z0||z∗ − z0| = R2 is equivalent to

z∗ − z0 =
R2

|z − z0|
eiθ =

R2

re−iθ
=

R2

z − z0
,

if z = z0 + reiθ, r < R. This brings the concept of inversion in a circle.

Definition 2.3.8. [1, p. 81] The inversion in the circle |ζ − z0| = R is a trans-

formation i : C∞ → C∞ defined by

i(z) =


z0 +

R2

z − z0
, if z 6= z0,

∞, if z = z0

z0 if z =∞.

Note that i(ζ) = ζ. We next discuss a result describing the inverse points

in a circle in terms of the equation of the circle.

Theorem 2.3.9. [11, Theorem 3.25, p. 80] Two points z and z∗ are inverse

points with respect to the circle

αww + βw + βw + γ = 0
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in C∞ if and only if

αzz∗ + βz + βz∗ + γ = 0

Now we see that Theorem 2.3.9 plays an important role in the proof of the

next important result, namely, the symmetric principle. This says that a pair

of inverse points in a circle are sent to a pair of inverse points under a Möbius

transformation.

Theorem 2.3.10 (Symmetry Principle). [1, Theorem 15, p. 82] If a Möbius

transformation carries a circle C1 into a circle C2, then it transforms any pair of

symmetric points with respect to C1 into a pair of symmetric points with respect

to C2 .

Proof. Let the equation of the circle C1 be

α1w1w1 + β1w1 + β1w1 + γ1 = 0, (2.11)

and z1 and z∗1 be a pair of inverse points with respect to C1. Then by Theo-

rem 2.3.9, we have

α1z1z∗1 + β1z1 + β1z∗1 + γ1. (2.12)

Let S be a Möbius transformation which caries C1 onto C2. Then we prove that

S(z1) and S(z∗1) are inverse points with respect to C2. Let

ζ = S(w) =
aw + b

cw + d
, ad− bc 6= 0

Then, we have

w = S−1(ζ) =
dζ − b
−cζ + a

, ad− bc 6= 0.

If ζ1 = S(w1), then by (2.11), we obtain the equation of the circle C2 as

α1S
−1(ζ1)(S−1)(ζ1) + β̄1S

−1(ζ1) + β1S−1(ζ1) + γ = 0.

This is equivalent to

α1

( dζ − b
−cζ + a

)( dζ − b
−cζ + a

)
+ β1

( dζ − b
−cζ + a

)
+ β1

( dζ − b
−cζ + a

)
+ γ1 = 0.
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A simple computation takes the equation of the circle C2 to the form

α2ζ1ζ1 + β2ζ1 + β2ζ1 + γ2 = 0,

equivalently,

α2S(w1)S(w1) + β2S(w1) + β2S(w) + γ2 = 0.

That is

α2

(aw1 + b

zw1 + d

)(aw1 + b

cw1 + a

)
+ β2

(aw1 + b

cw1 + d

)
+ β2

(aw1 + b

cw1 + d

)
+ γ2 = 0. (2.13)

This is of the form

Aw1w1 +Bw1 +Bw1 +D = 0.

Then by (2.12), a similar calculation can yield

Az1z∗1 +Bz1 +Bz∗1 +D = 0.

Simplifying back to the form (2.13), we obtain

α2

(az1 + b

cz1 + d

)(az∗1 + b

cz∗1 + d

)
+ β2

(az1 + b

cz1 + d

)
+ β2

(az∗1 + b

cz∗1 + d

)
+ γ2 = 0.

This is equivalent to

α2S(z1)S(z1) + β2S(z1) + β2S(z) + γ2 = 0,

leading to the conclusion that S(z1) and S∗(z1) are inverse points with respect to

C2. This completes the proof.

With the help of Theorem 2.3.10, we now very easily characterize the most

general Möbius transformation that takes the unit disk onto itself. This is also

used in the later chapters.

Theorem 2.3.11. [11, Theorem 3.21, p. 77] The most general Möbius transfor-

mation that takes the unit disk D onto itself is of the form

S(z) = eiα
z − z0
1− z0z

, for α ∈ R and z0 ∈ D.

Proof. One can easily verify that the function

T (z) =
z − z0
1− z0z

, z ∈ D,
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is a Möbius disk automorphism of the unit disk D. By Lemma 2.3.6, we know

that z0 and 1/z0 are inverse points with respect to the unit circle |z| = 1. By

the symmetric principle (Theorem 2.3.10), 0 = T (z0) and ∞ = T (1/z0) are also

inverse points with respect to the image circle |w| = 1. It follows that the most

general equation of the required Möbius transformation is of the form

S(z) = K

(z − z0
z − 1

z0

)
= A

( z − z0
1− z0z

)
= AT (z), A = −Kz0,

for some complex constant K. Since |S(z)| = 1 for |z| = 1, in particular for

z = 1, we too have |S(1)| = 1. A simple computation yields |A| = 1, i.e. A = eiα

for some α ∈ R. Thus, S(z) has the required form. This completes the proof.

We next provide two examples that are nothing but applications of the

symmetric principle.

Example 2.3.12. [1, Exc. 2, p. 83] Reflect the line y = x and the circle |z| = 1

in the circle |z − 2| = 1.

Proof. We first reflect the line of x = y in the circle |z − 2| = 1.

Let z = x + iy. Then we obtain z = x + ix and hence z = −iz. Now by

Definition 2.3.8, the inversion in the circle |z − 2| = 1 produces

z∗ := i(z) =
1

z − 2
+ 2. (2.14)

After simplification we get

−iz =
2z∗ − 3

z∗ − 2
⇐⇒ z =

( − 2z̄∗ + 3

−z∗ + 2

)
i

Since −iz = z, it follows that

2z∗ − 3

z∗ − 2
=

(
−2z∗ + 3

−z∗ + 2

)
i

This simplifies to

z∗z∗ + z∗
(

4− 3i

−2 + 2i

)
+ z∗

(
3− 4i

−2 + 2i

)
+

(
6i− 6

−2 + 2i

)
= 0,

which represents a circle.

Secondly, we deal with the reflection of |z| = 1 in the given circle.
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By the above simplification of (2.14), we get

1 = |z| =
∣∣∣∣2z∗ − 3

z∗ − 2

∣∣∣∣.
After simplification we get the circle∣∣∣∣z∗ − 4

3

∣∣∣∣ =
1

3
,

and the solution is complete.

Example 2.3.13. [1, Exc. 7, p. 83] Find a Möbius transformation which carries

the circles |z| = 1 and |z− (1/4)| = 1/4 onto concentric circles. What is the ratio

of radii?.

