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Abstract

This thesis includes an introduction to the Coupled Fractional Fourier Trans-

form (CFrFT) and its various properties. The CFrFT is a generalized version of

the Fractional Fourier transform (FrFT) that extends FrFT to two-dimension.

The thesis begins with a comprehensive review of the Fourier transforms (FT)

and fractional Fourier transforms, providing a solid foundation for the study

of the CFrFT. The mathematical framework of the CFrFT is then introduced,

including the definition, properties, and some important theorems with exam-

ples.

The main focus of the thesis is to investigate the properties of the CFrFT,

including its linearity, symmetry, conjugation, time-frequency shift, etc. Addi-

tionally, certain properties related to its convolution operator, like commuta-

tivity, associativity have been explored. Moreover, relation between convolu-

tion of the product of CFrFTs of two functions with CFrFT of the product of

these functions has also been investigated. The results of this thesis contribute

to a deeper understanding of the CFrFT and its properties. The findings may

be of interest to researchers and practitioners in the fields of electrical engi-

neering and mathematics.

This thesis contains four chapters.

Chapter 1 contains a brief introduction to integral transforms and Fourier

transform. The definition and inversion formula for FT, as well as some ex-

amples has been included. A brief overview of features of FT such as linearity,

time shift, and so on has been included. This chapter concludes with the

limitations of FT.
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Chapter 2 contains the definition and inversion formula for FrFT and

some properties of FrFT. The convolution theorem and Parseval’s relation are

included. This chapter also include FrFT of a function with di↵erent angles.

In chapter 3, the introduction to CFrFT, its definition and inversion

formula are introduced along with example. Several properties of CFrFT like

linearity, symmetry, conjugation, time-frequency shift, etc. are derived with

detailed proofs. This chapter also contains theorems and properties related to

the convolution operator for CFrFT. This is the main contribution chapter in

our thesis.
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Chapter 1

Introduction

Various natural phenomena in physics, quantum mechanics, sciences, etc. are

modeled using di↵erential equations, and integral equations. One such math-

ematical tool which has been widely used to tackle these problems is integral

transform. In recent years, a lot of researchers throughout the globe have

worked on integral transformations and their applications in various fields

of science and technology. Integral transforms such as Fourier transforms,

Laplace transforms, Wavelet transforms, etc. are widely used to handle prob-

lems related to solving complicated di↵erential equations and integral equa-

tions.

An integral transformation refers to a mathematical process where in a

function is integrated with respect to a parameter, resulting in the creation of

a new function.

Integral Transform: The integral transform of a function h(t) defined in

a ≤ t ≤ b is denoted by Ih(t) =H(!), and is defined by

Ih(t) =H(!) = � b

a
K(t,!)h(t)dt, (1.1)

where, K(t,!) is known as the kernel of the integral transform.

Most of the properties like linearity, duality, symmetry, etc. of any integral

transform depends on its kernel.

Integral transformation enable the transfer of function from one domain
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to another, leading to a situation where the process of manipulation and prob-

lem solving becomes notably easier compared to the initial domain. The in-

verse of the integral transform can then be used to map the solution back

to the original domain. It has been extensively employed as a mathemati-

cal technique to address problems in diverse fields such as physics, applied

mathematics, and mechanics.

One such integral transform is Fourier transform. Before going into the

Fourier transform, we must initially define Lp(R).

1.1 The Lp(R) Space
Lp spaces are a family of function spaces that are used to study the properties

of functions that are integrable to some power. In this dissertation, we will

be focused on Lp(R). (Lp(R), ��.��) forms a normed linear space where norm of

any function g ∈ R is given by

��g��p =
���������
� ∫ ∞−∞ �g�p dx� 1p , 1 ≤ p <∞,

essSup�g(x)�, p =∞.

(1.2)

This number ��g��p is known as Lp norm. Lp spaces are Banach spaces, that

means they are complete normed vector spaces. Infact, for p = 2, they form a

Hilbert space. Our work in this thesis is concentrated on L1(R) and L2(R).

1.2 The Fourier Transform

The Fourier Transform is a fundamental technique with numerous applica-

tions in the fields of signal and image processing, systems for communication,

and filtering technologies [1, 2]. It enables us to decompose a signal into its

constituent frequencies and analyze its frequency content. The FT has led to

significant advancements in the fields of engineering, physics, and mathemat-

ics. It decomposes a function into sine and cosine components.
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Definition:

For a given function h(t), its Fourier transform, F(h(t)), denoted by ĥ(!), is
defined as

F(h(t)) =H(!) = 1√
2⇡
� ∞
−∞ h(t)e−i!t dt, (1.3)

provided the integral exists.

Now, we will see the Fourier transform of some functions.

Example 1: Consider characteristic function �a(t)

�a(t) =
���������

1, −a < t < a
0, otherwise

. (1.4)

Then, the Fourier transform of �a(t) is given by

�̂a(!) = � ∞
−∞ �a(t)e−i!t dt = � a

−a e
−i!t

dt = 2

!
sin(!a).

Hence, the Fourier transform of �a(t) is given by �̂a(!) = 2
! sin(!a).

Figure 1.1: (a) �[−a,a](t) and (b) its Fourier transform

Source: https://link.springer.com/book/10.1007/978-1-4612-0097-0

One should notice here that �[−a,a](t) ∈ L1(R) but �̂[−a,a](!) ∉ L1(R).
This function �[−a,a](t) is frequently referred to as a rectangular pulse or gate

function in science and engineering. It can also be used to analyze the sta-

tistical properties of signals, such as noise and interference, in communication

systems.
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Example 2: Consider function  (t)= t2e−ct2 , for c > 0. Then, the FT of

 (t) is given by  ̂(!) = ie−!2
4c

2
√
2c

3
2
.

Figure 1.2:  (t) and its Fourier transform with c = 3.
Inversion Formula:

For a given function �̂(!), its inverse Fourier transform is defined as

�(t) = (F−1�̂(!)) = 1√
2⇡
� ∞
−∞ e

i!t
�̂(!)d!, t ∈ R. (1.5)

If �(t) is continuous, then eq (1.5) holds for every t ∈ R.

1.2.1 Basic Properties of Fourier Transform

If  (t) and �(t) are two functions with FT  ̂(!) and �̂(!) respectively, and
↵, � are in C. Then we have the following results.

Basic Properties of FT

Property Function Fourier transform

(i) Linearity ↵ (t) + ��(t) ↵ ̂(!) + ��̂(!)
(ii) Scaling �(at) 1

a �̂(!a )
(iii) Time Shift �(t − a) e−i!a�̂(!)
(iv) Frequency Shift eiat�(t) �̂(! − a)
(v) Conjugation �(t) �̂(−!)

