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ABSTRACT

Estimation is a popular computational tool for determining the internal states of a dynami-

cal system from noisy measurements. A recursive process of estimation is called filtering. The

conceptual filtering solution is obtained in terms of unknown probability density functions (PDF).

Several analytical filtering solutions have been presented in the literature by characterizing the

unknown PDFs differently. The popularly known Kalman filter is an optimal analytical filter for

linear dynamical systems, while an optimal nonlinear filter is still a future scope. This thesis is

particularly concerned with suboptimal nonlinear filtering.

There are two popular nonlinear filtering methods, namely Gaussian filtering and particle fil-

tering. The Gaussian filtering approximates the unknown PDFs as well as the unknown noises

as Gaussian. The particle filtering characterizes the unknown PDFs as a weighted summation of

particles. The literature beholds many variants of the Gaussian filtering as well as the particle fil-

tering, availing an impressive trade-off between accuracy and computational demand. Therefore,

if an adequate computational budget is available, under the general problem scenarios, the accu-

racy may not be a serious concern despite the suboptimality of nonlinear filtering. Although the

practical problems often perceive complicated scenarios, where the existing nonlinear filters fail

or underperform.

This thesis is concerned with various complicated scenarios, which are defined in terms of

different measurement irregularities. For example, the transmission and processing of measure-

ment data through cyber-physical systems introduce the risks of delay, intermittently missing, and

cyber-attacks. Also, noises that inherently appear in measurements can be non-Gaussian, and a

Gaussian approximation (in Gaussian filtering) can often considerably deteriorate the accuracy.

Furthermore, the measurement data (as well as the unknown states) consisting of angular infor-

mation is of finite-range, while the traditional nonlinear filters are designed for infinite-range data,

which causes poor accuracy for range-limited data like angular data.

Summarizing the above discussions, this thesis aims to address various measurement irreg-

ularities, including the delay, intermittently missing measurements, cyber-attacks, non-Gaussian

measurement noises, and angular data. In this regard, this thesis contributes with the following

modifications in the existing Gaussian filtering and particle filtering.

• The thesis introduces an advanced Gaussian filtering method for handling large delays with

a reduced number of prerequisite probabilities. It also precludes the need of assigning any



upper bound of delay, which is an essential requirement in the existing extensions of Gaus-

sian filtering for handling the delayed measurements. Ultimately, this method improves the

filtering accuracy.

• In another contribution, this thesis develops an advanced Gaussian filtering algorithm for

handling delayed measurements under a non-Gaussian noisy environment. Interestingly,

this contribution is applicable for fractional delays (delay being a fraction of the sampling

interval) unlike the existing methods that can handle only integer delay.

• This thesis develops a new Gaussian filtering method for handling cyber-attacked mea-

surements. Interestingly, the developed method can handle different forms of the data-

tampering (due to the cyber-attack), including false data injection, de-synchronizing of data,

and denial-of-services.

• The thesis redesigns the traditional particle filtering method for efficiently handling the

finite-range angular data. In this regard, probably for the first time, the proposed method

introduces wrapped normal distribution in particle filtering.
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Chapter 1

Introduction

1.1 Background

Modern engineering and non-engineering applications [1] widely utilize data. The data may

be characterized into various types, depending upon its source. For example, sensor-generated

data, experimental data, and survey data. Regardless, irrespective of its source, the data commonly

involve errors, technically known as noises. Therefore, it requires potential computational methods

[2] for analyzing and processing the noisy data.

Estimation is a typical computational tool for determining the internal states of a dynamical

system from the received noisy data, see Fig.1.1. A recursive process of estimation is popularly

known as filtering [3].

Dynamical
System

Sensors/Measuring
Devices Estimator/Filter

Control

Estimated state

Process noise

Measurment noise

Figure 1.1: Schematic representation of filtering

In the estimation and filtering theory [4], the received data is commonly known as mea-

surements. The estimation and filtering find widespread applications in engineering as well as

1



non-engineering domains. Some of the popular domains of applications can be mentioned as tar-

get tracking [3], network control and communication systems [5], space technology [6], fault

diagnosis [7], biomedical system [8], robotics [9], industrial diagnosis and prognosis [10],

navigation [11], financial modeling and monitoring [12], weather forecasting [13], pandemic

monitoring [14], etc. Hereafter, the author will simply refer to the term ‘filtering’ to demonstrate

the term ‘filtering’ as well as ‘estimation’.

The filtering is a model-based computational tool [15], requiring the state space model of

dynamical systems. The state space model consists of the process and measurement models, with

the following descriptions:

• Process model: It characterizes the dynamical behavior of the states. Specifically, it consists

of noises to compensate for the modeling errors of the true dynamics.

• Measurement model: It characterizes the mathematical relationship between the observed

data and the unknown states. It is additionally having a noise component to compensate for

the observation errors, which may be due to device errors and data processing errors.

Considering the above descriptions, the general forms of the process and measurement models

are given below.

Process model

xk = Φk−1(xk−1)+νk−1. (1.1)

Measurement model

zk = Ψk(xk)+ηk, (1.2)

where xk ∈ Rn and zk ∈ Rr are the state and measurement variables, respectively ∀k ∈ {1,2, · · ·}.

Herewith, Φk : xk−1 → xk and Ψk : xk → zk denote general mathematical functions, while νk and

ηk represent the process and measurement noises, respectively. In general, the process and mea-

surement noises are assumed to be additive, white, and Gaussian [16]. This thesis also follows

these assumptions unless they are not dismissed through explicit statements.

To this end, the author defines the filtering objective as a recursive process of estimating the

unknown states xk ∀k ∈ {1,2, · · ·}, as the measurement zk is sequentially received ∀k ∈ {1,2, · · ·}.

The popularly known Kalman filter [17, 18] is an optimal filtering method, but it is limited to linear

dynamical systems only. Therefore, this thesis is explicitly concerned with nonlinear filtering,
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requiring either or both of Φk : xk−1 → xk and Ψk : xk → zk to be nonlinear.

The literature consists of two popular nonlinear filtering approaches, namely the Gaussian

filtering [19] and particle filtering [20]. In the upcoming sections, we first introduce the Gaussian

filtering and then discuss about the particle filtering.

1.2 Gaussian filtering

The Gaussian filtering is performed under the popularly known Bayesian filtering framework.

Therefore, this section first introduces the Bayesian filtering framework. Henceforth, the dis-

cussion on simplification and formulation of the Bayesian filtering framework into the Gaussian

filtering is provided.

1.2.1 Bayesian filtering framework

Here, the author highlights the Bayesian filtering framework [21], giving the desired estimate

of state xk in terms of the probability density function (PDF) P(xk|z1:k). As it gives the filtering

solution in terms of PDF, it does not provide an analytical solution [22]. In particular, it principally

formulates the core filtering theory for designing the Gaussian filters.

The Bayesian filtering obtains the desired PDF P(xk|z1:k) into two steps, namely the prediction

and update steps, which are also known as time update and measurement update steps, respectively

[23]. The prediction step obtains the prior PDF P(xk|z1:k−1), while the update step determines the

posterior PDF P(xk|z1:k). In the following discussions, the author illustrates the theoretical and

mathematical aspects of the prediction and update steps.

Prediction:

The prediction step determines the prior PDF P(xk|z1:k−1) to predict the desired state one-

step forward in time. In this regard, it utilizes the popularly known Chapman-Kolmogorov [2]

equation, giving

P(xk|z1:k−1) =
∫

Rn
P(xk|xk−1)P(xk−1|z1:k−1)dxk−1. (1.3)
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Update:

The update step obtains the desired posterior PDF P(xk|z1:k) by correcting the predicted PDF

P(xk|z1:k−1) using the information received from the latest measurement zk, arriving at tk. In this

regard, it applies the popularly known Baye’s rule, which gives

P(xk|z1:k) = P(xk|z1:k−1,zk,) =
1
ck

P(zk|xk)P(xk|z1:k−1), (1.4)

where P(zk|xk) is the measurement likelihood function and ck is a normalization constant, given

as

ck = P(zk|z1:k−1) =
∫

Rn
P(zk|xk)P(xk|z1:k−1)dxk.

It is conclusive from Eqs. (1.3) and (1.4) that the Bayesian filtering framework provides a

probabilistic solution, which is inadequate for accomplishing an analytical estimate of xk. Even-

tually, a schematic representation of the Bayesian filter is shown in Fig. 1.2. As discussed earlier,

Gaussian filtering is a popular simplification of the Bayesian framework for obtaining an analytical

solution.

×
∫
dxk−1 × ×

∫
dxk 1

(.)

Unit Delay

P (xk|xk−1) P (zk|xk)

P (xk|zk−1)

P (xk|zk)P (xk−1|zk−1)

ck

Figure 1.2: Schematic representation of recursive Bayesian filter in each recursion.

Hereafter, for better readability, the author considers the following notational simplicity: P(xk|z1:k−1)

is denoted as P(xk|k−1), while P(xk|z1:k) is denoted as P(xk|k). The author briefly discusses Gaus-

sian filtering in the following section.
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1.2.2 Simplification of Bayesian filtering as Gaussian filtering

The Gaussian filtering, as a simplification of the Bayesian filtering framework [24], is based

on Gaussian approximations of various PDFs and noises, as discussed below.

• The Gaussian filtering approximates the various conditional PDFs that appeared in the

Bayesian filtering as Gaussian, i.e.,

P(xk|k−1)≈ N (xk; x̂k|k−1,Pk|k−1), (1.5)

P(xk|k)≈ N (xk; x̂k|k,Pk|k), (1.6)

and

P(zk|k−1)≈ N (zk; ẑk|k−1,Pzz
k|k−1), (1.7)

where N (·) represents the Gaussian distribution, whereas x̂k|k−1, x̂k|k, Pk|k−1, and Pk|k

denote the prior estimate, posterior estimate, prior covariance, and posterior covariance of

xk, respectively, while ẑk|k−1 and Pzz
k|k−1 denote the predicted estimate and covariance of zk,

respectively.

• The noises νk and ηk are assumed as uncorrelated and approximated as zero-mean Gaussian

with covariances Qk and Rk, respectively. Thus, we get E[ηk] = E[vk] = E[ηkvT
k ] = 0,

ηk ∼N (0,Rk) and vk ∼N (0,Qk), where E[·] denotes the statistical expectation operator,

while Rk = E[ηkηT
k ] and Qk = E[vkvT

k ].

With the above approximations, as followed from [25],[23], the computational aspects of the

prediction and update steps for the Gaussian filtering are discussed below.

Prediction:

The Gaussian filtering computes the prior PDF using x̂k|k−1 and Pk|k−1, as [25],[23]

x̂k|k−1 ≈
∫

Rn
φk−1(xk−1)N (xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1, (1.8)

Pk|k−1 ≈
∫

Rn
φk−1(xk−1)φk−1(xk−1)

T N (xk−1; x̂k−1|k−1Pk−1|k−1)dxk−1

− (x̂k−1|k−1)(x̂k−1|k−1)
T +Qk.

(1.9)
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Update:

This step computes the posterior estimate and covariance [25],[23], x̂k|k and Pk|k, respectively.

This extent, it updates the prior estimate and covariance, x̂k|k−1 and Pk|k−1, respectively using

the noisy information of zk. To this regard, the computation of x̂k|k and Pk|k ultimately requires

the estimate and covariance of measurement, ẑk|k−1 and Pzz
k|k−1, as well as the cross-covariance

between the state and measurement, Pxz
k|k−1. Therefore, before determining the desired x̂k|k and

Pk|k, the author computes ẑk|k−1, Pzz
k|k−1, and Pxz

k|k−1, respectively, as

ẑk|k−1 = E[(Ψk(xk)+vk) |z1:k−1]≈
∫

Rn
Ψk(xk)N (xk; x̂k|k−1,Pk|k−1)dxk, (1.10)

Pzz
k|k−1 = E[(zk − ẑk|k−1)(zk − ẑk|k−1)

T ]

≈
∫

Rn
Ψk(xk)Ψk(xk)

T N (xk; x̂k|k−1,Pk|k−1)dxk − (ẑk−1|k−1)(ẑk−1|k−1)
T +Rk,

(1.11)

Pxz
k|k−1 = E[(xk − x̂k|k−1)(zk − ẑk|k−1)

T ]

≈
∫

Rn
xkΨk(xk)

T N (xk; x̂k|k−1,Pk|k−1)dxk − (x̂k|k−1)(ẑk|k−1)
T .

(1.12)

Specifically, x̂k|k and Pk|k are determined as

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1), (1.13)

Pk|k = Pk|k−1 −KkPzz
k|k−1KT

k , (1.14)

where Kk denotes the Kalman gain [15], given as

Kk = Pxz
k|k−1(P

zz
k|k−1)

−1. (1.15)

To this end, the Gaussian filtering [22] can be implemented through Eqs. (1.10) to (1.15).

However, Eqs. (1.10) to (1.12) involve Gaussian weighted integrals of the form

I(F) =
∫

Rn
F(x)N (F; x̂,P)dx, (1.16)

where x is a random variable with mean x̂ and covariance P, and F : Rn →Rn is a simple function.
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The numerical methods used for integral approximation are generally defined for standard Gaus-

sian, i.e., for N (x;0n×1,In) with In be an n-dimensional unit matrix and 0n×1 be an n-dimensional

array of all zero elements. The author denotes this integral as I0(F), i.e.,

I0(F) =
∫

Rn
F(x)N (x;0n×1,In)dx. (1.17)

The analytical solutions of such integrals exist for linear systems, having linear Φk : xk−1 → xk

and Ψk : xk → zk. Such a solution is popularly known as the Kalman filter [17]. Nonetheless, in

the case of nonlinear systems, Φk : xk−1 → xk and Ψk : xk → zk (either or both) are nonlinear.

Ultimately, the desired integral (Eq. (1.17)) appear in the form of ‘nonlinear function × Gaussian

distribution’, which is mostly intractable [19]. Consequently, the Gaussian filtering fails to ac-

complish an analytical solution. To get an analytical solution, two approaches are popular, which

can be referred to as the derivative-based Gaussian filtering [16] and derivative-free Gaussian fil-

tering [25].

In the derivative-based Gaussian filtering, the nonlinear dynamics are locally linearized using

the derivatives. Thereafter, conclusively the linear Kalman filtering-based approach is applied.

The readers may refer to [16, 26] for a detailed filtering algorithm for the derivative-based Gaus-

sian filtering, popularly known as extended Kalman filtering. On the other hand, the derivative-free

Gaussian filters utilize numerical methods for approximating I0(F) with the help of deterministi-

cally chosen sets of sample points and weights. Let us denote the sets of sample points and

weights, respectively as Υ and W, respectively. Then, I0(F) is approximated as

I0(F)≈
Ns

∑
i=1

WiF(Υi), (1.18)

where Ns is the number of sample points, and Υi and Wi ∀i ∈ {1,2, · · · ,Ns} are the ith sample

point and weight, respectively. The same numerical method can be extended for N (x; x̂,P) by

transforming Υ with mean x̂ and covariance P. Consequently, the desired intractable integral I(F)

is approximated as

I(F)≈
Ns

∑
i=1

WiF(x̂+ΣΥi), (1.19)

where ΣΣT = P. The author refers to [19],[23],[25] for a detailed filtering algorithm of the

derivative-free Gaussian filtering.
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1.3 Particle filtering

The particle filtering [20] realizes the desired posterior density using stochastically generated

sample points, also known as particles, and their associated weights. Interestingly, it precludes

Gaussian approximation of arbitrary PDFs as well as the presence of intractable integrals. In par-

ticular, it outperforms the above-discussed Gaussian filtering. As a result, particle filtering utilizes

a large set of particles and weights for characterizing the true PDFs. Eventually, its computational

demand is substantially larger than the Gaussian filtering. As a matter of fact, the particle filtering

without re-sampling is essentially a Monte Carlo integration method [19]. In the past, particle

filtering was mostly ignored in practical applications due to its high computational demand. Con-

versely, the recent years have exhibited substantial developments in efficient and cost-effective

computational devices. Apparently, the particle filtering applications have been on the rise in

developing high-precision tools and technologies.

Following the previous discussions, the estimation of xk from zk requires characterizing the

PDF P(xk|zk) analytically. In this regard, the particle filter approximates P(xk|zk) as a weighted

summation of stochastically generated sample points. The particle should be ideally generated

from P(xk|zk), which is unknown. Therefore, the particle filtering introduces a representative

PDF q(xk|zk), which may be conveniently obtained. The representative PDF q(xk|zk) is broadly

known as proposal density. Conversely, the particles are sampled from proposal density q(xk|zk)

to characterize the unknown PDF P(xk|zk). The author denotes xi
k and ω i

k, ∀i ∈ {1,2, · · · ,Np}, as

the ith particle and the associated weight, respectively, at tk instant. The weights are normalized,

i.e., ∑
Np
i=1 ω i

k = 1. Subsequently, P(xk|zk) is approximated as

P(xk|zk)≈
Np

∑
i=1

ω
i
kδ
(
xk −xi

k
)
, (1.20)

where δ (·) represents dirac delta function and Np represents the number of particles [20].

1.4 Motivation

As mentioned previously, this thesis is primarily concerned with nonlinear filtering. In the

nonlinear filtering, the literature still awaits for a closed-form solution, although two filtering ap-

proaches, viz. the Gaussian filtering and particle filtering gained significant popularity. Thankfully,
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even though the closed-form solution is missing, several variants of Gaussian filtering and particle

filtering are available for filtering under different system environments, precision demand, and

computational budget allocation. For example, in a wide sense, we can state the following: i)

the computationally efficient Gaussian filtering can be used if the computational budget alloca-

tion is small but the precision demand is not high and ii) the particle filtering may be utilized to

accomplish high precision if the allocated computational budget is high.

