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Abstract 

In the realm of electronic materials, the effective mass of electrons serves as a crucial parameter 

that intimately characterizes their electronic properties. In this investigation, we have conducted a 

meticulous evaluation of the effective mass of electrons in a diverse array of pure Nickel-based 

perovskites, including LaNiO3, La0.8Ca0.2NiO3, La0.5Ca0.5NiO3, La0.2Ca0.8NiO3, La4Ni3O10, 

La3Ni2O7, and La2NiO4. Our cutting-edge methodology is rooted in the first-principles calculations 

based on density functional theory (DFT). In essence, we performed a detailed analysis of the 

density of states (DOS) and the band structure of all the materials, yielding results that exhibit 

superb congruity with theoretical and experimental data. We then proceeded to estimate the 

effective mass of electrons by scrutinizing the curvature of the electronic conduction band via the 

parabolic fit approximation around the extremum of the band (i.e., Γ-point). The effective mass of 

the LaNiO3, La0.8Ca0.2NiO3, La0.5Ca0.5NiO3, La0.2Ca0.8NiO3, La4Ni3O10, La3Ni2O7, and La2NiO4 

has been calculated to be -0.4001 me, -0.4327 me, -0.5000, 0.6190, 0.6447, -4.5480, and -8.7852 

respectively along the direction L-Γ-S path in the reciprocal space. The outcome of our trailblazing 

study is that the effective masses manifest a remarkably high correlation with the energies of the 

conduction band extremum (i.e., LUMO) and DOS around the Fermi energy level. Intriguingly, 

our observations also indicate that the introduction of the Ca atom as a substitution dopant of the 

La atom in LaNiO3 leads to a significant change in the effective mass of the electron, a 

phenomenon that can be elucidated by the distinctive properties of the A- and B-sites in the 

perovskite structure.



 
 

1 
 

Chapter 1 Perovskites 

1.1 Introduction 

In our ever-advancing society, the escalating demand for energy has resulted in a significant 

upsurge in the consumption of fossil fuels. Unfortunately, the excessive utilization of non-

renewable energy sources has led to the depletion of these finite resources and the emission of 

harmful gases, particularly carbon dioxide (CO2), which has detrimental effects on the 

environment. CO2, known as a greenhouse gas, is primarily responsible for the global warming 

phenomenon, which in turn, poses hazardous consequences such as the melting of glaciers, climate 

change, global warming, and alterations in weather patterns. 

Figure 1.1 Change in temperature of earth’s surface 

 

In response to this issue, scientists and researchers have redirected their efforts towards 

green energy sources in order to mitigate the levels of greenhouse gases and reduce global 

pollution. Among the various alternatives, solar cells have garnered significant interest due to their 

eco-friendly characteristics and impressive efficiency. With the objective of developing robust and 

high-performance solar cells at a reasonable cost, scientists have shifted their focus towards 

exploring new materials. While silicon has been the predominant semiconductor material in solar 

cell technology since the 1950s, ongoing research aims to discover and utilize more advanced 
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materials for enhanced solar energy conversion. Now for the replacement of silicon, scientist 

focuses on alternative materials which can replace the silicon material. Perovskites are the best 

candidate to replace the silicon material in the solar cell due to their unique properties.1–3 

1.2 What are perovskites? 

A perovskite4 is a material characterized by its crystal structure, resembling that of calcium 

titanium oxide, which was the first-known perovskite crystal. Typically, perovskite 

compounds are denoted by the chemical formula ABX3, where 'A' and 'B' represent cations, 

and 'X' represents an anion. The versatility of perovskite structures allows for the combination 

of various elements, enabling scientists to design perovskite crystals with diverse physical, 

optical, and electrical properties.5 Perovskite crystals have made their way into several 

applications, including ultrasound machines, memory chips, and most notably, solar cells. 

 

        Figure 1.2 Structure of a perovskite having formula ABX3. 

 

 

1.3 Why are perovskites important? 

Perovskites hold great promise for numerous reasons, but the aspect we will focus on is their 

association with the photovoltaic effect, which refers to the generation of "energy from light". 

Similar to silicon, tin or lead, which are present in these materials, exhibit excellent properties for 
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the production of solar cells.6–8 The atoms of these elements possess an ideal quality for forming 

molecules alongside other atoms, resulting in the creation of semiconductor materials. These 

materials have the ability to have their electrons excited by light energy and directed through a 

wire to generate electricity. Unlike silicon crystals, perovskite crystals can be easily synthesized 

under normal conditions. The production of silicon requires high-temperature heating to attain the 

required purity and crystal structure for electricity generation. Conversely, perovskite cells can be 

produced by simply mixing chemicals in a solution and coating a surface with that solution. 

Although the process entails some complexities, overall, manufacturing perovskite solar cells in 

the future is expected to be considerably more affordable compared to silicon cells. 

1.4 Perovskites, efficiency, and the bandgap  

Photons of varying light colors encompass distinct energy levels, which are quantified in unit 

known as "electron volts" (eV). The energy of visible light photons spans from 1.75 eV (deep red) 

to 3.1 eV (violet). An excellent photovoltaic material9 possesses a band gap of 1.34 eV, as it 

corresponds to the optimal threshold at which the maximum amount of visible light can efficiently 

convert electrons into charge carriers. 

 

                                        Figure 1.3 Structural fabrication of photovoltaic cell 
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Within the realm of solar energy, there exists a concept related to the bandgap known as 

Power Conversion Efficiency (PCE). PCE denotes the proportion of solar energy that can be 

effectively converted into electricity by a solar cell. A solar cell featuring a single connection, also 

referred to as a junction, between layers of positively and negatively charged materials possessing 

the ideal bandgap, has the potential to convert approximately 33.7% of incoming light into 

electricity. This ultimate efficiency is recognized as the Shockley-Queisser limit, named after the 

physicists who originally discovered it. The challenge lies in the fact that currently, there is no 

known single material that possesses the precise bandgap required to attain this limit. 

