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ABSTRACT

Graphene and silicene share several fundamental properties due to their

similar honeycomb lattice structures. However, the replacement of car-

bon atoms with silicon atoms introduces unique characteristics in silicene.

Silicene exhibits a buckled structure with alternating out-of-plane displace-

ments, significantly influencing its electronic, mechanical, and thermal prop-

erties. Unlike graphene, silicene possesses a bandgap, rendering it poten-

tially useful for electronic and optoelectronic applications. In this thesis, we

start with the Dirac nature of quasi-particle in graphene and Silicene and

the behavior of Landau levels in the presence of magnetic fields. In the case

of graphene, the absence of a band gap allows low-energy electrons near

the K and K 1 points to propagate over long distances without scattering.

This is a consequence of the linear dispersion relation and the absence of

any energy barriers for electron transmission. As a result, electrons can ex-

hibit high electron mobility. Silicene has the advantage of non-degenerate

valleys (K and K 1 states) and also possesses a band gap as a result of the

intrinsic spin-orbit coupling. In this thesis, we propose a quantum Fabry

Perot geometry that filters out these non-degenerate valley states.
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Chapter 1
Magnetic Fabry-Perot Interferometer

For Valley Filtering In Graphene

For understanding purposes, we start with a tight binding result that

describes graphene before we analyse the behaviour of silicone .

Graphene is a single-layer arrangement of carbon atoms to form a

hexagonal lattice[1]. Graphene and Silicene have various fundamental prop-

erties in common due to their similar honeycomb lattice structures. How-

ever, replacing carbon atoms with silicon atoms introduces unique char-

acteristics in Silicene. A buckled structure in Silicene introduces intrinsic

properties such as spin-orbit coupling and an intrinsic Zeeman-like split-

ting.

Figure 1.1: Structural representation of Graphene monolayer.
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1.1 Tight-Binding Hamiltonian

The figure below shows the lattice vectors and the first Brillouin zone

of graphene. The vectors are defined as

Figure 1.2: Honeycomb structure of Graphene and its Brillouin zone with
two inequivalent Dirac points K,K 1

a1 “
a

2
p3,

?
2q

a2 “
a

2
p3,´

?
3q

δ1 “
a

2
p1,

?
3q

δ2 “
a

2
p1,´

?
3q

δ3 “ ´ap1, 0q

The vector associated with the Dirac points are as follows

K “
2π

3
?
3a

p
?
3, 1q

K 1
“

2π

3
?
3a

p
?
3,´1q

The simplest tight-binding Hamiltonian for graphene can be written

as[2]

Ĥ “ ´t
ÿ

ij

pâib̂j ` b̂:

j âiq

Having known the lattice vectors and the tight-binding Hamiltonian, it is

easy to compute the dispersion relation in graphene. into account the spe-
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cific geometry and symmetries of graphene, the tight-binding Hamiltonian

can be diagonalized to obtain the energy spectrum and wavefunctions of

the system. The dispersion relation obtained using tight binding approach

exhibits two inequivalent Dirac points at the corners of the Brillouin zone,

known as the K and K 1 points[3][4]. These points give rise to the linear

energy-momentum dispersion characteristic of massless Dirac fermions.

When atoms are placed onto the graphene hexagonal lattice, the

overlap among the pz(π) orbitals with s, px, and py orbitals are zero by

symmetry. So, the pz electrons forming the π bands in graphene can be

treated independently. Within this π-band approximation, using a con-

ventional tight-binding model, the dispersion relation (restricted to first-

nearest-neighbor interactions only) produces energy of the electrons with

wave vector[5].

Figure 1.3: Band Structure Of Graphene over the whole Brillouin zone.

Epkq “ ˘ | t |

d

3 ` 2Cosp
?
3kxaq ` 4Cosp

?
3

2
kxaqCosp

3

2
kyaq

where E(k) is the energy of the charge carrier with momentum k,

“t” is hoping amplitude and “a” is lattice constant (2.46 Å) and kx/ky are

the momentum in x/y-directions respectively. and vF is the Fermi velocity.
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Also, +/- sign indicates the two possible directions of the momentum vector

relative to the K/K 1 points. The dispersion is shown in Fig. [1.3]. Valence

and conduction bands meet at the six vertices of the hexagonal Brillouin

zone and form linearly dispersing Dirac cones. This linear dispersion leads

to several unique electronic properties such as the absence of backscattering

and the existence of a minimum conductivity due to the Dirac cone crossing

at the Fermi level. These properties make graphene a promising material

for various electronics, photonics, and energy conversion applications [6].

1.2 Landau Level

In this part, Landau Level is introduced to exploit more about the

energy level physics. The Landau level is a term used to describe the

quantization of electronic energy levels in a magnetic field. It arises due

to the interaction between charged particles and a magnetic field which

enforce the particles to move in a circular orbits around the magnetic field

lines.

The Landau level energy levels are discrete and equidistant, and they

are determined by the strength of the magnetic field, the charge of the

particle, and its mass. In the presence of a magnetic field, the electronic

energy levels become quantized into Landau levels, which can be described

as a set of harmonic oscillator states. The Landau levels are characterized

by their quantum number, which is related to the number of flux quanta

that penetrate the area enclosed by the orbit of the charged particle. The

energy of the Landau level increases with the quantum number, and the

spacing between adjacent Landau levels is proportional to the strength of

the magnetic field. The Landau levels have been observed in a variety

of systems, including two-dimensional electron gases, semiconductors, and

metals. In some materials, such as graphene, the Landau levels have unique

properties due to its charge carriers’ peculiar energy-momentum dispersion

relation, which can lead to the appearance of chiral edge states and the

quantum Hall effect.

4



Figure 1.4: A schematic representation of normally incident magnetic field
(B) on Graphene-monolayer .

1.3 Landau Level In Graphene And The Edge

Effect

In graphene, a two-dimensional material made up of carbon atoms ar-

ranged in a hexagonal lattice, the Landau levels describe the quantization of

electronic states in a magnetic field. The Landau levels in graphene are par-

ticularly interesting due to its charge carriers’ peculiar energy-momentum

dispersion relation (electrons and holes).

The edge states in graphene arise due to the breaking of the trans-

lational symmetry at the edges of the material, which leads to the con-

finement of the electronic states. In the presence of an external magnetic

field, the edge states in graphene can give rise to a quantized Hall conduc-

tance, which is a hallmark of the quantum Hall effect. The edge states in

graphene can be described by a one-dimensional Dirac-like equation, which

5



is a simplified version of the two-dimensional Dirac equation that describes

the bulk electronic states in graphene. This one-dimensional Dirac equa-

tion takes into account the edge potential and the magnetic field and gives

rise to chiral edge modes that propagate along the edges of the material.