In a serious concern, the nonlinear filtering, in general, ignores various measurement data ir-

regularities, causing poor accuracy or even estimation failure [22]. Some of the popular measure-

ment data irregularities are random delay in measurement, intermittently missing measurements,

cyber-attacked measurements, range-limited data, intrinsic non-Gaussian measurement noises, etc.

This thesis generally focuses on nonlinear filtering under various measurement data irregularities.

In this regard, the particular motivations of this thesis are summarized below.

• The traditional Gaussian filtering straightforwardly ignores time-delays in measurements,

while the practical measurement data often witness unknown and time-varying delays. The

preliminary developments for handling this problem essentially require information on a

large number of delay probabilities, which is difficult to characterize precisely. This thesis

motivation is to develop advanced Gaussian filtering algorithms with the reduced number

of probability requirements in handling the delayed measurements.

• The preliminary filtering algorithms that are designed for handling the different measure-

ment irregularities mostly handle only one irregularity at a time. However, practically,

the simultaneous occurrences of multiple irregularities can not be denied. This thesis is

motivated to develop advanced Gaussian filtering algorithms for handling simultaneous oc-

currences of multiple measurement irregularities.

• The cyber-attack is becoming a challenging problem in the filtering applications involv-

ing data transmission and processing through cyber-physical systems. The motivation of

this thesis is to design an advanced Gaussian filtering algorithm, which is robust to cyber-

attacks.

• The traditional nonlinear filtering algorithms as well as their general extensions are de-

signed for infinite-range data, while a practical data may often be of finite-range. For

example, the angular data can vary in the range of (−π,π], while the general nonlinear
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filtering algorithms treat it over the entire real number. This thesis is motivated to develop

a nonlinear filtering algorithm that treats the angular data within (−π,π] to improve the

accuracy.

It is important to note that the process model can be adjusted based on practitioner hypotheses

to improve modeling, while the measurement model cannot be similarly altered due to its reliance

on sensor-induced phenomena. Thus, in evaluating filter performance, an L2 norm metric is ap-

propriate because, in this thesis, it assumes that true states are affected only by Gaussian noise

and measurement noise potentially corrupted by both Gaussian and non-Gaussian factors. The

root mean square error (RMSE) is the widely accepted standard metric for evaluating filter perfor-

mance in the literature. It measures the standard deviation of the differences between estimated

and true states, indicating the filter’s accuracy. A lower RMSE value signifies better performance,

meaning that the filter is estimating true states more accurately.

1.5 Thesis objective

The author outlines the following objectives for this thesis, based on the motivations of the

thesis discussed above.

• To develop an advanced Gaussian filtering algorithm for handling delayed measurements

with a reduced number of prerequisite delay probabilities.

• To design a Gaussian filtering algorithm for handling two measurement irregularities to-

gether, particularly the delayed measurements and the non-Gaussian measurement noises.

• To introduce a nonlinear Gaussian filtering algorithm for handling cyber-attacked measure-

ment data.

• To extend the traditional particle filtering methodology for angular data.

• To validate the improved accuracies of the proposed method for a couple of popular non-

linear filtering problems taken from the literature.
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1.6 Approaches and Methods

As already indicated, the objective of this thesis is to develop several nonlinear filtering meth-

ods, as extensions of the traditional Gaussian and particle filtering methodologies, to handle dif-

ferent forms of data irregularities. In developing any new algorithm, the author takes the following

approaches.

• Model formulation: The concerned data irregularity problem is formulated mathematically

for each development. In this regard, the author generally introduces the mathematical

model that incorporates the effects of the data irregularities. However, a somewhat dif-

ferent approach is taken in handling the angular data. In this case, the author formulates

the problem by amending the general structure of the unknown PDF, requiring a different

numerical approximation method.

• Filter design: In this step, the traditional filtering methods are re-derived for the mathemat-

ically formulated problem statement to develop advanced Gaussian filtering algorithms. In

the case of angular data, a new numerical approximation method is introduced.

• Validation: The developed filtering algorithms are simulated for a couple of nonlinear filter-

ing problems. The simulations are performed in MATLAB over a personal computer with

the 64-bit operating system, 32 GB RAM, and configuration Intel i5, 3.40GHz processor.

• Performance criteria: The author uses the performance metrics as the root mean square error

(RMSE), average RMSE (ARMSE), and computational time to validate the performance of

developed filters in this thesis.

1.7 Contributions

The main contributions of this thesis are summarized below.

• This thesis provides a detailed and up-to-date literature review on nonlinear filtering, in-

cluding the contributions available for handling various measurement irregularities.

• A nonlinear Gaussian filtering algorithm is developed for handling delayed measurements

with a reduced number of prerequisite information about the probabilities of delay.
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• The traditional Gaussian filtering is re-derived for handling the delayed measurements un-

der non-Gaussian noisy measurements.

• An advanced Gaussian filtering algorithm is introduced for handling cyber-attacked mea-

surements.

• The traditional particle filtering method is redesigned for efficiently handling with angular

data.

• The simulation results provide and validate its improved accuracies for the aforementioned

nonlinear filtering algorithms.

1.8 Publications generated out of thesis work

Journal papers:

1. Guddu Kumar, Sumanta Kumar Nanda, Alok Kumar Verma, Vimal Bhatia, and Abhinoy

Kumar Singh, “Nonlinear Gaussian Filtering with Network-Induced Delay in Measure-

ments,” in IEEE Transactions on Aerospace and Electronic Systems, 2022.

doi:10.1109/TAES.2022.3182936.

2. Guddu Kumar, Venu Gopal Yamalakonda, Swaminathan R, and Abhinoy Kumar Singh,

“Fractionally Delayed Bayesian Approximation Filtering under Non-Gaussian Noisy Envi-

ronment” in IEEE Transactions on Aerospace and Electronic Systems, 2023.

doi: 10.1109/TAES.2023.3266176.

3. Guddu Kumar, Sumanta Kumar Nanda, Swaminathan R, and Abhinoy Kumar Singh, “Gaus-

sian Filtering with Cyber-Attacked Data” in IEEE Transactions on Aerospace and Elec-

tronic Systems, 2022. (Under Revision).

4. Guddu Kumar, Amit Kumar Naik, Ram Bilas Pachori, Swaminathan R, and Abhinoy Ku-

mar Singh, “Improved Gaussian Filtering for Handling Concurrent Delayed and Missing

Measurements” in Asian Journal of Control, 2022. (In press).

5. Guddu Kumar, Paresh Date, Ram Bilas Pachori, Swaminathan R, and Abhinoy Kumar

Singh, “ Wrapped Particle Filter for Angular Data”,in IEEE Access, vol. 10, pp. 90287-

90298, 2022, doi: 10.1109/ACCESS.2022.3200478.

12



Book Chapters

1. Guddu Kumar, Vikas Kumar Mishra, Swaminathan R, and Abhinoy Kumar Singh, “Param-

eter Identification of Coulomb Oscillator from Noisy Sensor Data”, in Communication and

Control for Robotic Systems 2022 (pp. 327-338). Springer, Singapore.

Conferences:

1. Guddu Kumar, Swaminathan R, and Abhinoy Kumar Singh, “High-degree Cubature Quadra-

ture Kalman Filter with Fractional Delayed Measurement”, IEEE 19th India Council Inter-

national Conference (INDICON) 2022, Nov 24 (pp. 1-6).

1.9 Thesis Organization

The rest of the thesis is structured as follows. The thesis consists of seven chapters including

the present one. Continuing from this chapter, the second chapter provides a brief overview of

the remarkable developments in the field of nonlinear estimation and filtering. It is followed by

a brief discussion of the Bayesian framework of nonlinear filtering. Chapters 3 and 4 contribute

to the estimation with delayed measurements. In Chapter 5, a modified framework of filtering

is proposed for dealing with the arbitrary nature of cyber-attacked measurements. In Chapter 6,

an algorithm is developed for estimating the states of a discrete system with bounded data. The

last chapter briefs the discussions and conclusions of the thesis. Moreover, it includes the scope

of future works. In the end, an appendix is provided which includes the algorithms developed in

different chapters.
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Chapter 2

Literature Review

As discussed in the previous chapter, this thesis aims to develop advanced filtering algorithms for

discrete-time nonlinear systems. Therefore, the review, in this chapter, is limited to the filtering

algorithms designed for discrete-time nonlinear state-space models.

Among various discrete-time nonlinear filtering algorithms available in the literature, this re-

view broadly focuses on the computationally efficient Gaussian filtering, which is a Bayesian

approximation filtering method. The review also briefly covers the particle filtering, which is an-

other popular nonlinear filtering methodology. Furthermore, the review includes the extensions of

the traditional Gaussian filtering algorithms for addressing various irregularities in measurements,

such as delayed measurements, missing measurements, and cyber-attacks.

2.1 Gaussian Filtering

The previous chapter introduced two Gaussian filtering approaches, namely the derivative-free

Gaussian filtering and derivative-based Gaussian filtering.

As discussed previously, the derivative-based Gaussian filtering is an extension of the linear

Kalman filter with a locally linearized nonlinear function. The popularly known extended Kalman

filter (EKF) [26] and its extensions are the prevalent developments under this approach.

In the derivative-free Gaussian filtering, the intractable integral is numerically approximated

using a set of sample points and associated weights. The literature witnesses various derivative-

free Gaussian filters using various numerical approximation methods, giving different sets of sam-

ple points and weights. The derivative-free Gaussian filters outperform the derivative-based Gaus-
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sian filters in terms of accuracy and numerical stability.

To this extent, we review the various developments under the derivative-free Gaussian filter-

ing and the derivative-based Gaussian filtering. This chapter also discusses another extension of

Gaussian filtering named Gaussian-sum filtering.

2.1.1 Derivative-based Gaussian filters

As discussed above, the popular contributions under the derivative-based Gaussian filtering

include the EKF and its variants, which are reviewed below.

EKF and its variant

The EKF was developed in the sixties [26], within a few years after the development of the

linear Kalman filter. The EKF is probably the earliest developed nonlinear Gaussian filter, which

is still widely popular in practical applications as well as in academic developments. As discussed

previously, the EKF locally linearizes the nonlinear dynamic models by computing the first-order

derivative in terms of the Jacobian. Subsequently, it applies the concept of linear Kalman filtering

over the locally linearized nonlinear dynamical models.

The EKF traditionally suffers from several drawbacks. For example, for the derivative com-

putation, it requires the system dynamics to be continuous. Similarly, the first-order linearization

of the nonlinear dynamical systems causes poor accuracy and numerical instability. This problem

becomes severe particularly if the sampling interval is large. Please note that the sampling interval

is often system/device property, which cannot be flexibly commanded by the practitioners to mit-

igate these drawbacks. Nevertheless, irrespective of these drawbacks, the EKF widely attracts the

practitioners due to its simplicity of implementation and small computational demand. Moreover,

many variants of the traditional EKF are developed to mitigate its drawbacks up to some extent.

In the following discussion, the author reviews some of the popular variants of the EKF.

• Second-order extended Kalman filter [27]: The EKF traditionally linearizes the nonlinear

dynamics by computing the Jacobian, giving a first-order approximation of the nonlin-

ear dynamics in its Taylor-series expansion. The SEKF reformulates the traditional EKF

filtering structure to accomplish the second-order approximation of nonlinear dynamics.

Subsequently, it improves the filtering accuracy.
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• High-order extended Kalman filter [28]: The high-order EKF is a further generalization of

the EKF and second-order EKF, accomplishing higher-order approximation of the nonlinear

dynamics. Subsequently, it further improves the filtering accuracy.

• Modified gain extended Kalman filter [29]: In a modification to the conventional EKF, it is

introduced by Song et al. where the gain appears in terms of past measurements.

Irrespective of the various variants of the EKF available in the literature, the derivative com-

putation remains intact and a major worry. As discussed previously, the derivative-free Gaussian

filtering method could mitigate the drawbacks of the EKF and its variants up to some extent. In

the subsequent discussion, the author reviews the popular developments under the derivative-free

Gaussian filtering.

2.1.2 Gaussian-Newton filter

The Gauss-Newton (GN) [30] filter is a class of derivative-based filters used to estimate the

state of a nonlinear system. It is based on the minimum variance theory and is unbiased. The GN

filter can be applied in both recursive and non-recursive forms [31].

One of the advantages of the GN filter is that the filter can perform measurement updates at

any time stamp, allowing for long-term prediction. Additionally, the filter has a finite memory

length that can be adapted to estimate highly changing dynamics. The memory length acts like a

sliding window and allows the filter to focus on the most recent observation, minimizing the effect

of previous dynamics on the current estimation [32].

Initially, the GN filter was derived by assuming deterministic dynamics, but it has been shown

that it can easily be adapted for processes with dynamic noise. The filter’s finite memory nature

provides the best means of mitigating the effect of the process noise covariance matrix, which

requires fine-tuning in the Kalman filter. The adapted filter explains the error covariance incon-

sistency of the Kalman filter. Another advantage of the GN filter is that it does not require ini-

tialization since the covariance matrix is computed in accordance with the available batch of data

[33].

In state estimation, the GN filter estimates the state of a system by iteratively minimizing the

difference between predicted and actual measurements. The predicted measurements are calcu-

lated using the measurement function and the current estimate of the state vector, which relates
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the state vector to the measurements and is often nonlinear. The GN filter assumes that the mea-

surement noise is Gaussian and that the measurement function is differentiable. The algorithm

continues iterating until a termination criterion is met, such as a maximum number of iterations

or a small change in the state estimate between iterations. Overall, the Gauss-Newton filter is

a powerful algorithm for estimating the state of nonlinear systems with Gaussian measurement

noise. However, it may not be suitable for systems with non-Gaussian noise or non-differentiable

measurement functions.

2.1.3 Derivative-free Gaussian filters

As discussed in the previous chapter, the derivative-free Gaussian filtering involves intractable

integrals, which are numerically approximated during the filtering. The literature witnesses var-

ious developments using different numerical approximation methods. In follow-up discussions,

the author reviews the major developments in the derivative-free Gaussian filtering.

Unscented Kalman filter (UKF) and its variant

The UKF [34], developed in the nineties, is probably the first derivative-free alternative of

the derivative-based EKF and its variants. As a general derivative-free Gaussian filter, the UKF

encounters intractable integrals during the filtering. It utilizes an unscented transformation-based

numerical approximation method [35], which approximates the intractable integrals using a set of

sigma points and weights. Being a derivative-free solution, the UKF improves the accuracy and

numerical stability in comparison to the EKF.

Over the time, several variants of the UKF appeared in the literature. This thesis provides a

summary of a few developments in the following discussions.

• Scaled unscented Kalman filter [36]: The scaled unscented Kalman filter generalizes the

traditional method of generating the sigma points and weights by introducing some scal-

ing parameters. This could help in improving the accuracy further without increasing the

computational demand.

• Square-root unscented Kalman filter [37]: The UKF conventionally requires computing the

Cholesky decomposition of covariance matrices, giving the square-root of the covariance
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matrices. However, computing the Cholesky decomposition requires the covariance matri-

ces to be positive-semidefinite. On the other hand, in practical applications, the positive-

semidefinite is often lost, resulting in the failure of the filter implementation. To preclude

this limitation of the UKF, and to ensure consistency in filter execution, the square-root

unscented Kalman filter is introduced. The square-root unscented Kalman filter precludes

the computation of the Cholesky decomposition by utilizing QR decomposition.

• Adaptive unscented Kalman filter [38]: The UKF is conventionally implemented by assign-

ing the noise parameters dubiously. However, an improper noise selection often results in

poor accuracy or a complete failure of the filter. This drawback is mitigated in the adaptive

unscented Kalman filter, which is adaptive to noise variations.

• Transformed unscented Kalman filter [39]: In the transformed unscented Kalman filter, the

sigma points are orthogonally transformed without changing the weights. The orthogonally

transformed sigma points reduce the higher-order moments in computing the estimate and

covariance. Thus, the orthogonally transformed sigma points reduce the estimation errors.

Subsequently, the transformed unscented Kalman filter outperforms the traditional UKF

without increasing the computational demand.

Some other popular extensions of the UKF are simplex sigma set UKF [40], spherical simplex

sigma set UKF [41], marginalised iterated UKF [42], risk-sensitive UKF [43], and new sigma

point Kalman filter [44]. Moreover, [45],[46],[47] highlight some practical applications of the

UKF. More specifically, [45] applies the UKF for the state of charge estimation in an adaptive

cell model, [46] implements the UKF for estimation of dynamic state for multi-machine power

system, and [47] applies the UKF for the biomedical system.

Cubature Kalman filter (CKF) and its variant

In 2009 by Arasaratnam et al. [48] introduced another popular Gaussian filter named cu-

bature Kalman filter by utilizing a different numerical approximation method. The CKF decom-

poses the intractable integral into spherical and radial integrals. Subsequently, the spherical in-

tegral is approximated using the third-degree spherical-cubature rule, while the radial integral

is approximated using the first-order Gauss-Laguerre quadrature rule. The combination of the

third-degree spherical-cubature rule and the first-order Gauss-Laguerre quadrature rule is called
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the third-degree spherical-radial rule. Finally, the author can state that the CKF approximates the

intractable integral using the third-degree spherical-radial rule.

The CKF utilized lower orders of the spherical-cubature rule and Gauss- Laguerre quadrature

rule, giving poor approximation accuracy for the spherical and radial integrals. Thus, it leaves

the scope for further improvement by advancing the orders of the spherical-cubature rule and

Gauss- Laguerre quadrature rule. As a result, a series of developments appeared by improving the

orders of two numerical approximation rules. This thesis briefly reviews some major developments

below.

• Cubature quadrature Kalman filter (CQKF) [49]: The CQKF is a generalization of the CKF

to improve the estimation accuracy with a marginally increased computational demand.

It adopts the integral decomposition strategy directly from the CKF. It further retains the

third-degree spherical cubature rule from the CKF for approximating the spherical integral.

