Searching for Extra-Terrestrial Intelligence Through Multi-wavelength Observations

M.Sc Thesis

By **Priyatam Kumar Mahto**

Department of Astronomy, Astrophysics and Space Engineering INDIAN INSTITUTE OF TECHNOLOGY INDORE May, 2023

Searching for Extra-Terrestrial Intelligence Through Multi-wavelength Observations

M.Sc Thesis

Submitted in partial fulfillment of the requirements for the awards of the degree of

Master of Science in Astronomy

by **Priyatam Kumar Mahto**

Department of Astronomy, Astrophysics and Space
Engineering
INDIAN INSTITUTE OF TECHNOLOGY INDORE
May, 2023

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled Searching for Extra-Terrestrial Intelligence Through Multi-wavelength Observations in the partial fulfilment of the requirements for the award of the degree of MASTER OF SCIENCE and submitted in the DISCIPLINE OF ASTRONOMY, ASTROPHYSICS AND SPACE ENGINEERING, Indian Institute of Technology **Indore**, is an authentic record of my own work carried out during the time period from June 2022 to May 2023 under the supervision of Dr. Suman Majumdar, Associate Professor, Department of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology, Indore and Dr. Erik Zackrisson, Associate Professor, Department of Physics and Astronomy, Uppsala University Sweden.

The matter presented in this thesis has not been submitted by me for the award of any other degree of this or any other institute.

> Signature of the student with date **Privatam Kumar Mahto**

This is to certify that the above statement made by the candidate is correct to the best of my/our knowledge.

Lik Jahrson

Signature of the Supervisor of M.Sc. thesis #1 (with date)

Dr. Suman Majumdar

04 May 2023

Signature of the Supervisor of M.Sc. thesis #2 (with date)

Dr. Erik Zackrisson

Priyatam Kumar Mahto has successfully given his M.Sc. Oral Examination held on 24 April 2023.

Dr. Manoneeta Chakraborty Prof. Subhendu Rakshit

Signature of PSPC Member #1 Signature of PSPC Member #2

Date: 06/05/2023

Manoneeta Chakvabooty Stuh Canshit

Date: 06/05/2023

Suman Majumdar 03 May 2023 1.

Signature(s) of Supervisor(s) of MSc thesis

Date: 1.

Signature of M.Sc. Co-Ordinator

Date: 06/05/2023

Convener, DPGC

Date: 02/06/2023

Manoneeta Chakrabosty

Signature of HoD (Officiating)

Date: 06/06/2023

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to my supervisors, Dr. Suman Majumdar and Dr. Erik Zackrisson, for granting me the privilege to work on this project and providing me with exceptional guidance. Their unwavering support, motivation, and belief in me have been invaluable, particularly during challenging times. My collaborator, Mr. Matías Suazo, deserves special recognition for his constant support throughout this project. His valuable insights and contributions have been crucial in helping me achieve my research goals. I would also like to extend my gratitude to my labmates, Mr. Chandra Shekhar Murmu and Mr. Saswata Dasgupta, for their invaluable guidance and assistance throughout the course of this project in helping me to overcome any obstacles I encountered. I am immensely grateful to the Department of Astronomy, Astrophysics and Space Engineering for allowing me to make a contribution to this vibrant field. I would also like to extend my heartfelt gratitude to my friend Pranjali for her unflinching support, encouragement, and unwavering belief in me. Her support and motivation have been invaluable throughout this project. I would also like to express my gratitude to my classmates, especially Ved, for their continuous inspiration and encouragement, which has motivated me to strive for excellence in all aspects of this project. Finally, I am indebted to my mother, father, and brother for their encouragement and support, which have given me the courage to venture into this entirely new field.

Dedicated my mother and father

"Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying."

- Arthur C. Clarke, 1999

Abstract

The Copernican principle states that the Earth is not a special location in the Universe. However, so far this is the only planet known to humankind which can support life. This is why we have always been curious to know whether intelligent life exists in some other parts of the universe or not. Humans have collectively spent 60-plus years in Searching for Extraterrestrial Intelligence (SETI), without any success so far. This is known as the Fermi paradox.

Many efforts have been made throughout history to resolve this paradox in several ways. One such approach is to search for Dyson Spheres (Dyson, 1960), a hypothetical megastructure built by advanced extraterrestrial civilizations around their host star for harvesting its radiation energy. The aim of SETI is to search for observational signatures of Dyson spheres, which are marked by a change in the spectrum of the star. This change is expected to be in the form of waste heat from the absorbing structure (radiation emitted in the infrared) and obscuration of direct starlight. Suazo et al. (2022) had identified a tentative list of DS candidates in the Milky Way by fitting Spectral Energy Distribution (SED) based model of DS with observed data through GAIA, SDSS, DSS in the optical band and 2MASS, WISE in the infrared band.

It has been observed, though very rarely, that some stars do exhibit the spectral energy distributions of the type predicted for Dyson spheres. In most cases, there may be astrophysical explanations for this behaviour. In this category, we primarily find Young Stellar Objects (YSOs), which are mostly located in nebular regions.

Suazo et al. 2023 (in prep.) have developed a Convolution Neural Network (CNN) based image classifier to classify stars into two categories depending on whether they belong to a nebular or non-nebular region by analyzing W3 images of sources in WISE survey. However, this algorithm fails sometimes to detect any nebular feature surrounding a star having the signature of a Dyson sphere even though literature surveys indicate that the star is very young.

In this thesis, we present a technique, which can further filter out the false-positive Dyson sphere candidates using the phenomenon of dust reddening. This happens due to the fact that the shorter wavelength lights get absorbed and scattered by dust particles from the surrounding nebula of a target star while longer wavelength lights pass through it. This results in a higher fraction of red stars in a nebular region than in a non-nebular region within a certain angular radius around the target star. We use this as the basic principle for our filtration technique.

Our analysis shows that the fraction of neighbouring red stars for YSOs (like Herbig Ae/Be and T-Tauri star) around a search radius of 6 arc minutes is greater than

that of the randomly chosen main sequence star. Using a sample of 218 randomly chosen main sequence, Herbig Ae/Be and T-Tauri stars, we find that the average fraction of red stars for Herbig Ae/Be is 0.681 ± 0.259 and T Tauri star is 0.871 ± 0.063 while the average fraction of neighbouring red stars for a randomly chosen main sequence star is 0.340 ± 0.292 . By analyzing the fraction of neighboring red stars for all 302 DS candidates, we were able to distinguish between Dyson Sphere candidates located within nebular regions and those outside. This parameter, combined with manual inspection of DS candidates across multiple databases, led us to discard 136 contaminated candidates out of the original 302. These were eliminated due to factors such as blending with nearby sources, irregular structure in the WISE data, and faintness. We are planning to conduct detailed follow-up observations on the remaining 166 candidates, focusing on our best Dyson Sphere candidates.

CONTENTS

Li	List of Figures v			
Li	List of Tables			
1	Intr	roduction	1	
	1.1	Kardashev Scale	3	
	1.2	Drake Equation	5	
	1.3	SETI	6	
		1.3.1 Communication SETI	7	
		1.3.1.1 Radio SETI	9	
		1.3.1.2 Optical SETI	9	
		1.3.2 Artifact SETI	10	
	1.4	Dyson Spheres	11	
		1.4.1 Construction of Dyson Sphere	11	
	1.5	Major Milestone in the history of SETI	14	
		1.5.1 Major Searches	15	
		1.5.1.1 Project Ozma	15	
		1.5.1.2 The Wow Signal	15	
		1.5.1.3 Project Phoenix	17	
	1.6	Project Hephaistos	19	
2	Astı	rophysical Parameters of Stars	22	
	2.1	Formation of stars	22	
		2.1.1 Apparent Magnitude and Absolute Magnitude	24	
		2.1.2 HR Diagram and Color Magnitude Diagram	26	
		2.1.3 Color of Stellar Objects		
	2.2	Effects of Extinction	31	
		Dyson Sphere Models		

	2.4	Spectrum of Dyson Sphere	36
3	Ana	lysis of red fraction of stars	40
	3.1	CMD of GAIA DR2 Sources	40
	3.2	Red Fraction Analysis	41
		3.2.1 Boundary Lines	42
		3.2.2 Search Radius	44
		3.2.3 Work flow for finding the fraction of red star around a source	45
	3.3	Analysis for Herbig Ae/Be and Random stars	45
	3.4	Analysis for T Tauri stars	49
4	Dys	on Sphere Candidates	51
	4.1	Identifying Dyson Sphere Candidates from GAIA	51
	4.2	Finding another parameter	54
	4.3	Verification of DS candidates across different databases	56
		4.3.1 Contaminated Sources	57
	4.4	Verified Potential DS Candidates	60
		4.4.1 Position of DS candidates in the Galactic plane	61
		4.4.2 Red Fraction Distribution	61
		4.4.3 Brightness Distributions	62
5	Disc	cussion	66
	5.1	Future Scope	67
Bi	bliog	graphy	70
Αŗ	pen	dices	72
A	A11 1	Potential DS Candidates	73
	A.1	AEN	73
	A.2	Remarks	73
	A.3	WISE Photometry Quality Index	74
		WISE Variable Flag	
В	Fina	al DS candidates	96

LIST OF FIGURES

1.1	Representative figure of Kardashev Scale. Image Credit: Indif	4
1.2	Top: This figure shows the electromagnetic spectrum's bands and how	
	effectively the Earth's atmosphere transmits each one; Bottom: Earth's	
	atmospheric opacity to various wavelengths of the electromagnetic spec-	
	trum. Image credit: NASA and OpenStax, Rice University, modification	
	of work by STScI/JHU/NASA	8
1.3	A artistic representation of construction of Dyson sphere around a star.	
	Image Credit: Adam Burn	10
1.4	Dyson sphere	12
1.5	Illustration of a few of the Dyson sphere design plans. A Dyson shell, a	
	Dyson bubble, and a Dyson swarm are shown from left to right. Image:	
	Wikipedia	13
1.6	Frank D. Drake with first radio telescope at the National Radio Astron-	
	omy Observatory. Credit: NRAO/AUI/NSF	16
1.7	The Wow Signal observed by Big Ear antenna (The Ohio State Univer-	
	sity Radio Observatory)	17
1.8	Plot displaying the Wow! signal's strength	17
1.9	Upper: Arecibo Observatory, Caribbean, Bottom: Parkes Observatory,	
	Australia	19
1.10	Logo of Project Hephaistos. Credit: Hephaistos Team	20
0 1		
2.1		0.4
	age Credit: ASIAA	24
2.2	Figure describing the measured apparent magnitude (m) and absolute	•
_	magnitude (M) of star	26
2.3	1 3 3	
	evolution. Image Credit: ESO.HR Diagram	27

2.4	waveband than the V waveband, and the 3,000 K star in the red curve emits more energy in the V waveband than the B waveband. Image Credit: M. Guidry	29
2.5	Explain the process of measurement of colour index through black-body radiation of a hot star 2.5a and cool star 2.5b. Image Credit: M. Horrell	30
2.6	Blue light is scattered by interstellar dust more effectively than red light, giving clouds of dust near stars a bluish colour and making distant stars look redder. In this image, a red starlight beam strikes the observer directly, while a blue ray is shown scattering. Similar scattering is what gives the blue colour to Earth's sky. Image Credit: https://phys.libretexts.org/	32
2.7	This illustration depicts a young star encircled by a dusty protoplanetary disk, which contains the fundamental material necessary for the development of planets as the star system progresses. Circumstellar extinction is caused by the dust present within the circumstellar disk. Image Credit: NASA/JPL-Caltech/R. Hurt (SSC/Caltech)	33
2.8	These figures represents the modified blackbody spectra of the Sun as a result of the presence of Dyson spheres having different combination of γ & T_{DS} . The unmodified blackbody ($T_* = 5778K, L_* = 1L_{\odot}$) is shown by the solid black line in both panels. In the top panel, grey solid, dashed, and dotted lines, respectively, represent DS models with $T = 300K$ and covering factors of 0.1, 0.5, and 0.9. On the bottom panel, grey dotted, dashed, and solid lines, respectively, represent DS models with a covering factor of 0.5 and temperatures of 100, 300, and $600K$. The coloured bands correspond to the wavelength ranges of the Gaia, 2MASS, and WISE missions. Image Credit: Matias Suzao from	
	his paper (Suazo et al., 2022)	
3.1	Color Magnitude Diagram (CMD) of 152879 sources from the GAIA DR2	
	Any star that is located in the plot's red area is referred to as a red star.	
3.3	Defining arbitrary boundary equation	43
3.4	Placing all neighbouring stars of a Herbig Ae/Be star and Random star in CMD for two different radii 6' and 10'	44
3.5	Describing the process of finding the red fraction of stars around a target source	45

5.0	This graph represents the fraction of red stars of 20 Herbig Ae/De and	
	20 randomly chosen main sequence stars within 5 arc-minutes	46
3.7	Variation of fraction of red stars with radius around 20 Herbig Ae/Be	
	stars (Vioque et al., 2020) and 20 Random stars	47
3.8	Distance distribution of all 218 Herbig Ae/Be (HAeBe) stars from (Vioque	
	et al., 2020)	48
3.9	This plot shows their distances vs the red fraction for all 218 Herbig	
	Ae/Be stars and 218 random stars having angular search radius = 6 '.	48
3.10	OTop: Probability distribution of fraction of red star within the search	
	radius 6' for Herbig Ae/Be star and Random chosen main sequence	
	star. Bottom: Cumulative distribution function of corresponding above	
	PDF	49
3.11	The red fraction for T Tauri, Herbig Ae/Be and Random star for angular	
	search radius = $6'$	50
3.12	2The corresponding pdf for the fraction of Herbig Ae/Be, T-Tauri, and	
	randomly selected stars with an angular search radius of 6'	50
4.1	The figure explains the flow of selecting first tentative list of potential	
	DS candidates from the GAIA database by fitting model with observa-	
	tional data	52
4.2	The best parameters γ and T_{DS} obtained by fitting the model with ob-	
	served data are used to select potential Dyson sphere candidates. The	
	top candidate has $\gamma=0.10$ and $T_{DS}=100.0~K$, while the bottom candi-	
	date has $\gamma=0.10$ and $T_{DS}=125.0~K.$ Image Credit: Matias Suzao	53
4.3	This figure represents the flow of filtering out YSOs by looking at neb-	
	ular features around it using the Machine Learning Algorithm in IRSA	
	database	54
4.4	This plot shows the red fraction distribution of all DS candidates	55
4.5	Distribution of discarded sources due to contaminated	58
4.6	The image illustrates a DS candidate that is blended with a nearby	
	galaxy in the WISE observation, whereas it is easily distinguishable in	
	the SDSS observation. This blending is a result of the limited angular	
	resolution of WISE	58
4.7	The images of a DS candidates illustrates the irregular structure around	
4.0	it in WISE W3 & W4 bands	59
4.8	Irregular structure around it in W4	60
4.9	Position of filtered potential DS candidates in the Galactic plane. Here, each blue dot represents a potential DS candidate	61
	each one nortebresents a boiennar us candidate	$^{\circ}$

4.10 Position and Red fraction	62
4.11Top: Position of sources in galactic coordinate and the corresponding	
g magnitude. Bottom: Distribution of g magnitude of sources	63
4.12Top: Position of sources in galactic coordinate and the corresponding	
j magnitude. Bottom: Distribution of j magnitude of sources	64
4.13The hexagonal shape shows DS candidates which are brightest in both	
band together. The magnitude in both bands are normalised	65

LIST OF TABLES

1.1	Civilization Type by Power, Extended and Updated Scale by Gray (2020)	5
1.2	Timeline of some of the milestones in SETI history until 2000. Credit:	
	Matias and Robert M. Owen	14
2.1	Definitions of Parameters in the AGENT Formalism (Wright et al., 2014)	34
2.2	Approximate Values for Humanity in the AGENT Formalism (Wright	
	et al., 2014)	35

CHAPTER 1

Introduction

Humans have spent thousands of years looking at the stars in the night sky and thinking about them. Many questions must have come to their mind about the bright objects of the night sky, but one specific question that they surely have come across is that "Do lives exist outside the Earth?". We, humans, are always curious and have been searching for the answer to that question.

Until the late 1540s, humans believed that the Earth is the centre of the universe and that everything orbits around the Earth. It was only in 1548 that the Copernican theory emerged, which led us to believe that the Earth is not the centre of the universe. Earth is just another planet in the solar system like Venus, Mars, Jupiter, Saturn etc and revolves around the Sun along with these other planets. Therefore, it can be safely said that the Earth is not a special planet in the universe. Humans got the idea that there are possibilities of having millions of Earth-like planets in the universe, which revolve around some stars and some of them might have the suitable condition to grow life on them. There is also a finite possibility that some of these planets which have sustainable conditions for life to form may actually have some form of life on them. Out of all of these planets in which lives exist, some of them might even have intelligent life on them. For several millennia we have asked our philosophers and priest the question "Do lives exist outside the Earth?". Several religions and branches of philosophy had tried to provide answers to this question as well (Dick, 1998). However, a scientific answer to the same requires verifiable evidence, which makes it a more difficult task due to the following reasons: Whether there are extraterrestrial intelligent lives exist or not, depends on the criteria of intelligence that are set by us. Further, the signature of their intelligence will be reflected via their advancement in science and technology. Additionally, our own technological development has to be also good enough to be able to build sensitive enough instruments that can detect the signature of such intelligent lifeforms via our observations of the cosmos.

In the second half of the 20th century, the rules for searching for intelligent lifeforms saw a significant change due to the development of radar technologies. In 1961, for the first time in the history of humanity, scientists and engineers were able to plan and conduct experiments/observation e.g. Project Ozama which could provide a solution to this crucial and age-old question (Tarter, 2001). Radio telescopes were one of the scientific tools employed in this initial quest for extraterrestrial intelligence. In this period Karl G. Jansky's contributions to the domain of radio astronomy led to the significant advancement of radio communication technologies which allowed scientists to utilise them to search for intelligent extraterrestrial life. Once the technology to search for intelligent extraterrestrial life was in hand, there was a need to formulate an efficient method to conduct these searches effectively. At this point in time, there was a lack of sufficient understanding of the universe, including its sizes and structures, distributions of planets around stars, chances of discovering planets like Earth, size of the solar system, distances between stars, the arrangement of stars in galaxies, and many other such crucial factors. As humans began learning more and more about the cosmos via observations at different wavelengths, it became clear that the answer to the question of whether there is intelligent extraterrestrial life in the Universe is not going to be very simple. However, by knowing the history of our own civilization's gradual development in science and technology, we now have a better understanding of how technological development may progress in an extraterrestrial intelligent civilization. Through the study of our own civilization's history, we have also understood the vital role that energy (and various utilization of it) and its sources play in the progress and sustainability of civilization.

The continuous and sustainable flow of energy is crucial for the survival and progress of a civilization and its advancement in science and technology. Therefore we can assume that a sufficiently intelligent civilization must have figured out the efficient ways of collecting, distributing and storage of energy that is necessary for its survival and progress. This by definition makes them intelligent. Based on this idea, in 1964, Kardashev concluded that, if intelligent civilizations do exist in the universe, their energy consumption may be used as a measure of their intelligence.

1.1 Kardashev Scale

Energy is the fundamental requirement for any civilisation to grow and the amount of energy used by the civilisation also represents the intelligence of that civilisation. Energy consumption is also a measure of "how much a civilisation is technologically developed". Kardashev (1964) gave a classification of technologically developed ETI civilisations based on their energy consumption. The proposed scale by Kardashev (1964) is presented below -

1. **Kardashev Type I civilisation**: Kardashev defined Type I civilisation as - A civilisation whose energy consumption is about the same as the energy consumption of all humans in the 1960s ($\approx 4 \times 10^{12}~W$). They are at the same level of technological advancement as the Earth attended in the 1960s.

But a Type I civilization is typically defined as one that can harness all of the energy that its home planet receives from its parent star (for Earth, this amount is approximately $2 \times 10^{16}~W$), which is four orders of magnitude more than what is currently attained on Earth, with energy consumption at $2 \times 10^{13}~W$ as of 2020 (Ritchie et al., 2022).

- 2. **Kardashev Type II civilisation**: A civilisation that is capable of harvesting all the radiation energy of its host star. The energy consumption of the ETI is comparable with the luminosity of the Sun ($\approx 4 \times 10^{26}~W$).
- 3. **Kardashev Type III civilisation**: A civilisation that is capable of harvesting and controlling all the energy at the scale of its host

galaxy. The energy consumption of such ETI is comparable with the luminosity of their galaxy ($\approx 4 \times 10^{36}~W$).

Figure 1.1 describes the visual representation of all three Kardashevtype civilisations and their energy consumption.

Figure 1.1: Representative figure of Kardashev Scale. Image Credit: Indif

Numerous modifications have been proposed since the Kardashev scale was first introduced. Sagan (1973) proposed replacing Roman numbers with Arabic numbers to take into consideration intermediate values. In addition, Sagan proposed altering the Type I civilization's energy requirements significantly, contending that Kardashev (1964) estimate was out of date. Gray (2020) also suggested using Arabic numerals with 10^{10} intervals to accommodate decimal fractions for finer precision, drawing inspiration from Sagan's viewpoint. According to Sagan (1973) and Gray (2020), the Kardashev scale is best understood as -

$$K = \frac{\log 10(P) - 6}{10} \tag{1.1}$$

Where K is the scale value, and P is power in Watts.

Gray (2020) also referred to the existence of Type 0.0 and Type 4.0 civilizations by extrapolating the energy consumption required by Equation 1.1 to obtain these K values. The civilization Type 0.0 would have a power level compared to the metabolic power of the largest terrestrial animals and groups of animals on Earth. In contrast, a type 4.0 civilization would control a power close to the current estimates for the luminosity of the observable universe (Wijers, 2005).

Table 1.1: Civilization Type by Power, Extended and Updated Scale by Gray (2020)

Туре	Civilisation Description	Power(W)	Example	Example Power (W)
0.0	Biological	10^{6}	Maximum for terrestrial organisms	4.6×10^{5}
1.0	Planetary	10^{16}	Insolation of a planet like Earth	1.7×10^{17}
2.0	Stellar	10^{26}	Luminosity of a star like Sun	3.8×10^{26}
3.0	Galactic	10^{36}	Luminosity of a galaxy like Milky Way	1.2×10^{37}
4.0	Observable Universe	10^{46}	Luminosity of observable universe	$\sim 10^{48}$

The original Type I civilization that Kardashev (1964) proposed would yield a K = 0.67 according to equation 1.1. In contrast, our civilization would yield K = 0.73 if we consider the world energy consumption during 2020 provided by Ritchie et al. (2022).

Extraterrestrial life might be in any stage of evolution, from simple single-celled life to extremely intelligent life. But our current technologies confined us to search only those extraterrestrial lives which are intelligent and ahead of us in technological developments or at least equal to us.

The probability of intelligent life in the cosmos is a crucial question we must answer before searching for it in interstellar space. Frank Drake provided a crucial equation in 1961 that attempts to quantify this possibility, which is described in the section below.

1.2 Drake Equation

One of the most important questions to us is "how many civilisations in the Milky Way are capable of communicating with us?". This number is a very important parameter to get an idea of how often we will encounter extraterrestrial intelligence lives in our search programs. To calculate this number, Frank Drake gave an equation in 1961. He presented this equation as a basis for discussion at the first SETI conference. The equation is -

$$N = R_{\star} \times f_{p} \times n_{e} \times f_{1} \times f_{i} \times f_{c} \times L \tag{1.2}$$

Where,

N = Number of intelligent civilisation in our galaxy with which

communication might be possible,

- R_{\star} = the average rate of solar-type star formation per year in our galaxy
- f_p = the fraction of these stars that host planetary systems
- n_e = the number of planets in each system that are potentially habitable
- f_l = the fraction of habitable planets where life originates and becomes complex
- f_i = the fraction of life-bearing planets that bear intelligent civilisation
- f_c = the fraction of civilizations that develop a technology that releases detectable signs of their existence into space, and
- L = the length of time for which such civilizations release detectable signals into space.

From the equation, 1.2, N >> 1 suggests that there are numerous civilizations that we might receive communication signals from, whereas N << 1 suggests that we are likely alone in the Galaxy and would need to search across several galaxies to identify our closest radio-communicating partners. Depending on the assumptions made, N can vary widely (e.g, Wilson, 2001).

Modern astronomy can provide the estimates of the first three parameters of the Drake equation (1.2) R_{\star} , f_p and n_e but it doesn't have much information about the rest of the parameters f_l , f_i , f_c and L.

What do you mean when you say "intelligent life"? You are free to ask me this query. Different suppositions concerning the intelligence of life have been made by SETI. In contrast to Radio SETI, a civilization that can send and receive radio signals is considered intelligent, Artefact SETI has a different presumption.

We now have a rough estimate from Drake equation (1.2) of how many ETI (extraterrestrial intelligence) there may be in space. We established a dedicated program called SETI to look for them.

1.3 SETI

Humankind had started searching for evidence of extraterrestrial intelligence (ETI) using the scientific approach. They found a pro-

gram named "Search for Extra-Terrestrial Intelligence" (SETI). There are two approaches to searching for intelligent life.

- 1. Communication SETI
- 2. Artefact SETI

1.3.1 Communication SETI

The size of the cosmos is enormous. The distances between the stars are vast, even inside the Milky Way. Any civilisation will wish to employ long-wavelength electromagnetic radiation as a communication signal since it can travel farther without being absorbed by interstellar dust and can pierce any solid object in the interstellar medium. Additionally, humans use longer wavelengths to communicate and transmit information across vast distances on Earth and beyond. Searching for them at greater wavelengths in the spectrum is an appropriate strategy. There are two wavelength regimes in which we could search them for their communication signal from the Earth- the optical band and radio band of the electromagnetic spectrum because, for radio wavelengths, the atmosphere of the Earth is transparent as shown in the figure 1.2. This is the reason radio SETI has become one of SETI's most well-liked branches. Also, Optical SETI (OSETI) is a promising approach for communication with extraterrestrial intelligence, in addition to traditional radio SETI. The transparency of Earth's atmosphere to optical wavelengths (1.2) makes it possible to search for signals in the visible and near-infrared bands from the surface of the Earth. OSETI offers advantages over radio SETI in terms of higher data rates, smaller antennas, and lower interference from natural sources. OSETI is also more resistant to man-made interference, as laser light can be easily distinguished from natural sources, and can be highly directional, reducing the likelihood of interference with other systems.

Finding ETI communication signals—either deliberate messages or deliberate "leaking" of signals not intended for humanity—is the primary goal of communication SETI (Wright et al., 2014). Theoretically, any ET with equally advanced technology as ours could use radio transmission to communicate with other types of civili-

Figure 1.2: Top: This figure shows the electromagnetic spectrum's bands and how effectively the Earth's atmosphere transmits each one;

Bottom: Earth's atmospheric opacity to various wavelengths of the electromagnetic spectrum. Image credit: NASA and OpenStax, Rice University, modification of work by STScI/JHU/NASA.

sation.

1.3.1.1 Radio SETI

Radio SETI had to wait for the development of radio astronomy as a field (Jansky, 1933), a major technological advance from World War II radar investigations, and the finding of the 21-cm emission line.

Cocconi and Morrison (1959) ushered in the scientific era of radio SETI by recognizing that our technology had advanced to the point that a signal could be transmitted at the "universal" frequency of HI (the most abundant element in the universe) and that signal would be detectable over interstellar distances against the relatively low natural background of the astrophysical universe.

Cocconi and Morrison (1959) published the 1st paper written in the field of SETI. They argued that the optimum channel for communication should minimize the stellar background as well as the Galactic background, ending up with the radio region of the electromagnetic spectrum. In particular, they proposed the 1.42 GHz line (21 cm) of neutral hydrogen, since it would be known to all technologically sophisticated societies and would constitute a universal frequency. In addition to this line, the fact that the Earth's atmosphere is transparent to radio waves 1.2 made radio SETI one of the most popular branches.

1.3.1.2 Optical SETI

Since in the 1960s, the majority of SETI searches have been conducted in the radio regime. However, the discovery of laser by Maiman in 1960 and the proposal of interstellar optical communication by Schwartz and Townes (1961) opened a new window into SETI. Although we refer to optical and laser SETI as equivalent concepts, it operates from ultraviolet to near-infrared. The feasibility of optical communication was initially questioned by Project Cyclops due to the challenge of developing a laser powerful enough to avoid being obscured by the host star's light, but later, a detailed follow-up study by Townes in 1983 proved this to be true, and further research supported the hypothesis by Ekers in 2002.

1.3.2 Artifact SETI

In the early 1960s, Freeman Dyson proposed a new strategy for searching for signs of extraterrestrial life. He postulated that any advanced civilisation will look for energy sources outside of those provided by their planet to run its civilisation. The technologically advanced civilization is not able to function on the host planet's energy resources alone. It would be logical to assume that they can construct a structure that would capture the stellar energy of their host star assuming the timescale for technological progress is significantly shorter than the lifetime of a star. Dyson hypothesised that the leftover energy—often referred to as waste heat—emitted by these massive structure would radiate in the infrared spectrum (Dyson, 1960). So we could look for the infrared radiation signature of the Dyson sphere at the wavelength around $10 \ \mu m$ in the outer space(Dyson, 1960). One potential megastructure is a spherical structure surrounding the host star comprised of material that can absorb radiation energy. Dyson spheres is the term given to these structures in honour of Dyson's key research. Only K-II and K-III types of civilizations are capable of constructing these structures. The illustration below (figure 1.3) depicts an artistic interpretation of the construction of a Dyson sphere by dismantling a planet.

Figure 1.3: A artistic representation of construction of Dyson sphere around a star. Image Credit: Adam Burn

One possible megastructure is the Dyson Sphere (Dyson, 1960), a hypothetical megastructure built by advanced extraterrestrial civilizations to harvest radiation energy from stars.

Artefacts SETI involves the search for evidence of technology beyond our solar system, including not only Dyson spheres but also other structures such as Bracewell probes. These probes are hypothetical autonomous spacecraft that could potentially be stationed in the solar system to communicate with other civilizations.

1.4 Dyson Spheres

Dyson (1960) discussed the Dyson sphere, an engineering megastructure built by the ETI to harvest the energy of their host stars. The civilisation gets advanced, its energy requirements increase exponentially. To fulfil this energy requirement, the planet's resources are not enough for it, So they can harvest the energy of their host star by constructing a sphere built of solar energy-absorbing materials like - solar cells. The Dyson sphere is a sphere which will cover the star partially or fully and absorb radiation. It would eventually emit a black body in the infrared between 200 and 300 K. According to Dyson, stars with these structures would glow as infrared beacons.

Furthermore, using the Solar System as an example, Dyson (1960b) predicted that it would only take a few thousand years to complete the construction of such an artificial biosphere. In this illustration, Dyson recognised the necessity of dismantling neighbouring planets to obtain the building materials. He thought a mass about equal to Jupiter's ($\sim 2 \times 10^{27}$ kg) should be sufficient to make a solid shell having a thickness of 2 to 3 meters (depending on the density) around the sun at the distance of 2 AU (Dyson, 1960).

1.4.1 Construction of Dyson Sphere

A monolithic Dyson sphere would be unstable, as Dyson (1960a) noted. Applying Gauss' law, we may say that the net gravitational force acting on a completely spherical shell is zero. The

Figure 1.4: Dyson sphere

structure falls into the star, though, if symmetry is lost. However, Wright (2020) demonstrated that radiation pressure remains neutrally stable and provides support independent of the geometry of the structure. He also observed that conservation of momentum would cause the DS's location to recenter if photons were to escape for whatever reason.

