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Abstract

Let Y = {φ(i), Xφ(i), · · · , Xmiφ(i) : φ ∈ H, X ∈ B(H) and i ∈ Ω}, where H is a

separable Hilbert space. Our main objective is to establish the essential require-

ments and criteria involving X,Ω,mi : i ∈ Ω that are necessary and sufficient to

retrieve any function φ ∈ H from the given sample set Y. This is known as the dy-

namical sampling problem. Our objective is to reconstruct φ by combining rough

samples of φ with its future states X`φ. Dynamical sampling is widely applicable

in various domains, including time-space sampling trade-off, super-resolution, on-

chip sensing, satellite remote sensing, and more. In finite-dimensional spaces, we

discuss this problem for a diverse class of bounded linear operators, including di-

agonalizable, convolution, Fourier multiplier, and translation invariant operators.

Next, we analyze when a frame {φn}Nn=1 is dynamical frame for `2(Zd), i.e. there

exist a bounded linear operator X : `2(Zd) → `2(Zd) and φ ∈ `2(Zd) such that

{φn}Nn=1 = {Xnφ}Nn=1. We provide characterization results for dynamical frame

and dynamical dual frame. Moreover, we demonstrate that each overcomplete

frame possesses an infinite number of dynamical dual frames.
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CHAPTER 1

Introduction

1.1 History of Dynamical Sampling

The origin of dynamical sampling is relatively recent in history. In 2009, Lu and

Vetterli discussed the concept in their paper titled “Spatial super-resolution of

a diffusion field by temporal oversampling in sensor networks” [24]. This is the

first work on dynamical sampling. In 2011, Vetterli et al. further contributed to

the field with their work on “Sampling and reconstructing diffusion fields with

localized sources” [26]. These notable publications played a significant role in

advancing our understanding and applications of dynamical sampling. In 2014,

Aldroubi investigated into the field of dynamical sampling through a series of pa-

pers, including “Dynamical sampling” [3], “Dynamical sampling in shift-invariant

spaces” [1] and “Dynamical Sampling: Time Space Trade-off” [4]. 1 Aldroubi’s

1This chapter focuses on the dynamical sampling problem, which is elucidated using the

research contributions of Aldroubi [3] and Mart́ın, Medri, and Molter [25].

1



work shed light on the details of this specialized form of dynamical sampling,

contributing valuable insights to the field. The most general form of dynamical

sampling problem was studied by Aldroubi et al. in [3].

1.2 Difference between traditional & dynamical

Sampling

Dynamical sampling and traditional sampling differ in the way that the sampling

locations are selected. In traditional sampling, the sampling locations are fixed

and predetermined, typically based on a uniform grid or some other regular pat-

tern. Then signal is sampled at these fixed locations and the resulting samples

are used for signal processing and analysis.

In contrast, dynamical sampling is a powerful signal processing technique that

allows us to represent signals with a small number of samples accurately. The

technique involves adapting the sampling locations to the signal’s local features,

such as frequency content and spatial structure. This approach can lead to more

efficient sampling and better signal reconstruction compared to traditional, fixed

sampling techniques.

Dynamical sampling can be beneficial when the signal of interest is highly variable

and complex, with properties that vary over time and space. In such cases, tradi-

tional sampling techniques may miss important features of the signal or require a

large number of samples to achieve high-fidelity representation. Dynamical sam-

pling improves the efficiency of capturing essential signal information by adjusting

the sampling locations based on the local properties of the signal.
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1.3 Applications of Dynamical sampling

In environmental monitoring applications, sensors may be used to capture com-

plex signals such as temperature, humidity, air quality, and water quality, which

may exhibit spatial and temporal variations. By using dynamical sampling tech-

niques, researchers can optimize the sampling locations to capture the most im-

portant features of these signals while minimizing the number of samples required.

Here are a few examples of how it is used in different applications:

• Time-space sampling trade-off: The time-space sampling trade-off in

dynamical sampling refers to finding the right balance between sampling

frequency in time (temporal resolution) and data density in space (spa-

tial resolution). Increasing temporal resolution captures finer changes but

requires more computational resources, while higher spatial resolution cap-

tures more detail but increases storage requirements. Optimizing this trade-

off involves choosing a sampling scheme that captures essential dynamics

while minimizing resource usage [4].

• Super-resolution: The problem of super-resolution in dynamical sampling

pertains to the challenge of reconstructing a high-resolution signal using

a collection of low-resolution samples. In dynamical sampling, a signal is

sampled in time and space, and the obtained samples are used to reconstruct

the original signal. However, due to various factors such as noise, sensor

limitations, and aliasing, the obtained samples may have a lower spatial

resolution than the original signal [2].

• On-chip sensing: The application of dynamical sampling in on-chip sens-

ing involves adapting the sampling rate of the sensing system to the chang-

ing characteristics of the measured signal. This technique allows for more

efficient use of limited resources, such as power and memory, while main-

taining the accuracy of the estimated data. For example, in a temperature
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sensor integrated into a microchip, the temperature may change slowly over

time, requiring a lower sampling rate to capture the data accurately. How-

ever, if the temperature suddenly spikes, a higher sampling rate may be

needed to capture the rapid change in temperature accurately [2].

• Satellite remote sensing: Satellite remote sensing involves the use of

satellites equipped with sensors to acquire data about the Earth’s surface

and atmosphere. High spatial resolution refers to the ability to distinguish

fine details in the imagery, while low temporal resolution refers to the fre-

quency at which the data is acquired over time. By applying dynamical

sampling in satellite remote sensing, the satellite can adjust its data acqui-

sition rate based on the signal’s characteristics, allowing for more efficient

use of limited resources such as power, memory, and bandwidth. For exam-

ple, in areas of the Earth’s surface where no significant changes occur over

a short time, the satellite can decrease the data acquisition rate to conserve

resources while maintaining the desired level of spatial resolution [2].

• Wireless Sensing Networks (WSN): In biomedical sensing applications,

such as electrocardiography (ECG) and electroencephalography (EEG), dy-

namical sampling can be used to accurately capture the signals while re-

ducing the number of electrodes required. Dynamical sampling can be es-

pecially important in wearable sensing applications, where minimizing the

number of sensors can improve patient comfort and compliance[3].

1.4 Problem formulation for dynamical sampling

Aldroubi [3] introduced the concept of the dynamical sampling problem within

the context of a separable Hilbert space H of finite dimensions. Let φ ∈ H and

X : H → H be an evolution operator. φ(n) = Xnφ denotes the evolved function

φ at time n. The Hilbert space H is associated with `2(I), where I = 1, 2, · · · , d.

4



The expression X tφ(i) denotes a sample in the time and space domain, specifically

at time t within the set of natural numbers and location i ∈ I. We establish a

connection between every combination of an element i from the set I and a natural

number t, associating each pair with a specific sample value. The dynamical

sampling problem can be formulated as follows: Given an operator X and a set

P ⊂ I ×N, the question is to determine the conditions under which every φ ∈ H

can be recovered reliably using the samples in P . We take samples of φ at specific

locations Ωn ⊂ I at time t = n, which gives us the samples {φ(n)(i) : i ∈ Ωn}.

Where

φ(n)(i) = Xnφ(i) = 〈Xnφ, ei〉,

where {ei}i∈I is a standard basis for `2(I).

Generally, the measurements φ(0)(i) : i ∈ Ω0 acquired from the original sig-

nal φ = φ(0) do not possess enough information to reconstruct φ completely. In

simpler terms, the signal φ is undersampled. The some extra information needed

to recover φ is given by {φ(n)(i) = Xnφ(i) : i ∈ Ωn}. Again, in general the

samples {φn(i) : i ∈ Ωn} are insufficient to recover Xnφ for each n.

Problem: Consider the evolution operator X : `2(I) → `2(I), where I repre-

sents a set of indices. Let Ω be a fixed subset of I, and let {mi : i ∈ Ω} be a

collection of positive integers. The goal is to determine the conditions on X, Ω,

and {mi : i ∈ Ω} that enable the stable recovery of any vector φ ∈ `2(I) from the

given samples S = {φ(i), Xφ(i), . . . , Xmiφ(i) : i ∈ Ω}.

Dynamical Sampling Problem in an Infinite-Dimensional Hilbert

Space: In 2021, Mart́ın, Medri, and Molter introduced the concept of the con-

tinuous dynamical sampling problem for infinite-dimensional Hilbert spaces [25].

This problem defines two distinct types of dynamical sampling problems within

separable infinite-dimensional Hilbert spaces,

(i) Discrete dynamical sampling.
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(ii) Continuous dynamical sampling.

Consider a separable Hilbert space H, which could be `2(N) or L2([0, L]) for a

specific L > 0. Within this context, let φ represent a function in H that evolves

over time through an evolution operator denoted as X : H → H. We can describe

the function φ at a particular time step n as φ(n) = Xnφ. In this discussion, we can

identify H with `2(I), where I corresponds to N for discrete dynamical sampling

and [0, L] or [0,∞) for continuous dynamical sampling. Consider a sequence of

vectors G = {gj}j∈J in the Hilbert space H, where J represents a countable set

of infinite indices. The time-space sample at time t ∈ I and location j ∈ J is

defined as the value

φ(t)(j) = 〈X tφ, gj〉.

In this approach, we assign a sample value to each pair (j, t) ∈ J × I. The

fundamental question of the dynamical sampling problem can be expressed as

follows: What are the conditions on the operator X, the vectors gj, and the set

J × I under which any vector φ ∈ H can be reliably reconstructed from the given

samples

Y = {φ(t)(j) : (j, t) ∈ J × I}.

Here, the term stable way refers to the property that the reconstruction is robust

under small perturbations. We will make this notion precise in a moment.

Now assume that operator X is bounded operator and Sj is operator such that

Sj := span{gj : j ∈ J} → L2(I, µI),

where (Sjφ)(t) = φ(t)(j) and µI is either the discrete measure or the Lebesgue

measure depending on the set I . Define S to be the operator S =
⊕
j∈J

Sj for

j ∈ J . We assert that the function φ can be recovered from a set of samples Y

when the linear operator S, which is bounded and invertible on its range, is used.

That is, there exist constants A,B > 0 such that for all φ ∈ H,

6



A‖φ‖2
2 ≤ ‖Sφ‖2

2 =
∑
j∈J

‖Sjφ‖2
L2(µI) =

∑
j∈J

∫
I

|〈X(t)φ, gj〉|2dµI(t) ≤ B‖φ‖2
2. (1.1)

The options for X(t) : t ∈ I are outlined below: The discrete dynamical sampling

problem refers to a scenario where the iterations of the operator X are discrete.