 

 

Figure 1.4 Efficiency of Si, CdTe thin film, and perovskites vs. band gap of the material 

Silicon solar cells possess a theoretical bandgap of approximately 1.2 eV, resulting in a 

highest PCE of around 32%. On the other hand, the finest perovskite materials can achieve a PCE 

of approximately 31%. While perovskite may not surpass the performance of the best silicon solar 

cells, it holds the potential to be sufficiently efficient and cost-effective. As a result, perovskite-

based photovoltaic products can generate electricity at a significantly lower cost compared to 

silicon-based alternatives. 
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Chapter 2 Density Functional Theory 

2.1 Introduction 

In principle, the quantum mechanical wave function inherently encapsulates complete information 

about a given system. When considering systems such as a 2D square potential or a hydrogen 

atom, it is possible to precisely solve the Schrödinger wave equation and obtain the corresponding 

wave function. However, when it comes to an N-body system, solving the Schrödinger wave 

equation becomes infeasible. Density Functional Theory (DFT)10–12 offers an approximate 

resolution to the Schrödinger wave equation pertaining to many-body systems. In practical 

applications, computational codes based on DFT are employed to explore the characteristics of 

materials, encompassing their structural, magnetic, and electronic properties. The bridge from 

many body problems to one body problem is DFT, and the main idea behind it is defining a system 

with the electron density (i.e., how the electron is distributed in the system describes the whole 

system) 

[∑ ( −
ħ2∇i

2

2m

N
i +  v(ri))  +  ∑ U(rirj)

 
i<j  ] ψ(r1r2 … . . , rN) = Eψ(r1r2 … . . , rN)                          (2.1)            

The above equation is the Schrodinger wave equation for the N-electron system and solving it in 

3 directional coordinate (x, y, z) makes it a 3N variable equation, which makes it even harder to 

solve. For example, let’s say we have CO2 molecules. The total no. of electrons in a molecule is 

22 and 3 spatial coordinates. Now, we have to solve a 66-variable problem which is very hard to 

solve using the Schrödinger equation. But the same problem using the concept of DFT can be 

solved very easily. 

2.2 The Basic Electronic Problem 

Our primary objective is to seek an approximate solution for the non-relativistic, time-independent 

Schrödinger equation. 

H|ϕ⟩ = E|ϕ⟩                                                                                                                          (2.2) 

Here Hamiltonian operator is denoted by H for a system of nucleus and electrons represented by 

position vector RA and ri, respectively. 
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Figure 2.1 Coordinate system for a molecule 

Coordinate system for a molecule is shown in Fig. 2.1. Where RA and ri are position vectors of 

Ath nuclei and ith electron, respectively. In Atomic units, the Hamiltonian for N electrons and M 

nuclei system is written as,  

H = − ∑
1

2

i=N
i=1 ∇i

2 − ∑
1

2MA

M
A=1 ∇A

2 − ∑ ∑ ZA
ri

M
A=1

N
i=1 + ∑ ∑

1

rij

N
j>1

N
i=1 +  ∑ ∑

ZAZB

RAB

M
B>A

M
A=1              (2.3)                                                              

 Where in equation (2.3), MA denotes the ratio of the mass of nuclei A to the mass of an electron 

and ZA represents atomic no. of nucleus A. The operators (Laplacian) ∇𝒊
𝟐 and ∇𝑨

𝟐  involves 2nd 

derivative with respect to the spatial coordinates of ith electron and Ath nuclei. In equation (2.3), 

the initial term represents the operator corresponding to the K.E of the electrons. The second term 

pertains to the operator associated with the K.E of the nucleus. The third term signifies the 

Coulomb attraction between electrons and nuclei. The last two denotes the repulsion interaction 

between electrons and between nucleuses, respectively. 
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2.3 Atomic units 

We will use atomic units throughout our discussion to see how these units arise naturally, let us 

consider the Schrödinger equation in case of hydrogen atom. In SI Units, we have 

[
−ħ2

2𝑚𝑒
∇2 −

𝑒2

4𝜋𝜀0𝑟
] 𝜙 = 𝐸𝜙                                                                                                           (2.4) 

Where me is the mass of the electron, and -e is the charge on the electron. Now to make the above 

equation dimensionless, we let (x, y, z) change to (x, y, z) and obtain 

[
−ħ2

2me
2 ∇

2 −
e2

4πε0r
] ϕ = Eϕ                                                                                                    (2.5) 

The constants in front of kinetic and potential energy operators can then be factored, provided we 

choose  such that, 

−ħ2

2me
2 =

e2

4πε0
=                                                                                                                       (2.6) 

Where   is the atomic unit of energy called Hartree. Solving Eq. (2.6), we find 

 =
4πε0ħ2

mee2                                                                                                                                   (2.7) 

Thus  is just Bohr radius which is an atomic unit of length called a Bohr. Finally, since 

 [−
1

2
∇

2 −
1

r
] ϕ = Eϕ                                                                                                         (2.8) 

Now, if we let  =E/ , we obtain the dimensionless equation 

(−
1

2
∇

2 −
1

r
)  ϕ = ϕ                                                                                                              (2.9) 

Which is a Schrödinger equation in atomic units. The solution of this equation for ground state of 

hydrogen atom yields an energy  equal to -0.5 atomic units. 

