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“I have to remind myself that some birds aren’t meant to be caged.

Their feathers are just too bright. And when they fly away, the

part of you that knows it was a sin to lock them up does rejoice.”
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Abstract

Understanding the nature of the particular values of the infinite series
∑∞

n=1
1
ns

has always been a difficult problem in number theory. Euler gave an elegant

formula for even zeta values which implies that even zeta values are not only

irrational but also transcendental. Nevertheless, the nature of odd zeta values

remains open. An interesting formula for odd zeta values can be found in page 319

of the lost notebook of Ramanujan. In the same page, Ramanujan mentioned that

the formula for odd zeta values can be obtained from one of his partial fraction

decompositions of cotangent function and cotangent hyperbolic function. In this

thesis, we study a few partial fraction decompositions for trigonometric functions

given by Ramanujan. Utilizing these partial fraction decompositions and Cauchy

integration technique, we establish Dirichlet character analogue of the formula

for odd zeta values.
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CHAPTER 1

Introduction

For ℜ(s) > 1, the Riemann zeta function ζ(s) is defined as the infinite series∑∞
n=1 n

−s. Euler, in 1734, gave a direct formula for ζ(2m). For any natural

number m, Euler showed that

ζ(2m) = cmπ
2m, (1.1)

where cm = (−1)m+1 22m−1B2m

(2m)!
and Bi denotes the i-th Bernoulli number. Since

all Bernoulli numbers are rationals, from (1.1) we can conclude that ζ(2m) are

transcendental in nature. However, we do not know till date any such explicit

expression for ζ(2m+1). We also do not know much about their algebraic nature.

Unexpectedly, Roger Apréy [1, 2] in 1959, showed the irrationality nature of ζ(3),

but nothing much is known about its algebraic nature. Zudilin [27], in 2001, came

up with a brilliant idea to show that at least one of ζ(2m + 1), for 2 ≤ m ≤ 5,

is irrational. Quite amazingly, Rivoal [25], Ball and Rivoal [3] showed that there

are infinitely many odd numbers for which ζ(s) gives irrational values, but their

result does not say much about the nature of a special odd zeta value. These are
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the best known results till date.

Interestingly, Ramanujan gave the following identity for ζ(2m + 1) in his

lost notebook [24, p. 319, Entry (28)]. For any non-zero integer m, we have

Fm(α) = (−1)mFm(β) +
m+1∑
j=0

(−1)j−1B2jB2m+2−2j

(2j)!(2m + 2 − 2j)!
αm+1−jβj. (1.2)

where Fm(x) = (4x)−m
{

1
2
ζ(2m + 1) +

∑∞
n=1

n−2m−1

e2xn−1

}
and αβ = π2 with α, β > 0.

The above identity can also be found in his second notebook [23, p. 173, Ch. 14,

Entry 21(i)]. At a first glance, it may look the above identity is not as elegant

as of Euler’s identity (1.1) and also it does not provide information whether odd

zeta values are algebraic or transcendental. But it is indeed a remarkable formula

as it gives transformation formula for the Eisenstien series. One can read more

about its significance in a survey article by Berndt and Straub [8]. Over the

time, many mathematicians extended this formula in different directions. To

know more readers can see [4, 5, 6, 7, 8, 9, 10, 13, 14, 15].

A formula for ζ(4m + 3) given by Lerch can be obtained from (1.2) by

substituting α = π = β and substituting m to be 2m + 1. Thus, for m ∈ N, we

get

ζ(4m + 3) =π4m+324m+2

2m+2∑
j=0

(−1)j
B2j

(2j)!

B4m+4+2j

(4m + 4 − 2j)!

− 2
∞∑
n=1

1

n4m+3(e2πn − 1)
(1.3)

Ramanujan mentioned that (1.2) can be obtained using a partial fraction expan-

sion of cot (πx) coth (πy), but there was an error. The partial fraction decompo-

sition offered by Ramanujan [23, p. 171, Ch. 14, Entry 19(i)], [24, p. 318, Entry

(21)] is the following identity:

π2xy cot (πx) coth (πy) = 1 + 2πxy
∞∑
n=1

n coth (πnx
y

)

n2 + y2
− 2πxy

∞∑
n=1

n coth (πny
x

)

n2 − x2
,

(1.4)

where both the infinite series diverges individually. R. Sitaramachandrarao [26]

established a corrected form of the above partial fraction decomposition formula
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given as:

π2xy cot (πx)) coth (πy) = 1 +
π2

3
(y2 − x2)

− 2πxy
∞∑

m=1

(
y2 coth (πmx

y
)

m(m2 + y2)
+

x2 coth (πmy
x

)

m(m2 − x2)

)
.