Proof. Let

S(z) =
z − a
1− az

, 0 < a < 1, (2.15)

be the Möbius transformation which carries the circles C1 : |z| = 1 onto itself

and C2 : |z − (1/4)| = 1/4 onto |w| = r.

By Lemma 2.3.6, we know that a and 1/a = 1/a are inverse points with

respect to C1. We choose 1/4 < a < 1 in such a way that a and 1/a are also

inverse points with respect to C2. By Theorem 2.3.7(ii), we have(
a− 1

4

)(
1

a
− 1

4

)
=

1

16
.

Solving this quadratic equation in a, we get a = 2 −
√

3, since we have chosen

1/4 < a < 1. Therefore, from (2.15), we obtain

S(z) =
z − (2−

√
3)

1− (2−
√

3)z
.

Now we go for finding the ratio of radii: 1 : r. Since 0 and ∞ are inverse

points with respect to the circle C1, so S(0) and S(∞) are inverse points with

respect to the image circle C1. This implies

|S(0)||S(∞)| = 1. (2.16)

Again since 1/4 and∞ are inverse points with respect to the circle C2, so S(1/4)

and S(∞) are inverse points with respect to the image circle |w| = r. This implies
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|S(1/4)||S(∞)| = r2. (2.17)

Solving the equations (2.16) and (2.17), we have

|S(0)||S(∞)|
|S(1/4)||S(∞)|

=
1

r2
.

Thus, the ratio of radii becomes

1

r
=

√√√√ |S(0)|
|S(1/4)|

=

√√√√ 1

7− 4
√

3
,

completing the solution.
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CHAPTER 3

The Cassinian metric

3.1 Cassinian ovals

A Cassinian oval is an algebraic curve of degree four in the plane. Geometrically,

it is a locus of points P (x, y) with foci F1(a, 0) and F2(−a, 0) such that the product

of the distances |P − F1| and |P − F2| is a positive constant b2 (see Figure 3.1).

Thus, its mathematical representation becomes

Figure 3.1: Cassinian oval: |PF1|× |PF2| = b2 for any location of P on the curve.

[(x− a)2 + y2][(x+ a)2 + y2] = b4 ⇐⇒ (x2 + y2 + a2)2 − 4a2x2 = b4.

20



In polar form, after substituting x = r cos θ and y = r sin θ, it reduces to

[(r cos θ − a)2 + (r sin θ2][(r cos θ + a)2 + (r sin θ)2] = b4,

equivalently,

r4 + a4 − 2a2r2 cos(2θ) = b4.

The Cassinian oval’s shapes depend on the parameters a and b, and they

are generally categorized by evaluating the ratio a/b. In Figure 3.2, a family of

Cassinian ovals is drawn for a fixed a on the left and a fixed b on the right.

Figure 3.2: A family of Cassinian ovals

The form of the ovals can be characterized as follows:

• For a/b ≤
√

2/2, the curve is a single loop that looks like an ellipse and

intersects x-axis at x = ±
√
a2 + b2.

• For
√

2/2 < a/b < 1, the oval attains a dent on top and bottom or peanut

shape or dog bone shape.

• When a/b = 1, the curve is a Lemniscate of Bernoulli which has a point of

self intersection. This shapes pass through the origin and has shape similar

to the ∞ symbol.
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• For a/b > 1, the curve splits into two mirror-imaged disjoint ovals and there

are two additional real x-intercepts at x = ±
√
a2 − b2.

The Cassinian ovals are extensively used in real life problems (see [7, 10]).

Some of the applications are listed below.

• Model to determine Earth’s orbit.

– Cassinian ovals were first studied in 1680 by Giovanni Domenico Cassinian

as a model to determine Earth’s orbit. After discovering few satellites,

he rejected the theory of Kepler ellipses and discovered the Cassinian

ovals suggesting that stellar bodies followed paths traced out by one

of these curves.

• Modelling population growths.

– Growth of population between the two metropolitan cities, Beijing

and Tianjin of China, is modelled by the a/b characteristic index of

Cassinian ovals. In the study when a/b > 1, the population density is

more than 3000 persons/km2. When a/b = 1, the population density

is about 3000 persons/km2. For
√

2/2 < a/b < 1, the density is

between 500− 3000 persons/km2.

• Human red blood cell is treated using the Cassinian ovals for modelling its

profile.

• Simulating light scattering by small particles.

3.2 The Cassinian distance

Let z1, z2 ∈ D ⊂6= C be a pair of distinct points. The Cassinian distance between

them can be defined through two concepts: (i) the maximal Cassinian ovals, and

(ii) inversion formula.
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(i) The maximal Cassinian oval approach. For a finite number k > 0, let

C(z1, z2; k) be the Cassinian ovals

{z ∈ Rn : |z1 − z||z2 − z| = k2}

with foci z1 and z2. Since D is open, the Cassinian ovals C(z1, z2; k) is contained

in D for a small enough k. As the boundary ∂D of D contains at least two points,

there exists a largest number k with the property that C(z1, z2; k) ∩ ∂D 6= 0 and

that the interior of C(z1, z2; k) is contained in D. Let p ∈ C(z1, z2; k)∩∂D. Then

k2 = |z1 − p||z2 − p| = min{|z1 − q||z2 − q| : q ∈ ∂D}.

This generates a maximal Cassinian oval in D with foci z1, z2 ∈ D and it is

denoted by C(z1, z2; k(z1, z2)). Using this notion, the Cassinian distance is first

defined as follows (see [5]):

cD(z1, z2) :=
|z1 − z2|
k2(z1, z2)

=
|z1 − z2|

|z1 − p||z2 − p|
.

Alternatively,

cD(z1, z2) =
|z1 − z2|

min{|z1 − q||z2 − q| : q ∈ ∂D}
= max

q∈∂D

|z1 − z2|
|z1 − q||z2 − q|

.

In particular, for each z1, z2 ∈ D, there exists a point p ∈ ∂D such that

cD(z1, z2) =
|z1 − z2|

|z1 − p||z2 − p|
.

(ii) The inversion formula approach. Suppose that p ∈ ∂D such that

cD(z1, z2) =
|z1 − z2|

|z1 − p||z2 − p|
holds. Then geometrically the Cassinian distance between z1 and z2 is nothing

but the Euclidean distance between the inversions of z1 and z2 in the unit circle

S(p, 1) centred at p. Indeed, if the inversion in the circle S(p, 1) is denoted by ip

then we have

|ip(z1)− ip(z2)| =
∣∣∣∣(p+

1

z1 − p

)
−
(
p+

1

z2 − p

)∣∣∣∣
=

|z1 − z2|
|z1 − p||z2 − p|

= cD(z1, z2),

for all z1, z2 ∈ D.
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Note that the Cassinian distance is easy to compute, which can be seen

from the following observations and examples.