The chiral edge modes in graphene have a unique dispersion relation that

is linear in energy and momentum, similar to the bulk electronic states

in graphene. However, unlike the bulk states, the chiral edge modes only

propagate in one direction along the edge and are completely immune to

backscattering, which means that they can propagate without any dissipa-

tion or loss of energy. The chiral edge modes in graphene have a unique

dispersion relation that is linear in energy and momentum, similar to the

bulk electronic states in graphene. However, unlike the bulk states, the

chiral edge modes only propagate in one direction along the edge and are

completely immune to backscattering, which means that they can propa-

gate without any dissipation or loss of energy.

1.4 Landau Level Of Graphene

First, we placed Graphene in a magnetic field perpendicular to the px, yq

plane and we observed electrons near Fermi energy which are described by

the Dirac electron near K and K1 points. We choose the Landau gauge

A “ p0, Ayq “ p0, xB0q such that the Hamiltonian in the momentum space

at one of the valley points reads[7][8]

H “ h̄vf pσxPx ` σypPy ` eAyqq (1.1)

where Px and Py are momentum in x and y direction respectively and σx,y

are Pauli matrices and Fermi velocity vf “ 8 ˆ 105m/s. Now the Hamilto-

nian is structured as

6



H “

¨

˝

0 Px ´ ipeAy ´ Pyqh̄vf

Px ` ipeAy ´ Pyqh̄vf 0

˛

‚ (1.2)

From the above expression, we can say that momentum along y-

directions commutes with the system Hamiltonian as rH,Pys “ 0. In terms

of the ladder operators a and a:

Px “
i

?
2lB

pa:
´ aq (1.3)

Py “
´

?
2

lB
pa:

` aq (1.4)

where lB “ c
eB0

. Where a: and a are raising and lowering operators defined

as a:|ny “
?
n ` 1|n ` 1y and a|ny “

?
n|n ´ 1y. Using the above relation

Hamiltonian reduces to

H “ h̄

?
2

lB
vf

¨

˝

0 ia:

ia 0

˛

‚ (1.5)

Now putting the above equations in Schrodinger equation Hψ “ Eψ

;
¨

˝

0 ia:

ia 0

˛

‚

¨

˚

˝

Anϕnp
x`

h̄ky
eB0

lc
q

Bnϕn´1p
x`

h̄ky
eB0

lc
q

˛

‹

‚

“ Ẽn
1

¨

˚

˝

Anϕnp
x`

h̄ky
eB0

lc
q

Bnϕn´1p
x`

h̄ky
eB0

lc
q

˛

‹

‚

Ẽ 1
n “

En

h̄
?
2

lB
vf

¨

˚

˝

iBn

?
n ` 1ϕnp

x`
h̄ky
eB0

lc
q

´iAnϕn´1p
x`

h̄ky
eB0

lc
q

˛

‹

‚

“ Ẽn
1

¨

˝

An

Bn

˛

‚

using | An |2 ` | Bn |2“ 1 gets the two equation :

iBn

?
n ` 1ϕn “ Ẽ 1An; (1.6)

´iAn

?
n ` 1ϕn´1 “ Ẽ 1Bn; (1.7)

7



Now taking the determinant and solving further we get the Landau level

as:

En “ ˘
?
2nh̄ωc; (1.8)

The ˘ signs indicate the valley index, which is related to the two

inequivalent valleys (K and K’) in the graphene Brillouin zone. ωc “ eB
mc

is

the cyclotron frequency, where e is the elementary charge, B is the magni-

tude of the perpendicular magnetic field, m is the electron mass, and c is

the speed of light.

From the above expression, we can make the following observations:

Effective band velocity along the transport directions seems to be equal to

zero;

vy “
dEn

dky
“ 0

The Landau levels in graphene are highly degenerate. For each value of

n, there are fourfold degenerate states, corresponding to the two valleys

and two spin orientations of the electrons. The Landau level spectrum

is symmetric concerning n “ 0, which means that there are no energy

differences between positive and negative values of n. This is a consequence

of the particle-hole symmetry of the graphene Dirac spectrum. The edge

effect has not been taken into consideration.

To counter the above problem we introduce a special function called

parabolic cylindrical functions. The energy levels obtained from the parabolic

cylindrical functions can then be used to calculate various transport prop-

erties, such as conductance, transmission probabilities, or current-voltage

characteristics of the system. The behavior of electrons in the presence of

external magnetic fields or interactions with other particles can also be an-

alyzed using these functions. Furthermore, parabolic cylindrical functions

can be used in the analysis of scattering processes in cylindrical geome-

tries. By considering the incident and scattered wavefunctions, one can

express the scattering coefficients or transmission probabilities in terms of

the parabolic cylindrical functions, providing insights into the scattering

behavior of quantum particles in the system.

8



1.5 Edge State

Now considering electron-like scattering entering from the left side,

with incoming momentum p “ pPx, Pyq.Therefore scattering states in re-

gions I and III are given by

Figure 1.5: Schematic diagram of Edge State Effect where region II is
exposed in magnetic fields.

ψIpxq “

¨

˝

1

eiϕ

˛

‚eiPxx ˘ r

¨

˝

1

´e´iϕ

˛

‚e´iPxx (1.9)

ψIIpxq “
ÿ

˘

c˘

¨

˝

Dµ´1r˘

?
2p x

lB
` PylBqs

˘i
?
2

ϵlB
Dµr˘r

?
2p x

lB
` PylBqs

˛

‚ (1.10)

And,

ψIIIpxq “ t

d

Px

P 1
x

¨

˝

1

eiϕ
1

˛

‚eiPxx (1.11)

WhereDµ[9] is a parabolic cylindrical of degree n. The parabolic cylindrical

functions describe the spatial distribution of the electron wavefunction in

the direction perpendicular to the graphene plane. They have a Gaussian-

like envelope that becomes more tightly confined to the graphene plane

as the Landau level index increases. The valley index s determines the

sign of the wavefunction in each of the two valleys, which are related by

time-reversal symmetry.

