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Abstract

We study the Andreev bound states and provide unique signatures of Andreev bound
states using the Blonder-Tinkham-Klapwijk model for Normal-Superconductor (N-S)
junction. Taking this forward, we have looked into the possibility of getting such Andreev-
bound states in a semi-Dirac materials-based N-S junction. This report contains the
solution of such Andreev bound states in such an N-S junction obtained by solving the
Bogoliubov-de-Gennes equation. We find that for the case of the ideal N-S interface if the
energy of an incident electron is such that E < ∆ (where ∆ is the superconducting gap),
we have a perfect Andreev reflection. But as this ratio E

∆
become greater than 1, the

probability of transmission of an electron transmitting into the S region increases since
there are no allowed Cooper pair states at such energy. We also studied the differential
conductance of such a setup and it shows an anomaly giving a very large conductance at a
certain energy. It must be mentioned that the singularity of the differential conductance
at eV = ∆ also appears (as expected).
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Chapter 1

Introduction

The Bardeen-Cooper-Schrieffer (BCS) theory is a fundamental theory of superconduc-
tivity in modern condensed matter physics. The key feature of the theory is the pair
condensation of a Fermionic pair to form a condensate called Cooper pair. The binding
of Fermions into Cooper pairs typically leads to an energy gap in the Fermionic excitation
spectrum implying that the Fermionic excitations are no longer charge eigenstates, but
each is a coherent superposition of a normal-state particle and hole, e.g. γ† = uc† + vc,
where u and v are the particle and hole amplitudes defining the Bogoliubov quasiparti-
cles. Charge conservation is maintained by an additional channel for charge transport
via the coherent motion of the pair condensate.

1.1 Andreev Reflection

Many of the important properties of superconductors come from the coherent superposi-
tion of particle and hole states that defines the low-energy excitations of a superconductor,
i. e. Bogolibov quasiparticles. The coherence amplitudes, talked about in the previous
section u and v clearly depend on the pair potential, ∆(r). In an N-S junction, it was
identified by A. F. Andreev, that an incoming particle-like excitation from the N-region
has a finite probability of converting to an outgoing hole-like excitation, a process called
branch conversion scattering, or Andreev scattering thus creating a Cooper pair state in
the S region. The entire process is shown in Fig. 1.1. Another condition, we must put
forward is that the energy of the incident particle-like excitation should be such that ϵ¡

Figure 1.1: Left: Retro and Specular Andreev reflection at an N-S boundary.
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∆, since there are no Cooper pairs excitation in the superconducting side for ϵ > ∆.
There are two types of Andreev reflection as shown in Fig. 1.1. The condition for these
two types of reflection depends on whether the excitons lies in the conduction or valence
bands as we shall see in the subsequent sections.

1.2 Dirac materials

Dirac materials are materials that exhibit a linear E(k) vs k relation about the low energy
spectrum making them massless relativistic particles. In Dirac materials the low-energy
fermionic excitations or quasiparticles do not obey the Schrodinger Hamiltonian HS but
rather a Dirac Hamiltonian (Eqn. (1.1)) along with the relativistic effect. In two spatial
dimensions, this Hamiltonian has the form

HD = vF σ.p (1.1)

where σ = (σx, σy) and σz are the usual Pauli matrices and vF denotes the Fermi velocity.
Understandably, vF is huge since they are quasi relativistic particles. One of the very good
examples of Dirac materials are that of graphene which shows such Dirac like dispersion
at all the valley points in the Brillouin zone. (Refer to the figure below)

Figure 1.2: Energy dispersion of electrons in graphene which displays the Dirac cones at
each valley point.
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Chapter 2

The Blonder-Tinkham-Klapwijk
model for N-S junction

We consider the following N-S junction (figure 2.1) and the calculations involved with it
as a benchmark for our study. We denote by x the longitudinal coordinate and by (y, z)
the transversal coordinates. The junction is located at the coordinate x = 0. We model
the system with the Bogolubov de Gennes Equation

Figure 2.1: N-S junction

[
He ∆
∆∗ −H∗

e

][
u
v

]
= E

[
u
v

]
(2.1)