Observations. If z2 →∞, then we see that

cD(z1,∞) = lim
z2→∞

cD(z1, z2)

= lim
z2→∞

max
p∈∂D

|z1 − z2|
|z1 − p||z2 − p|

= lim
z2→∞

max
p∈∂D

|z2|| z1z2 − 1|
|z2||z1 − p||1− p

z2
|

= lim
z2→∞

max
p∈∂D

1

|z1 − p|

= 1/δ(z1),

where δ(z1) := dist (z1, ∂D) = min{|z1 − p| : p ∈ ∂D}.

If D = Cp = C \ {p}, p 6=∞, then

cD(z1, z2) =
|z1 − z2|

|z1 − p||z2 − p|
.

If z1, z2 ∈ Dp := {z ∈ D : δ(z) = |z − p|} for some p ∈ ∂D, then

cD(z1, z2) =
|z1 − z2|

|z1 − p||z2 − p|
.

The next two examples compute the Cassinian distance between points in

a punctured disk and a half-plane, respectively.

Example 3.2.1. Find cD(z1, z2) on the domain D = {z ∈ C : 0 < |z| < k}.

Solution. Let a point ζ ∈ ∂D, where boundary ∂D = {0, |z| = k}. By the

definition of the Cassinian distance, we have

cD(z1, z2) = max
ζ∈∂D

|z1 − z2|
|z1 − ζ||z2 − ζ|

=
|z1 − z2|

min
ζ∈∂D

|z1 − ζ||z2 − ζ|
.

Since |z1− ζ| ≥ ||z1|− |ζ|| and |z2− ζ| ≥ ||z2|− |ζ||, for all z1, z2, ζ ∈ C, it follows

that

|z1 − ζ||z2 − ζ| ≥ ||z1| − |ζ|| ||z2| − |ζ||.

24



It implies that

min
ζ∈∂D

|z1 − ζ||z2 − ζ| ≥ min
ζ∈∂D

||z1| − |ζ|| ||z2| − |ζ||. (3.1)

In right side of the inequality (3.1) if we take boundary point as ζ = 0 then

it becomes |z1||z2| and if we take boundary point as |ζ| = k then it becomes

||z1| − k| ||z2| − k| = ||z1||z2| − k(|z1|+ |z2|) + k2|. Now when |z1|+ |z2| > k, then

minimum occurs for |ζ| = k and when |z1| + |z2| ≤ k, then minimum occurs for

ζ = 0. i.e., right side of inequality (3.1) becomes

min
ζ∈∂D

||z1| − |ζ|| ||z2| − |ζ|| =

 |z1||z2|, |z1|+ |z2| ≤ k;

||z1| − k| ||z2| − k|, |z1|+ |z2| > k.

So equation (3.1) becomes

min
ζ∈∂D

|z1 − ζ||z2 − ζ| ≥

 |z1||z2|, |z1|+ |z2| ≤ k;

||z1| − k| ||z2| − k|, |z1|+ |z2| > k.

Thus

cD(z1, z2) =
|z1 − z2|

min
ζ∈∂D

|z1 − ζ||z2 − ζ|
≤


|z1 − z2|
|z1||z2|

, |z1|+ |z2| ≤ k;

|z1 − z2|
||z1| − k| ||z2| − k|

, |z1|+ |z2| > k.

(3.2)

This is the upper bound of cD in a punctured disk with radius k. Now we are

interested to find a lower bound of cD. Since |z1 − ζ| ≤ |z1| + |ζ| and |z2 − ζ| ≤

|z2|+ |ζ|, it implies that

|z1 − ζ||z2 − ζ| ≤ (|z1|+ |ζ|)(|z2|+ |ζ|).

It implies that

min
ζ∈∂D

|z1 − ζ||z2 − ζ| ≤ min
ζ∈∂D

(|z1|+ |ζ|)(|z2|+ |ζ|). (3.3)

In right side of equation (3.3) if we take boundary point as ζ = 0 then it becomes

|z1||z2| and if we take boundary point as |ζ| = k then it becomes

(|z1|+ k)(|z2|+ k) = |z1||z2|+ k((|z1|+ |z2|) + k),

where k > 0, then one can easily see that minimum occurs for ζ = 0 in right side
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of (3.3). So (3.3) becomes

min
ζ∈∂D

|z1 − ζ||z2 − ζ| ≤ |z1||z2|.

Thus

cD(z1, z2) =
|z1 − z2|

min
ζ∈∂D

|z1 − ζ||z2 − ζ|
≥
|z1 − z2|
|z1||z2|

. (3.4)

From (3.2) and (3.4), we have

|z1 − z2|
|z1||z2|

≤ cD(z1, z2) ≤


|z1 − z2|
|z1||z2|

, |z1|+ |z2| ≤ k;

|z1 − z2|
||z1| − k| ||z2| − k|

, |z1|+ |z2| > k.

(3.5)

This establishes

cD(z1, z2) =
|z1 − z2|
|z1| |z2|

if |z1|+ |z2| ≤ k.

However, for |z1| + |z2| > k, we fail to compute the Cassinian distance exactly.

Moreover, we see that when k → ∞, the punctured disk is converted to the

punctured plane. In this limiting situation, the Cassinian distance is coinciding

with the case of the punctured plane. �

Example 3.2.2. Find cD(z1, z2) on the upper half-plane D = {z : Im z > 0}.

Solution. Let z1 = x1 + iy1 and z2 = x2 + iy2 ∈ D. We discuss the precise

formula for cD(z1, z2) in two situations: (i) when the two points lie on a vertical

line, (ii) when the two points lie on a horizontal line.

Case (i): x1 = x2.

We have z1 = x1 + iy1 and z2 = x1 + iy2. Now Let a point ζ ∈ ∂D, where

boundary ∂D = {z : =(z) = 0}. By the definition of Cassinian distance, we have

cD(z1, z2) = max
ζ∈∂D

|z1 − z2|
|z1 − ζ||z2 − ζ|

=
|z1 − z2|

min
ζ∈∂D

|z1 − ζ||z2 − ζ|
.

Now

|z1 − z2| = |x1 + iy1 − x1 − iy2| = |iy1 − iy2| = |y1 − y2|

Let the maximal Cassinian oval touch at the point ζ = t on the x-axis with
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|t| ≤ x1, then

min
−x1≤t≤x1

|z1 − t||z2 − t| = min
−x1≤t≤x1

√
((x1 − t)2 + y21)((x1 − t)2 + y22).

Consider the function

f(t) = ((x1 − t)2 + y21)((x1 − t)2 + y22).