In this case, we define X(t) as X raised to the power of t, where t ∈ I Using the

countability of I for all φ ∈ H, (1.1) becomes

A‖φ‖2
2 ≤

∑
j∈J

∑
t∈I

|〈φ, (X∗)tgj〉|2 ≤ B‖φ‖2
2,

where X∗ is the adjoint operator of X. In the context of the continuous dynamical

sampling problem, we take X(t) := etX for t ∈ I , where I = [0, L] or [0,∞).

Therefore for all φ ∈ H condition (1.1) can be written as

A‖φ‖2
2 ≤

∑
g∈G

∫
I

|〈φ, etX∗g〉|2dµI(t) ≤ B‖φ‖2
2.

1.5 Organization

In Chapter 2, we establish a connection between dynamical sampling problems

and frames in a separable Hilbert space. We specifically examine the dynami-

cal sampling problem in cases where the evolution operator X is diagonalizable

or has a Jordan form. Additionally, in Chapter 2, we provide solutions to the

dynamical sampling problem for evolution operators that are translation invari-

ant, Fourier multipliers, and convolution operators. In Chapter 3, we present a

characterization of dynamical frames. Furthermore, in this chapter, we provide

a characterization of dynamical dual frames and establish that every redundant

frame has an infinite number of dual frames. Chapter 4 focuses on the prac-

tical applications of dynamical sampling. We explore its use in solving initial

value problems and sampling signals in the presence of noise. Finally, in the last

chapter, we provide a conclusion and outline future plans.
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CHAPTER 2

Dynamical sampling

In this chapter, we will give a brief introduction to frames in finite dimensional

Hilbert spaces [22]. In Section 2.1, we will explore the relationship between the

dynamical sampling problem and frames. To establish the essential conditions

that must be met for a set Ω and its elements {mi : i ∈ Ω} to be both necessary

and sufficient, such that any vector φ in `2(I) can be recovered stably from a set

of samples S = {φ(i), Xφ(i), · · · , Xmiφ(i) : i ∈ Ω} when evolution operator X

to be diagonal matrix and Jordan matrix is main objective of Section 2.2. The

main results of Sections 2.1 and 2.2 are taken from the work of Aldroubi [3]. 1 2

1This chapter provides a concise overview of frames in finite dimensional Hilbert spaces. The

key findings are derived from the research conducted by Aldroubi [3] and the book authored by

D. Han [22]
2In last sections, we will also investigate the results of dynamical sampling using the polar

value decomposition and for some special operators.
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In Sections 2.3, 2.4, 2.5, and 2.6, we will present our findings. These findings

establish the conditions under which the set {X tei : 0 ≤ t ≤ m, , i ∈ Ωt} becomes

a frame for `2(Zd). To achieve this, we use different types of evolution operators:

polar value decomposition, translation invariant, convolution, and Fourier mul-

tiplier operators, as discussed in each respective section. In the last Section we

discuss dynamical sampling in infinite dimensional Hilbert space.

2.1 Frames and its relation with dynamical sam-

pling

The set {vi}ki=1 in a vector space V is said to be linearly independent set if
k∑
i=1

civi = 0 for some ci ∈ F, implies ci = 0, ∀ 1 ≤ i ≤ k. A subset S =

{v1, v2, . . . , vn} of a vector space V is called a spanning set if it has the property

that any vector in V can be expressed as a linear combination of the vectors in

S. In such cases, we say that S spans V , denoted by L(S) = V .

Definition 2.1. If every element of a vector space V is a linear combination of

elements of S is linearly independent, then S is called a basis for V .

Example 2.1. Consider the vector space `2(Zd) = {(z(n))d−1
n=0 : z(n) ∈ C}. We

have two special orthonormal bases for `2(Zd).

(i) Set {e0, e1, ..., ed−1} is known as standard orthonormal basis, where

en[k] =

 0, if n 6= k,

1, if n = k.

(ii) Set {f0, f1, ..., fd−1} is called Fourier basis for `2(Zd), if

fn[k] =
e2πikn/d

√
d

.

Example 2.2. Vector space `2(N) is defined as

V =

{
(z(n))n∈N :

∑
n∈N

|z(n)|2 <∞

}
.
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The Set {en}n∈N is known as standard orthonormal basis, where

en[k] =

 0, if n 6= k,

1, if n = k.

Definition 2.2. For k ≥ n, a finite sequence of vectors {v1, v2, v3, · · · , vk} in Rn

is said to be extension to a basis for Rk, if there exist vectors {w1, w2, w3, · · · , wk}

in Rk−n such that 
v1

w1

 ,

v2

w2

 , · · · ,

vk
wk


is a basis for Rk.

Example 2.3. Consider the collection of vectors,

{v1, v2, v3} =


1

0

 ,

0

2

 ,

0

0

 ⊂ R2.

If we take the vectors {w1, w2, w3} = {[0], [0], [3]} ⊂ R, then
v1

w1

 ,

v2

w2

 ,

v3

w3

 =




1

0

0

 ,


0

2

0

 ,


0

0

3




is a basis for R3. Hence, {v1, v2, v3} is an extension to a basis for R3.

Definition 2.3. Let F = {φn}kn=1, be a finite sequence of vectors in Rn is an

extension to a basis for Rk, where k ≥ n. Then F is called an Rn-frame.

Next, we will present a general definition of frames within the context of

Hilbert spaces.

Definition 2.4. Let H be a separable Hilbert space. A sequence of vectors

{φi}i∈I ⊂ H is said to be a frame for H if there exist constants 0 < A ≤ B <∞

such that for every x ∈ H,

A‖x‖2 ≤
∑
i∈I

|〈x, φi〉|2 ≤ B‖x‖2.

The constants A and B are known as lower and upper frame bounds, respectively.

If A = B, then {φi}i∈I is called tight frame and it is called Parseval frame if

A = B = 1.

10



Proposition 2.1. [16] Let H be a separable Hilbert space and {φi}ki=1 be a se-

quence in a Hilbert space H. If W := span{φi}ki=1, then there exist constants

0 < A ≤ B <∞ such that

A‖x‖2 ≤
k∑
i=1

|〈x, φi〉|2 ≤ B‖x‖2 for all x ∈ W .

Proof. Assume that not all {φi} are zero. Now consider finite families {φi}ki=1 ⊂

V , k ∈ N. Then by Cauchy-Schwarz’ inequality,
k∑
i=1

|〈x, φi〉|2 ≤
k∑
i=1

‖φi‖2‖x‖2 for all x ∈ V .

Now consider upper frame bound B =
∑k

i=1 ‖φi‖2 and clearly B > 0.

For lower bound consider the continuous mapping f :W → R,

f(x) =
k∑
i=1

|〈x, φi〉|2

Since the unit sphere withinW possesses compactness, so we can get y ∈ W with

‖y‖ = 1 such that

A :=
k∑
i=1

|〈y, φi〉|2

= inf{
k∑
i=1

|〈x, φi〉|2 x ∈ W , ‖x‖ = 1}.

It is clear that A > 0, Now given x ∈ W , x 6= 0, we have
k∑
i=1

|〈x, φi〉|2 =
k∑
i=1

‖x‖2|〈 x
‖x‖

, φi〉|2 ≥ A‖x‖2.

In this section, we find a set F such that stable recovery of a signal from

time-space samples set Y is possible if and only if F is a frame.

Theorem 2.2. [3] Every φ ∈ `2(Zd) can be recovered from the set

Y = {φ(i), Xφ(i), · · · , Xmiφ(i) : i ∈ Ω}

if and only if the set of vectors

F = {X∗tei : i ∈ Ω, t = 0, ...,mi}

11



becomes a frame for `2(Zd).

Proof. Now Y recovers φ if and only if there exists A,B > 0 such that

A‖φ‖2
2 ≤

∑
i∈Ω

mi∑
t=0

|X tφ(i)|2 ≤ B‖φ‖2
2. (2.1)

If {ei} are standard orthonormal basis for `2(Zd) then (2.1) is same as the follow-

ing

A‖φ‖2
2 ≤

∑
i∈Ω

mi∑
t=0

|
N−1∑
j=0

X tφ(j)ei(j)|2 ≤ B‖φ‖2
2

⇐⇒ A‖φ‖2
2 ≤

∑
i∈Ω

mi∑
t=0

|〈X tφ, ei〉|2 ≤ B‖φ‖2
2

⇐⇒ A‖φ‖2
2 ≤

∑
i∈Ω

mi∑
t=0

|〈φ,X∗tei〉〉|2 ≤ B‖φ‖2
2

⇐⇒ {X∗tei : i ∈ Ω, t = 0, · · · ,mi} will be a frame for `2(Zd).

Which finishes the proof.

Consider a full rank square matrix B with complex coefficients, and suppose Q

is defined as Q = BA∗B−1, where A∗ denotes the conjugate transpose of matrix

A. We can express A∗ in terms of B and Q as A∗ = B−1QB. Let bi represents

the ith column of matrix B. Then {Qtbi : i ∈ Ω, t = 0, · · · ,mi} will be a frame

for `2(Zd) iff {X tbi : i ∈ Ω, t = 0, · · · ,mi} will be a frame for `2(Zd).

Lemma 2.3. Every vector φ ∈ `2(Zd) can be reconstructed from the sampling

set S = {X tbi : i ∈ Ω, t = 0, · · · ,mi} iff the sequence of vectors of the set

S = {Qjbi : i ∈ Ω, t = 0, · · · ,mi} forms a frame for the space `2(Zd).

2.2 Dynamical sampling with diagonalizable and

Jordan matrix

In this section, let us start by considering a simpler case when evolution operator

X∗ is a daigonalizable matrix. Let X∗ = B−1DB, where D denotes a diagonal

12



matrix as the following form

D =


λ1I1 0 · · · 0

0 λ2I2 · · · 0
...

...
. . .

...

0 0 · · · λnIn

 ,

Where Ik denote a tk × tk identity matrix, and consider B ∈ `2(Zd×d). The

D-annihilator of a vector b ∈ B refers to the monic polynomial with the small-

est degree that annihilates b and ri denotes degree of D-annihilator. Let Pj :

`2(Zd) → Ker(T − λjI) is an orthogonal projection associated to the eigenvalue

λj . Then we have,

Theorem 2.4. [3] Consider a diagonal matrix denoted by D. In this context, ri

represents the degree of the D-annihilator of vector bi. We can define mi ∈ N as

mi = ri − 1. Consequently, the set {Djbi : i ∈ Ω, 0 ≤ j ≤ mi} forms a frame of

`2(Zd) if and only if the set {Pj(bi) : i ∈ Ω} forms a frame of Pj(`
2(Zd)), where

j = 1 ≤ j ≤ n.