We describe the junction with a step-like order parameter

∆(x) = θ(x)∆0 exp (ιϕ) (2.2)

Assume that the system is separable so that we can factorize the wavefunction into

Ψ(x, y, z) = ψ(x)Φ(y, z) (2.3)
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[
−ℏ2

2m
(
∂2

∂x2
+

∂2

∂y2
) + V (y, z)]Φ(y, z) = EΦ(y, z) (2.4)

In conclusion, the system is described by the following effective 1D BdG Hamiltonian

[
−ℏ2
2m

∂2

∂x2 − ϵf ∆(x)

∆∗(x) ℏ2
2m

∂2

∂x2 + ϵf

][
u(x)
v(x)

]
= E

[
u(x)
v(x)

]
(2.5)

is called the Blonder-Tinkham-Klapwijk (BTK) Model.

2.1 Solution in N

[
−ℏ2
2m

∂2

∂x2 − ϵf 0

0 ℏ2
2m

∂2

∂x2 + ϵf

][
u(x)
v(x)

]
= E

[
u(x)
v(x)

]
(2.6)

[
−ℏ2

2m

∂2

∂x2
− ϵf ]u(x) = Eu(x) (2.7)

[
ℏ2

2m

∂2

∂x2
+ ϵf ]v(x) = Ev(x) (2.8)

which exhibit two particle solutons and two hole solutions

Ψe(±x) =

[
1
0

]
exp (±ιkex) (2.9)

Ψh(±x) =

[
0
1

]
exp (±ιkhx) (2.10)

where,

ke = kf

√
1 +

E

ϵf
(2.11)

kh = kf

√
1− E

ϵf
(2.12)

kf =

√
2mϵf

ℏ
(2.13)
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2.2 Solutions in S (E > ∆0)

In the superconductor side S the equation (2.5) reduces to

[
−ℏ2
2m

∂2

∂x2 − ϵf ∆0 exp (ιϕ)

∆0 exp (−ιϕ) ℏ2
2m

∂2

∂x2 + ϵf

][
u(x)
v(x)

]
= E

[
u(x)
v(x)

]
(2.14)

Here there are two particle like solutions and two hole like solutions

Ψe(±x) =

[
u0 exp (

ιϕ
2
)

v0 exp (
−ιϕ
2
)

]
exp (±ιqex) (2.15)

Ψh(±x) =

[
v0 exp (

ιϕ
2
)

u0 exp (
−ιϕ
2
)

]
exp (±ιqhx) (2.16)

where,

qe = kf

√√√√1 +

√
E2 −∆2

0

ϵ2f
(2.17)

qh = kf

√√√√1−

√
E2 −∆2

0

ϵ2f
(2.18)

kf =

√
2mϵf

ℏ
(2.19)

u20 + v20 = 1 (2.20)

using eq(2.20) quantities u0 and v0

u0 =

√
∆0

2E
exp (

1

2
arccosh(

E

∆0

)) (2.21)

v0 =

√
∆0

2E
exp (−1

2
arccosh(

E

∆0

)) (2.22)

i.e. the final form of wavefunctions (2.15) and (2.16)are
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Ψe(±x) =
√

∆0

2E

[
exp (1

2
arc cosh( E

∆0
)) exp ( ιϕ

2
)

exp (−1
2
arc cosh( E

∆0
)) exp (−ιϕ

2
)

]
exp (±ιqex) (2.23)

Ψh(±x) =
√

∆0

2E

[
exp (−1

2
arc cosh( E

∆0
)) exp ( ιϕ

2
)

exp (1
2
arc cosh( E

∆0
)) exp (−ιϕ

2
)

]
exp (±ιqhx) (2.24)

The transmission and reflection amplitudes

rhe =
u0v0

u20 + z2(u20 − v20
e−ιϕ (2.25)

ree =
(z2 + ιz)(v20 − u20)

u20 + z2(u20 − v20
(2.26)

tee =
(1− ιz)u0

√
u20 − v20

u20 + z2(u20 − v20)
e−ιϕ/2 (2.27)

the =
ιzv0

√
u20 − v20

u20 + z2(u20 − v20)
e−ιϕ/2 (2.28)

where, z = m
ℏ2kf

is the BTK dimensionless parameter of the interface transparency.
We have denoted

ree = reflection coefficient e → e
rhe = reflection coefficient e → h
tee = transmission coefficient e → e
the = transmission coefficient e → h
The corresponding transmission and reflection coefficients
A = |rhe|2
B = |ree|2
C = |tee|2
D = |the|2

in Supra-gap (E > ∆0)