Differentiation of it gives

f
′
(t) = ((x1 − t)2 + y22)(−2(x1 − t)) + ((x1 − t)2 + y21)(−2(x1 − t))

= −2(x1 − t)(2(x1 − t)2 + y21 + y22).

For finding the minimum value of f(t), we make f
′
(t) = 0 i.e., −2(x1 − t) = 0 or

(2(x1 − t)2 + y21 + y22) = 0. Since (2(x1 − t)2 + y21 + y22) = 0 is not possible so we

have −2(x1− t) = 0 i.e., at x1 = t, f(t) gives its minimum value. Then minimum

of f(t) at x1 = t is y21y
2
2. i.e.,

min
−x1≤t≤x1

|z1−t||z2−t| = min
−x1≤t≤x1

√
((x1 − t)2 + y21)((x1 − t)2 + y22) =

√
y21y

2
2 = y1y2.

Therefore, finally we have

cD(z1, z2) ==
|z1 − z2|

min
ζ∈∂D

|z1 − ζ||z2 − ζ|
=
|y1 − y2|
y1y2

.

Case (ii): y1 = y2.

Without loss of generality one can assume that x1 > 0 and x2 = −x1. Then

z1 = x1 + iy1 and z2 = −x1 + iy1. By the definition of Cassinian distance, we

have

cD(z1, z2) = max
ζ∈∂D

|z1 − z2|
|z1 − ζ||z2 − ζ|

=
|z1 − z2|

min
ζ∈∂D

|z1 − ζ||z2 − ζ|
.

Now

|z1 − z2| = |x1 + iy1 + x1 − iy1| = 2x1.

Let the maximal Cassinian oval touch at the point ζ = t on the x-axis with

|t| ≤ x1, then

min
−x1≤t≤x1

|z1 − t||z2 − t| = min
−x1≤t≤x1

√
((x1 + t)2 + y21)((x1 − t)2 + y22).
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Consider the function

g(t) = ((x1 + t)2 + y21)((x1 − t)2 + y21).

We need to find minimum value of above function for t so find its derivative i.e.,

g′(t) = 4t(t2 + y21 − x21).

g
′
(t) = 0 i.e., t = 0 or t2 = x21 − y21.

Now we have to find its double derivative i.e.,

g
′′
(t) = 4(t2 + y21 − x21) + 8t2.

The function g(t) achieves its minimum value when g
′′
(t) > 0 i.e.,

min
−x1≤t≤x1

g(t) =

(x21 + y21)2, y1 ≥ x1;

4x21y
2
1, y1 ≤ x1.

Therefore, finally we have

cD(z1, z2) =
|z1 − z2|

min
ζ∈∂D

|z1 − ζ||z2 − ζ|
=


2x1

x21 + y21
, y1 ≥ x1;

1

y1
, y1 ≤ x1.

This obtains the desired formula. �

3.3 Basic Properties

This section is devoted to some elementary properties of the Cassinian distance.

The first property confirms that the Cassinian distance defines a metric on a

domain D ( C.

Theorem 3.3.1. [5, Lemma 3.1] The distance function cD defines a metric on

D.

Proof. Clearly, cD(z1, z2) is symmetric, cD(z1, z2) ≥ 0 and cD(z1, z2) = 0 if and

only if z1 = z2. It remains to prove the triangle inequality. For this, consider the
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three arbitrary points z1, z, z2 ∈ D. Let p ∈ ∂D be such that

cD(z1, z2) =
|z1 − z2|

|z1 − p||z2 − p|
.

Then

cD(z1, z) + cD(z, z2) = max
p1∈∂D

|z1 − z|
|z1 − p1||z − p1|

+ max
p2∈∂D

|z − z2|
|z − p2||z2 − p2|

≥
|z1 − z|

|z1 − p||z − p|
+

|z − z2|
|z − p||z2 − p|

=
1

|z1 − p||z2 − p|
|z1 − z||p− z2|+ |z − z2||p− z1|

|z − p|

≥ |z1 − z2||z − p|
|z1 − p||z2 − p||z − p|

= cD(z1, z2),

where the last inequality is nothing but Ptolemy’s inequality (see Theorem 2.2.4).

This completes the proof.

Corollary 3.3.2 (Monotone property). [5, Corollary 3.2] The Cassinian metric

is monotonic with respect to domains. That is, D ⊆ D′ implies cD′(z1, z2) ≤

cD(z1, z2) for all z1, z2 ∈ D.

Proof. For z1, z2 ∈ D the Cassinian distance is defined by

cD(z1, z2) = max
p∈∂D

|z1 − z2|
|z1 − p||z2 − p|

.

By geometry (see Figure 3.3), for all z1, z2 ∈ D ⊂ D′ we have

min
p∈D
|z1 − p||z2 − p| ≤ min

p′∈D′
|z1 − p′||z2 − p′|.

This implies that

max
p∈∂D

|z1 − z2|
|z1 − p||z2 − p|

≥ max
p′∈∂D′

|z1 − z2|
|z1 − p′||z2 − p′|

,

equivalently, we have

cD(z1, z2) ≥ cD′(z1, z2).

This completes the proof.
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Figure 3.3: Comparison of |z1− p||z2− p| and |z1− p′||z2− p′| for z1, z2 ∈ D ⊂ D′

Next we discuss the completeness property of the Cassinian metric.

Lemma 3.3.3. [5, Lemma 3.11] If D is a domain with ∞ /∈ ∂D, then the

Cassinian metric space (D, cD) is complete.

Proof. Generally, the Cassinian metric is not complete. Here we have to prove

if ∞ /∈ ∂D, then (D, cD) is complete. First we see what happen if ∞ ∈ ∂D. For

this we let D = C\{0} i.e., ∂D = {0,∞} and consider the sequence {zn} = n2.

For any zn we have

cD(zn,∞) = max
p∈∂D

|zn −∞|
|zn − p||∞ − p|

= max
p∈∂D

1

|zn − p|
.

That is,

cD(zn,∞) = max


1

|zn|
, p = 0;

0, p =∞.

i.e., cD(n2,∞) → 0 as n increases. This shows that zn converges to ∞ in the

Cassinian metric. This implies that zn is a Cauchy sequence. Also by explicitly
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calculation we can show the sequence {zn} is Cauchy. i.e.,

cD(zn, zm) = sup
p∈∂D

|zn − zm|
|zn − p||zm − p|

, p ∈ ∂D.

i.e.,

cD(zn, zm) = max



∣∣∣∣∣∣
1

n2
−

1

m2

∣∣∣∣∣∣ , p = 0;

0, p =∞.

