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Abstract

This thesis explores the application of discrete sampling in the Ramanujan space,
a fundamental concept in signal processing. Discrete sampling involves extract-
ing essential information from large discrete-time signals using a limited number
of samples. The Ramanujan space, generated by complex exponential functions,
offers unique properties for signal representation and analysis. The thesis focuses
on developing a finite sampling approach using reproducing kernel Hilbert spaces
(RKHS) to efficiently reconstruct signals in the Ramanujan space. The research
investigates the theoretical foundations of discrete sampling in this context, pre-
senting analyses and experimental results to validate the proposed method’s ac-
curacy and computational efficiency. The outcomes have implications in various
signal processing domains such as communications, image/audio processing, and
data compression. The organization of the thesis encompasses foundational con-
cepts, an overview of the Ramanujan space, and the discrete sampling procedure
utilizing RKHS methodology. This research contributes to the advancement of

robust signal processing algorithms and efficient data manipulation techniques.
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CHAPTER 1

Introduction

The field of signal processing plays a crucial role in various scientific and techno-
logical domains, ranging from telecommunications to image and audio processing.
One fundamental concept in signal processing is sampling, which involves convert-
ing continuous-time signals into discrete-time representations. Sampling allows us
to analyze and process signals efficiently while preserving important information.
The process of reconstruction, on the other hand, aims to convert a discrete-time
signal back into a continuous-time signal.

In many cases, the sequences involved in discrete-time signals can be very
large, making them challenging to handle efficiently. To overcome this challenge,
we employ the discrete sampling process. Discrete sampling refers to the process
of recovering a very large discrete-time signal from a subset of that signal. This
subset contains a finite number of samples, which is significantly smaller than the
original sequence. By carefully selecting and preserving the essential information

in these sampled points, we can reconstruct the complete large sequence with a



reasonable level of accuracy.
In this thesis, we look into the realm of discrete sampling and its application
in the Ramanujan space. For a given integer ¢, the Ramanujan space, denoted by

—27ik.
Sy, is generated by a set of complex exponential functions wf; =e ¢« ,1<k<

q and (k,q) = 1. These functions form an basis for S, and possess remarkable
properties that make them highly suitable for signal representation and analysis.
The Ramanujan space has garnered significant attention due to its unique prop-
erties and its connection to various areas of mathematics and signal processing.

The History of Ramanujan spaces is associated with the Ramanujan sum.
The motivation behind Ramanujan’s introduction of these sums was to study and
express various arithmetic functions in terms of linear combinations of the these
sums. Ramanujan sums are defined as follows: For a positive integer ¢ and an

integer n, the Ramanujan sum c¢,(n) is given by the formula:

ce(n) = Z T

1<k<q
ged(k,q)=1
Ramanujan sums have connections to various areas of mathematics, including
number theory, modular forms, and signal processing. They have been used to
study properties of multiplicative functions, investigate congruence properties of
partitions, and explore the distribution of prime numbers. Additionally, Ramanu-
jan sums find applications in digital signal processing and communication theory,
where they are used to analyze and manipulate periodic signals.

Our primary objective in this thesis is to explore the discrete sampling
process within the Ramanujan space. We aim to develop a finite sampling ap-
proach that allows us to extract essential information from signals represented
in S, using a limited number of samples. This has practical implications, as it
enables efficient signal processing while reducing the data acquisition and storage

requirements. To achieve our goal, we will leverage the concepts of reproducing

kernel Hilbert spaces (RKHS). The RKHS provides a powerful framework for



studying signal spaces. By combining these concepts with the unique properties
of the Ramanujan space, we can develop a discrete sampling method tailored to
this specific context. Throughout this thesis, we will present theoretical analyses,
and experimental results to validate the effectiveness of our proposed discrete
sampling approach in the Ramanujan space.

By advancing our understanding of discrete sampling in the Ramanujan
space, this research opens up new avenues for signal processing applications. The
outcomes of this thesis have the potential to contribute to the development of
more efficient and robust signal processing algorithms, with implications in fields
such as communications, image and audio processing, and data compression.

The organization of the thesis is as follows: The second chapter will focus on
providing the foundational definitions and concepts necessary for our study. We
will cover essential topics that form the building blocks of our research. Moving
on to the third chapter, we will introduce the Ramanujan space, which serves as
the main space for our discrete sampling process. Here, we will provide a concise
overview of the Ramanujan space, highlighting its key properties and characteris-
tic. We shall go into the sampling procedure for reproducing kernel Hilbert spaces
(RKHS) in the fourth chapter. With the use of this methodology, we will be able
to prove two crucial theorems about the discrete sampling procedure in the Ra-
manujan space. These theorems will offer important perspectives and theoretical
underpinnings for our work. By systematically progressing through these chap-
ters, we aim to develop a comprehensive understanding of the basic definitions,
the Ramanujan space, and the discrete sampling process using RKHS method.
This will pave the way for further exploration and analysis in subsequent sections
of our thesis.

In our thesis, we primarily utilize papers [1],[5],[4],[2],[8],[3],[10] that are

relevant to our topic. Other papers are read to develop conceptual understanding.



CHAPTER 2

Sampling theory for Hilbert spaces

The objective of this chapter is to introduce key definitions pertaining to sam-
pling theory and establish the fundamental concepts of sampling. To lay the

foundation, we begin with an overview of the essential aspects of Hilbert spaces.

Definition 2.1. Let V be a vector space over the field F. An inner product V
is a mapping (.,.) : V x V — F that satisfies the following properties-

(i) Conjugate symmetry: («, 5)=(3,a) for all a, 5 € V, where (53, a) is the

conjugate of the complex number (3, a).

(ii) Linearity: (aa + b8,7v) = a{a,f) + bla,7) for all a, 5,7 € V and all
a,b e F.

(iii) Positive-definiteness: (o, ) > 0 for all @ € V with o # 0.

Definition 2.2. A Hilbert space is a complete inner product space, which means
it is a vector space equipped with an inner product space and is also complete

with respect to the induced norm.



In addition to being a complete metric space, a Hilbert space is characterized
by the property that every Cauchy sequence in the space converges to a unique
limit within the space.

Now we provide some examples of Hilbert space.

Example 2.1. [9] The space R" equipped with the standard inner product is
a Hilbert space. The inner product between two vectors x = (x1,9,...,7,)
and y = (y1,%2,---,Yn) is defined as (z,y) = x1y1 + T2y2 + ... + z,y,. The
completeness property of R” guarantees that any Cauchy sequence of vectors in

R™ converges to a unique limit within R”.

Example 2.2. [9] The space L?[0,1], which consists of all square integrable
functions on the interval [0, 1], is a Hilbert space. The inner product between
two functions f and g is defined as (f, g) fo ), dz. The completeness
property of L?-space ensures that any Cauchy sequence of functions in L?[0,1]

converges to a unique limit within L?[0, 1].

Definition 2.3. Let H be a Hilbert space. A set {¢} }nen is said to be a bi-
orthonormal set of the given {¢,},en for the Hilbert space H if they satisfy the

following conditions:

0, if k£ #£n,
<¢k,¢z> =
1, if k=n.

Here is an example to illustrate the concept of a bi-orthonormal set [5] :

Example 2.3. Let H be the Hilbert space of square—integrable functions on the
interval [0, 1] with the inner product defined as (f, g) fo x ), dz. Consider
the following functions:

Let ¢,(z) = v/2sin(2mnz) for n > 1. These functions are orthonormal

because:



(0rs0n) = [ rthon(o)i
= /01 (ﬁsin(kax)) <\/§sin(27mx)) dx
=2 /1 sin(2rkx) sin(2mnx)dx

= Okn

where dy, is the Kronecker delta, which equals 1 if £ = n and 0 otherwise.
This shows that ¢, is an orthonormal set.

To find the corresponding bi-orthonormal set ¢}, we need to find functions
¢%(x) such that (¢, ¢%) = dp. In this case, we can take ¢%(z) = v/2sin(27nz).
Thus, the sets {¢,} and {¢*} defined as ¢,(z) = V2sin(2rnz) and ¢*(z) =
V/2sin(2rnr) form a bi-orthonormal set in the space L?[0, 1] with the integration

norm.

Riesz’s representation theorem is very useful in describing the dual vector
space to any space which contains the compactly supported continuous functions
as a dense subspace. Riesz’s representation theorem is also very useful in repro-
ducing kernel Hilbert space. Before delving into Riesz’s representation theorem,
let us establish the definition of a functional [9], which holds significant impor-

tance in the realm of reproducing kernel Hilbert spaces.