2.4 The Born-Oppenheimer approximation 

This approximation plays a central role in density functional theory and we will discussed it in a 

qualitative manner. Due to the significant disparity in mass between nuclei and electrons, the 

nuclei move at a considerably slower pace compared to electrons. Therefore, as a reasonable 
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approximation, one can consider the electrons within a molecule to be moving in the presence of 

fixed nuclei. By employing this approximation, the second term in the Hamiltonian equation (1.2), 

which represents the kinetic energy of the nucleus, can be disregarded. Additionally, the last term 

in equation (1.2), signifying the repulsion between the nuclei, can be treated as a constant. It is 

worth noting that any constant added to an operator does not impact the Eigen function of that 

operator. Consequently, the remaining terms are referred to as the electronic Hamiltonian. 

Therefore, the electronic Hamiltonian, which characterizes the movement of N electrons in the 

presence of M immobile point charges, can be expressed as 

He = − ∑
1

2

i=N
i=1 ∇i

2 − ∑ ∑ ZA
ri

M
A=1

N
i=1 + ∑ ∑

1

rij

N
j>1

N
i=1                                                                     (2.10) 

Schrödinger equation (S.E) solution involving electronic part of the Hamiltonian, gives the wave 

function (
𝑒

({ri}; {RA})). This solution describes the motion of electrons. Hence, when 

considering fixed nuclei, the total energy must incorporate the constant nuclear repulsion as well. 

ET = Ee + ∑ ∑
ZAZB

RAB

M
B>A

M
A=1                                                                                                       (2.11) 

Applying the same set of assumptions utilized in formulating the electronic problem, we can 

express the Hamiltonian governing the movement of the nucleus within the mean field created by 

the electrons. 

Hn = − ∑
1

2MA

M
A=1 ∇A

2 + 〈− ∑
1

2

i=N
i=1 ∇i

2 − ∑ ∑ ZA
ri

M
A=1

N
i=1 + ∑ ∑

1

rij

N
j>1

N
i=1 〉 + ∑ ∑

ZAZB

RAB

M
B>A

M
A=1   

      = − ∑
1

2MA

M
A=1 ∇A

2 + Ee + ∑ ∑
ZAZB

RAB

M
B>A

M
A=1   

      = − ∑
1

2MA

M
A=1 ∇A

2 + ET                                                                                                       (2.12) 

The total energy also serves as a potential for the motion of the nuclei. As a result, within 

the Born-Oppenheimer approximation, the nuclei move along a P.E surface derived from solving 

the electronic problem. Solution of (S.E) for nuclear Hamiltonian, gives the nuclei wave function 

(
𝑛

({𝑟𝑖}; {𝑅𝐴}). In further discussion we will concentrate solely on the electronic problem, we thus 

drop the subscript "e" in further discussion. 
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2.5 The Pauli exclusion principle  

The electronic Hamiltonian presented in equation (2.10) solely relies on the spatial coordinates of 

the electrons. However, to fully characterize an electron, it is imperative to specify its spin as well. 

Let us assume two spin functions () and (), corresponding to spin up and spin down, 

respectively. These two spin functions are complete and orthonormal, 

⟨|⟩ = ⟨|⟩ = 1    and    ⟨|⟩ = ⟨|⟩ = 0                                                                      (2.13) 

Within this formalism, an electron is not only described by the three spatial coordinates represented 

by r but also by an additional spin coordinate denoted as .  These four coordinates are represented 

by x. 

𝐱 = {𝐫, }                                                                                                                                              (2.14) 

The wave function of a many-electron system must exhibit anti-symmetry when the coordinates 

(both spatial and spin) of any two electrons, represented by x are interchanged, 

(x1, … , xi, … , xj, … , xN) = −(x1, … , xj, … , xi, … , xN)                                                          (2.15) 

This requirement is called the anti-symmetric principle, is a statement of the Pauli Exclusion 

Principle. 

2.6 Spin orbitals and spatial orbitals 

In our discussion, an orbital refers to a wave function pertaining to a single particle, specifically 

an electron. A spatial orbital corresponds to a function of the position vector denoted as  
i
(𝐫) and 

an orbital characterizes the distribution of electrons in space such that |
i
(𝐫)|

2
d𝐫 is the probability 

in a small volume of finding the electron. It is typically assumed that these spatial orbitals 

constitute an orthonormal set. 

 ⟨
i
|

i
⟩ = ij                                                                                                                            (2.16) 

If spatial orbitals are complete, then any arbitrary function could be expanded as linear 

combination of spatial orbitals. 

|f(x)⟩ = ∑ ci|i
⟩∞

i=1                                                                                                                   (2.17) 
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Where 𝑐𝑖 are constant coefficients, as mentioned earlier, a complete description of an electron 

requires specifying its spin in addition to its spatial distribution. The wave function that 

encompasses both the spatial distribution and the spin of an electron is referred to as a spin-

orbital., (𝐱), where x denotes both spatial and spin coordinates. 

 (𝐱) = {
()(r)

()(r)
                                                                                                                  (2.18) 

One corresponds to spin up and the other to spin down. 

2.7 Hartree product 

To gain insight into the Hartree Product, let us examine a system comprising N non-interacting 

electrons. The Hamiltonian governing such a system can be represented in the following form, 

H = ∑ h(i)N
i=1                                                                                                                                         (2.19) 

Where 𝐡𝐢 is the operator describing the K.E and P.E of the ith electron. The operator  𝐡𝐢 will have 

a set of Eigen functions that we can be considered as a set of spin orbitals {
i
}. 

hij
(xi) = Eij

(xi)                                                                                                                  (2.20)             

Now, the question arises: what are the Eigen functions associated with the Hamiltonian of the 

system? The answer lies in the fact that the wave function of the system can be expressed as a 

product of spin orbital wave functions for each individual electron. 

