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Abstract

The study of explosive synchronization in higher-order interactions has been of keen
interest among many researchers. There have been several models for higher-order
interactions, here we consider the 2-simplex 2θi model with the phase lag parameter
introduced to see how it affects the dynamics and thereby the critical coupling of
the system. The present work is a generalization of the previous one where the
study was limited to the case of vanishing α and symmetric distribution of ωi. As in
the previous case(Work which has already been done by Per Sebastion Skardal and
Alex Arenas), a particular macroscopic solution of steady rotation is found, which
branches off the trivial solution at some positive K. For pairwise Globally coupled
networks with phase frustration work has been done by Sakaguchi and Kuramoto in
1986. Here we present an analysis of the collective dynamics of a 2-simplicial system
with non-zero phase lag. In the later chapters, we also present the analytics of the
2θj model in the presence of pair-wise interactions among the oscillators in which we
see that along with the transition point nature of transition also changes on varying
ϕ.
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Chapter 1

Introduction

1.0.1 Complex systems

The concept of complexity is often regarded as a novel unifying framework for sci-

entific inquiry, revolutionizing our comprehension of systems that have proven chal-

lenging to predict and control. Examples include the human brain and the global

economy. One way to define a complex system is by its heightened sensitivity to

initial conditions or small perturbations during evolution. Such systems possess a

large number of independent interacting components or exhibit multiple pathways

for evolution. Mathematical representations of these systems typically necessitate

nonlinear differential equations. Another more subjective characterization deems

a system ”complicated” and resistant to precise description, whether analytical or

otherwise.[8]

Complexity theory suggests that extensive collections of units have the capacity to

autonomously organize into clusters that give rise to patterns, retain information,

and participate in collective decision-making processes. A common thread through-

out research on complexity involves systems comprising multiple elements that adapt

and respond to the patterns emerging from these elements’ interactions.

1
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Figure 1.1: Flash-
ing of fireflies

Figure 1.2: Flock of
birds

1.0.2 Nonlinearity

Nonlinearity is often regarded as a fundamental characteristic of complexity. Lin-

ear systems exhibit superposition property, where adding any two solutions yields

another solution, and scaling any solution by a factor produces another valid solu-

tion. However, nonlinearity disrupts this superposition principle. In many cases,

we analyze systems by considering detailed states, such as the positions and mo-

menta of particles, as inputs for dynamical equations, while our primary interest

lies in coarse-grained physical quantities derived from these microstates. Nonlinear

equations of motion can result in small variations in initial conditions leading to sig-

nificantly different macrostates. These systems lack proportionality and straightfor-

ward causality between the stimuli’s strength and the responses’ magnitude. Small

changes can produce unexpected and dramatic effects, while substantial stimuli do

not always result in drastic changes in system behavior.[8]
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1.0.3 Feedback

Feedback plays a crucial role as a necessary component in complex dynamical sys-

tems. In such systems, a part of the system receives feedback when its future in-

teractions with neighboring components are influenced by its past interactions with

them. Take, for example, a flock of birds. Each bird determines its course based

on the positions and orientations of nearby birds. However, after adjusting its own

trajectory, the bird’s neighbors also modify their flight plans, partly in response to

the first bird’s new path. Consequently, when the bird considers its next move, the

states of its neighbors now partially reflect its own earlier behavior.[8]

Feedback alone is not enough to manifest complexity in a system. It is crucial for

individuals to be part of a sufficiently large group in order to exhibit complexity.

Additionally, the feedback within the system must give rise to higher-level order.

For instance, consider the behavior of ants. Individually, ants lack understanding

of complex tasks such as building bridges or farms. However, when interacting with

one another, they are able to undertake these intricate tasks. Left to their own

devices, ants would exhibit simpler behavior. The emergence of complex behavior

in ants is a result of their interactions and the feedback they exchange within the

colony.[8]

1.0.4 Spontaneous Order

[8] The concept of order in the behavior of complex systems arises from the cumu-

lative effect of numerous uncoordinated interactions between their elements. This

fundamental idea is at the core of complex systems research. Related notions include

symmetry, organization, periodicity, determinism, and pattern. It is worth noting

that the term ”order” encompasses various meanings, requiring careful qualification



Chapter I. Introduction 4

for analytical usefulness in a theory of complex systems. However, it is evident that

some notion of order is essential because pure randomness does not give rise to com-

plexity. Conversely, total order is also incompatible with complexity. The fact that

complex systems exhibit neither pure randomness nor complete order holds signif-

icant importance. Nevertheless, the existence of spontaneous order is a necessary

condition for a system to be considered complex.

1.0.5 Robustness and lack of central control

The order observed in complex systems is characterized as robust due to its dis-

tributed nature, which means it is not centrally produced and remains stable even

when the system is perturbed. For instance, the coordinated motion of a flock of

birds persists despite its members’ individual and erratic movements. This stability

is demonstrated by the flock’s ability to withstand external factors such as wind

buffeting or random elimination of some flock members without losing its order. It

is important to note that while the absence of central control is a common feature

of complex systems, it is not sufficient for complexity, as non-complex systems may

lack control or order altogether[8].

One mechanism through which a system can maintain its order is through the uti-

lization of error-correction processes. Robustness is deemed necessary but not solely

sufficient for complexity, as a random system can also be considered robust in the

trivial sense that perturbations do not impact its order due to the absence of any

inherent order. An example of robustness can be found in the climatic structure of

the Earth’s weather, where rough yet relatively stable regularities and periodicities

in wind velocity, temperature, pressure, and humidity arise from underlying non-

linear dynamics. It is worth noting that these properties represent coarse-grained
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descriptions relative to the underlying state space. The existence of such properties

enables a significant reduction in the number of degrees of freedom that need to be

considered, forming an important area of study[8].

1.0.6 Emergence

When discussing complexity science, it is often associated with the limitations of

reductionism. One prominent aspect of emergence is the notion of downward cau-

sation, which suggests that emergent objects, properties, or processes exert causal

influence at higher levels of the organization. Upward causation, on the other hand,

is widely accepted. For example, a subatomic decay event can generate radiation

that induces a mutation in a cell, ultimately leading to the demise of an organism.

The realms of biology, chemistry, economics, and social interactions are not causally

isolated from physics, as physical causes can have effects in these domains. How-

ever, many hold the view that the physical world is causally closed, meaning that

all physical effects have physical causes[8].