Definition 2.4. Let X be a vector space and K be a scalar field of X. Then
a functional f is an operator with domain in vector space X and range in the
scalar field K; thus,

fiD(f) = K.

where K = R if X is real and K = C if X is complex.

For example, the norm ||.|| : X — R on a normed space (X, |.||) is a func-

tional on X. Now, we provide the statement of Riesz’s representation theorem[9)].



Theorem 2.1. Let H be a Hilbert space. Then for any bounded linear functional
f defined on Hilbert space H can be represented f in terms of the inner product

as follows:
flz) =z, 2),
where z is a vector that depends on f, uniquely determined by [, and has a norm

given by || f]| = llz[].
Now we provide the definition of reproducing kernel Hilbert spaces [5].

Definition 2.5. Let E be an arbitrary set and H be a Hilbert space of real
valued functions on F. Then H is called reproducing kernel Hilbert space if and
only if the pointwise evaluation functional over the Hilbert space of functions H

is a linear functional that evaluates each function at a point =,
Ly f = f(x),Vf €H,
is continuous at every f in H or equivalently, L, is a bounded operator on H that

is, there exist B, > 0 such that

Lo (D] = [F(@)] < Bu| fle
for all f € H.

If a Hilbert space H has finite dimension, then all the linear functional on H
are guaranteed to be bounded. According to the Riesz representation theorem, for
every ¢ € I/, there exists a unique element K, in H that possesses the reproducing
property. This property is expressed as follows:

For any function f in H, the evaluation of f at x is equivalent to the inner

product between f and K, in H. In other words, it can be written as:

f(@) = Lu(f) = ([, Ko)u. (2.1)
This relation holds for all functions f € H. Alternatively, the reproducing prop-
erty of the kernel K, implies that it can reconstruct the value of a function f at

any point x by performing the inner product between f and the kernel’s K, at



that specific point. In essence, the kernel serves as a mechanism for extracting
the function’s value at any given location. By considering equation , we can
observe that K, € H, is a function defined on F. Consequently, we have the
relationship

where K, € H.

Definition 2.6. The reproducing kernel of H can be defined as a function

K : E x E — R given by the expression
K(z,y) = (K;, K))n.

Some properties of Reproducing kernel Hilbert spaces

(i) Let H be a reproducing kernel Hilbert space and {¢;, },en be an orthonormal

basis. Then the reproducing kernel is given by

K(z,y) =Y ¢n(@)dn(y)- (2.2)
neN
By examining Equation (2.2), it is evident that the reproducing kernel sat-

isfies the property of conjugate symmetry, given by

K(z,y) = K(y, x).

(i) Let H be a reproducing kernel Hilbert space. If {¢,}nen is an orthonormal
basis for reproducing kernel Hilbert space H with a biorthonormal basis

{¢*}nen. Then the reproducing kernel can be expressed as follows:

K(z,y) =Y éu(2)d}(x).

neN

2.1 Sampling and reconstruction of a signal

We read the papers [5], [6], [8] to understand the process of sampling. Now let’s

explore the sampling process provided below.



Sampling is the essential procedure of capturing measurements or observa-
tions of a continuous-time signal at specific time intervals. It involves converting
the continuous-time signal into a discrete-time signal by regularly measuring it
at discrete time points. This conversion is typically performed using an analog-
to-digital converter (ADC) that samples the signal and converts it into a digital
format suitable for processing on a computer or other digital signal processing
devices.

Imagine a continuous signal represented by a smooth waveform, such as a sine

flax)

alHl H T

(a) continuous function (b) discrete function

Figure 2.1: Sampling process

wave. To sample this signal, we need to capture discrete points along the wave-
form at specific intervals. Starting at the beginning of the signal, we place a
sampling point or marker on the waveform. This point represents the value of
the signal at that particular moment.

On the other hand, reconstruction refers to the process of converting a
discrete-time signal back into a continuous-time signal. This is accomplished us-
ing a digital-to-analog converter (DAC) that transforms the digital signal into
an analog format, allowing it to be reproduced through speakers or other out-

put devices as a continuous-time waveform. The Shannon Sampling Theorem,

9



a fundamental principle in signal processing, establishes the minimum sampling
rate required to accurately represent a continuous-time signal in the discrete-time
domain. It provides guidance on how to choose an appropriate sampling rate to
avoid aliasing and faithfully reconstruct the original continuous-time signal from
its discrete samples. By adhering to the sampling theorem, signal processing sys-
tems can achieve accurate and faithful representation of continuous-time signals
in the digital domain.

Suppose that a function f is defined for every point of some domain F and

has a series representation [5] of the form

F(t) = FA)Sa(D),
neN
in which {\,} is a collection of points of D, and {S,} is some set of suitable

expansion functions. Such an expansion is called a sampling series, and the
first thing we notice about it, the property that gives it its name, is that f is
represented in its entirety in terms of its values, that is, its samples, at just a
discrete subset of its domain.

Now we provided some terminologies which we will use quite offense in the coming
section.

In signal processing, the term sampling set refers to the set of time instants
at which a continuous-time signal is sampled to produce a discrete-time signal.
In other words, the sampling set is the sequence of time instants at which the
analog signal is measured or sampled. we call each member of the sampling set
as sampling point. The samples are the discrete data in the form of functional
values of on a discrete set or typically some average data that close to functional
values.

We now provide an example to illustrate the above definitions.

Example 2.4. [8] Let H be a Hilbert space quadratic polynomials. If we consider
the unknown quadratic polynomial p(x) € H and sample it at the values z =

0,1,2, obtaining p(0) = 2,p(1) = 1,p(2) = 4, we can determine the expression

10



for p(z). We apply the Lagrange formula to reconstruct the polynomial p(z):

(x —0)(x —2)
(1-0)(1-2)

In this thesis, our focus lies on a particular aspect of sampling known as

discrete sampling.

2.2 Discrete theory of Sampling

We read the papers [3], [13] to understand the process of discrete sampling. Now
let’s explore the discrete sampling process provided below.

In signal processing, discrete sampling is a technique used to address the
challenge of handling very large discrete-time signals. When a discrete-time sig-
nal consists of a large number of data points, it can become computationally
intensive and inefficient to process and analyze the signal in its entirety. More-
over, it also offers a solution by reducing the number of samples while preserving
essential information. The process of discrete sampling involves selecting a subset
of samples from the original signal. Instead of processing the entire sequence, we
strategically choose specific samples that capture the significant characteristics of
the signal. These selected samples serve as representatives of the original signal,
allowing for efficient analysis and processing.

By carefully choosing the sampling points, we can reconstruct the complete
large sequence from this reduced set of samples. This reconstruction process
involves using interpolation or extrapolation techniques to estimate the values of
the signal at the unsampled points. With the reconstructed signal, we can perform

various signal processing tasks, such as filtering, analysis, or feature extraction,

11



while minimizing computational complexity and resource requirements.

Furthermore, it also offers several benefits in signal processing. It allows us
to represent and manipulate signals in a more manageable and computationally
efficient manner. By reducing the number of samples, we can decrease storage
requirements, transmission bandwidth, and processing time. Moreover, discrete
sampling enables the application of signal processing algorithms on limited re-
sources, such as embedded systems or real-time applications, where processing
large amounts of data may not be feasible.

In this thesis, we develop a discrete sampling formula specifically tailored
for the Ramanujan space, which is an important part of the sampling process.
However, we utilize the principles of the sampling theorem within the framework
of the reproducing kernel Hilbert space. The details and explanation of the
discrete sampling process are extensively described and analyzed. Sampling is
the process of converting a continuous-time signal into a discrete-time signal
by taking measurements or observations at regular time intervals. It involves
capturing a countable number of data points from the continuous signal. On
the other hand, discrete sampling refers to the specific scenario where a discrete
signal, which is already in a discrete-time format, can be accurately reconstructed
or recovered from a subset of its data points.

In the process, the goal is to determine the conditions under which a discrete
signal can be completely recovered from a reduced set of data points. This implies
that by having access to a limited number of samples, we aim to reconstruct the
entire signal with minimal loss of information. This is a significant problem
in signal processing and has practical applications in various fields such as data
compression and transmission. By understanding the principles and techniques of
discrete sampling, we can explore methods to efficiently represent and reconstruct
discrete signals, allowing us to make the most of limited data sets while preserving

the essential characteristics of the original signal.

12



CHAPTER 3

Ramanujan spaces and its associated properties

The Ramanujan space, named after the renowned Indian mathematician Srinivasa
Ramanujan, is a closed subspace of Hilbert space C¢ and every closed subspace of
a Hilbert space is again a Hilbert space. Hence the Ramanujan space is a Hilbert

space. Let us explore the definition of the Ramanujan space[4].