9



1.6 Transmission Coefficients Across The Mag-

netic Barrier

In the presence of a perpendicular magnetic field, the electronic states

in graphene are quantized into Landau levels, each of which is character-

ized by a discrete energy spectrum. When a graphene sheet is subjected

to a magnetic barrier, the Landau levels are affected by the barrier po-

tential, which can lead to interesting quantum transport phenomena. To

calculate the transmission probability, we need to introduce the probability

current[10][11];

Jx “ vfRerψ
˚
BpcosϕψA ` sinϕcqs

Jy “ vf rψ˚
BspcosϕψA ´ sinϕψcqs

Therefore using the boundary conditions, we can calculate the coef-

ficients.

ψIpxq|´d “ ψIIpxq|´d (1.12)

d “ L{2

ψIIpxq|d “ ψIIIpxq|d (1.13)

Therefore from above boundary condations, we can describe the wave func-

tion as follows;

ψIp´dq “

¨

˝

1

eiϕ

˛

‚eiPxd ` r

¨

˝

1

´e´iϕ

˛

‚e´iPxd; (1.14)

ψIIp´dq “ a

¨

˝

y`
1

i
?
2

ϵlB
z`
1

˛

‚` b

¨

˝

y´
1

´ i
?
2

ϵlB
z´
1

˛

‚; (1.15)

ψIIpdq “ a

¨

˝

y`
1

i
?
2

ϵlB
z`
1

˛

‚` b

¨

˝

y´
1

´ i
?
2

ϵlB
z´
1

˛

‚; (1.16)

ψIIIpdq “ t

c

px
p1
x

¨

˝

1

eiϕ
1

˛

‚eip
1
xd; (1.17)

10



Applying the above boundary conditions to calculate the coefficients;

¨

˝

1

eiϕ

˛

‚eiPxd ` r

¨

˝

1

´e´iϕ

˛

‚e´iPxd “ a

¨

˝

y`
1

i
?
2

ϵlB
z`
1

˛

‚` b

¨

˝

y´
1

´ i
?
2

ϵlB
z´
1

˛

‚

Also

t

d

Px

P 1
x

¨

˝

1

eiϕ
1

˛

‚eiPxd “

¨

˝

y`
2

i
?
2

ϵlB
z`
2

˛

‚` b

¨

˝

y´
2

´ i
?
2

ϵlB
z´
2

˛

‚

Therefore, solving the above two expressions leads to four equations:

e´idpx ` eidpxr ´ by´
1 ´ ay`

1 “ 0;

e´idpx`iϕ
´ eidpx´iϕr `

i
?
2bz´

1

ϵlB
´
i
?
2az`

1

ϵlb
“ 0;

´eidp
1
x

c

px
p1
x

t ` by´
2 ` ay`

2 “ 0;

´eidp
1
x`iϕ

c

px
p1
x

t ´
i
?
2bz´

2

ϵlB
`
i
?
2az`

2

ϵlB
“ 0;

Solving the above equation we get the coefficients as follows:

a “ ´
pe´idPxp1 ` e2iϕϵlBpi

?
2z´

2 ` eiϕ
1y´

2 ϵlBq

ξa

where, ξa “ p2eiϕz`
1 z

´
2 ´ 2eiϕz´

1 z
`
2 i

?
2eipϕ`ϕ1qy`

2 z
´
1 ϵlB

´i
?
2eipϕ`ϕ1qy´

2 z
`
2 ϵlB ´ i

?
2y`

1 z
´
2 ϵlBqSp

and Sp “ ´i
?
2y´

1 z
`
2 ϵlB ´ eiϕ

1

y`
1 y

´
2 ϵl

2
B ` eiϕ

1

y´
1 y

`
2 ϵl

2
B

b “ ´
ppeidPxp1 ` e2iϕϵlBp´i

?
2z`

2 ` eiϕ
1

y`
2 ϵlBqq

ξb

where, ξb “ p´2eiϕz`
1 z

´
2 ` 2eiϕz´

1 z
`
2 ` i

?
2eipϕ`ϕ1qy`

2 z
´
2 ϵlB`

i
?
2eipϕ`ϕ1qy´

2 z
`
1 ϵlB ` i

?
2y`

2 z
´
2 ϵlBqNi

and Ni “ i
?
2y´

1 z
`
2 ϵlB ` eiϕ

1

y`
1 y

´
2 ϵl

2
B ´ eiϕ

1

y´
1 y

`
2 ϵl

2
B

11



r “ ´
ppe´2idPx`iϕq∆ξq

ξc

where, ∆ξ “ p´2iz`
1 z

´
2 ` 2iz´

1 z
`
2 ´

?
2eiϕ

1

y`
2 z

´
1 ϵlB´

?
2eiϕ

1

y´
2 z

`
1 ϵlB `

?
2eiϕy´

1 z
`
2 ϵlBqqRi

and, ξc “ p´2ieiϕz`
1 z

´
2 ` 2ieiϕz´

1 z
`
2 ´

?
2eipϕ`ϕ1

y`
2 z

´
1 ϵlB´

?
2eipϕ`ϕ1qy´

2 z
`
1 ϵlB ´

?
2y`

1 z
´
1 ϵlBqRe

Ri “ ´ieipϕ`ϕ1qy`
1 y

´
2 ϵl

2
B ` ieipϕ`ϕ1qy´

1 y
`
2 ϵl

2
B

Re “ ´
?
2y´

1 z
`
2 ϵlB ` ieiϕ

1

y`
1 y

´
2 ϵlB ´ ieiϕ

1

y´
1 y

`
2 ϵlB

Therefore we get the transmission coefficient as

tK “
2iϵlB

b

2P 1
x

Px
cosϕ

eipPx`p1
xqdD

py`
2 z

´
2 ` y´

2 z
`
2 q (1.18)

D “ pϵlBq
2eipϕ

1´ϕq
py`

1 y
´
2 ´ y`

2 y
´
1 q´

2pz`
1 z

´
2 ´ z`

2 z
´
1 q ` i

?
2ϵlBreiϕ

1

pz`
1 y

´
2 ` y`

2 z
´
1 q ` e´iϕ

py`
1 z

´
2 ` z`

2 y
´
1 qs

The transmission coefficient obtained above is for the K point to calculate

forK 1 point using equations (1.20) and (1.21) wave function can be describe

as follows;

ψIp´dq “

¨

˝

1

eiϕ

˛

‚eiPxd ´ r

¨

˝

1

´e´iϕ

˛

‚e´iPxd; (1.19)

ψIIp´dq “ a

¨

˝

y`
1

i
?
2

ϵlB
z`
1

˛

‚´ b

¨

˝

y´
1

´ i
?
2

ϵlB
z´
1

˛

‚; (1.20)