The initial artificial biosphere has been proposed in several different forms. A Dyson sphere is now thought of as a collection of panels that may be built gradually and either orbit the star or remain stationary. The "Dyson Bubble" scenario is one in which these panels remain stationary in the star's frame. Each panel in this array employs radiation pressure to resist the gravitational attraction of the star. Such constructions wouldn't be at risk of running into one another or covering an adjacent panel. Such panels might even change how far away from their star they are.

On the other hand, the "Dyson Swarm" refers to the system of

panels in orbit around the stars. In this instance, the panels circle the star in a tight arrangement. This variety is the one that people typically think of when discussing Dyson spheres, therefore we will view them from this angle for the remainder of this chapter. The below figure 1.5 shows some proposed designs of the Dyson sphere - Dyson shell, Dyson bubble and Dyson ring.

Figure 1.5: Illustration of a few of the Dyson sphere design plans. A Dyson shell, a Dyson bubble, and a Dyson swarm are shown from left to right. Image: Wikipedia

1.5 Major Milestone in the history of SETI

There are some events in the history of SETI which acts as a milestones.

Year	Milestone		
1959	The first modern SETI article is published (Cocconi and Morrison, 1959).		
1960	Frank Drake conducts the first SETI search, Project OZMA. The results		
	are published the following year (Drake, 1961).		
1960	Searching for interstellar probes is proposed as an alternative SETI strategy (Bracewell, 1960).		
1960	The possibility of searching for megastructures based on their infrared waste heat signature is presented (Dyson, 1960b)		
1961	The search for continuous optical wave laser beacons is proposed (Schwartz & Townes, 1961)		
1961	The first SETI Conference, Order of the Dolphin, takes place. Frank Drake introduces what is now known as the Drake Equation.		
1964	The Kardashev scale is introduced (Kardashev, 1964).		
1972 - 1973	The Pioneer Plaques, containing a message about our planet are launched on the Pioneer 10 and Pioneer 11 space probes.		
1973	Francis Crick and Leslie Orgel evaluate the possibility of life on Earth originating elsewhere in the Universe.		
1975	Michael H. Hart publishes a detailed examination of the Fermi paradox and argues for the non-existence of other civilizations (Hart, 1975).		
1977	The Ohio State Big Ear telescope detects the famous "Wow!" signal, a		
	narrowband signal from the constellation Sagittarius.		
1977	Voyager 1 and Voyager 2 space probes launched. They carry gold- plated records containing images and sounds of Earth.		
1979	The Planetary Society is founded by Drs. Carl Sagan, Bruce Murray and Louis Friedman.		
1981	The Proxmire Amendment kills congressional support of NASA SETI.		
1981	The Planetary Society begins strong advocacy for NASA to conduct searches for extraterrestrial signals. Dr. Sagan, then-president of the Society, persuades Senator Proxmire to stop opposition.		
1983	The International Astronomical Union establishes Commission 51, dedicated to astrobiology and the search for extraterrestrial life.		
1984	The SETI Institute is founded as a home for research, investigating all aspects of life in the Universe. Initially, its activities were supported by NASA.		
1995	51 Pegasi B is detected – the first confirmed planet around a nearby Sun-like star (Mayor & Queloz, 1995).		
1998	The SETI Institute and The Planetary Society now support searching for optical laser signals.		

Table 1.2: Timeline of some of the milestones in SETI history until 2000. Credit: Matias and Robert M. Owen

1.5.1 Major Searches

Several searches were done in the history for searching ETIs. In this section, we will discuss a few of them in briefly.

1.5.1.1 Project Ozma

The first contemporary effort to find interstellar radio broadcasts was made by radio astronomer Frank D. Drake in 1960 at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. The picture 1.6 shows Frank in front of the Green Bank radio telescope. Project Ozma was named after the queen of L. Frank Baum's imaginary land of Oz – a place "very far away, difficult to reach, and populated by strange and exotic beings." Drake picked two stars for the initial SETI search that were each around eleven light-years (64 trillion miles) away: Tau Ceti in the constellation Cetus (the Whale) and Epsilon Eridani in the constellation Eridanus (the River). Both stars, which are almost the same brightness as the Sun, were formerly thought to have planets but this was not known. While Epsilon Eridani is considerably younger than the Sun, Tau Ceti is somewhat older.

The 85-foot antenna's receiver was set to the frequency of interstellar hydrogen's 21-centimetre emission line from April to July 1960, six hours a day. It was assumed that every technologically advanced culture would be aware of this frequency, 1420 MHz and that it would serve as a global "hailing frequency."

A chart recorder and a loudspeaker were employed by the small Ozma crew to keep track of any signal entering the antenna. Only static could be heard coming from the loudspeaker, and aside from an early false alert that was likely brought on by high-altitude airplane, there were no discernible bumps overlaid on the wiggles recorded on the chart recorder (Shuch, 2011).

1.5.1.2 The Wow Signal

In 1977 a telescope called Big Ear operated by Ohio State University, which had been carrying out an all-sky SETI survey since 1974, picked up a signal that appeared to have all the right characteristics. The signal was coming from the constellation of Sagit-

Figure 1.6: Frank D. Drake with first radio telescope at the National Radio Astronomy Observatory. Credit: NRAO/AUI/NSF

tarius and the signal was observed at a frequency close to 1.42 GHz. This signal lasts for 72 seconds (The time for which the telescope could track the sources). It is called the "Wow" signal because that is what the astronomer analyses the data written in the margin of the computer printout (1.7). Sadly, in follow-up observations, no signal has ever been picked up from the same region of the sky. The origin of this strong radio signal is still unknown.

Figure 1.7: The Wow Signal observed by Big Ear antenna (The Ohio State University Radio Observatory).

Figure 1.8: Plot displaying the Wow! signal's strength

1.5.1.3 Project Phoenix

Up until around 2015, Project Phoenix was the most sensitive and thorough search for alien intelligence yet undertaken. By keeping an eye out for radio signals that were either accidentally or purposefully being blasted our way from another planet, scientists were trying to find extraterrestrial civilizations. Phoenix was the replacement for the ambitious NASA SETI program that was can-

celled in 1993 by a money-conscious Congress. Phoenix started making observations in February 1995 using the Parkes 210-foot radio telescope in New South Wales, Australia. This is the biggest single-dish radio telescope in the southern hemisphere. About 200 stars that are hidden from northern hemisphere observatories were studied by Phoenix over a sixteen-week timeframe. The study then focused on star systems in the north after this southern effort. With the help of this phase, SETI was able to return to its beginnings at the National Radio Astronomy Observatory in Green Bank, West Virginia. The antenna used by Frank Drake for Project Ozma is not far from the 140-foot telescope utilised for these observations. In Green Bank, Project Phoenix ran from September 1996 until April 1998. Since the 140-foot was the observatory's main instrument at the time, it was also utilised for other radio astronomy studies. About half of the time, Phoenix used the antenna. In August 1998, Project Phoenix moved to Arecibo and it continued its observations of the sky.

Phoenix did not look across the entire sky. Instead, it examined the areas around neighbouring stars that resembled the Sun. These stars are thought to be the most likely to have habitable, long-lived planets. Naturally, planet-bearing stars are also included. All of the 800 star systems identified by Project Phoenix were located within 200 light-years from 1995 - 2004. Phoenix was concurrently monitoring millions of radio stations, therefore the majority of the "listening" was carried out by computers. Phoenix looked for signals between 1,200 and 3,000 MHz. Signals that are at only one spot on the radio dial (narrow-band signals) are the "signature" of an intelligent transmission. The spectrum searched by Phoenix is broken into very narrow 1 Hz-wide channels, so nearly two billion channels were examined for each target star.

Figure 1.9: Upper: Arecibo Observatory, Caribbean, Bottom: Parkes Observatory, Australia.

1.6 Project Hephaistos

One of the most intriguing missions that humanity has ever engaged in is the search for sentient life in the universe. Astronomers have found several exoplanetary systems in recent years, and if one entertains the idea that intelligent life could not just exist on Earth, the Search for Extra-Terrestrial Intelligence (SETI) would seem to be a promising endeavour. Astronomers have been looking up at the stars for more than 60 years, but so far they have

not seen any signs of extraterrestrial civilizations sending out any kind of communication. While signal-based searches should undoubtedly continue when new and improved telescopes (like the Square Kilometer Array) go online, alternative strategies should also be taken into consideration.

What if the closest alien culture is too far away to communicate with us? What if we are only seen as being too primitive to merit contact? Then, would it be possible for us to still discover the presence of other civilizations? Possibly. Searching for signs of alien technology, such as elaborate engineering feats, interstellar propulsion systems, and industrial pollution in the atmospheres of exoplanets offers an alternative to the conventional, signal-based method. This type of search makes no assumptions about alien civilizations' readiness to communicate with us directly. In addition, non-detections from properly planned searches of this kind can provide substantial upper bounds on the number of civilizations employing the presumed technology.

Figure 1.10: Logo of Project Hephaistos. Credit: Hephaistos Team

Project Hephaistos, which takes its name from the Greek god of blacksmiths who created many of the magnificent items used by the Olympian gods (such as chariots, weapons, and even automatons), is a member of this new SETI endeavour class that focuses on the search for signs of extraterrestrial technology like- Dyson Sphere rather than looking for signals that are purposefully sent to Earth. This project is led by Dr. Erik Zackrisson along with his colleagues Matías Suazo and Andreas Korn from Uppsala Univer-

sity.

Suazo et al. (2022) has developed a Spectral Energy Distribution (SED) model for Dyson sphere based on the observational signatures of it, which includes dimming in the optical band due to the obscuration of starlight and brightening in the infrared due to the release of waste heat from the structure. He uses this model to fit the SED of stars observed by the GAIA mission and identify a tentative list of potential Dyson sphere candidates. Suazo et al. 2023 (in prep.) have used a Convolution Neural Network (CNN) based image classifier to classify stars into two categories depending on whether they belong to a nebular or non-nebular region by analysing ALLWISE images of the stars. Sometimes, this algorithm fails to detect any nebular feature surrounding a star having the signature of a Dyson sphere even though literature surveys indicate that the star is very young. My aim for this project is to develop a filtration technique which can further filter out the false Dyson sphere candidates using the phenomenon of interstellar reddening from the nebula. This method is based on the astrophysical phenomenon of interstellar reddening, where dust particles absorb and scatter shorter wavelength light, while longer wavelength light can pass through unaffected. As a result, objects in nebular or dusty regions appear redder. We utilize the fact that there are higher fractions of red stars in the nebular region compared to the non-nebular region within a certain angular radius around a star. This is the basis for our filtration technique.

CHAPTER 2

Astrophysical Parameters of Stars

The most well-known astronomical object is a star, which also serves as one of the basic components of galaxies. A galaxy's history, dynamics, and evolution can be traced by the age, distribution, and composition of its stars. Additionally, stars produce and distribute heavy elements like carbon, nitrogen, and oxygen, and their features are closely related to those of the planetary systems that may form around them. These heavy elements are the basic important requirement for forming life on a planet surrounding a star. So, the study of stars will help us to find civilisation. Energy is an important ingredient to form life in any place in the universe. Starlight is another important ingredient for forming life in the universe. The surrounding space of a star is a suitable place to host lives. Before understanding what sort of lives exist surrounding a star, Let's first understand, how these stars form in the galaxies.

2.1 Formation of stars

The most massive reservoirs of interstellar matter—and some of the most massive objects in the Milky Way Galaxy (or any galaxy)—are the giant molecular clouds. These clouds have cold interiors with characteristic temperatures of only $10-20 \, \text{K}$; most of their gas atoms are bound into molecules (e.g.- H_2 , CO). These clouds called nebulae turn out to be the birthplaces of most stars in our Galaxy. Also, these areas of space are sometimes known as 'stellar nurs-

eries' or 'star-forming regions. In most galaxies, stars are created amid dust clouds and dispersed throughout them. The Orion Nebula is a well-known illustration of one of these dust clouds. Deep within these clouds, turbulence produces knots of sufficient mass that the gas and dust can start to collapse under its gravitational pull. The cloud's centre material starts to heat up as it breaks up. This heated core at the centre of the collapsing cloud is known as a protostar, and it will eventually become a star.

Molecular clouds have masses that range from a few million solar masses to 10,000 times the mass of the Sun (Krumholz, 2015). Although far less dense than cirrus clouds in Earth's atmosphere, molecular clouds contain a complex filamentary structure. The filaments of the molecular clouds can span up to 1000 light-years. We refer to the cold, dense regions that make up the clouds as clumps; these regions typically have masses between 50 and 500 times that of the Sun. There are cores—smaller, even denser regions—within these aggregates.

The cores are the embryos of stars. Low temperature and high density are the ideal circumstances for star formation in these cores. Keep in mind that gravity and pressure's constant struggle for dominance is at the heart of every star's life story. The gravitational pull of a star inward attempts to cause it to collapse. The movements of the gas atoms create internal pressure that pushes outward and seeks to enlarge the star. Low temperature (and hence low pressure) and high density (and so stronger gravitational pull) both contribute to gravity having the upper hand when a star is early developing. We require a typical core of interstellar atoms and molecules to undergo a factor of approximately 10^{20} increase in density and a radius reduction to form a star, that is, a dense, hot ball of matter capable of igniting nuclear processes deep inside. It is the force of gravity that produces this drastic collapse.

There are various parameters which characterise a star- Brightness, Surface Temperature, Colour, Mass, Size, Metallicity and so on (Salaris and Cassisi, 2005).

Figure 2.1: An artistic imagination of star formation from a molecular cloud. Image Credit: ASIAA

2.1.1 Apparent Magnitude and Absolute Magnitude

Apparent magnitude, m of a star is a number that tells how bright that star appears in the night sky to us at its great distance from Earth. It is a relative measure of the brightness of that star relative to a star. The scale is "backward" and logarithmic. Brightness is another way to say the flux of light, in Watts per square meter, coming towards us.

$$m_2 - m_1 = -2.5 \log_{10} \left(\frac{B_2}{B_1}\right)$$
 (2.1)

Where, m_1 is the apparent magnitude of star 1 (reference star) having brightness (or measured flux from the Earth) B_1 and m_2 is the apparent magnitude of star 2 having brightness (or measured flux from the Earth) B_2 .

The brightness of a source having distance d from the Earth and luminosity L (It is the measure of the amount of energy coming from the source per second, Watts) is defined as the energy flux

received by the observer on the Earth.

$$B = \frac{L}{4\pi d^2} \tag{2.2}$$

The brightness of a star depends on two factors -

- The amount of light it emits
- Its distance from the Earth
- Obscuration of intervening dust

From equations 2.1 and 2.2,

$$egin{align} m_2 - m_1 &= -2.5 \log_{10} \left(rac{L_2}{4\pi d_2^2}
ight) \ &\Rightarrow \quad m_2 - m_1 &= -2.5 \log_{10} \left(rac{L_2 d_1^2}{L_1 d_2^2}
ight) \ \end{align}$$

Instead of comparing the intensities and magnitudes of two different stars, we will compare the intensities and magnitudes of the same star at two different distances.

So, $L_1 = L_2$, then equation 2.3 becomes-

$$m_2 - m_1 = -2.5 \log_{10} \left(\frac{d_1^2}{d_2^2} \right)$$

 $\Rightarrow m_2 - m_1 = -2.5 \log_{10} \left(\frac{d_1}{d_2} \right)^2$

 $\Rightarrow m_2 - m_1 = -5 \log_{10} \left(\frac{d_1}{d_2} \right)$ (2.4)

Absolute Magnitude, M is the measure of the magnitude a star would have if it were placed to a distance of 10 parsecs from the Earth.

Suppose a star having real distance d and apparent magnitude m is placed at a distance of 10 parsecs (pc) away from the observer then its absolute magnitude M will be -

Using $m_1 = m$, $d_1 = d$, $m_2 = M$ and $d_2 = 10$ parsec

$$M-m=-5\log_{10}\left(rac{d}{10}
ight)$$

$$\Rightarrow \quad M=m-5\log_{10}\left(rac{d}{10}
ight) \tag{2.5}$$

Figure 2.2: Figure describing the measured apparent magnitude (m) and absolute magnitude (M) of star.

$$\Rightarrow \quad m-M = 5 \log_{10} \left(rac{d}{10}
ight)$$

Here, d must be in parsec. This $\mu=m-M$ is known as distance modulus. Also, we can find the distance of the star having distance modulus -

$$d = 10^{(m-M+5)/5} \ parsec$$
 (2.6)

2.1.2 HR Diagram and Color Magnitude Diagram

One of the most crucial tools for studying star evolution is the HR diagram, often known as the Hertzsprung-Russell diagram (HR diagram). It was independently created by Ejnar Hertzsprung and Henry Norris Russell in the early 1900s. The theoretical HR diagram is a plot of surface or effective temperature ($T_{\rm eff}$) of stars against their luminosity (L) -

$$\mathbf{L} = 4\pi \mathbf{R}_{\star}^{\mathbf{2}} \mathbf{T}_{\mathrm{eff}}^{\mathbf{4}}$$

Here, R_{\star} is the radius of the star.

The locations of the stars seem to be divided into four distinct regions in the HR diagram:

1. The main sequence is a line of stars that runs diagonally from bright blue stars to dim red stars. In this stage, stars spend about 90% of their lives fusing hydrogen into helium at their cores.

Figure 2.3: The Hertzsprung-Russell diagram shows the various stages of stellar evolution. Image Credit: ESO.HR Diagram

- 2. Supergiants are a horizontal band of incredibly brilliant stars that range in colour from blue to red (signifying a range of temperatures from hot to cool).
- 3. Red giants are a collection of red stars that may be found above (and hence brighter than) and to the right of the main sequence.
- 4. A collection of white dwarfs, which are extremely faint stars that are typically (but not always) blue or blue-white. These stars are frequently discovered in the heart of stunning structures called planetary nebulae.

Where as the observational HR diagram is a plot between the colour of stars (or Spectral Type) against their absolute magnitude, it is also known as a color-magnitude diagram (CMD).

2.1.3 Color of Stellar Objects

Color is an essential aspect of optical astronomy, allowing astronomers to study and understand the properties of celestial objects. When steallar objects observed through telescopes, they exhibits a range of colors that can provide crucial information about their physical characteristics, such as temperature, composition, and distance. The colors has a different meaning for an optical astronomers than it does for the majority of humans. The "colour" of stars is determined using the approach of measuring magnitudes at two separate wavebands. Astronomers refer to the colour of a star as its colour index rather than using terms like red or orange to describe it.

The color index or CI is defined as the difference between the magnitude of a star in one passband and the magnitude of the same star in a different passband and It is simply expressed in a number.

$$CI = m_1 - m_2 \tag{2.7}$$

Here, m_1 and m_2 are the apparent magnitude of star in passband 1 and passband 2 respectively.

The most common used passbands are the Johnson-Cousins B and V. The color index in B-V band is -

$$(B - V) = m_B - m_V$$
 (2.8)

Here, m_B and m_V are represents the apparent magnitude of star in B band (corresponding to wavelength around 440nm) and the apparent magnitude of the same star in V band (corresponding to the wavelength around 550nm) respectively.

The star Vega is the basis for color scale. Vega has $m_V = 0$ and $m_B = 0$, so obviously its color index is (B - V) = 0.0. Therefore,

- a star is redder than Vega if its (B V) > 0.
- a star is bluer than Vega if its (B V) < 0.

The color of an object is determined by its spectral energy distribution, which describes the intensity of radiation emitted or reflected by the object at different wavelengths. A typical star's spectrum can be approximated as a Planck curve, which describes

the intensity of emitted energy as a function of wavelength. This means that the distribution of energy emitted by a star varies with wavelength, with hot stars (15000 K) emitting relatively more energy at blue wavelengths than at red, while cool stars (3000 K) emit more energy at red wavelengths as shown in the figure 2.4.

Figure 2.4: The 15,000 K star in the blue curve produces more energy in the B waveband than the V waveband, and the 3,000 K star in the red curve emits more energy in the V waveband than the B waveband. Image Credit: M. Guidry

The apparent magnitude of a star is proportional to negative logarithm of its brightness or flux as described in relation 2.1. As a result, if a star produces more radiation in one band, its apparent magnitude in that band will be lower, and if it emits less radiation in another, its apparent magnitude in that band will be greater.

Figure 2.5a depicts the optical blackbody radiation distribution of a star having temperature 15000~K; as can be seen, it is brighter in the B band than the V band, hence its apparent magnitude (m_B) in B will be less than its apparent magnitude (m_V) in V. This suggests that this star's Color Index (B-V) is less than zero, or negative. That is, star is bluer than Vega.

Similarly, figure 2.5b depicts the optical blackbody radiation distribution of a star having temperature 3000 K; as can be seen, it is brighter in the V band than the B band, hence its apparent magnitude (m_V) in V will be less than its apparent magnitude (m_B)

Figure 2.5: Explain the process of measurement of colour index through blackbody radiation of a hot star 2.5a and cool star 2.5b. Image Credit: M. Horrell

in B. Therefore, the colour index (B-V) of this star is greater than zero or positive. Hence, the star is redder than Vega.

The (B-V) color index is widely used in astronomy as it has a long history and practical reasons behind it. Photographic plates used in the past were more sensitive to blue light, making the (B-V) index a popular choice. Additionally, this combination of colors is a good indicator of temperature, making it a useful tool

for studying the physical properties of celestial objects.

But one can also define the color index of any pair of passbands. Some of the most common are:

- (V-I) is often used by HST observers, and in studies of other galaxies
- (V-K) combines an optical magnitude (V) with an infrared magnitude (K) to provide a very long "baseline" of wavelength

Our upcoming work, finding fraction of red star around a star, will utilize the G-K color index.

2.2 Effects of Extinction

Interstellar space is not empty but is permeated by the Interstellar Medium (ISM). Gas and dust make up the majority of the ISM. The ISM affects starlight which passes through it. The star radiation will tend to be scattered by dust and absorbed by interstellar gas (and re-radiated in a new wave band). These effective losses are collectively described as **Interstellar Extinction**. The average size of dust particles in the interstellar medium is equivalent to the wavelength of blue light. As a result, dust strongly absorbs and scatters blue light from distant objects, thereby eliminating it from the light that reaches us and giving the impression that the objects are redder than they are, as shown in figure 2.6.

Astronomers must take into consideration this interstellar reddening when analysing data captured at optical wavelengths in particular. The reddening of an object is inversely proportional to the wavelength of optical light, so shorter wavelengths (blue) are more heavily reddened than longer (red) wavelengths.

By measuring the object's colour index (B-V) and comparing it to its real colour index $(B-V)_0$ using the following equation, we may determine the degree of reddening:

$$\mathbf{E}(\mathbf{B} - \mathbf{V}) = (\mathbf{B} - \mathbf{V}) - (\mathbf{B} - \mathbf{V})_0$$

Since starlight interactions with dust grains cause both interstellar reddening and extinction, the two phenomena are intimately related. As a result, we can anticipate that the more dust

Figure 2.6: Blue light is scattered by interstellar dust more effectively than red light, giving clouds of dust near stars a bluish colour and making distant stars look redder. In this image, a red starlight beam strikes the observer directly, while a blue ray is shown scattering. Similar scattering is what gives the blue colour to Earth's sky. Image Credit: https://phys.libretexts.org/

in the line of sight, the more prominent the reddening and the greater the extinction. This is what is found, with the equation connecting extinction and reddening

$$\mathbf{A}_{\mathbf{V}} = \mathbf{R}_{\mathbf{V}}\mathbf{E}(\mathbf{B} - \mathbf{V})$$

Where A_V is the extinction and Rv is the ratio of total extinction to selective extinction, which depends on the properties of the interstellar dust grains.

Apart form interstellar extinction, there is another type of extinction, **circumstellar extinction**, caused by the presence of dust or gas in the vicinity of the stars that are embedded in molecular clouds or surrounded by a circumstellar or protoplanetary disk as shown in figure 2.1 and 2.7.

The extinction of starlight can be measured by comparing the observed brightness of the star to its intrinsic brightness. The ratio of the observed brightness to the intrinsic brightness is known as the extinction factor, denoted as A_{λ} . The extinction factor varies with wavelength, and hence the extinction curve can be obtained by measuring A_{λ} at different wavelengths.

The extinction curve is often modeled as a power-law, with the form

$$A_{\lambda} \propto \lambda^{-\alpha}$$

Where, λ is the wavelength of light and α is the extinction coef-

Figure 2.7: This illustration depicts a young star encircled by a dusty protoplanetary disk, which contains the fundamental material necessary for the development of planets as the star system progresses. Circumstellar extinction is caused by the dust present within the circumstellar disk. Image Credit: NASA/JPL-Caltech/R. Hurt (SSC/Caltech)

ficient. The value of α depends on the properties of the dust or gas causing the extinction. In general, α is larger at shorter wavelengths, indicating that shorter wavelength light is more strongly attenuated. The total amount of extinction is often quantified by the visual extinction, denoted as A_V .

The distance equation 2.6 must be expanded to the following form to get the accurate distance (in parsecs) of an object taking into consideration interstellar extinction and circumstellar extinction:

$$d=10^{(m-M+5-A_V)/5}$$
 parsec

To compensate for the loss of light, we brighten the magnitude of this equation by subtracting the extinction from the exponent.

Young stellar objects (YSOs) are commonly found in nebular regions that contain large amounts of dust particles, as well as in regions where circumstellar disks are present. Due to the cumulative effect of both interstellar and circumstellar extinction, YSOs appear reddened, falling within the region of the redder stars when plotted on a color-magnitude diagram

2.3 Dyson Sphere Models

In order to predict the observational features of a composite system consisting of a star and its Dyson Sphere, we utilize a model where the stellar component is assumed to be an obscured version of its original spectrum, while the Dyson Sphere component is modeled as a blackbody with its brightness being dependent on the amount of radiation it collects.

The AGENT formalism mentioned in Wright et al. (2014) offers a practical method for parameterising the various energy inputs and outputs of a Dyson sphere. The benefit of it is that it does not assume anything about the engineering or nature of extraterrestrial civilizations.

This formalism divides the energy supply into two parts: stellar energy (α) and other parts (ϵ), which include things like fossil fuels, nuclear energy, etc. The disposal of energy is further classified into two categories: radiation waste energy (γ) and other losses (ν), such as neutrinos or gravitational waves. The waste energy (γ) can be associated with a blackbody temperature (T_{waste}), so AGENT is a mnemonic for $\alpha\gamma\epsilon\nu T_{waste}$. The definitions of each element in the AGENT formalism are compiled in table 2.1.

Parameters	Meaning (All Powers are Normalized by Available Starlight)
α	Power of intercepted starlight
ϵ	Power of non-starlight energy supply (e.g., fossil fuel use, zero-point
	energy, nuclear energy)
γ	Power of waste heat in the form of thermal radiation of photons
u	Power of other waste disposals (e.g., neutrino radiation, non-thermal
	emission, kinetic energy, energy-to-mass conversion)
T_{waste}	Characteristic color temperature of thermal waste photons

Table 2.1: Definitions of Parameters in the AGENT Formalism (Wright et al., 2014)

According to the principles of energy conservation and steady state, energy collected or produced by a civilization must be equal to energy released as waste heat or disposed by the civilisation. This implies that,

$$\alpha + \epsilon = \gamma + \nu$$

To better understand these parameters, let's calculate them for humanity. Around 1.7×10^7 Megawatts, or 1.4×10^5 TW hr per year, of energy are provided to humanity, primarily by fossil fuels (Kleidon 2010). Since the total amount of sunlight incident on the Earth is 1.7×10^{11} MW. We parameterize humankind as having the numbers shown in table 2.2.

Parameters	Value	Notes
α	$\sim 10^{-7}$	Counting only photovoltaic generation (ignoring passive
		heating, agriculture, etc.)
ϵ	$\sim 10^{-4}$	Mostly fossil fuel, some nuclear
γ	$\sim 10^{-4}$	$\sim\epsilon$
u	Negligible	Radio transmission and radar, neutrino losses in nuclear
		reactors, kinetic and potential energy in spacecraft
T_{waste}	$\sim 285K$	Typical operating/ambient temperature

Table 2.2: Approximate Values for Humanity in the AGENT Formalism (Wright et al., 2014)

During my thesis research, we have made the assumption that the primary source of energy input for the civilization is through the captured stellar radiation by the Dyson Sphere, ($\epsilon \ll \alpha$). Furthermore, we have assumed that the primary method of energy dissipation is through thermal photons, ($\gamma \gg \nu$). This leads to

$$lpha=\gamma$$

We also consider that Dyson Spheres behave as gray absorbers and that their thermal losses can be described by a blackbody with a temperature between 100-1000 K. This temperature range is determined by the detectability of the excess infrared radiation emitted by the Dyson Sphere in the mid-IR wavelength range, which is the range where WISE operates. If the temperature is lower than 100 K, the excess would be in the far-IR, and if the temperature is higher than 1000 K, the excess would shift to the near-IR.

Using these presumptions, only two parameters - the effective temperature of the DS (T_{DS}) and the luminosity of the thermal radiation it emits (L_{DS}) - are necessary to simulate the spectra of stars surrounded by DS. To make things more straightforward,

we redefine γ as the normalised DS energy output:

$$\gamma = rac{L_{DS}}{L_{\star}}$$

Where, L_{DS} is the brightness of the DS and L_* is the brightness of the host star before the DS was veiled. According to this definition, γ may have values ranging from 0 to 1. In the case of an isotropically emitting star, γ also denotes the level of completeness of the DS or, in more colloquial words, the fractional solid angle of the outgoing radiation intercepted by the DS (the covering factor). Because of this, we use γ and covering factor interchangeably throughout this analysis.

2.4 Spectrum of Dyson Sphere

We can simulate the photometric and spectroscopic characteristics of an obscured star and its DS using the above assumptions. We lay forth a fundamental spectral model for this compound system in this section.

Consider a simple model in which a star at distance d has a stellar luminosity L_* and a flux density (Wm^{-2}/m) received across wavelength λ at Earth F_{λ} then

$$\lambda F_{\lambda} = f_* \frac{L_*}{4\pi d^2} \tag{2.9}$$

Here, f_* represents the fractional energy distribution of star across wavelength. It is a function of wavelength $f_*=f(\lambda)$ and It is defined as -

$$f(\lambda) = \lambda rac{B_{\lambda}(T)}{L}$$

Where, $L = \frac{\sigma T^4}{\pi}$ is the radiance from a specified angle of view (watts per square metre per steradian).

$$f(\lambda) = \lambda rac{\pi B_{\lambda}(T)}{\sigma T^4}$$

Suppose this star hosts a civilisation with a Dyson sphere around it of temperature T_{DS} and blocking a fraction α of the stellar luminosity. As we assumed primary method of energy dissipation is through thermal photons of temperature $T_{DS} = T_{waste}$. The spectrum received at Earth will be altered, to first order, by the presence of the civilisation and become,

$$\lambda F_{\lambda} = [(1-lpha)f_* + \gamma f_{DS}]rac{L_*}{4\pi d^2}$$

Here, f_{DS} represents the fractional energy distribution of DS across wavelength.

$$\lambda F_{\lambda} = \left[(1 - lpha) rac{\lambda \pi B_{\lambda}(T_*)}{\sigma T_*^4} + \gamma rac{\lambda \pi B_{\lambda}(T_{DS})}{\sigma T_{DS}^4}
ight] rac{L_*}{4\pi d^2}$$
 (2.10)

Where, $B_{\lambda}(T_{DS})$ is the specific intensity of the Dyson Sphere of temperature T_{DS} .