Definition 3.1. For given integer ¢, the space generated by the set

k —2mik.

{wy =e ¢« :1<k<q (kg =1}

is called the Ramanujan space, which is denoted by the symbol S,. Mathemati-
cally,
Sy = Span{wf;' 1 <k<q,(kq) =1}

Any function (signal) z(n) € S, can be written as

q q
kn —2mink
xz(n) = g apw," = g age” T .
1 1

(k,q)=1 (k,q)=1
In this thesis, the background of the Ramanujan space is comprehensively ex-

plained. We see the crucial periodicity properties associated with space S,,.

13



3.1 Background of Ramanujan spaces

A trigonometric summation known as the Ramanujan sum ([1],[4],[2]) was first
established in 1918 by renowned Indian mathematician Srinivasa Ramanujan.

This sum has the form

q
CQ(”): Z ,w(];nv

k=1
(k.q)=1

=273

where w, = e«

and (k,q) denotes the ged of k and ¢. As a result, the sum
exceeds those k that are co-prime to q. For example, if ¢ = 8, then k € {1,3,5,7}
so that

—2min —6min —10min —1l4min

cg(n)=e"5 4+e 5 +e 5 Fe s

The objective of this section is to establish the definition of the space S;. To

begin, we will define the ¢ x ¢ integer circulant matrix|[1] based on ¢,(n) as depicted

below: _ -
¢q(0) cqlqg—1) cq(1)
B, = cq(1) CqFO) ce(2)

| cllg—1) colg—2) -+ ¢4(0) ]

Each column is created by circularly shifting the previous column downward and
each row is essentially a right circular shift of the one before it. There are several

obvious, basic characteristics of this matrix:
(i) The Oth row is the time-reversed Ramanujan sum c¢,(q — n).
(ii) Since ¢,(¢ —n) = ¢4(n), we see that B, is symmetric.

(iii) The matrix is Toeplitz because it is circulant, meaning that all elements

along any line parallel to diagonal are identical.

The Ramanujan space S, is the column space of By. It is obvious that ¢,(n) and

all of its circularly shifted variants belong to the space S,. The space S, C C4

14



has dimension ¢(q) because, as we shall observe, matrix B, has rank ¢(q). We

know any circulant matrix is diagonalized by the DF'T matrix. That is,

B, = I/V_lAqT/V7
where W is the ¢ x ¢ DFT matrix, and
C,[0] 0 e 0
0 c,l1 .- 0
Aq = . q'[ ] . .
0 0 - Glo—1)
Here C,[k] are the DFT [I] coefficients of the Ramanujan sum c¢,(n), that is,
a-! if (k,q) =1
qif (k.q) =1,
Colk) = 3 ey(myu = (3.1)
n=0 0 if otherwise.

We can see that B, = W 1A, W is identical to B;W* = W*A, because W/,/q is
unitary. Using the facts that ¢,(n) and c,[k] are real numbers and W = W7, we
can conjugate both sides to obtain
BW =WA,

the eigenvectors of B, are represented by the columns of W, and their associated
cigenvalues are C,[k]. Since there are ¢(q) nonzero eigenvalues of the circulant
matrix By, so dimension of the Ramanujan subspace is ¢(q).
The circulant B, can be factored as

B, =VVv* (3.2)
where V' is a ¢ X ¢(q) submatrix of the DFT matrix W that is produced by keeping
the co-prime columns, that is, columns with numbers k; such that (k;,¢) = 1. We

see that the column space of B, is the column space of V', and is spanned by the

15



¢(q) columns

1 1 1
wkl ka w’%(Q)
w2k , w2k2 AR w2k
w(qfl)kl w(qfl)kQ w(qfl)kqb(q)

where w = e o and (ki,q) = 1.

Therefore, the connection between the DF'T matrix and the Ramanujan space S,
can be summed up as follows:

The Ramanujan space S, C CY is identical to the space spanned by the ¢(q)
columns of the ¢ x ¢ DFT matrix W, whose column indices k& are co-prime to g.

So the Ramanujan space S, is the spanning set of
{wh =211 <k < q,(k,q) =1},

where (k, g)= ged of k and g. Now w(’; is a primitive gth root of unity if and only if

kn

s = 1 only when n is a multiple of q. Equivalently,

(k,q) = 1. In this instance, w
if and only if (k,q) = 1, x(n) = wh™ has period q.

Within the space S, there exists a distinctive type of basis known as the Ramanu-
jan integer basis. Now, let us provide a detailed explanation of the Ramanujan

integer basis in the space S,.

3.2 Integer basis for the Ramanujan space 5,

The basis {wg' 1 <k < gq,(k,q) = 1} obtained from the Discrete Fourier
Transform (DFT) matrix is not an integer basis([1]) for the Ramanujan space
Sg. In order to find an integer basis for S,, we need to identify ¢(¢q) columns
from the integer matrix B, that fulfill this requirement. The consecutive column
theorem comes into play, which asserts that a specific set of ¢(q) consecutive

columns from the matrix B, form a linearly independent set. By leveraging the

16



consecutive column theorem, we can select a subset of ¢(g) columns from the
matrix B, in a consecutive manner. These columns are chosen in such a way
that they possess the property of being linearly independent. This means that
the chosen columns form an integer basis for the Ramanujan space S, allowing

us to accurately represent any element within S, using integers.

Theorem 3.1. [1] Let M be a submatriz of the circulant matriz B, obtained by
retaining any consecutive ¢(q) columns, i.e., r,r+1,--- 7+ ¢(q) — 1 for some

r. Then submatriz M has rank ¢(q).

Proof. Based on equation , the matrix B, can be expressed as
B, =VV*,
where V' is a ¢ X ¢(q) matrix and V* denotes its conjugate transpose. Conse-
quently, the submatrix mentioned in the theorem can be represented as
M=V,
where V; is a ¢(q) X ¢(¢) matrix.

Now, let’s consider the j-th row of the V; matrix, which can be written as:

a;f 1
r+1
a; a;
J. = a:‘ .] 5 (3-3)
a;ﬂb(q)ﬂ q@+1

—27ik;

where a; = e« " with (k;,q) = 1. Considering equation 1D the matrix V}
can be expressed as the product of a diagonal matrix and a Vandermonde matrix.
This is possible because the values of a; are distinct for different rows. Specifically,

the matrix V; takes the form

Vi = AV,

where A represents a diagonal matrix with non-zero diagonal elements, and V5

denotes a ¢(q) x ¢(g) row-wise Vandermonde matrix.
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Consequently, the matrix V; is non-singular due to the presence of the non-zero
diagonal elements in A. Additionally, considering the definition of matrix V,
which is a column-wise Vandermonde matrix with ¢(q) distinct columns, it can
be inferred that V' has a rank of ¢(q). As a result, the product matrix M formed

by multiplying V' and V; also has a rank of ¢(q). O

Now we have seen that when the Ramanujan sum c¢,(n)’s are form an integer

basis.

Theorem 3.2. [1] The Ramanujan sum c,(n) and its ¢(q) — 1 consecutive shift,
that is, the first ¢(q) columns of the circular matriz B, constitute an integer basis

for the Ramanujan space S,.

Proof. According to the thcorem mentioned, it can be established that the first
¢(q) columns of the circular matrix B, exhibit linear independence. This implies
that these columns form a linearly independent set. Additionally, the dimension
of the Ramanujan space S, is precisely ¢(q). As a consequence, the Ramanujan
sum c,(n), along with its ¢(q) consecutive shifts, serves as an integer basis for
the Ramanujan space S,. In other words, they form a set of integers that spans
the entirety of S; and are linearly independent, allowing them to represent any

clement within S; uniquely. O

In simple terms, the integer basis for the Ramanujan space S, can be represented
by the following set: {c,(n),c,(n—1), -, c,(n—¢(¢) +1)}. This set of ¢(q) cir-
cularly shifted Ramanujan sequences forms an integer basis for S;. Consequently,
any signal z(n) belonging to S, can be expressed in either of the following equiv-

alent forms:z(n) = Zf:(%)fl bicg(n —i) = >°7,_, apwi™, where b; represents the

(k7q):1
coefficients in the integer basis and a; denotes the coefficients in the complex
basis wf;" :1 <k <gq, (k q)=1. Both representations hold true for expressing

signals within the Ramanujan space S,,.
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3.3 Properties associated with Ramanujan spaces

One of the key properties of the Ramanujan space .S, is that any signal belonging

to this space has a period of ¢g. This property can be stated as follows:

Theorem 3.3. [10] Any signal x(n) in the Ramanujan space S, has period q
unless x(n) =0 for all n.