For the proofs of above properties one can take the help of [6].
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1.2.2 Convolution

Definition: If �(t) and  (t) are two functions, then their convolution is

denoted by (� ∗  )(t) and is given by

(� ∗  )(t) = � ∞
−∞ �(⌧) (t − ⌧)d⌧, for t ∈ R, (1.6)

provided the integral eq (1.6) exists.

Properties of Convolution:

For the functions f(t), �(t) and  (t), the following properties can be given.

(i) Commutative: � ∗  =  ∗ �
(ii) Associative: � ∗ ( ∗ f) = (� ∗  ) ∗ f
(iii) Distributive: (af + b ) ∗ � = a(f ∗ �) + b( ∗ �), where a, b ∈ C

Convolution Theorem:

Let g(t) be a time domain function with ĝ(!) as its frequency domain FT.

This output function ĝ(!) is frequently multiplied with other frequency do-

main functions, such as ĥ(!). The problem now is to tackle which time domain

function will have Fourier transform as the product of ĝ(!) and ĥ(!)? The

convolution theorem provides an answer to this topic.

Statement: If �(t) and  (t) are two functions with FT �̂(!) and  ̂(!),
then

F(� ∗  )(t) = �̂(!) ̂(!). (1.7)

It is observed follow from the convolution theorem that if �(t) and  (t) are
two functions with FT �̂(!) and  ̂(!), then

� ∞
−∞ �(t) (t)dt = � ∞

−∞ �̂(!) ̂(!)d! (Parseval’s relation), (1.8)

� ∞
−∞ ��(t)�2 dx = � ∞

−∞ ��̂(!)�2 d! (Plancherel’s relation). (1.9)
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1.3 Limitations of Fourier Transform

We conclude this chapter by listing few limitations of FT which lead to fur-

ther development of wavelet transforms, Gabor transforms, fractional Fourier

transforms, etc.

The Fourier transform approach allows us to explore problems in either

the frequency domain or time (space) domain, rather than both domains

at the same time.

The Fourier Transform is beneficial when evaluating stationary data but

it is unsuitable for analyzing non-stationary information.

To overcome limitations of FT, FrFT was introduced. FrFT has been

demonstrated to be a valuable technique for managing di↵erential and integral

equations. Namias [12] explained the generalized operational calculus associ-

ated with FrFT and proposed approaches to using FrFT to handle ordinary

and partial di↵erential equations with quadratic terms in the variables.

The advantages of working with FrFT over the usual Fourier transform

to tackle di↵erential equations are carefully examined by McBride et al. [13].

Kerr [14] studied the theory of FrFT on L2 as well as used it to resolve some

partial di↵erential equations. Applications of FrFT on a generalized wave

equation and generalized nth-order linear nonhomogeneous ordinary di↵eren-

tial equations are also presented by Prasad et al. [3]. FrFT have several ap-

plications in the fields of optics, identifying patterns, encoding messages, and

processing signals and images [19, 20, 21, 22, 23, 24]. R Iwai and H Yoshimura

in their work [29] displayed how applying FrFT can decrease processing time

for fingerprint data while simultaneously improving matching accuracy. There

are various other uses of FrFT like in radar systems and in cryptography which

has been examined by various researchers like Sun, Djurovic, Amein, Youssef,

Ran, Cusamario, etc. in their works [36, 37, 38, 39, 40]. Other applications of

FrFT include pattern recognition data compression, tomography, etc.
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The CFrFT is a novel extension of the two-dimensional FrFT introduced

by Zayed [8]. Unlike the previous extensions of the FrFT, the kernel used in

the CFrFT is not a tensor product of one-dimensional functions. However, it

depends on the coupling of two angles to produce a new set of transformation

parameters. Zayed [8] also deduced several of its features, including its inver-

sion formula, convolution structure and Poisson summation formula. Using

the kernel of CFrFT, Kamalakkannan et al. [10] introduced short-time CFrFT

and derived its inversion formula and properties. In 2022, Kamalakkannan et

al. [9] provided extension of some of the properties of CFrFT to L2(R2) and
showed that CFrFT satisfies additive property.

The CFrFT is a novel integral transformation and few of its basic prop-

erties like symmetry, linearity, conjugation, time-frequency shift, etc. are still

unknown. In this thesis, we present these properties with detailed proofs.

Few results related to convolution operator and product theorems are also

addressed.

Although the focus of this thesis is on CFrFT, references to works on

FrFT are included because they may have the potential to serve as applications

of CFrFT.
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Chapter 2

The Fractional Fourier

Transform

The Fourier transform has been a vital and irreplaceable tool in the realm of

signal analysis and processing for investigating and manipulating information

in the domain of frequencies. However, the traditional Fourier transform oper-

ates on the assumption that the signal remains stationary throughout its entire

duration. This assumption is often limiting when dealing with non-stationary

signals, such as those encountered in time-varying systems or communication

channels. The FT also treats the time and frequency domain as an orthog-

onal system, neglecting the vital role that phase information plays in signal

analysis.

To overcome these limitations, a more versatile transform known as the

fractional Fourier transform (FrFT) was introduced by V. Namias [12] in the

1980s . The fractional Fourier transform extends the concept of the traditional

Fourier transform by introducing a parameter called the fractional order. This

parameter allows a smooth transition between the time and frequency domains,

providing a richer representation of signals that incorporates both magnitude

and phase information. By varying the fractional order, we can selectively

emphasize di↵erent aspects of a signal, revealing hidden characteristics that

may not be apparent in the standard Fourier domain.

9



2.1 Fractional Operations

Several of the significant conceptual advancements are based on the process

of going from the total of an entity to its fractions. Like generalizing concepts

of addition and multiplication from whole numbers to fractional numbers.

Similarly, the generalization of the derivative operator to fractional powers lead

to development of important di↵erential equations like the fractional Fornberg-

Whitham equation, time-fractional Sawada-Kotera equation, Riesz fractional

Sine-Gordon equation, etc.

We can certainly find nth-order transform of any integral transformation

I, by simply operating I, n-times. That is,

Ing(t) = I ○ . . . ○ I�������������������������������������
n-times

g(t), (2.1)

where, n ∈ N and ○ denotes function composition operation. For negative

natural numbers, say m, Im is defined as

Img(t) = I−1 ○ . . . ○ I−1�������������������������������������������������������������������
m-times

g(t), (2.2)

where, I−1 denotes inverse of integral transformation.

It is important to understand, what is a fractional transform, and how

can we convert an integral transform to a fractional transform?