If we roughly approximate a star as a blackbody with temperature T_* then the estimated SED can be rewritten as follows -

$$F_{\lambda}pprox \left[(1-\gamma)B_{\lambda}(T_*)+\gamma B_{\lambda}(T_{DS})\left(rac{T_*}{T_{DS}}
ight)^4
ight]rac{\pi}{\sigma T_*^4}rac{L_*}{4\pi d^2} \quad (2.11)$$

Then Specific luminosity of the combined system (DS+Star) becomes,

$$L_{\lambda}pprox \left[(1-\gamma)B_{\lambda}(T_*)+\gamma B_{\lambda}(T_{DS})\left(rac{T_*}{T_{DS}}
ight)^4
ight]rac{\pi}{\sigma T_*^4}L_* \quad (2.12)$$

Using Rayleigh-Jeans limit as $\lambda\gg hc/(kT_*)$ i.e. $B_\lambda(T)=\frac{2ckT}{\lambda^4}$, we can approximate above expression more realistically,

$$L_{\lambda}(\lambda \gg hc/(kT_{*})) \approx \left[(1-\gamma) + \gamma \left(\frac{T_{*}}{T_{DS}} \right)^{3} \right] \frac{2\pi ck}{\lambda^{4}\sigma T_{*}^{3}} L_{*}$$
 (2.13)

$$pprox \left[(1 - \gamma) + \gamma \left(\frac{T_*}{T_{DS}} \right)^3 \right] L_{\lambda}(\gamma = 0)$$
 (2.14)

This above expression emphasises the important benefit of looking for high γ civilizations using the mid-infrared (MIR) wavelength region. A high MIR flux will result from the waste heat from these civilizations, which is mostly controlled by the factor $(\frac{T_*}{T_{DS}})^3$. This term has the ability to increase the MIR flow by a factor of 10^3 even for moderate γ values. For a civilisation having $\gamma=0.15$, $T_*=4000~K$ and $T_{DS}=255~K$, this causes the MIR flux to increase by nearly 7 magnitude. Because the 255K waste heat would predominate the MIR colour temperature, it would stand out from other astronomical sources in terms of colour and brightness.

In contrast, the optical and near-infrared (NIR) dimming effects are significantly less pronounced and only perceptible for α or γ values close to 1.

The figure 2.8 provides illustrative examples of the impact of a Dyson sphere (DS) on a Sun-like blackbody spectrum with $T_* =$ 5778 K and $L_* = 1L_{\odot}$. The modifications in the blackbody spectrum are shown under various assumptions concerning the DS temperature and coverage factor in the above equation 2.14. Both panels in the figure exhibit a Sun-like blackbody spectrum. We show how a DS with a fixed temperature of 300 K and a covering factor of either = 0.1, 0.5, or 0.9 alters the compound spectrum in the top panel 2.8a. As can be observed, the DS results in an increase in the mid-infrared and a decrease in the stellar component's brightness. It depends on the DS covering factor for both features. In the optical and near-infrared spectrums, the decrease is dominating. In the bottom panel 2.8b, we demonstrate how the spectrum changes when we use DS models with a fixed covering factor of 0.5 and DS temperatures of 100, 300, and 600 K. The signatures—a decrease in stellar flux and an increase in the mid-infrared—that were previously stated are restored. The mid-infrared blackbody peak shifts in wavelength when DS temperature changes since we are taking a variety of DS temperatures into account.

In this analysis, the temperature range of DS was chosen such that the excess in IR, should be within the WISE mission's observable wavelength window.

Figure 2.8: These figures represents the modified blackbody spectra of the Sun as a result of the presence of Dyson spheres having different combination of γ & T_{DS} . The unmodified blackbody ($T_* = 5778K$, $L_* = 1L_{\odot}$) is shown by the solid black line in both panels. In the top panel, grey solid, dashed, and dotted lines, respectively, represent DS models with T = 300K and covering factors of 0.1, 0.5, and 0.9. On the bottom panel, grey dotted, dashed, and solid lines, respectively, represent DS models with a covering factor of 0.5 and temperatures of 100, 300, and 600K. The coloured bands correspond to the wavelength ranges of the Gaia, 2MASS, and WISE missions. Image Credit: Matias Suzao from his paper (Suazo et al., 2022).

CHAPTER 3

Analysis of red fraction of stars

Colour magnitude diagrams(CMDs) are an important tool to study stars. Dyson sphere candidates appear slightly dim in the optical spectrum but luminous in the infrared when viewed via telescopes. There are several astrophysical sources, like- YSOs, that exhibit the same characteristics - dim in the optical band and bright in the infrared as genuine Dyson sphere candidates. These YSOs appear redder due to interstellar reddening and are placed in the HR diagram or CMD just right above the main sequence. When we do a colour-magnitude analysis of these Dyson sphere candidates to further confirm them, we find that they are located in the region of YSOs in CMDs. Using the astrophysical properties of these YSOs, we are trying to filter the false-positive Dyson sphere candidates.

3.1 CMD of GAIA DR2 Sources

I plotted the colour-magnitude diagram of 152879 sources from the GAIA DR2 keeping the Y-axis as the Absolute Magnitude of the G band and the X-axis as $G_{BP} - G_{RP}$ as shown in the figure 3.1.

Figure 3.1: Color Magnitude Diagram (CMD) of 152879 sources from the GAIA DR2

3.2 Red Fraction Analysis

Since the dust clouds are so huge (generally light-years across), the whole cloud tends not to collapse into one star. Instead, it appears that different portions of a vast cloud can collapse toward different gravitational centres, with the result that one giant cloud light-years across can produce several stars (and presumably planetary systems). These pre-main sequence stars are located within dust clouds, and when we study them in the visible range, not just interstellar but also circumstellar extinction and reddening lead them to look redder. A star is born when the core temperature of a pre-main star reaches millions of Kelvin and begins fusing hydrogen with helium. All of the dust particles spread out in interstellar space as a result of the star's radiation pressure, and the disc that surrounds the star develops into a planetary system. Those stars which lie within the nebula will appear more redden, while those stars which lie outside appear less redden. These characteristics of the nebular region will help us classify whether a star belongs to the nebular region or not.

For our analysis, we will be utilizing the (G-K) color index against the absolute magnitude in the G band of the GAIA (i.e. M_G) color-magnitude plot. The color-magnitude diagram will assist us in determining whether a star falls into the category of being red or not. A star will be classified as red if its color index (G-K) value is greater than that of corresponding main sequence stars with the same absolute magnitude. Our definition of a red star is straightforward, which means any star that appears to the right of the main sequence star boundary (represented by the golden line) in the color-magnitude diagram of (G-K) vs. M_G . This classification is illustrated in figure 3.2.

Figure 3.2: Any star that is located in the plot's red area is referred to as a red star.

3.2.1 Boundary Lines

In the (G-K) vs M_G plot, we define the boundary line by choosing arbitrary points on it which will separate the main sequence stars and red stars. The arbitrary points in the (G-K) vs M_G plot are A(2.5,1), B(1.8,4.5), C(3.7,8.5) and D(4.6,12.5). Depending

on the value of absolute magnitude ($M_{\rm G}$) of the star, we divide the boundary line into three segments AB, BC and CD. We have two individual straight-line equations as shown in the figure below 3.3.

Case I: $M_{\rm G} \leq 4.5$

From the definition of the straight line equation

$$\frac{y - y_0}{x - x_0} = \frac{y_1 - y_0}{x_1 - x_0}$$

Using points A and B, we can find the equation of boundary line -

$$x = 2.5 - \frac{(y-1)}{5}$$

Figure 3.3: Defining arbitrary boundary equation

Similarly for other,

Case II: $4.5 < M_{G} \leq 8.5$

Using points B and C,

$$x = 1.8 + \frac{1.9 \times (y - 4.5)}{4.0}$$

Case III: ${\rm M_G} > 8.5$

Using points B and C,

$$x = 3.7 + \frac{9 \times (y - 8.5)}{40.0}$$

Here, x and y stand for the G-K and M_G value of the star.

3.2.2 Search Radius

The size of the nebular region in interstellar space varies significantly. Stars are born collectively in the nebular cloud. As time progresses, some of these stars undergo evolution and eventually become main-sequence stars. These stars are then dispersed throughout the nebular cloud. The angular search radius is a crucial factor in our analysis of the red fraction of stars around a source, whether it is a main sequence star or a YSO. As the angular search radius increases, more stars are included in our search sample, which can affect the calculated red fraction. This is demonstrated in the image below 3.4, where an increase in the angular search radius results in a larger number of stars being included in our search result.

Figure 3.4: Placing all neighbouring stars of a Herbig Ae/Be star and Random star in CMD for two different radii 6' and 10'.

3.2.3 Work flow for finding the fraction of red star around a source

The process of determining the fraction of red stars surrounding a target source involves various steps, including selecting the right ascension and declination of the target source, accessing data from the GAIA database, and analyzing it. The flow chart depicted in Figure 3.5 outlines the process of determining the red fraction of stars around a target star/candidate.

Figure 3.5: Describing the process of finding the red fraction of stars around a target source.

3.3 Analysis for Herbig Ae/Be and Random stars

For the initial analysis of this technique, I randomly chose 20 well-known Herbig stars from a catalogue of Vioque et al. and the 20 random stars from GAIA DR3 and find the fraction of red stars around them within the search radius of 5 arcminutes. We can clearly see that the average fraction of red stars for the 20 Herbig Ae/Be stars is about 0.72 and 0.17 for the 20 randomly chosen main sequence stars. These findings indicate that the average red star fraction for the Herbig Ae/Be stars is higher than that of

the randomly chosen main sequence stars. The plot in figure 3.6 shows the red star fraction values for the 20 random randomly chosen main sequence stars and 20 Herbig Ae/Be stars.

Figure 3.6: This graph represents the fraction of red stars of 20 Herbig Ae/Be and 20 randomly chosen main sequence stars within 5 arc-minutes.

There are some cases where the individual red fraction for a main sequence star is higher than that of a Herbig Ae/Be star. In the above plot, it is clear that the main-sequence star (index 14) has a higher red fraction value than the Herbig Ae/Be star. The distribution of dust is non-uniform throughout the Milky Way. During the evolutionary process of stars in nebular regions, some of them move out of the nebular clouds while others remain in them. Stars that leave the nebular regions may enter into dusty regions where the density is higher than that of the interstellar medium. Light from those stars that remain inside the nebular regions or in higher-density dust regions encounters more reddening due to the higher amount of dust. This leads to a higher red fraction around these stars.

The fraction of red stars around a target source depends on the search radius. To see the dependency of the fraction of red stars on the search radius, I calculated the red fraction of these stars with different search radii around them. The average fraction of red stars around Herbig Ae/Be stars is 0.72 ± 0.16 whereas the av-

erage fraction of red stars around a Random star is 0.15 ± 0.12 . I observed that the red fraction of these stars almost remains constant for all radii as shown in figure 3.7

Figure 3.7: Variation of fraction of red stars with radius around 20 Herbig Ae/Be stars (Vioque et al., 2020) and 20 Random stars

We have a total of 218 well-verified examples of Herbig Ae/Be star from Vioque et al.. Further, I tried to calculate the average red fraction of the star for all these Herbig Ae/Be stars simultaneously. The distance distribution of HerbigAe/Be stars is shown in figure below 3.8. To address distance distribution biases, we chose 218 main sequence stars with a similar distance distribution as the Herbig Ae/Be stars as shown in figure 3.8.

So now, we have sampled 218 random stars with the same distance distribution as Herbig Ae/Be stars. I estimate the fraction of red stars among all sources in the Herbig Ae/Be and random star catalogues for an angular search radius of 6'. The variation of the fraction of red star for both Herbig and Random star with the distance of the source is shown below in figure 3.9. The average fraction of a red star for a Herbig Ae/Be star is 0.669 ± 0.262 while the average fraction of a red star for a random star is 0.330 ± 0.283 . The **red line** represents the average fraction of the red star for Herbig Ae/Be while the **blue line** represents the average fraction of the red star for the random star.

Figure 3.8: Distance distribution of all 218 Herbig Ae/Be (HAeBe) stars from (Vioque et al., 2020)

Figure 3.9: This plot shows their distances vs the red fraction for all 218 Herbig Ae/Be stars and 218 random stars having **angular search radius = 6**'.

We also plotted the probability distribution of the fraction of red stars for both Herbig Ae/Be stars and random stars in the figure below 3.10.

The plot indicates that a star with a lower red fraction value is more likely to be located in a non-nebular region than in a nebular region. Conversely, a star with a higher red fraction value is more likely to be situated in a nebular region, which suggests that the star may actually be a young star. Therefore, determining the red

Figure 3.10: Top: Probability distribution of fraction of red star within the search radius 6' for Herbig Ae/Be star and Random chosen main sequence star. Bottom: Cumulative distribution function of corresponding above PDF.

fraction parameter value for all Dyson sphere candidates can aid in classifying as truly DS candidates or a young star.

3.4 Analysis for T Tauri stars

To check the robustness of our method, we extended this analysis to the T Tauri Star, which is another sort of YSO. T Tauri stars are sampled from the four different catalogues of Nebulae - **Orion Nebula** (Szegedi-Elek et al., 2013), **Lagoon Nebula** (Kalari et al., 2015), NGC 2264 (Barentsen et al., 2013) and IC 1396 (Barentsen et al., 2011). Taking into account the same distance distribution as Her-big Ae/Be stars (3.8), I selected 218 T-Tauri stars from these four catalogues mentioned above. We find the fraction of neighbouring red stars for T Tauri within the search radius of 6' and comparing with Herbig Ae/Be and random stars as shown in figure 3.11 and plotted the corresponding pdf of all three sources as shown in the figure 3.12.

It is clear that the neighbouring fraction of red stars around T Tauri stars is 0.871 ± 0.063 , which is greater than that of randomly chosen main sequence stars. These results tell that the neighbouring fraction of red stars around a YSO (T Tauri and Herbig

Figure 3.11: The red fraction for T Tauri, Herbig Ae/Be and Random star for angular search radius = 6'.

Figure 3.12: The corresponding pdf for the fraction of Herbig Ae/Be, T-Tauri, and randomly selected stars with an angular search radius of 6'.

Ae/Be stars) is greater than that of main sequence stars. So, we can use this parameter to describe whether a star lie in a nebular region (dusty region) or not. If the neighbouring fraction of red star around a DS candidate is high then we can simply say that the chances of being this candidate in the nebular region are high, and then we can discard this candidate from our catalogue.

CHAPTER 4

Dyson Sphere Candidates

The search for extraterrestrial intelligence has been a topic of fascination for scientists and the general public alike for decades. One potential solution to the problem of finding intelligent life is the concept of searching a Dyson sphere (DS), a hypothetical megastructure that surrounds a star and captures all of its energy output. However, the vastness of space and the limitations of human technology made identifying potential Dyson spheres a daunting task in the past, but with today's advancements in technology and algorithm, we are now able to search for observable signatures of potential Dyson Sphere candidates, dim in the optical band and bright in the infrared, in our Milky Way. This observational signature of DS is described in chapter 2, section 2.3.

4.1 Identifying Dyson Sphere Candidates from GAIA

To identify potential Dyson Sphere candidates in the Milky Way, my collaborator, Matías Suazo in his paper Suazo et al. (2022) has developed a Spectral Energy Distribution (SED) based model of combined system (DS + Star) based on the observational signatures of a Dyson sphere, dimming in the optical band due to the obscuration of starlight and brightening in the infrared due to the release of waste heat from the structure. The theory behind the model is described in the section 2.3. There are two main parameters which are optimised to fit the observational data - the covering

factor of the DS (γ) and the temperature of the Dyson Sphere (T_{DS}). The model is used by Matias to fit the spectral energy distribution (SED) of stars that have been observed by the GAIA mission. The observed spectrum data for these stars are collected from various missions, such as optical photometry data from DSS, SDSS, and GAIA, and infrared photometry data from 2MASS and ALLWISE. To identify potential Dyson sphere candidates, the model is fitted to the observed data of stars, and the best-fit parameters γ and T_{DS} are determined. These parameter values are then assigned to the DS candidate for further verification. This process is carried out for all IR excess sources in GAIA, resulting in a tentative list of potential Dyson sphere candidates being selected. This process of selecting DS candidates is described in figure 4.1.

Figure 4.1: The figure explains the flow of selecting first tentative list of potential DS candidates from the GAIA database by fitting model with observational data.

The below figure 4.2 shows two potential Dyson Sphere candidates selected using this model fitting method corresponding to the best parameters values. The best parameter value corresponding to the candidates shown in figure 4.2a and 4.2b are ($\gamma = 0.10$ & $T_{DS} = 100.0$ K) and ($\gamma = 0.10$ & $T_{DS} = 125.0$ K) respectively.

However, there are other sources that can mimic these signatures, such as young stellar objects (YSOs). To filter out these YSOs from our potential DS candidate list, we have taken use of the natural habitat of YSOs, which means that these YSOs are

Figure 4.2: The best parameters γ and T_{DS} obtained by fitting the model with observed data are used to select potential Dyson sphere candidates. The top candidate has $\gamma=0.10$ and $T_{DS}=100.0~K$, while the bottom candidate has $\gamma=0.10$ and $T_{DS}=125.0~K$. Image Credit: Matias Suzao

typically found within nebular regions. It is unlikely that our Dyson sphere candidates would be found in such regions since they are known to be chaotic and violent in terms of energy phenomena. Suazo et al. (2023) (In Prep.) utilized a Convolution Neural Network (CNN) image classifier to differentiate between stars in nebular and non-nebular regions by analyzing ALLWISE W3 (corresponding to wavelength 12.0 μ m) images of sources from the IRSA database. If the image classifier detects nebular features around the candidate, it discards that candidate from our list. However, there are instances where the CNN nebulae classifier failed to detect any nebular features around the potential Dyson

sphere candidates, but further literature surveys have revealed that these candidates are located in the nebular region. This discrepancy is due to the limitations of our detection instruments, which can only detect nebular features within a certain range. The figure 4.3 below summarizes the above process. Nonetheless, this highlights the importance of combining automation with human expertise and knowledge to ensure the accuracy of our findings.

Figure 4.3: This figure represents the flow of filtering out YSOs by looking at nebular features around it using the Machine Learning Algorithm in IRSA database.

Matias Suzao has provided a list of 302 potential candidates for Dyson spheres, which were identified after filtering out false-positive candidates using a CNN image classifier as shown in Appendix A. However, these candidates need to be further verified. In my master's thesis, I aim to verify these candidates by developing the red fraction, which quantifies the dust around the candidates, and finding it for all the candidates. Additionally, I plan to cross-verify them across multiple databases.

4.2 Finding another parameter

In addition to the fitting model with observed data and the CNN Nebulae classifier, I have also developed another parameter to filter out false positive Dyson sphere candidates. This parameter is called the "red fraction" described in chapter 3 and it is based on the astrophysical phenomenon of interstellar and circumstellar dust reddening, when light passes through dust particles, the shorter wavelengths are blocked, allowing only the longer wavelengths to pass through. This leads to the reddening of light, which is an observable effect in astrophysics.

By examining the red fraction around our Dyson sphere candidates, we can determine whether they are located within a nebular region or not. If the candidate is within a nebular region, the red fraction will be higher due to the presence of more circumstellar and interstellar dust. Conversely, if the red fraction is low, it indicates that the candidate is not located within a nebular region.

The histogram shows the distribution of the red fraction of all the DS candidates in figure 4.4.

Figure 4.4: This plot shows the red fraction distribution of all DS candidates.

The majority of DS candidates have red fraction values below 0.20, while only a few have values exceeding 0.45. This suggests that most of the candidates are unlikely to belong to nebular regions, but a small number have a higher probability of being found there due to their higher red fractions. Nonetheless, we are not excluding candidates with higher red fractions since our analysis indicates that some main sequence stars also exhibit this trait,

even though they are not as numerous.

By incorporating this additional parameter, we can further refine our selection process and reduce the number of false positive Dyson sphere candidates. The combination of model fitting, CNN nebular feature analysis on images, and the red fraction parameters allow us to accurately identify potential Dyson spheres and increase the likelihood of discovering extraterrestrial intelligence.

To ensure the quality of observed sources, we considered several parameters, including Gvar, RUWE, Astrometric Excess Noise (AEN), WISE ph_qual, and WISE var_flag. The Gvar parameter provides information on the variability of a source in the optical band, while RUWE and Astrometric Excess noise help to determine the accuracy of the parallax and proper motion measurements in the Astrometric solution. WISE ph_qual parameter indicates the quality of photometry in the MID-infrared band, and the WISE var_flag parameter informs about the variability of the source in the MIR, with some limitations in the W3 and W4 bands.

4.3 Verification of DS candidates across different databases

In the search for potential Dyson spheres, my collaborator and I utilized a combination of model fitting, nebular feature analysis using CNN, and the red fraction parameter to accurately identify 302 potential candidates. The list of all DS candidates is shown in Appendix A. It is important to note that these candidates are still just - candidates. We must have to conduct further investigations to confirm their nature and distinguish them from natural astronomical phenomena. Importantly, the limited capabilities of our instruments may introduce potential errors in data about sources. This potential error in sources may lead to a Dyson Sphere candidate in our list. So, we have to get rid of these candidates. Therefore, we conducted manual inspections across various databases, including Aladin Lite, VizieR, and IRSA, to look for other types of anomalies, for instance - Aladin Lite is used to see the DS candidates in different wavelength regimes, IRSA database is used

to inspect the photometric anomalies, especially in ALLWISE and VizieR database is used to inspect the source across the past literature surveys whether this source is classified as YSO, main sequence star, QSO or other interstellar objects.

By looking across these databases, we filtered out 136 candidates due to bad photometric data quality and low angular resolution of ALLWISE, leaving us with 166 positive potential Dyson Sphere candidates for further possible verification.

4.3.1 Contaminated Sources

Contaminated sources are those which show anomalous features that are not consistent with the expected observational signature of Dyson spheres The IR photometry data from ALLWISE plays an important role in selecting Dyson Sphere candidates. We are expecting excess IR radiation from these sources (why described in expression 2.14) but it is possible that excess IR radiation can get from various other reasons also. So we have to look at images of DS candidates carefully across the observing bands of ALLWISE. The AllWISE measured sources in four passbands, W1, W2, W3 & W4, covering near- and mid-IR wavelengths centred at 3.4, 4.6, 12, and $22\mu m$ with an angular resolution of the filters of 6.1'', 6.4'', 6.5'', and 12.0'' respectively. In our list of 136 false-negative DS candidates, which we eliminated, there are primarily three categories of contaminated sources. To get a better idea about the distribution of contaminated DS candidates, a pie chart is shown below 4.5.

The first category consists of sources that are blended with nearby sources due to low angular resolution, while the second category includes irregular sources around it in ALLWISE band caused by low SNR. The third category comprises faint sources, which were also discarded. Two sources have been removed from the list of Dyson sphere candidates. One source has UV emission, which are not expecting from our DS candidates, while the other star was classified as a Herbig Ae/Be star in a study by Vioque et al. (2020). More detailed explanations of each category are provided below.

Figure 4.5: Distribution of discarded sources due to contaminated

1. Blended

Due to the limited angular resolution of the ALLWISE photometry, it is often unable to resolve very close sources. Consequently, a significant number of our target DS candidates were found to be blended with nearby sources. An example of such a structure is shown in the figure 4.6.

Figure 4.6: The image illustrates a DS candidate that is blended with a nearby galaxy in the WISE observation, whereas it is easily distinguishable in the SDSS observation. This blending is a result of the limited angular resolution of WISE.

In such cases, the photometry data for the target source is a summed value of the blended sources, leading to inaccurate results. During my manual inspection of these sources, I found evidence of this blending and that lead to irregularity in the photometry data. To achieve reliable analysis, these sources were eliminated.

2. Irregular Structure

During the inspection of our potential Dyson Sphere (DS) candidates, we came across some sources with an extended irregular structure in the ALLWISE W4 passband. We rejected such candidates from our DS candidate list. An example of such a structure is shown in the figure below 4.7.

Figure 4.7: The images of a DS candidates illustrates the irregular structure around it in WISE W3 & W4 bands.

One possible explanation for these structures could be the presence of dust surrounding the target candidates. Dusty nebular regions emit prominently in W3 and W4, and the overall effect can mimic a DS candidate. Hence, we excluded these sources to ensure the accuracy of our DS candidate list.

3. Faint Source

During the inspection process of potential Dyson Sphere candidates, some sources were found to have an extended irregular shape in the ALLWISE W4 passband, but were very faint in the other passbands. As a result, we decided to exclude these candidates from our list. An example of such a candidate is shown in figure 4.8.

The most plausible explanation for these irregular structures is the presence of dust surrounding the target candidates, which

Figure 4.8: Irregular structure around it in W4.

can emit strongly in the W3 and W4 passbands. This effect can potentially mimic a Dyson Sphere candidate, but upon closer inspection, these sources were found to be too faint and lacked the necessary characteristics to be considered as legitimate candidates.

4.4 Verified Potential DS Candidates

Once we removed the contaminated sources from the Dyson Sphere candidates list using manual inspection, now we have 166 potential DS candidates mentioned in appendix B that need to investigate further by cross-referencing with the SDSS database, which provided access to photometric and spectroscopic data along with the class assigned to the sources, to enhance the reliability on our candidates. This additional step would allow us to rule out any instrument biases causing excessive infrared emission and provide further insight into the classification of these sources in SDSS. Our analysis showed that only 62 out of 166 candidates were observed through SDSS and have photometry data in u, g, r, i & z bands. All of them were classified as stars.

The general characteristic of these potential Dyson sphere candidates are described below.

4.4.1 Position of DS candidates in the Galactic plane

The position of the identified Dyson Sphere candidates in the galactic plane is depicted in Figure 4.9. As evident from the figure, these candidates are distributed both above and below the galactic plane. This observation suggests that the candidates are less likely to be located in the nebular regions as the presence of dust and gas is more prominent in the galactic plane.

Figure 4.9: Position of filtered potential DS candidates in the Galactic plane. Here, each blue dot represents a potential DS candidate.

4.4.2 Red Fraction Distribution

The red fraction distribution of filtered positive Dyson sphere (DS) candidates is presented in Figure 4.10. The top figure shows the red fraction distribution of DS candidates in the galactic plane, while the bottom figure shows the probability distribution of red fraction for filtered positive DS candidates. The results suggest that the red fraction of our filtered DS candidates is generally less than 0.3, with only a few candidates having a higher red fraction. This indicates that our filtered DS candidates are less likely to be found in the nebular region. Interestingly, the DC candidates with higher red fraction, shown in green dot, are mainly located near the galactic plane, as seen in Figure 4.10a.

Figure 4.10: Position and Red fraction

4.4.3 Brightness Distributions

The brightness distribution of DS candidates in both bands, the optical g band and infrared j band, are shown below. I also showed the brightness distribution of DS candidates in the galactic coordinate. The figure 4.11 shows the g-magnitude distribution of all filtered DS candidates.

The j-band brightness distribution of DS candidates is shown in figure 4.12

Figure 4.11: Top: Position of sources in galactic coordinate and the corresponding g magnitude. Bottom: Distribution of g magnitude of sources

The analysis of magnitude in both the g-band and j-band of our sources revealed that three candidates, which appeared bright in the g-band, also showed a high level of brightness in the j-band in the same order. These three sources are marked in the hexagonal shape and are illustrated in Figure 4.13.

Figure 4.12: Top: Position of sources in galactic coordinate and the corresponding j magnitude. Bottom: Distribution of j magnitude of sources

Figure 4.13: The hexagonal shape shows DS candidates which are brightest in both band together. The magnitude in both bands are normalised.

CHAPTER 5

Discussion

The goal of my thesis was to investigate the potential Dyson Sphere candidates identified through an ML algorithm by my collaborator, Matias Suzao from Uppsala University using various methods, such as - calculating red fraction, cross-referencing with multiple databases and conducting a comprehensive literature survey across the past research on the target candidates.

The first objective of my thesis was to develop the "red fraction" parameter, which quantifies the presence of dust around a target candidate within a search radius. To achieve this, I analyzed the red fraction for YSOs (such as Herbig Ae/Be and T-Tauri stars) and randomly chosen main sequence stars. The results showed a significant difference between the two groups, with YSOs having a higher average value of neighbouring red stars (Herbig Ae/Be: 0.681 ± 0.259 and T-Tauri: 0.871 ± 0.063) compared to randomly chosen main sequence stars (0.340 ± 0.292). This difference in neighbouring fraction of red star is utilised as a parameter to distinguish whether a target source lies in nebular region or not.

I calculated this parameter for all 302 potential DS candidates, and I have found that the red fraction for all of our potential DS candidates is within the range of the main sequence star, except for a few candidates with a neighbouring fraction above 0.5. These results suggest that the majority of our DS candidates are not young stars, indicating that the excessive infrared emission observed in these candidates is likely due to Dyson Sphere other than dust and gas in the nebular region. However, there is another possible reason for this excess. It is possible that poor quality data from WISE bands W3 and W4 are causing excessive infrared

emission for many of the DS candidates due to a WISE noise peak coinciding with the target objects, leading to an artificial increase in the infrared emission.

The ultimate objective of my project is to verify all these 302 potential Dyson Sphere across different survey databases. This verification process involves cross-referencing with multiple databases, ensuring the authenticity of photometric data in ALLWISE and 2MASS, and conducting a thorough literature review to explore previous research conducted on all the target candidates. Any discrepancies found for a candidate will result in its removal from the list of potential Dyson Sphere candidates. I used Aladin Lite for seeing target objects across the multi-wavelength observation, VizieR for conducting literature surveys and IRSA for look anomalies in photometric data.

Throughout my this investigation, I had to discard 136 potential Dyson Sphere candidates due to a variety of reasons. These included issues such as blending with nearby sources, low angular resolution of WISE, occurring due to the low angular resolution of WISE, exhibiting irregular structure in W3 and W4, indicating the presence of dust around the source, and being too faint to reliably classify.

After filtering out the contaminated sources, I am left with 166 verified potential Dyson Sphere candidates, which are listed in the Appendix B. To enhance the reliability of our candidates, I conducted additional cross-verification with SDSS, which provided access to photometric and spectroscopic data along with the class assigned to the sources. Our analysis showed that only 62 out of 166 candidates were observed through SDSS and have photometry data, and only one candidate had spectroscopic data available. It is worth noting that all observed candidates in SDSS are clearly classified as a star.

5.1 Future Scope

We plan to conduct detailed follow-up observations on the remaining 214 candidates, focusing on our best Dyson Sphere candidates. These top candidates will be selected based on their posi-

tion in the observing sky relative to the telescope, their apparent magnitude, and the type of follow-up observation required. The optical and infrared spectroscopy can provide valuable information for further confirmation of Dyson Sphere candidates. Spectroscopy can reveal the chemical composition of the star and its surrounding environment, and identify any unusual features that could indicate the presence of a Dyson Sphere. The following details study about these sources can be done to enhance the reliability on our candidates.