In the context of emergence, we are concerned with a specific type of emergence

exemplified by phenomena such as the formation of crystals, the organization of ant

colonies, and the emergence of higher levels of organization from fundamental physics

and the physical components of complex systems. This notion of emergence is dis-

tinct from the emergence of approximately elliptical orbits over time through the

gravitational interaction between the sun and the planets. The focus lies on under-

standing how levels of organization in nature emerge from the underlying principles

of fundamental physics and the physical constituents of more complex systems[8].
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1.0.7 Hierarchical organisation

Complex systems often exhibit multiple layers of organization, forming a hierarchical

structure of systems and subsystems, as proposed by Herbert Simon in his influential

paper ”The Architecture of Complexity.” These complex systems, characterized by

various features mentioned earlier, give rise to entities with diverse levels of structure

and properties. These levels interact with one another, displaying lawlike and causal

regularities, as well as different forms of symmetry, order, and periodic behavior[8].

A prime example of such a system is an ecosystem, encompassing the entirety of

life on Earth. Other examples of systems demonstrating this kind of organization

include individual organisms, the brain, complex organisms’ cells, and so forth.

Even non-living entities, such as the cosmos exhibit this organizational structure,

with atoms, molecules, gases, liquids, chemical and geological classifications, and

ultimately stars, galaxies, clusters, and superclusters forming its intricate composi-

tion[8].

1.0.8 Vulnerability due to interconnectivity

Upon initial observation, the two satellite images of Image 1.1 appear identical,

depicting illuminated regions in densely populated areas and darker regions repre-

senting extensive uninhabited forests and oceans. However, a closer examination

reveals noticeable differences: (a) displays bright lights emanating from Toronto,

Detroit, Cleveland, Columbus, and Long Island, whereas these areas appear dark in

(b). These images depict the actual Northeast USA on August 14, 2003, before and

after a significant blackout that left approximately 45 million people without power

in eight US states, along with an additional 10 million in Ontario[7].
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Figure 1.3: [7]Satellite image on the Northeast United States on August 13th,
2003, at 9:29 pm (EDT), 20 hours before the 2003 blackout. The same as above,

but 5 hours after the blackout

The scenario described is a classic example of cascading failure. In a network func-

tioning as a transportation system, when a local failure occurs, the load is shifted to

other nodes within the system. If the additional load is manageable, the system can

absorb it, and the failure goes unnoticed. However, if the neighboring nodes become

overwhelmed by the increased load, they, too, will fail and redistribute the load to

their own neighbors. This chain reaction results in a cascading event, the scale of

which depends on the initial failed nodes’ positions and capacities.

Cascading failures can also be intentionally induced. For instance, there is a global

effort to disrupt the financial resources of terrorist organizations, with the goal of

severely impeding their ability to operate effectively. Similarly, in the field of cancer

research, scientists aim to trigger cascading failures within our cells to target and

eliminate cancer cells.

During the initial stages of electric power generation, individual cities had their own

generators and electric networks. Since electricity cannot be stored efficiently, it

was necessary for it to be consumed immediately upon production. As a result, con-

necting neighboring cities and establishing a shared network became economically

viable. This interconnectedness enabled the sharing of surplus electricity among

cities and facilitated the borrowing of electricity when needed. The power grid,
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which emerged through these pairwise connections, played a crucial role in the af-

fordability of electricity today. This extensive network links all electricity producers

and consumers, allowing cheaply produced power to be efficiently transported to any

location instantaneously. The domain of electricity serves as an excellent example

of the significance of networks in our daily lives.



Chapter 2

General Definitions and Roadmap

to Kuramoto Model

2.1 Networks and Graphs

[7]In order to comprehend a complex system, it is crucial to understand the inter-

actions among its components. A network serves as a representation of a system’s

components, often referred to as nodes or vertices, along with the direct interactions

between them, known as links or edges.

The size of the network, denoted as N, corresponds to the number of nodes or

components within the system. To differentiate between nodes, we label them as i

= 1, 2, .... N.

The total number of interactions between the nodes is referred to as the number of

links, denoted as L. Links can be identified by the nodes they connect. For instance,

a link between nodes 2 and 4 would be represented as (2, 4).

9
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Figure 2.1: [7]

Networks can consist of either directed or undirected links. If all the links in a

network are directed, it is termed a directed network or digraph. An example of a

directed network is the World Wide Web (WWW), where uniform resource locators

(URLs) point from one web document to another. On the other hand, if all the

links are undirected, the network is called an undirected network. Some networks

may contain a combination of directed and undirected links. For instance, in a

metabolic network, certain reactions are reversible and can occur in both directions

(undirected), while others only proceed in one specific direction (directed).

Figure 2.2:
[7]

Figure 2.3:
[7]

2.2 Degree, Average Degree, and Degree Distri-

bution

[7]A crucial characteristic of each node in a network is its degree, which signifies the

number of links it possesses connecting it to other nodes. The degree of a node can

be interpreted as the number of mobile phone contacts an individual has in a call
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graph, indicating the number of people the person has communicated with, or it can

represent the number of citations a research paper receives in a citation network.

2.2.1 Degree

[7]The degree of the ith node in the network is denoted by ”k.” For instance, in

the undirected networks depicted in the figure, the degrees of the nodes can be

represented as k1=2, k2=3, k3=2, and k4=1. In the case of an undirected network,

the total number of links, denoted as ”l,” can be calculated as the sum of the node

degrees.:

L =
1

2

N∑
i=1

ki

The factor 1
2
corrects for the fact that in the above sum, each link is counted twice.

2.2.2 Average Degree

[7]An important property of a network is its average degree, which for an undirected

network is

⟨k⟩ = 1

N

N∑
i=1

ki =
2L

N

In directed networks, a distinction is made between the incoming degree, denoted as

kini , which indicates the number of links directed towards node i, and the outgoing

degree, denoted as kouti , which signifies the number of links originating from node

i and pointing to other nodes. The total degree of a node, ki, is the sum of its

incoming and outgoing degrees.

ki = kini + kouti . For instance, in the World Wide Web (WWW), the outgoing degree

(kouti ) of a document corresponds to the number of pages it links to, while the
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incoming degree (kini ) represents the number of documents that link to it. The total

number of links in a directed network can be expressed as the sum of the incoming

degrees or the sum of the outgoing degrees:

L =
N∑
i=1

kini =
N∑
i=1

kouti

In the case of directed networks, the factor 1
2
is not present since the two sums in

the equation are separately accounted for the incoming and outgoing degrees. The

average degree of a directed network can be calculated by dividing the total number

of links by the number of nodes.

⟨k⟩ = 1

N

N∑
i=1

kini =
1

N

N∑
i=1

kouti =
L

N

2.2.3 Degree Distribution

[7] The degree distribution, denoted as pk, represents the probability that a randomly

selected node in the network has a degree of k. To ensure that pk is a valid probability

distribution, it must be normalized, meaning that the sum of all probabilities must

equal 1:
∞∑
k=1

pk = 1

In a network with N nodes, the degree distribution can be expressed as the nor-

malized histogram, given by: pk = Nk

N
where Nk is the number of degree-k nodes.