Proof. Any signal x(n) € S, can be expressed as
q

x(n) = Z akcizzink.

k=1
(k,q)=1
Now, let’s consider x(n + q):
q ‘ q , q
—2mi(n+q)k —27rink+—27rlqk‘ —2mink
x(n+q) = g age ¢ = E age” q ¢ = g age” « = z(n).
k=1 k=1 k=1
(k.q)=1 (k.q)=1 (k,q)=1

Since we have shown that z(n) = x(n + ¢), it remains to prove that the period
is not a proper divisor of ¢g. We will use proof by contradiction. Suppose P is
the period of z(n), so that Plg. Assume that P < ¢, implying ¢ = Pr for some
integer r > 1. Since x(n) = x(n + P), we can express x(n) uniquely in terms of

the P-point DFT as follows:
P-1

x(n) = Z Be P (3.4)
=0
Since ¢ = Pr, equation (3.4)) can be rewritten as:

P-1
—2mirtn

wn) = Be 0 . (3.5)

t=0
Both equations (3.4) and (3.5) can be considered as ¢-point DFT representations
of z(n) for 0 < n < g — 1. Therefore, the terms of the summation must match.
This implies that there exists a pair of k and [ such that & = rl. Hence, (k,q) =
r > 1, which contradicts the condition (k,q) = 1. Therefore, it can be concluded

that z(n) € S, has a period of ¢ unless z(n) = 0 for all n. O

The second property of the Ramanujan space is its orthogonality for different

values of ¢; and ¢;. Now, we present a theorem that establishes the orthogonality
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within the Ramanujan space.

Theorem 3.4. [1] The spaces S,, and S,, are orthogonal for q; # q;.

Proof. Suppose we consider m, which is the least common multiple (lcm) of
(¢i,q;j), where g; and g; are distinct elements. We can express m as m = ¢;l; = gjl;

for some integers /; and [;. By rearranging terms, we obtain:

m—1 m—1

kin —kjn _ (kilz‘—k‘jl])n
E wy M w, HT = g Wy,
n=0 n=0

This sum evaluates to zero unless k;l; — k;l; = mk for some k£ € N. However,
since 1 < ky < @, it follows that kI, < m. As aresult, |k;l; — k;1;| < m, implying
that the sum is zero unless k;l; — k;l; = 0. In other words, k;m/q; = k;m/q; or
equivalently k;/q; = k;/q;. Nevertheless, this scenario is not feasible since both k;
and k; are coprime with ¢; and g; respectively, denoted by (k;, ¢;) = (k;,q;) = 1.
Thus, the assumption k;/q; = k;/q; cannot hold, leading to a contradiction. [

The elements in the space S, exhibit the following exquisite autocorrelation prop-

erties:

Theorem 3.5. [1] The circular autocorrelation of the Ramanujan sum c,(n) is

expressed as follows:
q—1

ra(l) = Y cqln)eq(n —1) = qeq(D),

n=0
where the term (n —1) is considered modulo q due to the periodic nature of cy(n)

with period q.

Proof.  Given r44(1) = 32974 ¢,(n)cy(n—1). So by l) the DFT of ry,(1) is given
by

Ryglk] = C [K]C:[K] = ¢* if (k,q) =1

o otherwise.

Hence Ry,lk] = qCy[k]. So req(l) = qcqy(l) indeed. O
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3.4 Applications

Let us now explore the information gleaned from the representations in Ramanu-
jan space, abbreviated as S;. In [4], we can estimate the hidden periods of real
or complex signals within the Ramanujan space S;,. These hidden periods cor-
respond to non-zero periodic components, denoted as z,,(n), belonging to the
Ramanujan spaces S,,. The signal representation is given as x(n) = Zqul z4(n),
where each x, belongs to its respective Ramanujan space S,. It is important to
note that if g is a divisor of ¢;, then the sum z,,(n) + z, (n) exhibits a period
of ¢;. Consequently, the smaller divisor ¢, can be disregarded. Thus, we can
conclude that a subset of integers, denoted as p;, can be selected from the set g;
in such a way that p; is not a proper divisor of p; if 7 # j. This reduced set p;
is considered to be the collection of hidden periods associated with x(n). The
process of estimating these hidden periods is commonly known as the Ramanujan
dictionary. It is worth mentioning that these methods have found applications in
identifying integer periodicity within DNA molecules and protein molecules.

Additionally, Ramanujan filter banks [4], which are widely recognized in
the field of digital signal processing, offer a valuable tool for generating a time-
period plane plot. This plot is particularly effective for tracking localized periodic
behavior. A Ramanujan analysis filter bank, denoted as ¢4(n) with 1 < ¢ < N
(where N represents the number of samples), is employed. Let x(n) be an input
signal with a period of P, where 1 < P < N. In this case, only the filters
¢q(n) with filter index ¢ being a divisor of P can generate non-zero outputs. It is
worth noting that Ramanujan filter banks have been successfully applied in the
identification of epileptic seizures in patients. Epileptic seizures are characterized
by the sudden appearance of periodic waveforms in EEG records. By leveraging
the capabilities of the Ramanujan filter bank, these periodic patterns can be
effectively detected and analyzed.

In the field of digital signal processing, a signal is represented by a finite
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sequence of numbers denoted as x(n), where n ranges from 0 to N — 1. Here, N
represents the length of the sequence, which can be quite large. The fundamental
question in sampling is to determine the conditions under which the original signal
x can be accurately reconstructed or recovered from the sampled values x(n;).The
problem of sampling explores the criteria or constraints that need to be satisfied
to enable the recovery of the complete signal = from its sampled values z:(n;). By
understanding the principles of sampling, we can establish guidelines and tech-
niques for accurately capturing and reconstructing signals in digital systems. In
this thesis, I will elucidate the process of discrete sampling in reproducing kernel
Hilbert spaces. We present a sampling formula applicable to signals originating
from Ramanujan spaces, accompanied by a selection of examples along with their

corresponding sampling plots.
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CHAPTER 4

Sampling formula for Ramanujan spaces

The discrete sampling procedure in finite dimensional Hilbert spaces will be cov-
ered in detail in this chapter. This sampling procedure is carried out specifically
in the context of reproducing kernel Hilbert spaces. During the sampling pro-
cess, our objective is to determine a set of points where the reproducing kernel
exhibits orthogonality. Subsequently, we obtain the expansion of the sampling
series. However, it is worth noting that it may not always be feasible to identify
a set of points that satisfy the orthogonality condition for the reproducing kernel.
In such cases, we will explore alternative approaches to accomplish the sampling
process. Furthermore, we will demonstrate the application of this sampling pro-
cess in the context of Ramanujan spaces, showcasing how it can be effectively

employed in this specific domain.
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4.1 A general setting for sampling

In [5], the sampling process is described as the procedure of discretizing a continuous-
time signal by taking a finite number of samples within a specific time interval.
This process involves selecting discrete time points and measuring the signal’s
amplitude at those points to obtain a sequence of discrete samples.By applying
the sampling process to the Ramanujan space, we can discretize the signals within
this space by acquiring a finite number of samples at specific time instances. This
enables us to represent the continuous-time signals in a discrete form, facilitating
further analysis and processing. By understanding and applying the finite sam-
pling process described in [5], along with the principles of the sampling theorem,
we can effectively analyze and process signals within the Ramanujan space, while
maintaining the integrity and properties of the original signals. The sampling
process in [5] is as follows. Let E be a bounded subset of R or R"™. Suppose that
L?(E) has an orthonormal basis consisting of {¢, },en. Then every polynomial

in the finite-dimensional Hilbert space H can be expressed as follows:

N
F(O) =) catn(t),
n=1
where dimension of H equal to N € N and {¢,} C C. Let g be another function

of the same type with coefficients ¢/, C C. The inner product between f and ¢

can be defined as follows: N

(fr9) =) cad. (4.1)

n=1
Now from , we have
N
K60 =3 6it)ai0).
Consider a set of points {\;}, that i;:; subset of £ and satisfies the property
that {K(t, \;)}, forms an orthogonal set in H. In other words,
(K( A7), K( M) = K (Xi, Aj)dij,
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for all 2,5 = 1,2, ..., N, where d;; Kronecker delta function is defined by
0, if i # j,

1, ifi = j.