1. The H- α line is the most prominent feature in the visible spectra of young stars (Joy, 1945). This line can be used to distinguish between a young star and a Dyson sphere candidate as H- α emission is often used as a signature of accretion in young stars. Accretion occurs when gas and dust in a protoplanetary disk are pulled onto a forming star. As the material falls onto the star, it heats up and emits light in various wavelengths, including H- α ($\lambda = 656.281$ nm). Therefore, the presence of H- α emission in a star's spectrum is often interpreted as evidence of ongoing accretion. This means that young stars are likely to exhibit strong H- α emission due to the accretion process. In contrast, Dyson spheres are hypothesized to surround main sequence stars, which may not exhibit significant H- α emission.

Therefore, by analyzing the H- α emission in the vicinity of the DS candidates, we can potentially distinguish them from young stars. If a candidate exhibits strong H- α emission, it is more likely to be a young star with ongoing accretion, whereas if there is no H- α emission, it is more likely to be a mature star (i.e. main sequence star) with a Dyson sphere.

However, it's important to note that this method alone may not be sufficient for definitive identification, as there are other factors that can affect H-alpha emission, such as stellar activity and variability. It should be used in conjunction with other methods, such as photometric and spectroscopic analysis, to increase the reliability of the results.

2. The presence of a Dyson sphere around a star is expected to

result in a scaling of the mid-infrared (MIR) and far-infrared (FIR) emissions by a factor 10^3 as described in section 2.3. However, the MIR and FIR data obtained from ALLWISE have large uncertainties, and therefore, it is necessary to conduct better MIR and FIR photometric observations to obtain more accurate measurements of the emissions and confirm the presence of the Dyson sphere.

3. JWST has the capability to observe in the mid-infrared and far-infrared spectral range, which is crucial for detecting the excess infrared radiation expected from a Dyson Sphere. So, a continuum spectrum obtained through the James Webb Space Telescope (JWST) could provide valuable information for verifying Dyson Sphere candidates and supporting the analysis process.

Apart from this, the spectral from JWST could also be used to filter out young stars which are found in dusty regions. Dusty sources, such as protoplanetary disks or regions of active star formation, often exhibit non-continuum spectral features. One example of such a feature is the so-called Polycyclic Aromatic Hydrocarbon (PAH) emission feature, which arises from the presence of organic molecules in the dust. These molecules are excited by radiation from nearby stars, causing them to emit light at specific wavelengths in the infrared part of the spectrum.

By analyzing the spectra of our DS candidates, we can look for the presence of such non-continuum features to help distinguish them from other sources, such as young stars. If we detect strong PAH emission in the spectra of a candidate, this would be a strong indication that it is associated with a dusty environment, and thus more likely to be a young star. On the other hand, if we do not see such features, it may be more likely that the object is a main sequence star or some other type of astronomical object.

BIBLIOGRAPHY

- Barentsen, G., Vink, J. S., Drew, J., Greimel, R., Wright, N., Drake, J., Martin, E., Valdivielso, L., and Corradi, R. (2011). T tauri candidates and accretion rates using iphas: method and application to ic 1396. *Monthly Notices of the Royal Astronomical Society*, 415(1):103–132.
- Barentsen, G., Vink, J. S., Drew, J. E., and Sale, S. E. (2013). Bayesian inference of t tauri star properties using multi-wavelength survey photometry. *Monthly Notices of the Royal Astronomical Society*, 429(3):1981–2000.
- Cocconi, G. and Morrison, P. (1959). Searching for interstellar communications. *Nature*, 184(4690):844–846.
- Dick, S. (1998). *Life on Other Worlds: The 20th-Century Extraterrestrial Life Debate*. Cambridge University Press.
- Dyson, F. J. (1960). Search for artificial stellar sources of infrared radiation. *Science*, 131(3414):1667–1668.
- Gray, R. H. (2020). The extended kardashev scale. *The Astronomical Journal*, 159(5):228.
- Jansky, K. G. (1933). Radio Waves from Outside the Solar System. *Nature*, 132(3323):66.
- Joy, A. H. (1945). T Tauri Variable Stars. Astrophysical Journal, 102:168.
- Kalari, V., Vink, J., Drew, J., Barentsen, G., Drake, J., Eislöffel, J., Martín, E., Parker, Q., Unruh, Y., Walton, N., et al. (2015). Classical t tauri stars with vphas+–i. h α and u-band accretion rates in the lagoon nebula m8. *Monthly Notices of the Royal Astronomical Society*, 453(1):1026–1046.
- Kardashev, N. S. (1964). Transmission of Information by Extraterrestrial Civilizations. *Soviet Astronomy*, 8:217.

- Krumholz, M. R. (2015). Notes on star formation. arXiv preprint arXiv:1511.03457.
- Ritchie, H., Roser, M., and Rosado, P. (2022). Energy. *Our World in Data*. https://ourworldindata.org/energy.
- Sagan, C. (1973). *The Cosmic Connection: An Extraterrestrial Perspective*. A Dell book. Anchor Press.
- Salaris, M. and Cassisi, S. (2005). Evolution of Stars and Stellar Populations. Wiley.
- Schwartz, R. N. and Townes, C. H. (1961). Interstellar and Interplanetary Communication by Optical Masers. *Nature*, 190(4772):205–208.
- Shuch, H. P. (2011). *Project Ozma: The Birth of Observational SETI*, pages 13–18. Springer.
- Suazo, M., Zackrisson, E., Wright, J. T., Korn, A. J., and Huston, M. (2022). Project Hephaistos I. Upper limits on partial Dyson spheres in the Milky Way. *Monthly Notices of the Royal Astronomical Society*, 512(2):2988–3000.
- Szegedi-Elek, E., Kun, M., Reipurth, B., Pál, A., Balázs, L., and Willman, M. (2013). A new h α emission-line survey in the orion nebula cluster. *The Astrophysical Journal Supplement Series*, 208(2):28.
- Tarter, J. (2001). The search for extraterrestrial intelligence (seti). *Annual Review of Astronomy and Astrophysics*, 39(1):511–548.
- Vioque, M., Oudmaijer, R., Schreiner, M., Mendigutía, I., Baines, D., Mowlavi, N., and Pérez-Martínez, R. (2020). Catalogue of new herbig ae/be and classical be stars-a machine learning approach to gaia dr2. *Astronomy & Astrophysics*, 638:A21.
- Wijers, R. A. (2005). On the stellar luminosity of the universe. arXiv preprint astro-ph/0506218.
- Wright, J. T. (2020). Dyson spheres. arXiv preprint arXiv:2006.16734.
- Wright, J. T., Mullan, B., Sigurdsson, S., and Povich, M. S. (2014). The \hat{g} infrared search for extraterrestrial civilizations with large energy supplies. i. background and justification. *The Astrophysical Journal*, 792(1):26.

Appendices

APPENDIX A

ALL POTENTIAL DS CANDIDATES

This appendix contains the list of potential Dyson sphere candidates provided by Matias Suzao after filtering out false-positive candidates through CNN nebulae image classifiers. The list consists various parameters such as Gvar, RUWE, Astrometric Excess Noise (AEN), WISE ph_qual and WISE var_flag which have been considered to ensure the quality of 302 DS candidates. These parameters have been taken from the GAIA database. These parameters are explained below.

A.1 AEN

The term AEN, "astrometric_excess_ noise", refers to a measure of the excess noise in the astrometric observations of a celestial source. This parameter quantifies the discrepancy, represented as an angle, between the observed data of a source and the best-fit standard astrometric model. In other words, it indicates how much the observed data deviates from what is expected based on the astrometric model.

A.2 Remarks

This column provides the information literature surveys of DS candidates. The Remarks column contains different shortened keywords. The full descriptions of each shortened keyword are as follows:

- K&M: 1.7 million K and M dwarfs cross-matching (Medan+, 2021)
- TESS: Transiting Exoplanet Survey Satellite Input Catalog (TIC; Stassun et al. 2019)

- TESS C: A catalogue of cool dwarf targets for the TESS (Muirhead+, 2018) with effective temperature ($T_{\rm eff}$) < 4000K and V-J > 2.7.
- NCJM: NCJM catalog of M dwarfs (Cook+, 2016)
- HPMS: High Proper Motion Stars (HPMS3) catalog (Knapp+, 2019) with proper motion (pm) > 150 mas/yr.

A.3 WISE Photometry Quality Index

The WISE ph_qual, WISE photometry quality index, is a code that indicates the quality of the WISE photometry for a given source, with a range from "A" (best quality) to "E" (worst quality). The code is based on the number of measurements available for each band (W1-W4) and the level of contamination from nearby sources. Here's a brief explanation of the different WISE ph_qual codes:

- "A": High-quality photometry, with at least 6 good measurements in each band.
- "B": Good-quality photometry, with at least 4 good measurements in each band.
- "C": Medium-quality photometry, with at least 2 good measurements in each band.
- "D": Poor-quality photometry, with only 1 good measurement in each band.
- "E": Lowest-quality photometry, with only 1 measurement in one or more bands and/or significant contamination from nearby sources.

It consists four values corresponding to a source in each band of WISE in the sequence of W1W2W3W4.

A.4 WISE Variable Flag

The WISE var_flag index is a binary flag indicating whether a source is detected as variable in WISE imaging observations in each band (W1-W4). The flag value is 1 if the source is variable and 0 if not. It comprises of four numbers in the order W1W2W3W4 that represent a source in each band of WISE.

GAIA Source	GAIA DR3 Source ID	ra	dec	Dist (pc)	AEN	para (mas)	p err (mas)	g mag	j mag	red frac (6')	pm (mas per yr)	ruwe	Remarks	Nebu -lar Fea- tures	DS	Gvar	Mod	T_{DS}	7	WISE ph-qual	WISE var_flag
2915	2915906078111475840	86.463	-23.254	75.954	0.237	13.143	0.110	18.011	14.350	0.108	12.355	0.970	TESS,	No	Yes	0.923	261	100	0.1	b'AACC'	b'11nn'
3510	3510237257322054912	194.421	-18.011	83.119	0.550	12.118	0.196	18.309	14.536	0.077	79.027	1.079	TESS, K&M	No	Yes	0.976	261	100	0.1	b'AACC'	b'11nn'
3978	3978048187578510976	170.395	19.665	84.162	0.462	11.817	0.131	17.652	14.368	0.000	101.212	1.133	NCJM, TESS	No	Yes	1.083	255	100	0.1	b'AACC'	b'01nn'
5760	5760183294402944896	132.025	-6.698	100.304	0.166	9.953	0.128	17.872	14.686	0.113	51.912	0.980	TESS C, K&M	No	Yes	0.940	250	100	0.1	b'AACC'	b'00nn'
3536	3536922958580249472	165.030	-23.974	103.836	0.453	9.569	0.149	17.836	14.545	0.116	60.955	0.951	TESS C, K&M	No	Yes	1.121	247	100	0.1	b'AACC'	b'00nn'
6285	628352207871960448	151.562	20.238	105.239	0.394	9.459	0.164	18.034	14.564	0.083	5.867	0.965	TESS	No	No	0.988	2636	125	0.1	b'AACC'	b'01nn'
6488	6488635934221051136	353.882	-61.471	109.527	0.302	9.044	0.095	17.785	14.375	0.055	63.236	1.033	TESS	No	Yes	1.002	244	100	0.1	b'AACC'	b'00nn'
439	4394051130665487488	260.707	7.231	111.218	0.121	8.932	0.088	17.389	14.161	0.207	38.654	1.016	TESS. Blended	No	No	1.029	236	100	0.1	b'AABC'	b'00nn'
568	5685387641533656704	147.032	-15.974	113.933	0.414	8.694	0.146	17.944	14.651	0.107	34.013	0.982	TESS C, K&M	No	Yes	1.037	247	100	0.1	b'AACC'	b'21nn'
5569	5569768603691556992	99.723	-41.046	114.037	0.149	8.732	0.045	16.776	13.854	0.173	98.037	1.048	TESS, K&M. Blended	No	No	0.986	223	100	0.1	b'AABB'	b'11nn'
1761	1761730438755511552	314.431	14.755	114.542	0.504	8.704	0.150	17.971	14.605	0.095	56.628	1.036	K&M, TESS	No	Yes	1.044	248	100	0.1	b'AACC'	b'00nn'
2864	286473012974810496	82.998	62.453	115.640	0.512	8.675	0.197	18.487	15.008	0.186	43.294	0.963	K&M, TESS. Blended	No	No	0.985	2641	125	0.1	b'AACC'	b'00nn'
6901	6901426168753269248	310.046	-10.821	115.800	0.245	8.595	0.093	17.140	13.936	0.086	64.801	1.037	K&M, TESS. Blended	No	No	1.150	7385	175	0.1	b'AAAB'	b'111n'
6491	6491167658527510144	342.976	-60.635	116.745	0.412	8.509	0.088	17.655	14.392	0.036	50.615	0.942	K&M, TESS. Blended	No	No	1.017	5008	150	0.1	b'AABB'	b'001n'

continued ...

WISE var_flag	$^{ m b'00nn'}$	b'11nn'	b'11nn'	b'11nn'	b'00nn'	b'11nn'	$^{ m b'01nn'}$	b'00nn'	b'01nn'	b'11nn'	b'11nn'	b'11n0'	b'00nn'
WISE ph-qual	b'AACC'	b'AACC'	b'AABB'	b'AACC'	b'BACC'	b'AACC'	b'AABB'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AABB'	b'AACC'
7	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.15	0.1
T_{DS}	100	100	100	100	100	112.5	100	100	100	100	100	112.5	100
Mod	234	249	522	253	244	243	206	244	241	244	240	2606	233
Gvar	996:0	0.953	1.060	1.072	0.986	1.012	0.828	0.993	1.121	1.134	1.116	0.949	1.084
DS	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	No
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	TESS C, K&M, NJCM	TESS	K&M, TESS. Blended	K&M, NJCM, TESS. s	TESS C, K&M.	K&M, NJCM, TESS.	K&M, TESS. Blended	NJCM, TESS	TESS	TESS C, K&M, HPMS	K&M, TESS.	NCJM, K&M, TESS C. Blended	K&M, TESS C. Blended
ruwe	1.060	1.006	1.123	0.963	0.945	1.015	0.990	1.073	0.888	0.935	0.924	1.009	0.977
pm (mas per yr)	127.387	8.548	67.048	49.595	90.834	68.510	57.687	28.076	18.497	183.018	65.357	50.169	60.324
red	0.077	0.093	0.114	0.000	0.075	0.000	0.257	0.082	0.083	0.013	0.000	0.050	0.047
j mag	14.303	14.673	15.198	14.972	14.620	14.756	13.470	14.728	14.523	14.754	14.631	14.052	14.563
g mag	17.456	18.198	18.612	18.426	17.957	18.041	16.243	17.960	17.851	18.084	17.910	17.009	17.635
p err (mas)	0.103	0.136	0.147	0.133	0.111	0.129	0.034	0.143	0.139	0.157	0.143	0.058	0.118
para (mas)	8.424	8.179	8.209	8.090	8.032	7.947	7.889	7.900	7.847	7.843	7.836	7.719	7.594
AEN	0.293	0.743	0.925	0.670	0.574	0.230	0.000	0.537	0.392	0.425	0.657	0.100	0.000
Dist (pc)	118.357	120.375	121.767	123.060	123.652	125.613	126.130	126.210	126.673	126.953	127.050	128.451	131.092
dec	7.695	75.343	-56.576	60.238	37.156	32.807	-81.665	65.194	-24.666	-20.356	-23.292	44.276	-6.305
ra	234.222	103.623	92.337	224.887	251.098	168.045	8.640	101.288	184.888	207.276	24.285	198.804	207.110
GAIA DR3 Source ID	4430833917781139840	1115438362942844672	5496034628081146112	1614536893000145536	1328197371906749696	757976927909863296	4630985578527718912	1100972024033153792	3488776577056140800	6289125971652580224	5039343402513263104	1526641731613608064	3620635715173447040
	15 4	16 1	17 5	18 1	19 1	20 7	21 4	22 1	23 3	24 (25	26 1	27 3

continued ...

	b'11nn'	L7	b'11nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	00nn	b'00nn'	b'11nn'	b'01nn'	b'00nn'	b'01nn'	b'11nn'	b'22nn'
/ISE h_que	63	ارت													
≱ <u>1</u>	b'AABC'	b'AABC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'BABC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACB'	b'AACC'
7	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.15	0.1	0.1	0.1	0.1	0.1	0.1	0.1
T_{DS}	125	100	100	125	100	100	125	200	125	125	125	125	100	100	125
	2621	235	236	2628	243	219	2639	36566	2632	2635	2629	2622	230	221	2633
Gvar	1.211	1.029	1.083	1.086	0.882	0.872	0.974	0.881	0.980	0.987	1.074	0.979	1.214	1.031	0.991
DS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	TESS	K&M, TESS.	NCJM, TESS C, K&M.	K&M, TESS	K&M, TESS, Binary Star system	NCJM, TESS,	K&M,	K&M, TESS. Blended	TESS	TESS	K&M, TESS	HPMS, NCJM, K&M	TESS	TESS C, K&M	K&M,
ruwe	0.943	0.989	1.211	1.045	0.989	1.015	1.023	0.945	1.034	1.031	1.063	0.973	1.112	1.060	1.019
pm (mas per yr)	10.644	53.173	75.654	42.576	49.577	35.767	91.214	46.116	27.549	5.502	74.543	172.565	37.545	56.467	92.424
red	0.032	0.154	0.129	090.0	0.000	0.061	0.065	0.098	0.109	0.156	0.094	0.041	0.153	960:0	0.130
j mag	14.498	14.389	14.488	14.849	14.973	14.083	15.350	15.712	15.073	15.167	14.938	14.875	14.460	14.186	15.149
g mag	17.737	17.607	17.810	18.148	18.204	16.947	18.759	19.287	18.343	18.587	18.260	17.959	17.591	17.160	18.571
p err (mas)	0.133	0.088	0.147	0.145	0.108	0.076	0.149	0.280	0.129	0.192	0.214	0.164	0.127	0.087	0.154
para (mas)	7.525	7.554	7.452	7.404	7.348	7.296	7.287	7.818	7.199	7.175	7.166	7.057	7.095	7.046	7.044
AEN	0.386	0.499	0.523	0.678	0.155	0.094	0.721	0.000	0.707	0.603	0.648	0.333	0.388	0.171	0.615
Dist (pc)	131.110	131.134	133.638	134.265	135.057	136.518	137.581	137.918	138.830	139.393	139.983	140.363	140.724	141.259	141.804
dec	-2.783	35.855	18.424	-55.464	73.921	21.601	40.809	-28.009	25.438	-42.640	26.572	-8.453	33.766	-29.273	-59.319
ra	51.073	284.441	14.923	314.676	187.347	131.800	256.943	211.288	241.086	202.057	107.387	329.629	103.427	172.288	340.700
	3261094210299919616	2092866786582167296	2787983737076819072	6458044149186203520	1690729715910190976	661992899995819392	1353970057604540160	6174337889720387072	1315337479611688832	6088807769255904896	883173678401486336	2618501102056246400	939289281548249856	3483112241042201088	6503326058107971328
O O 1	28 3	29 2	30 2	31 6	32 1	33 6	34 1	35 6	36 1	37 6	88	39 2	40 9	41 3	42 6

continued ...

(1) 10	GAIA DR3 Source ID	ra	pec	Dist (pc)	AEN	para (mas)	p err (mas)	g mag	j mag	red frac	pm (mas per yr)	ruwe	Remarks	Neb Fe	DS	Gvar	Mod	T_{DS}	۸ /	WISE ph-qual	WISE var_flag
9	6035861680171860992	243.477	-32.202	142.015	0.414	7.010	0.168	18.274	14.919	0.528	31.329	1.029	TESS. Faint	No	No	0.931	5014	150	0.1	b'AABC'	b'11nn'
×	2654924035339211904	343.591	0.681	142.055	0.513	6.975	0.162	17.793	14.432	0.000	20.761	1.025	TESS	No	Yes	1.184	232	100	0.1	b'AACC'	b'11nn'
2:	2397293651903978112	342.335	-21.809	143.878	0.161	6.936	0.114	17.614	14.833	0.000	25.189	1.009	TESS	No	Yes	0.872	229	100	0.1	b'AACC'	b'11nn'
~	889362936730041728	104.452	32.011	144.105	0.324	098.9	0.133	18.045	14.810	0.118	113.692	0.911	K&M, TESS	No	Yes	1.115	2623	137.5	0.1	b'AABC'	b'00nn'
	618553463324573568	142.254	14.776	144.274	0.000	6.858	0.164	18.035	14.802	0.000	122.833	1.012	NCJM, K&M, TESS C.	No	Yes	0.892	2621	112.5	0.15	b'AACC'	b'01nn'
	2496905385291035264	40.007	-1.221	144.755	0.340	6.884	0.139	17.776	14.810	0.031	145.508	1.132	NCJM, K&M, TESS C.	No	Yes	0.895	233	100	0.1	b'AACC'	b'11nn'
	1338448458113508480	256.626	35.635	145.044	0.435	6.855	0.106	17.820	14.707	0.086	51.243	1.047	NCJM, K&M, TESS.	No	Yes	1.004	235	100	0.1	b'AACC'	b'11nn'
	1209419566002958208	234.549	18.283	151.530	0.000	6.616	0.176	18.301	15.364	0.035	194.754	0.973	NJCM, TESS C, K&M. Blended	N o	No	0.944	2627	125	0.1	b'AABC'	b'00nn'
	3665977169521275776	214.375	0.599	152.197	0.325	6.543	0.113	17.429	14.440	0.061	55.834	1.040	NCJM, TESS C, K&M.	No	Yes	0.868	224	100	0.1	b'AACC'	b'00nn'
	1036767966673477120	135.326	57.534	152.777	0.599	6.504	0.169	18.381	15.241	0.021	9.671	1.016	NCJM, TESS.	No	Yes	1.016	2628	125	0.1	b'AACC'	b'11nn'
	4814864398463549568	70.098	-42.557	153.112	0.531	6.481	0.111	17.888	14.568	0.030	44.031	0.977	K&M, Binary star sys- tem	No	Yes	1.027	232	100	0.1	b'BABC'	b'00nn'
	1016422289979953664	136.149	50.962	153.226	0.678	6.490	0.179	18.483	15.205	0.048	54.973	1.050	NCJM, K&M.	No	Yes	1.057	2628	125	0.1	b'AACC'	b'11nn'
	2310451960094696192	356.808	-37.590	153.754	0.000	6.433	0.101	17.140	14.267	0.133	25.596	0.997	TESS	No	Yes	0.867	218	100	0.1	b'AACB'	b'11nn'

continued ...

									- 1					
WISE var_flag	b,00nn,	b'00nn'	b'00nn'	b'11nn'	b'00nn'	b'11nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'01nn'	b'00nn'	b'11nn'	b'00nn'
WISE ph-qual	b'AACC'	b'AABC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACB'	b'AACC'	b'AACC'	b'AACC'	b'AACB'	b'AACC'	b'AACC'	b'AABB'
٨	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.15
T_{DS}	100	125	100	100	125	100	100	137.5	125	100	100	125	125	125
Mod	233	2619	224	220	2613	228	496	2625	2622	227	218	2626	2614	5004
Gvar	0.943	0.953	1.029	1.027	0.903	726.0	0.986	906.0	0.863	1.021	0.990	0.938	1.021	0.982
DS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No O	Yes	No
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	K&M, TESS C	K&M, TESS	TESS	TESS	NCJM, K&M. Open cluster star	TESS	K&M, TESS	K&M	NCJM, K&M,	NCJM, HPMS, TESS C, K&M	K&M, TESS C	NCJM, TESS. Irregu	NCJM, K&M, TESS C	K&M, TESS C. Blended
ruwe	0.984	0.980	0.996	1.022	0.970	0.997	1.026	1.014	0.949	1.002	0.924	0.982	0.938	1.024
pm (mas per yr)	61.673	53.037	26.181	13.939	82.697	21.119	48.320	42.841	69.835	166.415	112.007	18.821	80.312	74.493
red frac	0.033	0.067	0.056	0.082	0.062	0.065	0.114	0.260	0.056	0.103	0.112	0.071	0.000	0.077
j mag	14.838	14.969	14.396	14.328	14.861	14.884	14.880	15.126	15.010	14.678	14.346	15.104	14.977	15.013
g mag	17.879	18.000	17.465	17.358	17.813	17.833	17.969	18.255	18.197	17.741	17.266	18.389	17.874	18.031
p err (mas)	0.115	0.140	0.124	0.099	0.130	0.099	0.131	0.197	0.138	0.133	0.098	0.145	0.141	0.149
para (mas)	6.472	6.419	6.373	6.404	6.400	6.382	6.327	6.392	6.368	6.291	6.281	6.312	6.288	6.284
AEN	0.000	0.000	0.396	0.226	0.000	0.000	0.032	0.110	0.000	0.370	0.000	0.356	0.436	0.000
Dist (pc)	153.940	154.622	154.925	155.396	155.645	156.162	157.287	157.680	157.682	158.005	158.495	158.582	159.307	159.309
dec	-14.173	-7.095	-23.063	-41.703	9.356	-28.120	-26.114	32.982	39.142	-9.776	42.580	13.981	3.632	-13.722
ra	39.448	194.777	354.968	300.245	132.358	60.133	181.768	886.78	128.374	191.058	103.831	250.848	16.748	199.863
GAIA DR3 Source ID	5170146837671740160	3629164111474614656	2387172475571686400	6686966734993777792	597270624767394816	4889857310590694912	3488393401547734912	3451273339241871616	911311005588551808	3530813144262513536	952003729070420480	4461290080634930432	2539799842150995968	3609133689676051456
- U	26 5	57 3	282	59 6	60	61 4	62 3	63 3	64 9	65 3	6 99	67 4	68 2	69 3

continued ..

Source Distance Column	E Jag	'm'	ın,	ın,	ın,	'm'	'm'	ın,	'u	'n,	ın,	'm'	,u	'n,	'n,	'm'
Source DD Real Part Real	WISE var_flag	b'11nn'	b'00nn'	b'10nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'
CAMA DR3 Ramaria DR3 Ramaria DR4 DR5 D	WISE ph_qual	b'AACC'	b'AABC'	b'AACC'	b'AABB'	b'AACC'	b'AABC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACB'
CANALD D188		0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
CALAL DISS TOTAL D	T_{DS}	125		100	125	125	150	125	125	125	125	100	100	100	125	100
GALAL DIRS CALAL DIRS CALAL DIRS CALAL DIRS CALAL DIRS Test (mas)		2622	36280	225	2887	2617		2609	2621	2632	2616	233	220	225	2626	218
GAAA DR8 FAB Operation FAB Operation FAB Operation FAB Operation FAB FAB PAB PAB <th< td=""><td>Gvar</td><td>0.932</td><td>0.930</td><td>1.106</td><td>0.878</td><td>1.062</td><td>0.879</td><td>0.871</td><td>1.009</td><td>1.018</td><td>0.982</td><td>0.831</td><td>0.950</td><td>1.049</td><td>1.005</td><td>0.923</td></th<>	Gvar	0.932	0.930	1.106	0.878	1.062	0.879	0.871	1.009	1.018	0.982	0.831	0.950	1.049	1.005	0.923
GALA DBS ra dec DBs AEN para f mag	DS	Yes	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
GAIA DIR3 Trage Source ID Across (Table)	Neb Fe	No	No	No	No	No	No	No	No	No	oN	No	No	No	No	No
GALA DR3 Transported (1) Column (1) AEN (1) Pure (1) Final (1)	Remarks	K&M, TESS C	QSO, TESS. Blended	TESS	NCJM, K&M, TESS	TESS	K&M, $TESS$	NCJM, K&M, TESS C	NCJM, K&M, TESS. Blended	NCJM, TESS	$_{ m TESS}$	K&M, $TESS$	K&M, TESS	TESS	NCJM, K&M, TESS.	$_{ m TESS}$
GAIA DR3 read place Dist (pp) AEN (mas) perr (mas) mag (mas) imag (mas) read (mas) 482440516581202688 72.711 66.150 159.468 0.087 6.269 0.122 18.277 15.233 0.392 1750229406690485760 313.423 8.587 159.762 0.416 6.281 0.188 18.405 15.183 0.140 30431120466690485760 313.423 8.587 159.802 0.304 6.281 0.188 18.405 15.283 0.140 304311204666906485760 313.423 8.587 169.72 0.000 6.211 0.138 18.405 15.283 0.140 46490686646763462941824 141.595 53.824 160.872 0.000 6.217 0.160 18.897 14.684 0.103 4649068664105924475436160 79.346 -73.413 162.147 1.028 6.220 0.189 18.007 15.710 0.163 258686510592647091 148.006 50.235 165.153 0.000 6.104 0.	ruwe	1.019	0.945	0.932	0.958	1.072	1.016	1.013	0.936	1.002	1.018	0.964	1.006	0.998	0.959	0.959
GAIA DR3 ra dec Dist AEN para portal (mas) mag j mag j mag 360urce ID 350urce ID 159.468 0.087 6.269 0.122 18.277 15.233 482440516581202688 72.711 66.150 159.468 0.087 6.289 0.122 18.277 15.233 175022940061048570 313.423 8.587 159.702 0.416 6.281 0.188 18.405 15.283 3043112048663066112 118.634 -7.143 159.802 0.304 6.283 0.117 17.654 14.684 4128901290300825984 141.595 53.824 160.872 0.000 6.119 0.118 18.367 15.294 46.96668564475436160 79.346 -73.43 162.147 1.028 6.220 0.189 19.002 15.710 25588561059264476012 13.684 0.073 162.813 0.000 6.114 0.115 18.207 15.65 82680561059264476012 13.684 0.0	pm (mas per yr)	86.798	25.134	16.429	51.315	32.996	52.229	76.962	58.151	59.031	30.062	82.013	88.970	15.014	86.414	15.504
GALA DR3 ra dec Dist AEN para (mas) perr (mas) grap (mas) Source ID (pc) 159,468 0.087 6.269 0.122 18.277 482440516581202688 72,711 66.150 159,468 0.087 6.281 0.188 18.405 1750229405660485760 313,423 8.587 159,792 0.416 6.281 0.188 18.405 1023025063462941824 141.595 53.824 160.872 0.000 6.211 0.188 18.367 4128901290300825884 254.947 -19,426 162.033 0.592 6.127 0.160 18.087 4649665864475436160 79.346 -73.413 162.147 1.028 6.220 0.189 19.002 2538856105926470912 13.684 0.073 162.813 0.000 6.114 17.650 82690576632866082576 148.068 50.235 165.153 0.419 5.988 0.152 17.944 5481309418607141888 92.585 -61.699 <td>red</td> <td>0.392</td> <td>0.140</td> <td>0.103</td> <td>0.027</td> <td>0.517</td> <td>0.464</td> <td>0.088</td> <td>0.079</td> <td>0.070</td> <td>690.0</td> <td>0.147</td> <td>0.034</td> <td>0.190</td> <td>0.034</td> <td>0.019</td>	red	0.392	0.140	0.103	0.027	0.517	0.464	0.088	0.079	0.070	690.0	0.147	0.034	0.190	0.034	0.019
GA1A DR3 ra dec Dist AEN para (mas) perr (mas) Source ID 482440516581202688 72.711 66.150 159.468 0.087 6.269 0.122 1750229409690485760 313.423 8.587 159.792 0.416 6.281 0.188 3043112048663066112 118.634 -7.143 159.802 0.304 6.233 0.117 4128901290300825984 254.947 -19.426 162.003 0.592 6.127 0.160 44128901290300825984 254.947 -19.426 162.003 0.592 6.127 0.160 4649665864475436160 79.346 -73.413 162.813 0.000 6.104 0.115 2536856105926470912 13.684 0.073 162.813 0.000 6.013 0.168 826905075632856088 236.577 32.445 165.153 0.000 6.033 0.114 884831828618687616 156.748 49.308 166.379 0.000 6.936 0.013 1447646	j mag	15.233	15.183	14.684	15.294	14.630	15.710	14.585	15.079	15.467	14.909	15.032	14.632	14.755	15.230	14.417
GA1A DR3 ra dec Dist AEN para (mas) Source ID 159.468 0.087 6.269 482440516581202688 72.711 66.150 159.468 0.087 6.269 1750229409690485760 313.423 8.587 159.792 0.416 6.281 1023025063462941824 141.595 53.824 160.872 0.000 6.211 4649665864475436160 79.346 -73.413 162.107 1.028 6.220 2536856105926470912 13.684 0.073 162.813 0.000 6.104 826905675632859648 148.068 50.235 165.153 0.419 5.987 826905677632859648 148.068 50.235 165.153 0.000 6.013 8885510703580632576 318.162 -13.627 166.379 0.000 6.033 84831828618687616 156.748 49.308 166.399 0.000 5.940 1447646077468827776 198.878 25.591 167.583 0.218 5.951	g mag	18.277	18.405	17.654	18.367	18.087	19.002	17.650	18.262	18.807	17.944	18.097	17.491	17.811	18.529	17.402
GA1A DR3 ra ra dec (pc) Dist (pc) Source ID Source ID Source ID Source ID Source ID Source ID (pc) 482440516581202688 72.711 66.150 159.468 0.087 1750229409690485760 313.423 8.587 159.792 0.416 1750229409690485760 313.423 8.587 159.802 0.416 3043112048663066112 118.634 -7.143 159.802 0.304 4649665864475436160 79.346 -73.413 162.147 1.028 4649665864475436160 79.346 -73.413 162.147 1.028 2536856105926470912 13.684 0.073 162.813 0.000 8269050756328559648 148.068 50.235 165.153 0.419 8269050756328569088 236.577 32.445 166.119 0.118 5481309418607141888 92.585 -61.699 166.379 0.000 1850962129541995648 323.232 32.297 167.374 0.000 1447646077468827776 198.878 25.591 167.583 0.218	p err (mas)	0.122	0.188	0.117	0.138	0.160	0.189	0.115	0.134	0.168	0.152	0.114	0.092	0.095	0.183	0.103
GAIA Source ID DR3 DR3 ra ra dec (pc) Dist (pc) 482440516581202688 72.711 66.150 159.468 1750229409690485760 313.423 8.587 159.792 1750229409690485760 313.423 8.587 159.792 1023025063462941824 141.595 53.824 160.872 4649665864475436160 79.346 -7.3413 162.147 2536856105926470912 13.684 0.073 162.813 826905075632859648 148.068 50.235 165.153 82690507563380332569088 236.577 32.445 166.119 5481309418607141888 92.585 -61.609 166.379 834831828618687616 156.748 49.308 166.999 1850962129541995648 323.232 32.297 167.374 1447646077468827776 198.878 25.591 167.583 3854090071297359616 144.976 7.008 168.363	para (mas)	6.269	6.281	6.233	6.211	6.127	6.220	6.104	5.997	6.013	5.988	6.033	5.936	5.940	5.951	5.894
GAIA Source ID DR3 Page ra dec 482440516581202688 72.711 66.150 1750229409690485760 313.423 8.587 3043112048663066112 118.634 -7.143 1023025063462941824 141.595 53.824 4128901290300825984 254.947 -19.426 4649665864475436160 79.346 -73.413 2536856105926470912 13.684 0.073 826905075632859648 148.068 50.235 826905075632859648 148.068 50.235 6885510703580632576 318.162 -13.627 5481309418607141888 92.585 -61.699 834831828618687616 156.748 49.308 1850962129541995648 323.232 32.297 1447646077468827776 198.878 25.591 1447646077297359616 144.976 7.008	AEN	0.087	0.416	0.304	0.000	0.592	1.028	0.000	0.419	0.639	0.118	0.000	0.000	0.000	0.218	0.000
GAIA Source ID DR3 ra Source ID 1750229409690485760 313.423 1750229409690485760 313.423 3043112048663066112 118.634 11023025063462941824 141.595 4128901290300825984 254.947 4649665864475436160 79.346 2536856105926470912 13.684 2536856105926470912 13.684 826905075632859648 148.068 1369633803332569088 236.577 6885510703580632576 318.162 5481309418607141888 92.585 834831828618687616 156.748 1850962129541995648 323.232 1447646077468827776 198.878 3854090071297359616 144.976	Dist (pc)	159.468	159.792	159.802	160.872	162.003	162.147	162.813	165.153	165.820	166.119	166.379	166.999	167.374	167.583	168.363
	dec	66.150	8.587	-7.143	53.824	-19.426	-73.413	0.073	50.235	32.445	-13.627	-61.699	49.308	32.297	25.591	7.008
	ra	72.711	313.423	118.634	141.595	254.947	79.346	13.684	148.068	236.577	318.162	92.585	156.748	323.232	198.878	144.976
		182440516581202688	1750229409690485760	3043112048663066112	1023025063462941824	1128901290300825984	1649665864475436160	2536856105926470912	326905075632859648	1369633803332569088	3885510703580632576	5481309418607141888	334831828618687616	850962129541995648	1447646077468827776	854090071297359616