Let I denotes an integral transform as defined in eq (1.1). Now consider the

following new transform

I↵g(t) = G↵(!), where, ↵ ∈ R. (2.3)

When I↵ satisfies

I0g(t) = g(!) (2.4)

and I1g(t) = G(!), (2.5)

then I↵ is called “↵-order fractional I transform”. Moreover the parameter ↵

is known as the “fractional order.”
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2.2 FrFT Representation in Time and Frequency

Domain

Almeida [15], Ozaktas et al. [25] have formulated the FrFT time-frequency

representation. The FrFT is a type of time-frequency representation widely

used in the signal-processing field. While representing the FT operator in

time-frequency representation, a plane having two perpendicular axes that

correspond to time and frequency is used. The FT operator can be viewed

as a shift in the signal’s representation corresponding to an anti-clockwise

rotation of the axis by an angle ⇡
2 , whereas, FrFT of angle ↵, {F↵} rotates

the input signal corresponding to the initial coordinates (x, y) anticlockwise
to the set of coordinates (!, ⇠) with an angle ↵ in the time-frequency plane,

as indicated in the figure 2.1.

Figure 2.1: Time-frequency representation

Let ↵ = k⇡
2 in eq (2.6), here k ∈ R, then the FrFT with angle ↵ is also

referred as FrFT of k-th order. Mathematically, this means that k-th order

FrFT is simply k-th power of FT.

11



Observations:

When k = 4l, l ∈ Z, then k-th order FrFT reduces to identity operator,

i.e.,

F↵ = F2l⇡ = F0 = I,
where, I denotes identity operator.

When k = 1, then FrFT of angle ↵ = ⇡
2 reduces to ordinary FT, i.e.,

F↵ = F ⇡
2 = F .

When k = 2, then FrFT of angle ↵ = ⇡ reduces to reflection operator, i.e.,

F↵ = F⇡ =R,
where, R denotes reflection operator, i.e., R�(x) = �(−x).
When k = 3, then FrFT of angle ↵ = 3⇡

2 reduces to inverse FT, ie.,

F↵ = F 3⇡
2 = F−1.

For detailed explanation of the above properties one can take the help of

reference [31].

2.3 Definition and Inversion Formula for FrFT

The integral expression for FrFT was introduced by Namais in 1980 [12] using

the fact that e
in⇡
2 are the eigenvalues of FT with corresponding eigenfunctions

e
− 1

2
x2
hn(x), where hn(x) are the Hermite functions of order n. He generalized

FT to FrFT with an angle ↵ in a way that eigenvalues of FrFT are ein↵ and

corresponding eigenfunctions are e
− 1

2
x2
hn(x).

Definition:

One-dimensional FrFT [3], with an angle ↵, {F↵} of  (x) is defined as

(F↵ )(!) =  ̂↵(!) = � ∞
−∞ K

↵(x,!) (x)dx, (2.6)

12



where, the kernel of the transform is

K
↵(x,!) =

�����������������������������

C↵e
i(x2+!2) cot↵

2
−ix! csc↵

, if ↵ ≠ n⇡,
1√
2⇡
e−ix!, if ↵ = ⇡

2 ,

�(x − !), if ↵ = 2n⇡,
�(x + !), if ↵ = 2(n + 1)⇡, n ∈ Z,

(2.7)

and C↵ =�1−i cot↵
2⇡ .

Inversion Formula:

The inversion formula for FrFT associated with with an angle ↵ is given by [3]

 (x) = � ∞
−∞ K↵(x,!) ̂↵(!)d!, (2.8)

where,

K↵(x,!) = C↵e
−i(x2+!2) cot↵

2
+ix! csc↵ =K−↵(x,!), (2.9)

and

C↵ =
�

1 + i cot↵
2⇡

= C−↵. (2.10)

It should be noted that the FrFT with an angle ↵ has its inverse as the FrFT

with an angle −↵.

Example: Consider the function �(x) = x4e−x2
, then its FrFT of order ↵,

is given by

�̂
↵(!) = � ∞

−∞ K
↵(x,!)�(x)dx

= e
!2(i+2cot↵)
2(2i+cot↵)

√
1−i cot↵�12−3cot2 ↵−12!2 csc2 ↵+!4 csc4 ↵+6i cot↵�−2+!2 csc2 ↵��√

2−i cot↵(2i+cot↵)4 .

13



Figure 2.2: Graph of �(x)

Figure 2.3: FrFT of �(x) with angles ↵ = ⇡
6 ,

⇡
4 ,

⇡
3 ,

⇡
2

2.4 Basic Properties of FrFT

If g(x) and h(x) are two functions having FrFT with an angle ↵, as F↵g(!)
and F↵h(!) respectively, and a1, a2 are in C. Then we have the following

results.

14



Basic Properties of FrFT [12]

Property Function FrFT

(i) Linearity a1g(x) + a2h(x) a1F↵g(!) + a2F↵h(!)
(ii) Translation g(x − c) e

i
2 c sin↵ cos↵−ic! sin↵F↵g(! − c cos↵)

(iii) Frequency Shift eikxg(x) e−i k2

2 sin↵ cos↵+ik! cos↵F↵ g(! − k sin↵)
(iv) Reflection g(−x) F↵g(−!)

2.5 Convolution

In 1997, Almeida in his research [27] presented an extension of convolution

theorems for FT and examined the FrFT of product and convolution of two

functions. However, his conclusions were not pleasing as a result of the prod-

uct and convolution theorems for FT. So, in 1998, Zayed [28] presented a new

convolution structure for FrFT. In this section, we will present Zayed’s convo-

lution structure for FrFT and its properties.

Definition:

Let  (x) be a function, define  ̃(x) =  (x)ei cot↵2
x2

and  ̄(x) =  (x)e−i cot↵2
x2
.

The convolution operation � for any two functions  (x) and �(x) is defined
as

h(x) = ( � �)(x) = C↵
e
−i cot↵

2
x2( ̃ ∗ �̃)(x), (2.11)

where, ∗ denotes the usual convolution defined in eq (1.6).