(1.5)

The identity (1.2) can be obtained from (1.5) by substituting πx by
√
wα and

πy by
√
wβ and then comparing the coefficient of wm, for m ≥ 1. Grosswald [16]

in 1972 gave an noteworthy extension of the Ramanujan’s formula (1.2). For any

non-zero integer m, define σm(n) =
∑

d|n d
m and Fm(z) =

∑∞
n=1 σ−m(n)e2πinz for

z ∈ H. Then we have

F2m+1(z) − z2mF2m+1

(
−1

z

)
=

1

2
ζ(2m + 1)(z2m − 1)

+
(2πi)2m+1

2z

m+1∑
l=0

z2m+2−2l B2l

(2l)!

B2m+2−2l

(2m + 2 − 2l)!
.

(1.6)

The identity (1.2) can be obtained from (1.6) by substituting z = iβ
π

, αβ =

π2 where α, β > 0 . Recently, Chourasiya, Jamal and Maji [11] obtained a

Ramanujan-type identity for ζ(2m + 1). The identity is as follows. For m ∈

Z− {0}, we have

Gm(α) = (−1)mGm(β)

+
m∑
l=1

(−1)l−1(22l − 1)(22m+2−2l − 1)
B2l

(2l)!

B2m+2−2l

(2m + 2 − 2l)!
αm+1−lβl, (1.7)

where

Gm(x) = (4x)−m

(
1

2
ζ(2m + 1)(1 − 2−2m−1) −

∞∑
n=0

(2n + 1)−2m−1

e2(2n+1)x + 1

)
and αβ = π2

4
with α, β > 0. To obtain (1.7) Chourasiya et al. [11] used the

following partial fraction decomposition given by Ramanujan [23, p. 171, Ch.
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14, Entry 19(iii)]:

π

4
tan
(πx

2

)
tanh

(πy
2

)
=y2

∞∑
k=0

tanh
(

(2k + 1)πx
2y

)
(2k + 1){(2k + 1)2 + y2}

+ x2

∞∑
k=0

tanh
(
(2k + 1)πy

2x

)
(2k + 1){(2k + 1)2 − x2}

, (1.8)

where x, y ∈ C such that ℜ( y
x
) ̸= 0. Chourasiya et al. [11] also gave a more

general form of (1.7), namely, for Dirichlet L-function L(χ, s). For any prime

number ℓ, define

an =

 1, if gcd(n, ℓ) = 1,

1 − ℓ, if gcd(n, ℓ) = ℓ.
(1.9)

Then for m ∈ Z\{0}, we have

Hm(α)+(−1)m+1Hm(β)

=
∞∑
j=1

(−1)j−1(ℓ2j − 1)(ℓ2m+2−2j − 1)
B2j

(2j)!

B2m+2−2j

(2m + 2 − 2j)!
αm+1−jβj,

(1.10)

where

Hm(x) = (4x)−m

ℓ− 1

2
L(χ1, 2m + 1) −

∞∑
n=1

an

∑
d|n

χ1(d)

d2m+1

 e−2nx

 ,

where α, β > 0 such that αβ = π2

ℓ2
, χ1 denotes the principal Dirichlet character

modulo ℓ.

In the second notebook [23, p. 171, Ch. 14, Entry 19(iv),19(v)] Ramanujan

provided the following partial fraction decompositions:

π

4
sec
(πx

2

)
sech

(πy
2

)
=

∞∑
l=0

(−1)l(2l + 1)

sech
(

(2l+1)πx
2y

)
(2l + 1)2 + y2

+
sech

(
(2l+1)πy

2x

)
(2l + 1)2 − x2

 ,

(1.11)

π

4
cot
(πx

2

)
sech

(πy
2

)
=

1

2x
− y

∞∑
l=0

(−1)l
coth (2l+1)πx

2y

(2l + 1)2 + y2
− x

∞∑
l=1

sech lπy
x

(2l)2 − x2
.

(1.12)

In this thesis, we analyse these two partial fractional decompositions.
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CHAPTER 2

Preliminaries from Number Theory

2.1 Dirichlet characters

Let N, q ∈ N. A Dirichlet character modulo q is a homomorphism χ : (Z/qZ)∗ →

C∗ satisfying the following properties:

(i)χ(a + q) = χ(a), ∀ a ∈ N,

(ii)χ(ab) = χ(a)χ(b), ∀ a, b ∈ N.

The character χ1 = χ1,q defined by

χ1(m) =

 1, if (m, q) = 1,

0, elsewhere,
(2.1)

is known as the principal character modulo q. The conductor cχ of a Dirichlet

character χ is the least positive integer c such that χ can be generated from

(Z/cZ)∗. We say a character is primitive if its conductor is equal to its period.