continued ..

50																1
WISE var_flag	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'11nn'	b'11nn'	b'11nn'	b'00nn'	b'11nn'	b'00nn'	b'11nn'	b'01nn'	b'00nn'	b'00nn'	b'00nn'	b'00nn'
WISE ph-qual	b'AABC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	$_{\rm b'AABC'}$	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'
ک	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1
T_{DS}	125	100	100	100	125	150	100	125	100	100	100	125	100	100	125	125
Mod	2616	224	224	222	2612	5004	231	2615	231	220	234	2615	230	505	2612	2616
Gvar	0.923	0.871	0.992	1.156	0.912	966.0	1.022	0.877	1.101	0.940	0.877	1.134	1.088	0.986	896:0	1.063
DS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	K&M, TESS	K&M, TESS	K&M, TESS C	TESS	K&M, TESS	TESS	K&M, TESS	NCJM, K&M, TESS	K&M, TESS	NCJM, TESS	TESS	K&M, TESS. Faint	TESS	K&M, TESS	TESS	NCJM, K&M, TESS
ruwe	1.036	0.989	0.930	1.015	1.039	1.014	1.080	1.005	1.029	0.975	0.972	1.004	1.018	1.045	0.940	0.901
pm (mas per yr)	47.226	66.765	79.977	31.409	56.463	26.387	85.056	50.544	98.944	23.588	37.047	62.774	37.986	89.934	23.302	56.795
red	0.171	0.067	0.535	0.083	0.057	0.125	0.037	0.023	0.086	0.064	0.091	260.0	0.071	090.0	0.071	0.194
j mag	14.897	14.618	14.580	14.650	14.848	15.144	14.989	14.925	15.029	14.678	15.181	14.909	14.806	15.503	14.930	15.033
g mag	17.932	17.706	17.674	17.660	17.845	18.203	18.001	17.999	18.077	17.502	18.288	18.010	18.050	18.666	18.018	18.026
p err (mas)	0.119	0.107	0.101	0.145	0.098	0.167	0.113	0.173	0.091	0.115	0.102	0.163	0.101	0.175	0.125	0.146
para (mas)	5.892	5.869	5.829	5.814	5.807	5.805	5.808	5.862	5.726	5.767	5.746	5.650	5.664	5.657	5.534	5.550
AEN	0.319	0.000	0.307	0.417	0.150	0.583	0.434	0.510	0.311	0.000	0.000	0.408	0.508	0.715	0.000	0.346
Dist (pc)	168.634	169.208	169.636	170.990	171.004	171.900	172.047	172.487	172.730	173.147	173.229	174.853	175.013	176.265	178.302	178.828
dec	-14.150	-4.385	61.463	-25.750	-63.454	-23.819	60.202	27.290	-80.995	-2.513	-50.214	-23.538	86.256	67.983	-7.864	19.032
ra	86.498	199.359	73.711	13.788	331.399	192.333	202.039	144.821	48.286	216.011	71.960	313.447	105.397	106.024	178.954	11.761
GAIA DR3 Source ID	2996292365351686144	3636165908894524544	477541264565874816	2344470574980336256	6405584490920011648	3498693553461662208	1663135032069421056	647720891173924480	4619397649388055936	3646420641529967744	4784624938185655680	6806054972540387328	1150574390879641472	1103045771685331328	3595041077343698944	2789153445649630464
	82	98	87	88	68	06	91	92	93	94	92	96	26	86	66	100

continued.

	GAIA DR3 Source ID	ra	qec	Dist (pc)	AEN	para (mas)	p err (mas)	g mag	j mag	red frac	pm (mas per yr)	ruwe	Remarks	Neb Fe	DS	Gvar	Mod	T_{DS}	<u>خ</u>	WISE ph_qual	WISE var_flag
	4876715604017587072	74.395	-29.687	179.089	0.638	5.484	0.145	18.567	15.273	0.018	51.889	0.996	K&M, TESS.	No	Yes	1.020	2626	125	0.1	b'AABC'	b'00nn'
	4644937556449853696	38.844	-71.890	179.773	0.381	5.523	0.102	18.145	15.047	0.042	47.813	0.981	K&M, TESS	No	Yes	0.994	231	100	0.1	b'AACC'	b'11nn'
	5631833320661544448	143.390	-32.108	180.244	0.167	5.515	0.064	17.175	14.304	0.192	40.739	1.038	K&M, TESS	No	Yes	1.027	211	100	0.1	b'AACC'	b'00nn'
	1049350021827111808	147.766	57.727	180.860	0.289	5.477	0.119	18.181	15.081	0.026	52.145	0.904	NCJM, K&M, TESS	No	Yes	0.908	231	100	0.1	b'AACC'	b'11nn'
	6575136021511219072	331.744	-36.788	181.872	0.059	5.460	0.070	16.958	14.108	0.033	82.280	1.012	K&M. Blended	No	N _o	0.927	205	100	0.1	b'AABB'	b'01nn'
	1894169672338918144	333.758	28.883	183.709	0.593	5.429	0.160	18.295	15.163	0.157	15.993	1.038	TESS. Blended	No	No	0.917	2620	125	0.1	b'AACC'	b'01nn'
	5798835496119725568	225.306	-70.400	184.515	0.000	5.371	0.057	16.895	14.052	0.317	27.543	0.964	TESS. Blended	No	No	0.951	2852	125	0.15	b'AAAA'	b'2100'
108	1098727779065302784	118.481	71.356	184.827	0.867	5.450	0.228	19.048	15.632	0.115	59.628	1.101	K&M, TESS. Blended	No	No	0.958	36814	200	0.2	b'AAAB'	b'000n'
109	4584771764787526656	275.646	25.389	185.202	0.000	5.387	0.090	17.823	14.965	0.245	51.255	0.995	K&M, TESS. Blended	No	No	0.990	2608	125	0.1	b'AABC'	b'nnnn'
	2353610295450275968	19.781	-20.156	185.283	0.595	5.368	0.169	18.397	15.261	0.054	44.404	1.044	K&M, TESS	No	Yes	0.943	2619	125	0.1	b'AACC'	b'00nn'
	4426899659020024192	239.052	960.9	185.514	0.000	5.351	0.047	15.997	13.345	0.078	11.031	1.040	TESS	No	Yes	0.801	187	100	0.1	b'AABB'	b'00nn'
	6266957794311581056	237.094	-13.236	186.482	0.084	5.330	0.083	17.151	14.186	0.257	82.901	1.008	K&M, TESS.	No	Yes	1.029	210	100	0.1	b'AACC'	b'00nn'
	2798379241559922688	0.829	20.175	186.585	0.000	5.351	0.127	17.832	14.804	0.077	74.523	0.985	NCJM, K&M	No	Yes	0.915	2606	125	0.1	b'AACC'	b'00nn'
	1559280317671115776	206.097	52.024	187.092	0.681	5.355	0.154	18.715	15.528	0.028	10.748	1.077	TESS. Blended	No	No	0.962	5009	150	0.1	b'AABC'	b'00nn'

continued \dots

WISE var_flag	b'nnnn'	b'01nn'	b'01nn'	110n	b'nnnn'	b'11nn'	b'00nn'	b,000n'	$^{\mathrm{b'00nn'}}$	00nn	b'00nn'	b'22nn'	b'11nn'
WISE ph-qual	$_{\mathrm{b'AACC'}}$	b'AACC'	b'AACC'	b'AAAC'	b'AACC'	b'AABC'	b'AACC'	b'AAAB'	b'AACC'	b'AABC'	b'AACC'	b'AACC'	b'AACC'
٨	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1
T_{DS}	125	125	100	325	100	137.5	125	162.5	100	200	125	100	100
Mod	2612	2608	211	68064	204	5007	2622	7647	218	36263	2589	234	212
Gvar	1.181	0.852	0.862	1.004	1.007	0.972	0.992	0.933	0.929	0.989	0.974	768.0	0.920
DS	No	Yes	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	TESS. Blended	K&M, TESS.	NCJM, TESS	UV, QSO, K&M, TESS	K&M, TESS. Blended	TESS.	K&M, TESS	NCJM, TESS. Blended.	NCJM, K&M, TESS	K&M, TESS. Irregu	K&M, TESS. Faint	TESS. Blended	K&M, TESS. Faint
ruwe	0.974	1.028	0.962	0.982	1.112	1.015	1.050	1.021	0.945	1.020	1.034	0.984	1.036
pm (mas per yr)	10.973	80.751	24.839	57.757	53.455	24.218	72.476	30.240	85.287	44.124	140.726	14.354	59.935
red frac	0.176	0.053	0.087	0.093	0.087	0.088	0.093	0.063	990.0	0.053	0.258	0.120	0.562
j mag	15.026	15.051	14.279	15.092	14.174	15.486	15.463	15.264	14.773	15.159	14.271	15.343	14.517
g mag	18.099	17.895	17.238	18.257	16.954	18.696	18.569	18.260	17.706	18.026	17.030	18.556	17.437
p err (mas)	0.105	0.127	0.094	0.181	0.093	0.164	0.132	0.138	0.114	0.137	0.081	0.115	0.117
para (mas)	5.301	5.264	5.238	5.189	5.192	5.220	5.214	5.158	5.126	5.165	5.070	5.079	5.088
AEN	0.000	0.106	0.000	0.538	0.162	0.000	0.565	0.000	0.000	0.233	0.100	0.221	0.000
Dist (pc)	187.420	189.906	189.971	190.800	190.823	191.628	191.693	192.945	193.661	194.154	195.079	195.215	195.235
dec	23.897	-0.896	27.885	13.729	-7.759	-28.043	-56.085	54.935	29.430	-1.752	-16.290	71.647	4.529
ra	256.981	190.210	341.569	128.986	152.884	81.424	55.511	133.681	346.598	53.688	287.121	257.989	292.880
GAIA DR3 Source ID	4571794808858923776	3683792006674301056	1884132853460920192	603417375802848768	3772418867277249280	2907012845810852096	4731386069772654720	1030096778655069312	1885602483892413440	3262914868412180096	4088762514509139968	1651751444590308608	4291156633546209408
	115 4	116 3	117 1	118 6	119 3	120 2	121 4	122 1	123 1	124 3	125 4	126 1	127 4

continued ...

5.0													
WISE var_flag	b'00nn'	b'11nn'	b'11nn'	b'01nn'	b'00nn'	b'11nn'	b'00nn'	11nn	b'00nn'	b'00nn'	b'11nn'	b'11nn'	b'00nn'
WISE ph_qual	b'AABB'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AABC'	b'AACC'	b'AACC'	b'AABC'	b'AACC'	b'AACC'
~	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
T_{DS}	125	112.5	100	125	100	125	125	200	137.5	100	125	100	125
Mod	2609	2612	227	2619	221	2618	2598	36270	4993	216	2601	200	2610
Gvar	0.993	0.872	0.889	1.007	0.862	1.033	0.884	0.959	0.962	0.894	0.910	0.826	1.044
DS	No	Yes	Yes	No	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Neb Fe	No	No	No	No	No	No	No	No	No	oN	No	No	No
Remarks	K&M, TESS. Blended	NCJM, TESS	NCJM, K&M, TESS	K&M, TESS. Blended	TESS. Blended	TESS. Faint	NCJM, K&M, TESS	TESS. Faint	NCJM, K&M, TESS	TESS	NCJM, TESS	K&M, TESS.	K&M, TESS
ruwe	0.953	1.042	1.088	0.926	0.990	1.033	0.935	1.029	0.965	0.878	1.070	0.983	0.998
pm (mas per yr)	41.787	25.878	44.996	73.835	17.353	14.992	73.305	23.023	51.485	13.742	52.326	63.299	43.104
red frac	0.038	0.049	0.041	0.222	960.0	0.152	0.053	0.383	0.156	0.160	0.036	0.172	0.140
j mag	14.927	15.105	15.166	15.556	14.955	15.403	14.680	15.266	15.142	14.803	14.799	14.380	15.278
g mag	17.974	18.163	18.167	18.494	17.888	18.494	17.512	18.435	17.999	17.768	17.692	16.990	18.229
p err (mas)	0.089	0.144	0.111	0.123	0.082	0.154	0.104	0.184	0.137	0.120	0.086	0.099	0.130
para (mas)	5.076	5.113	5.065	5.033	4.990	5.018	4.911	4.971	4.925	4.832	4.853	4.846	4.847
AEN	0.000	0.260	0.453	0.000	0.000	0.534	0.000	0.423	0.000	0.000	0.265	0.000	0.000
Dist (pc)	195.609	196.086	196.799	197.891	199.439	200.188	201.819	203.112	203.896	204.501	204.944	205.763	206.105
qec	-31.908	23.816	57.996	84.894	44.814	76.834	5.962	-4.367	-6.039	-37.912	-58.686	36.221	-59.353
ra	85.298	340.893	238.558	186.356	256.963	79.124	9.063	248.096	355.576	229.642	352.204	53.195	275.678
GAIA DR3 Source ID	2901405993640618624	1876027833559029632	1622841813561817984	1726532322771758208	1358571238888935552	551881753981232896	2555452390900570752	4354273067714452352	2440574312223232000	6007147938313420544	6489518051784208000	222438624003605888	6635616067348164224
	128	129	130	131	132	133	134	135	136	137	138	139	140

continued ...

					-		,	-		,		-			
WISE var_flag	b'00nn'	01nn	b'00nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'nnnn'	b'00nn'	b'00nn'
WISE ph_qual	b'AACC'	b'AABC'	b'AABC'	b'AACC'	b'AACC'	b'AABB'	b'AACC'	$_{\mathrm{b'AABC'}}$	b'AACC'	b'AAAB'	b'AACB'	b'AACC'	b'AACC'	b'AACC'	b'AACC'
7	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
T_{DS}	112.5	275	162.5	100	100	125	125	125	100	275	125	125	125	125	100
Mod	2612	63297	7386	212	208	2575	2613	2605	214	63287	2594	2607	2604	2601	188
Gvar	0.910	0.848	0.944	0.998	0.893	0.943	0.980	1.041	1.088	0.941	1.070	0.957	1.043	1.017	0.828
DS	No	No	No	No	Yes	No	Yes	Yes	Yes	Yes	No	No	No	Yes	Yes
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	K&M, TESS. Faint	TESS. Blended	TESS. Blended	K&M, TESS. Blended	NCJM, TESS	TESS. Blended	TESS	K&M, TESS	TESS	TESS.	NCJM, TESS, K&M. Blended	TESS. Blended	TESS. Faint	TESS	K&M, TESS
ruwe	1.014	0.983	0.973	0.975	1.015	1.022	1.006	0.947	0.972	1.064	0.983	0.992	1.026	1.069	1.103
pm (mas per yr)	108.576	7.672	21.135	45.942	32.267	14.722	27.083	60.477	27.954	32.280	56.387	38.692	15.996	9.457	72.508
red	0.139	0.120	0.092	0.088	0.076	0.063	0.155	0.049	0.048	0.048	0.036	0.032	0.628	0.065	0.079
j mag	15.275	15.426	15.396	14.700	14.603	13.734	15.462	15.124	14.569	14.928	14.664	15.161	14.940	14.968	13.857
g mag	18.306	18.440	18.423	17.552	17.419	16.456	18.467	17.957	17.567	17.713	17.470	18.181	17.923	17.788	16.488
p err (mas)	0.131	0.151	0.113	860.0	0.095	0.057	0.131	0.145	0.099	0.077	0.107	0.125	0.121	0.124	0.061
para (mas)	4.803	4.887	4.760	4.752	4.753	4.705	4.809	4.715	4.691	4.681	4.665	4.631	4.607	4.599	4.560
AEN	0.579	0.000	0.352	0.000	0.061	0.000	0.422	0.000	0.091	0.000	0.000	0.000	0.143	0.240	0.156
Dist (pc)	207.185	207.212	208.296	208.854	209.235	210.434	210.575	211.345	211.444	211.900	213.855	215.016	215.654	216.622	217.174
oep	-84.803	35.925	31.375	-28.239	7.085	36.935	-26.718	-14.751	-25.798	-40.530	7.519	-46.211	49.078	-18.591	-1.986
ra	290.521	30.638	258.488	153.290	129.250	168.319	76.343	217.050	35.981	59.016	341.761	24.047	74.318	175.360	311.829
GAIA DR3 Source ID	6346053430995645568	330098133966211840	1333395858587009536	5465707902660372480	595786357085040640	763681404688064512	2958907320740440960	6299151559192363776	5118730826393708288	4843191593270342656	2712741648126780416	4931144414593677312	256229987878276352	3543734050861649408	4226700375674235136
	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155

continued ...

									-	-					
WISE var_flag	b'11nn'	b'00nn'	b,00nn,	b'00nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'11nn'	b'11nn'	b'11nn'	b'11nn'	b'20nn'	b'11nn'	b'22nn'
WISE ph-qual	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AABC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AABB'	b'AABB'
7	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
T_{DS}	100	100	100	100	112.5	100	112.5	162.5	100	100	100	100	100	125	100
Mod	218	204	202	485	2601	204	2607	4977	219	196	216	220	202	2609	198
Gvar	0.919	0.838	0.888	0.964	0.941	0.855	0.892	0.892	906.0	0.835	0.960	0.999	0.842	1.047	0.932
DS	Yes	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	TESS	K&M, TESS	K&M, TESS	K&M, TESS. Faint & Irregu	TESS. Blended	TESS. Blended	NCJM, K&M, TESS	TESS	TESS	K&M, TESS	TESS, K&M	NCJM, TESS	TESS. Blended	TESS	K&M, TESS. Blended
ruwe	1.039	0.971	0.929	0.975	1.013	1.033	1.034	1.068	1.138	1.033	1.033	1.020	1.032	1.008	1.004
pm (mas per yr)	33.807	67.288	62.157	62.770	24.075	15.065	108.252	29.148	35.706	75.630	58.313	19.966	26.829	24.799	72.567
red	0.000	0.139	0.108	0.377	0.075	0.063	0.049	0.094	0.125	690.0	0.143	0.088	0.107	0.074	0.086
j mag	14.951	14.516	14.274	15.257	14.914	14.527	15.193	14.837	15.059	14.360	14.936	15.171	14.312	15.230	14.270
g mag	17.913	17.203	17.150	18.145	17.855	17.274	18.203	17.447	18.153	16.888	17.849	18.057	17.170	18.329	16.958
p err (mas)	0.113	0.078	0.065	0.106	0.107	0.089	0.128	0.085	0.146	0.075	0.142	0.100	0.099	0.113	0.051
para (mas)	4.589	4.571	4.538	4.573	4.497	4.510	4.494	4.491	4.491	4.488	4.503	4.472	4.438	4.438	4.428
AEN	0.313	0.000	0.000	0.000	0.173	0.118	0.000	0.219	0.519	0.097	0.172	0.123	0.138	0.409	0.000
Dist (pc)	217.545	217.829	218.203	218.567	219.454	220.276	220.890	221.016	221.568	221.902	221.961	223.214	223.274	223.447	224.449
dec	-29.933	49.824	-38.312	75.978	-19.579	45.340	49.088	69.649	-24.845	-22.188	-5.804	42.592	-23.354	59.961	-57.037
ra	42.947	92.862	158.933	40.866	60.175	122.541	151.784	101.744	51.059	324.747	199.077	270.844	310.425	270.571	28.189
GAIA DR3 Source ID	5065248343140177536	970166080613583232	5441348085110168960	548788759052488448	5094455018402626560	929078190075974528	823662302309125504	1106405707419734528	5086043990671838720	6817461546684629888	3634795878750939776	2113794336847287040	6854663217672327040	2152693481986456960	4718904246271596800
O 0 1	156 5	157 9	158 5	159 5	160 5	161 9	162 8	163 1	164 5	165 6	166 3	167 2	168 6	169 2	170 4
				_				_	-					1	

continued ...

60														1
WISE var_flag	b'11nn'	b'00nn'	b'11nn'	22nn	b'11nn'	b'11nn'	b'11nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'00nn'	b'01nn'
WISE ph-qual	b'AACB'	b'AACC'	b'AABB'	b'AABC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACB'	b'AACC'	b'AACC'	b'AACB'	b'AABC'
~	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
T_{DS}	100	100	125	300	125	100	100	100	125	100	100	100	100	137.5
Mod	478	215	2600	72301	2601	209	223	214	2594	203	202	195	195	4978
Gvar	0.977	0.902	0.947	0.847	1.051	0.949	0.906	0.925	0.862	0.945	0.874	0.838	1.058	0.868
DS	No	No	No	No	No	No	Yes	Yes	Yes	No	No	Yes	No	No
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	TESS. Blended	TESS. Blended	TESS. Blended	UV, TESS. Irregu.	NCJM, TESS. Blended	NCJM, K&M, TESS. Blended	TESS	TESS.	TESS	TESS. Faint	K&M, TESS. Blended	NCJM, TESS	TESS. Irregu	TESS. Blended
ruwe	0.972	0.993	0.979	0.930	1.051	1.217	1.031	0.987	0.968	1.054	1.077	1.006	1.024	1.005
pm (mas per yr)	33.461	9.758	9.007	10.132	7.865	106.698	26.567	39.183	23.437	11.714	44.305	31.769	19.924	32.750
red	0.111	0.116	0.000	0.054	0.032	0.000	0.087	0.174	0.117	0.296	0.000	0.037	0.118	0.073
j mag	15.082	14.847	14.840	15.401	15.170	14.775	15.329	14.767	14.993	14.501	14.463	14.166	14.273	14.763
g mag	17.740	17.830	17.740	18.258	17.927	17.653	18.310	17.827	17.665	17.326	17.261	16.969	16.893	17.578
p err (mas)	0.103	0.116	0.106	0.105	0.124	0.120	0.116	0.108	0.122	0.083	0.061	0.083	0.084	0.117
para (mas)	4.440	4.381	4.378	4.345	4.315	4.270	4.310	4.255	4.275	4.241	4.236	4.221	4.226	4.191
AEN	0.000	0.000	0.000	0.000	0.517	0.400	0.420	0.000	0.000	0.000	0.256	0.000	0.147	0.000
Dist (pc)	224.534	225.118	225.139	229.985	230.589	231.992	231.994	232.039	233.059	233.598	233.955	234.597	234.735	234.952
dec	47.326	6.316	31.407	-48.428	23.395	36.608	57.205	-33.713	-26.020	-8.387	49.394	-19.493	-13.114	-19.260
ra	164.128	315.233	214.556	51.232	204.390	175.989	280.844	153.397	298.999	110.534	210.917	3.634	184.435	345.388
GAIA DR3 Source ID	831383145976762496	1736572861093767296	1477380273498107264	4737777118547954176	1443772124343102848	4032337162611310208	2154062850702747904	5458954908402727936	6755031658716353024	3048572670087473536	1511266779486191104	2365292026675460352	3576241906705727104 184.435	2399548166136526336
	171	172	173	174	175	176	177	178	179	180	181	182	183	184

continued ...

WISE var_flag	b'21nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'33nn'	b'11nn'	b,00nn,	100n	b'00nn'	b'00nn'	b'01nn'	b'00nn'	b'11nn'	b'11nn'	b'00nn'
ਫ	b'AACC' b'	b'AABB' b'	b'AACC' b'	b'AACC' b'	b'AACB' b'	b AACC' b'	$b'AACC' \mid b'$	b'AACC' b'	b'AAAB' 10	b'AACC' b'	$b'AACC' \mid b'$	$b'AACC' \mid b'$	b'AACC' b'	b'AABB' b'	b'AACC' b'	b'AACC' b'
WISE ph-qu	-															
~	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
I T _{DS}	100	125	100	125	100	100	100	125	2 200	100	125	100	125	100	100	100
Mod	198	2589	201	2609	474	202	205	2599	36242	210	2601	209	2600	195	191	202
Gvar	0.953	0.852	1.087	1.075	1.021	0.858	1.005	0.878	1.572	1.147	0.961	0.918	0.889	0.853	0.867	0.881
DS	Yes	No	Yes	No	No	Yes	Yes	No	No	No	Yes	Yes	Yes	No	Yes	Yes
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	K&M, TESS.	K&M, TESS. Blended	TESS	K&M, $TESS$. $Blended$	TESS. Blended	TESS	TESS	NCJM, TESS	UV source. TESS	NCJM, TESS. Blended	TESS.	TESS	NCJM, TESS.	TESS. Blended	K&M, TESS	TESS
ruwe	0.926	0.978	1.212	1.008	0.943	0.984	0.988	1.048	1.263	0.987	0.971	1.016	0.979	1.006	1.016	0.977
pm (mas per yr)	65.117	53.044	34.485	55.370	18.695	7.809	18.925	39.305	30.605	33.528	7.243	28.348	29.303	32.862	46.922	9.111
red frac	0.073	0.105	0.143	0.114	0.106	0.134	0.070	0:020	0.023	0.000	0.000	0.277	0.091	0.028	0.075	0.185
j mag	14.376	14.708	14.549	15.390	15.032	14.532	14.651	14.775	14.658	14.819	15.059	14.938	14.965	14.314	14.069	14.516
g mag	17.071	17.413	17.262	18.501	17.750	17.407	17.590	17.878	17.652	17.719	17.920	17.693	17.957	16.938	16.799	17.305
p err (mas)	0.095	0.101	0.104	0.133	0.136	0.122	0.119	0.128	960.0	0.126	0.127	0.078	0.136	0.051	0.052	0.082
para (mas)	4.221	4.248	4.236	4.180	4.292	4.233	4.213	4.181	4.147	4.134	4.198	4.153	4.138	4.148	4.110	4.088
AEN	0.000	0.000	0.279	0.473	0.000	0.000	0.000	0.509	929.0	0.397	0.000	0.000	0.000	0.000	0.112	0.000
Dist (pc)	235.036	235.092	235.184	235.222	235.966	236.078	236.138	236.425	237.654	237.687	238.803	239.147	239.235	239.257	241.404	241.702
dec	42.136	-53.823	-16.576	37.803	-28.727	-29.363	-11.189	21.936	45.370	20.041	-22.564	-72.634	-10.457	-53.798	-63.652	61.382
ra	126.028	308.916	208.861	223.349	203.281	184.297	64.499	124.994	225.041	221.782	331.425	5.624	355.478	35.401	327.223	90.703
GAIA DR3 Source ID	915612711689028352	6471043885615813504	6294757704570139264	1295985460782929024	6188117377462638336	3473317958963571840	3190924756901443328	676429247151235328	1586970285360406784	1238005493935425024	6818973272093697280	4689531029378339840	2435392417000825984	4743348623139858816	6402749267044915840	1005962056045974912
0 x	185 91	186 64	187 62	188 15	189 61	190 34	191 31	192 67	193 18	194 15	195 68	196 46	197 24	198 47	199 64	200 10

continued ..