Hence the number of degree-k nodes can be obtained from the degree distribution

as Nk = Npk
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Figure 2.4: Adjacency Matrix

2.2.4 Adjacency matrix

[7] To fully describe a network, it is necessary to have information about the links

between its nodes. One way to keep track of these links is by providing a complete

list of them. For instance, in the network depicted in the figure, we can uniquely

describe it by listing its four links as follows: (1,2), (1,3), (2,3), (2,4).

In mathematical terms, networks are often represented using an adjacency matrix,

particularly for directed networks consisting of N nodes. The adjacency matrix is

an N x N matrix where each element represents the presence or absence of a link

between nodes. Specifically:

If there is a link pointing from node j to node i, the corresponding element in the

adjacency matrix, denoted as Aij, is assigned a value of 1. If there is no link between

the ith and jth node, the element Aij is assigned a value of 0. By utilizing the

adjacency matrix, we can efficiently represent the connectivity pattern of a network

and analyze its properties and dynamics.

In the case of an undirected network, each link between nodes is represented by

two entries in the adjacency matrix. For example, the link (1,2) is represented as

A12 = 1 and A21 = 1. As a result, the adjacency matrix of an undirected network

exhibits symmetry, meaning that Aij = Aji.
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The degree of a node, denoted as ki, can be determined directly from the elements

of the adjacency matrix. In undirected networks, the degree of a node is calculated

by summing either the corresponding row or column of the matrix:

ki =
N∑
j=1

Aij =
N∑
i=1

Aji

For the directed networks the sums over the adjacency matrix’s rows and columns

provide the incoming and outgoing degrees, respectively:

kini =
N∑
j=1

Aij, k
out
i =

N∑
i=1

Aji

2.2.5 Clustring Coefficients

[7] The clustering coefficient quantifies the extent to which the connections between

neighbors of a specific node are interconnected. When considering a node i with a

degree of ki, the clustering coefficient is defined as a measure of this phenomenon.

Ci =
2Li

(ki)(ki − 1)

where Li represents the number of links between the ki neighbors of node i. The

value of Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each other. Ci = 1 if the neighbors

of node i form a complete graph, that is they all are linked to each other.

So Ci basically measures the network’s local density: the more is the density of inter-

connected nodes in the neighborhood of node i, the higher its clustering coefficient.
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2.3 Motivation for Kuramoto Model

[2]Our main focus to study this model was that for N → ∞ we want to reduce

the n dynamical equations into a single differential eq into single eq. involving the

mean field parameters since we want to study the collective behavior of the system

which can be done if we somehow are able to reduce the n differential equations

into a single eq. involving variables that give us information about synchronization

in the system, a system of oscillators spontaneously locks to a common frequency,

despite having differences in the intrinsic frequencies of individual oscillators. There

are various biological instances that exemplify the concept of clustering coefficients

in networks. These include networks of pacemaker cells within the heart, circadian

pacemaker cells found in the suprachiasmatic nucleus of the brain (where recent

studies have successfully measured individual cellular frequencies), metabolic syn-

chrony observed in yeast cell suspensions, gatherings of fireflies that synchronously

flash, and groups of crickets that chirp in unison. Physics and engineering also pro-

vide numerous illustrations, ranging from arrays of lasers and microwave oscillators

to superconducting Josephson junctions.

The mathematical study of collective synchronization originated with Wiener, who

observed its presence in natural systems and proposed its potential involvement

in generating alpha rhythms in the brain. However, Wiener’s approach based on

Fourier integrals ultimately proved to be a limited avenue of exploration.

In the first paper, Winfree introduced a more effective approach. He framed the

problem in terms of a large population of interacting limit cycle oscillators. Recog-

nizing the inherent complexity of the problem, Winfree hypothesized that simplifica-

tions could be achieved by weakening the coupling between oscillators and assuming

their near-identical nature. Under these conditions, the oscillators would reach a
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steady state, converging to their limit cycles and becoming solely characterized by

their evolving phases. These phases would be influenced by the interplay between

weak coupling and variations in intrinsic frequencies among the oscillators.

To further streamline the model, Winfree proposed that each oscillator was coupled

to the collective rhythm generated by the entire population, analogous to the mean-

field approximation commonly employed in physics. His model incorporated these

principles and paved the way for further advancements in the study of collective

synchronization.

θ̇i = ωi + (
N∑
j=1

P (θJ))Y (θi)

for i=1,...,N, where θi denotes the phase of ith oscillator i and ωi is its intrinsic

natural frequency.Each jth oscillator exerts a phase-dependent influence P(θj) on

all the others; the corresponding response of oscillator i depends on its phase θi,

through the sensitivity function Y (θi).

Through a combination of numerical simulations and analytical approximations,

Winfree made a significant discovery regarding populations of oscillators. He ob-

served that these systems could demonstrate a temporal equivalent of a phase tran-

sition phenomenon. Specifically, when the range of natural frequencies among the

oscillators was considerably larger than the strength of their coupling, the system

exhibited incoherent behavior, with each oscillator operating independently at its

intrinsic frequency.

However, as the range of natural frequencies decreased, the incoherence persisted

until a critical threshold was surpassed. Beyond this threshold, certain oscillators

began to synchronize, forming clusters of coherent behavior. Within these synchrony

clusters, specific nodes or oscillators came together, displaying synchronized dynam-

ics. This finding provided valuable insights into the emergence of synchronization
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in oscillator populations, shedding light on the conditions necessary for collective

coherence.

2.4 Kuramoto Model

[2]The most successful attempt to explain synchronization was by Kuramoto in 1975,

who analyzed a model of phase oscillators having arbitrary intrinsic frequencies and

coupled through sine of their phase differences, locks to common frequency, despite

the inevitable differences in the natural frequencies of individual oscillators. For

weakly coupled, nearly identically limit-cycle oscillators, the governing equation for

dynamics is given by

θ̇i = ωi +
N∑
j=1

λij(θj − θi)

for i=1,..,N The process of simplifying and analyzing the equations involved in the

system is generally challenging due to the presence of numerous sinusoidal Fourier

harmonics and the complexity arising from N equations representing the intercon-

nected oscillators, which could be arranged in various topologies such as ring, chain,

lattice, or other configurations. However, a more effective approach to represent

these equations is through the mean-field approximation.