In this section, we express evolution operator X∗ in Jordan form. Let J be

Jordan form of a matrix X∗. if Jordan form of a matrix is J such that

J =


J1 0 · · · 0

0 J2 · · · 0
...

...
. . .

...

0 0 · · · Jn


for x = 1, · · · , n, Jx = λxIx +Nx where Ix is an hx × hx identity matrix, and Nx

denotes the block-nilpotent matrix of order hx of the form

Nx =


Nx1 0 · · · 0

0 Nx2 · · · 0
...

...
. . .

...

0 0 · · · Nxγx



13



where each Nxi is a txi × txi cyclic nilpotent matrix,

Nxi ∈ `2(Ztxi ×txi ), Nxi =



0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


with tx1 ≥ tx2 ≥ · · · and tx1 + tx2 + · · · + txγx = hx. Also h1 + · · · + hn = d. The

matrix J is a square matrix with d rows and eigenvalues λj, j = 1, · · · , n such that

λi 6= λk. And {bi : i ∈ Ω} ⊂ `2(Zd). Define Wx := span{ekxj : j = 1, 2, · · · , γx}

and γx is total number of nilpotent matrix.

Theorem 2.5. [3] Consider a matrix J in Jordan form. Suppose Ω is a subset

of index set {1, · · · , d}, and let {bi : i ∈ Ω} represent a set of vectors in the

Hilbert space `2(Zd). Here, ri denotes the degree of the J-annihilator of vector bi.

and define mi = ri − 1 and Wx = span{ekjx : j = 1, 2, 3, · · · , γx} and γx is total

number of nilpotent matrix. Then the following assertions are equivalent:

(i) The collection of vectors {J jbi : i ∈ Ω, j = 0, · · · ,mi} forms a frame for

`2(Zd).

(ii) {Px(bi), i ∈ Ω} forms a frame for Wx, for all x = 1, · · · , n.

Example 2.4. Let J be a Jordan matrix defined by

J =



5 1 0 0 0 0 0

0 5 1 0 0 0 0

0 0 5 0 0 0 0

0 0 0 2 1 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 1

0 0 0 0 0 0 2


.

The characteristic polynomial of J is ch(t) = (t−2)4(t−5)3 and minimal polyno-

mial is m(t) = (t− 2)2(t− 5)3. Let Jx = λIx +Nx, where Nx is nilpotent matrix.
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Then we have

J1 = 5


1 0 0

0 1 0

0 0 1

+


0 1 0

0 0 1

0 0 0

 = N1.

J2 = 2

1 0

0 1

+

0 1

0 0

 = N2.

J3 = 2

1 0

0 1

+

0 1

0 0

 = N3.

Now Ω ⊂ {1, ..., 7} and bi ∈ `2(Z7). If we take Ω = {1, 2, 3}, j = 0, 1, 2, 3 and

{bi}3
i=1 =




1

1

2

1

2

0

1

 ,


−1

−1

0

2

−1

2

1

 ,


0

2

1

−1

−1

0

0


.

Then the sequence of elements of the set {J jbi : i ∈ {1, 2, 3}, j = 0, · · · , 3} forms

a frame for `2(Z7). Now for each i ∈ Ω the index of Nsi is kis . Here k1s = 3, k2s = 2

and k3s = 2. Then Wx = span{e3, e2} ∼= `2(Z2).

Now Px is orthogonal projection onto Wx and

Px =



0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.

Hence {Px(bi), i ∈ Ω} form a frame of Wx.
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Graph of the frame {J jbi : i ∈ Ω = {1, 2, 3}, j = 0, 1, 2, 3}

2.3 Dynamical sampling with PVD

Now we are familiar with the concept of dynamical sampling in finite dimen-

sional Hilbert spaces. In this section, we will investigate the results of dynamical

sampling using the polar value decomposition(PVD) of a square matrix.

Definition 2.5. The polar value decomposition (PVD) is a matrix factorization

that decomposes any complex or real square matrix A into two parts: a unitary

matrix W and a positive semidefinite matrix P , i.e. A = WP . Furthermore, if

A is invertible matrix then representation is unique.

Theorem 2.6. Let A be a square matrix of order d and polar value decomposition

of matrix A is A = WP , where W is unitary matrix and P is positive semi-

definite matrix. Let W ∗A = Q and it can be written as, Q = V SV ∗, where

V V ∗ = V ∗V = I. Then the following are equivalent,

(i) The collection of vectors {Qjf(i) : i ∈ Ω, j = 0, · · · ,mi} forms a frame for

`2(Zd).

(ii) The collection of vectors {Sjf(i) : i ∈ Ω, j = 0, · · · ,mi} forms a frame for

`2(Zd).
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Let A ∈ Cn×n be a matrix that can be written as Q = V SV ∗, where S is a

diagonal matrix which has the form,

S =


σ1I1 0 · · · 0

0 σ2I2 0
...

. . .

0 · · · σkIk

 ,

and I1, I2, · · · , Ik are identity matrix with distinct singular values σ1, σ2, · · · , σk
of A and 1 + 2 + · · ·+ k = d.

Theorem 2.7. Consider a square matrix A of order d and Q is a matrix defined

in Theorem 2.6. Let B be an invertible matrix of order d with column vectors

{bi : i ∈ Ω}, where Ω represents the set of indices. Each column vector bi has a

D-annihilator of degree ri. Define mi ∈ N, by mi = ri − 1. Then the following

statements are equivalent.

(i) The collection of vectors {Sjbi : i ∈ Ω, j = 0, · · · ,mi} form a frame of

`2(Zd).

(ii) For each j = 1, ..., k, the set {Pj(bi), i ∈ Ω} forms a frame for Pj(`
2(Zd)).

Proof. Suppose Pj(bi), i ∈ Ω form a frame for Pj(`
2(Zd)) for each j = 1, · · · , k.

Because we are dealing with d-dimensional Hilbert spaces H, therefore our goal is

to demonstrate that the set {Sjbi : i ∈ Ω, j = 0, · · · ,mi} forms a frame for `2(Zd).

For this it is sufficient to show that span{Sjbi : i ∈ Ω, j = 0, · · · ,mi} = `2(Zd).

Since V = W1⊕ · · ·⊕Wk, it follows that there exist k linear projection operators

P1, P2, · · · , Pk such that

P1 + P2 + · · ·+ Pk = I.

Let x ∈ `2(Zd) then

x = Ix =
k∑
j=1

Pjx.

Suppose that 〈Slbi, x〉 = 0 holds for all i ∈ Ω and l = 0, 1, . . . ,mi, where mi =

ri−1 and ri represents the degree of the D-annihilator of bi. Consequently, it can
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be inferred that 〈Slbi, x〉 = 0 holds for all i ∈ Ω and l = 0, 1, . . . , d, since k ≤ d.

Moreover, this condition holds for l = 0, 1, . . . , k. Then

〈Slbi, x〉 =
k∑
j=1

〈Slbi, Pjx〉 =
k∑
j=1

σlj〈Pjbi, Pjx〉 = 0, (2.2)

for all i ∈ Ω and l = 0, 1, · · · , k. Consider that zi is the vectors (〈Pjbi, Pjx〉) ∈

`2(Zk). The matrix form of the equation 2.2 for each value of i can be written as

V zi = 0, where V represents an n× n Vandermonde matrix.

V =


1 1 · · · 1

σ1 σ2 · · · σk
...

...
. . .

...

σk−1
1 σk−1

2 · · · σk−1
k

 ,

since σr 6= σs for all r, s ∈ {1, 2. · · · , k}. Hence V is invertible matrix.

=⇒ zi = 0 for all i ∈ Ω

〈Pjbi, Pjx〉 = 0 for all i ∈ Ω and for each j = 1, 2, · · · , k.

Because sequence of vectors {Pj(bi), i ∈ Ω} forms a frame of Pj(`
2(Zd)).

=⇒ 〈Pjbi, Pjx〉 = 0 for all i ∈ Ω and for each j = 1, 2, · · · , k.

=⇒ ‖Pjx‖2 = 0,

=⇒ Pjx = 0,

=⇒
k∑
j=1

Pjx = 0.

Hence x = 0 for all i ∈ Ω and for each j = 1, 2, · · · , k.

Theorem 2.8. Let A be a square matrix of order d and Q,S be matrices same as

defined in theorem 2.6 with Ω ⊂ {1, 2, · · · , d} and φ ∈ `2(Zd), given a collection

of vectors {bi : i ∈ Ω} and using the operator Pj, where 1 ≤ j ≤ k, we have

that {Pj(bi), i ∈ Ω} forms a frame for Pj(`
2(Zd)). Now, consider a fixed integer

L. We construct the set E =
⋃

i∈Ω:bi 6=0

{bi, Sbi, ..., SLbi}. Then E forms a frame

for `2(Zd) if and only if all the vectors {SL+1bi : i ∈ Ω} are contained within the

spanE.
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Proof. ( =⇒ ) It is given that E =
⋃

i∈Ω:bi 6=0

{bi, Sbi, ..., SLbi} is a frame of `2(Zd)

then by definition of frame in finite dimension case, each vector in `2(Zd) will

belong to span(E). Hence

{SL+1bi : i ∈ Ω} ⊂ span(E).

( ⇐= ) If the set SL+1bi : i ∈ Ω is contained within the spanE, it implies that

S(span(E)) ⊂ span(E). Consequently, according to Theorem 2.7, E forms a

frame for `2(Zd).

Theorem 2.9. Let A be a normal matrix of order d. Let polar value decomposi-

tion of matrix A is A = WP , and matrix Q is same as defined in Theorem 2.6.

Then Q = W ∗A = AW ∗ and the following are equivalent,

(i) The collection of vectors {Ajbi : i ∈ Ω, j = 0, · · · ,mi} forms a frame for

`2(Zd).

(ii) The collection of vectors {Sjbi : i ∈ Ω, j = 0, · · · ,mi} forms a frame for

`2(Zd).

Proof. Note that A is normal matrix of order n, and its polar value decomposition

is A = WP , where W is unitary matrix and P is positive semi-definite matrix.

Since A is normal then

A = WP = PW =⇒ P = W ∗A = AW ∗.

Since matrix W ∗ and A are commutative and Q = W ∗A =⇒ Qn = (W ∗)nAn.

Since W ∗ is invertible matrix then by Theorem 2.6 statement (i) and (ii) are

equivalent.

Example 2.5. Let A be discrete Fourier transform matrix(DFT) of order N .