(57;]‘ =

Since {K(t, )}, is an orthogonal set in H and N is the dimension of H, it

follows that { K (¢, \;)})*, forms a basis for H. Therefore, { K( Kt )) * | constitutes

an orthonormal basis for H. Consequently, any function f in H can be represented

as a finite sampling series, eXpreSbed as:

SRR

)\n, )\n)
The existence of the point set {/\1} Wlth the mentioned properties is uncertain.
While it may not be orthogonal, it is possible to find {A;} such that {K(¢, \;)}
forms a spanning set for H. Since { K(¢, \;)} will be complete in H and H has finite
dimension, it implies that H must possess a unique bi-orthonormal set {t;}% =1

which means a set such that:

(K (5 i), ) = 035 (4.2)

The expansion of a function f € H in the set 1, takes the form:

N
= Z bt (1)
where the coeflicients b, are given by = (f,K(,,\,)) = f(\,). This leads to

the sampling representation:

=3 FOw)en(®)

To determine the functions 1);, we express them as a linear combination of ¢y:

P, (1) Z L (4.3)
By substituting into and using (4.4 , we obtain:

(s, K (M) = 65 = 1;(A E D (M) (4.4)

n=1
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Therefore, we need to solve the set of equations:

N
Z C,,({)qﬁn()\i) = 51‘]'-
n=1

4.2  Derivation of sampling formula for 5,

We will examine the process of discrete sampling using an exponential basis in the
Ramanujan space S;, following the reproducing rernel method described above.
This method provides a framework for representing signals in .S, and allows us to
explore the discrete sampling process within this context. An exponential basis
elements in the Ramanujan space 9, is {w’q‘ :1<k<gq,(k,q) =1}. First, prove
a lemma such that the set {\/%wg' :1 <k <gq,(k,q) =1} is an orthonormal basis
for S,.

Lemma 4.1. The set {ﬁw’qf 1<k <gq,(k,q) =1} is an orthonormal basis for
Sq-

Proof. Suppose 1 < ki, ky < g and (k1,q) = 1, (k2,q) =
Then

, E wkln kQTL

—2mikyn  2mwikgn
:E e q e g

n=0

—2mi(k) —ko)n
= E e q
—2miq(ky —kg)
1—e a
- —2mi(k1—ko) =
1—e a
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Also

Hence <7w(’;1 , \1[ ;) = 1. Thus the set {\Lﬁ wk 11 <k <q,(kgq) =1} is an

orthonormal set for 5. O

Theorem 4.2. Let g be a very large natural number. Then for any x in the

Ramanujan space Sy, we have the following representation
»(q)

z(n) = Y w(M)i(n),

i=1

where \; =i —1 fori=1,2,...,0(q), {¢} is bi-orthogonal to k(., \;), that is

Proof. For the Ramanujan space S;, an orthonormal basis is given by
{—w :1 <k <gq,(k,q) = 1}. Therefore, in terms of the reproducing kernel, it

can be expressed as follows:

K(n,)) = Z (\1[ k")(\l[ Py = 3 %w’;("_M. (4.5)
k=1

(kq) 1 (k.q)=1
Now, we select arbitrary set of points {A\; = 0,Ay = 1,--+ , Ayq) = &(q) — 1}

Then claim that {k(., A }f(? spanning set for the Ramanujan space S,,.

Now consider,

K(n,\) = Z(kk =1, i wy" M = é@(n —\) = %cq(n);
q
k(n—X
K(n, ) = Z(kk )1 ; q( 2 = écq(n —\2) = %cq(n —1),
q

k(n—Xg(q))
K(n, Aogg) = 2" k:)l . éwq =1 q(n — Ao(g) = lcq(n —o(q) +1).
’q -
Then by theorem (3.2 . the Ramanujan sum ¢,;(n) and its ¢(¢) — 1 consecutive
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circular shifts constitute an integer basis for the Ramanujan space .S,. Thus the

set {K(n, \; )}¢(q is a spanning set for S,. So S, being finite dimensional it must

then possess a unique biorthonormal set {1; } jas 1, say; that is, a set such that
(K (., X). ¢5) = 35

Then the bi-orthonormal basis element is defined by

Z Ck? \/— sn’ (46)
(’f Q)
where j = 1,2,---,¢(q). The representation of x € S, in the set {1/)j}¢ @ takes

the form:
#(q)

me

where b; = (x, K(., A;)) = x()\;). This gives us the sampling representation:
#(q)

z(n) =Y z(N)v(n). (4.7)

i=1

O

We now present the technique for obtaining a biorthonormal basis. We begin by

considering the matrix A given by:

11 .. kA1
Wy Wy
y 1>\2 y kAQ
)
Z& _ Mq qu
LAg(q) EXy(a)
wq DY wq

where k is the largest value such that (k,q) =1, and A is a o(q) x ¢(q) square

matrix. Alternatively, we can write A as a Vandermonde matrix:

1 1
11 k1
A _ wq DY wq
w;(ﬁb(‘Z)*l) . w’;w(Q)*l)

Since each column of A has distinct elements, it is a non-singular matrix.
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Next, from equation 1! we have:

q
| TR,
i (\) = EZ v — Vs Wi () = 6. (4.8)
(kq) 1

Here, j = 1,2,--- ,¢(q) and i = 1,2,--- ,¢(q). The coefficients ) are the un-
known variables for fixed j.

For each j, equation (4.8) gives us a system of linear equations with ¢(q) un-

knowns {c céj ) .. ,c((;'()q)}. The coeflicient matrix of this system is A. Since A

is non-singular, the system of linear equations has a unique solution.

Now, let’s provide a couple of examples based on the above theorem.

Example 4.1. In this example we provide a sampling formula for the Ramanujan

space S5 with dimension ¢(5) = 4. The basis of space S5 is given by
{wh 1<k <5, (k5) =1}
Also {3 \[w : 1 <k <5,(k,5) = 1} is orthonormal basis for S5. Then from

equation 1i reproducing kernel is given by
5
L k-
Emn\) =Y Zu Wk
k=1
(k,5)=1
Here, if we choose set of points where {A\; =0, Ay = 1, A3 = 2, A\, = 3}.

5

1 sy 1 1
K(n,\) = Z —F M) = —cs(n— A1) = —c5(n),

5
po 5 5 5
(ko)l
Lo _ 1 1
A2) Y= —cs(n—Ng) == —1),
K(n. ) z_; 5 50 (n 2) 505(” )
(k5:1

5
1 jn 1
7’L )\3 Z g ]g )\3) C5(7’L — /\3) = 505(n - 2),

(K521

| =

5

1 k(n—AX 1 1

K(TL, )\4) = ; gw5( 1) — 565(7] — )\4) = 505(11 — 3)
(kv‘t?):l

The Ramanujan sum c5(n) and its ¢(5) — 1 = 3 consecutive circular shifts consti-

tute an integer basis for Ramanujan space Ss. Thus the set {K(n, \;)}i; is an
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spanning set for Ss.

Now we can see the singularity of A matrix, where

T O I I RS NS B B
A wi? w wP Wi _ wil wi wdt wit
w;A:; w§A3 w3’\3 ngs w2 w2 W
w}’“ ng“ ng“ wé“ wé?’ ’w§3 wg’?’ ’w§3

This is a Vandermonde matrix and each column has different elements, the matrix

A is a non-singular matrix. Now from equation (4.8) we have

5
j 1 n
DI EEY Cg)(%wtﬁ ) = dij (4.9)
n=1
(n,5)=1

fori=1,2,3,4,j=1,2,3,4 and {0(7)} being the coefficients of ;. For j =1, we

get a system of equations

5
(1)
g c —w5 ) =0,

n=1
(n,5)=1

for i = 1,2, 3,4. Equivalently, the above system of equations can be written as

AX =b,
where _ _
1 1 1 1
1wl w? wd wlt
A=—
VE | w2 w? w2 wl
W w? wP ol
That is,
1 1 1 1
4 0.3090 — 0.9511¢  —0.8090 — 0.5878: —0.8090 + 0.5878;  0.3090 + 0.9511%¢

1
V5 | —0.8090 — 0.5878  0.3090 +0.9511z  0.3090 — 0.9511¢  —0.8090 + 0.5878%
—0.8090 + 0.5878:  0.3090 — 0.9511¢  0.3090 + 0.9511: —0.8090 — 0.5878%
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cgl) 1

cgl) 0
X=1 b=

c.é ) 0

cil) 0

Solving above system of linear equation, we get
Y = 0.3090 + 0.42534, 5 = 0.8090 + 0.26294, c§” = 0.8090 — 0.2629,
iV = 0.3090 — 0.4253i.
Similarly, for j = 2,3,4 we get system of linear equations and solving those

system of linear equations we have

P = 0.8506i, ) = 0.5257i. ¢{? = 0.5257i, ¢\ = 0.85061,
P = —0.540.6882i, ¢ = 0.5 — 0.1625i, ¢ = 0.5 + 0.1625¢, ¢{¥) = —0.5 — 0.6882i,
A = 0.5+ 0.16251, ¢SV = 0.5+ 0.6882i, i) = 0.5 — 0.6882i, ¢\ = —0.5 — 0.1625i
respectively. Therefore from equation 1! the bi-orthonormal basis is given by

1 1
Y1(n) = (0.3090 + 0.4253) (—=wi") + (0.8090 + 0.26297) (—=w?")