The Kuramoto model serves as the simplest case within this framework, where all

oscillators are connected to each other with equal weights, and the interaction term

is sinusoidal in nature. This formulation captures the essential dynamics of the

system, allowing for a more tractable analysis and understanding of the collective

behavior of the oscillator population. By employing the mean-field approximation
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in the Kuramoto model, researchers have made significant progress in studying syn-

chronization phenomena, which is

λij(θj − θi) =
K

N
sin(θj − θi)

for K¿=0 is the coupling strength which tells how strongly a node is connected to

another node and how much the surrounding nodes are affecting its dynamics and

we divide it by factor 1
N

to ensure that our system is well behaved when N tends to

∞. The ωi are the intrinsic frequencies distributed according to some probability

density g(ω) and for simplicity, it was assumed to be unimodal and symmetric

about its mean frequencies Ω, i.e, g(Ω+ω) = g(Ω−ω) for all the ω, like gaussian or

Lorentzian distribution. Since there is rotational symmetry in the model we can set

mean frequency Ω = 0 by doing the transformation θi → θi+Ωt for all i, which is the

same as going into the frame which is rotating with frequency Ω. So our governing

equation becomes

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), (2.1)

for i=1,...,N. This eq. remains invariant because it subtracts Ω form all the ωi

and shifts the mean of g(ω) to zero and this function g(ω) is well behaved between

(−∞,∞)

2.4.1 Order parameter

Consider a unit complex circle, on its circumference all the the oscillators are revolv-

ing then the complex order parameter is defined as the centroid of the phases of all

the oscillators where r(t) measures the magnitude of phase coherence it is basically a

macroscopic quantity which tells us about how much the system is in synchrony by
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giving us the magnitude of collective rhythm and ψ(t) measures the average phase.

reiψ =
1

N

N∑
j=1

eiθj (2.2)

For instance, if all the oscillators move in a single tight clump, we have r≈ 1 and

the system behaves like one big oscillator, and if the oscillators are scattered around

the circle, then r≈ 0, there is no coherence since each oscillator is incoherent and

no rhythm is found. eq (2.1) can be written in the mean field by following by

multiplying e−iθj in eq. (2.2) We get

reψ−θi =
1

N

N∑
j=1

ei(θj−θi)

Equating the imaginary parts we get

rsin(ψ − θi) =
1

N

N∑
j=1

sin(θj − θi)

. Thus (2.1) becomes

θ̇i = ωi +Krsin(ψ − θi) (2.3)

for i=1,...,N The equation referred to as the mean field equation provides a more

manageable framework for analysis. While it may initially appear that each oscilla-

tor is decoupled from the others, the oscillators actually interact through mean-field

quantities represented by ψ and r. In this scenario, each oscillator aims to synchro-

nize with the mean phase ψ rather than directly with other oscillators. Additionally,

the effective strength of coupling is proportional to the value of r, leading to a pos-

itive feedback loop between coupling and coherence.

As the system becomes more coherent, r increases, causing the effective coupling
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strength, Kr, to grow as well. This heightened coupling strives to bring more os-

cillators into the synchronized cluster, initiating a feedback process. This positive

feedback mechanism continues as r is further increased, promoting the expansion

of the coherent cluster and enhancing synchronization within the oscillator popula-

tion. Here

we can see that in (a) we notice a synchronized cluster where r is close to 1 and here

ϕ is a mean phase of the cluster, distributed around ϕ in the same fashion as g(ω)

distribution. In (b) r is close to zero in the first case as there is complete incoherence

but in the second case although r is close to zero here also but here there is still

cluster synchronization.

2.4.2 Analytics

Now if we go into the rotating frame rotating with Ω and we sit on the mean phase

of the frame then we get

θ̇i = ωi − krsin(θi) (2.4)

In steady-state solutions, the assumption of a constant value for r implies that all

oscillators within the system appear to be independent. Consequently, solving for

the resulting motions of the oscillators requires that the values of r and ψ remain

consistent with their initially assumed values. This consistency ensures that the

obtained solutions align with the original assumptions made.
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Figure 2.5: Evoution of r(t) seen from numerical simulations of r(t)[2]

The solutions exhibit two types of long-term behavior depending on the size of ωi.

The oscillators with —ωi—¡= Kr approaches to a stable fixed point defined when

θ̇i = 0 then we get

ωi = krsinθi

where |θi| <= π
2
. The mean field equation provides a convenient framework for

analysis by considering the interaction between oscillators through mean-field quan-

tities represented by ψ and r. While it may initially seem that each oscillator is

independent, they actually synchronize with the mean phase ψ instead of directly

interacting with other oscillators. The strength of coupling is determined by the

value of r, creating a positive feedback loop between coupling and coherence.

As coherence increases, r also increases, leading to a growth in the effective coupling

strength, Kr. This heightened coupling aims to bring more oscillators into the syn-

chronized cluster, initiating a feedback process. This positive feedback mechanism

continues as r further increases, promoting the expansion of the coherent cluster

and enhancing synchronization within the oscillator population. Thus, the system

evolves in a self-reinforcing manner, where increased coherence amplifies the cou-

pling strength, fostering more extensive synchronization among the oscillators. So
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now the question arises that if all the drifting oscillators are buzzing around the cir-

cle in a nonuniform manner then how can r and ψ remain constant, this can only be

true if the contributions of drifting oscillators even though moving in a nonuniform

manner they should be uniformly distributed around the circle after reaching steady

state which turns out to be true as we will see.

Let ρ(θ, ω)dθ denote the the fraction of oscillator distributed between θ to θ+ dθ at

frequency ω. Now writing the continuity eq in (θ, ω) phase space

∂ρ

∂t
= −∂(ρθ̇)

∂θ
(2.5)

So the steady state means there is no piling or thinning of oscillators, we get

ρ(θ, ω) =
C

|ωi −Krsin(θ)|
(2.6)

The normalization constant is calculated by
∫ π
−π ρ(θ, ω) dθ = 1 for each ω, which gives

C =

√
ω2−(Kr)2

2π
. Now self -consistency analysis the value of the order parameter must

be consistent with (2.2) and by breaking down the averages in locked and drifting

parts we get

riψ = ⟨eiθ⟩lock + ⟨eiθ⟩drift

and since we are in the rotating frame so there ψ = 0 and in the locked state, for

|ω| <= Kr, sin(θ∗) = ω
Kr

, for N→ ∞, the distribution of locked phases is symmetric

about ψ and because of the symmetry of our distribution g(ω) = g(−ω) so there

will as many -θ∗ as there are θ∗ and so ⟨sin(θ)⟩lock will cancel out and now if we see

the contribution from the drifting oscillators we get

⟨eiθ⟩drift =
∫ +π

−π

∫
|ω|>Kr

ρ(θ, ω)eiθ dω dθ
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Now since due to the symmetry of g(ω) and from (2.6) it can be seen that ρ(θ, ω) =

ρ(θ+π,−ω) the above integral comes out to be zero so the self-consistency equation

reduces to

r = Kr

∫ Kr

−Kr
cos(θ)g(ω) dω

changing variable in θ we get

r = Kr

∫ π/2

−π/2
cos2(θ)g(Krsinθ) dθ (2.7)

Now there are two solutions to the above equations the trivial one is r=0 which

means a completely incoherent state and so density will be ρ(θ, ω) = 1
2π
, and the

other solution gives us the partially synchronized state which is given by the eq.