Then polar value decomposition of matrix A is A = WP , where W = UV ∗ and
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P = V SV ∗. For wN = e−2πi/N matrix A is defined as,

A =



1 1 1 · · · 1

1 wN w2
N · · · w

(N−1)
N

1 w2
N w4

N · · · w
2(N−1)
N

...
...

...
. . .

...

1 w
(N−1)
N w

2(N−1)
N · · · w

(N−1)(N−1)
N


N×N

.

Then note that U = 1√
N
A and

S =



√
N 0 · · · 0

0
√
N · · · 0

...
...

. . .
...

0 0 · · ·
√
N


N×N

,

and matrix V = IN×N =⇒ V ∗ = IN×N .

Then semi definite matrix P = V SV ∗ = S and W = UV ∗ = 1√
N
A.

Then matrix Q of Theorem 2.9 is Q = W ∗A =⇒ Q = ( 1√
N
A)(
√
NA) = A2.

In this example we assume that mi = n and for each j, Ω is a singleton and
n⋃
j=1

Ωj = {1, 2, · · · , n}.

Let {bi}i∈I be column vectors of some invertible matrix of order N , then Theorem

2.9 holds true.

Example 2.6. Let A be discrete Fourier transform matrix(DFT) of order 3.

Then polar value decomposition of matrix A is A = WP , where W = UV ∗ and

P = V SV ∗. Now

A =


1 1 1

1 −1+
√

3i
2

−1−
√

3i
2

1 −1−
√

3i
2

−1+
√

3i
2

 , and singular values matrix is S =


√

3 0 0

0
√

3 0

0 0
√

3

 .

For Ω = {1} ⊂ I and b1 =


1

2

−1

 , degree of the D-annihilator is, r1 = 3 =⇒

m1 = 2. Since A is normal matrix, then by Theorem 2.9, the set of vectors
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{Ajbi : i ∈ Ω, j = 0, 1, 2} forms a frame for `2(Z3) iff the collection of vectors

{Sjbi : i ∈ Ω, j = 0, 1, 2} forms a frame for `2(Z3).

(a) Frame {Ajbi : i ∈ Ω, j = 0, 1, 2} (b) Frame {Sjbi : i ∈ Ω, j = 0, 1, 2}

Figure 2.1: Dynamical sampling with PVD of a DFT matrix.

2.4 Dynamical sampling with Translation invari-

ant operator

In Section 2.4 we will present our result, which gives the sufficient conditions such

that {X tei : 0 ≤ t ≤ m, i ∈ Ωt} becomes a frame for `2(Zd) by fixing evolution

operator X to be translation invariant operator.

Theorem 2.10. Suppose that {Λk}k∈I is a countable family of lattices in G, and

let {Vk}k∈I be associated fundamental domains with lattice Λk in Ĝ. Consider the

two collections of elements {φk}k∈I , {φ̃k}k∈I in L2(G). Then the following hold:

(i) {Rλφk}λ∈Λk,k∈I is a Bessel sequence in L2(G) if

B := sup
γ∈Ĝ

∑
k∈I

µĜ(Vk)
∑
ω∈Λ⊥k

|φ̂k(γ) ̂φk(γ + ω)| <∞.
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(ii) If (i) holds, then {Rλφk}λ∈Λk,k∈I is a frame for L2(G) if

A =: inf
γ∈Ĝ

∑
k∈I

µĜ(Vk)|φ̂k(γ)|2 −
∑
k∈I

µĜ(Vk)
∑

ω∈Λ⊥k /{0}

|φ̂k(γ) ̂φk(γ + ω)|

 > 0.

Definition 2.6. Let X : `2(Zd)→ `2(Zd) be a linear transformation. It is called

translation invariant if

X(Rkz) = RkX(z),

for all z ∈ `2(Zd) and all k ∈ Z. Where Rk is translation operator defined as

(Rkz)(n) = z(n− k).

Theorem 2.11. Suppose the following:

(i) X : `2(Zd)→ `2(Zd) is a translation invariant,

(ii)
(
ai,j

)
0≤i,j≤d−1

is a matrix representation of X with respect to standard basis,

(iii) m = 1, and

(iv) Ω0 = {0, 2, 4, · · · , d− 2}and Ω1 = {0, 1, 2, · · · , d− 1}.

If |âi,0| 6= 0 for each i ∈ {0, · · · , d − 1}, then {X tei : 0 ≤ t ≤ m, i ∈ Ωt} is a

frame for `2(Zd).

Proof. Given Ω0,Ω1 ⊂ `2(Zd). Define Ω⊥t = {γ ∈ Ẑd : γ(x) = 1, ∀x ∈ Ωt}.

Since Ω0 = {0, 2, 4, · · · , d − 2} and Ω1 = {0, 1, 2, · · · , d − 1}, therefore Ω⊥0 =

{0, d
2
},Ω⊥1 = {0}. And we have X teλ = X tRλe0 = RλX

te0, define φt = X te0.

Here V0 = {0, 1, · · · , d/2− 1} and V1 = {0, 1, · · · , d− 1} applying Theorem 2.10

(i) is always true in finite dimensional case. Therefore only remains to prove (ii)

that is

A = inf
n∈Ĝ

(
µĜ(V0)|φ̂0(n)|2 + µĜ(V1)|φ̂1(n)|2 − µĜ(V0)|φ̂1(n)φ̂1(n+ ω)|

)
> 0.

For this it is sufficient to show that for each n ∈ Zd, we have

µĜ(V0)|φ̂0(n)|2 + µĜ(V1)|φ̂1(n)|2 − µĜ(V0)|φ̂1(n)φ̂1(n+ ω)| > 0. (2.3)
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Now take n ∈ Zd then

µĜ(V0)|φ̂0(n)|2 + µĜ(V1)|φ̂1(n)|2 − µĜ(V0)|φ̂1(n)φ̂1(n+ ω)|

=
d

2
+ d|X̂e0(m)|2 − d

2

= d|X̂e0(m)|2

Now equation (2.3) is true if and only if |X̂e0(n)| 6= 0 for all n ∈ Zd, that is

X̂e0(n) 6= 0, equivalently â(n,1) 6= 0. Which finishes the proof.

2.5 Dynamical sampling with convolution oper-

ator

In Section 2.5 we will present our result, which gives the sufficient conditions such

that {X tei : 0 ≤ t ≤ m, i ∈ Ωt} becomes a frame for `2(Zd) by fixing evolution

operator X to be convolution operator.

Definition 2.7. Suppose b ∈ `2(Zd), define Xb : `2(Zd)→ `2(Zd) by Xb(z) = b∗z,

for all z ∈ `2(Zd). Then it is called a convolution operator.

Theorem 2.12. Suppose the following:

(i) Xb is a convolution operator for some b ∈ `2(Zd),

(ii) m = 1, and

(iii) Ω0 = {0, 2, 4, · · · , d− 2}and Ω1 = {0, 1, 2, · · · , d− 1}.

If |b̂(m)| 6= 0 for all m ∈ {0, 1, · · · , d − 1}, then {X t
bei : 0 ≤ t ≤ m, i ∈ Ωt} is a

frame for `2(Zd).

Proof. Given Ω0,Ω1 ⊂ `2(Zd). Define Ω⊥t = {γ ∈ Ẑd : γ(x) = 1,∀x ∈ Ωt}. Since

Ω0 = {0, 2, 4, · · · , d−2} and Ω1 = {0, 1, 2, · · · , d−1}, therefore Ω⊥0 = {0, d
2
},Ω⊥1 =
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{0}. And we have Xn
b eλ = Xn

b Tλe0, define φn = Xn
b e0 and Xn

b e0 = b ∗ b ∗ · · · ∗ e0.

Here V0 = {0, 1, · · · , d/2− 1} and V1 = {0, 1, · · · , d− 1} applying Theorem 2.10

(i) is always true in finite dimensional case. Therefore only remains to prove (ii)

that is

A = inf
n∈Ĝ

(
µĜ(V0)|φ̂0(n)|2 + µĜ(V1)|φ̂1(n)|2 − µĜ(V0)|φ̂1(n)φ̂1(n+ ω)|

)
> 0.

For this it is sufficient to show that for each n ∈ Zd, we have

µĜ(V0)|φ̂0(n)|2 + µĜ(V1)|φ̂1(n)|2 − µĜ(V0)|φ̂1(n)φ̂1(n+ ω)| > 0. (2.4)

Now take n ∈ Zd then

µĜ(V0)|φ̂0(n)|2 + µĜ(V1)|φ̂1(n)|2 − µĜ(V0)|φ̂1(n)φ̂1(n+ ω)|

=
d

2
+ d|b̂(n)|2 − d

2

= d|b̂(n)|2

Now equation (2.4) is true if and only if |b̂(n)| 6= 0 for all n ∈ Zd. Which finishes

the proof.

2.6 Dynamical sampling with Fourier multiplier

operator

In Section 2.6 we will present our result, which gives the sufficient conditions such

that {X tei : 0 ≤ t ≤ m, i ∈ Ωt} becomes a frame for `2(Zd) by fixing evolution

operator X to be Fourier multiplier operator.

Definition 2.8. Let m ∈ `2(Zd). Define X(m) : `2(Zd) → `2(Zd) by X(m)(z) =

(mẑ)̌, where (mẑ) is the vector obtained from multiplying m and ẑ component

wise, i.e. mẑ(n) = m(n)ẑ(n) for each n. Any transformation of this form is called

a Fourier multiplier operator.

Proposition 2.13. Let X(m) : `2(Zd) → `2(Zd) be Fourier multiplier operator
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then it is translation invariant, i.e.

X(m)(Rkz) = Rk(X(m)z).

Proof. Since X is a Fourier multiplier operator if and only if X is a convolution

operator,

X(m)(z) = Xb(z) where b̂ = m =⇒ b = m∨,

=⇒ X(m)(z) = Xm∨(z),

=⇒ X(m)(Rk(z)) = Xm∨(Rk(z)),

=⇒ X(m)(Rk(z)) = Rk(Xm∨(z)),

=⇒ X(m)(Rk(z)) = Rk(X(m)(z)).

Theorem 2.14. Suppose the following:

(i) X(m) is a Fourier multiplier operator for some m ∈ `2(Zd),

(ii) m = 1, and

(iii) Ω0 = {0, 2, 4, · · · , d− 2}and Ω1 = {0, 1, 2, · · · , d− 1}.

If |m(n)| 6= 0 for all n ∈ {0, 1, · · · , d− 1}, then {X t
(m)ei : 0 ≤ t ≤ m, i ∈ Ωt} is a

frame for `2(Zd).