20.0.873 41.737 242.857 0.000 4111 0.118 18.385 15.389 0.088 34.850 0.088 NCJM, No. No. 0.992 4991 10.20 13.066 -50.853 243.185 0.406 4.003 0.122 18.215 15.412 0.061 67.899 1.003 K&AA, No. No. 0.978 4553 225 32.5157 -56.391 243.12 0.000 4.131 0.137 18.414 15.465 0.086 17.173 0.001 TERSS. No. No. 0.97 4553 22 66.374 -56.391 243.475 0.000 4.010 0.114 15.465 0.089 17.173 0.089 TERSS. No. No. 0.97 17.75 1.000 1.000 1.000 1.000 18.321 15.465 0.089 17.455 0.899 17.75 No. No. No. 0.997 17.75 1.000 1.000 1.0000 1.0000 1.0000 1.0000	GAIA DR3 Source ID		ra	dec	Dist (pc)	AEN	para (mas)	p err (mas)	g mag	j mag	red frac	pm (mas per yr)	ruwe	Remarks	Neb Fe	DS	Gvar	Mod	T_{DS}	₽ 6	WISE ph-qual	WISE var_flag
-56.391 243.156 0.496 4.093 0.122 18.215 15.412 0.001 67.899 1.083 KkAA, kAA, kAA, kAA, kAA, kAA, kAA, kAA,	1489795963094761472	- 23	20.973	41.737	242.837	0.000	4.111	0.118	18.385	15.393	0.088	34.850	0.968	NCJM, TESS. Blended	No	No	0.922	4991	162.5	0.1 b	b'AABC'	b'11nn'
7.56.391 24.3212 0.000 4.131 18.414 18.465 0.086 17.173 0.901 TESS. No Yes 1.101 430 17.5 1.2.286 23.676 24.3475 0.000 4.052 0.128 17.486 0.080 14.465 0.980 18.23 15.486 0.080 14.463 0.993 TESS. No Yes 1.101 4980 15.0 14.2028 245.466 0.000 4.010 0.114 17.518 14.603 0.129 18.124 0.967 TESS. No Yes 1.00 7.57 17.5 14.2028 245.466 0.000 4.010 0.114 17.518 14.603 0.129 18.128 No No Yes 1.106 18.507 18.507 0.083 18.507 0.083 18.248 18.507 0.083 18.248 0.093 18.288 No No Yes 1.106 18.508 1.00 18.509 1.108 18.289 1.100	4903570969367489152		13.096	-59.825	243.185	0.496	4.093	0.122	18.215	15.412	0.061	62.899	1.063	K&M, TESS. Irregu. Blended	No	N o	0.978	45533	225	0.15 b'	b'AAAB'	b'nnnn'
2.6.7.7.4 2.45.7.6 2.45.7.6 2.45.7.6 2.45.7.6 2.45.7.6 2.45.7.6 2.45.7.6 2.45.7.6 2.45.7.6 2.45.7.6 2.45.7.6 2.45.8.6 2.45.9.6	6459261686515092736		325.157	-56.391	243.212	0.000	4.131	0.137	18.414	15.465	0.086	17.173	0.901	TESS. Blended	No	No	0.951	7378	175	0.1 b ³	b'AABC'	b'11nn'
4.6.177 2.43.654 0.000 4.006 0.009 18.321 15.486 0.089 14.455 0.989 TESS. No Yos 0.097 206 17.518 14.603 0.129 18.124 0.987 TESS. No Yos 1.069 7357 17.518 1.2.704 245.466 0.000 4.214 0.293 19.064 15.972 0.083 28.479 0.984 TESS. No No 0.992 29.70 17.518 17.892 No No No 0.992 19.70 17.518 14.833 0.000 25.709 1.100 TESS. No No 0.992 19.5 10.00 14.833 0.000 25.709 1.100 TESS. No No 0.992 19.5 10.00 11.833 10.00 11.833 1.000 11.833 11.834 0.111 11.828 0.111 11.828 0.111 11.833 0.992 11.844 No No No 0.992 19.5 <t< td=""><td>101027079730076544</td><td></td><td>34.710</td><td>23.676</td><td>243.475</td><td>0.000</td><td>4.052</td><td>0.128</td><td>17.765</td><td>14.864</td><td>0.085</td><td>25.080</td><td>0.959</td><td>TESS</td><td>No</td><td>Yes</td><td>1.101</td><td>4980</td><td>150</td><td>0.1 b</td><td>b'AACC' 1</td><td>b'00nn'</td></t<>	101027079730076544		34.710	23.676	243.475	0.000	4.052	0.128	17.765	14.864	0.085	25.080	0.959	TESS	No	Yes	1.101	4980	150	0.1 b	b'AACC' 1	b'00nn'
12 (2.22) 245.466 0.000 4.010 0.114 17.518 14.603 0.129 18.124 0.967 TESS. No No No 1.069 7357 17.5 1.5.704 246.441 0.589 4.214 0.293 19.064 15.972 0.083 28.479 0.984 TESS. No No 0.992 3.6539 20.00 1.2.362 247.289 0.217 4.006 0.083 17.508 14.333 0.000 25.709 1.100 TESS. No No 0.992 1.95 1.00 1.2.362 247.289 0.217 4.006 0.089 17.850 14.828 0.111 61.822 1.007 K&M. No No 0.992 1.95 1.00 4.271 247.21 247.82 0.000 1.850 1.755 14.828 0.111 61.825 1.007 K&M. No No 0.891 1.95 1.2.2.22 24.71 24.71 24.716 <td< td=""><td>4674754658232078848</td><td></td><td>66.974</td><td>-66.177</td><td>243.654</td><td>0.349</td><td>4.066</td><td>0.099</td><td>18.321</td><td>15.486</td><td>0.089</td><td>14.455</td><td>0.993</td><td>TESS</td><td>No</td><td>Yes</td><td>0.957</td><td>2606</td><td>125</td><td>0.1 b</td><td>b'AACC' 1</td><td>b'00nn'</td></td<>	4674754658232078848		66.974	-66.177	243.654	0.349	4.066	0.099	18.321	15.486	0.089	14.455	0.993	TESS	No	Yes	0.957	2606	125	0.1 b	b'AACC' 1	b'00nn'
1. 5.704 246.441 0.589 4.214 0.293 19.064 15.972 0.083 28.479 0.984 TESS. No No 0.958 36539 200 No 0.25.709 1.100 TESS. No No 0.995 36539 200 No 0.25.709 1.100 TESS. No No 0.995 195 100 No 0.25.709 1.100 TESS. No No 0.995 1.25 1.05 1.05 1.25 1.05 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.2	3160764770700057216		104.694	12.028	245.466	0.000	4.010	0.114	17.518	14.603	0.129	18.124	0.967	TESS. Irregu.	No	No	1.069	7357	175	0.1 b	b'AABC'	b'01nn'
-12.362 247.289 0.217 4.006 0.085 17.008 14.333 0.000 25.709 1.100 TESS. No No No 0.092 195 100 4.271 247.81 0.156 3.992 0.089 17.850 14.828 0.111 61.822 1.097 K&M. No Yes 1.039 2595 125 4.271 24.271 247.822 0.000 3.989 0.118 17.928 15.204 0.088 59.879 0.992 K&M. No	3064546164554840960		122.831	-5.704	246.441	0.589	4.214	0.293	19.064	15.972	0.083	28.479	0.984	TESS. Irregu. Blended	No	No	0.958	36539	200	0.15 b	b'AABC' (00nn
31.501 -59.289 247.801 0.156 3.992 0.089 17.850 14.828 0.111 61.822 1.097 K&M, TESS. No Yes 1.039 2595 1.25 204.694 -4.271 247.822 0.000 3.989 0.118 17.928 15.204 0.085 59.879 0.992 K&M, TESS. No No 0.861 2598 125 152.951 -0.631 248.749 0.109 3.956 0.121 17.512 14.801 0.152 44.716 0.945 K&M, Blended No No 0.945 7359 162.5 334.535 -62.227 249.086 0.301 3.997 0.103 17.924 15.045 0.036 39.840 1.074 TESS. No Yes 1.001 195 100 44.244 -13.865 249.287 0.152 17.047 14.268 0.036 39.840 1.074 TESS. No Yes 1.001 195 100	2423801369716357888			-12.362	247.289	0.217	4.006	0.085	17.008	14.333	0.000	25.709	1.100	TESS. Ir- regu.Blende	oN oN	No	0.992	195	100	0.1 b'	b'AACC' 1	b'00nn'
204.694 -4.271 247.825 0.000 3.989 0.118 17.928 15.204 0.088 59.879 0.995 K&M, No No 0.861 2598 125 152.951 -0.631 248.749 0.109 3.956 0.121 17.512 14.801 0.155 44.716 0.945 K&M, No No 0.945 7859 16.829 16.829 17.924 15.045 0.036 39.840 1.074 1.074 1.074 1.074 1.074 1.074 1.056 1.057 1.056 1.057 1.056 1.057 1.056 1.057 1.057	4714834812001755648		31.501	-59.289	247.801	0.156	3.992	0.089	17.850	14.828	0.111	61.822	1.097	K&M, TESS.	No	Yes	1.039	2595	125	0.1 b	b'AABB'	b'00nn'
152.951 -0.631 248.749 0.109 3.956 0.121 17.512 14.801 0.152 44.716 0.945 K&M, No No No 0.945 7359 162.5 162.5 Blended Selection No	3633556041951797120		204.694	-4.271	247.822	0.000	3.989	0.118	17.928	15.204	0.088	59.879	0.992	K&M, TESS	No	No	0.861	2598	125	0.1 b'	b'AACC'	b'00nn'
-62.227 249.080 0.301 3.997 0.103 17.924 15.045 0.036 39.840 1.074 Faint No No No 0.847 2597 125 125 13.865 249.287 0.152 3.990 0.071 17.047 14.268 0.035 54.700 1.056 K&M -56.250 250.235 0.000 3.960 0.059 16.829 14.305 0.060 24.511 0.978 TESS No Yes 0.835 192 100	3831516238585092096		152.951	-0.631	248.749	0.109	3.956	0.121	17.512	14.801	0.152	44.716	0.945	K&M, TESS. Blended	No	No	0.945	7359	162.5	0.1 b,	b'AABC' 1	b'nnnn'
64.244 -13.865 249.287 0.152 3.990 0.071 17.047 14.268 0.035 54.700 1.056 K&M K&M K&M K&M K&M K&M K&M K&M	6403688932874231168			-62.227	249.080	0.301	3.997	0.103	17.924	15.045	0.036	39.840	1.074	TESS. Faint	No	No	0.847	2597	125	0.1 b'	b'AACB'	b'01nn'
331.949 -56.250 250.235 0.000 3.960 0.059 16.829 14.305 0.060 24.511 0.978 TESS No Yes 0.835 192 100	3176818022716814720		64.244	-13.865	249.287	0.152	3.990	0.071	17.047	14.268	0.035	54.700	1.056	TESS, K&M	No	Yes	1.001	195	100	0.1 b,	b'AACB'	b'11nn'
	6412717744403679744			-56.250	250.235	0.000	3.960	0.059	16.829	14.305	090.0	24.511	0.978	TESS	No	Yes	0.835	192	100	0.1 b'	b'AACB'	b'00nn'

continued ...

WISE var_flag	b'00nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	b'01nn'	b'00nn'	b'01nn'	b'00nn'	110n	b'11nn'	b'21nn'	b'11nn'	b'00nn'	b'00nn'	b'01nn'
WISE ph-qual	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AABC'	b'AACC'	b'AABB'	b'AACC'	b'AACC'	b'AAAC'	$_{ m b'AABC'}$	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'
7	0.1	0.1	0.1	0.1	0.1	0.1	0.15	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
T_{DS}	100	100	100	100	125	100	112.5	125	125	425	125	100	100	100	100	100
Mod	205	201	190	215	2588	202	473	2603	2591	117320	2599	199	198	195	204	211
Gvar	1.430	0.898	0.958	0.893	0.957	1.016	806.0	0.847	0.875	0.962	1.072	0.901	0.930	0.913	0.897	0.930
DS	Yes	Yes	No	Yes	No	Yes	No	No	No	No	No	Yes	No	No	Yes	No
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	Yes WI	No	No	No
Remarks	TESS	TESS	K&M, TESS. Blended	TESS	TESS. Irregu	TESS	TESS. Blended	TESS. Irregu	TESS. Faint	TESS, K&M. Blended	TESS. Blended	TESS.	TESS	K&M, TESS. Blended	K&M, TESS	TESS. Blended
ruwe	1.007	1.058	0.973	1.034	0.933	0.994	1.013	1.007	0.933	1.111	1.011	1.018	1.048	0.947	0.970	1.002
pm (mas per yr)	25.570	7.739	52.741	17.741	35.354	606.2	0.731	16.491	25.125	47.825	9.183	24.948	7.800	58.891	41.580	8.450
red frac	0.000	860.0	0.116	0.043	0.161	0.048	0.088	0.093	0.036	0.029	0.035	0.063	0.252	0.127	0.071	0.103
j mag	14.827	14.712	14.079	15.146	14.671	14.633	15.065	15.304	15.042	14.148	15.039	14.660	14.576	14.380	14.934	15.154
g mag	17.740	17.376	16.867	18.009	17.539	17.490	17.972	18.190	17.751	16.904	18.018	17.403	17.275	17.126	17.675	17.983
p err (mas)	0.101	0.079	0.073	0.106	0.103	0.073	0.087	0.107	0.104	0.095	0.101	0.074	0.063	0.057	0.104	0.104
para (mas)	3.912	3.922	3.922	3.905	3.899	3.877	3.914	3.891	3.902	3.856	3.866	3.860	3.859	3.852	3.854	3.852
AEN	0.000	0.206	0.000	0.000	0.000	0.000	0.000	0.110	0.000	0.235	0.154	0.000	0.206	0.000	0.000	0.000
Dist (pc)	250.689	251.546	252.528	253.165	253.732	253.882	254.022	254.280	254.546	254.864	255.523	256.147	256.554	256.984	257.139	257.998
dec	68.930	-21.411	-0.158	-28.840	-26.419	58.258	-38.516	-26.497	21.652	34.975	-38.626	-25.108	-35.868	25.860	-18.926	-30.814
ra	135.084	68.892	318.044	52.250	297.795	197.882	75.844	76.152	158.890	143.088	65.478	57.554	139.769	263.253	31.127	53.541
GAIA DR3 Source ID	1117427693010918400	4898684774054542208	2689569479227015808	5057336772862673152	6754939982636033024	1566609769556349824	4823360079996664064	2958925393962238208	721252964664551424	797656142189135744	4865354208632893056	5083549374883972992	5623480090308822400	4594031508116001280	5138097894788103424	5055743271276879488
O 0 1	215 1	216 4	217 2	218 5	219 6	220 1	221 4	222 2	223 7	224 7	225 4	226 5	227 5	228 4	229 5	230 5

continued

bo																
WISE var_flag	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'10nn'	b'00nn'	b'11nn'	00nn	b'00nn'	0nnn	b'00nn'	b'nnnn'	b'00nn'	b'11nn'
WISE ph-qual	b'AACC'	b'AACC'	b'AABC'	b'AACC'	b'AACC'	b'AABB'	b'AACC'	b'AACB'	b'AACC'	b'AABC'	b'AACC'	b'ABBC'	b'AACC'	b'AACC'	b'AABB'	b'AACC'
٨	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.4	0.1	0.1	0.1	0.1
T_{DS}	125	125	125	100	100	125	100	100	100	200	100	200	100	125	175	100
Mod	2591	2598	2580	203	205	2590	193	193	203	36529	198	37868	188	2589	7363	198
Gvar	0.857	0.939	0.809	906.0	0.852	1.122	0.831	0.932	0.876	0.964	0.866	0.911	0.865	0.991	868.0	1.006
DS	Yes	Yes	No	Yes	Yes	No	No	Yes	Yes	No	No	No	Yes	No	No	Yes
Neb Fe	No	Faint	No	No	No	No										
Remarks	K&M, TESS	TESS.	TESS. Irregu	TESS	TESS	TESS. Blended	TESS. Blended	TESS.	NCJM, TESS	TESS. Blended	TESS. Faint	TESS. Blended	TESS, LAM- OST	TESS. Blended	TESS. Blended	TESS.
ruwe	0.995	0.980	0.969	0.951	1.045	1.125	0.930	0.941	1.044	0.957	1.002	0.995	1.018	1.056	0.982	1.085
pm (mas per yr)	41.675	28.624	38.177	18.743	31.587	20.241	22.023	12.922	22.791	13.349	8.149	22.064	13.769	37.869	20.703	23.045
red frac	0.100	0.167	0.264	0.118	0.156	960.0	660.0	0.029	0.076	0:030	960.0	0.226	0.112	0.111	0.024	0.073
j mag	14.997	15.278	14.508	14.646	14.926	14.943	14.476	14.407	14.815	15.690	14.626	16.547	14.328	15.036	15.131	14.640
g mag	17.766	17.991	17.185	17.527	17.857	17.814	17.138	17.091	17.583	18.800	17.351	19.826	16.939	17.739	17.920	17.413
p err (mas)	0.112	0.123	0.084	0.123	0.121	0.088	0.085	0.079	0.107	0.159	0.094	0.431	0.073	0.095	0.089	0.082
para (mas)	3.829	3.868	3.841	3.786	3.801	3.797	3.773	3.760	3.747	3.793	3.727	4.024	3.709	3.716	3.704	3.646
AEN	0.000	0.000	0.000	0.337	0.224	0.431	0.000	0.000	0.253	0.182	0.000	0.000	0.127	0.282	0.000	0.436
Dist (pc)	258.204	258.610	260.327	260.751	262.312	262.508	262.902	263.809	265.185	265.358	265.828	266.080	266.549	266.621	267.422	268.280
dec	57.121	-27.707	25.687	-6.459	44.125	71.071	4.721	-31.137	23.260	-32.792	1.803	24.480	31.670	-47.934	-57.411	59.892
ra	118.331	156.212	98.171	326.464	359.286	267.297	123.592	326.779	336.203	63.080	64.902	98.073	38.598	351.272	43.814	176.861
GAIA DR3 Source ID	1082166694409052288	5468611605493851264	3384021878028948096	2667886899474087680	1922953478004114816	1638984740202462080	3094722295538135296	6592971302704572288	1875560270535342592	4882795589785778432	3256018280511121024	3383511807713437696	133263046965499392	6526627600017876864	4727877047133922176	858610318053921920
	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246

continued.

WISE var_flag	b'11nn'	b'00nn'	b'00nn'	b'nnnn'	b'11nn'	b'nnnn'	b'nnnn'	b'11nn'	b'01nn'	b'00nn'	b'01nn'	b'11nn'	b'11nn'	b'00nn'	b'11nn'
WISE ph-qual	b'AACB'	b'AACC'	b'AACC'	b'AACC'	b'AABB'	b'AACC'	b'AACC'	b'AACC'	b'AABB'	b'AACB'	b'AACC'	b'AACC'	b'AACC'	b'AABB'	b'AABC'
7	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
T_{DS}	100	125	100	125	125	100	100	100	137.5	125	100	100	100	125	150
Mod	194	2589	218	2587	2583	193	218	199	2586	2582	215	210	203	2575	4971
Gvar	0.967	0.786	0.890	0.803	0.937	0.871	0.900	0.953	0.838	0.875	0.998	0.982	0.852	0.892	0.885
DS	No	No	Yes	No	No	No	No	Yes	No	Yes	Yes	No	No	No	No
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	TESS. Irregu	K&M, TESS. Irregu	TESS	TESS. Faint	K&M, TESS. Blended	TESS. Faint	TESS. Irregu	K&M, TESS	TESS. Blended	TESS	TESS.	TESS. Irregu	TESS. Irregu	TESS. Blended	NCJM, K&M, TESS. Blended
ruwe	1.076	1.006	0.988	1.051	0.989	096.0	1.005	1.132	0.913	1.014	1.034	1.036	1.027	1.131	1.102
pm (mas per yr)	6.525	50.757	10.242	7.431	60.450	29.464	21.595	62.976	6.004	28.321	22.269	33.445	30.387	11.971	41.330
red frac	0.072	0.000	0.093	0.139	0.138	0.118	0.155	0.025	0.200	0.000	0.089	0.077	0.143	0.236	0.086
j mag	14.467	14.977	15.422	14.753	14.622	14.504	15.429	14.711	14.821	14.765	15.302	14.993	14.881	14.274	14.804
g mag	17.130	17.719	18.446	17.597	17.327	17.124	18.391	17.534	17.553	17.312	18.204	17.997	17.765	17.064	17.618
p err (mas)	0.088	0.109	0.109	0.099	0.081	0.106	0.118	0.122	0.064	0.112	0.119	0.095	0.087	0.089	0.108
para (mas)	3.685	3.713	3.669	3.676	3.692	3.689	3.704	3.688	3.650	3.681	3.624	3.642	3.624	3.624	3.614
AEN	0.168	0.000	0.244	0.000	0.000	0.000	0.000	0.418	0.000	0.210	0.459	0.278	0.263	0.201	0.266
Dist (pc)	268.519	268.866	269.360	269.615	269.639	269.787	270.692	270.901	271.901	272.107	272.428	272.599	272.776	273.067	273.922
dec	-48.657	25.838	58.807	-3.103	34.261	7.180	-63.093	-4.029	88.849	-9.333	41.442	-38.977	84.567	-4.515	8.036
ra	305.132	156.473	245.566	118.139	351.232	61.762	97.928	23.396	239.688	354.011	234.411	58.684	285.549	235.343	169.681
GAIA DR3 Source ID	6668113546550866816	727690403382030848	1623882363879075200	3080917549095781376	1912121231182574208	3297949054086097408	5477382684625909248	2480882305418201856	1729065253964773760	2437221214075471744	1390217593013664512	4855620507070226304	2302726649664192640	4400845665847062272	3818640132790416000
	247 6	248 7	249 1	250 3	251 1	252 3	253 5	254 2	255 1	256 2	257 1	258 4	259 2	260 4	261 3

continued.

WISE var_flag	b'00nn'	b'11nn'	b'22nn'	b'00nn'	b'11nn'	b'00nn'	b'11nn'	b'11nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'00nn'
WISE ph-qual	b'AABB'	b'AABB'	b'AACC'	b'AABB'	b'AACB'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACB'	b'AACB'	b'AABC'	b'AABB'	b'AABC'
٨	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
T_{DS}	125	137.5	100	162.5	100	137.5	100	100	125	125	100	125	125	200
Mod	2583	2595	202	4968	187	2586	198	190	2588	2580	192	2589	2575	36786
Gvar	0.963	0.849	0.917	0.969	0.833	0.865	0.986	0.921	1.016	0.801	826.0	0.898	1.123	1.030
DS	No	Yes	No	No	Yes	No	Yes	Yes	No	No	No	No	Yes	No
Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	TESS. Faint & Irregu,	TESS.	TESS. Blended	TESS. Blended	TESS.	TESS. Blended	K&M, TESS.	K&M, TESS.	TESS. Faint	TESS. Blended	TESS. Blended	TESS. Blended	NCJM, K&M, TESS	Herbig Ae/Be
ruwe	1.027	0.988	0.958	0.968	0.976	0.983	0.972	0.989	1.006	0.936	1.140	1.040	1.022	0.887
pm (mas per yr)	22.560	17.698	37.681	21.227	32.911	16.849	82.362	41.018	14.193	8.927	26.508	16.688	51.926	27.749
red frac	0.096	0.093	0.167	0.000	0.029	0.019	0:030	0.000	0.504	0.063	0.043	0.113	0.138	0.407
j mag	14.645	15.018	14.884	14.687	14.217	14.842	14.720	14.249	14.848	14.650	14.602	14.970	14.349	15.584
g mag	17.373	18.008	17.702	17.456	16.902	17.629	17.474	16.998	17.712	17.286	17.181	17.756	17.137	18.751
p err (mas)	0.089	0.095	0.079	0.109	0.093	0.119	0.076	0.083	0.119	0.102	0.070	0.105	0.087	0.260
para (mas)	3.613	3.593	3.597	3.600	3.597	3.634	3.597	3.548	3.602	3.613	3.569	3.575	3.524	3.582
AEN	0.076	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.243	0.135	0.000	0.000
Dist (pc)	274.245	274.254	274.607	274.714	274.906	275.686	275.717	275.741	275.915	276.711	277.809	278.020	278.444	280.188
dec	-30.917	-41.304	-41.541	-2.153	-31.786	-5.523	-48.492	12.620	40.527	-13.500	66.754	-8.654	-7.177	12.873
ra	304.602	49.477	49.097	185.319	322.007	337.892	13.405	194.689	66.206	338.992	150.480	146.655	20.161	98.817
GAIA DR3 Source ID	6701056903488196480	4851401543515220736	4851380137398151808	3694287467929202048	6783520279866548480	2623244940679403008	4932875462509521280	3929437305341869056	228005004699478016	2597994110686486400	1066493366609312256	3819217208891753472	2478471596110203008	3355250819828269568
	262 (263	264	265	997	367	7 892	369	270 :	271 :	272	273 (274	275

continued ...

	b'11nn'	'n	٦,			1 '
a		b'00nn'	,000n	b'11nn'	b,000n'	b'11nn'
b'AABB' b'AABC' b'AACC' b'AACC' b'AACC' b'AACC' b'AACC'	b'AABC'	b'AACC'	$_{ m b'AABC'}$	b'AABB'	b'AABC'	b'AACB'
0.1 0.1 0.1 0.1 0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\begin{array}{c cccc} T_{DS} & & & & & & & & \\ \hline & 125 & & & & & & & \\ & 200 & & 200 & & & & \\ & 200 & & 200 & & & \\ & 200 & & 200 & & & \\ & 200 & & 200 & & & \\ & 200 & & 200 & & & \\ \hline & 200 & & 200 & & & \\ & 200 & & 200 & & & \\ & 200 & & 200 & & & \\ & 200 & & 200 & & & \\ & 200 & & 200 & & & \\ & 200 & & 200 & & & \\ \hline \end{array}$	215	100	125	100	225	100
Mod 37073 37073 37073 2590 2590 2598 2598	40759	192	2589	190	45264	205
Gvar 0.847 0.952 0.820 0.864 0.870 0.826	1.080	0.822	0.814	0.995	0.963	0.917
DS No	No	Yes	No	No	No	Yes
Fe by No	No	No	No	No	No	No
Remarks TESS, LAM- OST. Blended K&M, TESS. Irregu TESS. Irregu TESS. Faint TESS.	TESS, K&M. Blended	TESS.	TESS. Blended	TESS. Irregu	TESS. Irregu	TESS
1.190 1.002 1.002 1.003 0.997 0.947 0.978	0.947	1.097	1.007	0.972	1.000	1.017
mas per yr) 18.425 18.425 18.386 15.386 15.386 25.304 27.630	48.226	21.279	16.235	10.352	19.634	22.791
0.032 0.028	0.167	0.026	0.089	0.118	0.042	0.102
j mag 14.312 15.089 14.358 14.259 15.140 15.363	15.304	14.632	15.088	14.426	15.308	15.183
g mag 16.716 17.875 17.829 16.860 17.829 18.263	18.581	17.229	17.816	17.186	18.341	18.021
(mas) 0.083 0.083 0.093 0.068 0.059 0.073 0.079	0.231	0.076	0.089	0.095	0.126	0.100
mas) 3.506 3.506 3.524 3.454 3.469 3.465 3.491	3.394	3.439	3.449	3.417	3.474	3.359
AEN 0.247 0.247 0.000 0.	0.000	0.260	0.000	0.000	0.000	0.311
Dist (pc) 281.396 282.665 282.982 283.725 284.664 285.078 285.500	286.831	286.832	287.815	288.245	288.938	290.555
dec 35.676 -31.364 -77.713 -20.128 -14.308 72.466 64.461	-26.020	59.436	26.571	45.225	-24.952	61.584
ra 138.988 138.988 152.541 152.541 86.805 55.008 240.591 204.501	218.203	145.782	255.295	23.501	59.763	278.512
GAIA DR3 Source ID C14714207670830336 714714207670830336 1131031396329260288 3340157961149521152 2966133315455819648 5112579608592599680 1654323820762575872 1665884498333848320	6223781965550159232	1050495536848847360	4573357386681921024	397088899250816128	5083177117181902208	2159638130570202880
	284 (285	7 982	287	288	289

continued ...