1 = K

∫ π/2

−π/2
cos2(θ)g(Krsinθ) dθ (2.8)

and to calculate critical coupling strength we put r → 0+ in (2.8) and we get

Kc =
2

πg(0)
. Now by doing the Taylor expansion of the integrand, we get

r ≈

√
16

πK3
c

√
µ

−g′′(0)
(2.9)

where µ = K−Kc

Kc
For the special case of Lorentzian distribution

g(ω) =
γ

π(γ2 + ω2)
(2.10)

upon integrating (2.8) we get

r =

√
1− K

Kc

(2.11)

for all K >= Kc



Chapter 3

Sakaguchi Kuramoto Model

3.1 Introduction

This model is a generalized version of the Kuramoto model with non-zero phase

frustration in the system. This work was done by Sakaguchi and Kuramoto on April

17, 1986. Although the original work was done in the paper is done through the

self-consistency method but we have done it here using the Ott-Antosen dimension-

ality reduction method and analytical progress is facilitated by the assumption that

distribution describing the oscillator’s natural frequencies take the form of Cauchy

or Lorentzian Distribution. We show here that in addition to the low dimensional

dynamics capturing fully the dynamics of the original system, the low dimensionality

equations can be used to study the critical coupling strength corresponding to the

onset of synchronization. These results agree with those which are obtained by a

self-consistency framework, but by using Ott-Antosen ansatz the low dimensionality

equations allow for a true bifurcation analysis that characterizes stability properties.

24
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3.2 Analytics in thermodynamics limit

For Kuramoto Sakaguchi Model in the thermodynamic limit of infinitely many os-

cillators, relationships between r, Ω, coupling strength K and phase lag parameter

can be found using the original self-consistency relation, but Ott-Antosen provides

a simpler way of deriving the relationship for Lorentzian frequency distribution.

So our model equation is [1]

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi − ϕ) (3.1)

for |ϕ| <= π
2
where θj and θi are phases of ith and jth oscillator respectively and

ωi is frequency of ith oscillator and K¿=0 is the global coupling strength. The

collective dynamics of this model i.e., the degree upto which the system will show

synchronization and incoherence will depend mainly on the interplay of K, ω and ϕ

if K is large enough with respect to spread and α, the system will synchronize.

Defining the complex order parameter

z = reiψ =
1

N

N∑
j=1

eiθj (3.2)

Now writing the eq(1) in terms of r and ψ we get by comparing the imaginary part

of the above eq. and substituting in (1)

θ̇i = ωi +Krsin(ψ − θi) (3.3)

We now discuss briefly of dimensionality of the reduction technique discovered

by Ott Antonsen[4]. In the continuum limit where N → ∞, we can describe the

state of the system by density function ρ(ω, θ, t), where ρ(ω, θ, t)dωdθ represents the
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probability or fraction of finding the oscillator having a frequency in between θ and

θ + dθ and having a frequency between ω to ω + dω at time t. First, we note that

by conservation of oscillators, ρ must satisfy the continuity equation

∂ρ

∂t
= −∂(ρθ̇)

∂θ
(3.4)

which contains no ∂/∂ω term since we have our natural frequencies to be fixed. Now

also note that this function ρ is periodic in theta, so we Fourier expansion which

takes the form

ρ(θ, ω, t) =
g(ω)

2π
[

∞∑
n=−∞

ρn(ω, t)e
ιnθ + c.c] (3.5)

where ρn is the nth Fourier coefficient of the Fourier series and c.c. represents the

complex conjugate of the previous term, so in this form determining the state of

the Fourier coefficient ρn is equivalent to determining ρ. The main discovery of Ott-

Antonsen is that all the Fourier coefficients collapse into one condition. By proposing

that the Fourier coefficients decay geometrically, i.e., ρn(ω, t) = αn(ω, t) for some

function α(ω, t) and so now substituting above equation in (3.4) and comparing the

coefficients of einθ, for different n the evolution of α and therefore distribution ρ can

be calculated by single differential eq

∂α

∂t
+ ιωα+

K

2
(zα2e−ιϕ − z∗eιϕ) = 0 (3.6)

where * represents the complex conjugate. To close the dynamics of the system we

use that in the continuum limit we have

z(t)∗ =

∫ ∫
ρ(ω, θ, t)eiθ dθ dω (3.7)
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∫ ∫
g(ω)

2π
[1 +

∞∑
n=1

[ᾱn(ω, t)e−ιnθ + αn(ω, t)eιnθ]]e−ιθ dθ dω

=

∫
α(ω, t)g(ω) dω

Integrating this in the lower half of the complex plane using Cauchy’s integral the-

orem with a pole at ω = −ι△ we get z∗ = α(ω0 − ι△, t), here we consider our

frequency distribution to be

g(ω) =
△

π[(ω − ω0)2 +△2]
(3.8)

with mean ω0 and spread △ > 0. We note that by entering into the rotating frame

we can set the mean to be zero without any loss of generality. At ω = −ι△ we get

ż∗ = −z∗ + 1

2
[Kz∗eιϕ − z∗z∗Kze−ιϕ]

Taking complex conjugate both sides we get

ż = △z + 1

2
[Kze−ιϕ − z2Kz∗eιϕ] (3.9)

Now by polar decomposition z = reiψ substituting in (3.9) we get

ṙ = −1

2
r[r2Kcos(ϕ)− 1 +

2△
Kcos(ϕ)

] (3.10)

rψ̇ = −1

2
Krsinϕ(1 + r2) (3.11)

Here the stable steady solution is r=0 for 0 < K < Kc is obtained where

Kc =
2△
cosϕ

(3.12)
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For K >= Kc, we get pair of stable steady-state solutions

r = ±

√
1− 2△

Kcosϕ
= ±

√
1− Kc

K
(3.13)

which emerges through a supercritical pitchfork bifurcation atK = Kc. The positive

solution corresponds to the partially synchronized state. Substituting this positive

solution into (3.11) we get mean cluster frequency.