ψIIpdq “ a

¨

˝

y`
1

i
?
2

ϵlB
z`
1

˛

‚´ b

¨

˝

y´
1

´ i
?
2

ϵlB
z´
1

˛

‚; (1.21)

ψIIIpdq “ t

c

px
p1
x

¨

˝

1

e´iϕ1

˛

‚eip
1
xd; (1.22)
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¨

˝

1

eiϕ

˛

‚eiPxx ´ r

¨

˝

1

´e´iϕ

˛

‚e´iPxx “ a

¨

˝

y`
1

i
?
2

ϵlB
z`
1

˛

‚´ b

¨

˝

y´
1

´ i
?
2

ϵlB
z´
1

˛

‚ (1.23)

Also

t

d

Px

P 1
x

¨

˝

1

e´iϕ1

˛

‚eiPxd “

¨

˝

y`
2

i
?
2

ϵlB
z`
2

˛

‚´ b

¨

˝

y´
2

´ i
?
2

ϵlB
z´
2

˛

‚ (1.24)

Therefore solving above equations (1.23) and (1.24) we get four equa-

tion as follows;

e´idpx ´ eidpxr ´ by´
1 ´ ay`

1 “ 0; (1.25)

eidpx`iϕ
` eidpx´iϕr `

i
?
2bz´

1

ϵlB
´
i
?
2az`

1

ϵlB
“ 0; (1.26)

´eidp
1
x

c

px
p1
x

t ´ by´
2 ` ay`

2 “ 0; (1.27)

´eidp
1
x´iϕ1

c

px
p1
x

t `
i
?
2bz´

2

ϵlB
`
i
?
2az`

2

ϵlB
“ 0; (1.28)

This result in transmission coefficients for K 1 point is given below;

tK1 “

b

2p1
x

px
e´idppx`p1

xqp1 ` e2iϕqpy`
2 z

´
2 ` y´

2 z
`
2 qϵlB

´ipy`
1 y

´
2 ` y´

1 y
`
2 qϵl2B

; (1.29)

D1 “ p2ieipϕ`ϕ1q
pz`

1 z
´
2 `z´

1 z
`
2 `

?
2peiϕp´y`

2 z
´
1 `y´

2 z
`
1 q`eiϕ

1

py`
1 z

´
2 ´y´

1 z
`
2 qqϵlBq;

(1.30)

using shorthand notation

y˘
1 “ DpϵlBq2{2´1r˘

?
2p´d{lB ` PylBqs (1.31)

z˘
1 “ DpϵlBq2{2r˘

?
2p´d{lB ` PylBqs (1.32)

Now transmission probability in the function of ϕ and ϵ for K and the K 1

given by;

TKpϵ, ϕq “ t˚K .tK (1.33)

TK1pϵ, ϕq “ t˚K1 .tK1 (1.34)

13



The above polar plot is the transmission probability vs incident angle

Figure 1.6: Polar plots depicting the transmission probability T pϕq as a
function of magnetic barrier width 2d and energy ϵ. a) T is a function of
barrier width at fixed energy ϵlc “ 2.3. b) T is a function of ϵ keeping
d{lc “ 0.1.

at various energy ϵ. Where figure (a) plots at K points at fixed energy

ϵlc “ 0.1.Where and figure (b) plots for K’ point at fixed energy ϵlc “ 0.1.

Where the blue line is at 1, orange at 2.5, and yellow at 5.5. where we

are striking some energy to the magnetic barrier the energy gets taking the

circular loop due to the cyclotron energy as shown above. The shape of the

transmission probability vs. energy plot depends on the specific properties

of the barrier or interface and the incident particle. Factors such as the

height and width of the barrier, the potential profile, and the characteristics

of the incident particle (e.g., mass, charge) influence the overall behavior

of the transmission probability.
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Chapter 2

Magnetic Fabry-Perot Valley

Interferometer Filtering In Silicene

Silicene is a two-dimensional material composed of a single layer of sil-

icon atoms arranged in a honeycomb lattice, similar to graphene. However,

silicene is less well-known and less well-studied than graphene. Silicene has

some properties similar to graphenes, such as high conductivity and high

mechanical strength, but it also has some unique properties that make it

potentially useful for certain applications[12]. For example, silicene is a

semiconductor, which means that it can be used in electronic devices such

as transistors. It also has a strong interaction with light, which makes it a

promising material for optoelectronic applications. The band gap of silicene

can be modulated by applying a perpendicular electric field, thus inducing a

topological phase transition as the electric field increases[13][14]. However,

silicene is more difficult to produce and work with than graphene. Unlike

graphene, which can be easily obtained by peeling layers from graphite,

silicene must be grown on a substrate. Additionally, the properties of sil-

icene can be strongly influenced by the substrate it is grown on and the

conditions used during growth.
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Figure 2.1: Structure of Silicene.

2.1 Why Silicene?

Silicene and graphene are both two-dimensional materials that have

generated a lot of interest in recent years due to their unique electronic,

mechanical, and optical properties. Silicene is a single layer of silicon atoms

arranged in a honeycomb lattice, similar to graphene which is a single layer

of carbon atoms arranged in a similar lattice. Compared to graphene, sil-

icene has a stronger interaction with substrates due to the presence of

heavier silicon atoms, which can lead to enhanced stability and improved

electronic properties. However, the synthesis and manipulation of silicene

is more challenging than graphene due to the reactivity of silicon and the

lack of a suitable substrate to support its growth. On the other hand,

graphene has excellent electronic conductivity and mechanical strength,

and its production has been well-established. It has been used in various

applications such as electronics, energy storage, and even biomedical de-

vices. In summary, both silicene and graphene have unique properties that

make them suitable for different applications. While silicene may offer im-

proved stability and electronic properties, graphene has more established

synthesis techniques and a wider range of applications.

2.2 Valley Degeneracy Lifting

The valley splitting in silicene can be characterized by measuring

the energy difference between the K and K 1 valleys at the Dirac point,

where the valence and conduction bands intersect. This splitting occurs

due to the interaction between the spin and orbital degrees of freedom

of electrons, which arises from the strong spin-orbit coupling present in
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silicene. Unlike graphene, silicene exhibits a stronger spin-orbit coupling

due to the heavier nature of silicon compared to carbon. The spin-orbit

coupling in silicene arises from the interaction between the electrons and

the electric field generated by the atomic nuclei. This coupling leads to the

lifting of the degeneracy between the K and K 1 valleys, resulting in distinct

energy levels for each valley. This phenomenon has significant implications

for the electronic and transport properties of silicene.