However, it utilizes the higher-order Gauss-Laguerre quadrature rule for approximating the

radial integral. By combining the third-degree spherical cubature rule and the higher-order

Gauss-Laguerre quadrature rule, the CQKF formulates a new numerical approximation

method named the cubature quadrature rule. The sample points generated by this rule are

known as cubature quadrature points. The use of the higher-order Gauss-Laguerre quadra-

ture rule for approximating the radial integral causes the improved accuracy of the CQKF.

Moreover, the computational demand of the higher-order Gauss-Laguerre quadrature rule

is relatively higher than the first-order Gauss-Laguerre quadrature rule, resulting in a higher

computational demand of the CQKF in comparison to the CKF.

• Higher-degree cubature Kalman filter (HDCKF) [50]: Similar to the CQKF, the HDCKF

is another popular generalization of the CKF. This generalization is very much similar to

the CQKF, except that it modifies the numerical approximation method of spherical integral

instead of the radial integral. The HDCKF replaces the third-degree spherical cubature rule

(used in the CKF) with the higher-degree spherical cubature rule. As a result, it improves the

accuracy in comparison to the CKF. Although, the use of the higher-degree approximation

of the spherical integral comes at the cost of increased computational demand in comparison

to the CKF.

• Higher degree cubature quadrature Kalman filter (HDCQKF) [51]: The HDCQKF is a
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further generalization, which utilizes higher-order of approximation for both the radial and

spherical integrals. More specifically, it utilizes the higher-degree spherical cubature rule

for approximating the spherical integral, while it utilizes the higher-order Gauss-Laguerre

quadrature rule for approximating the radial integral. Thus, its accuracy is better than each

of the CKF, CQKF, and HDCKF. However, its computational demand is also higher than

the CKF, CQKF, and HDCKF.

Some other popular extensions of the CKF are the square-root cubature Kalman filter [48],

square-root cubature quadrature Kalman filter [52], transformed cubature quadrature Kalman

filter [53], simplex-spherical cubature Kalman filter [54], simplex-spherical cubature quadra-

ture Kalman filter [55], and exponential-fitted cubature Kalman filter [56]. Furthermore, the

widespread practical application of the CKF and its extensions are reflected from [57],[58],[59].

For example, [58] used the CKF in underwater target tracking applications, [57] implemented

the CKF for continuous glucose monitoring, while [59] performed fault diagnosis using the CKF.

Gauss-Hermite filter (GHF) and its variant

The GHF [60] utilizes the univariate Gauss-Hermite quadrature rule for numerically approxi-

mating the intractable integrals. In this filter, the sample points generated for approximating the in-

tractable integrals are often known as quadrature points. As the practical problems are mostly mul-

tivariate, the GHF utilizes product rule [60] for extending the univariate Gauss-Hermite quadrature

rule into a multivariate domain. However, for the product rule, the number of quadrature points

increases exponentially with the increasing system dimension [61]. Therefore, the GHF suffers

from the curse of dimensionality problem and becomes inapplicable for high-dimensional sys-

tems. To reduce the computational demand, there are two popular variants of the GHF available

in the literature, which are discussed below.

• Sparse-grid Gauss-Hermite filter (SGHF) [61]: The SGHF replaces the product rule with

the Smolyak rule, reducing the number of multivariate quadrature points. Interestingly, it

reduced the computational demand significantly without damaging the accuracy.

• Adaptive sparse-grid Gauss-Hermite filter (ASGHF) [62]: The ASGHF utilizes the adaptive-

sparse grid method of extending the univariate quadrature rule into a multivariate domain.
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The adaptive-sparse grid method considers varying nonlinearity across different dimen-

sions. Conversely, it reduces the number of multivariate quadrature points further. As a

result, the ASGHF reduces the computational demand further in comparison to the GHF

and SGHF, without harming the accuracy.

Some other popular contributions in the GHF-based filtering are square-root Gauss-Hermite

filter [63], generalized GHF [64], and multi-sparse grid GHF [65]. Similar to the square-root un-

scented Kalman filter, the square-root Gauss-Hermite filter precludes the Cholesky computation.

The generalized GHF improves the accuracy further. Meanwhile, the multi-sparse grid GHF re-

duces the computational demand further, considering that some of the subspaces of the unknown

states are uncorrelated.

The GHF and its variants are among the most accurate Gaussian filters available in the litera-

ture. Despite of the reduced computational demands for filtering applications in general the SGHF

and the ASGHF, their computational demand is still too large for high-dimensional systems, pre-

cluding their practical applications widely.

2.1.4 Gaussian-sum filter

As discussed previously, the derivative-based as well as the derivative-free Gaussian filters

approximate the unknown PDFs as Gaussian. In many cases, the Gaussian approximation may be

a significantly poor characterization of the unknown PDFs, resulting in poor accuracy. Although

this concern is remarkably taken care of in the particle filtering, its computational demand is very

large. The Gaussian-sum filtering provides a trade-off between the Gaussian filtering and particle

filtering in terms of computational demand as well as accuracy. Unlike the traditional Gaussian

filtering, the Gaussian-sum filtering [66] characterizes an unknown PDF with the help of multiple

Gaussian PDFs instead of a single Gaussian. Its accuracy increases as the number of Gaussian

PDFs increases. At the same time, the computational demand also increases with the increasing

number of Gaussian PDFs. The literature witnesses various contributions, such as the Gaussian-

sum extended Kalman filter [67], Gaussian-sum unscented Kalman filter [68], Gaussian-sum

cubature Kalman filter [69], and Gaussian-sum Gauss Hermite filter [70] to redesign the traditional

Gaussian filters under the Gaussian-sum extensions.
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2.2 PF and its variant

The particle filtering was originally introduced in 1993 by Gordon et al. [20]. However, its

background starts from eighties itself, when the Monte-Carlo method (MCM)-based approxima-

tion of the desired conditional PDFs became popular [71]. Interestingly, the MCM-based filtering

does not make particular assumptions and approximations for the unknown PDFs and the noises,

unlike traditional Gaussian filtering. Subsequently, the particle filtering is free from such assump-

tions and approximations, resulting into, in general, very high accuracy.

As discussed previously, due to the large computational demand, the particle filtering is often

ignored in practical applications. In order to reduce the computational demand, the literature

witnesses various resampling techniques that can be used for ignoring the negligibly-weighted

particles and reducing the number of particles [72],[73],[74]. Arulampalam et al. [75] reviewed

various particle filtering methods designed with different resampling techniques. Furthermore, the

development of sophisticated, efficient, and low-cost computational devices, in recent years, has

attracted the practitioners for applying the particle filtering in practice applications. For example,

[76] applied particle filtering in target-tracking problems, while [77] applied particle filtering for

monitoring the health of industrial equipment.

The selection of an appropriate proposal density is crucial for particle filters. To ensure this,

the literature integrated the general Gaussian filters in the particle filtering framework for comput-

ing the proposal density. For example, the unscented particle filter (UPF), cubature particle filter

(CPF), and Gauss-Hermite particle filter (GHPF) are designed in [78], [79], and [80], respec-

tively, by integrating the UKF, CKF, and GHF, respectively, in the particle filtering framework.

Some other popular extensions of the particle filtering are Rao-Blackwellized particle filtering

[81], likelihood particle filter [82], auxiliary particle filter [83], and Gaussian-sum particle filter

(GPF) [84].

2.3 Filtering with various data irregularities

The practical measurement data suffer from various irregularities, which are ignored in the

above-reviewed filtering methods. Apparently, the above-reviewed filters often suffer from poor

accuracy, when the measurement data consist of one or more irregularities. Some of the popu-
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lar measurement irregularities are delayed measurements, missing measurements, non-Gaussian

measurement noises, and cyber-attacked measurements. In another problem, the above-discussed

filters are designed for infinite-range data, while the practically common angular data are of finite-

range, particularly, in the range of [−π,π). The author considers the angular data also as a problem

of data irregularity. In the subsequent discussions, the author briefly reviews the various develop-

ments introduced for handling each of these irregularities.

2.3.1 Delayed measurements

There are various sources of delay in measurements, including the propagation delay and

queuing delay [85],[86],[87]. The delayed measurement carries misleading information about the

current state, resulting into poor accuracy of the traditional filters. In many cases, the delay is

known and the problem can be trivially resolved with a simple time-shift. Meanwhile, in many

cases, particularly in the lack of time-stamping and access to clocks, the delay becomes unknown.

In the literature, the unknown and time-varying delay is commonly known as random delay. This

thesis is particularly concerned with random delays. The randomly delayed measurements com-

monly occur in dynamics control [88],[89], aerospace target tracking [90], communication sys-

tems [91], etc.

The nonlinear filtering literature on delayed measurements mainly begins from the contribu-

tion of Hermoso-Carazo et al. [92] on handling restricted delays. In this publication, the traditional

EKF and UKF were extended for handling one-delay, i.e., the delay being up to one sampling in-

terval. This filtering method was later separately extended for the CKF [93] and for the GHF

[94]. The same filtering approach was extended in [95] for handling two-delays, i.e. the instanta-

neous delay being up to two sampling intervals. In another similar contribution, Zhao et al. [96]

extended the one-delay filtering algorithm for correlated noises. Although these algorithms could

open a new domain of research, they were restricted to only small delays, while the practical prob-

lems often encounter larger delays. With this motivation, Singh et al. [97] extended the traditional

Gaussian filtering algorithm for handling any large delays.

The above-mentioned nonlinear Gaussian filtering literature for handling delayed measure-

ments requires the delay models available. The formulation of delay models requires precise

information about the probabilistic information of the delay. However, very often, the delay is
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completely uncertain and no such information is available. For filtering under this scenario, [98]

introduced a likelihood-based delayed filtering algorithm. In this algorithm, a likelihood-based

delay identification is used, which helps in restructuring the filtering algorithm according to the

identified delay. In another contribution, Esmzad et al. [99] used the likelihood-based approach

for determining the probabilistic information about the delay. Following this, it implemented the

delay model-based filtering approach.

2.3.2 Missing measurements

In practice, the measurements are often intermittently missing [100],[101]. The intermittently

missing measurements may occur due to various reasons. For example, the network and commu-

nication channels [102] used in measurement data transmission may have packet losses, causing

intermittently missing measurements. Similarly, very often, the sensor temporal failure [103] and

the use of time-sharing sensors [104] cause the intermittently missing measurements. Further-

more, the measurement data may be often unidentifiable due to high noise and clutter [105]. In

some cases, this scenario is also formulated as a problem of missing measurements.

In [106], authors had modified the traditional EKF to filter with partial missing measurements

and an uncertain system, when only a fraction of the measurements are available. Following this,

[107] and [108] are utilized the UKF for nonlinear stochastic systems with missing measurements.

Further, [109] developed a distributed filtering method for saturated systems. Nevertheless, it

focuses on linear dynamical models with a few modifications for saturation-induced nonlinearities.

A recent contribution [110], addressed the joint occurrence of delayed and missing measurements

by tuning of large number of delay probabilities.

2.3.3 Non-Gaussian measurement noises

The previously reviewed nonlinear Gaussian filters are designed with Gaussian approximation

of arbitrary noises. However, the practical measurement noises are inherently non-Gaussian and

their Gaussian approximation often significantly harms the estimation accuracy [2].

The traditional Gaussian filters underperform for non-Gaussian noises mainly because they are

designed under the minimum mean square error (MMSE) criterion, which ignores the higher-order

moments (beyond the second-order) of the non-Gaussian noises [19]. In the recent year litera-
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ture, the information-theoretic learning (ITL)-based methods are gaining popularity in handling

non-Gaussian noises [111], [112]. Such methods define particular cost functions and optimize

them to extract higher-order statistics. As they extract high-order statistics, they are accurate for

non-Gaussian noises. In general, the two popular cost functions are derived in terms of corren-

tropy [113] and entropy [114, 115], while some other statistical measures also exist with lesser

popularity [116, 117]. The literature, however, has favored the use of the correntropy-based cost

functions because of lower computational complexity compared to the entropy-based cost func-

tions [118]. Consequently, the author also adopts a correntropy-based cost function. Correntropy

is a measure of similarity between two random variables within a certain neighborhood of a joint

space, controlled by a fixed window. The fixed window is often known as kernel bandwidth. A

higher-order similarity is indicative of larger correntropy. Alternatively, correntropy maximiza-

tion ensures the best similarity between two random variables. Thus, we design our filter under

the maximum correntropy (MC) criterion in order to handle the non-Gaussian noises. The liter-

ature on MC criterion-based filtering starts from [119], which redesigns the linear Kalman filter

under this criterion. Later, various contributions [120],[121],[122],[123],[124],[125] appeared by

redesigning the popular nonlinear Gaussian filters, such as the EKF, UKF, CKF, and GHF, under

this criterion.

In the recent years, some other design criteria have also been tested for handling non-Gaussian

measurements. For example, Huber-based cost function [126] and minimum entropy criterion-

based [127],[128] design have already been tested in the filtering literature. Furthermore, these

design criterion utilizes kernels. Although the use of Gaussian kernel [129],[130] is probably the

most popular, the filtering literature exhibits contributions with other kernels as well [131].

2.3.4 Cyber-attacked measurement

The filtering accuracy is largely influenced by the measurement’s precision, which is often

deliberately tampered and malformed through cyber-attacks [132],[133]. In the cyber-attacks,

an intruder may tamper the true measurements with the following irregularities: i) false data in-

jection (FDI): injecting false data alongside the true measurements [134], ii) time asynchronous

measurements (TAM): introducing time-delay in measurement propagation [92], and iii) denial-

of-services (DoS): denies any measurement availability [135],[136].
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Please note that, in general, an intruder attacks the data only intermittently to keep the attack

unrecognizable. Considering that the attack occurs intermittently, the TAM attack and DoS attack

cause intermittently occurring delayed and missing measurements, respectively. Interestingly, as

discussed above, the literature witnesses various developments for handling the intermittently oc-

curring delayed and missing measurements individually [92],[95],[100]. Although these devel-

opments are not designed in the context of handling cyber-attacks, they can be efficiently used for

handling TAM and DoS attacks.

For nonlinear filtering under the FDI attack, the literature witnesses only a few preliminary

developments. For example, [134] redesigns the EKF for addressing the FDI attacks, while [137]

re-derives the UKF for filtering under the FDI attack. These developments are restricted to additive

false data, mimicking false data independent of the true measurements. A very recent work [138]

develops two algorithms, one for handling the additive false data, while another for handling the

multiplicative false data. Alternatively, it introduces two algorithms; the first algorithm handles

the false data that is independent of the true measurements, while the second algorithm handles

the false data if it is dependent on the true measurements. Following a similar idea, another

development [139] has appeared recently to handle both the additive and multiplicative false data

in a single algorithm.

2.3.5 Angular Data

There is a dearth of literature for handling nonlinear filtering problems with angular data. Nev-

ertheless, some developments appeared to tackle this problem using filtering approaches beyond

the Gaussian filtering and particle filtering methodologies. In a preliminary development, [140]

utilized truncated Fourier series with wrapped normal (WN) distribution for addressing the angu-

lar data. However, the finite-length truncation of the Fourier series severely harms the estimation

accuracy. Some of the later developments [141],[142],[143] are particularly designed for linear

system models and fail for nonlinear systems. In another development, Kurz et al. introduced

a nonlinear circular filtering method through a couple of publications [144],[145],[146],[147].

Specifically, this method is particularly designed for univariate systems, though most of the real-

life filtering problems are multivariate.
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2.4 Summary

We summarize the detailed literature review provided in this chapter through the following

notes.

• The existing nonlinear filters are sub-optimal. Thereby, a variety of filtering methods are

available for achieving different accuracy levels at the cost of increasing the computational

budget.

• The nonlinear filters traditionally ignore various data irregularities, in general, the measure-

ment data irregularities. Such irregularities often decisively appear in practical applications

and harm the accuracy. Some of the popular measurement irregularities are delayed and

cyber-attacked measurements.

• The nonlinear filters are designed for standard state space models of nonlinear dynamical

systems, which are formulated with various simplifications. For example, the state and

measurement variables are considered to be of infinite-range and the noises are assumed to

be Gaussian. The practical problems often significantly deviate from such simplifications,

which causes poor accuracy of the existing filters. In the remaining chapters, such problems

are also treated as the problem of data irregularity.

• The literature witnesses various developments for handling different measurement irregu-

larities individually. Nonetheless, in practice, two or more measurement irregularities may

appear simultaneously, which can harm the accuracy.
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Chapter 3

Gaussian Filtering with Delayed

Measurements

3.1 Introduction

As discussed in the previous chapters, the Gaussian filters are conventionally designed for non-

delayed measurements, i.e. a measurement received by the estimator at time tk must be generated

at the same time tk. Yet, in practice, the measurements are commonly delayed due to various

reasons.

To illustrate the presence of delay in the measurement data, let us consider the example of the

network-induced delay [148],[149]. In the modern estimation and filtering applications, the mea-

surements are commonly transmitted through network systems and multiplexed communication

channels [86], [150]. The network systems and multiplexed communication channels often in-

duce time-delay in measurements [92], [95], [93], [151]. Due to the time-delay, the measurement

generated at tk − td reaches the estimator at tk with td delay. Subsequently, the delayed measure-

ments convey misleading information about the states and deteriorate the estimation accuracy of

the traditional Gaussian filters that are designed for non-delayed measurements.