Proof. Given Ω0,Ω1 ⊂ `2(Zd). Define Ω⊥t = {γ ∈ Ẑd : γ(x) = 1,∀x ∈ Ωt}. Since

Ω0 = {0, 2, 4, · · · , d−2} and Ω1 = {0, 1, 2, · · · , d−1}, therefore Ω⊥0 = {0, d
2
},Ω⊥1 =

{0}. And we have Xn
(m)eλ = Xn

(m)Rλe0 = RλX(m)e0, define φn = Xne0 then

Xn
(m)eλ = Rλφn.

Here V0 = {0, 1, · · · , d/2− 1} and V1 = {0, 1, · · · , d− 1} applying Theorem 2.10

(i) is always true in finite dimensional case. Therefore only remains to prove (ii)

that is

A = inf
n∈Ĝ

(
µĜ(V0)|φ̂0(n)|2 + µĜ(V1)|φ̂1(n)|2 − µĜ(V0)|φ̂1(n)φ̂1(n+ ω)|

)
> 0.
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For this it is sufficient to show that for each n ∈ Zd, we have

µĜ(V0)|φ̂0(n)|2 + µĜ(V1)|φ̂1(n)|2 − µĜ(V0)|φ̂1(n)φ̂1(n+ ω)| > 0. (2.5)

Now take n ∈ Zd then

µĜ(V0)|φ̂0(n)|2 + µĜ(V1)|φ̂1(n)|2 − µĜ(V0)|φ̂1(n)φ̂1(n+ ω)|

=
d

2
+ d|X̂(m)e0|2 −

d

2

= d|X̂(m)e0|2

Now equation (2.5) is true if and only if |X̂(m)e0| 6= 0, that is |m(n)ê0(n)| 6= 0,

equivalently |m(n)| 6= 0 for all n ∈ Zd. Which finishes the proof.

Example 2.7. Let X : `2(Z4)→ `2(Z4) be translation invariant linear transfor-

mation defined as

X(z)(n) = z(n) + 2z(n+ 1) + z(n+ 3),

then matrix representation of X is

A =


1 2 0 1

1 1 2 0

0 1 1 2

2 0 1 1

 .

If we take fix b(n) = an,0 then X will be convolution operator and b =


1

1

0

2

.

Now by definition of discrete Fourier transform, b̂ =


4

1 + i

−2

1− i

.

Now one can observe that |̂b(m)| 6= 0 for all m = 0, 1, 2, 3. Here N = 4 and

Ω0 = {0, 2} , Ω1 = {0, 1, 2, 3}, then {X tei : 0 ≤ t ≤ 1, i ∈ Ωt} = Y (Say).

26



Therefore

Y =




1

0

0

0

 ,


0

0

1

0

 ,


1

1

0

2

 ,


2

1

1

0

 ,


0

2

1

1

 ,


1

0

2

1




.

And note that span{Y } = `2(Z4). Hence {X tei : 0 ≤ t ≤ 1, i ∈ Ωt} is frame for

`2(Z4).

Graph of frame {X tei : 0 ≤ t ≤ 1, i ∈ Ωt}

Example 2.8. Let X : `2(Z4)→ `2(Z4) be translation invariant linear transfor-

mation defined as

X(z)(n) = z(n) + 2z(n+ 1) + z(n+ 3).

Now take b =


1

1

0

2

 and m = b̂ =


4

1 + i

−2

1− i

.

Then X = X(m) and we can proceed same as example 2.7. Hence {X tei : 0 ≤ t ≤

m, i ∈ Ωt} is frame for `2(Z4).

27



2.7 For infinite dimensional case

In this section we are going to introduced dynamical sampling problem in case of

infinite dimensional separable Hilbert space from the work of Aldroubi [3]. Let

H be a infinite dimensional separable Hilbert space. Therefore, without loss of

generality assume that H = `2(N). Let the evolution operator X ∈ X , where X
be defined as:

X = {X ∈ B(`2(N)) : X = X∗, and eigenvectors of X forms a basis of `2(N)}.

The notation B(H) denotes the collection of bounded linear maps that operate

on the separable Hilbert space H. If an operator X ∈ X , it implies the existence

of a unitary operator B such that X = B∗DB. Here, D can be expressed as

D =
∑
j

λjPj, where λj are the eigenvalues of X forming a pure spectrum σp(X) =

λj : j ∈ N, and these eigenvalues are real numbers. It is also required that the

supremum of the absolute values of the eigenvalues, denoted by sup
j
|λj|, is finite.

The set of orthogonal projections, denoted as Pj, satisfies two key conditions: the

sum of all projections is equal to the identity operator, i.e.
∑
j

Pj = I, and any

two distinct projections are orthogonal (PjPk = 0 for j 6= k). It is important to

note that the class X includes all bounded self-adjoint compact operators.

Definition 2.9. A set {vk}∞k=1 in a Hilbert space H is said to be complete if for

φ ∈ H satisfying 〈φ, vk〉 = 0 for all 1 ≤ k <∞ =⇒ φ = 0.

Definition 2.10. A sequence of vectors {vk} in a Hilbert space H is considered

minimal if, for every index j, the vector vj does not belong to span{vk}k 6=j.

Remark 1. By taking into consideration the definition of X , it follows that for

any φ ∈ `2(N) and m ∈ N0

〈φ,Xmei〉 = 〈φ,B∗DmBej〉 = 〈Bf,Dmbj〉 and ‖Xm‖ = ‖Dm‖.

The completeness (minimality, frame property) of the set FΩ = {Xmei : i ∈

Ω,m ∈ N0} is equivalent to the completeness (minimality, frame property) of the

set {Dmbi : i ∈ Ω,m ∈ N0}.
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By utilizing Remark 1, the following theorem presents a characterization

outcome in the case where FΩ forms a frame for a set with |Ω| = 1.

Theorem 2.15. [3] If we consider a linear operator D defined as D =
∑
j

λjPj,

where Pj represents rank 1 operators for all j ∈ N, and v = {v(k)}k∈N is an

element of `2(N), then the set {Dmv : m = 0, 1, · · · } forms a frame if and only if,

(i) |λk| < 1 for all k.

(ii) |λk| → 1.

(iii) {λk} satisfies Carleson’s condition

inf
n

∏
k 6=n

|λn − λk|
|1− λ̄nλk|

≥ δ for some δ > 0.

(iv) b(k) = mk

√
1− |λk|2 for some sequence {mk} satisfying 0 < A ≤ |mk| ≤

B <∞, where A and B are constants such that A,B > 0.

This theorem implies the following Corollary.

Corollary 2.16. Consider a matrix X defined as X = B∗DB ∈ X , where D =∑
j

λjPj, and Pj represents rank-1 matrices for all j ∈ N. Our claim is that there

exists an index i0 ∈ N such that the set FΩ = {Xmei0 : m = 0, 1, ...} forms

a frame for `2(N) if and only if the sequence of eigenvalues {λj}, satisfies the

conditions described in Theorem 2.15, and there exists an index i0 ∈ N such that

b = Bei0 satisfies condition (iv) of Theorem 2.15.
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CHAPTER 3

Dynamical Frames in `2(Zd)

In previous Chapter 2, we find the conditions such that {Xnφ}n∈I is a frame for

`2(Zd), where I is an index set, X : H → H is a linear operator and φ ∈ H.

In this chapter, we approach the problems in an another way. Let {φn}Nn=1 be

a frame for `2(Zd) when this frame has a representation of the form {Xnφ}Nn=1,

for some operator X, i.e., {φn}Nn=1 = {Xnφ}Nn=1. In Section 3.1, we provide basic

results and definitions. In Section 3.2, we characterize a frame {φn}Nn=1 for which

representation of the form {Xnφ}Nn=1, with a bounded operator X [11]. In Section

3.3 we give the basic definition and properties of dual frame. In Section 3.4 we

provide a characterization result for the existence of dynamical dual frame. 1 2

1This chapter will encompass the definition of a dynamical frame along with the presentation

of several examples utilizing the research conducted by Jonathan A. and M. Powell[11].
2In the last sections of this chapter, we will establish the concept of a dynamical dual frame

and illustrate its application through the research conducted by Jonathan A. and M. Powell,

as referenced in their work[11].
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In the final section, we provide a proof that every redundant frame possesses

an infinite number of dynamical dual frames. Furthermore, we offer a constructive

result that outlines a method for finding dynamical dual frames. The main result

of this chapter is taken from a recent publication by Ashbrock and Powell in 2023.

3.1 Frame representation

Let H be a finite dimensional Hilbert space. A sequence of vectors {φn}Nn=1 ⊂ H

is said to be a frame for H if there exist constants 0 < A ≤ B < ∞ such that

for every x ∈ H,

A‖x‖2 ≤
N∑
n=1

|〈x, φn〉|2 ≤ B‖x‖2.

The analysis operator for the frame is denoted by Θ and defined as

Θ : H → CN and Θx =


〈x, φ1〉

〈x, φ2〉
...

〈x, φN〉

 .

Also Θx =
∑N

n=1〈x, φi〉en, where {en}Nn=1 is the standard orthonormal basis for

CN . The adjoint of analysis operator is called synthesis operator and denoted

by Θ∗, i.e.,

Θ∗ : CN → H and Θ∗


c1

c2

...

cN

 =
N∑
n=1

cnφn.

The operator S := Θ∗Θ : H → H is called a frame operator of frame {φn}Nn=1

and defined by

S(x) = Θ∗Θ(x) =
N∑
n=1

〈x, φn〉φn.

The frame operator S is an invertible operator.
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Definition 3.1. Let {φn}Nn=1 be a frame for `2(Zd). Then {φn}Nn=1 is called

a dynamical frame if there exists a linear operator X : `2(Zd) → `2(Zd) and

φ ∈ `2(Zd) such that Xnφ = φn.

Lemma 3.1. [11] Suppose X : `2(Zd)→ `2(Zd) is linear operator and {Xnφ}Nn=1

is a frame for `2(Zd). Subsequently, for any d ∈ N, a consecutive sequence of d

elements from the frame {Xnφ}Nn=1 form a basis for `2(Zd). Additionally, Xnφ 6=

0 for each 1 ≤ n ≤ N .

Proof. Our aim is to prove for all m ∈ {1, · · · , N − d+ 1}, the set {Xnφ}m+d−1
n=m

forms a basis for `2(Zd). Since X is invertible, therefore it is sufficent to show

that {Xnφ}dn=1 is basis for `2(Zd). Now, Suppose k ≥ 1 be the maximal index

such that {Xnφ}kn=1 is linearly independent. Define S := span{Xnφ}kn=1. We

will show first that X(S) = S. Now the set {Xnφ}kn=1 + 1 is linealrly dependent,

by choice of the index k. Therefore, if
k+1∑
n=1

anXnφ = 0,

then all a1, · · · , ak+1, can not be zero and one must have ak+1 6= 0, so that

Xk+1 ∈ S = span{Xnφ}kn=1.