If χ(−1) = 1 we say character χ is even character and if χ(−1) = −1 we say it

to be of odd character.

5



2.2 Bernoulli polynomials

Definition 2.1. The generating function for the Bernoulli polynomial Bm(x) is

defined as

text

et − 1
=

∞∑
m=0

Bm(x)
tm

m!
.

The mth Bernoulli number is given by Bm(0) = Bm.

Remark 2.1. B2m+1 = 0 for all m ∈ N.

Definition 2.2. A character analogue of Bernoulli number Bm,χ is defined by
q∑

n=1

χ(n)
tent

eqt − 1
=

∞∑
m=0

Bm,χ
tm

m!
, (2.2)

where χ is a primitive character modulo q.

Note that if χ is odd, Bn,χ = 0 for every even n. In general, Bn,χ=0, for

n ≡ 1 modulo 2, with the single exception of B1,1 = 1
2
.

Definition 2.3. The sequence of Euler polynomials Em(x) satisfy the following

generating function

text

et + 1
=

∞∑
m=0

Em(x)
tm

m!
(2.3)

The mth Euler number Em is defined as 2nEm(1/2).

Remark 2.2. It can be shown that E2m+1 = 0 for all m ∈ N ∪ {0}.

2.3 Gamma function

Definition 2.4. Let s ∈ C. This function is defined as

Γ(s) :=

∫ ∞

0

xs−1e−x dx, ℜ(s) > 0. (2.4)

Remark 2.3. Γ(s + 1) = sΓ(s).

6



Proposition 2.1. Γ(s) is never zero for any s ∈ C.

Proposition 2.2. The singularities of Γ(s) occurs at negative integers including

0 and are simple in nature. Let m ∈ N ∪ {0}, then the residue at −m is (−1)m

m!
.

Lemma 2.3. The Gamma function satisfies the below property

Γ(2s) =
22s−1

√
π

Γ(s)Γ

(
s +

1

2

)
. (2.5)

2.4 Mellin Transform

Definition 2.5. The Mellin transform of g(t) is defined by

M(g; s) :=

∫ ∞

0

g(t)ts−1dt.

If |ts−1g(t)| = tσ−1|g(t)| is integrable on (0,∞) for c < σ < d, then M(g; s)

can be defined and is absolutely convergent on c < ℜ(s) < d and uniformly on

its compact subsets. Thus, it is holomorphic in c < ℜ(s) < d.

Proposition 2.4. The Gamma function is the Mellin transform of e−t, that is,

Γ(s) =

∫ ∞

0

ts−1e−tdt, for ℜ(s) > 0.

2.4.1 Inverse Mellin transform

Definition 2.6. If M(g, s) is analytic in the strip c < ℜ(s) < d, and if for any

c < ℜ(s) = a < d as |ℑ(s)| → ∞, M(g, s) tends to zero uniformly. Then, the

inverse Mellin transform is defined as

g(t) :=
1

2πi

∫ a+i∞

a−i∞
M(g; s)t−sds.

Example 2.1. For ℜ(t) > 0, one has

e−t =
1

2πi

∫ a+i∞

a−i∞
Γ(s)t−s ds, for any a > 0.
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CHAPTER 3

Well known results on ζ(s) and L(s, χ)

One can easily show that the Riemann zeta function ζ(s) =
∑∞

n=1 n
−s converges

uniformly and absolutely if σ ≥ σ0 > 1, where s = σ + it. By Weierstrass’s

theorem, ζ(s) is holomorphic for σ > 1.

Definition 3.1. Let χ(m) be a character modulo q. Then, for ℜ(s) > 1, the

Dirichlet L-function is defined by

L(s, χ) :=
∞∑

m=1

χ(m)

ms
. (3.1)

Since, the character χ(m) is bounded by 1, the above L-function converges

absolutely and uniformly if σ ≥ σ0 > 1. Therefore, L(s, χ) is holomorphic for

σ > 1.
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3.1 Functional equation

Riemann proved that ζ(s) satisfies the functional equation

ζ(s) = 2sπs−1Γ(1 − s) sin
(πs

2

)
ζ(1 − s). (3.2)

The Gauss sum associated to the character χ modulo q is defined as

τ(χ) :=

q∑
r=1

χ(r)e
2πir
q . (3.3)

Let

a :=
1 − χ(−1)

2
=

 0, if χ is even,

1, if χ is odd.
(3.4)

Now if χ is any primitive Dirichlet character modulo q, then for any s ∈ C,

L(s, χ) = ξ(χ)2sπs−1q
1
2
−s sin

(π
2

(s + a)
)

Γ(1 − s)L(1 − s, χ̄), (3.5)

where

ξ(χ) =
τ(χ)

ia
√
q

(3.6)

is an algebraic number of absolute value 1.