This chapter is specifically focused on random delays, where the delay is unknown and time-

dependent. Such delays occur if time stamping and synchronization are difficult in the measure-

ment data transmission. The filtering problems with randomly delayed measurements frequently

appear in network systems [148], [152], target tracking [153], communication system [5], etc.
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We reviewed the various contributions for handling the delayed measurements in Section 2.1.3

of Chapter 2. In the detailed review, we discussed that the early developments [92], [95], [93],

[151] could handle only small delays. Meanwhile, in the recent contributions [6],[97],[98],[99]

are robust for large delays as well. Interestingly, the recent contributions suffer from the follow-

ing drawbacks: i) Refs. [97],[6] require a large number of delay probabilities and their accuracy

broadly depends on the precision of selecting the delay probabilities. Conversely, such delay

probabilities are mostly unknown or difficult to identify. Therefore, as the number of the delay

probabilities increases, the chances of improper selection or identification of delay probabilities

increase. Consequently, as the number of delay probabilities increases, the accuracy of the filter

degrades. ii) Refs. [98], [99] usually select an upper bound of the delay arbitrary. An underesti-

mated upper bound causes intermittent measurement losses, which harms the accuracy [87]. On

the other hand, an overestimated upper bound allows the randomly chosen delay to be consider-

ably higher than the actual delay, which further harms the accuracy. In summary, the arbitrary

selection of the upper bound of delay essentially contributes to estimation error.

This chapter introduces a modified Gaussian filtering method for handling large delays in

measurements. The proposed filtering method reduces the required number of delay probabilities,

resulting into, in general, an improved accuracy. Additionally, it precludes the ambiguity of upper

bound selection, which further leads to an improved accuracy. The proposed filtering algorithm

is also extended for multiple sensor scenarios to allow different delays for different elements of

measurement. The proposed algorithm is based on a modified measurement model, which is the

stochastic summation of the current and past measurements. The stochastic modeling is based

on Bernoulli and geometric random variables. The Bernoulli random variable represents whether

the measurement is delayed or not. If a delay occurs, the geometric random variable represents

the extent of delay to decide which of the past measurements is received. It should be mentioned

that the geometric distribution is probably used for the first time in delay filtering literature, which

could preclude the need of various ambiguous delay probabilities. Based on the modified mea-

surement model, the traditional filtering method is redesigned to address the problem of delayed

measurements. Thus, the author derives the expressions of measurement estimate, covariance,

and cross-covariance between the state and measurement. The derivation is based on the modified

measurement model.

In conclusion to the above discussion, the major contributions and novelties of this chapter are
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as follows:

• To the best of the author’s knowledge from the literature review, the proposed method for

the first time models the delayed measurements using the geometric distribution, which has

several advantages over the previously used Bernoulli distribution.

• The delay modeling strategy used in this chapter requires only two probabilities to be

known, unlike the existing delay filters that require many more delay probabilities in han-

dling large delays.

• This chapter redesigns the classical Gaussian filtering for handling delayed measurements

by re-deriving the expressions of the estimate and covariance of measurement, and the

cross-covariance between the state and measurements.

• This chapter simulates two nonlinear filtering problems with delayed measurements and

provides a comparative performance analysis of the proposed and existing methods.

Note that the proposed filtering technique can be implemented with any of the existing Gaus-

sian filters, like the EKF[26], UKF[34], CKF [48], and GHF [60]. The author chooses the CKF to

test the performance due to its popularity in offering high accuracy at low computational demand.

The proposed filtering approach outperforms the traditional CKF in the presence of delayed mea-

surements. It also outperforms the extended CKF with the existing delayed filtering techniques.

3.2 Problem Formulation

Recalling Chapter 1, the state space model for representing a general nonlinear dynamical

system can be given as

xk = φk−1(xk−1)+νk, (3.1)

zk = Ψk(xk)+ηk. (3.2)

Please refer to Chapter 1 for a detailed discussion, including the clarifications on the notations.

Please note that the above state space model represents a non-delayed system. Therefore,

zk must be a non-delayed measurement and may carry misleading information about the states

in the presence of delay. As discussed in the previous section, the popular delay filters [97],
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[99] suffer from two major drawbacks: i) they require prior knowledge of a large number of

delay probabilities and ii) they arbitrarily choose an upper bound of delay. These drawbacks

appear mainly due to the improper delay modeling strategy used by them. Thus, to handle these

drawbacks, it is required to reconstruct the delay modeling strategy and redesign the traditional

filtering methodology accordingly.

It should be mentioned that the geometric distribution can characterize the time-varying mul-

tiple delay possibility with just one probability information, unlike the traditionally used sequence

of Bernoulli random variables. Moreover, the geometric random variable also mitigates the need

to fix the upper bound of delay arbitrarily. As the measurements are more often non-delayed, the

author may like to have a different approach for the non-delay situation. Thus, the author continues

using a Bernoulli random variable for modeling a non-delay scenario.

Besides the geometric distribution, other distributions also appear with reduced numbers of

delay probabilities, e.g., Binomial distribution, and gamma distribution [154]. More importantly,

the uniqueness of delay is suitably characterized by sequential Bernoulli trials [6],[97], where the

past instants are examined for coinciding with the current measurement’s arrival time. In this

context, the geometric distribution is possibly more suitable.

Following the above discussion, the author reformulates the measurement model using a

Bernoulli random variable βk and a geometric random variable Gd,k as

yk = βkzk +(1−βk)
k−1

∑
i=1

Gd,k(i)zk−i, (3.3)

where yk represents the measurement with delay possibilities and d stands for representing the

delay extent. This expression also represents a unique selection strategy for yk to appropriately

pick an element out of several time-synchronized hypothetical past measurements zk−i using βk

and Gd,k. Please note that βk = 1 denotes a non-delayed measurement at tk, while βk = 0 represents

a delay occurrence.

Assumption 3.2.1 The random variables are assumed to be independent to each other.

Let us illustrate the delay model presented in (3.3). If the delay occurs (i.e., βk = 0), Gd,k(i)

represents the ith delayed instant from which a measurement arrives. Let the geometric random

variable is denoted as Gd,k, which indicates the measurement received at the tk instant that is

unknown with d-step delay, where d ∈ {1,2, · · · ,k − 1}. At any instant tk, Gd,k is of size d,
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with the first d − 1 elements being zero and a one at the dth element to denote the arrival of

measurement from tk−d . The author considers a varying delay scenario, i.e., the size of Gd,k varies

for every k, e.g., Gd,k = (1) for one delay and Gd,k = (0,1) for two delay. However, to maintain a

consistent length of the array Gd,k as k−1, the author assigns zeros into the remaining elements,

i.e., Gd,k = (0d−1,1,0k−d−1), where 0d represents an all-zero array of size d. Note that this Gd,k

does not imply that 1 can only occur at tk, as it can occur at specific d. The author simply restricted

the maximum delay at tk to be k−1.

Fig. 3.1 represents the arrival of a delayed or a non-delayed measurement for various values

of βk and Gd,k. βk ∈ {0,1} satisfies the following properties,

P(βk = 1) = E [βk] = E [(βk)
m] = pb

P(βk = 0) = E [1−βk] = E [(1−βk)
m] = qb = 1− pb

E
[
(βk − pb)

2]= E
[
(βk)

2]−E [βk]
2 = pb (1− pb) ,

(3.4)

where m ∈ R is a constant. The author uses the notation G j to denote a (k−1)-dimensional Gd,k

with jth element being 1. Further, it denotes the probability of 1 at each element of Gd,k as pg.

Subsequently, if Gd,k(i) denotes the ith element of Gd,k, then

P(Gd,k(i) = 1) = E [(Gd,k(i))q] = αp = (qg)
i−1 pg

P(Gd,k(i) = 0) = E [(1−Gd,k(i))q] = 1− (qg)
i−1 pg

E
[
(Gd,k(i)−αp)

2
]
= (qg)

i−1 pg(1− (qg)
i−1 pg),

(3.5)

where qg = (1− pg).
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G
k
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k
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G
k
1

βk = 0

βk = 1

Figure 3.1: Delayed measurement representation in terms of present and past measure-
ments.

It should be noted that the traditional Gaussian filtering method is designed for a non-delayed

state-space model represented by Eqs. (3.1) and (3.2). Although a modified state-space model
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for nonlinear systems with delayed measurements can be represented by Eqs. (3.1) and (3.3).

Therefore, the objective of this chapter is to redesign the traditional Gaussian filtering method for

the modified measurement model represented by Eqs. (3.1) and (3.3).

3.3 Gaussian Filtering with Delayed Measurements

From the detailed discussion provided in the Chapter 1, the objective of Gaussian filtering is to

determine x̂k|k−1 and Pk|k−1 for the prediction step and x̂k|k and Pk|k for the update step. In the sub-

sequent subsections, we derive the mathematical aspects of the proposed method for performing

the prediction and update steps considering that the received measurement yk is delayed.

3.3.1 Prediction

This step determines x̂k|k−1 and Pk|k−1 using state dynamics represented by Eq. (3.1), which

is independent of the modified measurement model (3.3). Therefore, this step remains simi-

lar to the ordinary Gaussian filtering approach. Thus, as Υ = {Υ1,Υ2, · · · ,ΥNs} and W =

{W1,W2, · · · ,WNs} represent the sets of deterministic sample points and associated weights, we

get [23, 25]

x̂k|k−1 =
Ns

∑
i=1

WiΥ
φ

i,k−1|k−1,

Pk|k−1 =
Ns

∑
i=1

Wi(Υ
φ

i,k−1|k−1 − x̂k|k−1)(Υ
φ

i,k−1|k−1 − x̂k|k−1)
T +Qk,

where

Υ
φ

i,k−1|k−1 = φk−1(Σk−1|k−1Υi + x̂k−1|k−1),

Pk−1|k−1 = Σk−1|k−1Σ
T
k−1|k−1.

Please note that Ns is the number of sample points and Σk−1|k−1 is the Cholesky decomposition of

Pk−1|k−1.

3.3.2 Update

As discussed earlier, the update step determines x̂k|k and Pk|k based on the information received

from yk. It is based on the statistical parameters of yk, i.e. the estimate ŷk|k−1, covariance Pyy
k|k−1,
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and cross-covariance Pxy
k|k−1. Subsequently, x̂k|k and Pk|k are, respectively, given as [23, 25]

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1),

Pk|k = Pk|k−1 −KkPyy
k|k−1KT

k ,

where

Kk = Pxy
k|k−1(P

yy
k|k−1)

−1,

is the Kalman gain.

In the above expressions, ŷk|k−1, Pyy
k|k−1, and Pxy

k|k−1 are computed for the delayed measure-

ment yk represented by the modified measurement model (3.3). As shown in Eq. (3.3), yk is

stochastic summation of several non-delayed measurements zk− j ∀ j ∈ {0,1, · · · ,k− 1}. There-

fore, ŷk|k−1, Pyy
k|k−1, and Pxy

k|k−1 can also be expressed in terms of non-delayed measurement pa-

rameters, ẑk− j|k−1, Pzz
k− j|k−1, and Pxz

k− j|k−1. The author determines ẑk− j|k−1, Pzz
k− j|k−1, and Pxz

k− j|k−1

using the traditional Gaussian filtering method, giving [23, 25]

ẑk− j|k−1 =
Ns

∑
i=1

WiΥ
Ψ

i,k− j|k−1,

Pzz
k− j|k−1 =

Ns

∑
i=1

Wi(Υ
Ψ

i,k− j|k−1 − ẑk− j|k−1)(Υ
Ψ

i,k− j|k−1 − ẑk− j|k−1)
T +Rk,

Pxz
k− j|k−1 = ∑

i
Wi(Υi,k− j|k−1 − x̂k− j|k−1)(Υ

Ψ

i,k− j|k−1 − ẑk− j|k−1)
T ,

where

ΥΨ

i,k− j|k−1 = Ψk− j(Σk− j|k−1Υi + x̂k− j|k−1),

Υi,k− j|k−1 = Σk− j|k−1Υi + x̂k− j|k−1,

with Pk− j|k−1 =Σk− j|k−1Σ
T
k− j|k−1.

In the following discussion, the author computes the expressions of ŷk|k−1, Pyy
k|k−1, and Pxy

k|k−1

in terms of ẑk− j|k−1, Pzz
k− j|k−1, and Pxz

k− j|k−1.

Theorem 3.3.1 Estimate of delayed measurement yk, i.e. ŷk|k−1, can be obtained as

ŷk|k−1 = pbẑk|k−1 +(1− pb)
k−1

∑
i=1

(1− pg)
i−1 pgẑk−i|k−1. (3.6)
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Proof : Estimate of yk is

ŷk|k−1 = E
[
yk|k−1

]
= E

[
βkzk|k−1 +(1−βk)

k−1

∑
i=1

Gd,k(i)zk−i|k−1

]
.

Note that βk represents the delay possibility, which is independent of zk and zk−i representing the

measurement values. Similarly, Gd,k(i) is independent of zk−i. Therefore, the above expression

can be simplified as

ŷk|k−1 = E [βk]E
[
zk|k−1

]
+E [(1−βk)]

k−1

∑
i=1

E [Gd,k(i)]E
[
zk−i|k−1

]
.

Further, ŷk|k−1 is expressed as

ŷk|k−1 = E [βk] ẑk|k−1 +E [(1−βk)]
k−1

∑
i=1

E [Gd,k(i)] ẑk−i|k−1.

Substituting E [βk], E [(1−βk)] and E [Gd,k(i)] from Eqs. (3.4) and (3.5), the above equation

reduces to Eq. (3.6). □

Theorem 3.3.2 The innovation covariance Pyy
k|k−1 can be obtained as

Pyy
k|k−1 =pbPzz

k|k−1 + pb(1− pb)ẑk|k−1(ẑk|k−1)
T +(1− pb)

k−1

∑
i=1

(1− pg)
i−1 pg

×Pzz
k−i|k−1 +

k−1

∑
i= j=1

(
(1− pg)

i−1 pg − (1− pb)(1− pg)
2i−2 p2

g(3pb −1)
)

× ẑk−i|k−1ẑT
k−i|k−1 +

k−1

∑
i ̸= j=1

[
pb(1− pg)

i+ j−2 p2
g −2pb(1− pb)(1− pg)

i+ j−2

× p2
g +(1− pb)

2(1− pg)
i+ j−2 p2

g
]
ẑk−i|k−1ẑT

k− j|k−1.

(3.7)

Proof : Pyy
k|k−1 is given as

Pyy
k|k−1 =E

[
(yk − ŷk|k−1)(yk − ŷk|k−1)

T
]
. (3.8)
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From Eqs. (3.3) and (3.6), we get

yk − ŷk|k−1 = βkzk +(1−βk)
k−1

∑
i=1

Gd,k(i)zk−i −
(

pbẑk|k−1 +(1− pb)
k−1

∑
i=1

(1− pg)
i−1 pgẑk−i|k−1

)
.

It can be expressed as

yk − ŷk|k−1 =βk(zk − ẑk|k−1)︸ ︷︷ ︸
M1

+(βk − pb)ẑk|k−1︸ ︷︷ ︸
M2

+(1−βk)
k−1

∑
i=1

Gd,k(i)(zk−i − ẑk−i|k−1)

︸ ︷︷ ︸
M3

+
k−1

∑
i=1

(
(1−βk)Gd,k(i)− (1− pb)(1− pg)

i−1 pg
)

ẑk−i|k−1

︸ ︷︷ ︸
M4

.

(3.9)

Substituting yk − ŷk|k−1 from the above equation into (3.8), we obtain

Pyy
k|k−1 =

4

∑
i=1

4

∑
j=1

E
[
MiMT

j
]
.

Using the joint estimation property of random variables, we can show that E[MiMT
j ] = 0 ∀ i ̸= j.

Thus,

Pyy
k|k−1 =

4

∑
i=1

E
[
MiMT

i
]
. (3.10)

For the M1 expression given in Eq. (3.9), we can write

E
[
M1MT

1
]
= E

[
β

2
k (zk − ẑk|k−1)(zk − ẑk|k−1)

T ] .

Note that βk is independent of zk and ẑk|k−1 is a constant. Therefore, substituting E
[
β 2

k

]
from Eq.

(3.4), we get

E
[
M1MT

1
]
= pbPzz

k|k−1. (3.11)

E
[
M2MT

2
]

with M2 expression given in Eq. (3.9) can be written as

E
[
M2MT

2
]
= E

[
(βk − pb)

2ẑk|k−1ẑT
k|k−1

]
.
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Then, we get

E
[
M2MT

2
]
= E

[
(βk − pb)

2]E
[
ẑk|k−1ẑT

k|k−1

]
.

Substituting E
[
(βk − pb)

2
]

from Eq. (3.4), we get

E
[
M2MT

2
]
= pb(1− p2

b)ẑk|k−1ẑT
k|k−1. (3.12)

For the M3 term given in Eq. (3.9), we can write

E
[
M3MT

3
]
= E

[
(1−βk)

k−1

∑
i=1

Gd,k(i)(zk−i − ẑk−i|k−1)(1−βk)
k−1

∑
j=1

Gd,k( j)(zk− j − ẑk− j|k−1)
T
]

Using the independent property of the random variables, it can be shown that all the terms for i ̸= j

are zero. Therefore, E
[
M3MT

3
]

can be simplified as

E
[
M3MT

3
]
=E
[
(1−βk)

2] k−1

∑
i=1

(
E
[
Gd,k(i)2]E

[
(zk−i − ẑk−i|k−1)(zk−i − ẑk−i|k−1)

T ]).

Substituting E
[
(1−βk)

2
]

and E
[
Gd,k(i)2

]
from Eqs. (3.4) and (3.5), respectively, the above ex-

pression can be simplified as

E
[
M3MT

3
]
= (1− pb)

k−1

∑
i= j=1

(1− pg)
i−1 pgPzz

k−i|k−1. (3.13)

Lastly, E
[
M4MT

4
]

with M4 given in Eq. (3.9) can be expressed in the form of Eq. (3.14). A

E
[
M4MT

4
]
=E
[ k−1

∑
i=1

(
(1−βk)Gd,k(i)− (1− pb)(1− pg)

i−1 pg
)
ẑk−i|k−1

k−1

∑
j=1

(
(1−βk)Gd,k( j)

− (1− pb)(1− pg)
j−1 pg

)
ẑT

k− j|k−1
]
.