One consequence of the valley splitting is the formation of a band

gap at the Dirac point, which is absent in pristine graphene. The size

of this band gap can be manipulated by external factors such as electric

fields, strain, and doping, offering opportunities for tuning the electronic

properties of silicene. This tunability makes silicene a promising material

for various applications including field-effect transistors, spintronics, and

optoelectronics.

2.3 Dispersion Relation In Silicene

The dispersion relation in silicene characterizes the relationship be-

tween the energy and momentum of electrons traversing the material. It

provides insights into the behavior of electrons under the influence of ex-

ternal forces, such as electric or magnetic fields. Unlike graphene, the

dispersion relation in silicene exhibits distinct characteristics due to the

presence of a small energy gap at the Dirac points.

In graphene, the energy bands at the Dirac points intersect, resulting

in a linear dispersion relation where the energy varies linearly with the mo-

mentum. However, in silicene, there exists a small energy gap between the

valence and conduction bands at the Dirac points. This energy gap intro-

duces a modification to the dispersion relation, causing it to be parabolic

in nature near the Dirac points. As a consequence, the behavior of elec-

trons in silicene near these points differs from that in graphene due to the

presence of this energy gap.
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Figure 2.2: Honeycomb Structure Of Silicene and its Brillouin zone with
two inequivalent Dirac points K,K 1.

The Hamiltonian in graphene is given by

H “ h̄vf pkxσx ´ ηpky ` eAyqσyq ` ∆ησσz (2.1)

The dispersion relation in silicene can be described by the following

equation:

Epkq “ ˘

b

p∆z ´ ∆soησq2 ` k2v2f h̄
2

where E(k) is the energy of an electron with momentum k, t is the hop-

ping parameter between neighboring silicon atoms, a is the lattice constant

of silicene, and the ˘ sign indicates the presence of two bands with op-

posite spin. The energy gap at the Dirac points in silicene can be tuned

by applying an external electric field or by doping the material with other

atoms. This property makes silicene a potentially useful material for elec-

tronic applications, such as field-effect transistors and other nanoelectronic

devices.
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Figure 2.3: Energy Band Dispersion at K and the K 1 points.

The presence of the band gap introduces an energy barrier for electron

transmission. Electrons with energies near the K and K 1 points need to

overcome this barrier to propagate. The transmission efficiency depends

on the band gap size. The presence of scattering mechanisms, such as

defects or impurities, can also affect electron transmission at the K and

K 1 points in silicene. Considering the above energy band gap we are going

to filter out the valley degeneracy in silicene using a magnetic fabry-perot

interferometer.

2.4 Magnetic Fabry-Perot Interferometer

The Fabry-Perot interferometer is a classical optical device that con-

sists of two partially reflecting mirrors separated by a fixed distance[15]. It

is commonly used to study interference phenomena in optics. However, in

the context of quantum transport, the Fabry-Perot interferometer can be

extended to study the behavior of quantum particles, such as electrons or
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photons, as they propagate through a physical system. In a typical setup,

the Fabry-Perot interferometer in quantum transport consists of a central

region, often referred to as the quantum dot or cavity, which is coupled to

two leads or reservoirs. The leads act as a source and drain for the trans-

port of quantum particles. When a particle, such as an electron, is injected

into the interferometer from the source lead, it can propagate through the

quantum dot and exit through the drain lead. The interference of the par-

ticle waves is then observed at the drain lead. The interference pattern

depends on various factors, including the energy levels of the quantum dot,

the energy of the injected particle, and the phase accumulated by the par-

ticle during its propagation. The Fabry-Perot interferometer in quantum

transport has been studied extensively in both theoretical and experimental

research. It has applications in areas such as quantum computing, quantum

information processing, and the investigation of fundamental quantum phe-

nomena. The behavior of quantum particles in Fabry-Perot interferometers

has also been utilized to probe the effects of electron-electron interactions,

magnetic fields, and other external influences on quantum transport.

Figure 2.4: A schematic representation of Fabry-Perot setup.

2.5 Valley Polarizations

Valley polarization is a concept that arises in certain materials with

a property called “valley degeneracy.” In condensed matter physics, the

term “valley” refers to extrema in the energy dispersion of the electronic

20



bands where the energy is minimized. These valleys often exist in recip-

rocal space and can be described as points where the energy is at a local

minimum. Valley degeneracy occurs when multiple valleys have the same

energy, leading to the formation of energy bands with multiple degenerate

valleys. In such materials, electrons can occupy different valleys with the

same energy, giving rise to the possibility of valley polarization.

2.6 Landau Level In Silicene And Edge Ef-

fect

The Landau level in silicene refers to the quantization of electronic

states that occurs when the material is subjected to a perpendicular mag-

netic field. In silicene, the Landau level has a different structure than in

graphene due to the presence of a small energy gap at the Dirac points.

This gap gives rise to a Berry curvature that can affect the Landau level

spectrum.

Figure 2.5: Schematic diagram of Silicene-monolayer exposed to the mag-
netic field in normal direction.

Edge states in silicene are electronic states that occur at the bound-

aries or edges of the material. They are a consequence of the topological
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properties of the material, which arise from the arrangement of silicon

atoms in a honeycomb lattice. In silicene, the presence of an energy gap

at the Dirac points gives rise to a non-trivial topological insulating phase

in the bulk of the material. This phase is characterized by the existence of

edge states that propagate along the edges of the material without backscat-

tering, even in the presence of disorder or impurities.

2.7 Landau Level In Silicene

When the Silicene is subjected perpendicular to magnetic fields, we

observed electrons near Fermi energy which is described by Dirac elec-

trons near K and K’ points. Therefore Hamiltonian in momentum space

reads[16]:

H “ h̄vf pkxσx ´ ηpky ` eAyqσyq ` ∆ησσz (2.2)

Where h̄ is reduced Plank constant,vf is Fermi velocity,Ay comes from

gauge choice which is called Landau gauge,σxyz are the Pauli matrices,η

define the valley of Silicene whose value is ˘1.