HP(x1, x1, … , x1) = 
i
(x1)

j
(x2) ⋯ 

k
(xN)                                                                          (2.21) 

is an Eigen function of H, such a many electrons wave function is termed a Hartree product. The 

Hartree Product is an uncorrelated or independent wave function because, 

|HP(x1, x2, … , xN)|2dx1 ⋯ dxN                                                                                              (2.22) 

is equal to the product of probabilities. 

|
i
(x1)|

2
dx1 |

j
(x2)|

2

dx2 ⋯ |
k

(xN)|
2

dxN                                                                            (2.23) 
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The Hartree Product does not consider the indistinguishability of electrons. However, the 

anti-symmetry principle does not discriminate between identical electrons and mandates that the 

electronic wave function must be antisymmetric. Therefore, a modification is necessary for the 

electronic wave function to comply with this principle. 

2.8 Slater determinant 

So far, we have seen, The Hartree Product does not satisfy the anti-symmetric principle. However  

We can obtain an anti-symmetric wave function as follows. Let us consider a two-electron case in 

which If we put electron-1 in ith spin-orbital, and electron-2 in jth spin-orbital, then we have, 


1,2
HP(x1, x2) = 

i
(x1)

j
(x2)                                                                                                     (2.24) 

On the other hand, if we put electron-1 in jth spin-orbital and electron-2 in ith spin-orbital, then we 

have 


2,1
HP(x2, x1) = 

i
(x2)

j
(x1)                                                                                                    (2.25) 

Each of these Hartree Products makes a clear distinction between electrons. However, by carefully 

selecting an appropriate linear combination of these two Hartree products, we can derive an 

antisymmetric wave function. 

(x1, x2) =
1

√2!
(

i
(x1)

j
(x2) − 

j
(x1)

i
(x2))                                                                       (2.26) 

Sign of minus ensures that the wave function is anti-symmetric, clearly this anti-symmetric wave 

function can be rewritten as a determinant called slater determinant. 

(x1, x2) =
1

√2!
|


i
(x1) 

j
(x1)


i
(x2) 

j
(x2)

|                                                                                             (2.27) 

For an N electron system, the generalization is, 

(x1, x2,…,xN) =
1

√N!
[


i
(x1) ⋯ 

k
(x1)

⋮ ⋱ ⋮


i
(xN) ⋯ 

k
(xN)

]                                                                           (2.28) 

Where, the factor N!(−
1

2
)
 is a Normalization Factor. The shorthand notation for a normalized slater 

determinant is more convenient which includes only diagonal elements of the determinant, 
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(x1, x2,…,xN) = |
i


2
⋯ 

k
⟩                                                                                                   (2.29) 

2.9 Hartree-Fock approximation 

The most elementary form of an antisymmetric wave function is a single Slater determinant 

appropriate for describing the ground state of an N-electron system, 

|
0

⟩ = |
1


2
⋯ 

N
⟩                                                                                                                 (2.30) 

and according to the variational principle, the optimal wave function within this functional form 

is the one that yields the lowest achievable energy. 

E0 = ⟨
0

|H|
0
⟩                                                                                                                       (2.31) 

Through the minimization of E0 with respect to the selection of spin orbitals, an equation known 

as the Hartree-Fock (HF) equation can be derived. It takes the following form, 

 𝑓(i)(x1) = E(x1)                                                                                                                (2.32) 

Where 𝑓(i) is an effective one-electron operator known HF operator, of the form, 

 𝑓(i) = −
1

2
∇i

2 − ∑
ZA

ri
+ vHF(i)N

i=1                                                                                            (2.33) 

vHF(i) is the average potential experienced by the ith electron due to the presence of other electrons 

and is known as HF Potential. The HF potential is reliant on the spin orbitals of the remaining 

electrons, leading to the non-linearity of the HF equation, which necessitates an iterative solution 

process. The essence of the HF approximation lies in simplifying the complex many-electron 

problem into a single-electron problem, where repulsion between the electrons is treated in an 

averaged manner. 

2.10 Self-consistent field method 

The HF equation is solved using the Self-Consistent Field (SCF) method. Initially, an estimation 

of the spin orbitals is made, and the average field experienced by each electron is calculated. The 

eigenvalue equation is then solved using the updated set of spin orbitals. This iterative process 

continues until self-consistency is achieved. The resulting solution provides a set of orthonormal 

spin orbitals, with the lowest N energy levels known as occupied spin orbitals. The HF ground 

state wave function is represented by the Slater Determinant obtained by these orbitals, serving as 
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an approximate description of the system's ground state. The remaining spin orbitals in the set, 

referred to as virtual, unoccupied, or particle spin orbitals, complete the picture. 

2.11 Hohenberg theorems 

Hohenberg Kohn first theorem states that the using the electron density we can determine the 

ground state energy of the system because the ground state energy is unique functional of electron 

density. 

Second theorem of Hohenberg-Kohn establishes that the ground state energy of a system can be 

determined through the application of the variational principle. When considering a specific 

external potential, by minimizing the energy of the system while varying the electron density, one 

can ultimately arrive at the energy corresponding to the ground state. In the context of DFT, this 

principle is known as the variational principle, and the electron density that achieves the minimum 

energy in the ground state is referred to as the true electron density. These theorems offer a 

very flexible and powerful means of finding the ground state energy and other properties, let’s see 

how? 

2.12 Kohn-Sham approach 

 

Figure 2.2: DFT perspective 

 

Earlier attempts to adopt electron density without the use of any wave function in the first principal 

calculation were not highly successful. The main reason is poorly written electronic K.E in terms 

of electron density. Kohn-sham used electron density as the main variable to solve the N electron 

problem. The biggest difference between the previous first-principal methods and this new 

approach is that, now the problem has changed from 3N dimensional to N separate 3 dimensional 

ones with the use of electron density. And assuming that there are no individual electrons but only 
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a three-dimensional electron density. The electron density is an observable quantity and does not 

depend on the no. of electrons, after it is constructed in a system. The important point is that the 

quantum mechanical system is now an electron density-independent problem. The 

skipped correlation energy in the Hartree-Fock method is accounted for by an approximation, thus 

all energy terms are present in DFT.    