(3.14)

further simplification of Eq. (3.14) leads to Eq. (3.15) and is given in Eq.(3.16).

Substituting E[M1MT
1 ], E[M2MT

2 ], E[M3MT
3 ] and E[M4MT

4 ] from Eq. (3.11), (3.12), (3.13) and

(3.16), respectively, into Eq. (3.8), Pyy
k|k−1 can be simplified in the form of Eq. (3.7). □
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E
[
M4MT

4
]
=

k−1

∑
i= j=1

E
[(
(1−βk)Gd,k(i)− (1− pb)(1− pg)

i−1 pg
)2
]
E
[
ẑk−i|k−1ẑT

k−i|k−1

]

+
k−1

∑
i̸= j=1

E[((1−βk)Gd,k(i)− (1− pb)(1− pg)
i−1 pg)((1−βk)Gd,k( j)

− (1− pb)(1− pg)
j−1 pg)]E

[
ẑk− j|k−1ẑT

k− j|k−1

]
.

(3.15)

E
[
M4MT

4
]
=

k−1

∑
i= j=1

(pb(1− pg)
i−1 pg − (1− pb)(1− pg)

2i−2 p2
g(3pb −1))ẑk−i|k−1ẑT

k−i|k−1

+
k−1

∑
i ̸= j=1

(
pb(1− pg)

i+ j−2 p2
g −2pb(1− pb)(1− pg)

i+ j−2 p2
g +(1− pb)

2

× (1− pg)
i+ j−2 p2

g

)
ẑk−i|k−1ẑT

k− j|k−1.

(3.16)

Theorem 3.3.3 The cross-covariance matrix between x and y at kth time instant can be given as

Pxy
k|k−1 = pbPxz

k|k−1 + pb

k−1

∑
i=1

(1− pg)
i−1 pgPxz

k−i|k−1. (3.17)

Proof: The cross-covariance matrix between x and y at the kth instant is

Pxy
k|k−1 = E

[
(xk − x̂k|k−1)(yk − ŷk|k−1)

T
]
.

Substituting yk − ŷk|k−1 = ∑
4
i=1 Mi from Eq. (3.9),

Pxy
k|k−1 =

4

∑
i=1

E
[
(xk − x̂k|k−1)M

T
i
]
. (3.18)

Applying joint estimation property of the independent random variables, it can be shown that

E
[
(xk − x̂k|k−1)M

T
2
]
= E

[
(xk − x̂k|k−1)M

T
4
]
= 0. (3.19)

Therefore, we provide the computational aspects for the non-zero terms, E
[
(xk − x̂k|k−1)MT

1
]

and

E
[
(xk − x̂k|k−1)MT

3
]
, only.
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The term corresponding to M1 can be obtained as

E
[
(xk − x̂k|k−1)M

T
1
]
=E
[
(xk − x̂k|k−1)βk(zk − ẑk|k−1)

T ] .

Then, we get

E
[
(xk − x̂k|k−1)M

T
1
]
= pbPxz

k|k−1. (3.20)

Similarly, the term corresponding to M3 can be obtained as

E
[(

xk − x̂k|k−1
)

MT
3
]
= E

[
(
xk − x̂k|k−1

)
(
(1−βk)

k−1

∑
i=1

Gd,k(i)(zk−i − ẑk−i|k−1)
T

)]
.

It can be further simplified as

E
[
(xk − x̂k|k−1)M

T
3
]
= E [(1−βk)]

k−1

∑
i=1

(
E [Gd,k(i)]E

[
(xk − x̂k|k−1)(zk−i − ẑk−i|k−1)

T ]).

Substituting E [(1−βk)] and E [Gd,k(i)] from Eqs. (3.4) and (3.5), respectively, we get

E
[
(xk − x̂k|k−1)M

T
3
]
=

k−1

∑
i=1

(1− pb)(1− pg)
i−1 pgPxz

k−i|k−1. (3.21)

Substituting various terms of Eq. (3.18) from Eqs. (3.19), (3.20), and (3.21), we get Pxy
k|k−1 in the

form of Eq. (3.17). □

As discussed earlier, the traditional Gaussian filtering algorithm is based on the statistical mea-

sures of zk, i.e. ẑk|k−1, Pzz
k|k−1, and Pxz

k|k−1, which ignores the delay. It can be modified for delayed

measurements by replacing ẑk|k−1, Pzz
k|k−1, and Pxz

k|k−1 with ŷk|k−1, Pyy
k|k−1, and Pxy

k|k−1, respectively.

A block diagram representing the steps to be followed for implementing the proposed filtering al-

gorithm is presented in Fig. 3.2. As the statistical measures ŷk|k−1, Pyy
k|k−1, and Pxy

k|k−1 account for

delay, the proposed filtering method is expected to outperform the traditional Gaussian filtering in

the presence of delay.

The existing delay filters [97], [99] assign one Bernoulli random variable for each possible

delay extent in their delay modeling strategies. For example, if the maximum delay is restricted to

four time-steps (i.e., up to four sampling intervals), they assign five Bernoulli random variables,
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and covariance:
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mate and covariance:

x̂k|k 1, Pk|k 1

Find statistical parameters
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Yes
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Figure 3.2: Block diagram representing the steps for implementing the proposed filtering
via computing the statistical measures ŷk|k−1, Pyy

k|k−1, and Pxy
k|k−1 with stored statistical

information using ẑk|k−1, Pzz
k|k−1, and Pxz

k|k−1.

one for the non-delayed case and four for the four past sampling instants within the range of

maximum delay. At any instant tk, only one of all Bernoulli random variables can have a unity

value, while others necessarily remain zero. The measurement corresponds to the time instant

for which the Bernoulli random variable has the unity value. Alternatively, the unity value of

Bernoulli random variables determines whether the measurement belongs to the current instant

(non-delayed measurement) or a particular past instant (delayed measurement).

Furthermore, the existing delay filters [97], [99] assume that the probability of each Bernoulli

random variable being one is known, which also implies the probability of the corresponding de-

lay. Thus, it can be stated that they require the probability of every possible delay to be known

for the filtering. Please note that these probabilities are mostly unknown or inaccurately known

in practice, resulting in poor accuracy. On the other hand, the proposed method requires only two

probabilities to characterize any large delay scenario: one for characterizing no-delay case and

other for characterizing any large delay. Furthermore, the existing methods [97], [93],[99] require

to generate one random number for each possible delay extent for the measurement data simu-

lation. Considering that the delay extent may be up to multiple sampling intervals, they require

generating multiple Bernoulli random numbers with zero or one outcomes. As only one mea-

surement is received at any time, they assume that only one of these Bernoulli random variables

can have an outcome ‘one’, and the rest must remain ‘zero’. At the same time, the independent

assumption of all Bernoulli random variables contradicts this assumption, leading to ambiguity in
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data simulation. On the other hand, the proposed method precludes such ambiguities by directly

generating a sequence of zero and one from the information of only one delay probability.

The proposed method utilizes information from every past sampling instants, as conclusive

from Eqs. (3.6), (3.7), and (3.17). Therefore, its computational demand may excessively increase

in long-time processing. However, the contributions from the excessive past instants become neg-

ligible, as qg < 1. Thus, the practitioners may fix threshold weights for excluding the excessive

past instants. Subsequently, the practitioners can restrict the computational demand within a per-

missible limit without damaging the accuracy considerably. Nevertheless, this restriction applies

only for a long-time processing of the proposed method with a limited computational budget.

Thus, in general, the proposed method remains superior to the existing methods [97, 99] handling

finite delays with possibilities of missing measurements.

Remark 3.3.1 Any of the existing Gaussian filters, like EKF, UKF, CKF, and GHF, can be ex-

tended with the proposed filtering technique. Therefore, the various filtering alternatives available

to achieve a trade-off between the accuracy level and the computational budget are applicable to

the proposed filtering technique as well.

Remark 3.3.2 The increased computational time of the proposed filtering technique is not a major

concern if the sampling interval is not very small, i.e. the filter gets enough processing time before

a new measurement is available.

Remark 3.3.3 Although the storage requirement of the proposed filtering technique is relatively

high, it is not arbitrarily large. Therefore, it is expected to cause only a minor increase in the

storage budget.

3.3.3 Multiple sensor environment

The above discussed filtering algorithm for delayed measurements assumes an equal delay

probability for each measurement element. However, the practical measurements are often com-

posed of various elements received from different sensing units. Please note that each sensor may

have a different delay, leading to different delays for different elements of a measurement.

If nr is the number of sensors, then zk = [z1
k ,z

2
k , · · · ,znr

k ]
(
yk = [y1

k ,y
2
k , · · · ,ynr

k ]
)
, where z j

k (y j
k)

represents the element of zk (yk) received from the jth sensor. Let us denote β
j

k and Gd j,k as the
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Bernoulli and geometric random variables, respectively associated with y j
k, then

yk =




y1
k

y2
k
...

ynr
k



=




β 1
k z1

k +(1−β 1
k )∑

d1
i=1 Gd1,k(i)z1

k−i

β 2
k z2

k +(1−β 2
k )∑

d2
i=1 Gd2,k(i)z2

k−i
...

β r
k zr

k +(1−β r
k )∑

dr
i=1 Gdr,k(i)z

nr
k−i



,

where d j is the delay in the jth sensor data at the kth instant.

Following the steps of Theorem 3.3.1 for each element of yk, ŷk|k−1 can be derived as

ŷk|k−1 =




p1
bẑ1

k|k−1 +(1− p1
b)∑

k−1
i=1

(
1− p1

g
)i−1 p1

gẑ1
k−i|k−1

p2
bẑ2

k|k−1 +(1− p2
b)∑

k−1
i=1

(
1− p2

g
)i−1 p2

gẑ2
k−i|k−1

...

pnr
b ẑnr

k|k−1 +(1− pnr
b )∑

k−1
i=1

(
1− pnr

g
)i−1 pnr

g ẑnr
k−i|k−1



.

The above expression shows that

ŷk|k−1 =
[
ŷ1

k|k−1, ŷ
2
k|k−1, · · · , ŷnr

k|k−1

]T
. (3.22)

Eq. (3.22) shows that each element of yk can be considered independently when filtering with

multi-sensor data. Similarly, Pyy
k|k−1 and Pxy

k|k−1 can also be obtained for the individual sensors.

Afterward, they can be combined together to deal with multi-sensor data.

3.4 Simulation Results

This section implements the proposed method for two nonlinear filtering problems with de-

lay possibilities. In both problems, the modified measurement model presented in Eq. (3.3) is

used only for generating the simulated data of delayed measurements in lack of real delay data.

The implementation is performed in Matlab 2019 over a personal computer with the configuration

mentioned in Section 1.6. The performance is analyzed for the CKF-based formulation of Gaus-

sian filtering, as the CKF offers high accuracy at a very low computation demand. The CKF under

the proposed modification is abbreviated as CKF GRD, while the CKF under the existing delay

filtering approaches is abbreviated as CKF RD [97] and MLCKF [99]. The CKF RD and MLCKF
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are implemented by fixing an upper-bound of delay as four sampling intervals. It should be noted

that the other existing delay filters [92, 95, 93] are excluded from the benchmark comparisons be-

cause they are designed for small delays (up to one or two sampling intervals), and fail to handle

higher delays.

As discussed in the Section 1.6, we choose RMSE as the performance metric, which can be

defined at tk as

RMSEk =

√
1

Tmc

Tmc

∑
i=1

(
xi

k − x̂k|k
)2 (3.23)

where xi
k and x̂i

k|k are the true and the estimated states at tk time-step and in ith simulation run, and

Tmc is the number of Monte-carlo simulations. We also obtain average RMSE (ARMSE) as

ARMSE =
1
Ts

Ts

∑
k=1

RMSEk (3.24)

where Ts is the number of time steps.

3.4.1 Problem 1

This problem is a univariate non-stationary growth model, which is widely used to validate

the filtering performance [95] due to its highly nonlinear and bimodal nature. For this problem,

the dynamic state space model is given as

xk = amxk−1 +bm
xk−1

1+x2
k−1

+ cm cos(1.2kτ)+νk, (3.25)

zk = x2
k/dm +ηk. (3.26)

The simulated data of the true states and measurements are generated by considering am = 5,

bm = 25, cm = 8, dm = 20, τ = 1, x0 = 0.1 and Qk = Rk = 0.2. The initial estimate and covariance

are taken as 0.5 and 1, respectively. The filters are implemented over Ts = 200 time-steps and

500 Monte-Carlo simulations are performed for computing ARMSE. The true state is compared

with the estimated state obtained for CKF GRD in Fig. 3.3. A close match between the true and

the estimated states concludes a successful estimation for the CKF GRD, i.e. for the proposed

filtering method. Fig. 3.4 shows the ARMSEs plotted for varying delay probability (i.e., 1− pb)

and varying the probability of delay extent if the delay has occurred (i.e., pg). The ARMSE plots

show a reduced ARMSE for the CKF GRD compared to the CKF RD, MLCKF, and CKF in the
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presence of delay. We further compare the mean RMSEs of the CKF GRD with the CKF for

varying pb and pg in Table 3.1. The table shows a reduced RMSE of the CKF GRD even as the

pb and pg vary.
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Figure 3.3: Problem1: Plots of true and estimated states.

It should be mentioned that as pb and pg increase, the chances of delay become lesser, and

even if the delay occurs, it becomes smaller. Subsequently, the performance of the CKF GRD

should get closer to the ordinary CKF as pb and pg increase. The same is reflected in Table 3.1.

Table 3.1: Problem 1: Average RMSE of different filters for varying pb and pg.
pb pg CKF CKF GRD

0.2 10.0912 4.78170.1
0.5 10.5520 4.8928
0.8 10.7801 4.7883
0.2 9.1307 6.30410.5
0.5 9.5795 6.3209
0.8 9.7241 6.2390

0.2 7.1977 5.14590.8
0.5 7.3928 5.4609
0.8 7.5664 5.4882

3.4.2 Problem 2

The second problem is filtering algorithm-based characterization of multiple sinusoidals su-

perimposed in a single signal. This problem frequently appears in power [155] and communication
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Figure 3.4: Problem 1: ARMSE analysis: (a) varying delay probability (1− pb) with
pg = 0.3 and (b) varying probability of delay extent (pg) with pb = 0.3.
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systems [156], where each sinusoidal can be characterized by frequency and amplitude. Therefore,

the objective is to estimate the frequency and amplitude of each sinusoidal from the measurements

available for the superimposed signal. Considering the number of sinusoidals to be three, and

denoting fi and ai as the frequency and amplitude of the ith sinusoidal, respectively, we can define

x = [ f1, f2, f3,a1,a2,a3]
T . As the frequency and amplitude of each sinusoidal is expected to be

constant, we obtain

xk = I6xk−1 +νk. (3.27)

As the measured signal is a superimposition of the three sinusoidals to be estimated, we can define

zk =

[
3

∑
j=1

a j,k cos(2π f j,kkτ)
3

∑
j=1

a j,k sin(2π f j,kkτ)

]T

+ηk, (3.28)

where τ is the sampling time considered as 0.1667 ms. We consider the noise covariances as Qk =

diag([σ2
f σ2

f σ2
f σ2

a σ2
a σ2

a ]) and Rk = diag([σ2
r σ2

r ]), with σ f = 15 mHz, σa = 20 mV , and σr = 0.3

V . The initial true and estimated states are taken as x0 = [200,1000,2200,2,2,2]T and x̂0|0 =

N (x0,P0|0), respectively, where the initial covariance is P0|0 = diag([40,40,40,0.05,0.05,0.05]).

The filtering is performed over TS = 800 time-steps and the ARMSE is computed by implementing

500 Monte-Carlo runs.

The true and estimated plots of frequency and amplitude are shown in Fig. 3.5 for the first

sinusoidal. A similar pattern is observed for the other sinusoidals as well.

The ARMSE analysis for the frequency and amplitude is shown in Fig. 3.6 and 3.7, respec-

tively. The ARMSEs shown in the figures are computed as by averaging (over the time-steps) the

mean of the RMSEs obtained for the three sinusoidals. The figures show a considerably reduced

ARMSE for the CKF GRD compared to the CKF RD, MLCKF, and ordinary CKF. On the other

hand, the MLCKF and CKF RD may perform relatively close to the CKF GRD in some cases due

to stochastic behavior of delay often matching the upper-bound closely. However, the possibility

of an inappropriate upper-bound is high as there is no specific rule defined for this selection.

We further study the performance of the proposed filter in different environments that are

defined by varying delay possibilities and delay extents. In this regard, we compare the average

RMSE of the CKF GRD with the CKF for varying pb and pg in Table 3.2 and Table 3.3. The

tables conclude a reduced RMSE for the CKF GRD even as the pb and pg vary. Alternatively,

the tables conclude the consistently improved accuracy of the CKF GRD when both the delay
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Figure 3.5: Problem 2: True and estimated plots of frequency and amplitude for the first
sinusoidal.

possibility and delay extents increase.

Following the discussion in the previous subsection, the performance of the CKF GRD should

become similar to the ordinary CKF as pb and pg become large. The same is reflected in the Table

3.2 and Table 3.3. The average RMSEs of the CKF GRD and the CKF become very close as both

pb and pg are assigned with a large value of 0.8.

The relative computational times for the four filters are computed with the time for CKF taken

as unity, and others found as 1.1245 for CKF RD, 1.2105 for MLCKF, and 1.4073 for CKF GRD.

It concludes that the computational time of the CKF GRD is marginally increased.
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Figure 3.6: Problem 2: ARMSE analysis for frequency: (a) varying delay probability
(1− pb) with pg = 0.3, (b) varying probability of delay extent (pg) with pb = 0.3.