Ω = ψ̇ = △tanϕ−Ksinϕ (3.14)

As seen from the eq.(3.12) critical coupling is shifted towards the right as ϕ ∈ (0, π
2
)

as the inclusion of ϕ causes frustration in the system, so the onset of synchronization

at larger Kc and we see a continuous second order transition

.

It can be seen here that as predicted by eq(3.2) value for critical coupling strength

shifts towards the right causing frustration in the system. Here blue curve represents

for ϕ=0 yellow for ϕ=pi/6, green for pi/4 and red for π/3



Chapter 4

Phase lagged coupled Kuramoto

oscillators on Simplicial

Complexes

4.1 Introduction

Here we present the generalized version of the Higher-order interactions mainly 3-

way, 2 simplex, where n-simplex represents the interaction between n+1 units, so

2-simplices represent 3-way interaction. This work is a generalization of work which

was done by Skardal and Alex Arenas on Abrupt Desynchronization and Extensive

Multistability in Globally coupled Oscillator Simplices[9]. Here we have introduced

a phase frustration parameter in the original eq to understand the dynamics. In

particular the 2-simplex macroscopic dynamics are captured by a combination two

order parameters namely r1 and r2 that tell the degree of synchronization and extent

of asymmetry as the oscillators organize into two different synchronised clusters.

29
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4.2 Model representation and Analytical deriva-

tion

We consider the dynamical equation as an extension of the Kuramoto Sakaguchi

model [kuramoto1975international] with simplicial complexes, in particular, higher

order (2-simplex) interactions such as

θ̇i = ωi +
K2

N2

N∑
j=1

N∑
k=1

sin(θj + θk − 2θi − ϕ). (4.1)

Where ϕ is the phase lag between oscillators and K2 is the 2-simplex coupling

strength for N number of oscillators. To analyze the collective behavior of oscil-

lators we introduce the definition of the generalized order parameter zq = rqe
ιψq =

1
N

∑N
j=1 e

qιϕj , for (q=1,2), z1 measures the extent of global synchronization and z2

measures the clustering. This helps to write Eq. 4.1 into the mean field equation

such as

θ̇i = ωi +K2r
2
1 sin(2ψ1 − 2θi − ϕ), (4.2)

where ψn is the generalized mean phase of oscillators given by equation

ψn = arctan
(
∑N

j=1 sin(nθj))

(
∑N

j=1 cos(nθj))
(4.3)

In the continuum limit N → ∞[3] the state of the system can be described by

density function ρ(θ, ω, t) i.e. the density of oscillators with phase between θ and

θ + δθ and intrinsic frequencies between ω and ω + δω at time t, since the number

of oscillators is conserved in the system, ρ must satisfy the continuity equation

∂ρ

∂t
= −∂(ρθ̇)

∂θ
. (4.4)
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Considering the frequency of each oscillator is drawn from the distribution g(ω) the

density function is expanded into Fourier series

ρ(θ, ω, t) =
g(ω)

2π
[

∞∑
n=−∞

ρn(ω, t)e
ιnθ],

where ρn(ω, t) being the nth Fourier coefficient and ρ−n = ρ∗ne
−ιnθ. We can write

the density function into the sum of the symmetric and antisymmetric parts thus

symmetric and antisymmetric parts satisfy ρ(θ + π, ω, t) = ρs(θ, ω, t) and ρa(θ +

π, ω, t) = −ρa(θ, ω, t), respectively. The linearity property of the continuity equation

defines that individually ρs and ρa are solutions therefore combination of both is also

a solution. However, only the symmetric part allows for dimensionality reduction

using Ott-Antonsen ansatz that all the Fourier modes decay geometrically because an

asymmetric part on comparing coefficients for different α equations falls on different

manifolds, i.e. ρ2n(ω, t) = αn(ω, t) where |α(ω, t)| ≤ 1,

ρs(θ, ω, t) =
g(ω)

2π
[1 +

∞∑
m=1

ρ2n(ω, t)e
inθ + c.c]. (4.5)

plugging this and Eq. 5.2 into the continuity Eq. 4.4, We found that each subspace

spanned by even terms e2ιnθ collapse into a one-dimensional manifold given by[5],

∂α

∂t
= −2ιαω +K2(z

∗
1
2eιϕ − z21α

2e−ιϕ). (4.6)

In the continuum limit N → ∞, we have z2 =
∫∞
−∞

∫ 2π

0
ρs(θ, ω, t)e

ι2θg(ω)dθdω,

which after inserting the Fourier series expansion of ρs(θ, ω, t) this reduces to z2 =∫∞
−∞ g(ω)α∗dω. If we consider the frequency distribution g(ω) to be Lorentzian

g(ω) = ∆
π[(ω−ω0)2+∆2] with mean ω0 = 0 and spread ∆ = 1, the integral z2

can be calculated using Cauchy’s Residue Theorem by contour integration in the

negative half-plane, yielding z2 = α∗(ω0− ι∆, t). After making this substitution and
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separating the real and imaginary parts, Eq. 4.6 reduces to

ṙ2 = −2r2 +K2r1
2(1− r22) cos(2ψ1 − ψ2 − ϕ). (4.7)

ψ̇2 = K2r
2
1

1 + r22
r2

sin(2ψ1 − ψ2 − ϕ). (4.8)

Although, these equations explain only the contribution of the symmetric part of

the ρs, and indicate that it depends on the asymmetry part also as the information

of r1 is present in the evolution of equation of r2 Eq. 4.7.

Proceeding further to analyze the z1 using the self-consistency method. We change

the frame of reference θ → θ + ψ and enter into the rotating frame where (ψ̇ = Ω)

and setting ψ1 and ψ2 equal to zero. For K > Kc some parts of oscillators form a

synchronized cluster that evolves at some common non-zero frequency. We calcu-

late the effective cluster frequency of Ωi = ⟨θ̇i(t)⟩t for each oscillator where θ̇i(t) are

instantaneous frequencies of those oscillators that take part in synchronized cluster

C, at time t. Oscillators that take part in clusters are distributed in the complex

circle around the mean ψ in the same manner as g(ω) distribution which has os-

cillators at the ends with minimal and maximal frequency and whenever there will

be cutoff or addition of new oscillators on changing K it will not be in a symmetric

manner, so the common frequency of cluster is calculated as Ω = 1
Nc

∑
j∈C Ωj, where

Nc = imax − imin + 1 denotes the size of the synchronized cluster. In the original

model of Kuramoto with zero phase frustration ϕ = 0, the synchronized cluster re-

mains stationary if the mean of the frequency distribution is set to be zero and will be

symmetric about ω = 0 at all times. So ωmax = −ωmin and we decrease the coupling

strength the range of oscillators in the cluster decreases symmetrically whereas for

non-zero phase frustration ϕ where the synchronized cluster is not symmetric about