2.5.1 Convolution Theorem

Theorem [32] Let  (x) and �(x) be two functions with FrFT  ↵(!) and
�↵(!) respectively and h(x) = ( � �)(x), then

H
↵(!) =  ↵(!)�↵(!)e−i cot↵2

!2
, (2.12)

where H↵(!) denotes FrFT of h(x).
15



2.6 Parseval’s Relation

Let �(x) and  (x) be two functions with FrFT �↵(!) and  ↵(!) respectively,
then

� ∞
−∞ �(x) (x)dx = � ∞

−∞ �
↵(!) ↵(!)d!, (2.13)

� ∞
−∞ � (x)�2 dx = � ∞

−∞ � ↵(!)�2 d!. (2.14)
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Chapter 3

The Coupled Fractional Fourier

Transform

3.1 Introduction

In chapter 3, we learned about the Fractional Fourier Transform (FrFT). It

has proven to be a powerful mathematical tool in signal processing and com-

munication systems. It provides a way to analyze signals in the frequency-time

domain, allowing for a more precise analysis of non-stationary signals. How-

ever, in some cases, the FrFT may not be su�cient to accurately analyze

signals that have complex time-frequency behaviors.

To address this issue, researchers have introduced an extension of the

FrFT, known as the Coupled Fractional Fourier Transform (CFrFT). The

CFrFT is a type of 2D FrFT F�,✓ which depends on two coupled angles ⇠ = �+✓
2

and ⌘ = �−✓
2 as transformation parameters. It can act as a handy tool in several

applications in signal processing and optics.

In this chapter, we have introduced the CFrFT and provided a com-

prehensive overview of its properties. In this chapter we have started by in-

troducing the definitions of the CFrFT and with some examples. We also

have introduced some mathematical properties of the CFrFT, including the

inversion formula, and convolution theorem.
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In recent years, many scientists have been attempting to expand FrFT

to higher dimensions. Due to the fact that input data like photos, videos,

etc. have dimensions higher than one, these extensions are quite important in

practice.

Earlier, the extensions to n-dimensional space were made using a tensor

product of n copies of a one-dimensional transform. But Zayed [8] derived a

novel strategy for bringing FrFT into the second dimension. He did not use the

standard tensor product scheme; instead, he extended using eigenfunctions.

As we have already seen in chapter 1, the eigenfunctions of the Fourier

transform are Hermite functions of order n with eigenvalues of in. Similarly,

Hermite functions of order n, with di↵erent eigenvalues �n are the eigenfunc-

tions of the FrFT of order ✓, where, 0 ≤ ✓ ≤ 1. The eigenvalues of the FrFT

approach in as ✓ approaches to 1.

To define the novel transform CFrFT the Hermite functions of two com-

plex variables are used as eigenfunctions.

3.2 Complex Hermite Polynomials

These polynomials are a natural extension of the classical Hermite polynomi-

als, which are typically defined over the real line. However, contrary to the real

Hermite polynomials, the complex Hermite polynomials are defined across the

complex plane and are capable of capturing the behavior of complex-valued

functions.

In this section, a brief introduction to complex Hermite polynomials is given.

For more information of complex Hermite polynomials one can read [11].

Definition: The complex Hermite polynomials for two variables x and y is

defined as

Hm,n (x, y) = m∧n�
k=0
(−1)kk!���

m

k

���
���
n

k

���x
m−k

y
n−k

. (3.1)
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where, m and n are non-negative integers and m ∧ n =min{m,n}.
The expression representing the generating function of complex Hermite poly-

nomials is provided as follows
∞�

m,n=0
Hm,n (x, y) tm

m!

sn

n!
= etx+ssy−ts, (3.2)

and the orthogonality relation fulfilled by them is given as
1

⇡
�
R2

Hm1,n1(x+iy, x−iy)H̄m2,n2(x+iy, x−iy)e−x2−y2
dxdy =m1!n1!�m1,m2�n1,n2 .

(3.3)

where, �m1,m2 represents the Kronecker delta function.

3.3 Definition and Inversion Formula for CFrFT

Definition:

Let �, ✓ ∈ R such that � + ✓ ≠ 2n⇡, where n ∈ Z, then for a given function

f ∈ L1(R2), its CFrFt is given by

F�,✓f (x, y, s, t) = �R2
f(x, y)K�,✓(x, y, s, t)dxdy, (3.4)

where,

K�,✓(x, y, s, t) = d(⇠) exp�−a(⇠) �x2 + y2 + s2 + t2�
+ b(⇠, ⌘)(sx + ty) + c(⇠, ⌘)(tx − sy)} , (3.5)

a = a(⇠) = i cot ⇠
2 , b = b(⇠, ⌘) = i cos⌘

sin ⇠ ,

c = c(⇠, ⌘) = i sin⌘
sin ⇠ , d = d(⇠) = ie−i⇠

2⇡ sin ⇠ ,

���������
(3.6)

and

⇠ = � + ✓
2

and ⌘ = � − ✓
2

. (3.7)

The CFrFT is also known as 2D FrFT.

When there is no ambiguity regarding kernel, we will denote F�,✓f (x, y, s, t)
by F�,✓(f)(s, t).
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Remark 1:

In a special case when � = ✓, then ⇠ = � and ⌘ = 0, which implies,

F�f (x, y, s, t) = �R2
f(x, y)d(�) exp�−a(�) �x2 + y2 + s2 + t2� + b(�)(sx + ty)� (3.8)

where,

a(�) = i cot�
2 ,

b(�) = i csc�,
d(�) = ie−i�

2⇡ sin� .

���������������
(3.9)

Now, it is easy to observe from above equations that when � = ✓, then the

CFrFT can be expressed as tensor combination of two 1-D FrFTs.

Remark 2:

If � = ✓ = ⇡
2 , then the CFrFT simplifies to the traditional two dimensional FT.

Inversion Formula [8]:

The inversion formula for the CFrFT is defined as follows:

Statement: If f ∈ L1(R2) and its CFrFT F�,✓f ∈ L1(R2) then the inverse

CFrFT of F�,✓f is defined as

f(x, y) = d(−⇠)�
R2
F�,✓f (x, y, s, t)d(⇠) exp�a(⇠) �x2 + y2 + s2 + t2�

−b(⇠, ⌘)(sx + ty) − c(⇠, ⌘)(tx − sy)} dsdt. (3.10)

As,

a(−⇠) = −a(⇠),
b(−⇠,−⌘) = −b(⇠, ⌘),
c(−⇠,−⌘) = c(⇠, ⌘).

���������������
(3.11)

Thus,

K−�,−✓(s, t, x, y) = d(−⇠) exp�a(⇠) �x2 + y2 + s2 + t2�
−b(⇠, ⌘)(sx + ty) − c(⇠, ⌘)(tx − sy)} . (3.12)

It is worth noting that the above-mentioned inversion formula can be seen as

f(x, y) = �
R2
F�,✓f (s, t)K−�,−✓(s, t, x, y)dsdt. (3.13)
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3.4 Properties of CFrFT

In this section of the chapter, we will investigate the CFrFT’s properties that

are necessary to analyze coupled signals. These properties include linear-

ity, reflection, conjugation, and time-frequency shift. By understanding these

properties, we will be able to e�ciently analyze 2D signals and extract mean-

ingful information from them.