Vb V5
+ (0.8090 — 0.26292‘)(%11}3‘”) + (0.3090 — 0.42532‘)(%10;&”),

Po(n) = (0.8506@')(%1@%”) + (0.52571')(%111?)") + (0.5257@)(%10?,") + (0.85061)(%10;”),
bs(n) = (—0.5 + 0.6882@')(%10})") + (05— 0.1625@')(%10?”) +(05+ 0.1625@(%102“)

+(—0.5 — 0.68821’)(%11}?”),
Yu(n) = (—0.5+ 0.16251‘)(%10%”) + (0.5 + 0.68822')(%10?)”) + (0.5 — 0.6882@')(%102”)

+ (=0.5 — 0.16251’)(%10?").

Hence from we have the sampling representation

4

z(n) = Zx(ki)%(n)-
i=1
Now we can take a signal z:(n) = 2cos®(22%) +6cos (252 )sin?(2£2), which is belong

to the Ramanujan space S5. At the sampling points \y = 0, A = 1,A\3 =2, Ay = 3,
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samples are respectively
z(A) = z(0) = 2,2(X2) = z(1) = —1.6180,
x(A3) = z(2) = 0.6180, z(\y) = z(3) = 0.6180.
Then the sampling representation for this signal is given by

z(n) = 2¢1(n) + (—1.6180)¢2(n) + (0.6180)13(n) + (0.6180)¢4(n).

(a) Original function (b) Reconstruction

Figure 4.1: Sampling process in Ramanujan space

Example 4.2. In this example we provide sampling formula for the Ramanujan
space Syy with dimension ¢(24) = 8. The basis of Sy, is given by

{wh, 11 <k <24, (k,24) = 1}.
Also {\/szwlggl :1 <k <24,(k,24) = 1} is an orthonormal basis for Ssy. Then
from , the reproducing kernel is given by

24

1
k(n,\) = Z ﬂqt)zllk("f’\).
k=1
(k,24)=1
Here we choose the set of points {\; =0, A\, =1,--- ,A\s =T}
21 1 1
k(n—AX
k(nv)\l) = kz; ﬂU)Qi ) = ﬂC%(n - )\1) = ﬂ(im(n),
(k,24)=1
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1 hnny 1 1
k(n, )\2) == z —wk( Az) = —024(71 — )\2) = —C24(TL — 1)

24 24 24
k=1
(k,24)=1
24
1 k= 1 1
k(nv)\é%) - ; ﬂ 024& 8) = ﬂ624(n — >\8) = ﬂ()g;;(ﬂ — 7)
(k,24)=1

The Ramanujan sum co4(n) and its ¢(24) — 1 = 7 consecutive circular shifts con-
stitute an integer basis for Ramanujan space Sas. Thus the set {k(n, \;)}o_, is
an spanning set for Say.

Now we see the singularity of A matrix, where

1M1 51 T\ 11X 13)\1 17X\ 19\ 23\1
Woy™  Woy Woy  Woy Woy Woy Woy Woy

)Xo 5o oy 11X 13Xa 17Xo 19X, 23X,
Woy™ Woy™ Woy™ Woy Woy Way Woy Way

A3 5X3 oy 11X3 13X3 17X3 1973 2325
Woy™ Woy™ Woy~ Woy Way Woy Way Way

1Ay 54 T4 11Xy 130y 170y 190y 234
Woy Woy Woy Woy Woy Woy Woy Woy

A f—
IAs 55  TAs 1125 13xs  17Xhs  19Xs 235
Woy™  Wyy™  Woy™  Woy Woy Woy Way Way
16 56 o 116 13x6 ,, 17X 196 236
Wy~ Way~ Woy Woyy Way Way Way Woy
1M7 57 A7 1127 13)\7 17)7 19)7 2307
Woy ™  Woy Woy  Woyy Woy Way Way Woy

1)g S5Ag 87 11)g 13)g 17Xs 192 238
Wy~ Wyy™  Woy Woyy Woy Woy Woy Way

This is a Vandermonde matrix and each column has different elements, the matrix

A is a non-singular matrix. Now from equation (4.8)), we have

1
G = Y Cff)(—ﬂwzf’) = 0ij,
(n'5D=1

where 1 =1,2,---,8, 7 =1,2,---,8 and {CSLJ)} coefficients of v;. For j = 1, we

get a system of equations

24
1
1 )\i = C,(l) —w"’\i == 52 N
l/”( ) ; n (\/ﬂ 24 ) 1
(n,24)=1
where i = 1,2, --- ,8. Equivalently, this system of equations can be written as
AX =0,
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where
1A 5\ (CSTR § P YR &> VI o VIR 2 SR Y

Woy™  Wyy Woy 24 24 24 24 24
Ao 5Ag oy 11Xo 13X0 17As 1970 230
Woy™ Woy™ Woy~ Woy Woy Woy Way Woy

s, 5\, TAs o 11As  13Xs  17As  19A3  23Xs
Wos®  Wop® Wop® Woy™ Wyt Wyt Way P Wiy

14 54 Txa 11Xy 13M4 17x4 . 19M4 234

B-
g
&

125 5\ oy 11X5 13X5 17hs 1975 23\5
Waoy™  Wyy™  Woy Way Way Way Way

16 56 T\ 11)g 13Xg 17X¢ 196 23)g

Woy™  Woy Woy Wy Way Way Way Way
17 57 A7 11)7 13)7 177 19)\7 23\7

Woy'  Woy'  Woy Woyy Woy Woy Woy Woy

1\s 5\s 87 11)s 13)s 17As 19)s 23)s
Woy~ Woy™ Woy  Woyy Way Way Way Way

G
o O o o o o o

Solving the above system of linear equations, we get
A = 0.6124 — 0.35361, ¢t = 0.6124 + 0.35361,
Y = 0.6124 — 0.3536i, ) = 0.6124 + 0.35361,
Y = 0.6124 — 0.3536i, ¢l = 0.6124 + 0.35364,
AV = 0.6124 — 0.3536i, ¢ = 0.6124 + 0.35361.
After solving the system of equation corresponding to j = 2, we get

t? = 0.6830 — 0.1830i, ¢ = —0.1830 + 0.6830i,

¢ = 0.1830 + 0.6830i, ¢\ = —0.6830 — 0.18301,

¢ = —0.6830 + 0.1830, ¢ = 0.1830 — 0.6830i,

AP = —0.1830 — 0.6830, ) = 0.6830 + 0.1830i.
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After solving the system of equation corresponding to j = 3, we get
) = 0.7071 — 0.00004, ¢ = —0.7071 + 0.00004,
) = —0.7071 4 0.00007, ¢ = 0.7071 — 0.00004,
¥ = 0.7071 — 0.0000i, ¢ = —0.7071 + 0.00004,
AP = —0.7071 4 0.00004, ¢ = 0.7071 — 0.0000i.

After solving the system of equation corresponding to j = 4, we get
Y = 0.6830 + 0.18304, ¢i”) = —0.1830 — 0.68304,

(M = 0.1830 — 0.68307, ¢{*) = —0.6830 + 0.1830i,

¢ = —0.6830 — 0.18304, c{”) = 0.1830 + 0.68304,
A = —0.1830 + 0.68304, ¢! = 0.6830 — 0.1830i.

After solving the system of equation corresponding to j = 5, we get
™ = 0.0000 + 0.7071i, ¢ = —0.0000 — 0.7071i,
¢ = 0.0000 + 0.70714, ¢{” = —0.0000 — 0.70714,
%) = 0.0000 + 0.7071i, ¢’ = —0.0000 — 0.7071i,
AP = 0.0000 + 0.7071i, ¢ — 0.0000 — 0.70715.
After solving the system of equation corresponding to j = 6, we get
% = —0.1830 4 0.68304, ¢ = 0.6830 — 0.18304,
cgﬁ = —0.6830 — 0.18304, ¢\ = 0.1830 + 0.68304,
A% = 0.1830 — 0.6830i, c”) = —0.6830 + 0.18304,
5 — 0.6830 + 0.1830i, ¢V} = —0.1830 — 0.6830:.
After solving the system of equation corresponding to 7 =7, we get
AV = —0.3536 + 0.61244, ¢ = 0.3536 + 0.6124i,
= 0.3536 — 0.6124i, ¢\ = —0.3536 — 0.6124,
¢ = —0.3536 + 0.61244, c{” = 0.3536 + 0.61244,

A = 0.3536 — 0.6124i, ¢ = —0.3536 — 0.61244.
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After solving the system of equation corresponding to j = 8, we get

A% = —0.5000 + 0.50004, ¢ = —0.5000 + 0.50004,
= 0.5000 + 0.50004, ¢ = 0.5000 + 0.5000i,

Cg = 0.5000 — 0.50004, ¢ = 0.5000 — 0.50004,

A = —0.5000 — 0.50004, ¥ — 0.5000 — 0.50004.