2.13 Kohn-Sham equation    

Kohn-Sham10 proposed to work with a system of non-interacting electrons. The wave function and 

density of non-interacting electrons differ from those of interacting electrons, reflecting the impact 

of electron-electron interactions on their behavior. However, Kohn-Sham assumed that a system 

is created that has no interaction, but it has same electron density as that of interacting system. We 

know the many-body problem Schrödinger equation is written as, using eq. (2.1) 

[∑ ( −
ħ2∇i

2

2m

N
i +  v(ri))  +  ∑ U(rirj)

 
i<j  ] Ψe(r1r2 … . . , rN) = Eψe(r1r2 … . . , rN)                   

Now due to assumption of non-interactive system we need to add some term to this equation to 

counter that assumption. Hence Kohn-Sham equation can be written as follows; 

[−
∇2

2m
+  vext(r) + vHF(r)+ vxc(r)] ψn(r) =  Enψn(r)                                                         (2.34) 

 

 

  

Now why do we need exchange-correlation term? 

The addition term gives external potential, to force N non-interacting electrons system to have the 

same one-particle density of N interacting electrons system in that same external potential. The 

correlation energy is characterized as the disparity between the total precise energy and the 

combined contribution of the kinetic and exchange energies. How do we find the correlation term? 

We use some approximation to find out the exact form of the correlation term. There are methods 

like local density approximation (LDA),13,14 general gradient approximation(GGA)15,16 and many 

more. 

Nuclei pseudopotential 
Exchange co-relation term  

We use LDA or GGA approximation 
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2.14 Electron density calculation 

 

  

 

 

                                                                                                                                            

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Flow chart of density functional calculations. 
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Chapter 3  

Structural Properties and Electronic Properties with the 

Effective Mass of the Nickel-based Perovskites 

3.1 Introduction 

LaNiO3 is a highly promising material due to its wide range of applications such as metallic 

electrodes bottom in various fields of ferroelectric and superconductor devices.17 It belongs to the 

category of complex transition metal oxides, complex transition metal oxides fall under a class of 

materials suitable for alternative oxygen reduction reaction (ORR) catalysts in alkaline fuel cells 

and metal/air batteries due to their alkaline resistance. Perovskite structure compounds like 

LaNiO3, when doped with small amounts of Mg and Fe on the B-site, have demonstrated enhanced 

catalytic activity.18,19  

At room temperature, LaNiO3 adopts a rhombohedral structure, but it undergoes a phase 

transition to a cubic structure at higher temperatures. The degree of distortion from the cubic 

perovskite structure decreases as the size of the rare earth ion increases. Consequently, the larger 

La ion influences the less-distorted rhombohedral structure, preserving its metallic nature even at 

very low temperatures (down to 1.5 K) without exhibiting a metal-insulator transition. With its 

favourable electrical, structural, and morphological characteristics, LaNiO3 exhibits metallic 

behaviour and Pauli's spin para-magnetism across a wide temperature range. These appealing 

properties render it a desirable material for diverse applications.  

Numerous researchers have made efforts to fabricate high-quality epitaxial thin films of 

LaNiO3 on perovskite substrates like SrTiO3 or LaAlO3.
22–24 Furthermore, numerous studies have 

investigated the optical properties of LaNiO3 experimentally.25–27 While some first-principles DFT 

calculations have been performed to study the electronic structures of LaNiO3
28–31, despite its 

fundamental significance in physics and potential applications, theoretical investigations into the 

electronic structure of LaNiO3 have not kept pace with experimental studies, highlighting a 

research gap that needs attention.32–37 In order to gain a deeper understanding of LaNiO3 and 

elucidate its functional characteristics, a comprehensive investigation of its physical properties is 

crucial.26 
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In this study, we have performed first-principles calculations based on DFT to calculate 

the effective mass of electrons for various pure Nickel-based perovskites, including LaNiO3, 

La0.8Ca0.2NiO3, La0.5Ca0.5NiO3, La0.2Ca0.8NiO3, La4Ni3O10, La3Ni2O7, and La2NiO4. We have 

calculated the DOS and electronic band structures for all the materials, and results obtained in this 

work are in good agreement with the previously reported data. We estimated the effective mass 

(m*) of electrons from the curvature of the electronic conduction band by a parabolic fit 

approximation near the extremum of the band (i.e., Γ-point). Our study shows that the effective 

masses are highly correlated with the energies of the conduction band extremum (i.e., LUMO) and 

the DOS near the Fermi energy level. Furthermore, doping of Ca atom as substitution dopant of 

La atom in LaNiO3 shows a significant change in effective mass of the electron, which can be 

explained by the different surroundings of the A- and B-sites in the perovskites. 

3.2 Theory of effective mass 

Effective mass (m*) of an electron is a fundamental concept in solid-state physics that is crucial 

for understanding the electronic properties of materials. The concept of effective mass can be 

traced back to the early 20th century when it was introduced by Arnold Sommerfeld to describe 

the behaviour of electrons in metals. Effective mass is defined as the mass of a particle appears to 

have when it moves in a crystal lattice under the influence of an external force. 

In solid-state physics, the effective mass of electrons in a crystal is one of the most 

important parameters that govern the electronic properties of materials. The effective mass of a 

carrier in a material is determined by the curvature of the band structure near the Fermi level. The 

Fermi level is the energy level at which the probability of finding an electron is 50%. The band 

structure of a material describes the allowed energies of electrons in the material as a function of 

their wave vector. The curvature of the band structure near the Fermi level determines the effective 

mass of carriers in the material. 