3.2 Important properties of ζ(s) and  L(s, χ)

Theorem 3.1. ζ(s) is never zero for ℜ(s) > 1.

Proposition 3.2. For l ∈ N ∪ {0},

ζ(l) = (−1)l
Bl+1

l + 1
. (3.7)

Since B2l+1 = 0 for all l ∈ N, ζ(s) vanishes at −2l. These are known as the

trivial zeros of ζ(s).

Proposition 3.3. Let χ be a primitive character modulo q, with q > 1.

(i) If χ is even primitive character, then {−2n|n ∈ N∪ {0}} are the trivial zeros

of L(s, χ).

(ii) If χ is odd primitive character, then {−(2n + 1)|n ∈ N ∪ {0}} are the trivial

zeros of L(s, χ).

Note that all of these trivial zeros are simple.
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Lemma 3.4. Let s = σ+ iR ∈ C. Then for any σ0 ≤ σ ≤ b, ∃ a constant A(σ0),

such that

|L(s, χ)| ≪ |R|A(σ0) (3.8)

as |R| → ∞.

Proof. One can find a proof of this result in [18, p. 97, Lemma 5.2]
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CHAPTER 4

Main Results

With all the prerequisites mentioned in the earlier chapter, now we are ready to

state our main results of the thesis.

The partial fraction decomposition (1.11) produces the following interesting iden-

tity.

Theorem 4.1. Let α, β > 0 with αβ = π2. For any n ∈ Z, we have

Fn(α) = (−1)nFn(β) +
n−1∑
l=0

(−1)l+1−n E2l

(2l)!

E2n−2l−2

(2n− 2l − 2)!
αlβn−l−1, (4.1)

where

Fn(x) = x1−n

∞∑
m=0

(−1)m

(2m + 1)2n−1
(
e

(2m+1)x
2 + e

−(2m+1)x
2

) 22n+1

π
.

Remark 4.1. This identity has been mentioned by Ramanujan in his lost note-

book [23, p. 173, Ch. 14, Entry 21(ii)]. Malurkar [20] first proved this identity

and later by Nanjundiah [22], and Bruce berndt [7] also gave an alternative proof

for this. Note that, in the above identity, for non positive integer n, one should

11



consider the finite sum involving Euler number’s as an empty sum.

Remark 4.2. Theorem 4.1 can also be written in the following form:

α1−n

∞∑
m=0

χ4(m) sech
(
mα
2

)
m2n−1

22n

π
+ (−β)1−n

∞∑
m=0

χ4(m) sech
(
mβ
2

)
m2n−1

22n

π

=
n−1∑
l=0

(−1)l+1−n E2l

(2l)!

E2n−2l−2

(2n− 2l − 2)!
αlβn−l−1,

(4.2)

where χ4 denote primitive Dirichlet character modulo 4.

An application of (4.2) provides an exact evaluation for some infinite series

related to the sec-hyperbolic function.

Corollary 4.2. For any n ∈ N, we have
∞∑

m=0

χ4(m) sech
(
mπ
2

)
m4n+1

=
∞∑
k=0

(−1)k sech
(
(2k + 1)π

2

)
(2k + 1)4n+1

=
π4n+1

24n+3

2n∑
l=0

(−1)l
E2l

(2l)!

E4n−2l

(4n− 2l)!
. (4.3)

For n = 0, n = 1 and n = 2 of (4.3) we get special values that are mentioned

in [23, p. 180] as Entry 25 (vii), (viii) and (ix).

The partial fraction decomposition (1.12) gives us an interesting identity.

Theorem 4.3. Let α, β > 0 be such that αβ = π2. For n ∈ N ∪ {0}, we have

√
α

αn

{
1

2

∞∑
m=0

(−1)m

(2m + 1)2n
+

∞∑
m=0

(−1)m

(2m + 1)2n (e(2m+1)α − 1)

}

=

√
β

βn
(−1)n

{
∞∑

m=1

1

(2m)2n (emβ + e−mβ)

}

+

√
β

βn
(−1)n

{
1

4

n∑
m=0

(−1)m
B2m

(2m)!

E2n−2m

(2n− 2m)!
(2α)m

(
β

2

)2n−m
}
. (4.4)
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Remark 4.3. An alternate form of the above theorem is the following:

α−n+ 1
2

(
1

2
 L(2n, χ4) +

∞∑
m=1

χ4(m)

m2n(eαm − 1)

)

=
(−1)nβ−n+ 1

2

22n+1

∞∑
m=1

1

m2n cosh βm

+
1

4

n∑
m=0

(−1)m

22m

E2m

(2m)!