Source Line Line														1
CAIA DRS Teal dec Dist AEV Core Fine <	WISE var_flag	b'00nn'	b'11nn'	b'11nn'	b'00nn'	b'000n'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'21nn'	b'00nn'	b'00nn'	b'000n'
CAIA DRS This is a control of the control	WISE ph-qual	b'AACC'	b'AACB'	b'AACC'	b'AABC'	b'AAAB'	b'AABC'	b'AABC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AABC'	b'AABC'
GAAA DRS TABE OPENION CATA DRS From Canada From Canad	7	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.15	0.15
GALA D184 CPC D184 CPC CPC<	T_{DS}	125	100	100	125	225	125	125	100	100	100	125	200	200
GALA DBS rate OFF TARN T	Mod	2587	473	195	2592	45252	2589	2576	188	191	194	2587	36530	36513
GALA DBS rap AEA Para F man F man </th <th>Gvar</th> <th>0.920</th> <th>0.937</th> <th>1.035</th> <th>0.909</th> <th>0.928</th> <th>0.945</th> <th>0.936</th> <th>0.903</th> <th>0.827</th> <th>1.059</th> <th>0.970</th> <th>0.950</th> <th>0.902</th>	Gvar	0.920	0.937	1.035	0.909	0.928	0.945	0.936	0.903	0.827	1.059	0.970	0.950	0.902
GAIA Dest Column Column Column Free Free Column Free Pres Column Free Pres	DS	No	Yes	No	No	No	No	No	No	Yes	No	No	No	No
GAIA Dist AEN paral (mas) port (mas) frage print (mas) frage print (mas) print (mas) print (mas) print 	Neb Fe	No	No	No	No	No	No	No	No	No	No	No	No	No
GAIA DB3 Team (Pic)	Remarks	TESS. Faint	TESS	TESS. Irregu	K&M, TESS. Blended	TESS. Blended	K&M, TESS. Blended	TESS. Blended	TESS. Blended	TESS.	TESS. Blended	TESS. Blended	TESS. Irregu	K&M, TESS. Faint
GAIA DR3 ra dee Dist AED para per g mag j mag rad Source ID 320,486 32.173 290.564 0.157 3.383 0.097 17.750 14.970 0.148 194037385330429824 32.6486 32.173 290.564 0.157 3.383 0.097 17.750 14.970 0.148 213690076067178651776 85.357 -30.900 290.673 0.080 3.441 0.113 18.185 15.440 0.045 4824747599248448640 75.156 -35.354 292.346 0.225 3.390 0.093 18.029 15.393 0.067 511905431903468224 38.881 -25.026 293.370 0.000 3.381 0.159 17.864 15.165 0.042 511905431903468292 267.754 40.595 294.423 0.256 3.382 0.091 17.864 18.173 0.062 4824634087834366026 74.714 330.585 296.473 0.006 3.341 0	ruwe	0.981	1.031	1.050	0.981	1.006	1.049	1.072	1.030	0.964	1.020	1.040	1.079	1.007
GAIA DR3 ra dec Dist AEN para (mas) perr (mas) g mag (mas) j mag (mas) 1946037385330429824 326.486 32.173 290.564 0.157 3.383 0.097 17.750 14.970 2903767607178651776 85.387 -19.934 292.346 0.225 3.391 0.098 17.409 14.745 4824747599248448640 75.156 -38.354 292.959 0.000 3.381 0.113 18.185 15.440 5119054319054868224 38.881 -25.026 293.370 0.000 3.381 0.159 17.826 15.162 4824591738816056832 267.754 40.595 294.423 0.256 3.382 0.091 17.826 15.162 4824591738816056832 267.754 40.595 294.423 0.256 3.350 0.111 17.184 14.615 6826811145027574144 330.585 -16.358 295.565 0.236 3.350 0.111 17.184 14.615 8223019947000506880	pm (mas per yr)	8.102	23.408	23.817	41.129	17.518	43.895	30.941	21.210	25.186	17.953	6.457	23.645	49.421
GALA DR3 ra dec Dist AEN perr g mas Source ID 10.007 17.750 19.6037385330429824 326.486 32.173 290.564 0.157 3.383 0.097 17.750 19.46037385330429824 326.486 32.173 290.567 0.157 3.383 0.097 17.750 29.037067607178651776 85.357 -19.934 292.346 0.225 3.391 0.098 17.409 4824747599248448640 75.156 -35.354 292.359 0.000 3.386 0.093 18.029 5119054319034868224 38.881 -25.026 293.370 0.000 3.381 0.150 17.864 6826811145027574144 330.585 -16.358 295.565 0.236 3.342 0.060 17.177 4824534087834366080 74.719 -36.568 295.917 0.066 3.342 0.061 17.134 4824534087884088 206.518 4.236 298.66 0.023 3.342 0.061 17.748 <	red frac	0.148	0.045	0.032	0.067	0.042	0.062	0.019	0.119	0.023	0.095	0.049	0.045	0.300
GA1A DR3 PR3 Instituted (Pc) (Pc) AEN (Pc) (Pc) (Pc) (Pc) (Pc) (Pc) (Pc) AEN (Pc) (Pc) (Pc) (Pc) (Pc) (Pc) (Pc) (Pc)	j mag	14.970	15.440	14.745	15.393	15.162	15.172	14.615	14.533	14.683	14.739	15.076	16.107	15.490
GA1A DR3 ra dec Dist (pc) AEN para (mas) Source ID 326.486 32.173 290.564 0.157 3.383 1946037385330429824 326.486 32.173 290.564 0.157 3.383 2903767607178651776 85.357 -30.960 290.673 0.089 3.441 5136900805798685952 30.749 -19.934 292.346 0.225 3.391 4824747599248448640 75.156 -35.354 292.359 0.000 3.381 5119054319034868224 38.881 -25.026 293.370 0.000 3.382 6826811145027574144 330.585 -16.358 295.565 0.236 3.350 4824534087834366080 74.719 -36.568 295.917 0.006 3.296 3713867742794348928 206.518 4.236 299.164 0.123 3.322 4700193234130583808 37.084 -63.909 300.111 0.835 3.417 6006311102587627648 232.844 -38.745 305.217 <td< th=""><th>g mag</th><th>17.750</th><th>18.185</th><th>17.409</th><th>18.029</th><th>17.826</th><th>17.864</th><th>17.184</th><th>17.177</th><th>17.329</th><th>17.418</th><th>17.850</th><th>19.146</th><th>18.244</th></td<>	g mag	17.750	18.185	17.409	18.029	17.826	17.864	17.184	17.177	17.329	17.418	17.850	19.146	18.244
GAIA DR3 ra dec Dist (pc) AEN Source ID Source ID Source ID Source ID Source ID 1946037385330429824 326.486 32.173 290.564 0.157 2903767607178651776 85.357 -30.960 290.673 0.089 51369000805798685952 30.749 -19.934 292.346 0.225 4824747599248448640 75.156 -35.354 292.959 0.000 5119054319034868224 38.881 -25.026 293.370 0.000 5119054319034868224 38.881 -25.026 294.423 0.255 6826811145027574144 330.585 -16.358 295.655 0.236 4824534087883166080 74.719 -36.568 295.917 0.066 1020168880146788736 145.222 52.265 298.965 0.000 3713867742794348928 206.518 4.236 298.965 0.000 8233019947000506880 152.824 -63.909 300.111 0.123 6006311102587627648 232.844 -38.745 305.217 0.144	p err (mas)	0.097	0.113	0.098	0.093	0.159	0.091	0.111	0.060	0.081	0.087	0.104	0.190	0.161
GAIA Source ID DR3 PARA ra dec Dist (pc) 1946037385330429824 326.486 32.173 290.564 2903767607178651776 85.357 -30.960 290.673 5136900805798685952 30.749 -19.934 292.346 4824747599248448640 75.156 -35.354 292.959 5119054319034868224 38.881 -25.026 293.370 1344591738816056832 267.754 40.595 294.423 6826811145027574144 330.585 -16.358 295.565 4824534087834366080 74.719 -36.568 295.917 1020168880146788736 145.222 52.265 298.965 823019947000506880 152.824 49.272 299.164 4700193234130583808 37.084 -63.909 300.111 6006311102587627648 232.844 -38.745 305.217	para (mas)	3.383	3.441	3.391	3.396	3.381	3.382	3.350	3.342	3.317	3.296	3.322	3.417	3.294
GALA DR3 ra dec Source ID DR3 ra dec Source ID 32.173 1946037385330429824 326.486 32.173 1946037385330429824 326.486 32.173 2903767607178651776 85.357 -30.960 5136900805798685952 30.749 -19.934 4824747599248448640 75.156 -35.354 6826811145027574144 330.585 -16.358 4824534087834366080 74.719 -36.568 1020168880146788736 145.222 52.265 3713867742794348928 206.518 4.236 823019947000506880 152.824 49.272 4700193234130583808 37.084 -63.909 6006311102587627648 232.844 -38.745	AEN	0.157	0.089	0.225	0.000	0.000	0.255	0.236	0.066	0.000	0.000	0.123	0.835	0.144
GAIA Source ID DR3 ra Source ID 1946037385330429824 326.486 1946037385330429824 326.486 2903767607178651776 85.357 5136900805798685952 30.749 4824747599248448640 75.156 5119054319034868224 38.881 1344591738816056832 267.754 4824534087834366080 74.719 1020168880146788736 145.222 3713867742794348928 206.518 823019947000506880 152.824 4700193234130583808 37.084 6006311102587627648 232.844	Dist (pc)	290.564	290.673	292.346	292.959	293.370	294.423	295.565	295.917	296.473	298.965	299.164	300.111	305.217
GAIA Source ID DR3 Source ID 1946037385330429824 1946037385330429824 2903767607178651776 5136900805798685952 4824747599248448640 5119054319034868224 1344591738816056832 6826811145027574144 4824534087834366080 1020168880146788736 3713867742794348928 823019947000506880 4700193234130583808 6006311102587627648	dec	32.173	-30.960	-19.934	-35.354	-25.026	40.595	-16.358	-36.568	52.265	4.236	49.272	-63.909	-38.745
	ra	326.486	85.357	30.749	75.156	38.881	267.754	330.585	74.719	145.222	206.518	152.824	37.084	232.844
		1946037385330429824	2903767607178651776	5136900805798685952	4824747599248448640	5119054319034868224	1344591738816056832	6826811145027574144	4824534087834366080	1020168880146788736	3713867742794348928	823019947000506880	4700193234130583808	6006311102587627648
			291	292										

APPENDIX B

FINAL DS CANDIDATES

The final list of DS candidates is shown in the below table. It consists of 166 candidates.

WISE WISE ph-qual var-flag	b'AACC' b'11nn'	b'AACC' b'11nn'	b'AACC' b'01nn'	b'AACC' b'00nn'	b'AACC' b'00nn'	b'AACC' b'00nn'	b'AACC' b'21nn'	b'AACC' b'00nn'	b'AACC' b'00nn'	b'AACC' b'11nn'	b'AACC' b'11nn'	b'BACC' b'00nn'	b'AACC' b'11nn'	b'AACC' b'00nn'
	0.1 b'A	0.1 b'A	0.1 b'A	0.1 b'B	0.1 b'A	0.1 b'A								
T_{DS} γ	100 0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	112.5 0	100 0
Mod	261	261	255	250	247	244	247	248	234	249	253	244	243	244
Gvar	0.923	926.0	1.083	0.940	1.121	1.002	1.037	1.044	996:0	0.953	1.072	0.986	1.012	0.993
DS	Yes	Yes	Yes	Yes	Yes	Yes								
Nebu lar Fea- tures	No	No	No	No	No	No								
Remarks	TESS,	$_{\rm TESS,}$	$_{ m TESS}$ C	TESS C, K&M	TESS C, K&M	TESS	TESS C, K&M	K&M, TESS	TESS C, K&M, NJCM	TESS	K&M, NJCM, TESS	TESS C, K&M.	K&M, NJCM, TESS	NJCM,
ruwe	0.970	1.079	1.133	0.980	0.951	1.033	0.982	1.036	1.060	1.006	0.963	0.945	1.015	1.073
pm (mas per yr)	12.355	79.027	101.212	51.912	60.955	63.236	34.013	56.628	127.387	8.548	49.595	90.834	68.510	28.076
red frac (6')	0.108	0.077	0.000	0.113	0.116	0.055	0.107	0.095	0.077	0.093	0.000	0.075	0.000	0.082
j mag	14.350	14.536	14.368	14.686	14.545	14.375	14.651	14.605	14.303	14.673	14.972	14.620	14.756	14.728
g mag	18.011	18.309	17.652	17.872	17.836	17.785	17.944	17.971	17.456	18.198	18.426	17.957	18.041	17.960
p err (mas)	0.110	0.196	0.131	0.128	0.149	0.095	0.146	0.150	0.103	0.136	0.133	0.111	0.129	0.143
para (mas)	13.143	12.118	11.817	9.953	9.569	9.044	8.694	8.704	8.424	8.179	8.090	8.032	7.947	7.900
AEN	0.237	0.550	0.462	0.166	0.453	0.302	0.414	0.504	0.293	0.743	0.670	0.574	0.230	0.537
Dist (pc)	75.954	83.119	84.162	100.304	103.836	109.527	113.933	114.542	118.357	120.375	123.060	123.652	125.613	126.210
dec	-23.254	-18.011	19.665	-6.698	-23.974	-61.471	-15.974	14.755	7.695	75.343	60.238	37.156	32.807	65.194
ra	86.463	194.421	170.395	132.025	165.030	353.882	147.032	314.431	234.222	103.623	224.887	251.098	168.045	101.288
GAIA DR3 Source ID	2915906078111475840	3510237257322054912	3978048187578510976	5760183294402944896	3536922958580249472	6488635934221051136	5685387641533656704	1761730438755511552	4430833917781139840	1115438362942844672	1614536893000145536	1328197371906749696	757976927909863296	1100972024033153792
	1 ;	2	8	4	2	9	7	∞	6	10	11	12	13	41

continued

D18 4 D18 AEN Date AEN From June From June From Rose Month Part Month Total Month Month Month Total Month	frac (mas frac marks Nebu DS Gvar Mod T_{DS} γ WISE per per T_{DS} γ WISE ph-qual T_{DS} γ γ T_{DS} γ	No Yes 1.134 244 100 0.1 b'AACC'	1.116 240 100 0.1 b'AACC'	2621 125 0.1 b'AABC'	100 0.1 b'AABC'	0.1 b'AACC'	b'AACC'									
n. dec. Dist. AFA para from (mas) 1 mag (mas) from (mas) 1 mag (mas) from (mas) mass (mas) 1 mas) 1 mass (mas) 1 mass (mas) 1 mas) 1 mas) <th< th=""><th>frac (mas frac frac yr) γ γ γ γ γ γ γ γ γ γ</th><th>No Yes 1.134 244 100 0.1</th><th>1.116 240 100 0.1</th><th>2621 125 0.1</th><th>100 0.1</th><th>0.1</th><th></th><th>b'AACC'</th><th>'AACC'</th><th>AACC'</th><th>ACC'</th><th>,CC</th><th>CC,</th><th>Ç</th><th>Ĝ</th><th></th></th<>	frac (mas frac frac yr) γ	No Yes 1.134 244 100 0.1	1.116 240 100 0.1	2621 125 0.1	100 0.1	0.1		b'AACC'	'AACC'	AACC'	ACC'	,CC	CC,	Ç	Ĝ	
na dec Dist AEA perm image free perm pe	frac (mas per	No Yes 1.134 244 100	1.116 240 100	2621 125	100		1.		Ф	p,7	b'A	b'A∌	b'AA	b'AAC	b'AAC	b'AACI
na dec Dist AEN para tona frage para frage frage para frage para frage para	frac (mas per	No Yes 1.134 244	1.116 240	2621		00	O	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
na dec Dist AEN para tona frage para frage frage para frage para frage para	frac (mas per	No Yes 1.134	1.116			10	125	100	100	125	125	125	125	125	100	100
na dec Dist AEN para per frage profe per pe	frac (mas ruwe Remarks Nebu DS frac yr)	No Yes		211	235	236	2628	243	219	2639	2632	2635	2629	2622	230	221
na dec Dist AEN para per i mag frace para per per jac per per per jac per per per jac per jac j	frac (mas ruwe Remarks Nebu Fea- per yr)	No	Yes	1.5	1.029	1.083	1.086	0.882	0.872	0.974	0.980	0.987	1.074	0.979	1.214	1.031
ra dec Dist AEM para p. orr f mas i mag red para rums fremas 207.276 -20.356 126.983 0.425 7.843 0.137 18.084 14.754 0.013 183.018 0.385 TESS C 24.286 -23.392 127.060 0.657 7.836 0.143 17.310 14.631 0.000 65.357 0.924 R&A 21.286 -23.292 127.060 0.657 7.836 0.143 17.317 14.498 0.032 10.644 0.933 TESS 21.286 -23.292 127.060 0.657 7.554 0.043 17.607 14.488 0.129 7.856 1.888 21.41 35.855 131.134 0.499 7.554 0.048 17.607 14.488 0.129 7.564 1.788 1.888 14.623 1.81 1.81 1.8489 0.129 7.564 1.211 1.888 1.888 14.623 0	frac (mas per yr)			Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes
ra dec Dist AEN portal (mas) chas frage (mas) rade (mas)	frac (mas ruwe per yr)	-5	No	No	No	No	No	No	No	No	No	No	No	No	No	No
ra dec Dist AEN para (mas) (m	frac (mas per yr)	TESS C K&M, HPMS	K&M, TESS	TESS	K&M, TESS	NCJM, TESS C, K&M.	K&M, TESS	K&M, TESS, Binary Star system	NCJM, TESS,	K&M,	TESS	TESS	K&M, TESS	HPMS, NCJM, K&M	TESS	
ra dec Dist AEN para p err f mas) f mas j mag j mag f rac 207.276 -20.356 126.953 0.425 7.843 0.157 18.084 14.754 0.013 24.285 -23.292 127.050 0.657 7.836 0.143 17.737 14.488 0.003 28.4441 35.855 131.134 0.499 7.554 0.088 17.607 14.389 0.154 14.923 18.424 133.638 0.523 7.452 0.147 17.810 14.488 0.154 14.923 18.424 133.638 0.523 7.452 0.147 17.810 14.488 0.154 14.923 18.424 133.638 0.523 7.404 0.145 18.18 0.154 0.154 187.347 73.921 135.518 0.058 7.404 0.145 18.204 14.973 0.000 202.054 40.809 137.531 0.155 7.348 0.108	frac	0.935	0.924	0.943	0.989	1.211	1.045	0.989	1.015	1.023	1.034	1.031	1.063	0.973	1.112	1.060
ra dec Dist AEN para (mas) e er (mas) mag (mas) imag (mas) mag (mas) j mag (mas) 207.276 -20.356 126.953 0.425 7.843 0.157 18.084 14.754 24.285 -23.292 127.050 0.657 7.836 0.143 17.37 14.498 284.441 35.855 131.110 0.386 7.554 0.088 17.607 14.388 14.923 18.424 138.638 0.523 7.452 0.147 17.810 14.498 187.347 73.921 135.657 0.155 7.348 0.108 18.204 14.488 187.347 73.921 136.518 0.094 7.296 0.076 16.947 14.083 256.943 40.809 137.581 0.721 7.287 0.149 18.759 15.073 256.943 40.809 137.581 0.721 7.287 0.149 18.759 14.083 256.944 107.38 7.056 0.		183.018	65.357	10.644	53.173	75.654	42.576	49.577	35.767	91.214	27.549	5.502	74.543	172.565	37.545	56.467
ra dec Dist AEN para (mas) perr (mas) g mag 207.276 -20.356 126.953 0.425 7.843 0.157 18.084 24.285 -23.292 127.050 0.657 7.836 0.143 17.910 51.073 -2.783 131.134 0.499 7.554 0.088 17.607 14.923 18.424 133.638 0.523 7.452 0.147 17.810 14.923 18.424 134.265 0.678 7.404 0.145 18.148 187.347 73.921 135.057 0.155 7.348 0.105 18.204 187.347 73.921 136.518 0.094 7.296 0.076 16.947 256.943 40.809 137.581 0.707 7.199 0.129 18.759 107.387 26.548 138.830 0.603 7.175 0.192 18.587 107.387 26.572 139.983 0.648 7.166 0.214 17.591	j mag	0.013	0.000	0.032	0.154	0.129	090.0	0.000	0.061	0.065	0.109	0.156	0.094	0.041	0.153	960.0
ra dec Dist AEN para para (mas) Petr 8 207.276 -20.356 126.953 0.425 7.843 0.157 13 24.285 -23.292 127.050 0.657 7.836 0.143 17 51.073 -2.783 131.110 0.386 7.525 0.0133 17 284.441 35.855 131.134 0.499 7.554 0.088 17 14.923 18.424 133.638 0.523 7.452 0.147 17 187.347 73.921 135.057 0.155 7.348 0.108 13 187.347 73.921 135.057 0.155 7.348 0.108 13 241.086 25.464 136.518 0.094 7.296 0.076 13 241.086 25.438 138.830 0.707 7.199 0.129 13 202.057 42.640 139.383 0.648 7.166 0.164 17 329.629 -8.453		14.754	14.631	14.498	14.389	14.488	14.849	14.973	14.083	15.350	15.073	15.167	14.938	14.875	14.460	14.186
ra dec Dist AEN para (mas) perr (mas) 207.276 -20.356 126.953 0.425 7.843 0.157 24.285 -23.292 127.050 0.657 7.836 0.143 51.073 -2.783 131.110 0.386 7.554 0.088 51.073 -2.783 131.134 0.499 7.554 0.088 14.923 18.424 133.638 0.523 7.452 0.147 131.800 21.601 136.518 0.094 7.296 0.076 256.943 40.809 137.581 0.721 7.287 0.149 202.057 -42.640 139.393 0.603 7.175 0.192 107.387 26.572 140.363 0.333 7.057 0.164 103.427 33.766 140.724 0.388 7.095 0.127	g mag	18.084	17.910	17.737	17.607	17.810	18.148	18.204	16.947	18.759	18.343	18.587	18.260	17.959	17.591	17.160
ra dec Dist AEN para (mas) 207.276 -20.356 126.953 0.425 7.843 24.285 -23.292 127.050 0.657 7.836 51.073 -2.783 131.110 0.386 7.525 284.441 35.855 131.134 0.499 7.554 14.923 18.424 133.638 0.523 7.452 187.347 73.921 135.057 0.155 7.348 187.347 73.921 136.518 0.094 7.296 256.943 40.809 137.581 0.721 7.287 241.086 25.438 138.830 0.707 7.199 202.057 -42.640 139.393 0.648 7.166 329.629 -8.453 140.363 0.333 7.057 107.387 26.572 140.724 0.388 7.095 172.288 -29.273 141.259 0.171 7.046	p err (mas)	0.157	0.143	0.133	0.088		0.145		0.076	0.149	0.129	0.192	0.214	0.164	0.127	0.087
ra dec Dist (pc) (pc) 207.276 -20.356 126.953 24.285 -23.292 127.050 51.073 -2.783 131.110 284.441 35.855 131.134 14.923 18.424 133.638 187.347 73.921 135.057 187.347 73.921 135.057 256.943 40.809 137.581 241.086 25.438 138.830 202.057 42.640 139.393 107.387 26.572 139.983 329.629 -8.453 140.724 103.427 33.766 140.724 172.288 -29.273 141.259	para (mas)	7.843	7.836	7.525	7.554	7.452	7.404	7.348	7.296	7.287	7.199	7.175	7.166	7:057	7.095	7.046
ra dec Dist (pc) (pc) 207.276 -20.356 126.953 24.285 -23.292 127.050 51.073 -2.783 131.110 284.441 35.855 131.134 14.923 18.424 133.638 187.347 73.921 135.057 187.347 73.921 135.057 256.943 40.809 137.581 241.086 25.438 138.830 202.057 42.640 139.393 107.387 26.572 139.983 329.629 8.453 140.724 103.427 33.766 140.724 172.288 -29.273 141.259	AEN	0.425	0.657	0.386	0.499	0.523	0.678	0.155	0.094	0.721	0.707	0.603	0.648	0.333	0.388	0.171
ra dec 1000 1000 207.276 -20.356 24.285 -23.292 51.073 -2.783 284.441 35.855 14.923 18.424 187.347 73.921 187.347 73.921 256.943 40.809 241.086 25.438 202.057 -42.640 107.387 26.572 329.629 -8.453 103.427 33.766 172.288 -29.273																
24.285 51.073 51.073 51.073 14.923 14.676 131.800 131.800 256.943 241.086 202.057 107.387 103.427 1172.288																
	20		24.285									202.057	-			
GAIA Source ID 503934340251 503934340251 209286678658 209286678658 278798373707 645804414918 645804414918 661992899995 661992899995 661859716925 883173678401 261850110205 261850110205		6289125971652580224	5039343402513263104	3261094210299919616	2092866786582167296	2787983737076819072	6458044149186203520	1690729715910190976	66199289995819392	1353970057604540160	1315337479611688832	6088807769255904896	883173678401486336	2618501102056246400	939289281548249856	3483112241042201088
	<u>c</u>	6289128		က	20	27	64	1(99	133)9	∞ l	7	95	34

continued

GAIA DR3 ra dec Source ID	ra	dec		Dist (pc)	AEN	para (mas)	p err (mas)	g mag	j mag	red frac	pm (mas per yr)	ruwe	Remarks	Nebu Fea- tures	DS	Gvar	Mod	T_{DS}	٨	WISE ph-qual	WISE var_flag
6503326058107971328 340.700 -59.319 141.804 0.615	340.700 -59.319 141.804	141.804		0.615		7.044	0.154	18.571	15.149	0.130	92.424	1.019	K&M, TESS	No	Yes	0.991	2633	125	0.1	b'AACC'	b'22nn'
2654924035339211904 343.591 0.681 142.055 0.513	343.591 0.681 142.055	142.055		0.513		6.975	0.162	17.793	14.432	0.000	20.761	1.025	TESS	No	Yes	1.184	232	100	0.1	b'AACC'	b'11nn'
2397293651903978112 342.335 -21.809 143.878 0.161	342.335 -21.809 143.878	143.878		0.161		986.9	0.114	17.614	14.833	0.000	25.189	1.009	TESS	No	Yes	0.872	229	100	0.1	b'AACC'	b'11nn'
889362936730041728 104.452 32.011 144.105 0.324	104.452 32.011 144.105	144.105		0.324		098.9	0.133	18.045	14.810	0.118	113.692	0.911	K&M, TESS	No	Yes	1.115	2623	137.5	0.1	b'AABC'	b'00nn'
618553463324573568 142.254 14.776 144.274 0.000	142.254 14.776 144.274	144.274		0.000		6.858	0.164	18.035	14.802	0.000	122.833	1.012	NCJM, K&M, TESS	No	Yes	0.892	2621	112.5	0.15	b'AACC'	b'01nn'
2496905385291035264 40.007 -1.221 144.755 0.340	40.007 -1.221 144.755	144.755		0.340		6.884	0.139	17.776	14.810	0.031	145.508	1.132	NCJM, K&M, TESS	No	Yes	0.895	233	100	0.1	b'AACC'	b'11nn'
1338448458113508480 256.626 35.635 145.044 0.435	256.626 35.635 145.044	145.044		0.435		6.855	0.106	17.820	14.707	0.086	51.243	1.047	NCJM, K&M, TESS	No	Yes	1.004	235	100	0.1	b'AACC'	b'11nn'
3665977169521275776 214.375 0.599 152.197 0.325	214.375 0.599 152.197 0.325	152.197 0.325	0.325		_	6.543	0.113	17.429	14.440	0.061	55.834	1.040	NCJM, TESS C, K&M.	No	Yes	0.868	224	100	0.1	b'AACC'	b'00nn'
1036767966673477120 135.326 57.534 152.777 0.599 (135.326 57.534 152.777 0.599	152.777 0.599	0.599			6.504	0.169	18.381	15.241	0.021	9.671	1.016	NCJM, TESS	No	Yes	1.016	2628	125	0.1	b'AACC'	b'11nn'
4814864398463549568 70.098 -42.557 153.112 0.531	70.098 -42.557 153.112	153.112		0.531		6.481	0.111	17.888	14.568	0.030	44.031	0.977	K&M, Binary star sys- tem	No	Yes	1.027	232	100	0.1	b'BABC'	b'00nn'
1016422289979953664 136.149 50.962 153.226 0.678	136.149 50.962 153.226	153.226		0.678		6.490	0.179	18.483	15.205	0.048	54.973	1.050	NCJM, K&M.	No	Yes	1.057	2628	125	0.1	b'AACC'	b'11nn'
2310451960094696192 356.808 -37.590 153.754 0.000	356.808 -37.590 153.754	153.754		0.000		6.433	0.101	17.140	14.267	0.133	25.596	0.997	TESS	No	Yes	0.867	218	100	0.1	b'AACB'	b'11nn'
5170146837671740160 39.448 -14.173 153.940 0.000	39.448 -14.173 153.940	153.940		0.000		6.472	0.115	17.879	14.838	0.033	61.673	0.984	K&M, TESS C	No	Yes	0.943	233	100	0.1	b'AACC'	b'00nn'
3629164111474614656 194.777 -7.095 154.622 0.000	194.777 -7.095 154.622	154.622		0.000		6.419	0.140	18.000	14.969	0.067	53.037	0.980	K&M, TESS	No	Yes	0.953	2619	125	0.1	b'AABC'	b'00nn'

continued ...

WISE var_flag	b'00nn'	b'11nn'	b'00nn'	b'11nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'01nn'	b'11nn'	b'11nn'	b'10nn'	b'00nn'	b'00nn'	b'00nn'
WISE ph-qual	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACB'	b'AACC'	b'AACC'	b'AACC'	b'AACB'	b'AACC'	b'AACC'	b'AACC'	b'AABB'	b'AACC'	b'AABC'
7	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1
T_{DS}	100	100	125	100	100	137.5	125	100	100	125	125	100	125	125	150
Mod	224	220	2613	228	496	2625	2622	227	218	2614	2622	225	2887	2617	5023
Gvar	1.029	1.027	0.903	0.977	0.986	906.0	0.863	1.021	0.990	1.021	0.932	1.106	0.878	1.062	0.879
DS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Nebu Fea- tures	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	TESS	TESS	NCJM, K&M. Open cluster star	TESS	K&M, TESS	K&M	NCJM, K&M,	NCJM, HPMS, TESS C, K&M	K&M, TESS C	NCJM, K&M, TESS C	K&M, TESS C	TESS	NCJM, K&M, TESS C	TESS	K&M, TESS
ruwe	0.996	1.022	0.970	0.997	1.026	1.014	0.949	1.002	0.924	0.938	1.019	0.932	0.958	1.072	1.016
pm (mas per yr)	26.181	13.939	82.697	21.119	48.320	42.841	69.835	166.415	112.007	80.312	86.798	16.429	51.315	32.996	52.229
red frac	0.056	0.082	0.062	0.065	0.114	0.260	0.056	0.103	0.112	0.000	0.392	0.103	0.027	0.517	0.464
j mag	14.396	14.328	14.861	14.884	14.880	15.126	15.010	14.678	14.346	14.977	15.233	14.684	15.294	14.630	15.710
g mag	17.465	17.358	17.813	17.833	17.969	18.255	18.197	17.741	17.266	17.874	18.277	17.654	18.367	18.087	19.002
p err (mas)	0.124	0.099	0.130	0.099	0.131	0.197	0.138	0.133	0.098	0.141	0.122	0.117	0.138	0.160	0.189
para (mas)	6.373	6.404	6.400	6.382	6.327	6.392	6.368	6.291	6.281	6.288	6.269	6.233	6.211	6.127	6.220
AEN	0.396	0.226	0.000	0.000	0.032	0.110	0.000	0.370	0.000	0.436	0.087	0.304	0.000	0.592	1.028
Dist (pc)	154.925	155.396	155.645	156.162	157.287	157.680	157.682	158.005	158.495	159.307	159.468	159.802	160.872	162.003	162.147
dec	-23.063	-41.703	9.356	-28.120	-26.114	32.982	39.142	-9.776	42.580	3.632	66.150	-7.143	53.824	-19.426	-73.413
ra	354.968	300.245	132.358	60.133	181.768	87.988	128.374	191.058	103.831	16.748	72.711	118.634	141.595	254.947	79.346
GAIA DR3 Source ID	2387172475571686400	6686966734993777792	597270624767394816	4889857310590694912	3488393401547734912	3451273339241871616	911311005588551808	3530813144262513536	952003729070420480	2539799842150995968	482440516581202688	3043112048663066112	1023025063462941824	4128901290300825984	4649665864475436160
	45	46 (47	48	49	50	51 8	22	53	54 .	55	56 3	22	28	29

continued.