A(E) =
∆2

(E + (1 + 2z2)
√
E2 −∆2)2

(2.29)

B(E) =
4z2(1 + z2)(E2 −∆2)

(E + (1 + 2z2)
√
E2 −∆2)2

(2.30)

C(E) =
2(1 + z2)

√
E2 −∆2(E +

√
E2 −∆2)

(E + (1 + 2z2)
√
E2 −∆2)2

(2.31)

D(E) =
2z2

√
E2 −∆2(E −

√
E2 −∆2)

(E + (1 + 2z2)
√
E2 −∆2)2

(2.32)

A+B + C +D = 1 (2.33)
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Figure 2.2: The case of ideal interface Z = 0: The Coefficients A, and C are plotted as a
function of energy. The coefficients B and D are zero.
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Chapter 3

Semi Dirac materials

A semi-Dirac material is a material that exhibits linear band dispersion in a given direc-
tion and quadratic band dispersion in a direction orthogonal to the former. We can thus
say that it hosts massless and massive fermions at the same point in the Brillouin zone
which in this case is theM point. A DFT proposal of such material is given in Fig. (3.1),
where there is oxygen absorbed in between two silicon atoms of a silicene. We adopt the
tight-binding Hamiltonian as given below to describe the Hamiltonian of the semi-Dirac
material

H =
∑
P

[t2Ĉ
†
B,P ĈA,P + t1Ĉ

†
B,P ĈA,P+A1 + t1Ĉ

†
B,P ĈA,P+A2 ] (3.1)

where t1 is the hopping parameter between the Si-Si bond [i.e., in between the Si atoms

at (0, 0) and at (
√
3
2
, −1

2
) ; setting the Si-Si bond distance to be a = 1], t2 is the hopping

parameter between the oxygen adsorped Si-Si bond [i.e., between the Si atoms at(0, 0)
and at (0, 1)], and Ĉ†

A/B,P/ĈA/B,P are the creation/annihilation operators at the site A/B

is given by the green/red sphere in Fig. (3.1)

Figure 3.1: The nearest hopping parameters in the honeycomb lattice and the first Bril-
louin zone with different high-symmetry points. [1]

The dispersion relation corresponding to the Hamiltonian in Eq. (3.1) is

8



H(k) = t2[e
−ιky ] + t1[e

ι(
√
3kx
2

+
ky
2
) + e−ι(

√
3kx
2

− ky
2
)] (3.2)

ϵ(k) = |H(k)| (3.3)

ϵ(k) =

√
2t21 + t22 + 2t21 cos(

√
3kx) + 4t1t2 cos(

√
3kx
2

) cos[
3

2
(ky −

2π

3
)] (3.4)

take , t2 = 2t1

ϵ(k) = t1

√
9k4x
16

+ 9k2y. (3.5)

Clearly, the dispersion is massive in the direction K
′ → M → K and massless along

Γ
′→ M →Γ. Thus the model provided by the Hamiltonian in Eq. (34) garners a full

description of the nature of the dispersion in semi-Dirac materials. In the proximity of
the M point, the Hamiltonian can be written as

H = g · σ (3.6)

where g = (αk2xx − δ, vky, 0) and σ = (σx, σy, σz) are the Pauli spin matrices, with α, δ,
and v representing the inverse of the quasiparticle mass along the x direction, the system
gap parameter, and the Dirac quasiparticle velocity along the y direction, respectively.
The information on the hopping strength between the corresponding nearest atoms is
well contained in the gap parameter δ. It is zero fort2 = 2t1, positive for t2 < 2t1, and
negative for t2 > 2t1.