B2n−2m

(2n− 2m)!
αn−mβm+ 1

2 , (4.5)

where χ4 is primitive character modulo 4.

Remark 4.4. Chowla [12, Eq. (1.2)] gave the first published proof for the Theo-

rem 4.3. Berndt [7, Eq. (3.20)] also gave a proof but unfortunately there was an

error in the Equation (3.20); replacing
(
β
8

)k
by βk+1

2

2−4k at the end of (3.20), we can

obtain Theorem (4.3).

Quite interestingly, we observe that Theorem 4.1 can also be obtained using

contour integration technique and during the process we derive a more generalized

form of it. Here we give the generalized version of Theorem 4.1.

Theorem 4.4. Let q ∈ N and α,β > 0 with αβ = 4π2

q2
. Let χ be the primitive

Dirichlet character modulo q. For any r ∈ Z , we have

α−r

∞∑
n=1

χ(n)σ−1−2r(n)e−nα − (−1)r+aξ2(χ)β−r

∞∑
n=1

χ̄(n)σ−1−2r(n)e−nβ

=
2r+1∑
l=0

(−1)l

l!
L(−l, χ)L(2r + 1 − l, χ)αl−r, (4.6)

where a = 0 or 1 accordingly as χ is even or odd.

Remark 4.5. When r is a negative integer, the finite sum in the right hand side

of (4.6) must be considered as an empty sum.

Depending on the nature of the primitive Dirichlet character χ, we derive

interesting corollaries of Theorem 4.4.
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Corollary 4.5. If χ is even, then we have

α1−r

∞∑
n=1

χ(n)σ1−2r(n)e−nα + (−1)rξ2(χ)β1−r

∞∑
n=1

χ̄(n)σ1−2r(n)e−nβ

=
τ(χ)

2
(−1)r−1

r−1∑
l=0

(−1)l
B2l+2,χ

(2l + 2)!

B2r−2l,χ

(2r − 2l)!
αl+2βr−l, (4.7)

where Bn,χ denotes as the generalized Bernoulli number defined in (2.2).

Corollary 4.6. If χ is odd, then we have

α1−r

∞∑
n=1

χ(n)σ1−2r(n)e−nα − (−1)rξ2(χ)β1−r

∞∑
n=1

χ̄(n)σ1−2r(n)e−nβ

=
τ(χ)

2
(−1)r−1

( q

2πi

) r−1∑
l=0

(−1)l
B2l+1,χ

(2l + 1)!

B2r−2l−1,χ

(2r − 2l − 1)!
αl+1βr−l.

(4.8)

Remark 4.6. In particular, when χ is a non principal character modulo 4, we

can derive Theorem 4.1.
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CHAPTER 5

Preliminaries

In this chapter, we present a few results that will be needed in deducing our main

conclusions. First, we state a result which gives behaviour of Γ(s) as |s| → ∞.

For s = c + iR with α ≤ c ≤ β,

|Γ(c + iR)| =
√

2π|R|c−1/2e−π|R|/2
(

1 + O
(

1

|R|

))
, as |R| → ∞. (5.1)

One can find this result in [17, p. 492, A.7 (A.34)].

Lemma 5.1. For any r ∈ Z, one has

∇(s, χ) = (−1)r+aξ2(χ)∇(−s− 2r, χ̄), (5.2)

where ∇(s, χ) = Γ(s)L(s, χ)L(s + 2r + 1, χ).

Proof. Employing the functional equation (3.5) for L(s, χ), and the identity

(2.3), Lemma (5.1) can be obtained.

Lemma 5.2. Let χ be any primitive Dirichlet character modulo q. Then for

15



ℜ(s) > max{1,−2r}, one has
∞∑

m=1

χ(m)σ−1−2r(m)

ms
= L(s, χ)L(s + 1 + 2r, χ). (5.3)

Proof. For ℜ(s) > max{1,−2r}, we can write

L(s, χ)L(s + 1 + 2r, χ) =

(
∞∑
m1

χ(m1)

ms+1+2r
1

)(
∞∑
m2

χ(m2)

ms
2

)

=
∞∑

m=1

χ(m)

ms

∑
d|m

1

d2r+1

=
∞∑

m=1

χ(m)σ−1−2r(m)

ms
. (5.4)

In the second last step, we have used completely multiplicative nature of the

Dirichlet character.

Lemma 5.3. Let n ∈ N and χ be a character of conductor L with χ(−1) = (−1)n.