ω = 0 and breaks off asymmetrically from the cluster.
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For non-zero ϕ synchronized cluster moves with non-zero frequency in the ground

frame even though the mean of our g(ω) was taken to be zero, asymmetry in in-

stantaneous frequency is produced due to this phase lag parameterϕ whereas for

ϕ = 0 cluster remains stationary as the introduction of ϕ causes the cluster to move

uniform non-zero frequency

Hence, Eq.5.2 can be written as

θ̇i = ωi − Ω−K2r1
2 sin(2θ + ϕ) (4.9)

Now, based on the dynamical behavior of oscillators the whole population can be

divided into two groups of locked and drift oscillators such as |s| ≤ 1 and |s| > 1,

respectively, where (a = K2r1
2 and s = ω−Ω

a
). Moreover, in the case of a locked

state higher order coupling term shows the existence of two stable fixed points θ∗ =

1
2
arcsin(s)− ϕ

2
and θ∗ + π. First, to study the contribution of the locked oscillator

population we can define the density function such as

ρloc(θ, ω) = ηδ(θ − θ∗) + (1− η)δ(θ − (θ∗ + π)). (4.10)

where η and 1 − η is the probability of number of oscillators at θ∗ and θ∗ + π, re-

spectively. Furthermore, the definition of z1 =
∫∞
−∞

∫ 2π

0
eιθρloc(θ, ω)g(ω)dθdω defines

the contribution from locked oscillators given by,

r1
lock = (2η − 1)

∫ a+Ω

−a+Ω

eιθg(ω)d(ω). (4.11)

Moreover, for the locked state θ̇ = 0 from Eq. 4.9

sin(2θ∗ + ϕ) = s and cos(2θ∗ + ϕ) =
√
1− s2.
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using the trigonometric identities above equation can be expressed as

cos(θ∗ +
ϕ

2
) =

√
1 +

√
1− s2

2
,

sin(θ∗ +
ϕ

2
) = ±

√
1−

√
1− s2

2
,

(4.12)

Considering, θ∗ = Θ− ϕ
2
. Moreover, the contribution of sine term positive or negative

determines based on limits of integration over ω. Hence, Eq. 4.11 can be expressed

as

r1
lockeι

ϕ
2 =

∫ a+Ω

−a+Ω

eιθ
∗
g(ω)dω. (4.13)

By plugging the value of Θ and comparing real and imaginary parts contribution

from locked oscillators determined as

r1
lock = (2η − 1)[cos

ϕ

2

∫ a+Ω

−a+Ω

√
1 +

√
1− s2

2
g(ω)dω

− sin
ϕ

2

∫ Ω

−a+Ω

√
1−

√
1− s2

2
g(ω)dω

+ sin
ϕ

2

∫ a+Ω

Ω

√
1−

√
1− s2

2
g(ω)dω]. (4.14)

In addition, to analyze the contribution of drift oscillator population

r1
drift =

∫
|ω−Ω|>a

∫ 2π

0

eιθρd(θ, ω)g(ω)d(ω)d(θ). (4.15)

from Eq. 4.4 in the steady state ρθ̇ is constant which gives ρd = C
θ̇
and after nor-

malization reduces into

ρd =

√
(ω − Ω)2 − a2

2π|ω − Ω− a sin(2θ + ϕ)|
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Now it can be seen that ρ(θ, ω) = ρ(θ + π, ω). And by following property that

eiθ = −ei(θ+π) so rewriting the integral in θ we get

∫ 2π

0

eιθρd(θ, ω)g(ω)d(θ) =

∫ π

0

[eιθρd(θ, ω)g(ω)d(θ) + eιθρd(θ = π, ω)]g(ω)d(θ)

as now we can see that this integral vanishes due to symmetry of density function

in θ.

(Eq. 4.15) r1 = rloc1 + rdrift1 ≈ rloc1 given by Eq. 4.14.

Now Ω can be calculated using ψ̇2 eq(4.7). Recall that we calculate ψ in the (4.3),

now in that equation, that sum in numerator and denominator can be broken into

two parts, first is for synchronized cluster and the other is for drifting oscillators,

and since we know that drifting oscillators does not contribute so that second part of

sum contributes to zero in both num. and denom. so, only oscillators that take part

in the cluster will contribute in ψ1 and so we can say this ψ1 is the mean phase of the

cluster and similarly, we can calculate ψ2 and here also it will mean of synchronized

clusters only and it turns out that from (4.3) when N → ∞ the sum becomes

ψn = arctan

∫ θ2
θ1
sin(nθj)dθ∫ θ2

θ1
cos(nθj)dθ

(4.16)

where θ1 and θ2 are end points of the cluster at time t. which upon solving gives

ψ2 = 2ψ1 and so ψ̇1 can be calculated by using the relation (4.8) and the relation

between r1 and r2 calculated at steady state

r2 =
−1 +

√
1 +K2r41cos(ϕ)

2

Kr21cos(ϕ)
(4.17)
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we can find ψ̇1 which is same as Ω for the synchronized cluster is written as

ψ̇1 = Ω = (
√

1 +K2r41cosϕ
2)tan(ϕ) (4.18)

Now here for the forward process as we increase K no synchronization is seen because

as r1 → 0+ and r2 → 0+, it comes out critical coupling goes to ∞ which can be seen

from relation (4.16) if we invert it we get

K =
2r2

(1− r22)cosϕ(r
2
1)

from this we can see the denominator goes to zero at a much faster rate due to

higher order polynomials so K goes to ∞.

Here we can see that at K = Kc we see a saddle-node bifurcation from which one

stable and other unstable branch is obtained, beyond which multistability is seen

here in the thermodynamic limit, here we have drawn only four of them and we

see a first-order backward transition. Here the value of r2 will be greater than that

of r1 and it will be much more clearly shown as we decrease the η because then

we are going toward the state of a system where the oscillators are going toward a

state where there is symmetric distribution among two clusters and so r1 will start

decreasing relative to r2. Here to calculate backward critical coupling strength we

put dk/dr1 = 0 from (4.14) and check for what particular values of K and r1 (4.14)

will be true.

Interpreting the analytical results with reference to numerical simulations we see

that, partially synchronized branches are recognized by asymmetry parameter η,

which indicates that the complexity of these dynamics arises from the allocation of

locked oscillators in two different clusters but here we see that introducing ϕ causes

frustration in r2 also which means that if we do not want to change the distribution of
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Figure 4.1: For fixed ϕ and varying η we see that on decreasing η, Kc shifts
towards right, η=1 is the purple curve, η=0.95 is the green curve, η=0.9 is for

pink curve and η=0.85 is the orange curve.