Therefore from equation (4.6) the bi-orthonormal basis is given by

1 1.
YP1(n) = (0.6124 — 0.35360)( wil) + (0.6124 + 0.35364) ( wyy )
V24 V24
1 1
4 (0.6124 — 0.35360) (—=w3r) + (0.6124 + 0.3536) (—=w3;")
V24 V24
1 1
+(0.6124 — 0.35361) (—=wq3") + (0.6124 + 0.35367 ) (—=w3;")
V24 V24
1 1
+ (0.6124 — 0.35367) (—=ws4y") + (0.6124 + 0.35367) (—=w33").
\/24 \/24
Pa(n) = (0.6830 — 0.1830i)( — ;;;) + (—0.1830 + 0.6830)( T wy)
1 1
+ (0.1830 + 0.6830)(—= w;:;) + (—0.6830 — 0.1830) (——=wa:")
V24 \/_
1
+ (—0.6830 + 0.1830) (—=ws2") + (0.1830 — 0.6830)(—=w3:")
V24 \/_
1 1
+ (—0.1830 — 0.6830) (——=1w33") + (0.6830 + 0.1830i) (—=w3")
V24 V24
1 1
P3(n) = (0.7071 — 0.0000%) (—=w3}) + (—0.7071 + 0.00007) (—=wi})
V24 V24
1 1
+ (=0.7071 + 0.00007) (—=wa7) + (0.7071 — 0.00004 ) (—=w3;")
V24 V24
1 1
+ (0.7071 + 0.0000) (—=w52") + (—0.7071 — 0.00003) (—=w.")
V24 V24
1 1
+ (=0.7071 — 0.00007) (—=w33") + (0.7071 + 0.0000i) (—=w33").
V24 V24
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1 1
Yy(n) = (0.6830 + 0.1830i) (—=wy?) + (—0.1830 — 0.6830)(—wg§;)
V24 \/
1
+ (0.1830 — 0.6830)( mwgz) (—0.6830 4 0.1830) (—— \/_ wii™)
1
+ (—0.6830 — 0.1830) (—=w33") + (0.1830 4 0.6830)(—=ws:")
V24 \/
1 1
+ (=0.1830 + 0.6830) (—=wa)") + (0.6830 — 0.18307) (—=w2").
V2l V2i
1 1
P5(n) = (0.0000 + 0.70714) (—=1wsy ) + (0.0000 — 0.70717)(—=w3})
V2l V2i
1 1
+ (0.0000 4 0.70714) (—=w3}) + (0.0000 — 0.70717) (—=w3i™)
NGT V2i
1 1
4+ (0.0000 4 0.70714) (—=w23™) + (0.0000 — 0.7071%) (——=w3ss™)
V24 V24
1 1
4+ (0.0000 4 0.70714) (—=wi]") + (0.0000 — 0.7071%) (—=w33").
V24 V24
1 1
Ye(n) = (—0.1830 + 0.6830i) (—=w,;) + (0.6830 — 0.1830)(—w§’})
V24 \/
1 n
+ (—0.6830 — 0.1830)( _2411124) (0.1830 + 0. 6830)( — ;i )
+ (0.1830 — 0.6830)(— \/_ wid™) + (—0.6830 + 0.1830)(—= \/_ wii™)
+ (0.6830 + 0. 1830)(\/_ wy™) + (—0.1830 — O.6830z)(mw§i’ ).
1 1
Yg(n) = (—0.3536 + 0.61244) (——=wa?) + (0.3536 + 0.61241) (——=w3})
V24 V24
1 1
+(0.3536 — 0.6124i) (—=w3;) + (—0.3536 — 0.6124i)(——=w3;")
V24 x/ﬂ
1
+ (—0.3536 + 0.61244) (——=wy") + (0.3536 4 0.61241) (—=wg")
V24 \/_
1 1
+(0.35360.61247) (——=w33") + (—0.3536 — 0.61247 ) (——=w2").
( i)( a2 )+ ( ) /od 24 )

Hence the sampling representation is given by
8

x(n) = Z x(N)i(n).

We take a signal z(n) = 2cos(*35%) —1—2005( 127) which belongs to the Ramanujan

space S7. At the sampling points Ay = 0, \y = 1,A3 = 2, Ay = 3,5 = 4, ¢ =
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5, A7 = 6, \g = 7 samples are given by,

(A1) = z(0) = 4.0000, z(A2) = z(1) = —0.0000,

z(A3) = z(2) = —3.4641, x(\4

2(3) = —0.0000,

( ( (1)

) (\) =2(3) =

2(\s) = x(4) = 2.0000, z(As) = 2(5) = —0.0000,
z(A\7) = z(6) = —0.0000, z(\s) = (7) =

z(7) = —0.0000.

Then the sampling representation for this signal is given by
2(n) = 4361 (n) + (O)fa(n) + (~3.4641)e%5(n) + (0)ia(n)
+ (2)¥5(n) + (0)¢6(n) 4 (0)¢p7(n) + (0)s(n).
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(a) Original function (b) Reconstruction

4.3 Analysis of the Sampling process on the Ra-
manujan space

The first example illustrates the disadvantage of the discrete sampling process in
the context of the Ramanujan space S, when ¢ is a prime number. In this case,
it is necessary to have ¢ — 1 sampling points to fully recover the signal. This
requirement of a large number of sampling points can be time-consuming and
resource-intensive, especially for signals with a high value of ¢. Thus, the dis-

advantage lies in the increased complexity and computational burden associated
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with the sampling process.

However, the second example highlights an advantage of the discrete sam-
pling process in the Ramanujan space S, when ¢ is not prime. In this scenario,
the dimension of S, is ¢(¢), which is less than or equal to 4. This implies that a
smaller number of sampling points are needed to recover the signal compared to
the case when ¢ is not prime. Consequently, the advantage lies in the potential
reduction of the sampling requirement, leading to a more efficient and streamlined
signal recovery process.

Overall, the advantages and disadvantages of the discrete sampling process
in the Ramanujan space S, depend on the specific characteristics of ¢, such as
its primality and parity. Understanding these properties enables us to assess the
sampling requirements and optimize the process accordingly, considering both

the computational resources and the desired signal reconstruction accuracy.

4.4 Sampling process in Ramanujan space with
respect to integer basis

Ramanujan space S, is column space of B, matrix. Now, we determine ¢(q)
columns of the integer matrix B, which can serve as an integer basis for S;. An
arbitrary set of ¢(q) columns of B, may not be independent despite the rank of
B, being ¢(q). Therefore the Ramanujan sum ¢,(n) and its ¢(q) — 1 consecutive

circular shifts constitute an integer basis for the Ramanujan space S,.

Lemma 4.3. [1] For ¢ = 2™ where m is any positive ineteger, the Ramanujan
sum cq can be written as

m—1 —

2m— forn =0,

Cq(n> — _2m—17 for n — q/2 _ 2m—17 (410)

0 otherwise.
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in the fundamental range 0 <n < q— 1.

Proof. First note that (2™, k) = 1 is equivalent to (2,k) =1, so that

2m 2m—1
2 : j : 2 I)n
02771 w2m — Z +
= i=0

(k)= (D1
where we have decomposed k as k = 2i+[, use the fact that (2, p) = 1 is equivalent

o (1,2) = 1. We therefore have

am-1_1

com(n) = < E 71)%’7;,1> (W ).
i=0
The first summation is
2m -1 0if 2714 n
E 2y TV —
w?m—l -
i=0 2m=1 jf 2m=1|p

Only when n = 2™ !r for integer 7,

lifn=20
Waom =
—1ifn =271

Hence for ¢ = 2™,
2m=1 forn =0,
cg(n) = =271 forn = q/2 =2m"1

0 otherwise.
O

Given that ¢(q) = 2™, we have ¢ (n) = 0 for 1 < n < ¢(q) — 1. This implies
that the set {c,(n),c,(n—1), -+, cy(n —¢(¢) + 1)} forms an orthogonal basis for
the Ramanujan space S,,.