Therefore, cD(zn, zm) =

∣∣∣∣ 1

n2
−

1

m2

∣∣∣∣ → 0 as m,n → ∞. This implies that the

sequence {zn} = n2 is Cauchy. But it is converging to ∞ which is outside the

domain D = C\{0}. i.e., (D = C\{0}, cD) is not complete. Now we comeback to

our main proof. Since ∞ /∈ ∂D. This implies that D is a bounded domain. To

prove (D, cD) is complete, by definition, it is required to show that every Cauchy

sequence in D is converges in D. Now two scenarios arise:

(i) Sequence of points approaching to a boundary point:these kind of sequence

are not Cauchy sequences (so, they are not convergent) as they are not even

bounded. Let zn be the sequence approaches to q ∈ ∂D then

min
p∈∂D

|z0 − p||zn − p| ≤ |z0 − q||zn − q|.

This implies that

cD(z0, zn) =
|z0 − zn|

min
p∈∂D

|z0 − p||zn − p|
≥

|z0 − zn|
|z0 − q||zn − q|

as D is bounded domain i.e., |z0 − zn| < k, for some k and if n → ∞ then

the points of zn will be approaches to q i.e., |zn − q| → 0. This implies that

|z0 − zn|
|z0 − q||zn − q|

→ ∞ i.e., cD(z0, zn) is unbounded. So the sequence {zn} is not a

bounded sequence and hence it is not a Cauchy sequence.

(ii) Sequence of points not approaching to a boundary point:Let {zn} be a Cauchy

sequence. Now we wish to show it is convergent in D. Since {zn} be a Cauchy
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sequence then cD(zn, zm) =
|zn − zm|

min
p∈∂D

|zn − p||zm − p|
→ 0 if n,m→∞. Since {zn} is

not approaching to any boundary points so, min
p∈∂D

|zn − p||zm − p| 6= 0 as n→∞.

This implies |zn − zm| → 0 as n,m → ∞. i.e., the sequence {zn} approaches to

some point, say z in D (as it is not approaches to some boundary point). Thus

cD(zn, zm) =
|zn − zm|

min
p∈∂D

|zn − p||z − p|
→ 0 as n→∞.

Hence the sequence {zn} converges to z ∈ D. This completes the proof.

Next we investigate about the Möbius invariance property of the Cassinian

metric.

Lemma 3.3.4. In general, the Cassinian metric cD is not Möbius invariant.

Proof. We prove our assertion in the unit disk D. Let z1, z2 ∈ D. We show that

cf(D)(f(z1), f(z2)) 6= cD(z1, z2) under a Möbius transformation f : D → f(D).

Take f(z) = az, a > 0. This implies f(D) = {z : |z| < a}; ∂f(D) = {z : |z| = a}

also f(z1) = az1 and f(z2) = az2 also there exists p ∈ {z : |z| = 1} such that

p
′
= ap = {z : |z| = a}. Now

cf(D)(f(z1), f(z2)) = max
p′∈∂f(D)

|f(z1)− f(z2)|
|f(z1)− p′||f(z2)− p′ |

= max
p
′∈∂f(D)

|az1 − az2|
|az1 − p′ ||az2 − p′|

= max
ap∈∂f(D)

a|z1 − z2|
a2|z1 − p||z2 − p|

=
1

a
max

ap∈∂f(D)

|z1 − z2|
|z1 − p||z2 − p|

=
1

a
max
p∈∂D

|z1 − z2|
|z1 − p||z2 − p|

=
1

a
cD(z1, z2).

Thus cD is not a Möbius invariant. This completes the proof.
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CHAPTER 4

Main Results

This chapter is highlighted on some of the important results concerning the

Cassinian metric. Mainly, the Möbius quasi-invariance property in the unit disk

and the geodesic properties of the Cassinian metric are presented.

4.1 Möbius quasi-invariance property

In Lemma 3.3.4, we have shown that the Cassinian metric is not necessarily a

Möbius transformation. However, one can show that the Cassinian metric is

Möbius quasi-invariant. This property is already proved by Ibragimov in the

higher dimension [6, Theorem 4.1], however, looking into different nature of the

proof, we state and prove the following in the plane.

Theorem 4.1.1. Let φ be a Möbius transformation with φ(D) = D. Then

1− |φ(0)|
1 + |φ(0)|

cD(z1, z2) ≤ cD(φ(z1), φ(z2)) ≤
1 + |φ(0)|
1− |φ(0)|

cD(z1, z2)

for all z1, z2 ∈ D.
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Proof. Consider any Möbius transformation of the form

φ(z) =
z + a

1 + az
, with φ(0) = a.

Also consider another Möbius transformation of the form

σ(z) =
z − a
1− az

, with σ(a) = 0.

Now we define the composition of these two Möbius transformation which is also

a Möbius transformation like

σ ◦ φ(z) : D→ D such that σ ◦ φ(z) = eiθz with σ ◦ φ(0) = 0.

Now

σ ◦ φ(z) =
φ(z)− a
1− aφ(z)

=

z + a

1 + az
− a

1− a
z + a

1 + az

=
z + a− a− |a|2z
1 + a− az + |a|2

=
z(1− |a|2)

1− |a|2
= z.

Next

|σ(z1)− σ(z2) =

∣∣∣∣ z1 − a1− az1
−

z2 − a
1− az2

∣∣∣∣
=

∣∣∣∣z1 − a− az1z2 + |a|2z2 − z2 + a+ az1z2 − |a|2z1
(1− az1)(1− az2)

∣∣∣∣
=

∣∣∣∣ (z1 − z2)(1− |a|2)(1− az1)(1− az2)

∣∣∣∣. (4.1)

Similarly

|φ(z1)− φ(z2)| =
∣∣∣∣ z1 + a

1 + az1
−

z2 + a

1 + az2

∣∣∣∣ =

∣∣∣∣(z1 − z2)(1− |a|2)(1 + az1)(1 + az2)

∣∣∣∣.
Let η ∈ S, the unit circle. Then we have

|φ(z1)− φ(η)| =
∣∣∣∣(z1 − η)(1− |a|2)
(1 + az1)(1 + aη)

∣∣∣∣ and |φ(z2)− φ(η)| =
∣∣∣∣(z2 − η)(1− |a|2)
(1 + az2)(1 + aη)

∣∣∣∣
where φ(η) = lim

z→η
φ(z). Now we have

|φ(z1)− φ(η)||φ(z2)− φ(η)| =
∣∣∣∣(z1 − η)(1− |a|2)
(1 + az1)(1 + aη)

∣∣∣∣∣∣∣∣(z2 − η)(1− |a|2)
(1 + az2)(1 + aη)

∣∣∣∣.
34



This implies

|(z1 − η)(z2 − η)|
|φ(z1)− φ(η)||φ(z2)− φ(η)|

=
|(1 + az1)(1 + az2)(1 + aη)2|

(1− |a|2)2
. (4.2)

Now we compute

|z1 − z2| = |σ(φ(z1))− σ(φ(z2))| =
|1− |a|2| |φ(z1)− φ(z2)|
|1− az1| |1− az2|

.