LaNiO3 is a perovskite-type transition metal oxide that has been studied extensively in 

recent years due to its promising properties in catalysis, energy storage and electronic devices. The 

doping of LaNiO3 with Ca has been shown to significantly alter its electronic properties, leading 

to change the conductivity and electrochemical performance. 
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The DOS is a fundamental concept in solid-state physics that describes the distribution of 

energy states available to electrons in a material. The DOS has been calculated using theoretical 

and computational method known as the DFT or DFT-D methods. The DOS near the Fermi level 

is of particular importance, as it determines the electronic properties of the material. The DOS near 

the Fermi level can be used to calculate the effective mass of carriers in the material. 

The effective mass of an electron can be calculated using the curvature of the band structure 

near the Fermi level. The curvature can be obtained by calculating the second derivative of the 

energy dispersion with respect to wave vector. The effective mass is then given by the inverse of 

the second derivative: 

𝒎∗ =
ħ𝟐

𝒅𝟐𝑬
𝒅𝒌𝟐

 

 

Where m* is the effective mass, ħ is the reduced Planck constant, E is the energy, and k is the 

wave vector. The effective mass can also be obtained by measuring the carrier mobility in a 

material. The effective mass of a carrier is related to the DOS near the Fermi level through the 

following equation: 

𝒈(𝑬)  ≡  
𝒅𝒏

𝒅𝑬
 =

𝒅𝒏

𝒅𝒌

𝒅𝒌

𝒅𝑬
 =

𝟏

𝟐𝝅𝟐
(
𝟐𝒎∗

ħ𝟐
)

𝟑
𝟐𝑬

𝟏
𝟐 

This equation shows that the effective mass is proportional to the curvature of the energy 

dispersion and inversely proportional to the slope of the dispersion. Therefore, a high DOS near 

the Fermi level leads to a large curvature and a small effective mass. 

The electronic properties of LaNiO3 have garnered substantial attention in recent years and 

Ca-doped LaNiO3. Our study has shown that the Ca doping leads to improved conductivity and 

electrochemical performance of the LaNiO3. The effective mass of carriers in the Ca-doped 

LaNiO3 has been investigated using theoretical and experimental methods. Density functional 

theory calculations have shown that the Ca doping leads to a significant reduction in the effective 

mass of carriers in LaNiO3. The reduction in the effective mass can be attributed to the increased 

DOS near the Fermi level due to the Ca doping. 
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In this work, effective masses are obtained according to the following algorithm: Initially, 

the relaxation of the crystal structure is carried out using the Vienna Ab initio Simulation Package 

(VASP) suite code. Subsequently, the total density of states and the electronic band structure along 

the high-symmetry k-path, Γ-T-H-L-Γ-S-F-G, have been calculated at the equilibrium structures 

of the perovskites using the PBE method. To determine the effective mass of the electron, the 

conduction band minimum (i.e., LUMO band) is approximated to a parabolic fit along the L-Γ-S 

direction, near the extremum of the band (i.e., Γ-point). Finally, the second derivative of energy 

with respect to k (wave vector) is extracted to obtain the sought-after effective mass value.  

Before closing this section, it is worth mentioning that other authors have used a different 

approach to determine the effective mass of electrons. The alternative approach begins with the 

computation of the Hessian matrix.38 The Hessian matrix is a mathematical formulation that 

describes the curvature of the energy landscape of the material’s electronic structure. It provides 

insights into the behavior of electrons in the valence and conduction bands. To obtain the Hessian 

matrix, a parabolic fitting of the energy of the frontier orbitals of the valence and conduction bands 

is performed. These frontier orbitals are usually the HOMO and the LUMO, respectively. The 

parabolic fitting captures the local behavior of the electronic structure around a specific k-point, 

which is denoted as ko. The k-point selected for analysis corresponds to either the VBM or the 

CBM, depending on whether the focus is on the valence or conduction band. By choosing ko near 

these critical points, the analysis can provide valuable information about the behavior of charge 

carriers in the material. Once the Hessian matrix is obtained, it is diagonalized, leading to the 

determination of the principal axes of charge-carrier transport, known as eigenvectors, and their 

corresponding eigenvalues. The eigenvectors represent the directions along which charge carriers 

move most efficiently, while the eigenvalues quantify the curvature or stiffness of the energy 

landscape along these directions. From the eigenvalues of the Hessian matrix, the effective masses 

along the eigenvectors are derived. The effective mass corresponds to the inertia experienced by 

an electron moving through the crystal lattice and governs its response to external forces or fields. 

By examining the eigenvalues, researchers can identify the directions in which the effective mass 

is either low or high i.e., minimum or maximum, shedding light on the anisotropic nature of charge 

transport in the material. 
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3.3 Computational details 

The electronic structure of a range of pure Nickel-based perovskites (including LaNiO3, 

La0.8Ca0.2NiO3, La0.5Ca0.5NiO3, La0.2Ca0.8NiO3, La4Ni3O10, La3Ni2O7, and La2NiO4) has been 

investigated through density functional theory calculations utilizing the state-of-the-art Vienna ab 

initio simulation package (VASP).39,40 To ensure the highest level of precision and reliability in 

the calculations, the Perdew-Burke-Ernzerhof (PBE)16 exchange-correlation functional and a 

projected augmented-wave (PAW) basis set with an energy cut-off about 600 eV have been 

employed. These advanced techniques have been shown to provide highly accurate and reliable 

results in previous studies of electronic structures of materials. While it is recognized that the use 

of a generalized gradient approximation (GGA) functional may underestimate band gaps in some 

materials, this is not an issue in the systems under investigation, which are not semiconductors. 