Then we have

L(n, χ) = (−1)n−1 τ(χ)

2

(
2πi

L

)n
Bn,χ̄

n!

L(1 − n, χ) = −Bn,χ

n
. (5.5)

Proof. Proof of it can be found in [21].

For a special case of χ we have an interesting identity involving Euler numbers

which we state below.

Lemma 5.4. If χ4 denote the primitive Dirichlet character modulo 4, then we

have

1

2

E2m

(2m)!
= − B2m+1,χ4

(2m + 1)!
, (5.6)

where Em and Bn,χ denote as the Euler number and generalized Bernoulli number,

respectively.

Proof. Proof of it can be found in [21].
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CHAPTER 6

Proof of main results

Proof of Theorem 4.1. Let α, β > 0 satisfying αβ = π2. Substituting πx
2

=
√
wα and πy

2
=

√
wβ in (1.11), we get

π

4
sec (

√
wα) sech (

√
wβ) =

∞∑
l=0

(−1)l(2l + 1)

α sech
(

(2l+1)α
2

)
α(2l + 1)2 + w

+
β sech

(
(2l+1)β

2

)
β(2l + 1)2 − w

 .

(6.1)

Now using the definition of sech, we can write
∞∑
l=0

(−1)l(2l + 1)α

α(2l + 1)2 + 4w
sech

(
(2l + 1)α

2

)
=

∞∑
l=0

(−1)l

(2l + 1)

1(
1 + 4w

α(2l+1)2

) { 2

e
(2l+1)α

2 + e
−(2l+1)α

2

}

=
∞∑
l=0

∞∑
m=0

(−1)l

(2l + 1)

(
−4w

α(2l + 1)2

)m{
2

e
(2l+1)α

2 + e
−(2l+1)α

2

}
, (6.2)
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for |w| < α
4
. Similarly, |w| < β

4
, one can show that

∞∑
l=0

(−1)l(2l + 1)β

β(2l + 1)2 − 4w
sech

(
(2l + 1)β

2

)
=

∞∑
l=0

∞∑
m=0

(−1)l

(2l + 1)

(
4w

β(2l + 1)2

)m{
2

e
(2l+1)β

2 + e
−(2l+1)β

2

}
. (6.3)

In view of (6.2) and (6.3), we collect the coefficient of wn from the right hand

side of (6.1):

22n+1(−α)−n

∞∑
l=0

(−1)l

(2l + 1)2n+1

{
1

e
(2n+1)α

2 + e
−(2n+1)α

2

}
+ 22n+1β−n

∞∑
l=0

(−1)l

(2l + 1)2n+1

{
1

e
(2n+1)β

2 + e
−(2n+1)β

2

}
. (6.4)

Now let us look at the expansion of the Laurent series for sec z and sech z around

z = 0. For 0 < |z| < π
2
,

sech z =
∞∑
n=0

En
zn

n!
=

∞∑
n=0

E2n
z2n

(2n)!
,

sec z = sech iz =
∞∑
n=0

(−1)nE2n
z2n

(2n)!
.

Use the above series expansions in the left-hand side of (6.1), then it becomes

π

4

(
∞∑

m=0

(−1)m
E2m

(2m)!
wmαm

)(
∞∑

m=0

E2m

(2m)!
wmβm

)
(6.5)

=
π

4

∞∑
m=0

m∑
l=0

(−1)l
E2l

(2l)!

E2m−2l

(2m− 2l)!
αlβm−lwm. (6.6)

Now equating coefficients of wn in (6.4) and (6.6), we arrive at

22n+1(−α)−n

∞∑
l=0

(−1)l

(2l + 1)2n+1

{
1

e
(2n+1)α

2 + e
−(2n+1)α

2

}
+ 22n+1β−n

∞∑
l=0

(−1)l

(2l + 1)2n+1

{
1

e
(2n+1)β

2 + e
−(2n+1)β

2

}
=

π

4

n∑
l=0

(−1)k
E2l

(2l)!

E2n−2l

(2n− 2l)!
αlβn−l. (6.7)

After simplifying one can derive Theorem 4.1.