This implies

|φ(z1)− φ(z2)| =
|(1− az1)||(1− az2)|

|1− |a|2|
|z1 − z2|.

Divide both sides by |φ(z1)− φ(η)||φ(z2)− φ(η)|, we have

|φ(z1)− φ(z2)|
|φ(z1)− φ(η)||φ(z2)− φ(η)|

=
|(1− az1)||(1− az2)|

|φ(z1)− φ(η)||φ(z2)− φ(η)|
|z1 − z2|

=
|z1 − z2|

|z1 − η||z2 − η|
|z1 − η||z2 − η|

|φ(z1)− φ(η)||φ(z2)− φ(η)|

|(1− aφ(z1))||(1− aφ(z2))|
|1− |a|2|

.

Also

1− aφ(z) = 1− a
(
z + a

1 + az

)

=
1 + az − az − |a|2

1 + az

=
1− |a|2

1 + az
.

Therefore,

|φ(z1)− φ(z2)|
|φ(z1)− φ(η)||φ(z2)− φ(η)|

=
|z1 − z2|

|z1 − η||z2 − η|
|1 + az1||1 + az2||1 + aη|

(1− |a|2)2

(1− |a|2)(1− |a|2)
|1 + az1||1 + az2|(1− |a|2)

=
|z1 − z2|

|z1 − η||z2 − η|
|1 + aη|2

(1− |a|2)
.

Now

(1− |a|)2 ≤ |1 + aη|2 ≤ (1 + |a|)2.
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This implies

(1− |a|)2

1− |a|2
cD(z1, z2) ≤ cD(φ(z1), φ(z2)) ≤

(1 + |a|)2

1− |a|2
cD(z1, z2).

This implies

(1− |a|)
1 + |a|

cD(z1, z2) ≤ cD(φ(z1), φ(z2)) ≤
(1 + |a|)
1− |a|

cD(z1, z2)

and the proof is complete.

4.2 Cassinian geodesic

This section characterizes Cassinian geodesics in some domains. For such char-

acterizations, the concept of maximal Cassinian ovals are used associated with

Euclidean disks. In this regard, the following lemma is recalled from [5] without

it proof.

Lemma 4.2.1. [5, Lemma 3.3] Let C be the interior of a Cassinian oval

{P ∈ C : |P − F1||P − F2| = b2}

with foci F1 = (a, 0) and F2(−a, 0), a > 0. Then

D(F1,
√
a2 + b2 − a) ∪ D(F2,

√
a2 + b2 − a) ⊂ C

and

C ⊂ D(F1, b) ∪ D(F2, b).

Moreover, if b ≥ a, then

C ⊂ D(Q1, r) ∪ D(Q2, r) ⊂ D(F1, b) ∪ D(F2, b),

where r = b2/
√
a2 + b2, Q1 =

a2

√
a2 + b2

and Q2 = −
a2

√
a2 + b2

.

Definition 4.2.2. An arc γ ⊂ D is said to be a Cassinian geodesic if

cD(z1, z2) = cD(z1, z) + cD(z, z2)

for all ordered points z1, z, z2 ∈ γ.
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Lemma 4.2.3. [5, Lemma 3.7] For z1, z, z2 ∈ D, we have cD(z1, z) + cD(z, z2) =

cD(z1, z2) if and only if there exists a point p ∈ ∂D∩C(z1, z2; k(z1, z2))∩C(z1, z; k(z1, z))∩

C(z, z2; k(z, z2)) such that the points p, z1, z, z2 lie on a circle in Cn in this order.

Proof. We first deal with the proof of necessary part.

The necessary part. For z1, z, z2 ∈ D, it is given that cD(z1, z) + cD(z, z2) =

cD(z1, z2).

We show that there exists a point p lying in the intersection

∂D ∩ C(z1, z2; k(z1, z2)) ∩ C(z1, z; k(z1, z)) ∩ C(z, z2; k(z, z2))

such that the points p, z1, z, z2 lie on a circle in C.

Let p ∈ ∂D be such that cD(z1, z2) = |z1 − z2|/(|z1 − p| |z2 − p|). For the

same p, since

cD(z1, z2) = cD(z1, z) + cD(z, z2) ≥
|z1 − z|

|z1 − p||z − p|
+

|z − z2|
|z − p||z2 − p|

,

it follows that

|z1 − z2|
|z1 − p||z2 − p|

≥ |z1 − z|
|z1 − p||z − p|

+
|z − z2|

|z − p||z2 − p|
.

However, the reverse inequality also holds as described in the proof of Theo-

rem 3.3.1. Therefore, for the same p ∈ ∂D, we have the equality

cD(z1, z2) = cD(z1, z) + cD(z, z2)

⇐⇒ |z1 − z2|
|z1 − p||z2 − p|

=
|z1 − z|

|z1 − p||z − p|
+

|z − z2|
|z − p||z2 − p|

.

Hence, we obtain

|z1 − z||p− z2|+ |z − z2||p− z1| = |z1 − z2||z − p|

for some p ∈ ∂D. By the definition of the Cassinian metric, it implies that

p ∈ ∂D∩C(z1, z2; k(z1, z2))∩C(z1, z; k(z1, z))∩C(z, z2; k(z, z2)), and by Ptolemy’s

Theorem (see Theorem 2.2.4), the last equality implies that the points p, z1, z, z2

lie on a circle in this order.

The sufficient part. For z1, z, z2 ∈ D it is given that there exists a point

p ∈ ∂D ∩ C(z1, z2; k(z1, z2)) ∩ C(z1, z; k(z1, z)) ∩ C(z, z2; k(z, z2)) such that the
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points p, z1, z, z2 lie on a circle in Cn. It implies that

|z1 − z||p− z2|+ |z − z2||p− z1| = |z1 − z2||z − p|.

Dividing by |z1 − p||z2 − p||z − p| on both sides, we get

|z1 − z|
|z1 − p||z − p|

+
|z − z2|

|z − p||z2 − p|
=

|z1 − z2|
|z1 − p||z2 − p|

.

From the hypothesis we finally get

cD(z1, z) + cD(z, z2) = cD(z1, z2),

This completes the proof.

We next discuss another useful characterization of the Cassinian geodesic.