For any vector v ∈ S, we can express it as a linear combination of the vectors

{Xnφ}kn=1 with scalars {bn}kn=1, such that v =
∑k

n=1 bnX
nφ. Since {Xnφ}k+1

n=1 is a

subset of S, we can conclude that Xv ∈ S. Therefore, X(S) ⊂ S. Furthermore,

since X is an invertible operator, it preserves the dimension of subspaces. Hence,

if X(S) ⊂ S, it implies that X(S) = S. From this, we can deduce that Xn(S) = S

for all n ≥ 1. Consequently, every vector of the frame satisfies Xnφ ∈ S. Based

on the above observations, we can conclude that S is equal to `2(Zd) and the set

{Xnφ}kn=1 forms a basis for S, where k = d.

Definition 3.2. A vector x ∈ `2(ZN), is called d-suitable within `2(ZN) if the

following conditions are satisfied:
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(i) x(1) and x(d+ 1) are non zero.

(ii) x(i) = 0 for all i = d+ 2, · · · , N .

Essentially, a d-suitable vector in `2(ZN) has non-zero values at indices 1

and d+ 1, while all other indices greater than d+ 1 are zero.

Consider a frame {φn}Nn=1 for the Hilbert space `2(Zd), where N is greater

than d. Suppose T is the synthesis matrix of {φn}Nn=1. We aim to show that

the null space of T can be represented as the linear combination of right-shifts

of a d-suitable vector. Additionally, we will show that if Null(T ) possesses this

property, it implies that the frame is dynamical. Let R : `2(ZN) → `2(ZN) and

L : `2(ZN)→ `2(ZN) be the right and left shift operators, respectively and defined

as:

R(b) =



0

b(1)

b(2)
...

b(N − 1)


and L(b) =



b(2)

b(3)
...

b(N − 1)

b(N)

0


Lemma 3.2. [11] Let {φn}Nn=1 be a frame for `2(Zd), N > d and T denotes its

synthesis matrix. Suppose Null(T ) = span{Ri−1b : i = 1, 2, · · · , N − d} for some

d-suitable vector b ∈ `2(ZN). Then the following holds true:

(i) If v ∈ Null(T ) satisfies v(N) = 0, then Rv ∈ Null(T ).

(ii) If v ∈ Null(T ) satisfies v(1) = 0, then Lv ∈ Null(T ).

(iii) Every consecutive set of d elements of {φn}Nn=1 forms a basis for the space

`2(Zd).

(iv) If 1 ≤ i < j < N and φi = φj then φi+1 = φj+1.
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Proof. (i) Since N > d, it follows that either N = d+ 1 or N > d+ 1.

Case I: First suppose N = d + 1 and v is a non-zero vector such that

v ∈ Null(T ). Then v ∈ span{b} = Null(T). Additionally, since b is a d-suitable

vector, v(N) will not be zero. Therefore (i) holds trivially in this case.

Case II: Suppose N > d + 1 and v ∈ Null(T ) such that v(N) = 0. Now

span{Ri−1b : 1 ≤ i ≤ N − 1} = Null(T ) and dim{Ri−1b : 1 ≤ i ≤ N − 1} =

dim(Null(T )) = N − d, therefore {Ri−1b : 1 ≤ i ≤ N − 1} is basis for Null(T ).

Hence there exist scalars {ai}N−d−1
i=1 such that

v =
N−d−1∑
i=1

aiR
i−1b,

the coefficient on RN−d−1b will be zero. Then from above equation

R(v) = R

(
N−d−1∑
i=1

aiR
i−1b

)
=

N−d−1∑
i=1

aiR
ib =

N−d∑
i=2

aiR
i−1b ∈ Null(T ).

(ii) If N = d+ 1 (ii) holds trivially same as (i). Next suppose N > d+ 1. Given

that b is a d-suitable vector, we have R0b = b, which implies that b is the only

vector in the set {Ri−1b : i = 1, 2, · · · , N − d} where b(1) 6= 0. Now, suppose

that v belongs to the null space of T and that v(1) = 0. Writing v in linear

combination of {Ri−1b : i = 2, 3, · · · , N − d}, i.e.,

v =
N−d∑
i=2

aiR
i−1b =⇒ Lv = LR

(
N−d−1∑
i=1

ai+1R
i−1b

)
Define Z:subspace of vectors whose N th coordinate is zero. Now LR(z) = z for

all z ∈ Z. Since
∑N−d−1

i=1 ai+1R
i−1b ∈ Z, it follows that

Lv =
N−d−1∑
i=1

ai+1R
i−1b ∈ Null(T ).

(iii) In view of Lemma 3.1 it is sufficent to show that φ1, φ2, · · · , φd is basis for

`2(Zd). Define S = span{φ1, φ2, · · · , φd}. Take b ∈ Null(T ) and b(d + 1) 6= 0,

then
d+1∑
i=1

b(i)φi = 0 =⇒ φd+1 =
−1

b(d+ 1)

d∑
i=1

b(i)φi ∈ S.

(iv) For 1 ≤ i < j < N it is given that φi = φj and we have to show φi+1 = φj+1.

Let ψ1, ψ2, · · · , ψN denote the canonical basis for `2(ZN). Then v = ψi − ψj ∈
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Null(T ) and notice that v(N) = 0. Therefore by part (1), Rv = ψi+1 − ψj+1 ∈

Null(T ) and hence φi+1 = φj+1.

Example 3.1. Let {φn}5
n=1 ⊂ `2(Z3) be a frame for `2(Z3), where

{φn}5
n=1 =




1

0

1

 ,


0

1

0

 ,


0

0

1

 ,


1

1

0

 ,


−1

0

1


 .

Note that synthesis matrix

T =


1 0 0 1 −1

0 1 0 1 0

1 0 1 0 1

 ,

Now null space of matrix is

N (T ) = span





1

1

−1

−1

0


,



0

1

1

−1

−1




,

In this case d-suitable vector b ∈ `2(Z5) and b =



1

1

−1

−1

0


and Rb =



0

1

1

−1

−1


,

Therefore Null(T ) = span{Ri−1b : 1 ≤ i ≤ 2}.

Now from (i) part of Lemma 3.2 take v ∈ N (T ) such that v =



1

1

−1

−1

0


satisfying

v(5) = 0 then Rv ∈ N (T ) and it holds true.
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Now from (ii) part, take v =



0

1

1

−1

−1


satisfying v(0) = 0 then Lv ∈ N (T ) and it

holds true. Now from (iii) part, if we take 3 consecutive vectors of frame {φn}5
n=1

then each set of vectors {φn}3
n=1,{φn}4

n=2,{φn}5
n=3 will form the basis for `2(Z3).

Now from (iv) part, in frame {φn}5
n=1 each vector is distinct, hence vacuously it

holds true.

Graph of dynamical frame {φn}5
n=1 ∈ R2

3.2 Characterization of dynamical frames

In this section, we present a characterization result that determines whether a

given frame is dynamical or not.

Theorem 3.3. [11] Let {φn}Nn=1 be a frame for `2(Zd) , N > d and T denotes

its synthesis matrix . Then the following assertions are equivalent:

(i) {φn}Nn=1 is dynamical frame.
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(ii) Null(T ) is linear combination of right shifts of a d-suitable vector, i.e.

Null(T ) = span{Ri−1b : i = 1, 2, · · · , N − d}, b is a d-suitable vector.

Proof. (i) =⇒ (ii) Suppose {Xnφ}Nn=1 is a frame for `2(Zd). Now, it is not

possible for the vectors X1φ,X2φ, ..., Xd+1φ to be linearly independent in the

space `2(Zd). Therefore we can choose a b ∈ Null(T ) and b 6= 0. This vector b

satisfy b(n) = 0 for n > d.

Let if possible b(1) = 0, then there exist a non-trivial linear combination of

φ2, · · · , φd+1 that results in zero, which is contradiction. Similarly it is easy to

see b(d+ 1) 6= 0. Therefore b is a d-suitable vector.

Firstly, note that the set {Ri−1b}N−di=1 is linear independent. This can be

proven by considering the fact that b(d+ 1) is non-zero, while b(i) equals zero for

all i > d+ 1. Consequently, for i ≤ N − d we have Ri−1b cannot be expressed as

a linear combination of {Rj−1b : j < i}.

Next we show that Ri−1b ∈ Null(T ) for all i ∈ {1, · · · , N − d}. Since

b ∈ Null(T ), it follows that

TRi−1b =
d+1∑
k=1

bkX
k+i−1φ = X i−1

(
d+1∑
k=1

bkX
kφ

)
= X i−1(Tb) = 0.

Since dim(Null(T )) = N − d. and {Ri−1b : 1 ≤ i ≤ N − d} ⊂ Null(T ) is linearly

independent having cardinality N − d. Hence the result follows.

(ii) =⇒ (i) Suppose b is a d-suitable vector and the span of {Ri−1b : 1 ≤ i ≤

N−d} is Null(T ). Since N−1 ≥ d, it follows that the vectors φ1, · · · , φN−1 must

span `2(Zd), in view of Lemma 3.2. Let us define a linear mapX : `2(Zd)→ `2(Zd)

by X :
∑N−1

n=1 anφn 7→
∑N−1

n=1 anφn+1. First we will show that map X is well define.

Suppose
N−1∑
n=1

anφn =
N−1∑
n=1

bnφn =⇒
N−1∑
n=1

anφn+1 =
N−1∑
n=1

anφn+1.

Now define cn = an − bn for 1 ≤ n ≤ N − 1 and c(N) = 0. Then c = (c(n))Nn=1 ∈
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Null(T ) and c(N) = 0 =⇒ Rc ∈ Null(T ). Thus
N−1∑
n=1

(an − bn)φN+1 =
N−1∑
n=1

(cn)φN+1 = TRc = 0.

Therefore X : `2(Zd)→ `2(Zd) is a well-defined linear map. Since φ2, · · · , φN are

in the range of X, therefore by Lemma 3.2 we get span{φ2, · · · , φN} = `2(Zd).

Define φ = X−1φ1 as X is invertible. Since Xφj = Xφj+1 for each 1 ≤ j ≤ N−1,

one has that φn, defined as the action of an operator X on a vector φ raised to

the power of n for all 1 ≤ n ≤ N . Consequently, the set of vectors {φn}Nn=1 forms

a dynamical frame.

Example 3.2. Let X ∈ B(`2(Z2)) and defined by

X =

 1 0

−1 1

 .