Proof of Corollary 4.3. Putting α = π = β and substituting n by 2n + 1 in

Theorem 4.1, one can obtain (4.3).
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Proof of Theorem 4.3. Replacing πx
2

=
√
wα and πy

2
=

√
wβ with αβ = π2 in

(1.12), we get

π

4
cot
(√

wα
)

sech
(√

wβ
)

=
π

4
√
wα

− 2
√
wβ

π

∞∑
l=0

(−1)l
coth (2l+1)α

2

(2l + 1)2 + 4wβ
π2

− 2
√
wα

π

∞∑
l=1

sech lβ

(2l)2 − 4wα
π2

. (6.8)

For |w| < α
4
, we can write

2
√
wβ

π

∞∑
l=0

(−1)l
coth (2l+1)α

2

(2l + 1)2 + 4wβ
π2

=
2
√
wβ

π

∞∑
l=0

∞∑
m=0

(−1)l

(2l + 1)2

(
−4w

(2l + 1)2α

)m(
1 +

2

e(2l+1)α − 1

)
. (6.9)

Similarly, for |w| < β, we can write

2
√
wα

π

∞∑
l=1

sech lβ

(2l)2 − 4wα
π2

=
2
√
wα

π

∞∑
l=1

∞∑
m=0

1

(2l)2

(
4w

(2l)2β

)m(
2

elβ + e−lβ

)
. (6.10)

In view of (6.9) and (6.10), the coefficient of wn− 1
2 for the right-hand side expres-

sion of (6.8) will be

22nα
1
2
−n(−1)n

{
1

2

∞∑
l=0

(−1)l

(2l + 1)2n
+

∞∑
l=0

(−1)l

(2l + 1)2n (e(2l+1)α − 1)

}

− 22nβ
1
2
−n

{
∞∑
l=1

1

(2l)2n (elβ + e−lβ)

}
. (6.11)

Now let us look at the Laurent series expansions for cot z and sech z around z = 0.

For 0 < |z| < π
2
,

cot z =
∞∑
n=0

(−1)n
B2n

(2n)!
22nz2n−1,

sech z =
∞∑
n=0

En
zn

n!
=

∞∑
n=0

E2n
z2n

(2n)!
. (6.12)
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Use above series expansions to see that

π

4
cot
(√

wα
)

sech
(√

wβ
)

=
π

4

(
∞∑
i=0

(−1)i
B2i

(2i)!
22iwi− 1

2αi− 1
2

)(
∞∑
n=0

E2n

(2n)!
wn− 1

2βn− 1
2

)
.

=
π

4

∞∑
m=0

m∑
l=0

(−1)l22l B2l

(2l)!

E2m−2l

(2m− 2l)!
wm− 1

2αm− 1
2βm−l. (6.13)

Now equating coefficients of wn− 1
2 in (6.11) and (6.13), we arrive at

π

4

n∑
l=0

(−1)l22l B2l

(2l)!

E2n−2l

(2n− 2l)!
αl− 1

2βn−l

= 22nα
1
2
−n(−1)n

{
1

2

∞∑
l=0

(−1)l

(2l + 1)2n
+

∞∑
l=0

(−1)l

(2l + 1)2n (e(2l+1)α − 1)

}

− 22nβ
1
2
−n

{
∞∑
l=1

1

(2l)2n (elβ + e−lβ)

}
.

Simplifying further, we complete the proof of Theorem 4.3.

Proof of Theorem 4.4 . We use (2.1) and Lemma 5.2 to see that, for ℜ(s) =

γ > max{1,−2r},
∞∑
l=1

χ(l)σ−1−2r(l)e
−lα =

∞∑
l=1

χ(l)σ−1−2r(l)
1

2πi

∫ γ+i∞

γ−i∞
Γ(s)(lα)−sds

=
1

2πi

∫ γ+i∞

γ−i∞
Γ(s)

∞∑
l=1

χ(l)σ−1−2r(l)

ls
α−sds

=
1

2πi

∫ γ+i∞

γ−i∞
Γ(s)L(s, χ)L(s + 2r + 1, χ)α−sds. (6.14)

Now we have to calculate the following line integral:

Ik :=
1

2πi

∫ γ+i∞

γ−i∞
Γ(s)L(s, χ)L(s + 2r + 1, χ)α−sds.

We define our integrand function as

g(s) := Γ(s)L(s, χ)L(s + 2r + 1, χ)α−s.

First, we shall look for the poles of this integrand function. We know about the

trivial zeros of L(s, χ) from Proposition (3.3). Hence in general, L(s, χ) has simple

zeros at −2n− a, n ∈ N∪{0}, where a = 0 and a = 1 according to even and odd

character, respectively. Now let us build an appropriate rectangular contour C
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comprising of the vertices γ− iP , γ+ iP , λ− iP , λ+ iP with positive orientation.