Figure 4.2: Here we fix η and increase ϕ, upon doing so we see that ϕ introduces
frustration in the system causing the critical coupling to increase. the purple curve
represents for ϕ = 0, red curve is for ϕ = π/6, yellow curve is for ϕ = π/4, brown

curve represents the ϕ = π/3

the oscillators in the system and still wants to change the point of desynchronization

so that can be achieved by introducing ϕ in the system.

So we see that upon introducing ϕ there was frustration caused in the system but

here for r2 also introducing ϕ has the same effect which means that the system

will start diffusing from two clusters states and slowly going towards completely

incoherent states(Have to check for three, four cluster states and so on), so a type

of synchronized disorder can be achieved means that there can be many clusters

possible distributed uniformly around the circle. So if we take our system with the
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mean of intrinsic frequencies distribution to be zero and we want that synchronized

cluster to rotate with no zero frequency one way of doing this is that we can include

the phase lag parameter. Its application can be found in glassy states and super

relaxation and can be found wherever there is symmetry is broken in a frequency

distribution. This model gives us much more insight into how microscopic frustration

is caused in the system by accounting for two cluster states in the system. ref



Chapter 5

2-Simplex model with Pairwise

interaction term

5.1 Introduction

Here we take a somewhat different model with pair-wise interacting term with phase

frustration in the system.[10]

θ̇i = ωi +
K1

N

N∑
j=1

sin(θj − θi − ϕ) +
K2

N2

N∑
j=1

N∑
k=1

sin(2θj − θk − θi − ϕ). (5.1)

Defining the generalized order parameter zq = rqe
ιψq = 1

N

∑N
j=1 e

qιϕj , for (q=1,2).

Using these definitions of order parameters we write our model equation in the

mean-field we get

θ̇i = ωi +K1r1sin(ψ1 − θi − α) +K2r
2
1 sin(ψ2 − ψ − 2θi − ϕ), (5.2)

39
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Defining the usual density function

ρ(θ, ω, t) =
g(ω)

2π
[1 +

∞∑
n=1

ρn(ω, t)e
ιnθ] (5.3)

By Ott-Antonsen ansatz, the Fourier coefficients decay geometrically as ρn(ω, t) =

αn(ω, t) where |α| <= 1 Since by conservation of oscillator,s ρ must satisfy the

following equation[6]

∂ρ

∂t
= −∂(ρθ̇)

∂θ
. (5.4)

substituting ρ from (5.3) into the above equation and comparing the coefficients of

eiθ on both sides we get a single differential equation in α we get

α̇ = −iωα+K1r1
2

e−i(ψ1−ϕ)+
K2r1r2

2
e−i(ψ2−ψ1−ϕ)−K1r1α

2

2
ei(ψ1−α)−K2r1r2α

2

2
ei(ψ2−ψ1−α)

In the continuum limit N → ∞, we have z1 =
∫∞
−∞

∫ 2π

0
ρs(θ, ω, t)e

ιθg(ω)dθdω,

which after inserting the Fourier series expansion of ρs(θ, ω, t) this reduces to z1 =∫∞
−∞ g(ω)α∗dω. and z2 =

∫∞
−∞

∫ 2π

0
ρs(θ, ω, t)e

ι2θg(ω)dθdω, which after inserting the

Fourier series expansion of ρs(θ, ω, t) this reduces to z2 =
∫∞
−∞ g(ω)α∗dω. Here we

take Cauchy distribution g(ω) = 1
π[ω2+1]

with mean 0 and spread 1 since this eq. has

two poles so taking the lower half of the complex plane. integral of z1 and z2 can

be calculated by closing the integration along the semicircle of infinite radius we get

for ω = −iz1 = α∗ and z2 = α∗2 and with the definition of z1 and z2 we get

ṙ1 = −r1 −
K1

2
r31cosϕ+

K1r1cosϕ

2
+
K2r

3
1cosϕ

2
− K2r1

5cosϕ

2
(5.5)

and

ψ̇ = −1

2
[r21(K1 +K2r1

2)sinϕ+ (K1 +K2r
2
1)sinϕ] (5.6)
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To calculate the now fixed point of (5.5) the long-term macroscopic state is given by

r1 =

√
(K2 −K1)cosϕ±

√
(K2 −K1)2cos2(ϕ)− 8K2cosϕ

2K2cosϕ
(5.7)

. In order to calculate the point of saddle-node bifurcation we need to calculate the

point of saddle-node bifurcation which occurs when r+ and r− tend to zero which

gives the following relation

(K1 +K2)
2cosϕ = 8K2 (5.8)

Now for the fixed value of K1 and changing ϕ, the system goes from continuous

transition to abrupt transition states. To check the stability for a trivial fixed

point which will depend on if ϕ¡ cos(inv)( 2
K1

)then it will be unstable and stable if

ϕ¿cos(inv)( 2
K1

). For K1 = 2.5 it will be ϕ < 0.6435 only one fixed point will exist

and that will be stable, so we only get the second-order transition in this range.

when ϕ > 0.6435 two nontrivial fixed points one stable and the other unstable exists

which gives bistability in this region along with a trivial stable fixed point. For

fixed K2 and varying K1 with different ϕ we have to study bifurcation diagrams to

check when the trivial case for r=0 will become unstable via subcritical pitchfork

bifurcation and nontrivial branch becomes stable via saddle-node bifurcation so to

check these we need to see it from numerical simulations. This work is recently done

by a different group and we were also doing this same model parallelly and so they

have done this before and have discussed it in detail in their arxiv preprint[11] and

for the time being we are not putting the numerical simulations.

We see here that there is a synchronization transition from abrupt to continuous for a
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Figure 5.1: r vs K1 for fixed
K2=8

Figure 5.2: r vs K2 where
K1 = 2.5

fixed value of K2 and varying ϕ with increasing K1 and in the second figure complete

opposite observation is made in which there is a continuous to abrupt transition for

fixed K1 and varying ϕ with increasing K2. Here on including pairwise coupling with

phase lag parameter, we see that on varying ϕ nature of the transition is changed

and this introduction of ϕ can be proved to be very useful in many applications

whenever we want to change the nature of transition according to our needs.

5.2 Summary

We have studied here how the phase lag parameter affects and alter the collective

dynamics of the system by introducing the phase lag parameter beyond pairwise in

2-simplicial complexes by changing the transition point by causing frustration in the

system and also changing the type of transition.
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5.2.1 Outlook

The pairwise term can also be added in the 2θi model to see if there are any in-

teresting phenomena that can take place.This model can further be generalized by

introducing inertia along with phase lag which may give rise to a new phenomenon.
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