Table 3.2: Problem 2: Average RMSE of frequency obtained for different filters as pb
and pg vary.

pb pg CKF CKF GRD

0.2 29.7092 7.94370.1
0.5 17.8846 6.6574
0.8 8.8956 5.6556

0.2 6.1836 1.05390.5
0.5 5.0139 0.9688
0.8 4.7383 0.8750

0.2 0.7814 0.74010.8
0.5 0.8521 0.7386
0.8 0.9737 0.7458
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Figure 3.7: Problem 2: ARMSE analysis for amplitude: (a) varying delay probability
(1− pb) with pg = 0.3, (b) varying probability of delay extent (pg) with pb = 0.3.

Table 3.3: Problem 2: Average RMSE of amplitude state for different filters as pb and
pg vary.

pb pg CKF CKF GRD

0.2 1.7046 0.63620.1
0.5 1.4823 0.7370
0.8 1.1763 0.7890

0.2 1.0977 0.27160.5
0.5 0.9383 0.2419

0.8 0.8231 0.2140
0.2 0.3939 0.20540.8
0.5 0.3739 0.1955

0.8 0.3577 0.1860
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3.4.3 Performance analysis for mismatched models

We extend the performance analysis of the CKF GRD in a new scenario, where the actual

delay model is mismatched from our model. In this regard, we generate the delay following

the model used in [97, 99] with delay parameter p and implement the CKF GRD. The resulting

average RMSEs of the CKF GRD, CKF RD, MLCKF, and CKF are shown in Fig. 3.8 for both

the previously discussed problems. The figure excludes the amplitude ARMSE plot for the second

problem as it is similar to the frequency. Interestingly, the ARMSE plots conclude an improved

accuracy for CKF GRD even as the delay model is mismatched.
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Figure 3.8: ARMSE analysis for mismatched delay model: (a) for Problem 1 with varying
delay probability (p), and (b) for Problem 2 with varying delay probability (p).
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3.4.4 Multi-sensor scenario

The performance analysis on different delays for different elements of measurement is pro-

vided in Fig. 3.9. The analysis is limited to the ARMSE. The ARMSE plot is drawn for Problem

2 by considering that only the second measurement is delayed. The ARMSE is reduced for the

CKF GRD compared to the ordinary CKF. Please note that MLCKF and CKF RD are not appli-

cable for varying delay across different elements; therefore, it is removed from the analysis in Fig.

3.9.
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Figure 3.9: Problem 2: ARMSE plots of frequency and amplitude for varying delay prob-
abilities across different elements of measurements for fixed pg = 0.3: (a) frequency and
(b) amplitude.
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3.5 Summary

As the practical measurements are commonly delayed, an advanced Gaussian filtering method

to encounter the delay is needed. The preliminary extensions of Gaussian filtering for delayed

measurements suffer from several drawbacks, such as the inability to encounter large delay and

arbitrary selection of the upper-bound of delay. Consecutively, they suffer from poor accuracy if

the delay is large and the upper bound is unknown. Thus, this chapter introduces a new extension

of the Gaussian filtering to handle delayed measurements. The proposed method reformulates

the measurement model to introduce the delay possibility and redesigns the traditional Gaussian

filtering for the reformulated measurement model. Unlike the existing delay filters, the proposed

delay measurement model does not require apriori knowledge of the individual delay probabilities,

which are mostly unknown or inaccurately known. Moreover, the proposed algorithm is generic

and applicable to any of the existing Gaussian filters, such as the EKF, UKF, and CKF. The simu-

lation results validate the improved accuracy of the proposed method. The primary limitation of

this development is its assumption that delays are integer multiples of the sampling interval and

that measurement noise follows a Gaussian distribution. However, in real-world scenarios, delays

may often be a fraction of the sampling interval, and measurement noise tends to be non-Gaussian

in nature.
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Chapter 4

Fractionally Delayed Bayesian

Approximation Filtering under

Non-Gaussian Noisy Environment

4.1 Introduction

Recalling the discussions in Chapter 1, the Gaussian filtering is traditionally designed with

various assumptions and by ignoring several practical challenges. Consequently, in practical ap-

plications, the Gaussian filtering suffers from various limitations [22]. Some of the popular lim-

itations include the inefficacy of the Gaussian filtering in handling the non-Gaussian noises [19],

delayed measurements [99], and intermittently missing measurements [100].

As discussed in Chapter 2, the literature witnesses various developments to handle the above-

mentioned limitations individually. Yet, the literature lacks of an efficient solution for handling

the joint occurrences of two or more of such limitations. This chapter introduces an advanced

Gaussian filtering algorithm for jointly occurring delayed measurements and non-Gaussian mea-

surement noises.

In Chapter 2, we reviewed various MC criterion-based Gaussian filters [157, 158, 123, 125] for

handling the non-Gaussian noises (please see Section 2.3.3). We also reviewed various develop-

ments [92, 95, 97, 99, 159] in the Gaussian filtering for handling the delayed measurements, which

are mostly designed under the MMSE criterion please see Section 2.3.1. In summary, their detailed
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review infers the following: i) the existing MC criterion-based Gaussian filters [157, 158, 123, 125]

underperform for the delayed measurements and ii) the MMSE criterion-based delayed Gaussian

filters [92, 95, 97, 99, 159] underperform for the non-Gaussian noises. To the best of the author’s

knowledge, the existing Gaussian filters underperform in jointly handling the fractional delayed

measurements and non-Gaussian measurement noises.

In this chapter, we design a new Gaussian filtering technique under the MC criterion to handle

the non-Gaussian noises and delayed measurements jointly. We abbreviate the proposed method

as GFMCFD, denoting Gaussian filtering under the MC criterion for fractionally delayed mea-

surements. Interestingly, the GFMCFD handles fractional delays (delay being a fraction of the

sampling interval), where the existing delay filters [92, 97, 99, 159] mostly underperform. The

GFMCFD assigns multiple intermediate instants between every set of consecutive sampling in-

stants in order to represent the fractional delays. Then, to handle the delay, the GFMCFD utilizes a

Gaussian likelihood-based delay identification to analytically identify the delay in measurements.

After the delay is identified, an appropriate past instant is explicitly known from where the current

measurement arrives due to the delay. It is worth mentioning that this past instant may be a past in-

termediate time instant as well. Due to the delay, the current measurement carries appropriate state

information corresponding to this explicitly identified past instant instead of the current instant.

Therefore, the GFMCFD utilizes the current measurement to obtain the estimates of the state at

this past instant instead of the current instant. Then, in order to perform the real-time state estima-

tion, the GFMCFD updates the state estimates (corresponding to the past instant) till the current

time instant using the process model. Finally, as mentioned previously, the complete design is per-

formed under the MC criterion, which enables the GFMCFD to handle the non-Gaussian noises.

As discussed above, to handle the delay, the current measurement is utilized to obtain the estimate

of state at a stochastically identified past instant. Therefore, in our MC criterion-based design

strategy, the cost function is defined at this particular past instant instead of the current instant. We

validate the improved accuracy of the proposed method for two nonlinear filtering problems.

Summarizing the above discussions, we highlight the following novelties and contributions of

the GFMCFD:

• In this study, the Gaussian filter jointly handles the delayed measurements and non-Gaussian

measurement noises.

• It addresses fractional delay (a multiple of a fraction of the sampling interval), while the
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existing delay filters either ignore the delays or simply address the integer delays.

• The filtering process is conducted by employing the intermediate of sampling instants,

which is the preliminary specified instants between two sampling instants.

• It uses the current measurement to update the state at a past intermediate instant, while the

existing filters generally use it for the current instant or, in some cases, for a past sampling

instant (not an intermediate instant).

• Its cost function is different from the existing filters, as the cost function is defined at a past

intermediate instant to handle the delay. Thus, the filter design requires a comprehensively

different derivation.

4.2 Problem Formulation

Recalling Chapter 1, a nonlinear dynamical system can be represented by the following state

space model,

xk = φk−1(xk−1)+νk−1, (4.1)

zk = Ψk(xk)+ηk, (4.2)

Please refer to Chapter 1 for more details.

To this end, let us consider the following notations: i) z̃k: a hypothetical non-delayed measure-

ment with Gaussian noises, ii) zk: a hypothetical non-delayed measurement with non-Gaussian

noises (same as Eq. (4.2)), iii) ỹk: a hypothetical delayed measurement with Gaussian noises, and

iv) yk: the actually received measurement due to the fractional delay and non-Gaussian noises.

Then, we infer the following from Chapter 1 and 2: i) the traditional Gaussian filters [48, 34] es-

timate xk from z̃k, ii) the existing MC criterion-based Gaussian filters [123, 158] estimate xk from

zk, and iii) the existing delayed Gaussian filters [99, 159] estimate xk from ỹk.

Summarizing the above discussion, the traditional Gaussian filtering method and its extensions

fail or underperform in estimating xk from the irregular measurement yk. We aim to design a new

Gaussian filtering technique to estimate xk from yk. We show the process of receiving the likely

irregular measurement yk in Fig. 4.1, considering that the delay appears due to the transmission

lag [86, 90].
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Figure 4.1: Block diagram of delay occurrence under non-Gaussian noisy environment.
Here, the delay is appearing due to transmission lag with zk and yk as a hypothetical
measurement without delay and the received measurement with delay, respectively.

From the above discussion, the objective of this chapter is to design an advanced Gaussian

filtering algorithm for handling delayed measurements and non-Gaussian noises jointly. We take

the following approach to accomplish this objective: i) we stochastically identify the delay, and

restructure the traditional filtering methodology accordingly, to handle the delay and ii) we design

the proposed filter under the MC criterion to address the non-Gaussian noises. Before proceeding

to the next section, we briefly discussed the concept of correntropy.

4.2.1 Correntropy

According to information theory, correntropy is a measure of similarity between two probabil-

ity distribution functions (PDFs)[119, 122]. The concept of entropy clearly relates to the concept

of information content in PDFs. If there are finite numbers of samples available in which a cor-

rentropy between two random variables X and Y can be defined as

V (X ,Y ) = E(Gσ (X −Y )) =
1
L

L

∑
j=1

Gσ (X j −Yj) (4.3)

where L is the number of samples of the random variables, Gσ (·) is a kernel for the random

variables in the sample valued; σ represents kernel bandwidth.

As a consequence of correntropy, the correntropy-induced metric (CIM) can be used to mea-

sure the similarity of two PDFs. There are a variety of ways to compute this metric, depending

on the kernel and the bandwidth. In this way, it can be tuned to become insensitive to outliers,

pushing it toward zero norms (indifference in distance).

The CIM distance ultimately motivates the use of the maximum correntropy criterion to make

inferences [113]. In regression analysis, it searches for parameter values that maximize similarity

among observations, i.e.,

Θ̂ = argmax
Θ∈℧

1
L

L

∑
j=1

Gσ (e j) (4.4)
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Figure 4.2: Schematic diagram of fractionally delayed measurement. Due to the delay,
the receive measurement at tk (denoted as yk) as zk−Md+dδ instead of zk.

where e j = X j −Yj, Θ is optimal parameter value, and ℧ is the feasible set of parameters.

4.3 Design Methodology of the GFMCFD

In this section, we introduce the design methodology of the GFMCFD for handling the frac-

tionally delayed measurements under the non-Gaussian noisy environment. We assume that the

maximum delay is restricted by Md sampling intervals. We also follow the standard hypothe-

sis that the process noises can be approximated as Gaussian, while the measurement noises are

non-Gaussian [123, 125]. We characterize the fractional delays by hypothetically assigning Ms in-

termediate instants between two successive sampling instants (of the measurement data). Thus, if

τ = tk−tk−1 denotes the sampling interval, then the time-interval between two successive interme-

diate instants is δ = τ/Ms. We denote the dth (∀d ∈ {1,2, · · · ,Ms}) intermediate instant between

tk−1 and tk as td
k−1 = tk−1 + dδ . For d = Ms, we get tMs

k−1 = tk. Please refer to Fig. 4.2 for more

clarity on the intermediate instants and the fractional delays.

In the remaining parts of this chapter, we simplify the notations Mtk+dδ and Mtk+dδ |tk′ as Mk,d

and Mk,d|k′ , respectively, where M denotes a general symbolic parameter.

Being an extension of the Gaussian filtering, the GFMCFD involves intractable integrals and

utilizes sample points and weights for approximating them numerically. Following the notations

defined in Chapter 1, the sample points and associated weights are denoted as ϒi and Wi, respec-

tively ∀i ∈ {1,2, · · · ,Ns}, with Ns representing the number of sample points. In the subsequent

parts, we discuss the design aspects of the prediction and update steps of the GFMCFD.
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4.3.1 Prediction

As discussed in Chapter 1, the prediction step determines the prior estimate and covariance,

x̂k|k−1 and Pk|k−1, respectively [48, 158] using the state dynamics under the Gaussian approxima-

tion of process noises. As the state dynamics is independent of the measurements, the prediction

step remains unchanged for the delay occurrences (in the measurements) as well as for the non-

Gaussian measurement noises. Henceforth, we will observe in the later discussions that the GFM-

CFD requires the prior estimate and covariance at every past intermediate instant. Therefore, the

GFMCFD determines the prior estimate and covariance through the intermediate instants, unlike

the ordinary Gaussian filtering, which determines them only at the sampling instants.

The prior estimate and covariance at the intermediate instant td
k−1, i.e., x̂k−1,d|k−1 and Pk−1,d|k−1,

are obtained as





x̂k−1,d|k−1 = ∑
Ns
i=1Wiφ(ϒi,(k−1,d−1)|k−1),

Pk−1,d|k−1 = ∑
Ns
i=1Wi

(
φ(ϒi,(k−1,d−1)|k−1)− x̂k−1,d|k−1

)(
φ(ϒi,(k−1,d−1)|k−1)

−x̂k−1,d|k−1

)T
+Qk−1,d ,

(4.5)

where

φ(ϒi,(k−1,d−1)|k−1) = φ(Σk−1,d−1|k−1ϒi + x̂k−1,d−1|k−1),

with Σk−1,d−1|k−1 representing the Cholesky decomposition of Pk−1,d−1|k−1. Please note that





x̂k−1,0|k−1 = x̂k−1|k−1,

x̂k−1,Ms|k−1 = x̂k|k−1,

Pk−1,0|k−1 = Pk−1|k−1,

Pk−1,Ms|k−1 = Pk|k−1.

(4.6)

To this end, for maximum delay Md , let us define the following: i) tg ∈ {tk−Md , tk−Md+1,

· · · , tk−1}: a particular past sampling instant from the set of all past sampling instants within the

range of maximum delay and ii) Nt ∈{tk−Md +dδ , tk−Md+1+dδ · · · , tk−1+dδ} ∀d ∈{1,2, · · · ,Ms}:

a particular intermediate instant from all past intermediate instances within the range of maxi-

mum delay. Then, we can denote x̂g,d|k−1 and Pg,d|k−1 ∀g ∈ {k−Md ,k−Md + 1, · · · ,k− 1} and
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∀d ∈ {1,2, · · · ,Ms} as the sets of all prior estimate and covariance (Eq. (4.5)), respectively till the

current time instant.

4.3.2 Update

The update step determines the posterior estimate and covariance, x̂k|k and Pk|k, respectively,

as the irregular measurement yk is received at tk. As discussed previously, yk consists of fractional

delays and non-Gaussian noises. Due to the delay, yk carries the state information related to a

past instant td
g instead of the current instant tk. Thus, yk should be more appropriate to estimate

the state x at the past (delayed) instant td
g instead of tk. Please note that the delayed instance td

g

is unknown. We use the maximum likelihood approach to identify the delay and determine the

appropriate delayed instance td
g for yk. Following this, we utilize yk to estimate the states at the

past instance td
g . We finally update the estimated state from td

g to tk (the current instant) using the

state dynamics to perform a real-time state estimation.

Summarizing the above discussion, the update step involves three sub-steps: (i) delay identi-

fication, (ii) determining posterior estimates at the past instant td
g , and (iii) updating the posterior

estimates from td
g to tk. In the subsequent discussions, we describe the computational aspects of

the three sub-steps.

Delay identification

We utilize negative Gaussian log-likelihood to identify the delay [3]. In this regard, let us

denote ŷg,d|k−1 and Pyy
g,d|k−1 as the predicted estimate and covariance of the measurement, respec-

tively, at the past instant td
g . Extending the general Gaussian filtering methodology of determining

ŷk|k−1 and Pyy
k|k−1 at tk, we obtain ŷg,d|k−1 and Pyy

g,d|k−1 at td
g as

ŷg,d|k−1 =
Ns

∑
i=1

WiΨ(ϒi,(g,d)|k−1), (4.7)

Pyy
g,d|k−1 =

Ns

∑
i=1

Wi

(
Ψ(ϒi,(g,d)|k−1)− ŷg,d|k−1

)(
Ψ(ϒi,(g,d)|k−1)− ŷg,d|k−1

)T
+Rg,d , (4.8)

where Ψ(ϒi,(g,d)|k−1) = Ψ(Σg,d|k−1ϒi + x̂g,d|k−1).

Although the Gaussian likelihood of yk arriving from the past instant td
g , denoted as Lg,d(yk),

62



can be given as

Lg,d(yk)∼
1

(2π)rdet(Pyy
g,d|k−1)

exp
(
−Bg,d|k−1

)
, (4.9)

where Bg,d|k−1 = (yk − ŷg,d|k−1)(P
yy
g,d|k−1)

−1(yk − ŷg,d|k−1)
T .

Further, the Gaussian log-likelihood of yk arriving from td
g , denoted as Lg,d(yk), can be ex-

pressed as

Lg,d(yk)∼− log
(

det(Pyy
g,d|k−1)

)
−Bg,d|k−1. (4.10)

In the above likelihood expression, we ignored the constant terms, as the likelihoods are meant

for numeric comparison, which is uninfluenced by constant terms. For similar reasons, and as a

further simplification, we take the negative Gaussian log-likelihood of yk arriving from td
g as

Lg,d(yk)∼ log
(

det(Pyy
g,d|k−1)

)
+Bg,d|k−1. (4.11)

Remark 4.3.1 As Lg,d(yk) gives negative likelihood, the minimum of Lg,d(yk) gives the maximum

likelihood of yk arriving from td
g , and vice versa.