1. Linearity:

Let f(x, y) = ↵�(x, y)+� (x, y), where, �(x, y) and  (x, y) are two functions

in L1(R2) and ↵,� ∈ C, then,
F�,✓f (x, y, s, t) = ↵F�,✓� (x, y, s, t) + �F�,✓ (x, y, s, t). (3.14)

Proof:

F�,✓� (x, y, s, t) = �R2
f(x, y)K�,✓(x, y, s, t)dxdy

= �
R2
(↵�(x, y) + � (x, y))K�,✓(x, y, s, t)dxdy

= ↵�
R2
�(x, y)K�,✓(x, y, s, t)dxdy

+� �
R2
 (x, y)K�,✓(x, y, s, t)dxdy

= ↵F�,✓� (x, y, s, t) + �F�,✓ (x, y, s, t). (3.15)

The above property shows that CFrFT is a linear transform.

2. Reflection Property:

Let �(x, y) be a function with L1(R2) with CFrFT F�,✓� (x, y, s, t), then the

CFrFT of its reflection �̄ = �(−x,−y) is given by F�,✓� (x, y,−s,−t).
Proof:

F�,✓
�̄
(x, y, s, t) =�

R2
�(−x,−y)K�,✓(x, y, s, t)dxdy,

=�
R2
�(−x,−y)�d(⇠)exp{−a(⇠)(x2 + y2 + s2 + t2)

+ b(⇠, ⌘)(sx + ty) + c(⇠, ⌘)(xt − ys)}�dxdy,
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Substituting −x = u and −y = v, we get

F�,✓
�̄
(x, y, s, t) = �

R2
�(u, v) �d(⇠)exp{−a(⇠)(u2 + v2 + s2 + t2)

+b(⇠, ⌘)(u(−s) + v(−t))
+c(⇠, ⌘)(u(−t) − v(−s))}] dudv

= �
R2
�(u, v)K�,✓(u, v,−s,−t)dudv

Now by changing the variables, we have

F�,✓
�̄
(x, y, s, t) = �

R2
�(x, y)K�,✓(x, y,−s,−t)dxdy

= F�,✓� (x, y,−s,−t). (3.16)

Physically, this property claims that the CFrFT of the function with reflection

in the input domain coincides with the CFrFT of the original function with

reflection in output domain.

3. Conjugation Property:

(i) Let �(x, y) be a function with L1(R2) with CFrFT F�,✓� (x, y, s, t), then the

CFrFT of its conjugation �∗ = �(x,−y) is given by F�,✓
�̃
(x, y,−s,−t), where,

�̃(x, y) = �(−x, y).
Proof:

Since,

F�,✓�∗ (x, y, s, t) = �R2
�
∗
K�,✓(x, y, s, t)dxdy

= �
R2
�(x,−y) �d(⇠)exp�−a(⇠)(x2 + y2 + s2 + t2)

+b(⇠, ⌘)(sx + ty) + c(⇠, ⌘)(xt − ys)}] dxdy (3.17)

Substituting −y = u, we get

F�,✓�∗ (x, y, s, t) = −�R2
�(x, u) �d(⇠)exp{−a(⇠)(x2 + u2 + s2 + t2)

+b(⇠, ⌘)((−s(−x)) + (−t)(u))
+c(⇠, ⌘)((−t)(−x) − (−s)(u))}] dxdu
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Again substituting x = −w, we get

F�,✓�∗ (x, y, s, t) = �R2
�(−w,u) �d(⇠)exp{−a(⇠)(w2 + u2 + s2 + t2)
+b(⇠, ⌘)((−s(w)) + (−t)(u))
+c(⇠, ⌘)((−t)(w) − (−s)(u))}] dw du

= �
R2
�(−w,u)K�,✓(w,u,−s,−t)dw du

= �
R2
�(−x, y)K�,✓(x, y,−s,−t)dxdy

= F�,✓
�̃
(x, y,−s,−t),

where, �̃(x, y) = �(−x, y).

(ii) If F�,✓� (x, y, s, t) is the CFrFT of a function � ∈ L1(R2), then,
�F�,✓� (x, y, s, t)�∗ = e2i⇠F�,✓�̄

(x, y, s, t), (3.18)

where, �̄(x, y) = �∗(−x,−y).
Proof:

Since,

�F�,✓� (x, y, s, t)�∗ = �R2
�
∗(x, y)K∗�,✓(x, y, s, t)dxdy

= �
R2
�
∗(x, y)d∗(⇠)exp�i cot ⇠

2
(x2 + y2 + s2 + t2)

− i cos ⌘

sin ⇠
(sx + ty) − i sin ⌘

sin ⇠
(xt − ys)� dxdy

Note that d∗(⇠) = − exp (2i⇠)d(⇠).
�F�,✓� (x, y, s, t)�∗ = −�R2

�
∗(x, y)d(⇠)exp{2i⇠} exp{i cot ⇠

2
(x2 + y2 + s2 + t2)

−i cos ⌘
sin ⇠

(sx + ty) − i sin ⌘

sin ⇠
(xt − ys)}dxdy

Substitute x = −u and y = −w, then we get

�F�,✓� (x, y, s, t)�∗ = �R2
�
∗(−u,−w) exp{2i⇠} exp{−i cot ⇠

2
(u2 +w2 + s2 + t2)

+ i cos ⌘

sin ⇠
(sw + tu) + i sin ⌘

sin ⇠
(tw − su)}dt dw

= e
2i⇠ �

R2
�
∗(−u,−w)K�,✓(u,w, s, t)dt dw

= e
2i⇠ �

R2
�
∗(−x,−y)K�,✓(x, y, s, t)dxdy

= e
2i⇠F�,✓

�̄
(x, y, s, t),
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where, �̄(x, y) = �∗(−x,−y).
Thus we have,

�F�,✓� (x, y, s, t)�∗ = e2i⇠F�,✓�̄
(x, y, s, t), (3.19)

where, �̄(x, y) = �∗(−x,−y).

The first part of this property investigates CFrFT of the conjugation of the

input function, while the conjugation of the output function is covered in the

latter part.