3.0.1 Semi-Dirac material based N-S junction

Let us consider a normal(N) - superconductor(S) junction, as shown in Fig.6.Model the
system with the equation

Figure 3.2: Normal-Superconducting Junction
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HΨ− ϵΨ = 0 (3.7)
(µ− ϵ) [(αp2x − δ) + ιvpy] ∆eιϕ 0

[(αp2x − δ)− ιvpy] (µ− ϵ) 0 ∆eιϕ

∆e−ιϕ 0 −(µ+ ϵ) [−(αp2x − δ)− ιvpy]
0 ∆e−ιϕ [−(αp2x − δ) + ιvpy] −(µ+ ϵ)



u1
u2
v1
v2

 = 0

(3.8)

for superconducting region eq(3.8) gives us two relations
for electronic state

µ+
√
ϵ2 −∆2 =

√
(αp2x − δ)2 + v2p2y (3.9)

for hole state

−µ+
√
ϵ2 −∆2 =

√
(αp2x − δ)2 + v2p2y (3.10)

after solving wavefunctions for left movers are given as,

Ψe =
1

2


eιβ

−eιβe−ιγ

e−ιϕ

−e−ιϕe−ιγ

 eι(pxx−pyy) (3.11)

Ψh =
1

2


e−ιβ

e−ιβeιγ

e−ιϕ

e−ιϕeιγ

 eι(pxx−pyy) (3.12)

eιβ =
ϵ−

√
ϵ2 −∆2

∆
(3.13)

e−ιγ =
(αp2x − δ)− ιvpy√
(αp2x − δ)2 + v2p2y

(3.14)

if ϵ < ∆

β = arc cos[
ϵ

∆
] (3.15)

10



if ϵ > ∆

β = −ιarc cosh[ ϵ
∆
] (3.16)

in normal region for electronic state

[
(µ− ϵ) (αk2x − δ)− ιvky

(αk2x − δ) + ιvky (µ− ϵ)

][
u1
u2

]
= 0 (3.17)

energy dispersion relation for electronic state

ϵ = µ±
√

(αk2x − δ)2 + v2k2y (3.18)

in normal region for hole state

[
−(µ+ ϵ) −[(αk2x − δ)− ιvky]

−[(αk2x − δ) + ιvky] −(µ+ ϵ)

][
v1
v2

]
= 0 (3.19)

energy dispersion relation for hole state,

ϵ = −µ±
√

(αk2x − δ)2 + v2k2y (3.20)

so wave functions in normal region are

Ψe =
1√
cosΩ


e−ιΩ/2

eιΩ/2

0
0

 eι(kxx+kyy) (3.21)

Ψh =
1√

cosΩ′


0
0

eιΩ
′/2

e−ιΩ′/2

 eι(kxx−kyy) (3.22)

Ω = arcsin[
vky
ϵ+ µ

] (3.23)

Ω′ = arcsin[
vky
ϵ− µ

] (3.24)

The energy dispersion relation derived above is plotted as

11



Figure 3.3: Dispersion in the normal region (Left) and in the superconducting region
(right)

3.0.2 Reflection coefficients

Applying boundary continuity condition at the N-S junction (referring to Fig. [??] at
y = 0 ) the reflection coefficients for an incident electron is obtained by the following
relation

ψ−
e + rψ+

e + raψ
+
h = aψ+

s + bψ−
s (3.25)

The reflection coefficients for an incident hole at y = 0 are obtained by the following
relation

ψ−
h + r′ψ+

h + r′aψ
+
e = a′ψ+

s + b′ψ−
s (3.26)

r = −
cos β sin (Ω′+Ω)

2
+ ι sin β sin (Ω′−Ω)

2

ι cos β cos (Ω′−Ω)
2

+ cos (Ω′+Ω)
2

sin β
(3.27)

ra =
e−ιϕ

√
cosΩ cosΩ′

cos β cos (Ω′−Ω)
2

− ι cos (Ω′+Ω)
2

sin β
(3.28)

r′ = −
cos β sin (Ω′+Ω)

2
− ι sin β sin (Ω′−Ω)