We obtain the negative likelihood Lg,d(yk) ∀g and d, i.e., for all past intermediate instants till

tk−Md . Thereafter, we obtain a past instant t d̃
g̃ = tg̃ + d̃δ from where yk is most likely to arrive due

to the delay by determining (g̃, d̃), as

(g̃, d̃) = argmin
g,d

Lg,d(yk). (4.12)

As we obtain (g̃, d̃), we can state that yk would have been received at the past instant t d̃
g̃ ,

if there was no delay. Thus, yk should be most appropriate for estimating x at t d̃
g̃ instead of tk.

Consequently, we utilize yk to estimate x at t d̃
g̃ .
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State estimation at the past instant t d̃
g̃

In this step, we determine x̂g̃,d̃|k and Pg̃,d̃|k at the past instant t d̃
g̃ from which yk is most likely

to arrive at tk due to the delay. The computation of x̂g̃,d̃|k and Pg̃,d̃|k requires x̂g̃,d̃|k−1, Pg̃,d̃|k−1,

ŷg̃,d̃|k−1, Pyy
g̃,d̃|k−1

, Pxy
g̃,d̃|k−1

. We obtain x̂g̃,d̃|k−1, Pg̃,d̃|k−1, ŷg̃,d̃|k−1, and Pyy
g̃,d̃|k−1

through Eqs. (4.5),

(4.7), and (4.8). Moreover, we determine Pxy
g̃,d̃|k−1

as

Pxy
g̃,d̃|k−1

= ∑
i

Wi

(
ϒi,(g̃,d̃)|k−1 − x̂g̃,d̃|k−1

)(
Ψ(ϒi,(g̃,d̃)|k−1)− ŷg̃,d̃|k−1

)T
. (4.13)

As discussed previously, we use the MC criterion for the filter design in order to handle the

non-Gaussian measurement noises. Thus, the further steps of determining x̂g̃,d̃|k and Pg̃,d̃|k follows

the MC criterion unlike the MMSE criterion used in the traditional Gaussian filtering. In this

design criterion, we consider an augmented error for augmented state and measurement, unlike

the MMSE criterion which considers the errors only for the states. Thus, the desired estimate

x̂g̃,d̃|k is obtained by solving the regression model of augmented states [123, 158], i.e.,




x̂g̃,d̃|k−1

yk


=




xg̃,d̃

Ψk(xg̃,d̃)


+ϖg̃,d̃ , (4.14)

where ϖg̃,d̃ ∈ Rn+r is the augmented error, given as ϖg̃,d̃ = [−ξ T
g̃,d̃ ηT

g̃,d̃ ]
T , with ξg̃,d̃ = xg̃,d̃ −

x̂g̃,d̃|k−1.

To this end, our objective is to solve the regression model (4.14) in order to obtain the estimate

x̂g̃,d̃ at the past instant t d̃
g̃ . The regression model, however, involves a nonlinear function Ψk(xg̃,d̃),

making the solutions of regression model non-trivial. Therefore, before proceeding further, we

linearize Ψk(xg̃,d̃) in order to ultimately linearize the regression model. The linearization of the

measurement model can be achieved through derivative-based linearization or statistical lineariza-

tion. The derivative-based linearization, however, causes large residual errors and poor numerical

stability. Therefore, we choose statistical linearization for better numerical stability and smaller

residual error. Therefore, before proceeding further, we linearize the measurement model using

the statistical linearization method [60, 158], giving

yk = ŷg̃,d̃|k−1 +Hg̃,d̃ξg̃,d̃ +ηg̃,d̃ +ϑg̃,d̃ , (4.15)
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where ϑg̃,d̃ represents the linearization error and Hg̃,d̃ = [P−1
g̃,d̃|k−1

Pxy
g̃,d̃|k−1

]T denotes the lineariza-

tion matrix. The reader may refer to [60, 158] for a detailed discussion on the statistical lineariza-

tion.

After substituting yk from Eq. (4.15) into Eq. (4.14), we get




x̂g̃,d̃|k−1

yk − ŷg̃,d̃|k−1 +Hg̃,d̃ x̂g̃,d̃|k−1


=




In

Hg̃,d̃


xg̃,d̃ +ψg̃,d̃ , (4.16)

where In denotes the n-dimensional identity matrix and ψg̃,d̃ = [−ξ T
g̃,d̃ ηT

g̃,d̃ +ϑ T
g̃,d̃ ]

T is the aug-

mented error. Then, the augmented error covariance can be given as [123, 158]

E(ψg̃,d̃ψ
T
g̃,d̃) = Ωg̃,d̃Ω

T
g̃,d̃ =




Ωn
g̃,d̃

ΩnT
g̃,d̃

0

0 Ωr
g̃,d̃ΩrT

g̃,d̃


 , (4.17)

and 



Ωg̃,d̃ = chol
(
E(ψg̃,d̃ψT

g̃,d̃)
)
,

Ωn
g̃,d̃

= chol
(
Pg̃,d̃|k−1

)
,

Ωr
g̃,d̃ = chol

(
E((ηg̃,d̃ +ϑg̃,d̃)(ηg̃,d̃ +ϑg̃,d̃)

T )
)
,

= chol
(
Pyy

g̃,d̃|k−1
−PxyT

g̃,d̃|k−1
P−1

g̃,d̃|k−1
Pxy

g̃,d̃|k−1

)
.

(4.18)

We normalize the regression model given in Eq. (4.16) by multiplying Ω
−1
g̃,d̃

in both sides, which

gives

Dg̃,d̃ = Wg̃,d̃xg̃,d̃ + eg̃,d̃ , (4.19)

where 



Dg̃,d̃ = Ω
−1
g̃,d̃




x̂g̃,d̃|k−1

yk − ŷg̃,d̃|k−1 +Hg̃,d̃ x̂g̃,d̃|k−1


 ,

Wg̃,d̃ = Ω
−1
g̃,d̃




In

Hg̃,d̃


 ,

eg̃,d̃ = Ω
−1
g̃,d̃




−ξg̃,d̃

ηg̃,d̃ +ϑg̃,d̃


 .

(4.20)

Please note that Dg̃,d̃ , Wg̃,d̃ , and eg̃,d̃ are (n+r)-dimensional matrices. In the later parts, we denote
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Di,(g̃,d̃) , Wi,(g̃,d̃), and ei,(g̃,d̃) as ith elements of Dg̃,d̃ , Wg̃,d̃ , and eg̃,d̃ , respectively ∀i ∈ {1,2, · · · ,n+

r}.

Under the MC criterion-based filter design, an optimal estimate of state maximizes the cost

function [119, 158]

Jn+r =
n+r

∑
j=1

Gσ (e j,(g̃,d̃))−
κ

2
e2

j,(g̃,d̃), (4.21)

where Gσ (e j,(g̃,d̃)) = exp(−e2
j,(g̃,d̃)/2σ2) denotes Gaussian kernel with bandwidth σ , while κ rep-

resents the regularization parameter.

Remark 4.3.2 Eq. (4.21) defines the cost function at the past intermediate instant t d̃
g̃ , unlike the

exiting filters, defining it at the current instant tk.

Remark 4.3.3 The maximum correntropy cost function Eq. (4.4) is ill-posed [158]. To tackle this

issue a regularization term is added to the Eq. (4.21).

For the given cost function Jn+r, we obtain the optimal estimate at t d̃
g̃ , i.e., x̂g̃,d̃|k, as the

solution of ∂Jn+r
∂xg̃,d̃

= 0, giving

n+r

∑
j=1

e j,(g̃,d̃)Gσ (e j,(g̃,d̃))W
T
j,(g̃,d̃)+κe j,(g̃,d̃)W

T
j,(g̃,d̃) = 0. (4.22)

After further simplifications, we get [119, 158]

xg̃,d̃ =

[
n+r

∑
j=1

(
Gσ (e j,(g̃,d̃))+ κ̂

)
Wj,(g̃,d̃)W

T
j,(g̃,d̃)

]−1[ n+r

∑
j=1

(
Gσ (e j,(g̃,d̃))+ κ̂

)
W T

j,(g̃,d̃)d j,(g̃,d̃)

]
, (4.23)

where κ̂ = σ2κ/β̃ and β̃ = 1/
√

2πσ . Please note that an analytical solution of Eq. (4.23) is non-

trivial. Thus, we use fixed-point iterative method to determine its solution and obtain the desired

estimate x̂g̃,d̃|k.

Before discussing the iterative method, let us define Sg̃,d̃ = diag
(
Sx,(g̃,d̃),Sz,(g̃,d̃)

)
, where





Sx,(g̃,d̃) = diag
(

Gσ

(
e1,(g̃,d̃)

)
+ κ̂, · · · ,Gσ

(
en,(g̃,d̃)

)
+ κ̂

)
,

Sz,(g̃,d̃) = diag
(

Gσ

(
en+1,(g̃,d̃)

)
+ κ̂, · · · ,Gσ

(
en+r,(g̃,d̃)

)
+ κ̂

)
,

(4.24)

with diag(·) representing a diagonal matrix for the given diagonal elements. Subsequently, we
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rewrite Eq. (4.23) in iterative form, as

x̂t
g̃,d̃ =

(
WT

g̃,d̃S
t−1
g̃,d̃

Wg̃,d̃

)−1(
WT

g̃,d̃S
t−1
g̃,d̃

Dg̃,d̃

)
, (4.25)

where x̂t
g̃,d̃ denotes the optimal estimate of xg̃,d̃ in tth fixed-point iteration at t d̃

g̃ .

We further simplify Eq. (4.25) in Appendix A to obtain the iterative solution x̂t
g̃,d̃ in the form

of a general estimate expression, as

x̂t
g̃,d̃ = x̂g̃,d̃|k−1 +Kt−1

g̃,d̃|k(yk − ŷg̃,d̃|k−1), (4.26)

where

Kt−1
g̃,d̃|k = P̄g̃,d̃|k−1H

T
g̃,d̃

(
Hg̃,d̃P̄g̃,d̃|k−1H

T
g̃,d̃ + R̄t−1

g̃,d̃|k

)
, (4.27)

P̄g̃,d̃|k−1 = Ω
n
g̃,d̃S

−1
x,(g̃,d̃)

Ω
nT
g̃,d̃ , (4.28)

R̄t−1
g̃,d̃|k = Ω

r
g̃,d̃S

−1
z,(g̃,d̃)

Ω
rT
g̃,d̃ . (4.29)

Similarly, extending the derivation used in [119, 158] to obtain the posterior covariance Pk|k at tk,

we get Pt
g̃,d̃ at t d̃

g̃ as

Pt
g̃,d̃ =

(
In−Kt−1

g̃,d̃|kHg̃,d̃

)
Pg̃,d̃|k−1

(
In −Kt−1

g̃,d̃|kHg̃,d̃

)T
+Kt−1

g̃,d̃|kRg̃,d̃(K
t−1
g̃,d̃|k)

T . (4.30)

To stop the iterative process, we define an error quantity,

ε =
||x̂t

g̃,d̃ − x̂t−1
g̃,d̃

||
||x̂t−1

g̃,d̃
||

, (4.31)

where || · || denotes the second norm. The iterative process is stopped as ε becomes smaller than

a predefined tolerance level tol. At the end of the iterative process, we obtain the desired estimate

and covariance, i.e., x̂g̃,d̃|k and Pg̃,d̃|k, respectively, as





x̂g̃,d̃|k = x̂t
g̃,d̃ ,

Pg̃,d̃|k = Pt
g̃,d̃ .

(4.32)

The pseudo code for determining x̂g̃,d̃|k and Pg̃,d̃|k from x̂g̃,d̃|k−1 and Pg̃,d̃|k−1 is provided in Algo-
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rithm 1.

Algorithm 1 Estimating x̂g̃,d̃|k and Pg̃,d̃|k from x̂g̃,d̃|k−1 and Pg̃,d̃|k−1.

Input: x̂g̃,d̃|k−1, Pg̃,d̃|k−1, tol, κ , and σ

Output: x̂g̃,d̃|k and Pg̃,d̃|k
Initialization: x̂0

g̃,d̃
= x̂g̃,d̃|k−1 and t = 1

1: Obtain Ωn
g̃,d̃

, Ωr
g̃,d̃

, and Ωg̃,d̃ from Eq. (4.18)
2: while ε > tol do
3: Obtain eg̃,d̃ = Dg̃,d̃ −Wg̃,d̃ x̂t−1

g̃,d̃
using Eq. (4.19)

4: Determine Sx,(g̃,d̃) and Sz,(g̃,d̃) using Eq. (4.24)

5: Determine P̄g̃,d̃|k−1 and R̄t−1
g̃,d̃|k using Eqs. (4.28) and 4.29, respectively

6: Determine Kt−1
g̃,d̃|k using Eq. (4.27)

7: Determine the estimated value x̂t
g̃,d̃ using Eq. (4.26)

8: Obtain the error quantity ε using Eq. (4.31)
9: t = t +1

10: end while
11: Determine Pt

g̃,d̃ using Eq. (4.30)
12: return x̂g̃,d̃|k = x̂t

g̃,d̃ and Pg̃,d̃|k = Pt
g̃,d̃

Updating x̂g̃,d̃|k and Pg̃,d̃|k from t d̃
g̃ to tk

In the previous step, we determined x̂g̃,d̃|k and Pg̃,d̃|k at the past instant t d̃
g̃ . We now propagate

x̂g̃,d̃|k and Pg̃,d̃|k through the state dynamics from t d̃
g̃ to tk to obtain x̂k|k and Pk|k for performing the

real-time state estimation. In this regard, let us denote Mint as the number of intermediate instants

between t d̃
g̃ and tk. Then, we can perform the following time-shifts for j varying from 1 to Mint .

x̂g̃,d̃+ j|k =
Ns

∑
i=1

Wiφ
(
ϒi,(g̃,d̃+ j−1)|k

)
, (4.33)

Pg̃,d̃+ j|k =
Ns

∑
i=1

Wi
(
φ(ϒi,(g̃,d̃+ j−1)|k)− x̂g̃,d̃+ j|k

)(
φ(ϒi,(g̃,d̃+ j−1)|k)− x̂g̃,d̃+ j|k

)T
+Qg̃,d̃+ j. (4.34)

Please note that, for j = 1, x̂g̃,d̃+ j−1|k = x̂g̃,d̃|k and Pg̃,d̃+ j−1|k = Pg̃,d̃|k, which are already known

from the previous step. Moreover, for j = Mint , we obtain x̂g̃,Mint |k = x̂k|k and Pg̃,Mint |k = Pk|k, giving

the desired estimate and covariance. The pseudo code for determining x̂k|k and Pk|k from x̂g̃,d̃|k and

Pg̃,d̃|k is provided in Algorithm 2.

By using the filtering strategy outlined above, we can handle delayed measurements and non-

Gaussian noise. This filtering approach includes fractional delay and an MC-based criterion within
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Algorithm 2 Estimating x̂k|k and Pk|k from x̂g̃,d̃|k and Pg̃,d̃|k.

Input: x̂g̃,d̃|k, Pg̃,d̃|k
Output: x̂k|k and Pk|k

Initialization: x̂g̃,d̃+0|k = x̂g̃,d̃|k, Pg̃,d̃+0|k = Pg̃,d̃|k, and j = 1
1: for j = 1 : Mint do
2: Determine x̂g̃,d̃+ j|k using Eq. (4.33)
3: Determine Pg̃,d̃+ j|k using Eq. (4.34)
4: end for
5: return x̂k|k = x̂g̃,Mint |k and Pk|k = Pg̃,Mint |k

a Gaussian filtering framework, which sets it apart from existing delay filters that only operate

under integer delay and MMSE-based criterion. One significant advantage of this approach is

that it does not require stochastic models to estimate delays, which is not the case for the existing

delay filters. However, the GFMCFD requires additional computational and storage budgets in

comparison to the traditional Gaussian filters, as described in Algorithm I and II.

Similar to other MC criterion-based filters, the GFMCFD linearizes the measurement model

(please see Eq. (4.15)). The early MC criterion-based filters used derivative-based linearization,

causing high sensitivity to outliers, large residual error, and poor numerical stability. To mitigate

these drawbacks, the GFMCFD uses the recently introduced statistical linearization [158].

Remark 4.3.4 Selection of Md and Ms are a practitioner’s choice with the freedom to choose any

large value with the realization of increased computational demand. Therefore, despite of Md

being a design parameter, the GFMCFD is not restricted in terms of maximum delay.

Remark 4.3.5 The GFMCFD performs filtering through intermediate instants and involves mul-

tiple sub-steps in the update step. Thus, its computational demand is relatively higher than the

traditional Gaussian filtering.

The GFMCFD is a general extension to the Gaussian filtering, which applies to any of the

existing Gaussian filters, such as the UKF, CKF, and GHF. As the joint occurrences of the non-

Gaussian measurement noises and delayed measurements are practically common, the GFMCFD

diversifies the practical applicability of the Gaussian filtering. Hence, we can further enhance the

GFMCFD to address more irregularities, such as the missing measurements and cyber-attacks.
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4.4 Simulation and Results

In this section, we simulate the CKF-based formulation of the GFMCFD, abbreviated as MC-

CKF FD, for two nonlinear filtering problems. Subsequently, we compare the performance of

the MCCKF FD with the traditional CKF and the CKF-based formulations of various benchmark

filtering methods, particularly [123], [92], [97], [99], and [159]. The CKF-based formulations of

[123], [92], [97], [99], and [159] are abbreviated as MCCKF, CKF 1RD, CKF RD, MLCKF, and

CKF GRD, respectively. These benchmark filtering methods handle the delays of different na-

tures. The simulation is performed in Matlab 2020 in a personal computer with configuration Intel

i5, 3.40GHz processor, and 32GB RAM, as mentioned in the Chapter 1. The performance analysis

is based on average root mean square error (ARMSE). As discussed in Chapter 1, we choose the

RMSE as the performance analysis. More appropriately, we choose ARMSE, as defined in the

previous chapter.