5. Joint Time-Frequency Shift Property:

If �(x, y) ∈ L1(R2), then the CFrFT of its joint time-frequency shifted form

defined by g(x, y) = �(x − t1, y − t2)ei(xk1+yk2) is given by

e
a�k21+k22

b∗2 + 2(sk1+tk2)
b∗ �− c

b∗ (t2k1−t1k2)F�,✓˜̃�
�x + t1, y + t2, s + k1

b∗ , t + k2

b∗ �, (3.20)

where, ˜̃�(x, y) = �(x, y)e c
b∗ {(y+t2)k1−(x+t1)k2}.

Proof:

F�,✓g (x, y, s, t) = �
R2
�(x − t1, y − t2)ei(xk1+yk2)K�,✓(x, y, s, t)dxdy

= �
R2
�(x − t1, y − t2)ei(xk1+yk2)

× �d∗e−ia∗(x2+y2+s2+t2)+ib∗(sx+ty)+ic∗(xt−ys)�dxdy
where,

a∗ = cot ⇠
2 , b∗ = cos⌘

sin ⇠ , c∗ = sin⌘
sin ⇠ , and d∗ = d(⇠).
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F�,✓g (x, y, s, t) = �
R2
�(x − t1, y − t2)d∗ ei(xk1+yk2)−ia∗(x2+y2+s2+t2)

× e
ib∗(sx+ty)+ic∗(xt−ys)

dxdy

= �
R2
�(u, v)d∗ e−ia∗�(u+t1)2+(v+t2)2+�s+k1

b∗ �2�t+k2
b∗ �2�

×eib∗�(u+t1)(s+k1
b∗ )+(v+t2)(t+k2

b∗ )�+ic∗�(u+t1)(t+k2
b∗ )−(v+t2)(s+k1

b∗ )�
× e

ia∗�k21+k22
b∗2 + 2(sk1+tk2)

b∗ �−ic∗� (u+t1)k2−(v+t2)k1
b∗ �

dudv

= �
R2
�(u, v)K�,✓�u + t1, v + t2, s + k1

b∗ , t + k2

b∗ �
× e

ia∗�k21+k22
b∗2 + 2(sk1+tk2)

b∗ �−ic∗� (u+t1)k2−(v+t2)k1
b∗ �

dudv

= ea�k21+k22b∗2 + 2(sk1+tk2)
b∗ �− c

b∗ (t2k1−t1k2)�
R2

˜̃
�(u, v)

× K�,✓ �u + t1, v + t2, s + k1

b∗ , t + k2

b∗ � dudv
where, ˜̃�(x, y) = �(x, y)e c

b∗ {(y+t2)k1−(x+t1)k2}.
So,

F�,✓g (x, y, s, t) = ea�k
2
1+k22
b∗2 + 2(sk1+tk2)

b∗ �− c
b∗ (t2k1−t1k2)F�,✓˜̃�

�x + t1, y + t2, s + k1

b∗ , t + k2

b∗ � .

Remark:

Time Shift Property

If �(x, y) ∈ L1(R2), then the CFrFT of its time shifted form denoted by

g(x, y) = �(x − t1, y − t2), is defined by

F�,✓g (x, y, s, t) = F�,✓� �x + t1, y + t2, s, t�. (3.21)

This property asserts that time-shifting in the input function results in

the same amount of time-shift in CFrFT of the function.

Frequency Shift Property

If �(x, y) ∈ L1(R2), then the CFrFT of its frequency shifted form denoted

by g(x, y) = �(x, y)ei(xk1+yk2), is defined by

F�,✓g (x, y, s, t) = ea�k
2
1+k22
b∗2 + 2(sk1+tk2)

b∗ �F�,✓¯̄�
�x+, y, s + k1

b∗ , t + k2

b∗ �, (3.22)

where, ¯̄� = �(x, y)e c
b∗ (yk1−xk2).
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The proof for both time shift and frequency shift properties can be derived

from the proof of joint time-frequency shift property.

3.5 Convolution for CFrFT

The convolution plays a crucial role in integral transforms. In the context of

the Fourier transform, for example, the convolution product of two functions

in the time domain corresponds to the pointwise multiplication of their Fourier

transforms in the frequency domain. This property allows us to express con-

volution operations in the time domain as simple multiplication operations in

the frequency domain, making certain calculations much simpler.

Convolution and product theorems for FrFT have been studied by [27], but

since the results were not nice as Fourier transform Zayed [28] later modified

the convolution structure that preserved the convolution theorem in Fourier

transform.

This section contains both the convolution formula and the corresponding

convolution theorems for CFrFT.

3.5.1 Definition

For any function �(x, y) define �̃(x, y) = e−a(x2+y2)�(x, y). Then the convolu-

tion for any two functions �(x, y) and  (x, y) is given as [8]

h(x, y) = (� �  ) = d(⇠)ea(x2+y2)(�̃ ∗  ̃)(x, y), (3.23)

where, ‘∗’ denotes the usual convolution given by

(� ∗  )(x, y) = �
R2
�(x − ⌧, y − �) (⌧,�)d⌧ d�. (3.24)

3.5.2 Convolution Theorems

Theorem 3.5.2(i): Let �(x, y) and  (x, y) be two functions in Lp(R2), p =
1,2 and L1(R2), respectively and h(x, y) = (� �  )(x, y). Also, let �,  , and
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H denotes CFrFT of �,  , and h respectively. Then

H(s, t) = ea(s2+t2)�(s, t) (s, t). (3.25)

This is a more generalized version of the convolution theorem proved by Zayed

in [8]. For the proof of the above theorem, one may refer [8, 9].

Remark: The above theorem states that the CFrFT of convolution of two

functions (satisfying the above conditions) is equal to the product of individual

CFrFT of those functions with some exponential factor multiplication.

Now, we will prove another important theorem related to convolution op-

erator.

Define �̄(x, y) = ea(x2+y2)�(x, y) and an operator ‘○’ as
(� ○  )(x, y) = e−a(x2+y2)(�̄ ∗  ̄)(x, y) (3.26)

Theorem 3.5.2(ii): If �(x, y) and  (x, y) are two functions in L1(R2), and
� and  represents CFrFT of � and  respectively, then

(� ○ )(s, t) = 1

d(−⇠)F�,✓��(x, y) (x, y)e−a(x2+y2)�(s, t) (3.27)
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Proof:

Since,

(� ○ )(s, t) = e−a(s2+t2)(�̄ ∗  ̄)(s, t)
= e−a(s2+t2)�

R2
e
a(⌧2+�2)�(⌧,�)ea((s−⌧)2+(v−�)2) (s − ⌧, t − �)d⌧ d�

= e−a(s2+t2)�
R2

e
a(⌧2+�2)��

R2
�(x, y)K�,✓(x, y, ⌧,�)dxdy�ea((s−⌧)2+(v−�)2)