The Discrete Fourier Transform (DFT) of ¢,(n) is denoted as Cy[k], and it

is defined as follows:

q, if (k,q) =1,
Cq[k] =

0, otherwise.
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Using Parseval’s relation for DF'Ts, we can establish that:

> cin) =) CIE/q=q*d(q)/q = q6(q).
n=0 k=0

Since ¢ = 2™, we can substitute this value into the above equation, yielding a? =
Zn 0 q( n) = 2*m=1. Therefore, the set {écq(n), %cq(n—l), e 1cq( —p(q)+1)}
forms an orthonormal basis for the Ramanujan space S,, where a@ = /22m-1L

Based on the lemma provided earlier, we deduce the following theorem.:

Theorem 4.4. Let g = 2™, m being a very large natural number. Then for any

x 1n the Ramanujan space S,, we have the following representation
?(a)

z(n) = Zf()\z‘)%(n),
where Ny =i — 1 fori=1,2,---  ¢( 3— 1, {4} is bi-orthogonal to reproducing

kernel, that is (k(.,\;),¢;) = 6i;.

Proof. In Ramanujan space S, orthonormal basis is {¢,(n — )}~ ¢(q . Then by

equation reproducing kernel is given by

O _—
K(m,n) = Z qu( 0= Cq(” —1)
=0
d(9)-1
1 1
= — —1)— —1
> Sealm = etn 0,

as {c,(n — D)}2 ¢(q) !

is integer basis for Ramanujan space S,. Now, we select
arbitrary set of points {A\; = 0, s = 1,- -, Ay(q) = ¢(¢) —1}. Now, we claim that
{k(, A )}¢ spanning set for the Ramanujan space S,.

Now consider,

K(ma )\1) :K(m7 O)
#(q)—1

1
= 3 —eylm—1)—c (0 —1).
> Gealm =00
In this last sum ¢,(—1) = ¢,(q — 1) because ¢4(n) has ¢ periods. Also from (4.10)),

we obtain

K(m,\) = K(m,0) = écq(m)écq(O).
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Similarly, we have

1 1
K(m Aatg) = K(m,o(6) ~ 1) = ~ey(m — 6(a) + 1), (0).
The Ramanujan sum ¢,(n) and its ¢(q) — 1 consecutive circular shifts constitute

an integer basis for the Ramanujan space S,. Thus the set {K(m, \;) }<Z>(ql) is a

spanning set for S,. Now S, is finite dimensional it must then possess a unique

bi-orthonormal set {¢; }f(ql, say; that is, a set such that
(K (M), 1) = 045

where the functions 1);’s are given by
$(q)—1

1
P;(n Z al a(*q n—1) (4.11)

where j = 1,2,---,¢(q). The expansion for x € S, in the set {1;}; ql is of the

form
#(q)

Z bithi(n

in which b; = (z, K(., \;)) = x(\;), so we have the sampling representation
#(a)

z(n) =Y z(X)i(n).

i=1

O

We now present the technique for obtaining a bi-orthonormal basis. Let us ex-

amine the singularity of the matrix:

Q) Gi—1) =)+ |
A Cq(./\Q) Cq()\2' —-1) cq(A2 — é(Q) +1)
i ¢Ao@) Qo) — 1) -+ (Ao — d(g) +1) i

This matrix has dimensions ¢(q) % ¢(q).
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By rearranging the terms, we can express A as:
cq(0) cq(—1) cg(—9(q) +1)
cq(1) cg(l—=1) - cg(l—o(q) +1)

cg(@(q) = 1) colplg) —1) -+ cold(q) —1—¢(q) + 1)

According to the definition lb ¢q(n) can be expressed as 2™~ ! for n = 0 and
0 for 0 < n < ¢(q) — 1. Therefore, A simplifies to:

gm-1 0 ce 0
0 2m1 ... 0
A =
0 0 . 2m—1

This is a diagonal matrix with non-zero elements on the principal diagonal.
Hence, A is a non-singular matrix. By solving the system of linear equations de-
rived from equation 1} we can determine the coefficients of the bi-orthonormal

basis. The equation can be written as:

#(q)—1 1
vi) = D a0 =c (N — 1) = b, (4.12)
(6%
=0

Here, j = 1,2,...,0(q), i =1,2,...,¢(q), and al(j) are the coefficients of v;. For
a fixed j, each i from 1 to ¢(q) represents a system of linear equations with ¢(q)
unknown variables {agj ), agj . a((zf()q)}. The matrix A represents the coefficients
of the system of linear equations. Since A is non-singular, the system of linear

equations has a unique solution.

Now, we provide an example based on the above theorem.

Example 4.3. Let us consider ¢ = 23. We find the sampling formula for the
Ramanujan space Sos with dimension 22. Then the Ramanujan sum ces and its

(22 — 1) consecutive circular shifts constitute an integer basis for the Ramanujan
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space Sos. From (4.10) we know that
22 for n =0,
cs(n) = ¢ —22 for n = 23/2 = 22,
0 otherwise
in the fundamental range 0 < n < 23 — 1.

Here the set {cp3(n),cos(n —1),-++ ,cos(n — 22 + 1)} is an orthogonal basis
for the Ramanujan space Sos. Also a? = Zii_ol c5s(n) = 2271 = 25 Hence the
set {Zcps(n), 2eps(n — 1), -+, Legs(n — 22 4 1)} is an orthonormal basis for the
Ramanujan space Sps. We choose the set of points {A\ =0, = 1,\3 =2, \y =
3} as sampling points such that

1 1
K(m, A1) = K(m,0) = —cgs(m)—cy3(0),
! !
1 1
K(m, %) = K(m, 1) = ~ex(m — 1) e (0),
! !

K(m, \s) = K(m,2) = é@g(m - Q)écf,(()),

K(m, ) = K(m,3) = écga(m - 3)&023(0).

Also the Ramanujan sum cys and its 22 — 1 consecutive circular shifts constitute

3
an integer basis for the Ramanujan space Sys. Hence the set { K (m, /\Z)}:b:@1 Vis a
spanning set for Sps. From equation (4.11)) the biorthonormal basis functions are

defined by

221
a1
Y;(n) = Z al(J)_CQS(n —1),
=
where j = 1,2, ---,22. Here the matrix A can be written as
220 0 0
0 22 0 0
A =
0 0 22 0
0 0 0 2°
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which is a diagonal matrix with non-zero principal diagonal elements. Hence the

matrix A is a non-singular matrix. Now from equation 1b we have
22—1

= Z 05‘7)023()\1 —1) = 4y,

1=0
where j = 1,2,---,22 i =1,2,---,2% and {al(j)} coefficients of ;. For j = 1,

we get a system of equations

Za c3(N — 1) = 041,

where ¢ = 1, 2, 3,4. Equivalently, thlb system of equations can be written as

AX =,
where _ - o o
2.0 0 0 al 1
110 22 0 o0 al! 0
A=— s =1, b=
alpg 0 22 0 al 0
0 0 0 22 al 0

Solving the above system of linear equations, we get
al) =1.4142,aV = 0, = 0,4l = 0.
Similarly, after solving the system of linear equations corresponding to j = 2, 3,4,
we get
=0,a? =1.4142 0% = 0,a{? =0,

af)g) —0,a? = 0,0 = 1.4142,a% =0,
Y =0,a{" =0,a8" = 0,0 = 1.4142,

respectively. Therefore from equation (4.11)) the bi-orthonormal basis functions
are given by
1 1
1(n) = 1.4142(—c3(n)), 2(n) = 1. 4142( cps(n—1)),
o
1 1
3(n) = 1.4142(—co3(n — 2)), Ya(n) = 1.4142(— 023(n —3)),

«

45



respectively. Hence the sampling representation is given by

w(n) =Y x(A)i(n).

=1
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CHAPTER b

Future plan

In the future, we will focus on developing algorithms for the discrete sampling
process in the Ramanujan space. Our goal is to improve the existing methods and
incorporate explicit error estimation techniques to ensure more accurate signal
reconstruction. Additionally, we plan to explore the discrete sampling process
within polynomial spaces that exist in the Ramanujan space. This investigation
will provide valuable insights into the properties and applications of these poly-
nomial spaces, expanding the possibilities for signal processing techniques within
the Ramanujan framework. These efforts will contribute to advancing efficient
and reliable signal processing algorithms and expanding our understanding of

Ramanujan space analysis and its practical implications.
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