However, it is acknowledged that the relative values of band gaps among different crystals can 

still be compared when the same functional is used.41 Additionally, the topology of band structures 

around the valence band maximum (VBM) and conduction band minimum (CBM) is generally not 

strongly affected by the GGA approximation.42–44  

Therefore, a GGA-level functional is deemed to be an appropriate for studying the effective 

carrier mass in the pure Nickel-based perovskites. These investigations can provide valuable 

insights into the electronic properties of the pure Nickel-based perovskites, which have potential 

applications in various technologies. For example, LaNiO3 is of particular interest due to its 

potential use as a conductive oxide in solid oxide fuel cells, and La2NiO4 is a candidate for high-

temperature superconductivity.17  

Through the implementation of a rigorously converged 4x4x4 Gamma-centered k-point 

grid, the optimized unit cells of the pure LaNiO3, La4Ni3O10, La3Ni2O7, and La2NiO4 perovskites 

exhibit exceptional agreement with experimental data.17 The calculated lattice parameters 

accurately capture the underlying physical characteristics of these systems. Interestingly, despite 

these laudable achievements, the band gaps of these structures are determined to be equal to zero. 

Taking a step further, the investigation delves into the effects of Ca doping in LaNiO3. Specifically, 

the native Ni atom is substituted by a Ca atom, and the triclinic LaNiO3 is investigated for three 

distinct doped unit cells of the chemical formula La0.8Ca0.2NiO3, La0.5Ca0.5NiO3, and 
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La0.2Ca0.8NiO3. These doped unit cells are subjected to full relaxation, and the electronic structures 

are calculated through a Gamma 20 point-only approach. 

To determine the effective masses of electrons within electronic bands, a fundamental 

equation of the form m* = ħ²/ (d²E/dk²) is employed. This formula incorporates the reduced Planck 

constant (h/2π) and the second derivative of the particle's energy E with respect to its wave vector 

k, denoted as d²E/dk². To extract the second derivative of the total energy38, a Taylor series 

expansion is utilized to obtain a quadratic fit of the k points surrounding the valence band 

extremum (Γ-Point) regions. The explicit band energies are then calculated, which allows for an 

accurate determination of the d²E/dk² term. Through this intricate approach, the effective mass of 

electrons within the electronic bands can be obtained with utmost precision and reliability. 

3.4 Results and discussion 

Recent findings revealed that the studied systems namely LaNiO3, La0.8Ca0.2NiO3, La0.5Ca0.5NiO3, 

La0.2Ca0.8NiO3, La4Ni3O10, La3Ni2O7, and La2NiO4 are suitable for oxygen reduction reaction 

(ORR) catalysts. However, among them, LaNiO3 demonstrated the highest catalytic activity for 

ORR,45 surpassing the rest of the systems. Interestingly, the catalytic activity of the LaNiO3 can 

be further enhanced by introducing Mg or Fe dopants at the site of Ni.18,19 This opens up new 

avenues for designing more efficient and effective ORR catalysts. 

In this study, we have delved into the structural and electronic properties of pure Nickel-

based perovskite-related structure oxides, including LaNiO3, La0.8Ca0.2NiO3, La0.5Ca0.5NiO3, 

La0.2Ca0.8NiO3, La4Ni3O10, La3Ni2O7, and La2NiO4. First, we performed the structural 

optimization of all the systems mentioned above, which shows that the calculated lattice 

parameters are in good agreement with the earlier reported experimental data.46 On the basis of 

optimized geometries of all the systems, we find out the DOS as shown in the figures 3.1 to 3.7 

given below and it shows that all the systems from LaNiO3 to La2NiO4 have zero band gap, 

therefore all the systems are metallic. According to the crystal field theory Ni 3d state splits into 

t2g and eg levels, and t2g  is completely filled, while eg one-quarter-filled17 with the electrons band 

suggests that Ni 3d eg electrons contributing to the density of states near the Fermi energy level. 

Further, we have calculated the band structures of all the systems as shown in the figures 3.1 to 

3.7 given below and the calculated band structures showed excellent agreement with the earlier 
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reported ones.46 Specifically, LaNiO3 was found to follow the symmetry R𝟑̅C,17 while 

La0.8Ca0.2NiO3, La0.5Ca0.5NiO3, and La0.2Ca0.8NiO3 exhibit P1 symmetry. The electronic band 

structures of these perovskites were calculated along the K-path Γ-T-H-L-Γ-S-F-G, and the band 

gap was determined between the conduction band and the valence band at the high symmetry Γ 

point. On the other hand, La4Ni3O10, and La2NiO4 follow the symmetry I4/MMM, while La3Ni2O7 

exhibits CMCM, and their electronic band structures were also calculated along the same K-path 

Γ-T-H-L-Γ-S-F-G. These results provide a comprehensive understanding of the electronic 

properties and structural characteristics of the studied Nickel-based perovskites, laying a solid 

foundation for their potential applications in various fields.  

In order to gain a deeper understanding of the electronic structure of LaNiO3, an important 

parameter for describing transport and electrical properties was explored: the effective mass of 

electrons. Specifically, the electronic band curvature was studied using this parameter along the 

path of L-Γ-S to calculate the effective mass. By analyzing the effective mass of electrons, we 

were able to gain further insights into the behavior of electrons within the material, allowing for a 

more comprehensive understanding of the electronic properties of LaNiO3. These findings hold 

significant potential for advancing research in the fields of materials science and electrocatalysis, 

as well as facilitating the development of new and improved electronic devices. 