Here P > 0 is chosen to be a big positive number and γ > max{1,−2r}, and λ is

cleverly selected in the open interval min{−1,−2r − 2} < λ < min{0,−2r − 1}

in order to get all the poles of g(s) inside the contour C . Now making use of the

Cauchy’s residue theorem, we observe that

1

2πi

(∫ γ+iP

γ−iP

+

∫ λ+iP

γ+iP

+

∫ λ−iP

λ+iP

+

∫ γ−iP

λ−iP

)
g(s)ds =

r∑
l=1

R−l (6.15)

where Rp denotes the residue at the pole s = p. We now assess the residual term

Rp−l, i.e.,

R−l =
(−1)l

l!
L(−l, χ)L(2r − l + 1, χ)αl. (6.16)

Hence, summing all the residues, we get

R =
2r+1∑
l=0

(−1)l

l!
L(−l, χ)L(2r − l + 1, χ)αl.

Now using Stirling’s formula (5.1) for Γ(s) and estimate (3.4) for L(s, χ), the

contribution of the horizontal integrations can be shown to be vanishing as P

goes to infinity. Thus, letting P → ∞ in (6.15), we arrive at

1

2πi

∫ γ+i∞

γ−i∞
g(s)ds =

1

2πi

∫ λ+i∞

λ−i∞
g(s)ds + R. (6.17)

Now we would like to simplify the integral

Jk :=
1

2πi

∫ λ+i∞

λ−i∞
Γ(s)L(s, χ)L(s + 2r + 1, χ)α−sds. (6.18)

Applying Lemma 5.1, we obtain

Jk =
1

2πi

∫
(λ)

(−1)r+aξ2(χ)

(
2π

q

)2s+2r

Γ(−s− 2r)L(1 − s, χ̄)L(−s− 2r, χ̄)α−sds,

(6.19)

where (γ) denotes the straight path from γ− i∞ to γ+ i∞. To write this integral

in form of an infinite series, replace s by −s− 2r, and we obtain

Jk = (−1)r+aξ2(χ)

(
4π2

(αq)2

)−r
1

2πi

∫
(−λ−2r)

Γ(s)L(s + 2r + 1, χ̄)L(s, χ̄)

(
4π2

αq2

)−s

ds

= (−1)r+aξ2(χ)

(
q2α2

4π2

)r ∞∑
n=1

χ̄(n)σ−1−2r(n)e
−n4π2

αq2 . (6.20)

To obtain the last equality, we have used (6.14) and the fact that −λ − 2r >
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max{1,−2r} as we have considered λ < min{0,−2r− 1}. Substituting αβ = 4π2

q2
,

we get

Jk = (−1)r+aξ2(χ)

(
α

β

)r ∞∑
n=1

χ̄(n)σ−1−2r(n)e−nβ. (6.21)

Substituting (6.21) in (6.17) and together with (6.14), and collecting residue terms

the result follows.

Proof of Corollary 4.5 . If χ is an even character modulo q, then substituting

a = 0 in Theorem 4.4, we get

α1−r

∞∑
l=1

χ(l)σ1−2r(l)e
−lα + (−1)rξ2(χ)β1−r

∞∑
l=1

χ̄(l)σ1−2r(l)e
−lβ

= −
r−1∑
l=0

1

(2l + 1)!
L(−(2l + 1), χ)L(2r − 2l, χ)α2l+2−2r,

(6.22)

Finally, using Lemma 5.3 and 5.4, and simplifying we get the desired result.

Proof of Corollary 4.6. If χ is odd character modulo q, then substituting a = 1

in Theorem 4.4, we get

α1−r

∞∑
l=1

χ(l)σ1−2r(l)e
−lα − (−1)rξ2(χ)β1−r

∞∑
l=1

χ̄(l)σ1−2r(l)e
−lβ

=
r−1∑
l=0

1

(2l)!
L(−2l, χ)L(2r − 2l − 1, χ)α2l+1−r. (6.23)

Finally, using Lemma 5.3 and 5.4 and simplifying we get the desired result.
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CHAPTER 7

Concluding Remarks

Table 7.1: Verification of Theorem 4.4: To obtain this numerical data, we used

Mathematica software.

q r χx,q α β Left-hand side Right-hand side

3 10 χ2,3 π 4π
9 0.006715783766287... 0.006715783766287..

3 10 χ2,3
π
2

8π
9 0.001818862168468... 0.001818862168468...

3 10 χ2,3 1 4π2

9 0.244728419776567.. 0.244728419776568...

3 20 χ2,3 π 4π
9 0.002384485442980364... 0.002384485442980369...

4 10 χ2,4 π π
4 4.226525632874012... 4.226525632874011...

4 20 χ2,4 π π
4 47.32434875687574... 47.32434875687568...

5 10 χ3,5 π 4π
25 −160.14199212537.. −160.141992125369...

5 20 χ3,5 π 4π
25 −155527.4059713702... −155527.4059713692...

5 10 χ3,5 1 4π2

25 0.200811020360... 0.2008110203605503...
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