2

ι cos β cos (Ω′−Ω)
2

+ cos (Ω′+Ω)
2

sin β
(3.29)

r′a =
eιϕ

√
cosΩ cosΩ′

cos β cos (Ω′−Ω)
2

− ι cos (Ω′+Ω)
2

sin β
(3.30)

Case:1 µ << ϵ

Ω = Ω′ (Retro reflection dominates) (3.31)
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r =
ι ϵ
∆
sinΩ

ϵ
∆
− ζ cosΩ

(3.32)

ra =
e−ιϕ cosΩ
ϵ
∆
− ζ cosΩ

(3.33)

r′ =
ι ϵ
∆
sinΩ

ϵ
∆
− ζ cosΩ

(3.34)

r′a =
eιϕ cosΩ

ϵ
∆
− ζ cosΩ

(3.35)

Case:2 µ >> ϵ for

Ω = −Ω′ (Specular reflection dominates) (3.36)

r =
−ιζ sinΩ
ϵ
∆
cosΩ− ζ

(3.37)

r′ =
ιζ sinΩ

ϵ
∆
cosΩ− ζ

(3.38)

ra =
e−ιϕ cosΩ
ϵ
∆
cosΩ− ζ

(3.39)

r′a =
eιϕ cosΩ

ϵ
∆
cosΩ− ζ

(3.40)

where

ζ = ι

√
1− ϵ2

∆2
(3.41)

Figure 3.4: Schematic diagram (a) Andreev retroreflection (b) specular Andreev reflection
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Figure 3.5: Polar Plots for Normal reflection and Andreev reflection for two cases
Case(1):ϵ < ∆ Case(2):ϵ > ∆

The transmission probability to the superconducting side can be written as |t|2 =
1 − |r|2 + |rA|2. This concept is useful in calculating the differential conductance in the
next section.
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3.0.3 Differential Conductance

Differential conductance refers to the rate of change of electrical conductance with respect
to a change in voltage or current. Here we calculate the differential Conductance of
the interface b/w normal and superconducting junction for the case of small and large
Fermi wavelength λµ in the normal region relative to the coherence length ξ = ℏv

∆
in the

superconductor.
The differential conductance of N-S junction using Blonder-Tinkham-Klapwijk formula
is

∂I

∂V
= g0(V )

∫ π/2

0

(1− |r|2 + |rA|2) cosΩ dΩ (3.42)

where g0(V ) = 4e2

h
ρ(eV ) and ρ(eV ) is the density if states at the given biasing V . The

calculation of the density of states is based on the equation below

ρ(ϵ) =
1

(2π)2

1∑
λ=−1

∫∫
δ(ϵ+ µ− λ

√
(αk2x − δ1)2 + v2k2y)d

2k (3.43)

We observe the following

Figure 3.6: Plot of Differential conductance normalized by the Ballistic value g0(V )

• The electron-hole conversion is predominantly retro reflection for λµ << ξ (red
curve)

• The electron hole conversion is predominantly specular reflection for λµ >> ξ (black
curve)
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Chapter 4

Summary

In this thesis, we have taken the effective 1 − D system of N-S junction using B-T-K
model that enable us to find the amplitude of the Andreev reflection in such a system as
a benchmark. We carried out the same study using semi-Dirac materials which display
a quadratic band dispersion along a particular direction and a linear dispersion in a
direction normal to the former. We find that for the case of the ideal interface (Z = 0) if
the energy of an incident electron is such that E < ∆ (where ∆ is the superconducting
gap), the probability of reflection of an electron as a hole is 1. But as this ratio E

∆

become greater than 1 then the probability of transmission of an electron as an electron
is increasing and the probability of reflection of an electron as a hole is decreasing since
there are no allowed Cooper pair states at such energy. We also studied the differential
conductance of such a setup and it shows an anomaly giving a very large conductance at a
certain energy. It must be mentioned that the singularity of the differential conductance
at eV = ∆ also appears (as expected).

The above conclusion was made when we chose the transport direction along the
direction where the dispersion is linear. The same study can be done when choosing a
transport direction along a direction where the dispersion is quadratic. We do not expect
a large conductance (that was observed when the transport direction is along the former)
when the transport direction is along the latter. This is the future plan to be carried out
in the next few months.
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