×  (s − ⌧, t − �)d⌧ d�
= e−a(s2+t2)�

R2
e
a(⌧2+�2)

× ��
R2
�(x, y)d(⇠)e−a(x2+y2+⌧2+�2)+b(⌧x+�y)+c(�x−⌧y)

dxdy�
× e

a((s−⌧)2+(v−�)2) (s − ⌧, t − �)d⌧ d�
= e−a(s2+t2)d(⇠)�

R2
�(x, y)dxdy

×�
R2
 (s − ⌧, t − �) ea((s−⌧)2+(v−�)2)−a(x2+y2)+b(⌧x+�y)+c(�x−⌧y)

d⌧ d�

Substitute ⌧ = s − u and � = t − v
= e−a(s2+t2)d(⇠)�

R2
�(x, y)dxdy

×�
R2
 (u, v)ea(u2+v2)−a(x2+y2)+b�(s−u)x+(t−v)y�

e
c�(t−v)x−(s−u)y�

dudv

= e−a(s2+t2)d(⇠)
d(−⇠) �

R2
�(x, y)e−2a(x2+y2)+b(sx+ty)+c(tx−sy)

dxdy

×�
R2
 (u, v)d(−⇠)ea(u2+v2)−b(ux+vy)−c(vx−uy)

dudv

= e−a(s2+t2)d(⇠)
d(−⇠) �

R2
�(x, y)e−2a(x2+y2)+b(sx+ty)+c(tx−sy)

 (x, y)dxdy
= 1

d(−⇠) �R2
e
−a(x2+y2)

�(x, y) (x, y)d(⇠)e−a(x2+y2+s2+t2)+b(sx+ty)+c(tx−sy)
dxdy

= 1

d(−⇠)��,✓��(x, y) (x, y)e−a(x2+y2)�(s, t).
Hence,

d(−⇠)(� ○ )(s, t) = F�,✓��(x, y) (x, y)e−a(x2+y2)�(s, t). (3.28)
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The following are some more characteristics of the convolution operation:

(a) Commutativity:  (x, y) � �(x, y) = �(x, y) �  (x, y).
(b) Associativity:  (x, y)�{�(x, y)�h(x, y)} = � (x, y)��(x, y)��h(x, y).
Proof (a):

According to the definition of ‘�’, it is enough to show that

( ̃ ∗ �̃)(x, y) = (�̃ ∗  ̃)(x, y). (3.29)

As,

( ̃ ∗ �̃)(x, y) = �
R2
 ̃(x − ⌧, y − �)�̃(⌧,�)d⌧ d� (3.30)

= �
R2

e
−a�(x−⌧)2+(y−�)2�

 (x − ⌧, y − �)e−a(⌧2+�2)�(⌧,�)d⌧ d�,
then substituting x − ⌧ = u and y − � = v, one can obtain

( ̃ ∗ �̃)(x, y) = �
R2

e
−a(u2+v2)

 (u, v)e−a�(x−u)2+(y−v)2��(x − u, y − v)dudv
= (�̃ ∗  ̃)(x, y). (3.31)

Hence, the convolution operator is commutative.

Proof (b): We have,

 (x, y) � {�(x, y) � h(x, y)} = d(⇠)ea(x2+y2)� ̃(x, y) ∗ ˜{�(x, y) � h(x, y)}�
= d(⇠)ea(x2+y2)�

R2
 ̃(x − ⌧, y − �) ˜(� � h)(⌧,�)d⌧ d�

= d(⇠)ea(x2+y2)�
R2
[e−a�(x−⌧)2+(y−�)2� (x − ⌧, y − �)d(⇠)

×�
R2

e
−a�(⌧−⇣)2+(�−�)2�

�(⌧ − ⇣,� − �)e−a(⇣2+�2)h(⇣,�)d⇣ d�]d⌧ d�
Let ⌧ − ⇣ = u and � − � = v

= d(⇠)ea(x2+y2)�
R2
[e−a�(x−⌧−u)2+(y−�)2� (x − ⌧, y − �)d(⇠)

×�
R2

e
−a(u2+v2)

�(u, v)e−a(⇣2+�2)h(⇣,�)d⇣ d�]dudv
Now changing the order of integration, one can obtain

= d(⇠)ea(x2+y2)�
R2
�d(⇠)e−a�(x−u−⇣)2+(y−v−�)2� (x − u − ⇣, y − v − �)

× e
−a(u2+v2)

�(u, v)dudv� e−a(⇣2+�2)h(⇣,�)d⇣ d�
= d(⇠)ea(x2+y2)� ˜( � �)(x, y) ∗ h̃(x, y)�
= ( � �) � h.
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Hence, the convolution operator satisfy associativity property as well.

Thus, we can conclude that (C,�) is a commutative semi-group since the con-

volution operator ‘�’ satisfies the conditions of commutativity and associativ-

ity, where, C represents the set of all coupled fractional Fourier transformable

functions.

Proposition: Let f, f1, f2 ∈ Lp(R2), p = 1, 2 and g ∈ L1(R2), ↵ ∈ C,

then

(i) F�,✓�(f1 + f2) � g�=F�,✓(f1 � g) +F�,✓(f2 � g).
(ii) F�,✓{↵(f � g)} = F�,✓{(↵f) � g} = F�,✓{f � (↵g)}.

Proof (i):

F�,✓�(f1 + f2) � g� = e
a(s2+t2)�F�,✓(f1 + f2).F�,✓g� (3.32)

= e
a(s2+t2)�{F�,✓(f1) +F�,✓(f2)}.F�,✓g� (3.33)

= e
a(s2+t2)�F�,✓(f1)F�,✓g +F�,✓(f2)F�,✓g� (3.34)

= e
a(s2+t2)F�,✓(f1)F�,✓g + ea(s2+t2)F�,✓(f2)F�,✓g

= F�,✓(f1 � g) +F�,✓(f2 � g). (3.35)

Note that, convolution theorem has been used to obtain eq (3.32) and eq (3.33)

is deduced from eq (3.32) by using linearity property of CFrFT.

Proof (ii):

F�,✓{↵(f � g)} = ↵F�,✓(f � g)
= ↵{ea(s2+t2)F�,✓(f)F�,✓(g)}
= e

a(s2+t2)F�,✓(↵f)F�,✓(g)
= F�,✓{(↵f) � g}.

Similarly, the other part can be proved. Notice that, convolution theorem and

linearity property for CFrFT have been used again to prove the above result.