For this, we use the following notation. [z1, z2]p: the line segment in Cp joining

the points z1, z2 ∈ Cp which is the arc of the unique circle in C passing through

the points z1, z2, p and not containing p.

Theorem 4.2.4. [5, Theorem 3.8] An arc γ ⊂ D joining the points z1 and z2 is

a Cassinian geodesic if and only if there exists p ∈ ∂D such that

γ = [z1, z2]p ∩Dp.

Proof. The necessary part. For an arc γ ⊂ D joining the point z1 and z2 is a

Cassinian geodesic. We will show that there exists a point p ∈ ∂D such that

γ = [z1, z2]p ∩Dp.

For this, let a, b, c be any triple of ordered complex points on γ. By hypoth-

esis we have

cD(a, c) = cD(a, b) + cD(b, c).

By Lemma 4.2.3 there exists a point p ∈ ∂D so that the points p, a, b, c lie on a

circle in Cnin this order. In particular, γ is a subarc of this circle, i.e.,γ ⊂ [z1, z2].

Also, by Lemma 4.2.3 we have

p ∈ C(a, b; k(a, b)), ∀a, b ∈ γ.

In particular, if we let b → a we obtained that δ(a) = |a − p|. Since a ∈ γ is
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arbitrary, we obtainγ ⊂ Dp. Since γ is an arc, we have

γ = [z1, z2]p ∩Dp.

The sufficient part. There exists a point p ∈ ∂D such that

γ = [z1, z2]p ∩Dp.

We require to show that the arc γ ⊂ D joining the point z1 and z2 is a Cassinian

geodesic, i.e. we have to show

cD(a, c) = cD(a, b) + cD(b, c)

for all ordered points a, b, c. i.e., we have to show there exists p ∈ ∂D such that

the points p, a, b, c lie on a circle in C in this order. This is nothing but the direct

consequence of Lemma 4.2.3. This completes the proof.
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CHAPTER 5

Comparison with the hyperbolic metric

5.1 The hyperbolic metric

In this chapter we consider the hyperbolic metric of the unit disk and compare it

with the Cassinian metric.

Definition 5.1.1. The hyperbolic metric ρD of the unit disk D = {z : |z| < 1}

is given by

ρD(z1, z2) = inf
γ

∫
γ

2|dz|
1− |z|2

,

where the infimum is taken over all rectifiable curves ⊂ D joining z1 and z2.

As noted in [8, Section 2.1.1], the hyperbolic geodesic from the origin to

any point z2 ∈ D is the line segment [0, z2] joining 0 and z2. More precisely, we

have
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Lemma 5.1.2. [8, Section 2.1.1] Let z2 ∈ D be arbitrary. Then we have∫
[0,z2]

2|dz|
1− |z|2

≤
∫
γ

2|dz|
1− |z|2

for all rectifiable curves γ ⊂ D connecting 0 and z2.

Lemma 5.1.3. [2, p. 124] For the unit disk D, 0 ≤ r < 1, we have

ρD(0, r) = 2 tan−1(r) = log
1 + r

1− r
.

Proof. By Lemma 5.1.2, it follows that

ρD(0, r) =

∫
[0,r]

2|dz|
1− |z|2

.

Let z(t) = t, i.e., d(z(t)) = dt, 0 ≤ t ≤ r. Then

ρD(0, r) =

∫ r

0

2 dt

1− t2
= 2 tan−1(r) =

∫ r

0

( 1

1 + t
+

1

1− t

)
dt = log

1 + r

1− r
,

completing the proof.

Lemma 5.1.4. [2, p. 125] Let M : D→ D be a Möbius transformation, then for

any z1, z2 ∈ D, we have

|z1 − z2|2

(1− |z1|2)(1− z2|2)
=

|M(z1)−M(z2)|2

(1− |M(z1)|2)(1− |M(z2)|2)
.

Proof. Consider any Möbius transformation of the form

M(z) = eiθ
( z − a

1− az

)
, θ ∈ R. (5.1)

Now we compute

(M(z1)−M(z2))
2 =

(
eiθ
( z1 − a

1− az1

)
−
( z2 − a

1− az2

))2

= e2iθ
(z1 − az1z2 − a+ |a|2z2 − z2 + az1z2 + a− |a|2z1

(1− az1)(1− az2)

)2

= e2iθ
(1− |a|2)2(z1 − z2)2

(1− az1)2(1− az2)2
. (5.2)

Now we have to find

M
′
(z) = eiθ

(1− az) + a(z − a)

(1− az)2
= eiθ

1− |a|2

(1− az)2
.
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Therefore,

M
′
(z1) = eiθ

1− |a|2

(1− az1)2
and M

′
(z2) = eiθ

1− |a|2

(1− az2)2
.

Also, we have

M
′
(z1)M

′
(z2)(z1 − z2)2 = e2iθ

( 1− |a|2

(1− az1)2

)( 1− |a|2

(1− az2)2

)(
(z1 − z2)2

)
= (M(z1)−M(z2))

2. (5.3)

Also we find

1− |M(z)|2 = 1−
|z − a|2

|1− az|2

=
|1− az|2 − |z − a|2

|1− az|2

=
1 + |a|2|z|2 − 2Re (az)− |z|2 − |a|2 − 2Re (az))

|1− az|2

=
(1− |z|2)(1− |a|2)

|1− az|2
. (5.4)

Now by the help of equation (5.4) we write

|M ′
(z1)| =

1− |a|2

|1− az1|2
=

1− |M(z1)|2

1− |z1|2
,

which implies

|M ′
(z1)|

1− |M(z1)|2
=

1

1− |z1|2
. (5.5)

Similarly one can obtain

|M ′
(z2)|

1− |M(z2)|2
=

1

1− |z2|2
. (5.6)

Therefore, by the help of equations (5.5), (5.6) and (5.3), we write

|z1 − z2|2

(|1− |z1|2)(1− |z2|2)
= |z1 − z2|

|M ′
(z1)|

1− |M(z1)|2
|M ′

(z2)|
1− |M(z2)|2

=
|M(z1)−M(z2)|2

(1− |M(z1)|2)(1− |M(z2)|2)
.

This completes the proof.
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An useful formula for the hyperbolic metric can now be derived as follows

(see [3, p. 131] and [8, Exc. 2.11]).

Lemma 5.1.5. For all z1, z2 ∈ D, we have

sinh

(ρD(z1, z2)

2

)
=

|z1 − z2|√
(1− |z1|2)(1− |z2|2)

. (5.7)

Proof. Consider any Möbius transformation of the form

M(z) = eiθ
( z − a

1− az

)
, θ ∈ R

with z1 → 0 and z2 → r. From Lemma 5.1.4, we have

|z1 − z2|2

(1− |z1|2)(1− z2|2)
=

|M(z1)−M(z2)|2

(1− |M(z1)|2)(1− |M(z2)|2)
.