∆ησ “ ∆z ´ η∆soσ (2.3)

Ay “ xB0 (2.4)

Where ∆so is spin-orbit strength. Now using the above parameter and

writing Hamiltonian in terms of a matrix:

H “

¨

˝

∆ησ vf pkx ` ipeAy ` kyqηqh̄

vf pkx ´ ipeAy ` kyqηqh̄ ´∆ησ

˛

‚ (2.5)

From the above equation, we can clearly say that Hamaltonian concern-

ing momentum along y direction commute which states that py is a good

quantum number;

rH, pys “ 0 (2.6)
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Where,

kx “
i

?
2lc

pa:
´ aq (2.7)

ky “
´

?
2

lc
pa:

` aq (2.8)

Substituting the above parameter Hamiltonian reduces as follows:

H “ h̄

?
2

lc
vf

¨

˚

˝

∆ησ

h̄
?
2

lc
vf

ia:

´ia ´∆ησ

h̄
?
2

lc
vf

˛

‹

‚

(2.9)

Now substituting this Hamiltonian in Schrodinger equation Hψ “

Eψ we get:

h̄

?
2

lc
vf

¨

˚

˝

∆ησ

h̄
?
2

lc
vf

ia:

´ia ´∆ησ

h̄
?
2

lc
vf

˛

‹

‚

¨

˚

˝

Anϕnp
x`

h̄ky
eB0

lc
q

Bnϕn´1p
x`

h̄ky
eB0

lc
q

˛

‹

‚

“ E 1
n

¨

˚

˝

Anϕnp
x`

h̄ky
eB0

lc
q

Bnϕn´1p
x`

h̄ky
eB0

lc
q

˛

‹

‚

where,

E 1
n “

En

h̄
?
2

lc
vf

¨

˚

˚

˝

∆ησ

h̄
?
2

lc
vf
Anϕnp

x`
h̄ky
eB0

lc
q ` iBn

?
n ` 1ϕnp

x`
h̄ky
eB0

lc
q

´i
?
n ` 1Anϕn´1p

x`
h̄ky
eB0

lc
q ´

∆ησ

h̄
?
2

lc
vf
Bnϕn´1p

x`
h̄ky
eB0

lc
q

˛

‹

‹

‚

“ E 1
n

¨

˚

˝

Anϕnp
x`

h̄ky
eB0

lc
q

Bnϕn´1p
x`

h̄ky
eB0

lc
q

˛

‹

‚

using | An |2 ` | Bn |2“ 1 gets the two equation :

∆ησ

h̄
?
2

lc
vf
An ` iBn

?
1 ` n “ E 1

nAn (2.10)

Also,

´i
?
n ` 1An ´

∆ησ

h̄
?
2

lc
vf
Bn “ E 1

nBn (2.11)

Now Taking the determinant of the above two equations we get the Landau

Level as :
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Figure 2.6: Landau levels in Silicene.

En “ ˘

b

l2c∆ησ2

2
` p1 ` nqv2f h̄

2

vf h̄
(2.12)

The ˘ sign in the expression indicates that there are two possible

energy levels at each Landau level index n. These two energy levels corre-

spond to the spin-up and spin-down states of the electrons, which are split

in energy by the Zeeman energy. The “+” sign corresponds to the energy

of the spin-up state, while the “-” sign corresponds to the energy of the

spin-down state.

From above we can make some observations i.e. is effective band

velocity along the transport directions equal to zero.

vy “
dEn

dky
“ 0

The edge effect had not been taken into consideration. So to counter the

above problem we introduce a special called parabolic cylindrical function.

The energy levels obtained from the parabolic cylindrical functions can
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then be used to calculate various transport properties, such as conductance,

transmission probabilities, or current-voltage characteristics of the system.

The behavior of electrons in the presence of external magnetic fields or

interactions with other particles can also be analyzed using these functions.

Overall, the use of parabolic cylindrical functions in quantum transport

allows for a detailed understanding of the behavior of quantum particles in

cylindrical geometries. They provide a mathematical framework to describe

the wavefunctions and energy levels of electrons in these systems, enabling

the study of various transport properties and scattering processes relevant

to quantum transport phenomena.

2.8 Egde State in the Intermediate Section

Edge states in silicene are one-dimensional electronic states that emerge

at the boundaries of the material. These states are protected by topology

and are robust against disorder and perturbations, making them potentially

useful for various applications in electronics and spintronics.

Figure 2.7: Schematic diagram of edge states where region II is exposed to
a magnetic field.

ψIpxq “

¨

˝

1

Peiθ

˛

‚eikxx ˘ r

¨

˝

1

Pe´iθ

˛

‚eikxx (2.13)
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ψIIpxq “
ÿ

˘

c˘

¨

˝

Dµ´1r˘

?
2p x

lc
` kylcqs

˘
i
?
2vf h̄

lcp∆z´E`∆soq
Dµr˘

?
2p x

lc
` kylcqs

˛

‚ (2.14)

ψIIIpxq “ t

¨

˝

1

Peiθ
1

˛

‚eiqxx (2.15)

Using Shorthand notations

vf h̄
a

pk2x ` pky ´ kθq2q

p∆z ´ ∆soq ´

b

p∆z ´ ∆soq
2 ` v2f h̄

2
pk2x ` pky ´ kθq2q

“ P

ϵ

∆̃

a

pcosθq2 ` psinθ1q2

1 ´

b

1 ` p ϵ
∆̃

q2ppcosθq2 ` psinθ1q2q

“ P

µ “ ´
l2cp∆z ´ E ` ∆soσqp∆z ` E ` ∆soσq

2v2f h̄
2

vf
a

q2x ` pky ` kθq2h̄

∆ησ ´

b

∆ησ2 ` v2f h̄
2
pq2x ` pky ` kθq2q

“
ϵ

∆̃

a

pcosθ1q2 ` psinθq2

1 ´

b

1 ` p ϵ
∆̃

q2ppcosθ1q2 ` psinθq2q

Q “
ϵ

∆̃

a

pcosθ1q2 ` psinθq2

1 ´

b

1 ` p ϵ
∆̃

q2ppcosθ1q2 ` psinθq2q

In the presence of a magnetic field, the interaction between electrons

and the magnetic field modifies the electronic properties of silicene. This

interaction also impacts the behavior of a simple harmonic oscillator in

silicene. The Lorentz force, experienced by a charged particle moving in

a magnetic field, induces a force on the electrons in silicene that acts per-

pendicular to their direction of motion. Consequently, this force alters the

oscillatory behavior of a simple harmonic oscillator in silicene, resulting in

deviations from the behavior observed in the absence of a magnetic field.