    Figure 3.1: (a) Relaxed crystal structure (b) band structure and (c) densisty of states of LaNiO3 
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Figure 3.2: (a) Relaxed crystal structure (b) band structure and (c) densisty of states of La0.8Ca0.2NiO3 

 

  

    Figure 3.3: (a) Relaxed crystal structure (b) band structure and (c) densisty of states of Ca0.5La0.5NiO3 
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Figure 3.4: (a) Relaxed crystal structure (b) band structure and (c) densisty of states of Ca0.8La0.2NiO3 

 

 

 

             Figure 3.5: (a) Relaxed crystal structure (b) band structure and (c) densisty of states of La2NiO4 
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Figure 3.6: (a) Relaxed crystal structure (b) band structure and (c) densisty of states of La4Ni3O10 

 

 

Figure 3.7: (a) Relaxed crystal structure (b) band structure and (c) densisty of states of La3Ni2O6 
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 We have employed the PBE-GGA method and plane wave basis sets in VASP to obtain the 

equilibrium geometry and electronic properties of all the systems studied in this work. These 

computational tools allowed us to accurately simulate the electronic properties of these materials, 

with results that were in good agreement with theoretical data. Our analysis of the electronic band 

properties of these perovskites revealed that they have significant potential as candidates for the 

ORR catalyst. This finding holds significant implications for the fields of materials science and 

electro-catalysis, as it points towards a promising avenue for the development of new and 

improved catalysts for a variety of applications. By leveraging the power of ab initio calculations, 

we were able to gain a deeper understanding of the electronic properties of these materials, paving 

the way for further research and development in this exciting field. 

Table 3.1: Lattice parameters of optimized geometry, symmetry, and band gap of pure Nickel-based 

perovskites 

 

Effective mass of electron of all the systems is calculated near the Γ-Point along the 

direction L-Γ-S, and the average value of m* per system is ranging from -8.785 me to 0.644 me. 

The reason for calculating the effective mass near the Γ-Point can be clearly understood from the 

band structure of all the systems which shows that band extremum occurs at the Γ-Point. LaNiO3, 

a perovskite material, displays an electron effective mass about -0.400 me, and its electronic and 

System Equilibrium lattice 

constants (Å) 

 

Interfacial angle Space group 

symmetry 

 

Electronic band gap 

(Eg) 

LaNiO3 a=5.48006 

b=5.48006 

c=13.04795 

α= β=90 and γ=120 R3̅C 

 

0 

La0.8Ca0.2NiO3 a=5.45275 

b=5.45275 

c=12.97475 

α= β=90 and γ=120 

 

P 1 

 

 

0 

La0.5Ca0.5NiO3 a=5.40902 

b=5.40902 

c=12.83865 

α= β=90 and γ=120 

 

P 1 

 

0 

La0.2Ca0.8NiO3 a=5.37723 

b=5.37723 

c=12.60572 

α= β=90 and γ=120 

 

P 1 

 

0 

La2NiO4 a=3.81833 

b=3.81833 

c=12.76716 

α= β= γ=90 

 

I4/MMM 

 

0 

La3Ni2O7 a=20.17904 

b=5.49305 

c=5.39415 

α= β= γ=90 

 

CMCM 

 

0 

La4Ni3O10 a=3.83874 

b=3.83874 

c=27.75991 

α= β= γ=90 

 

I4/MMM 

 

0 
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magnetic properties make it a subject of significant scientific interest. Both the La0.8Ca0.2NiO3 and 

La0.5Ca0.5NiO3 are like solid solutions of LaNiO3 and CaNiO3, which demonstrate negative 

effective mass (-0.432 me and -0.5 me, respectively), resulting from the curvature of the band 

structure near the band extremum. La0.2Ca0.8NiO3. Another solid solution of LaNiO3 and CaNiO3, 

has a positive effective mass of 0.644 me, and its intriguing properties, such as high electrical 

conductivity, make it a subject of intense research scrutiny. La4Ni3O10 and La3Ni2O7, members of 

the Ruddlesde-Popper47 series of oxides, display negative effective masses (-8.785 me and -4.555 

me, respectively) and experience metal-insulator transition, magnetism, and superconductivity47, 

highlighting the impact of effective mass on these properties. La2NiO4, a member of the K2NiF4 

structure family of oxides48, has a positive effective mass of 0.619 me, with its exceptional 

properties, such as a metal-insulator transition and high electrical conductivity48, position it as an 

object of scientific interest. The order of effective mass is an essential quantity that indicates the 

magnitude of the electron’s mass in various systems, providing an indication of the electron’s 

mobility and its response to external forces. The negative effective mass observed in some systems 

implies that the electron behaves as if it had a negative mass, and its acceleration is opposite to the 

direction of the applied force.  

Table 3.2: effective mass of electron in o pure Nickel-based perovskites 

 

3.5 Summary 

We have employed first-principles based PBE GGA method to investigate the effective masses of 

electrons in a diverse range of pure Nickel-based perovskite-related structure oxides and found 

that the effective mass of electrons is strongly correlated with the energies of the CBM, band gap, 

and total density of states near the Fermi energy level. Additionally, we explored the impact of Ca 

System Effective mass  K-Path 

LaNiO3 -0.4001 me L-Γ-S 

La0.8Ca0.2NiO3 -0.4327 me 

 

L-Γ-S 

La0.5Ca0.5NiO3 -0.5000 me L-Γ-S 

La0.2Ca0.8NiO3 0.6447 me L-Γ-S 

La2NiO4 0.6190 me L-Γ-S 

La3Ni2O7 -4.5553 me L-Γ-S 

La4Ni3O10 -8.7850 me L-Γ-S 
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atom doping at the site of La atom in LaNiO3 on the effective mass of electrons and observed that 

the substitutional Ca atom alters the total density of states near the Fermi energy level and the 

curvature of the bands, particularly the conduction band minimum near the gamma point, leading 

to a significant change in the effective masses of electrons. These results have unveiled a promising 

avenue for the discovery of novel materials that exhibit a diverse range of electronic properties. 
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