30



3.6 Additional Properties of the CFrFT

In this section, a few more properties of the CFrFT have been introduced.

a. Parseval’s Relation: If � ∈ L1(R2) ∩ L2(R2), then �F�,✓� � = ���.

b. General Parseval’s Relation: If �, ∈ L1(R2)∩L2(R2), then �F�,✓� ,F�,✓ �=��, �.
For the proofs of Parseval’s and General Parseval’s relation, the reader may

refer [9].

c. If �(x, y) and  (x, y) are any two functions in L1(R2), then
�
R2
 (x, y)F�,✓�(x, y)dxdy = �

R2
�(s, t)F−�,−✓ (s, t)dsdt,

provided both the integrals exist.

Proof:

�
R2
 (x, y)F�,✓�(x, y)dxdy = �

R2
 (x, y)��

R2
�(s, t)K�,✓(s, t, x, y)dsdt�dxdy

= �
R2
�(s, t)��

R2
 (x, y)K−�,−✓(x, y, s, t)dxdy�dsdt

= �
R2
�(s, t)F−�,−✓ (s, t)dsdt. (3.36)

Here, we used information that K�,✓(s, t, x, y) =K−�,−✓(x, y, s, t).

Remark:

The di↵erence between this result and the duality theorem for the Fourier

transform and FrFT is mostly due to the change in angle direction during the

computation of the CFrFT.

Now, we are going to conclude this chapter by computing CFrFT of a function.

The computation of integral is done via Mathematica.

Example: Find CFrFT of  (x, y) =
���������

x + y, −r ≤ x ≤ r, −R ≤ y ≤ R
0, otherwise

.

Clearly, one can verify that  (x, y) ∈ L1(R2). Hence CFrFT of  (x, y) is given
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by

F�,✓ (x, y, s, t) = �R2
 (x, y)K�,✓(x, y, s, t)dxdy (3.37)

= � R

−R �
r

−r (x + y)d(⇠) exp{−a(x2 + y2 + s2 + t2) + iBx + iCy}dxdy,
where, b̄ = −ib, c̄ = −ic, B = b̄s + c̄t and C = b̄t − c̄s.
Hence,

B = cos ⌘

sin ⇠
s + sin ⌘

sin ⇠
t = s cos ⌘ + t sin ⌘

sin ⇠
, (3.38)

C = cos ⌘

sin ⇠
t − sin ⌘

sin ⇠
s = t cos ⌘ − s sin ⌘

sin ⇠
. (3.39)

Therefore,

F�,✓ (x, y, s, t) =
d(⇠) es2+t2

8a2
e
−B2+C2+4iaCR+4a2�r2+R2�

4a
√
⇡ �2√aeC2

4a
+ar2 �−1 + e2iCR�

× Erf �−iB − 2ar
2
√
a
� − 2√a e

C2

4a
+ar2 �−1 + e2iCR�Erf �−iB + 2ar

2
√
a
�

+ie−iBr+R(iC+aR) �−2√a e
B2

4a �−1 + e2iBr� − (B +C)er(iB+ar)
× √⇡Erfi �B − 2iar

2
√
a
� + (B +C)er(iB+ar)√⇡Erfi �B + 2iar

2
√
a
��

×�Erfi �B − 2iaR
2
√
a
� −Erfi �B + 2iaR

2
√
a
��� . (3.40)

Special case: If both the angles � and ✓ are ⇡
2 , then we have ⇠ = ⇡

2 and ⌘ = 0,
therefore, a = 0, B = s, C = t, and d = −i2⇡ .
So,

F ⇡
2
,⇡
2

 (x, y, s, t) = −2�Rs t cos(Rt) sin(rs) + �r s t cos(rs) − (s + t) sin(rs)� sin(Rt)�
⇡ s2t2

.
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Figure 3.1: Graphical representation of  (x, y)

Figure 3.2: CFrFT of  (x, y) when r = ⇡
2 = R
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Conclusions

This thesis entitled “Introduction to Coupled Fractional Fourier Transform”

is devoted to the study of the CFrFT and its properties. The CFrFT is a new

generalization of FrFT to 2D, introduced by Zayed [8]. Zayed used the idea of

generalizing eigenfunctions of FrFT to define the kernel for the CFrFT instead

of using the tensor product of 1D kernels of FrFT.

In this thesis, derivation of several properties of the CFrFT are presented,

some of which are given below.

If �(x, y) and  (x, y) are two functions having CFrFT, as F�,✓� (x, y, s, t) and
F�,✓ (x, y, s, t), respectively, and ↵, � are in C. Then we have the following

results.

Properties of CFrFT

Property Function CFrFT

(i) Linearity ↵�(x, y) + �h(x, y) ↵F�,✓� (x, y, s, t) + �F�,✓ (x, y, s, t)
(ii) Reflection �(−x,−y) F�,✓� (x, y,−s,−t)
(iii) Conjugation �(x,−y) F�,✓

�̃
(x, y,−s,−t), where, �̃(x, y) = �(−x, y)

(iv) Time Shift �(x − t1, y − t2) F�,✓� �x + t1, y + t2, s, t�
(v) Frequency Shift �(x, y)ei(xk1+yk2) ea� k2

1+k2
2

b∗2 + 2(sk1+tk2)
b∗ �F�,✓¯̄�

�x, y, s + k1

b∗ , t + k2

b∗ �,
where, ¯̄� = �(x, y)e c

b∗ (yk1−xk2)

The relation between conjugation of the CFrFT of a function with the CFrFT

of the function is also examined in this thesis.
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Convolution and product theorems plays a crucial role in the theory of

integral transforms. The convolution structure and theorem for the CFrFT are

given in [27] and [28]. Moreover, a new result similar to product theorem for

the CFrFT is given. Several other properties like commutativity, associativity

and others are also examined for convolution operator.

This thesis also contain a result examining the duality property for the

CFrFT. Overall, the explored properties including linearity, reflection, conju-

gation and shift properties, will make the CFrFT a versatile transform with

a wide range of applications. As further research continues in this field, the

CFrFT is likely to find even more applications and contribute to advancements

in various areas of signal processing and analysis.
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Future Scopes

Even though several properties of the CFrFT have been investigated but

still a few properties like energy conservation, scaling, etc. as well as

properties related to the inverse CFrFT are yet to be explored.

The conditions on the domain of the CFrFT which ensures the preser-

vation of continuity, di↵erentiability and other properties of the input

function need to be investigated.

Applications of the CFrFT on two-dimensional di↵erential equations can

be explored.

In the future, the CFRFT is expected to play a significant role in sig-

nal processing and related fields. Collaborations between researchers in signal

processing, mathematics, communication systems, and other domains will fa-

cilitate the exploration and application of CFrFT in new ways.
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