The effect of the magnetic field on the oscillator can be described math-

ematically using parabolic cylinder functions of degree n denoted as Dµ
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(Gradstheyn and Ryzhik, 2014), along with complex coefficients c˘.
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Figure 2.8: Edge states Energy spectrum.

vx “
dEn

dky
‰ 0;

When a magnetic field is applied to silicene, it can influence the motion of

electrons and cause a net movement of charge carriers. This effect is similar

to what occurs in graphene. The nonzero effective band velocity allows for

the transport of charge carriers, making silicene a potentially interesting

material for electronic and optoelectronic applications. It’s worth noting

that the properties of silicene can be influenced by factors such as substrate

interactions and strain effects. These factors can modify the band struc-

ture and affect the effective band velocity. Therefore, the specific value

of the effective band velocity in silicene would depend on the particular

conditions and characteristics of the material system under consideration.

In summary, when the effective band velocity along the transport direction

is not zero, it indicates the presence of charge carrier movement, which

is crucial for electrical conductivity in materials like semiconductors and

metals. The presence of a nonzero effective band velocity can give rise to in-

teresting transport phenomena. These phenomena can include anomalous
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Hall effects, magneto-transport properties, and various quantum transport

phenomena.

2.9 Tansmission Coefficients Across The Mag-

netic Barrier

The transmission coefficient across a magnetic barrier in silicene rep-

resents the likelihood of an electron, initially approaching the barrier from

one side, being transmitted to the other side. This transmission coeffi-

cient is influenced by various factors, including the energy of the incident

electron, the strength and orientation of the magnetic field, as well as the

characteristics of the magnetic barrier. In order to compute the trans-

mission probability, it is necessary to introduce the concept of probability

current. The probability current is a quantity that describes the flow of

probability associated with the motion of particles. In the context of elec-

tron transport, it represents the rate at which electrons cross a given point

in space. By analyzing the probability current, one can gain insights into

the behavior of electrons as they encounter the magnetic barrier and assess

their likelihood of transmission. Calculating the transmission probability

involves analyzing the probability current across the barrier region and re-

lating it to the incident and transmitted wavefunctions of the electrons.

This allows for the determination of the transmission coefficient, which

quantifies the probability of electron transmission through the magnetic

barrier.[10][11];

Jx “ vfRerψ
˚
BpcosϕψA ` sinϕcqs

Jy “ vf lmrψ˚
BpcosϕψA ´ sinϕψcqs

Applying boundary conditions to calculate the coefficients

ψIpxq|´d “ ψIIpxq|´d (2.16)
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d “ L{2

ψIIpxq|d “ ψIIIpxq|d (2.17)

Therefore considering the above boundary conditions we can describe the

wave function as follows;

ψIp´dq “

¨

˝

1

Peiθ

˛

‚e´ikxd ` r

¨

˝

1

´Peiθe

˛

‚ikxd; (2.18)

ψIIp´dq “ a

¨

˝

y`
1‘

vf i
?
2h̄

lcpE`∆z`∆soσq
z`
1

˛

‚` b

¨

˝

y`
1‘

´
vf i

?
2h̄

lcpE`∆z`∆soσq
z´
1

˛

‚; (2.19)

ψIIpdq “ a

¨

˝

y`
1‘

vf i
?
2h̄

lcpE`∆z`∆soσq
z`
1

˛

‚` b

¨

˝

y`
1‘

´
vf i

?
2h̄

lcpE`∆z`∆soσq
z´
1

˛

‚; (2.20)

ψIIIpdq “ t

¨

˝

1

Peiθ
1

˛

‚eip
1
xd; (2.21)

¨

˝

1

Peiθ

˛

‚e´ikxd`r

¨

˝

1

´Pe´iθ

˛

‚eikxd “ a

¨

˝

y`
1

i
?
2vf h̄

lcp∆z´E`∆soq
z`
1

˛

‚`b

¨

˝

y´
1

´i
?
2vf h̄

lcp∆z´E`∆soq
z´
1

˛

‚

(2.22)

Also,

a

¨

˝

y`
1

i
?
2vf h̄

lcp∆z´E`∆soq
z`
1

˛

‚` b

¨

˝

y´
1

´i
?
2vf h̄

lcp∆z´E`∆soq
z´
1

˛

‚“ t

¨

˝

1

Peiθ
1

˛

‚eiqxd (2.23)

Therefore, from the above condition, four equations can be obtained

:

e´idkx ` eidkxr ` by´
1 ´ ay`

1 “ 0; (2.24)

e´idkxPeiθ ´ eidkxPe´iθr ´
i
?
2bz´

1 ff h̄

lcp∆z ` E ` ∆soσq
´

i
?
2az`

1 ff h̄

lcp∆z ` E ` ∆soσq
“ 0;

(2.25)
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´edip
1
xt ` b1y

´
2 ` y`

2 “ 0; (2.26)

´edip
1
xPeiθ

1

t ´
i
?
2bz´

2 vf h̄

lcp∆z ` E ` ∆soσq
`

i
?
2z`

2 vf h̄

lcp∆z ` E ` ∆soσq
“ 0; (2.27)

Solving the above equations we can obtain the transmission coeffi-

cients at K point as follows;

tK “

?
2e´idp1

xe´idkxlcp1 ` Pe2iθqpy`
1 z

´
1 ` y´

1 z
`
1 qvf p∆z ` E ` ∆soσqh̄

2il2cPe
iθ1y´

1 y
`
1 p∆z ` E ` ∆soσq2 ` F

;

(2.28)

F “
?
2lcp1`Peiθ

1

Peiθqpy`
1 z

´
1 ´y´

1 z
`
1 qvf p∆z`E`∆soσqh̄`4iPeiθz´

1 z
`
1 v

2
f h̄

2;

(2.29)

Similarly for the K 1 point using equations (2.18) and (2.19) we can

describe the wave functions as;

ψIp´dq “

¨

˝

1

Peiθ

˛

‚e´ikxd ´ r

¨

˝

1

´Peiθe

˛

‚ikxd; (2.30)

ψIIp´dq “ a

¨

˝

y`
1‘

vf i
?
2h̄

lcpE`∆z`∆soσq
z`
1

˛

‚´ b

¨

˝

y`
1‘

´
vf i

?
2h̄

lcpE`∆z`∆soσq
z´
1

˛

‚; (2.31)

ψIIpdq “ a

¨

˝

y`
1‘

vf i
?
2h̄

lcpE`∆z`∆soσq
z`
1

˛

‚´ b

¨

˝

y`
1‘

´
vf i

?
2h̄

lcpE`∆z`∆soσq
z´
1

˛

‚; (2.32)

ψIIIpdq “ t

¨

˝

1

Pe´iθ1

˛

‚eip
1
xd; (2.33)