By the above argument this can be written as

|z1 − z2|2

(1− |z1|2)(1− z2|2)
=

r

1− r2
= sinh2

(
1

2
ρD(0, r)

)
= sinh2

(
1

2
ρD(z1, z2)

)
.

This implies that

sinh

(ρD(z1, z2)

2

)
=

|z1 − z2|√
(1− |z1|2)(1− |z2|2)

.

Hence the result.

Now we have to verify the equality
r

1− r2
= sinh2(1

2
ρD(0, r)). From Lemma

5.1.3, we have

ρD(0, r) = log
1 + r

1− r
.

That is,

sinh2

(
1

2
ρD(0, r)

)
= sinh2

(
log

√
1 + r

1− r

)
=

(√
1 + r

1− r
−
√

1− r
1 + r

)2

=

(
r√

1− r

)2

=
r2

1− r2
.

This completes the proof.
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Using Lemmas 5.1.4 and 5.1.5, we now conclude that the hyperbolic metric

is Möbius invariant.

Corollary 5.1.6. Let M : D → D be a Möbius transformation. Then for any

z1, z2 ∈ D, we have

ρD(z1, z2) = ρD(M(z1),M(z2)).

Proof. By Lemmas 5.1.4 and 5.1.5, we see that

sinh

(ρD(z1, z2)

2

)
=

|z1 − z2|√
(1− |z1|2)(1− |z2|2)

=
|M(z1)−M(z2)|√

(1− |M(z1)|2)(1− |M(z2)|2)
= sinh

(ρD(M(z1),M(z2))

2

)
.

Thus, the conclusion follows.

In the next section, we compare the hyperbolic metric with the Cassinian

metric.

5.2 Comparison with the Cassinian metric

Theorem 5.2.1. [6, Theorem 3.1] For z1, z2 ∈ D, we have

sinh

(ρD(z1, z2)

2

)
≤ cD(z1, z2).

Here, the equality holds for z2 = −z1.

Proof. Without loss of generality we consider |z2| > |z1|.

Case-1: z2 = 0.

In this case, Theorem 5.2.1 trivially holds as z1 = 0 as well.

Case-2: z2 6= 0.
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For this, we compute

inf
z∈∂D

|z1 − z||z2 − z| ≤ |z1 −
z2
|z2|
||z2 −

z2
|z2|
|

= |z1 −
z2
|z2|

(1− |z2|)

≤ (|z1|+ 1)(1− |z2|)

≤
√

(1− |z1|2)(1− |z2|2),

Verification of last inequality: let it be true, then

(|z1|+ 1)(1− |z2|) ≤
√

(1− |z1|2)(1− |z2|2).

Squaring both sides and expanding, we obtain

(1 + |z1|2 + 2|z1|)(1 + |z2|2 − 2|z2|) ≤ (1− |z1|2 − |z2|2 + |z1|2|z2|2).

After some simplification, we get

(|z2| − |z1|)2 + (|z2| − |z1|)(|z1||z2| − 1) ≤ 0,

equivalently,

(|z2| − |z1|)(|z2| − |z1|+ |z1||z2| − 1) ≤ 0

equivalently,

(|z2| − |z1|)(|z2| − 1)(|z1|+ 1) ≤ 0.

Since |z2| ≥ |z1| then, |z2|−|z1| ≥ 0. it implies that |z1| < 1, So the last inequality

is true. Thus

min
z∈∂D
|z1 − z||z2 − z| ≤

√
(1− |z1|2)(1− |z2|2)

That is

|z1 − z2|
min
z∈∂D
|z1 − z||z2 − z|

≥
|z1 − z2|√

(1− |z1|2)(1− |z2|2)

cD(z1, z2) ≥ sinh

(ρD(z1, z2)

2

)
.

This completes the proof.

For the equality, take z2 = −z1. Then we see that

cD(z1,−z1) =
2|z1|

1− |z1|2
= sinh(ρD(z1,−z1)/2),
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using Lemma 5.1.5.

Corollary 5.2.2. [6, Corollary 3.3] For z1, z2 ∈ D, we have the following sharp

inequality

ρD(z1, z2) ≤ 2cD(z1, z2).

Proof. We know that

sinh(t) ≥ t, for all t ≥ 0.

This leads to

sinh

(ρD(z1, z2)

2

)
≥
ρD(z1, z2)

2
.

By Theorem 5.2.1, we have

cD(z1, z2) ≥
ρD(z1, z2)

2

and hence

ρD(z1, z2) ≤ 2cD(z1, z2),

completing the proof.
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CHAPTER 6

Conclusion

6.1 Overview

This thesis comprises of six chapters. The first chapter is of introductory type.

The second chapter contains certain elementary properties and examples on

Möbius transformations. The Cassinian metric, with it computations and several

basic properties, is considered in Chapter 3. Most of the main results that we

wish to highlight are covered in Chapter 4. The Poincare’s hyperbolic metric of

the unit disk, which got special attention in Chapter 5, is compared with the

Cassinian metric.

6.2 Future Direction

Recall from complex analysis that the density of the chordal metric on the Rie-

mann sphere generates the spherical metric. This is computed by taking the limit
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of the ratio of the chordal metric and the Euclidean metric between two points,

when they are nearer. In a similar manner, we here compute the density of the

Cassinian metric.

Lemma 6.2.1. [5, Corollary 3.6] For a proper subdomain D of C and for z ∈ D,

the density τD(z) of the Cassinian metric cD at z is given by

τD(z) =
1

(δ(z))2
.

Proof. For z, w ∈ D, we have

τD(z) = lim
w→z

cD(z, w)

|z − w|
= lim

w→z

1

minp∈∂D |z − p| |w − p|
=

1

minp∈∂D |z − p|2
.

It follows that

τD(z) =
1

(δ(z))2
,

as required.

Let z1, z2 ∈ D. As in [5], considering this density function, the inner

Cassinian metric is defined by

c̃D(z1, z2) = inf
γ

∫
γ

|dz|
δ(z)2

,

where the infimum is taken over all the rectifiable curves γ ⊂ D joining z1 and z2.

This metric is further considered in [6]. However, only a few elementary results

concerning this are studied therein. Therefore, as a future scope in this direction,

many open problems connected to the inner Cassinian metric may be investigated.

For instance, one can ask questions about characterizations of certain domains

having nice geometric properties in terms of inequalities in the Cassinian and its

inner metrics. Secondly, comparisons of it with the hyperbolic and other related

metrics can also be studied.
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