Here d = 2 and suppose N = 4 and φ =

−1

0

. Then dynamical frame generated

by φ is {φn}4
n=1 = {Xnφ}4

n=1 and

{φn}4
n=1 =


−1

1

 ,

−1

2

 ,

−1

3

 ,

−1

4

 .

Now note that synthesis matrix of dynamical frame is

T =

−1 −1 −1 −1

1 2 3 4

 ,

and null space of matrix T is

Null(T ) =




1

−2

1

0

 ,


0

1

−2

1




.

If we take d-suitable vector b =


1

−2

1

0

 then (ii) part of Theorem 3.3 holds true,
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i.e. Null(T ) = span{Ri−1b : 1 ≤ i ≤ 2} for d-suitable b.

Graph of dynamical frame {φn}4
n=1 =

{(
−1

1

)
,
(
−1

2

)
,
(
−1

3

)
,
(
−1

4

)}

3.3 Dual frame in `2(Zd)

In this section, we provide a brief introduction to the concept of a dual frame

and outline its fundamental properties.

Let {φn}Nn=1 ⊂ H be a frame for H. Define a operator S : H → H by

S(x) = Θ∗Θ(x) =
N∑
n=1

〈x, φn〉φn.

The Operator S is called a frame operator. Also S is invertible operator.

Let {φn}Nn=1 and {ψn}Nn=1 be frames for a Hilbert space H and T, U denote the

synthesis matrices of {φn}Nn=1 and {ψn}Nn=1, respectively. Then UT ∗ : H → H is

called the mixed dual Grammian matrix of {φn}Nn=1 and {ψn}Nn=1, defined by

UT ∗(x) =
N∑
n=1

〈x, ψn〉φn =
N∑
n=1

〈x, φn〉ψn.

The frame {ψn}Nn=1 is called dual frame of {φn}Nn=1 if mixed dual Grammian

matrix is identity matrix, i.e., UT ∗ = I. In this case following Formula holds:

x =
N∑
n=1

〈x, ψn〉φn =
N∑
n=1

〈x, φn〉ψn for all x ∈ H,
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which is known as reproducing formula. The set {S−1φn : n = 1, 2, · · · , N} is

dual frame for the frame {φn}Nn=1 is known as the canonical dual frame and it is

unique.

Definition 3.3. Let H be a n dimensional Hilbert space and {φi}Ni=1 ⊂ H be a

frame for H. If matrix F =
[
φ1 φ2 · · · φk

]
n×k

has a rank n, then F is known

as frame matrix. If FF ∗ = λIn×n for some λ > 0, then F is called a tight frame

matrix. If FF ∗ = In×n, then F is known as Parseval frame matrix. In addition,

F is called an equi-norm tight frame matrix if each of the columns of tight frame

matrix have the same norm.

Example 3.3. Let H = R2 be a Hilbert space. Consider the frame,

{x1, x2, x3} =


1

0

 ,

 2

−1

 ,

1

3

 ⊂ R2,

and frame matrix is

F =

1 2 1

0 −1 3

 .

Then adjoint matrix

F ∗ =


1 0

2 −1

1 3

 .

Then by definition frame Matrix is,

S = Θ∗Θ = F ∗F =

6 1

1 10

 .

and S−1 =
1

59

10 −1

−1 6

 .

then canonical dual frame of given frame is

{yi}3
i=1 = {S−1xi}3

i=1 =

 1

59

10

−1

 ,
1

59

21

−8

 ,
1

59

27

17

 .
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3.4 Characterization of dynamical dual frames

In this section, we provide a characterization result for the existence of dynamical

dual frame. Consider a frame {φn} along with its corresponding dual frame {ψn}.

We define the dual frame {ψn} as a dynamical dual frame if it possesses dynamical

properties. In other words, there exists a linear operator X : H → H and a vector

ψ ∈ H such that each element ψn of the dual frame can be expressed as ψn = Xnψ

Proposition 3.4. [11] If {φn}dn=1 is a basis for `2(Zd) then {φn}dn=1 is dynamical.

Proof. It is given that {φn}dn=1 is basis for `2(Zd), then every x ∈ `2(Zd) has

unique representation i.e., there exist scalars {cn}dn=1 such that

x =
d∑
n1

cnφn.

Now define a linear operator X : `2(Zd)→ `2(Zd) by

T :
d∑

n=1

cnφn → cdφ1 +
d−1∑
n=1

cnφn+1.

Note that Xφd = φ1 and Xφn = φn+1 for n = 1, 2, · · · , d− 1, we have φn = Xnφ

for all 1 ≤ n ≤ d.

The following theorem demonstrates that if a frame is dynamical, then its

its canonical dual frame is also dynamical.

Theorem 3.5. [11] If a sequence {φn}Nn=1 is a dynamical frame for `2(Zd), then

its corresponding canonical dual frame {φ̃n}Nn=1 is also dynamical.

Proof. Let {φn}Nn=1 be a dynamical frame for `2(Zd) and its synthesis matrix is

T , then the corresponding canonical dual frame can be represented as {φ̃n}Nn=1,

where φ̃n = S−1φn and has synthesis matrix T̃ = (TT ∗)−1T. In the case where N

is equal to d, the proof can be derived from Proposition 3.4. However, If N > d,

then T̃ = (TT ∗)−1T implies Null(T ) = Null(T̃ ). Then by Theorem 3.3, canonical

dual frame {φ̃n}Nn=1 is dynamical.
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In view of Theorem 3.5 any dynamical frame {φn}Nn=1 whose synthesis matrix is

denoted by T , then its canonical dual frame is dynamical and can be expressed

as {Hnh}Nn=1, where H : `2(Zd) → `2(Zd) and h ∈ `2(Zd). When considering

S = TT ∗, we can rewrite this expression using H = S−1XS and h = S−1φ. Since

T̃ = (TT ∗)−1T , then columns of T̃ are S−1Xφ, S−1X2φ, · · · , S−1XNφ. Note that

S−1XnS = (S−1XS)n so that S−1XnSh = (S−1XS)nh = S−1Xnφ.

Example 3.4. Let {φn}4
n=1 =


−1

1

 ,

−1

2

 ,

−1

3

 ,

−1

4

 be dynami-

cal frame for `2(Z2). Then synthesis matrix T and analysis matrix T ∗ are given

by

T ∗ =


−1 1

−1 2

−1 3

−1 4


and

T =

−1 −1 −1 −1

1 2 3 4

 .

Then frame matrix is

S = TT ∗ =

 4 −1

−1 30

 .

Since frame matrix is always invertible, then inverse of frame matrix is

S−1 =
1

10

15 5

5 2


Now canonical dynamical dual frame of this dynamical frame is {ψn}4

n=1 =

{S−1φn}4
n=1 and

{ψn}4
n=1 =

 1

10

−10

−3

 ,
1

10

−5

−1

 ,
1

10

0

1

 ,
1

10

5

3

 .

Now using Theorem 3.3 we will show that this canonical dual frame is dynamical.
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Synthesis matrix of canonical dual frame is

T̃ =
1

10

−10 −5 0 5

−3 −1 1 3

 .

Now null space of T̃ is

Null(T̃ ) =




1

−2

1

0

 ,


0

1

−2

1




.

For vector b =


1

−2

1

0

 by Theorem 3.3, Null(T̃ ) = span{Ri−1b : 1 ≤ i ≤ 2}.

Hence {ψn}4
n=1 is canonical dynamical dual of dynamical frame {φn}4

n=1.

Graph of dynamical frame {ψn}4
n=1 =

{
1
10

(
−10

−3

)
, 1

10

(
−5

−1

)
, 1

10

(
0

1

)
, 1

10

(
5

3

)}
Lemma 3.6. [11] Consider there are two properties, P1 and P2, such that a frame

{φn}Nn=1 for `2(Zd) having synthesis matrix T possesses P1 if and only if the NullT

possesses P2. Then, the existence of a dual frame for the frame {φn}Nn=1 in `2(Zd)

with property P1 on the assumption of existence of a subspace V ⊂ `2(ZN) that

43



satisfies the following conditions:

(i) `2(ZN) = V ⊕Range(T ∗).

(ii) V has property P2.

Proof. ( =⇒ ) Suppose dual frame of frame {φn}Nn=1 {ψn}Nn=1 is the frame

{φn}Nn=1 has property P1, and let T̃ be synthesis matrix of {ψn}Nn=1. Then

V = Null(T̃ ) satisfies the property P2. Since {φn}Nn=1 is frame, it follows

that dim(Range(T ∗) = d. Also {ψn}Nn=1 is frame therefore dim(Null(T̃ )) =

N − d. Now {ψn}Nn=1 is dual of {φn}Nn=1 and T ∗ is analysis matrix of the frame

{φn}Nn=1 then T̃ T ∗ = Id×d. This gives that 0 is the only common element between

Range(T ∗) and Null(T̃ ). Then `2(ZN) = Null(T̃ ) + Range(T ∗) =⇒ `2(ZN) =

V +Range(T ∗).

(⇐= ) Consider that P is the orthogonal projection onto V ⊥, where V ⊥ is the or-

thogonal complement of V . This projection satisfies the property Null(P ) = V .

Considering our assumption that intersection of V and Range(T ∗) is {0}, and

knowing that the null space of T ∗ is trivial {0}, we can conclude that the linear

map PT ∗ is one-one when operating `2(Zd) → `2(ZN). Thus define a operator

A : `2(ZN) → `2(Zd) such that APT ∗ = Id×d that is A is a left inverse to PT ∗.

Let T̃ = AP and noting that T̃ T ∗ = Id×d, let {ψn}Nn=1 be a dual frame of the

frame {φn}Nn=1 with synthesis matrix T̃ . Given that the dimension of the range

of the adjoint operator T ∗ is d, it follows that the dimension of the space V is

N − d. Consequently, the dimension of the null space of the projection operator

P is equal to the dimension of V , and dim(V ) = N − d. As the matrix T̃ with

dimensions d × N is of full rank, the dimension of Null(T̃ ), can be determined.

Consequently, dim(Null(T̃ )) is equal to dim(Null(P )). Since Null(P ) is a subset

of Null(T̃ ), it can be concluded that Null(T̃ ) = Null(P ) = V . Therefore T̃ has

property P1.
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Corollary 3.7. [11] Consider a frame {φn}Nn=1 for `2(Zd) with N > d and syn-

thesis matrix T . Then the following statements are equivalent:

(i) {φn}Nn=1 has a dynamical dual frame.

(ii) There exists a subspace V of `2(ZN) and a d-suitable vector b such that

V = span{Ri−1b : i = 1, 2, · · · , N − d} and `2(ZN) = V ⊕Range(T ∗).