Solving above equations we get four equations as follows;

eikxd ´ eidkxr ´ by´
1 ´ ay`

1 “ 0; (2.34)

e´ikxdPeiθ ` eidkxr`
i
?
2bz´

1 vf h̄

lcp∆z ` E ` ∆soσq
´

i
?
2az`

1 vf h̄

lcp∆z ` E ` ∆soσq
“ 0; (2.35)

´eip
1
xdt ´ by´

1 ` ay`
1 “ 0; (2.36)
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´eip
1
xdPe´iθ1

t `
i
?
2bz´

1 vf h̄

lcp∆z ` E ` ∆soσq
`

i
?
2az`

1 vf h̄

lcp∆z ` E ` ∆soσq
“ 0; (2.37)

Equating the above four equations we get the transmission coefficients as;

TK1 “

?
2e´ip1

xdlcPe
iθ1

p1 ` Pe2iθpy`
1 z

´
1 ` y´

1 z
`
1 vf p∆z ` E ` ∆soσqh̄

´2il2cy
´
1 y

`
1 p∆z ` E ` ∆soσq2 ` F1

;

(2.38)

F1 “
?
2lcpPe

iθ1

´Peiθqpy`
1 z

´
1 ´y´

1 z
`
1 qvf p∆z`E`∆soσqh̄`4iPeiθ

1

Peiθz´
1 z

`
1 v

2
f h̄

2;

(2.39)

Using the shorthand notations as;

y˘
1 “ Dpϵlcq2{2´1r˘

?
2p´d{lc ` kylcqs

z˘
1 “ Dpϵlcq2{2r˘

?
2p´d{lc ` kylcqs

The transmission probability T “ |t|2 is then related to the reflection

probability R “ |r|2 by T `R “ 1[8].Therefore we can write the transmis-

sion probability in terms of energy ϵ and incident angle θ of K and the K 1

points can be written as ;

TKpϵ, θq “ t˚K .tKcosθ
1
{cosθ; (2.40)

TK1pϵ, θq “ t˚K1 .tK1cosθ1
{cosθ; (2.41)

The above polar plot is the transmission probability vs incident angle

at various energy ϵ. Where the blue dotted line is for K point and the or-

ange dotted line is for K 1 point. The shape of the transmission probability

vs. energy plot depends on the specific properties of the barrier or inter-

face and the incident particle. Factors such as the height and width of the

barrier, the potential profile, and the characteristics of the incident parti-

cle (e.g., mass, charge) influence the overall behavior of the transmission

probability.
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Figure 2.9: Polar graphs depicting the transmission probability T pθq for a
magnetic barrier of width d{lc “ 0.5 and energy ϵlc “ 5.5.

2.10 Valley Polarization

The transmission probability can be determined by considering mea-

surable quantities, such as the total ballistic conductivity σ “ σ` ` σ´,

where the valley-dependent conductivity is obtained using the Landauer-

Büttiker formula

ση “
L

W

2e2

h̄

ÿ

ky

Tηpkyq (2.42)

Here, W corresponds to the width of the barrier in the y direction,

and the factor of 2 accounts for spin degeneracy. By evaluating the sum

of the transmission probabilities Tηpkyq over the transverse wave vector ky,

the valley-dependent conductivity ση can be calculated[11].

To further understand the distinction between the K and K 1 valleys,

valley polarization can be computed.[11]

P “
σ` ´ σ´

σ` ` σ´

(2.43)

where σ` and σ´ are the conductivities associated with the K and K’

valleys, respectively. The valley polarization provides insight into the dif-
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ferences between these two valleys in terms of their conductive properties.

P “
σ` ´ σ´

σ` ` σ´

(2.44)

The ˘ indicates the valley (K and the K’ points).

Figure 2.10: Variation in polarization as a function of the energy keeping
d{lc “ 0.5.

The polarization values can vary from -1 to +1, where -1 indicates

fully polarized electrons with a specific orientation, +1 represents fully

polarized electrons with the opposite orientation, and 0 indicates no po-

larization or an equal distribution of charge density. The polarization of

a combined electric and magnetic field as a function of energy typically

fluctuates between -1 and 1 due to the nature of electromagnetic waves

and the behavior of the electric and magnetic fields. The polarization of an

electromagnetic wave refers to the orientation of the electric field vector as

the wave propagates through space. It describes the direction in which the

electric field oscillates. The polarization can be linear, circular, or ellip-

tical, depending on the relative amplitudes and phase differences between

the electric and magnetic fields. The electric field oscillates in a specific

direction for a linearly polarized wave. The polarization can be horizontal,
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vertical, or at any angle in between. In this case, the polarization is often

described using a parameter called the polarization state, which can vary

between -1 and 1. The values taken by the polarization fluctuate between

-1 and 1, so P “ 1p´1q means that the outcoming current consists of only

k(K’) contribution.
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Conclusion

In conclusion, graphene and silicene are two fascinating materials with

unique properties that hold great potential for various applications. Graphene,

a two-dimensional sheet of carbon atoms arranged in a hexagonal lattice,

has exceptional mechanical, electrical, and thermal properties. It is an ex-

cellent conductor of electricity and heat, extremely strong yet flexible, and

transparent. Due to degeneracy in the band structure and possessing no

band bandgap, there will be weak spin-orbit coupling as a result of elec-

tron flow in the higher mobility. Graphene has been extensively studied and

has found applications in diverse fields such as electronics, energy storage,

sensors, and biomedical devices. However, challenges remain in terms of

large-scale production, integration with existing technologies, and bandgap

engineering, which limits its direct use in certain electronic applications.

Silicene, on the other hand, is a two-dimensional form of silicon,

similar to graphene in structure but composed of silicon atoms. Silicene

exhibits some unique properties, including a buckled honeycomb lattice

structure and a tunable bandgap. It has a non-degenerate valley and also

possesses a huge bandgap which also leads to the intrinsic spin coupling.

Therefore we study the electron alignment in the specific band structure

of silicene. Due to its bandgap tunability, it can be used in electronics,

Optoelectronics energy storage, and sensors.

Both graphene and silicene have their own advantages and limita-

tions. Graphene’s extensive research and development over the years have

resulted in a deeper understanding of its properties and potential applica-

tions. On the other hand, silicene is still in the early stages of exploration,

and further research is required to fully harness its properties and overcome

challenges related to synthesis, stability, and scalability. Graphene and sil-

icene represent exciting areas of research and development in the field of

nanomaterials.
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