	Г															
WISE var_flag	b'11nn'	b'00nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'11nn'	b'11nn'	b'11nn'	$^{ m b'00nn'}$
WISE ph-qual	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AACB'	$_{ m b'AABC'}$	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AABC'	b'AACC'	b'AACC'
γ	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
T_{DS}	125	125	125	100	100	100	125	100	125	100	100	100	125	150	100	125
Mod	2609	2632	2616	233	220	225	2626	218	2616	224	224	222	2612	5004	231	2615
Gvar	0.871	1.018	0.982	0.831	0.950	1.049	1.005	0.923	0.923	0.871	0.992	1.156	0.912	0.996	1.022	0.877
DS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Nebu Fea- tures	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	NCJM, K&M, TESS C	NCJM, TESS	TESS	K&M, TESS	K&M, TESS	TESS	NCJM, K&M, TESS	TESS	K&M, TESS	K&M, TESS	K&M, TESS C	TESS	K&M, TESS	TESS	K&M, TESS	NCJM, K&M, TESS
ruwe	1.013	1.002	1.018	0.964	1.006	0.998	0.959	0.959	1.036	0.989	0.930	1.015	1.039	1.014	1.080	1.005
pm (mas per yr)	76.962	59.031	30.062	82.013	88.970	15.014	86.414	15.504	47.226	66.765	79.977	31.409	56.463	26.387	85.056	50.544
red	0.088	0.070	0.069	0.147	0.034	0.190	0.034	0.019	0.171	0.067	0.535	0.083	0.057	0.125	0.037	0.023
j mag	14.585	15.467	14.909	15.032	14.632	14.755	15.230	14.417	14.897	14.618	14.580	14.650	14.848	15.144	14.989	14.925
g mag	17.650	18.807	17.944	18.097	17.491	17.811	18.529	17.402	17.932	17.706	17.674	17.660	17.845	18.203	18.001	17.999
p err (mas)	0.115	0.168	0.152	0.114	0.092	0.095	0.183	0.103	0.119	0.107	0.101	0.145	0.098	0.167	0.113	0.173
para (mas)	6.104	6.013	5.988	6.033	5.936	5.940	5.951	5.894	5.892	5.869	5.829	5.814	5.807	5.805	5.808	5.862
AEN	0.000	0.639	0.118	0.000	0.000	0.000	0.218	0.000	0.319	0.000	0.307	0.417	0.150	0.583	0.434	0.510
Dist (pc)	162.813	165.820	166.119	166.379	166.999	167.374	167.583	168.363	168.634	169.208	169.636	170.990	171.004	171.900	172.047	172.487
dec	0.073	32.445	-13.627	-61.699	49.308	32.297	25.591	7.008	-14.150	-4.385	61.463	-25.750	-63.454	-23.819	60.202	27.290
ra	13.684	236.577	318.162	92.585	156.748	323.232	198.878	144.976	86.498	199.359	73.711	13.788	331.399	192.333	202.039	144.821
GAIA DR3 Source ID	2536856105926470912	1369633803332569088	6885510703580632576	5481309418607141888	834831828618687616	1850962129541995648	1447646077468827776	3854090071297359616	2996292365351686144	3636165908894524544	477541264565874816	2344470574980336256	6405584490920011648	3498693553461662208	1663135032069421056	647720891173924480
- 01	09	61 1	62 6	63	64 8	65 1	66 1	E 29	68	69	70 4	71 2	72	73 3	74	75 6

continued.

WISE var_flag	b'11nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'00nn'	b'01nn'
WISE ph-qual	b'AACC'	b'AABC'	b'AACC'	b'AACC'	b'AACC'	b'AACC'	b'AABB'	b'AACC'	b'AACC'	b'AACC'						
λ	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
T_{DS}	100	100	100	100	100	125	125	125	100	100	100	125	100	100	125	125
Mod	231	220	234	230	505	2612	2616	2626	231	211	231	2619	187	210	2606	2608
Gvar	1.101	0.940	0.877	1.088	0.986	0.968	1.063	1.020	0.994	1.027	0.908	0.943	0.801	1.029	0.915	0.852
DS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
Nebu Fea- tures	No	No	No	No	No	No	No	No	No	No						
Remarks	K&M, TESS	NCJM, TESS	TESS	TESS C	K&M, TESS	TESS	NCJM, K&M, TESS C	K&M, TESS	K&M, TESS	K&M, TESS	NCJM, K&M, TESS C	K&M, TESS	TESS	K&M, TESS	NCJM, K&M	K&M, TESS
ruwe	1.029	0.975	0.972	1.018	1.045	0.940	0.901	0.996	0.981	1.038	0.904	1.044	1.040	1.008	0.985	1.028
pm (mas per yr)	98.944	23.588	37.047	37.986	89.934	23.302	56.795	51.889	47.813	40.739	52.145	44.404	11.031	82.901	74.523	80.751
red	0.086	0.064	0.091	0.071	090.0	0.071	0.194	0.018	0.042	0.192	0.026	0.054	0.078	0.257	0.077	0.053
j mag	15.029	14.678	15.181	14.806	15.503	14.930	15.033	15.273	15.047	14.304	15.081	15.261	13.345	14.186	14.804	15.051
g mag	18.077	17.502	18.288	18.050	18.666	18.018	18.026	18.567	18.145	17.175	18.181	18.397	15.997	17.151	17.832	17.895
p err (mas)	0.091	0.115	0.102	0.101	0.175	0.125	0.146	0.145	0.102	0.064	0.119	0.169	0.047	0.083	0.127	0.127
para (mas)	5.726	5.767	5.746	5.664	5.657	5.534	5.550	5.484	5.523	5.515	5.477	5.368	5.351	5.330	5.351	5.264
AEN	0.311	0.000	0.000	0.508	0.715	0.000	0.346	0.638	0.381	0.167	0.289	0.595	0.000	0.084	0.000	0.106
Dist (pc)	172.730	173.147	173.229	175.013	176.265	178.302	178.828	179.089	179.773	180.244	180.860	185.283	185.514	186.482	186.585	189.906
pec	-80.995	-2.513	-50.214	86.256	67.983	-7.864	19.032	-29.687	-71.890	-32.108	57.727	-20.156	960.9	-13.236	20.175	968:0-
ra	48.286	216.011	71.960	105.397	106.024	178.954	11.761	74.395	38.844	143.390	147.766	19.781	239.052	237.094	0.829	190.210
GAIA DR3 Source ID	4619397649388055936	3646420641529967744	4784624938185655680	1150574390879641472	1103045771685331328	3595041077343698944	2789153445649630464	4876715604017587072	4644937556449853696	5631833320661544448	1049350021827111808	2353610295450275968	4426899659020024192	6266957794311581056	2798379241559922688	3683792006674301056
O G	76 4	77 3	78 4	79 1	80 1	81 3	82 2	83 4	84 4	85 5	86 1	87 2	88	9 68	90 2	91 3
													ш			

continued.

18.566 15.486 0.088 21.218 1.015 TESS No Yes 0.972 5.077 137.5 0.1 b.AACC b.00mm 18.560 15.463 0.093 72.476 1.050 K.K.M. No Yes 0.929 2.622 125 0.1 b.AACC b.00mm 18.105 14.773 0.066 85.287 0.945 K.K.M. No Yes 0.929 2.62 125 0.1 b.AACC b.00mm 18.106 14.773 0.066 85.287 0.945 K.K.M. No Yes 0.889 2.77 100 0.1 b.AACC b.00mm 18.107 15.166 0.041 44.996 1.088 K.K.M. No Yes 0.889 2.77 100 0.1 b.AACC b.00mm 17.599 15.142 0.156 51.485 0.965 K.K.M. No Yes 0.940 125 0.1 b.AACC b.00mm 17.692 14.799 0.036 52.326 1.070 K.K.M. No Yes 0.940 2.601 125 0.1 b.AACC b.00mm 18.229 15.278 0.140 43.104 43.104 1.058 K.K.M. No Yes 0.940 2.61 125 0.1 b.AACC b.00mm 18.467 15.162 0.076 32.267 1.015 K.K.M. No Yes 0.980 2.61 125 0.1 b.AACC b.00mm 18.471 14.603 0.076 32.267 1.015 K.K.M. No Yes 0.980 2.61 125 0.1 b.AACC b.00mm 17.567 15.124 0.049 60.477 0.947 K.K.M. No Yes 0.890 2.61 125 0.1 b.AACC b.00mm 17.567 14.569 0.048 2.759 1.015 K.K.M. No Yes 0.980 2.61 125 0.1 b.AACC b.00mm 17.567 14.569 0.048 2.759 0.048 2.750 0.041 2.605 1.250 0.10 b.AACC b.00mm 17.567 14.569 0.048 2.759 0.048 2.750 0.041 2.605 1.250 0.10 b.AACC b.00mm 17.567 15.124 0.049 60.477 0.947 K.K.M. No Yes 1.044 2.605 1.25 0.1 b.AACC b.00mm 17.567 14.569 0.048 2.759 0.048 2.750 0.04
15.463 0.083 72.476 1.060 K&M, K&M, TESS No Yes 0.092 2622 125 12 b AACC 14.773 0.066 85.287 0.945 K&M, K&M, TESS NCJM, TESS No Yes 0.929 218 100 0.1 b AACC 15.106 0.049 25.878 1.042 NCJM, TESS No Yes 0.881 2672 100 0.1 b AACC 14.680 0.053 73.305 0.985 NCJM, TESS No Yes 0.884 2598 125 0.1 b AACC 14.808 0.160 13.742 0.878 NCJM, TESS No Yes 0.894 256 125 0.1 b AACC 14.380 0.172 63.599 0.983 K&M, KAM, No Yes 0.910 2601 100 0.1 b AACC 15.278 0.140 43.104 0.983 K&M, KAM, No Yes 0.910 2601 100 0.1 </td
14.773 0.066 85.287 0.944 NCJM, KAM, TESS C NCS NCS O.872 26.12 112.5 0.0 0.1 b'AACC 15.105 0.049 25.878 1.042 NCJM, NCM, NCM, NCM Ncs 0.889 227 100 0.1 b'AACC 15.106 0.041 44.996 1.088 NCJM, NCM, NCM, NCM Ncs 0.884 2598 125 0.1 b'AACC 14.680 0.053 73.305 0.935 NCJM, NCM, NCM, NCM Ncs 0.884 2598 125 0.1 b'AACC 14.4803 0.166 51.485 0.965 NCJM, NCM, NCM Ncs 0.962 4993 137.5 0.1 b'AACC 14.4803 0.160 13.742 0.878 TESS Nc 0.962 4993 137.5 0.1 b'AACC 14.4803 0.172 63.599 0.983 K&M, N Nc Ncs 0.910 201 b'AACC 14.603 0.076 32.267
15.105 0.049 25.878 1.042 NCJM, TESS No Yes 0.872 2612 112.5 0.1 b'AACC 15.166 0.041 44.996 1.088 NCJM, R&M, TESS C No Yes 0.884 257 100 0.1 b'AACC 14.680 0.053 73.305 0.985 NCJM, NCJM, NO Yes 0.884 2598 125 0.1 b'AACC 15.142 0.156 51.485 0.965 NCJM, NO Yes 0.962 4993 137.5 0.1 b'AACC 14.803 0.160 13.742 0.878 TESS C NO Yes 0.962 4993 137.5 0.1 b'AACC 14.739 0.056 52.326 1.070 NCJM, NO Yes 0.910 2601 125 0.1 b'AACC 14.603 0.140 43.104 0.998 K&M, NO Yes 0.826 200 100 0.1 b'AACC 15.124 0.146 3
15.166 0.041 44.996 1.088 NCJM, R&M, TESS C No Yes 0.889 227 100 0.1 b'AACC 14.680 0.053 73.305 0.935 NCJM, No Yes 0.884 2598 125 0.1 b'AACC 15.142 0.156 51.485 0.965 NCJM, NCJM, No Yes 0.962 4993 137.5 0.1 b'AACC 14.803 0.160 13.742 0.878 TESS C No Yes 0.962 4993 137.5 0.1 b'AACC 14.803 0.160 13.742 0.878 TESS C No Yes 0.910 2601 b'AACC 14.380 0.172 63.599 0.983 K&M, No Yes 0.910 260 10 b'AACC 15.278 0.14 43.104 0.998 K&M, No Yes 0.910 0.0 b'AACC 15.242 0.046 43.104 43.104 43.104 No
14.680 0.053 73.305 0.935 NCJM, K&M, TESS C No Yes 0.884 2598 125 0.1 b'AACC' 15.142 0.156 51.485 0.965 NCJM, NO Yes 0.962 4993 137.5 0.1 b'AACC' 14.803 0.160 13.742 0.878 TESS C No Yes 0.991 2601 125 0.1 b'AACC' 14.799 0.036 52.326 1.070 NCJM, NO Yes 0.910 2601 125 0.1 b'AACC' 14.380 0.172 63.599 0.983 K&M, NO Yes 0.826 200 100 0.1 b'AACC' 15.278 0.140 43.104 0.998 K&M, NO Yes 0.893 208 100 0.1 b'AACC' 15.462 0.155 27.083 1.006 TESS No Yes 0.980 2613 125 0.1 b'AACC' 15.124 0.049 60.477
15.142 0.156 51.485 0.965 NCJM, K&M, TESS C No Yes 0.962 4993 137.5 0.1 b'AACC' 14.803 0.160 13.742 0.878 TESS C No Yes 0.894 216 100 0.1 b'AACC' 14.709 0.036 52.326 1.070 NCJM, No No Yes 0.804 216 10 0.1 b'AACC' 14.380 0.172 63.599 0.983 K&M, No No Yes 0.826 200 100 0.1 b'AACC' 15.278 0.140 43.104 0.998 K&M, No No Yes 1.044 2610 125 0.1 b'AACC' 14.603 0.076 32.267 1.015 NCJM, No Yes 0.893 208 100 b'AACC' 15.124 0.049 60.477 0.947 K&M, No Yes 0.980 2613 125 0.1 b'AACC' 14.569 0.048
14.803 0.036 52.326 1.070 NCJM, TESS No Yes 0.894 216 100 0.1 b'AACC' 14.799 0.036 52.326 1.070 NCJM, TESS No Yes 0.910 2601 125 0.1 b'AABC' 14.380 0.172 63.599 0.983 K&M, No Yes 0.826 200 100 0.1 b'AACC' 15.278 0.140 43.104 0.998 K&M, No Yes 1.044 2610 125 0.1 b'AACC' 14.603 0.076 32.267 1.015 NCJM, No Yes 0.893 208 100 0.1 b'AACC' 15.124 0.049 60.477 0.947 K&M, No Yes 0.980 2613 125 0.1 b'AACC' 15.124 0.049 60.477 0.947 K&M, No Yes 1.041 2605 125 0.1 b'AABC' 14.569 0.048 27.954 0.972
14.799 0.036 52.326 1.070 NCJM, TESS No Yes 0.910 2601 125 0.1 b'AABC' 14.380 0.172 63.599 0.983 K&M, KM, KM, KM No Yes 0.826 200 100 0.1 b'AACC' 15.278 0.140 43.104 0.998 K&M, No No Yes 1.044 2610 125 0.1 b'AACC' 14.603 0.076 32.267 1.015 NCJM, No Yes 0.893 208 100 0.1 b'AACC' 15.462 0.155 27.083 1.006 TESS No Yes 0.980 2613 125 0.1 b'AACC' 15.124 0.049 60.477 0.947 K&M, No Yes 1.041 2605 125 0.1 b'AABC' 14.569 0.048 27.954 0.972 TESS No Yes 1.088 214 100 0.1 b'AACC'
14.380 0.172 63.599 0.983 K&M, TESS No Yes 0.826 200 100 0.1 b'AACC' 15.278 0.140 43.104 0.998 K&M, TESS No Yes 1.044 2610 125 0.1 b'AACC' 14.603 0.076 32.267 1.015 NCJM, TESS No Yes 0.893 208 100 0.1 b'AACC' 15.124 0.049 60.477 0.947 K&M, TESS No Yes 1.041 2605 125 0.1 b'AABC' 14.569 0.048 27.954 0.972 TESS No Yes 1.088 214 100 0.1 b'AACC'
15.278 0.140 43.104 0.998 K&M, No Yes 1.044 2610 125 0.1 b'AACC' 14.603 0.076 32.267 1.015 NCJM, No Yes 0.893 208 100 0.1 b'AACC' 15.462 0.155 27.083 1.006 TESS No Yes 0.980 2613 125 0.1 b'AACC' 15.124 0.049 60.477 0.947 K&M, No Yes 1.041 2605 125 0.1 b'AABC' 14.569 0.048 27.954 0.972 TESS No Yes 1.088 214 100 0.1 b'AACC'
14.603 0.076 32.267 1.015 NCJM, TESS C No Yes 0.893 208 100 0.1 b'AACC' 15.462 0.155 27.083 1.006 TESS No Yes 0.980 2613 125 0.1 b'AACC' 15.124 0.049 60.477 0.947 K&M, TESS No Yes 1.041 2605 125 0.1 b'AABC' 14.569 0.048 27.954 0.972 TESS No Yes 1.088 214 100 0.1 b'AACC'
15.124 0.049 60.477 0.947 K&M, TESS No Yes 0.049 2613 125 0.1 b'AACC' 14.569 0.048 27.954 0.972 TESS No Yes 1.088 214 100 0.1 b'AACC'
15.124 0.049 60.477 0.947 K&M, TESS No Yes 1.041 2605 125 0.1 b'AABC' 14.569 0.048 27.954 0.972 TESS No Yes 1.088 214 100 0.1 b'AACC'
14.569 0.048 27.954 0.972 TESS No Yes 1.088 214 100 0.1 b'AACC'

continued ...

WISE var_flag	00nn	b'00nn'	b'00nn'	b'11nn'	b'00nn'	b'00nn'	b'00nn'	b'11nn'	b'00nn'	b'11nn'	b,00nn,	b'21nn'						
WISE V	b'AAAB' 0	b'AACC' b	b'AACC' b	b'AACC' b	b'AACC' b	b'AACC' b	b'AACC' b	b'AABC' b	b'AACC' b	b'AACC' b	b'AACC' b	b'AACC' b	b'AABB' b	b'AACC' b	b'AACC' b	b'AACC' b	b'AACC' b	b'AACC' b
<i>ا</i> ل	0.1 р	0.1 b	0.1 b	0.1 b	0.1 b	0.1 b	0.1 b	0.1 b	0.1 b	0.1 р	0.1 b	0.1 b	0.1 b	0.1 b	0.1 р	0.1 b	0.1 b	0.1 b
T_{DS}	275	125	100	100	100	100	112.5	162.5	100	100	100	100	125	100	100	125	100	100
Mod	63287	2601	188	218	204	202	2607	4977	219	196	216	220	2609	223	214	2594	195	198
Gvar	0.941	1.017	0.828	0.919	0.838	0.888	0.892	0.892	906.0	0.835	096.0	0.999	1.047	906.0	0.925	0.862	0.838	0.953
DS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Nebu Fea- tures	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Remarks	TESS	TESS	K&M, TESS C	TESS	K&M, TESS	K&M, TESS	NCJM, K&M, TESS	TESS	TESS	K&M, TESS C	TESS, K&M	NCJM, TESS	TESS	TESS	TESS	TESS	NCJM, TESS	K&M,
ruwe	1.064	1.069	1.103	1.039	0.971	0.929	1.034	1.068	1.138	1.033	1.033	1.020	1.008	1.031	0.987	0.968	1.006	0.926
pm (mas per yr)	32.280	9.457	72.508	33.807	67.288	62.157	108.252	29.148	35.706	75.630	58.313	19.966	24.799	26.567	39.183	23.437	31.769	65.117
red	0.048	0.065	0.079	0.000	0.139	0.108	0.049	0.094	0.125	0.069	0.143	0.088	0.074	0.087	0.174	0.117	0.037	0.073
j mag	14.928	14.968	13.857	14.951	14.516	14.274	15.193	14.837	15.059	14.360	14.936	15.171	15.230	15.329	14.767	14.993	14.166	14.376
g mag	17.713	17.788	16.488	17.913	17.203	17.150	18.203	17.447	18.153	16.888	17.849	18.057	18.329	18.310	17.827	17.665	16.969	17.071
p err (mas)	0.077	0.124	0.061	0.113	0.078	0.065	0.128	0.085	0.146	0.075	0.142	0.100	0.113	0.116	0.108	0.122	0.083	0.095
para (mas)	4.681	4.599	4.560	4.589	4.571	4.538	4.494	4.491	4.491	4.488	4.503	4.472	4.438	4.310	4.255	4.275	4.221	4.221
AEN	0.000	0.240	0.156	0.313	0.000	0.000	0.000	0.219	0.519	0.097	0.172	0.123	0.409	0.420	0.000	0.000	0.000	0.000
Dist (pc)	211.900	216.622	217.174	217.545	217.829	218.203	220.890	221.016	221.568	221.902	221.961	223.214	223.447	231.994	232.039	233.059	234.597	235.036
dec	-40.530	-18.591	-1.986	-29.933	49.824	-38.312	49.088	69.649	-24.845	-22.188	-5.804	42.592	59.961	57.205	-33.713	-26.020	-19.493	42.136
ra	59.016	175.360	311.829	42.947	92.862	158.933	151.784	101.744	51.059	324.747	199.077	270.844	270.571	280.844	153.397	298.999	3.634	126.028
GAIA DR3 Source ID	4843191593270342656	3543734050861649408	4226700375674235136	5065248343140177536	970166080613583232	5441348085110168960	823662302309125504	1106405707419734528	5086043990671838720	6817461546684629888	3634795878750939776	2113794336847287040	2152693481986456960	2154062850702747904	5458954908402727936	6755031658716353024	2365292026675460352	915612711689028352
(°) ro	48	35	4,	5(9.	5.	8	11	2(116 68	117 36	2.	21	21	5^{4}	6.	2,	91

continued

6294757704570139264 208.861 3473317958963571840 184.297 3190924756901443328 64.499 6818973272093697280 331.425 4689531029378339840 5.624				(mas)	(mas))	frac	(mas per yr)) }	Nemarks	Fea- tures	i i	Į į	DOIM	T_{DS}	~	WISE ph-qual	WISE var_flag
	16.576	235.184	0.279	4.236	0.104	17.262	14.549	0.143	34.485	1.212	TESS	No	Yes	1.087	201	100	0.1	b'AACC'	b'00nn'
	7 -29.363	236.078	0.000	4.233	0.122	17.407	14.532	0.134	7.809	0.984	TESS	No	Yes	0.858	202	100	0.1	b'AACC'	b'33nn'
	-11.189	236.138	0.000	4.213	0.119	17.590	14.651	0.070	18.925	0.988	TESS	No	Yes	1.005	205	100	0.1	b'AACC'	b'11nn'
	5 -22.564	238.803	0.000	4.198	0.127	17.920	15.059	0.000	7.243	0.971	TESS	No	Yes	0.961	2601	125	0.1	b'AACC'	b'00nn'
	-72.634	239.147	0.000	4.153	0.078	17.693	14.938	0.277	28.348	1.016	TESS	No	Yes	0.918	209	100	0.1	b'AACC'	b'01nn'
2435392417000825984 355.478	8 -10.457	239.235	0.000	4.138	0.136	17.957	14.965	0.091	29.303	0.979	NCJM, TESS	No	Yes	0.889	2600	125	0.1	b'AACC'	b'00nn'
6402749267044915840 327.223	3 -63.652	241.404	0.112	4.110	0.052	16.799	14.069	0.075	46.922	1.016	K&M, TESS	No	Yes	0.867	191	100	0.1	b'AACC'	b'11nn'
1005962056045974912 90.703	61.382	241.702	0.000	4.088	0.082	17.305	14.516	0.185	9.111	0.977	TESS	No	Yes	0.881	202	100	0.1	b'AACC'	b'00nn'
101027079730076544 34.710	23.676	243.475	0.000	4.052	0.128	17.765	14.864	0.085	25.080	0.959	TESS	No	Yes	1.101	4980	150	0.1	b'AACC'	b'00nn'
4674754658232078848 66.974	-66.177	243.654	0.349	4.066	0.099	18.321	15.486	680.0	14.455	0.993	$_{ m TESS}$	No	Yes	0.957	2606	125	0.1	b'AACC'	b'00nn'
4714834812001755648 31.501	-59.289	247.801	0.156	3.992	0.089	17.850	14.828	0.111	61.822	1.097	K&M, TESS	No	Yes	1.039	2595	125	0.1	b'AABB'	b'00nn'
3176818022716814720 64.244	-13.865	249.287	0.152	3.990	0.071	17.047	14.268	0.035	54.700	1.056	TESS, $K\&M$	No	Yes	1.001	195	100	0.1	b'AACB'	b'11nn'
6412717744403679744 331.949	9 -56.250	250.235	0.000	3.960	0.059	16.829	14.305	090.0	24.511	0.978	$_{ m TESS}$	No	Yes	0.835	192	100	0.1	b'AACB'	b'00nn'
1117427693010918400 135.084	4 68.930	250.689	0.000	3.912	0.101	17.740	14.827	0.000	25.570	1.007	$_{ m TESS}$	No	Yes	1.430	205	100	0.1	b'AACC'	b'00nn'
4898684774054542208 68.892	-21.411	251.546	0.206	3.922	0.079	17.376	14.712	0.098	7.739	1.058	$_{ m TESS}$	No	Yes	868.0	201	100	0.1	b'AACC'	b'00nn'
5057336772862673152 52.250	-28.840	253.165	0.000	3.905	0.106	18.009	15.146	0.043	17.741	1.034	TESS	No	Yes	0.893	215	100	0.1	b'AACC'	b'00nn'
$1566609769556349824 \left 197.882 \right $	2 58.258	253.882	0.000	3.877	0.073	17.490	14.633	0.048	7.909	0.994	TESS	No	Yes	1.016	202	100	0.1	b'AACC'	b'01nn'
5083549374883972992 57.554	-25.108	256.147	0.000	3.860	0.074	17.403	14.660	0.063	24.948	1.018	TESS	No	Yes	0.901	199	100	0.1	b'AACC'	b'21nn'
5138097894788103424 31.127	-18.926	257.139	0.000	3.854	0.104	17.675	14.934	0.071	41.580	0.970	K&M, TESS	No	Yes	0.897	204	100	0.1	b'AACC'	b'00nn'
1082166694409052288 118.331	1 57.121	258.204	0.000	3.829	0.112	17.766	14.997	0.100	41.675	0.995	K&M, TESS	No	Yes	0.857	2591	125	0.1	b'AACC'	b'11nn'

continued

U 0.	GAIA DR3 Source ID	ra	oep .	Dist (pc)	AEN	para (mas)	p err (mas)	g mag	j mag	red frac	pm (mas per yr)	ruwe	Remarks	Nebu Fea- tures	n DS	Gvar	Mod	T_{DS}	~	WISE ph-qual	WISE var_flag
	5468611605493851264	156.212	-27.707	258.610	0.000	3.868	0.123	17.991	15.278	0.167	28.624	0.980	TESS	No	Yes	0.939	2598	125	0.1	b'AACC'	b'00nn'
	2667886899474087680	326.464	-6.459	260.751	0.337	3.786	0.123	17.527	14.646	0.118	18.743	0.951	TESS	No	Yes	906:0	203	100	0.1	b'AACC'	b'00nn'
	1922953478004114816	359.286	44.125	262.312	0.224	3.801	0.121	17.857	14.926	0.156	31.587	1.045	TESS	No	Yes	0.852	205	100	0.1	b'AACC'	b'00nn'
	6592971302704572288	326.779	-31.137	263.809	0.000	3.760	0.079	17.091	14.407	0.029	12.922	0.941	TESS	No	Yes	0.932	193	100	0.1	b'AACB'	b'00nn'
	1875560270535342592	336.203	23.260	265.185	0.253	3.747	0.107	17.583	14.815	0.076	22.791	1.044	NCJM, TESS	No	Yes	0.876	203	100	0.1	b'AACC'	b'11nn'
	133263046965499392	38.598	31.670	266.549	0.127	3.709	0.073	16.939	14.328	0.112	13.769	1.018	TESS, LAM- OST	No	Yes	0.865	188	100	0.1	b'AACC'	b'00nn'
l .	858610318053921920	176.861	59.892	268.280	0.436	3.646	0.082	17.413	14.640	0.073	23.045	1.085	TESS	No	Yes	1.006	198	100	0.1	b'AACC'	b'11nn'
	1623882363879075200	245.566	58.807	269.360	0.244	3.669	0.109	18.446	15.422	0.093	10.242	0.988	TESS	No	Yes	0.890	218	100	0.1	b'AACC'	b'00nn'
	2480882305418201856	23.396	-4.029	270.901	0.418	3.688	0.122	17.534	14.711	0.025	62.976	1.132	K&M, TESS C	No	Yes	0.953	199	100	0.1	b'AACC'	b'11nn'
	2437221214075471744	354.011	-9.333	272.107	0.210	3.681	0.112	17.312	14.765	0.000	28.321	1.014	TESS	No	Yes	0.875	2582	125	0.1	b'AACB'	b'00nn'
	1390217593013664512	234.411	41.442	272.428	0.459	3.624	0.119	18.204	15.302	680'0	22.269	1.034	TESS	No	Yes	866.0	215	100	0.1	b'AACC'	b'01nn'
	4851401543515220736	49.477	-41.304	274.254	0.000	3.593	0.095	18.008	15.018	0.093	17.698	0.988	TESS	No	Yes	0.849	2595	137.5	0.1	b'AABB'	b'11nn'
'	6783520279866548480	322.007	-31.786	274.906	0.000	3.597	0.093	16.902	14.217	0.029	32.911	0.976	TESS	No	Yes	0.833	187	100	0.1	b'AACB'	b'11nn'
	4932875462509521280	13.405	-48.492	275.717	0.000	3.597	0.076	17.474	14.720	0.030	82.362	0.972	K&M, TESS	No	Yes	0.986	198	100	0.1	b'AACC'	b'11nn'
	3929437305341869056	194.689	12.620	275.741	0.000	3.548	0.083	16.998	14.249	0.000	41.018	0.989	K&M, TESS	No	Yes	0.921	190	100	0.1	b'AACC'	b'11nn'
	2478471596110203008	20.161	-7.177	278.444	0.000	3.524	0.087	17.137	14.349	0.138	51.926	1.022	NCJM, K&M, TESS	No	Yes	1.123	2575	125	0.1	b'AABB'	b'11nn'
	2966133315455819648	86.805	-20.128	283.725	0.000	3.454	890.0	17.149	14.358	660.0	18.139	0.987	TESS	No	Yes	0.878	190	100	0.1	b'AACC'	b'00nn'
	5112579608592599680	55.008	-14.308	284.664	0.000	3.469	0.059	16.860	14.259	0.032	25.304	0.947	TESS	No	Yes	0.864	85782	325	0.1	b'ABCC'	b'0nnn'
	1050495536848847360	145.782	59.436	286.832	0.260	3.439	920.0	17.229	14.632	0.026	21.279	1.097	TESS	No	Yes	0.822	192	100	0.1	b'AACC'	b'00nn'

continued.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\$	pm ruv (mas per	pm (mas per	pm (mas per	pm (mas per	mas) frac (mas) frac (mas ber per per per per per per per per per p	(mas) g mag j mag red pm frac (mas per	pm (mas per	para p err g mag j mag red pm (mas) (mas) frac (mas per	AEN para p err g mag j mag red pm (mas) (mas) (mas) g mag g per g per	Dist AEN para (mas) perr (grad) g mag (mas) j mag (mas) red (mas) pm (red (mas) (mas))
17 TESS No Yes 0.917 205 100 0.1 b'AACB' b'11nn'	22.791 1.01		0.102	15.183 0.102	18.021 15.183 0.102	0.100 18.021 15.183 0.102 22.791 1.017 TESS	3.359 0.100 18.021 15.183 0.102	3.359	3.359	3.359	
	23.408 1.03		0.045	15.440 0.045	18.185 15.440 0.045	0.113 18.185 15.440 0.045 23.408 1.031 TESS		3.441	3.441	-30.960 290.673 0.089 3.441	
64 TESS No Yes 0.827 191 100 0.1 b'AACC' b'11nn'	25.186 0.96		0.023	14.683 0.023	17.329 14.683 0.023	0.081 17.329 14.683 0.023 25.186 0.964 TESS		3.317	3.317	3.317	