Proof. Let P1 denote the dynamical property of the frame, while P2 represents

the property that a subspace can be expressed as span{Ri−1b : i = 1, · · · , N−d}.

Then using above Lemma 3.6 proof is done.

3.5 Construction of dynamical dual frames

Next we show that when {φn}Nn=1 forms a frame for `2(Zd) with N > d, then it has

always a dynamical frame. In fact there exists an infinite number of dynamical

dual frames associated with {φn}Nn=1. We also provide a construction method for

the construction of existing dynamical dual frame.

Proposition 3.8. [11] Consider a frame {φn}Nn=1 for `2(Zd), where N > d, and

let the synthesis matrix be denoted by T . Assuming that {φn}Nn=1 possesses a

dynamical dual frame, we define V as the V = span{Ri−1b : i = 1, 2, · · · , N −

d}, as stated in Corollary 3.7. Now, let Nb be a matrix with columns given by

b, Rb, · · · , RN−d−1b, and assume that

Gb = (T (I −Nb(N
∗
bNb)

−1N∗b )T ∗)−1T (I −Nb(N
∗
bNb)

−1N∗b ). (3.1)

Then the dynamical dual of frame {φn}Nn=1 are the column vectors of matrix Gb.

Moreover, Null(Gb) = V .

According to Corollary 3.7, the existence of dynamical dual depended on

the existence of a vector b which is d- suitable vector b such that V = span{Ri−1b :

i = 1, 2, · · · , N − d} satisfy `2(ZN) = V ⊕Range(T ∗).
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Definition 3.4. Define a matrix MT,b of size N ×N such that its first d column

are transpose of rows of a matrix T of order d × N and last N − d columns are

given by right shifts of a d-suitable vector b, i.e. {Ri−1b : i = 1, 2, · · · , N − d}.

Corollary 3.9. [11] Let N > d and {φn}Nn=1 be a frame for `2(Zd). Now if T

denotes the synthesis matrix of {φn}Nn=1, then there exists a vector b ∈ `2(ZN),

which is d-suitable such that the matrix MT,b is invertible. Hence {φn}Nn=1 pos-

sesses a dynamical dual frame {ψn}Nn=1. The synthesis matrix for {ψn}Nn=1 can be

represented by Gb, in (3.1).

Theorem 3.10. [11] If N > d and {φn}Nn=1 is a frame for `2(Zd) having synthesis

matrix T , then there exist infinite many d-suitable vector b such that the matrix

MT,b is invertible and hence there exist infinitely many dynamical dual frames for

{φn}Nn=1.

Example 3.5. Given θ ∈ R, for fix N define the matrix Rθ by

Rθ =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .

If e = (0, 1, 30)′ then for θ = 2πn
N

, frame {φNn }Nn=1 ⊂ R3 is defined by

φNn = (R 2πn
N

)ne =


− sin(2πn

N
)

cos(2πn
N

)

30

 .

This is a dynamical frame of size N . Now take N = 10 then we are going to

calculate canonical and alternate dynamical dual frames using Theorem 3.10 and

Proposition 3.8.
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(a) Graph of frame {φn}10n=1 (b) Frame {S−1φn}10n=1 with frame operator S

(c) For b = (5, 3,−1, 6, 0, 0, 0, 0, 0, 0)′ (d) For b = (π, 3,−1,−6, 0, 0, 0, 0, 0, 0)′

(e) For b = (π,−30,−10,−4π, 0, 0, 0, 0, 0, 0)′ (f) For b = (5π, 3,−10,−60, 0, 0, 0, 0, 0, 0)′

Figure 3.1: These are 5-different duals of frame {φNn }10
n=1 ⊂ `2(Z3) for given

d-suitable vectors b. 47



Example 3.6. Given x ∈ R, define the matrix Rx by

Rx =

1 0

x 1

 .

Then

Rn
x =

 1 0

nx 1

 .

If v = (−1, 0)′ then for x = −1, frame {φNn }Nn=1 ⊂ R3 is defined by

φNn = (Rx)
nv =

−1

n

 .

This is a dynamical frame of size N , and {φn}Nn=1 =


−1

n


N

n=1

be dynamical

frame for `2(Z2). Now take N = 12 then dynamical frame will be

{φn}12
n=1 =


−1

1

 ,

−1

2

 , · · · ,

−1

12


Then Analysis dynamical matrix T ∗ and synthesis dynamical matrix T are

T ∗ =


−1 1

−1 2
...

...

−1 12


and

T =

−1 −1 · · · −1

1 2 · · · 12

 .

Then dynamical frame matrix is

S = TT ∗ =

 12 −78

−78 650

 , and S−1 =


25

66

1

22

1

22

1

143

 .

Now canonical dynamical dual frame of this dynamical frame is {ψn}12
n=1 =

{S−1φn}12
n=1.
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(a) Graph of frame {φn}12n=1 (b) Graph of frame {ψn}12n=1

(c) For b = (1,−1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0)′ (d) For b = (1, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0)′

(e) For b = (−4, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0)′ (f) For b = (5, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0)′

Figure 3.2: These are 5-different duals of frame {φNn }12
n=1 ⊂ `2(Z2) for given

d-suitable vectors b. 49



CHAPTER 4

Application of dynamical sampling in P.D.E.

In the previous chapter, we have already introduced the background of this project

work. Now we are ready to mention some application of dynamical sampling of

this thesis.

Depending on what is given and what is not given there are three types of

problems,

(i) Time-space trade-off in sampling:[4] In this case operator A is known,

f = η = 0 and (xi, ti) points are given at these points values {u()} are also

given, and we have to sample u0.

(ii) System identification:[2] In this case f = η = 0 is given and we have to

recover operator A and u0 from {u(xi, ti)}.

(iii) Source identification:[2] Identify the function f driving the solution u

from space time samples of u.
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4.1 Reconstruction and stability of signal in the

presence of noise

First application of dynamical sampling A. Aldroubi described in his paper “Dy-

namical sampling: Time–space trade-off [4]”.

Time-space trade-off in sampling: In this research, Akram Aldroubi

addresses the challenge of spatiotemporal sampling, which involves reconstruct-

ing the initial state of an evolving process based on samples taken at various time

intervals. His focus lies on achieving a trade-off between spatial and temporal

samples that preserves all the information without any loss. Aldroubi demon-

strates that, specifically for a certain category of signals, it is feasible to recover

the initial state using a reduced number of measuring devices that are activated

more frequently. He introduces multiple algorithms designed for this type of

recovery and evaluates their resilience to noise.

4.2 Solution of abstract initial value problem

In the paper ”Recovery of Rapidly Decaying Source Terms from Dynamical Sam-

ples in Evolution Equations [5]” by Akram Aldroubi, dynamical sampling is used

to solve inverse problems in initial value problems (IVP) for evolution equations.

This problem is third kind of dynamical sampling problem, i.e. source identifica-

tion problem.

The basic idea behind dynamical sampling is to select a set of sampling

points that capture the essential dynamics of the system under consideration. In

the context of IVPs, this means choosing a set of initial conditions that result in

a solution that exhibits the desired behavior.

Problem setting of this IVP:[5] Let us consider the following abstract
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initial value problem: ∂
∂t
u(t) = Au(t) + f(t) + η(t)

u(0) = u0.
t ∈ R+, u0 ∈ H

It could be heat equation or some other IVP. And where η : R+ → H is a Lipschitz

continuous function and models a background source term. And A : D(A) ⊂ H →

H is a generator of a strongly continuous semi-group T : R+ → B(H), f could

be relevant source at the driving the system, and u0 is initial condition. This is

the general setting of the problem.

The burst-like forcing term f is of the form

f(t) =
N∑
j=1

fjδ(t− tj),

For some unknowns N ∈ N, 0 = t0 < t1 < t2 < · · · < tN , and fj ∈ H.

Visual things of the problem: Suppose you are in the ocean and you

have waves, but they are kind of going around, and so this is the η, which you

don’t know, but you know it’s kind of going somewhat slowly. Then, you have

these functions that show those are little fish that kind of jump, and so they

form little waves. You also have those recording devices bobbing onto the sea,

recording things. The question is, from these recording devices, can you actually

figure out when these jumps occur and where?

Image of jumping fish and using some devices we are trying to predict that

when will this fish occur jump and what will be its location?
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And that is essentially what this problem is all about. So, of course, you can take

it as it is, and we have other options for more general things. This is the idea,

and here we are going to show that you don’t know these things that belong to

some subspace of H. So, I am going to think of it as elevation. Let us not worry

about that, and we know something about η.

About the problem: We want to find the condition or design in this

case, the structure of samples or sampling design, if you like, a subset of vectors

in H, and a time sampling beta that allows us to recover or approximate this

established f from noisy samples. We want to design this vector and find the

beta such that it will allow us to essentially recover f in some good way and get

estimates on it.

Main problem:[5] Find conditions on the semi-group T (t) = At, and a

countable sets G ⊂ H and B ∈ R+ that allow one to stably and accurately

approximate f(t) =
∑N

j=1 fjδ(t− tj), from the noisy samples

〈u(nβ), g〉+ v(nβ, g), n ∈ N, g ∈ G

We will assume that the background source is Lipschitz with Lipschitz constant

M , and supn,g |v(nβ, g)| <∞.
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CHAPTER 5

Conclusion and Future Plan

5.1 Conclusion

In conclusion, this thesis has addressed the formulation and study of dynamical

sampling, exploring its connections to frames in a separable Hilbert space. We

have specifically examined various scenarios, such as when the evolution operator

has a diagonalizable or Jordan form, and provided solutions to the dynamical

sampling problem for different types of evolution operators, including translation

invariant, Fourier multipliers, and convolution operators. Furthermore, we have

presented a characterization of dynamical frames and established that redundant

frames possess an infinite number of dual frames. In addition, we have delved into

the practical applications of dynamical sampling, showcasing its effectiveness in

solving initial value problems and sampling noisy signals. Through this research,

we have contributed to the understanding of dynamical sampling and its utility

in diverse areas.
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5.2 Future Plan

As a future work, we extend our results(Theorem 2.11, 2.12 and 2.14) in infinite

dimensional separable Hilbert space. In another direction we will also try to find

out conditions on wavelet frame {Ψ}j,k∈Z = {2j/2φ(2j.− k)}j,k∈Z such that

{Ψj,k}j,k∈Z = {Xnφ}∞n=1,

where X : `2(N)→ `2(N) is an evolution operator and φ ∈ L2(R). Moreover, we

also plan to explore similar problems using other function systems such as Gabor,

wave-packet, and shearlet.
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