4.4.1 Simulating irregular measurement data zk

In the lack of real-data, we use Matlab simulated data-based analysis, which is commonly

accepted in the literature [97, 99]. To simulate the irregular measurement data yk ∀k ∈ {1,2, · · ·},

we model yk in terms of hypothetical non-delayed measurement zg,d (Eq. (4.2)), as

yk =
k−1

∑
g=k−Md

Ms

∑
d=1

αg,dzg,d , (4.35)

where αg,d , with g ∈ {k−Md ,k−Md + 1, · · · ,k− 1} and d ∈ {1,2, · · · ,Ms}, denotes an array of

Bernoulli random variables. At any time tk, only one entry of αg,d can be unity, while the others are

necessarily zero. In continuation, yk simply gives a past intermediate measurement, representing

a fractional delay. For example, if αg,d = 1 for g = g̃ and d = d̃ and αg,d = 0 for all other g and d,

then yk = zg̃,d̃ .

For the simulation purpose, we define pd as the delay probability. We distribute pd equally

across all past intermediate instants within the maximum delay Md . We also get 1− pd as the

probability of no delay, giving the probability of yk = zk. These probabilities are used for gener-

ating αg,d . We restrict the performance analysis for the maximum delay being up to five sampling

instants. Moreover, we consider five intermediate instants between two consecutive sampling in-
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stants.

4.4.2 Problem 1

Recalling Chapter 3, the state space model for this problem is as follows:

xk = amxk−1 +bm
xk−1

1+x2
k−1

+ cm cos(1.2kτ)+νk, (4.36)

zk = x2
k/dm +ηk. (4.37)

Please follow Chapter 3 for more details. For the simulation purpose, we assign am = 5, bm =

25, cm = 8, dm = 20, τ = 1, x0 = 0.1, Qk = 0.3, and τ = 1. The initial estimate is taken as

x̂0 = 9N (x0,P0|0), with initial covariance P0|0 = 5. The simulation is performed for TS = 200

time-steps and 500 Monte-Carlo runs. The non-Gaussian measurement noise is taken as ηk =

0.9N (0,R1)+0.1N (0,R2), with R1 = 1 and R2 = 1000.

Fig. 4.3 plots the ARMSEs with varying delay probability pd for Md = 1 and Md = 3. More-

over, Table 4.1 provides the ARMSEs for two distinct delay probabilities (pd = 0.2 and pd = 0.5)

by varying Md from one to five. The figure and table collectively infer a reduced ARMSE of

the MCCKF FD, concluding an improved accuracy of the GFMCFD. Furthermore, we compare

the relative computational times of all filters in Table 4.4, which concludes a relatively increased

computational time of the MCCKF FD (in general, the GFMCFD).

Table 4.1: ARMSE comparison of the proposed and existing filters for varying maximum
delay Md under two different delay probabilities (0.2 and 0.5).

pd Md CKF MCCKF FD MCCKF MLCKF CKF RD CKF 1RD CKF GRD
1 14.9653 2.5855 13.1550 16.2072 15.0877 16.7849 12.4356
2 14.7067 2.7784 13.1353 16.4587 15.4439 16.6552 13.3541

0.2 3 14.6715 2.6551 13.0961 15.7229 14.7851 16.4592 14.2315
4 14.6053 2.7213 13.1334 15.0967 14.5129 16.3589 12.8144
5 14.6764 2.9240 13.1108 15.0757 14.3007 16.4281 12.8774
1 14.6317 2.6652 13.1250 15.708 14.6013 16.8475 12.6875
2 15.0122 2.7703 13.1568 16.3016 15.0822 15.4912 14.0018

0.5 3 14.8951 2.6592 13.0631 15.7674 15.2515 15.4471 15.7139
4 14.8988 2.7235 13.1141 15.297 15.0275 15.4195 13.7014
5 14.7828 2.9262 13.0868 15.0895 14.9574 15.4476 14.3854
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Figure 4.3: ARMSE plots of the proposed and existing filters for varying pd , with (a)
Md = 1 and (b) Md = 3.

4.4.3 Problem 2

This problem is the same as Problem 2 of Chapter 3, which is represented by the following

state space model:

xk = I6xk−1 +νk. (4.38)

zk =

[
3

∑
j=1

a j,k cos(2π f j,kkτ)
3

∑
j=1

a j,k sin(2π f j,kkτ)

]T

+ηk, (4.39)

For true data simulation, we assign τ = 1.667×10−6 second. The process noise covariance is taken

as Q = diag([σ2
f σ2

f σ2
f σ2

a σ2
a σ2

a ]) with σ f = 22.5 mHz and σa = 20 mV , while we take the initial
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state as x0 = [1000,200,1800,2,5,3]T . The initial estimate is considered as x̂0|0 = N (x0,P0|0),

with P0|0 = 10−3 ×diag([20,50,100,5,4,2]). The filtering is performed over TS = 800 time-steps

and the ARMSE is computed by implementing 500 Monte-Carlo simulations. The non-Gaussian

measurement noise is taken as ηk = 0.9N (0,R)+0.1N (0,1000R) with R = diag([0.9 0.9]).

In this problem, we compute the ARMSE as the mean of the ARMSEs of the three sinusoids.

Subsequently, we plot the ARMSEs of frequency and amplitude against varying pd in Fig. 4.4 and

4.5 for Md = 1 and Md = 3, respectively. Moreover, we show the ARMSEs for various Md in Tables

4.2 and 4.3 for frequency and amplitude, respectively, considering pd = 0.2 and pd = 0.5. We

further analyze the filtering performance by varying the initial covariance, indicating a diversified

initial guess of the sinusoids. In this regard, we consider three different cases, to be referred

as Case 1, Case 2, and Case 3, with initial covariances 10P0|0, 20P0|0, and 50P0|0, respectively.

Conversely, we compare the ARMSEs of the proposed and existing filters in Fig. 4.6 for pd = 0.5

and Md = 3. The figures and tables conclude a reduced estimation error of the MCCKF FD, which

further concludes an improved accuracy of the GFMCFD. The computational times of all filters

followed a similar trend as Table 4.4, concluding the relatively increased computational time of

the GFMCFD.

Table 4.2: Frequency ARMSE comparison of the proposed and existing filters for varying
maximum delay Md under two different delay probabilities (0.2 and 0.5).

pd Md CKF MCCKF FD MCCKF MLCKF CKF RD CKF 1RD CKF GRD
1 3.0928 0.5404 2.4975 3.5094 3.1452 3.4653 3.2084
2 3.2697 0.5534 2.6221 3.7668 3.3161 3.7161 3.3808

0.2 3 3.4633 0.5445 2.7917 3.9986 3.5137 3.9475 3.5927
4 3.6365 0.5432 2.9305 4.2113 3.7044 4.1637 3.8194
5 3.8463 0.5486 3.1008 4.4510 3.9707 4.4100 4.1168
1 3.0947 0.5403 2.5166 3.5413 3.1908 3.5078 3.1759
2 3.3087 0.5536 2.6776 3.8620 3.4313 3.8240 3.3913

0.5 3 3.5564 0.5445 2.8741 4.1806 3.7160 4.1386 3.6306
4 3.7922 0.5433 3.0468 4.4726 4.0808 4.4320 3.9117
5 3.9807 0.5481 3.1880 4.6821 4.5677 4.6554 4.2850

4.4.4 Analysis and Discussion

In this subsection, we further illustrate the results and extract some interesting conclusions.

We observe, in Figs. 4.3 to 4.4, that the ARMSE is increasing (accuracy is deteriorating) with
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Figure 4.4: ARMSE plots of the proposed and existing filters for varying pd , with Md=1:
a) frequency and b) amplitude.

Table 4.3: Amplitude ARMSE comparison of the proposed and existing filters for varying
maximum delay Md under two different delay probabilities (0.2 and 0.5).

pd Md CKF MCCKF FD MCCKF MLCKF CKF RD CKF 1RD CKF GRD
1 1.5236 0.3896 1.3150 1.6415 1.4518 1.5834 1.3981
2 1.5888 0.3902 1.3739 1.7181 1.5197 1.6566 1.4759

0.2 3 1.6011 0.3919 1.3852 1.7647 1.5428 1.6956 1.5210
4 1.6423 0.3847 1.4214 1.8314 1.5910 1.7549 1.5963
5 1.6729 0.3839 1.4507 1.8824 1.6507 1.8025 1.6960
1 1.5575 0.3914 1.3756 1.6241 1.4705 1.5887 1.4532
2 1.6326 0.3917 1.4371 1.7120 1.5642 1.6759 1.5382

0.5 3 1.6526 0.3918 1.4532 1.7582 1.6290 1.7173 1.5874
4 1.6957 0.3835 1.4863 1.8257 1.7403 1.7798 1.6620
5 1.7169 0.3825 1.5048 1.8831 1.9281 1.8256 1.7817
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Figure 4.5: ARMSE plots of the proposed and existing filters for varying pd , with Md=3:
a) frequency and b) amplitude.

Table 4.4: Relative computational times of the proposed and the existing filters.
Filter Relative computational time
CKF 1
MCCKF FD 8.36
MCCKF 6.63
MLCKF 3.59
CKF RD 1.58
CKF 1RD 1.26
CKF GRD 1.70
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Figure 4.6: ARMSEs of amplitude and frequency for three different cases (initial covari-
ances).

the increasing delay probability pd , which a well expected. At the same time, we observe that the

ARMSE variation is not very large for pd being in the range of 0.1 to 0.5. This concludes that the

filtering performance is not significantly harmed if only a few measurements are delayed, while

others are time-synchronized. A similar pattern is observed in [99] and [159] as well. Neverthe-

less, we may have a different trend as the system dynamics and environment change. Furthermore,

unlike the existing filters, the GFMCFD is not much affected by even a further increase in pd . This

concludes that GFMCFD delay identification is accurately identifying the delay and, accordingly,

the GFMCFD is efficiently tracking the state dynamics.

In Table 4.1, unexpectedly, with the increasing maximum delay Md , the ARMSE decreases

(accuracy improves) for the MLCKF, CKF RD, and CKF GRD. Such a response is although un-

usual, interestingly, in this case, it may be reasonable. This is because the MLCKF, CKF RD, and

CKF GRD are extensions of the CKF under the minimum mean square error (MMSE) criterion,

where the noises are assumed as Gaussian. Please note that, even though they are designed for

handling the delayed measurements, they can not extract the information lost due to the delay

exactly. Thus, the partially lost information due to the delay can be treated as noises. Therefore,

in the case of increasing Md , it is possible that the increased loss of information may be causing a

closer approximation of the net noise as Gaussian and their filtering accuracy may be improving.

This must not, however, be the case always. Therefore, in other cases, so in other tables (Tables

4.2 and 4.3 ), we observe a different pattern, and their ARMSE increases (accuracy deteriorates)

as Md increases.
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4.5 Summary

The existing Gaussian filtering traditionally ignores various measurement irregularities, re-

straining the development and integration of several state-of-art technologies. For example, ig-

noring measurement delay often prevents the integration of transmission channels, while ignoring

non-Gaussian measurement noises commonly precludes the development of high-precision tech-

nologies. The GFMCFD addresses the delayed measurements and non-Gaussian measurement

noises jointly to mitigate this problem. The GFMCFD is designed under the MC criterion to ratio-

nalize the higher-order moments of noises and address the non-Gaussianity. Moreover, it stochas-

tically identifies the delays and restructures the filtering strategy accordingly, to address the delay.

Interestingly, the GFMCFD addresses fractional delays, where even the Gaussian filtering exten-

sions, primarily designed for handling the integer delays, mostly underperform. Furthermore, the

GFMCFD applies to any of the traditional Gaussian filters, such as the CKF and GHF. The per-

formance analysis reveals an improved accuracy of the GFMCFD. Although this development is

capable of addressing two irregularities at once, it is worth noting that the literature reports more

irregularities that can be attributed solely to cyber-attacks.
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Chapter 5

Gaussian Filtering with Cyber-Attacked

Data

5.1 Introduction

In Chapter 2, we discussed about cyber-attacks on measurement data and its different types,

particularly, the FDI, TAM, and DoS attacks. We also reviewed the various developments in non-

linear filtering for handling the FDI, TAM, and DoS attacks individually. However, the reviewed

filtering methods are incapable of handling the simultaneously occurring FDI, TAM, and DoS at-

tacks. Consequently, the existing methods for handling cyber-attacks underperform or fail if one

or more of the FDI, TAM, and DoS attacks occur simultaneously.

In this chapter, we introduce a new extension of Gaussian filtering for handling the simul-

taneously occurring FDI, TAM, and DoS attacks. We name the proposed method as Gaussian

filtering under FDI, TAM, and DoS attacks, which will be abbreviated as GFFTD. To develop the

GFFTD, we reformulate the traditional measurement model for incorporating the possibility of the

simultaneously occurring FDI, TAM, and DoS attacks. Subsequently, we re-derive the traditional

Gaussian filtering method for the reformulated measurement model. Interestingly, the GFFTD is

applicable to any of the existing Gaussian filters, such as the UKF, CKF, and GHF. We validate

the improved accuracy of the GFFTD for two simulation problems.
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5.2 Problem Formulation

Following the notations and discussions in Chapter 1, we consider the following state space

model for representing a general nonlinear dynamical system:

xk = φk−1(xk−1)+νk−1, (5.1)

zk = Ψk(xk)+ηk. (5.2)

In this problem, zk is tampered due to cyber-attack, giving a tampered measurement yk. This

chapter aims to develop an advanced Gaussian filtering method for estimating xk from yk.

To keep the attack masked, the intruders generally tamper the data intermittently. The author

assumes that, at any particular instant, the data is tampered by only one of the FDI, TAM, and DoS

attacks. We model the attacks by reformulating the measurement model (5.2) for yk, considering

the following modeling strategies.

• We utilize three Bernoulli random variables, αk, βk, and γk, to characterize the occurrences

of no-attack and different forms of attack. This characterization may include the following

steps: i) A1: likelihood computation to recognize the no-attack and characterize αk, ii) A2:

correlation analysis to recognize the delay (TAM-attack) and characterize γk, iii) A3: a data

arrival with true in A1 and false in A2 inherently infer the FDI attack, characterizing βk,

and iv) A4: no data arrival naturally infers the DoS attack.

• The FDI attack can be compensated by approximating the uncertain false data with a Gaus-

sian distribution. For this purpose, we can identify a suitable Gaussian distribution from

data preprocessing (after the FDI attack is detected). Following [138], the data preprocess-

ing may include likelihood analysis, predefined heuristic rules, and normalizations.

• The TMA attack, causing the delay, can be compensated by incorporating the possibility

of receiving past measurements. In this regard, we utilize the Geometric distribution for

modeling the instantaneous delays.

Please note that the data pre-analysis and preprocessing are performed beforehand and they are

not part of our development.
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In the remaining parts of this chapter, for any random variable φ and any probability p, we use

the notations φ ′ and p′, respectively, for denoting (1−φ) and (1− p), respectively. This applies

to all random variables and probabilities.

The Bernaoulli random variables αk, βk, and γk obey





P(αk = 1) = E [αk] = E [(αk)
m] = pn

P(βk = 1) = E [βk] = E [(βk)
m] = p f

P(γk = 1) = E [γk] = E [(γk)
m] = pd

P(αk = 0) = E
[
α ′

k

]
= E

[
(α ′

k)
m
]
= p′n

P(βk = 0) = E
[
β ′

k

]
= E

[
(β ′

k)
m
]
= p′f

P(γk = 0) = E
[
γ ′k
]
= E

[
(γ ′k)

m
]
= p′d ,

(5.3)

where E[·] denotes the statistical expectation operator and m ∈ R is a constant. Moreover, pn, p f ,

and pd denote the probabilities of FDI, TAM, and DoS attacks, respectively.

Similar to Eq. (5.3), the other statistical parameters corresponding to αk, βk, and γk are deter-

mined as 



E
[
(αk − pn)

2
]
= E

[
(αk)

2
]
−E [αk]

2 = pn p′n

E
[
(βk − p f )

2
]
= E

[
(βk)

2
]
−E [βk]

2 = p f p′f

E
[
(γk − pd)

2
]
= E

[
(γk)

2
]
−E [γk]

2 = pd p′d

(5.4)

Furthermore, let us denote Gd,k as a geometric random variable, characterizing d-delay (delays

up to d sampling intervals) at tk and pg as the probability of getting a unity value for each entry of

Gd,k. Then, 



P(Gd,k(i) = 1) = E [(Gd,k(i))m] = Γi

P(Gd,k(i) = 0) = E [(Gd,k(i)′)m] = Γ′
i

E
[
(Gd,k(i)−Γi)

2 ]= ΓiΓ
′
i,

(5.5)

where Γi = (p′g)
i−1 pg is the probability of i-delay ∀i ∈ {1,2, · · · ,d}, if TAM attack occurs at tk.

Let us now denote ∆k as the false data injection at tk, if we have an FDI attack at tk. Then, we

approximate ∆k ≈ N (δ̂ ,Σδ ), where, as discussed in [138], δ̂ and Σδ can be determined from the

nature of the predefined heuristic rules and normalization methods.
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Figure 5.1: Pictorial representation of attack modeling strategy.

Table 5.1: αk, βk, and γk values for different attacks.
Stochastic parameters Form of attack
αk = 0, βk ∈ {0,1}, γk ∈ {0,1} No-attack
αk = 1, βk = 0, γk ∈ {0,1} FDI-attack
αk = 1, βk = 1, γk = 0 TAM-attack
αk = 1, βk = 1, γk = 1 DoS-attack

To this end, following the modeling strategy pictorially presented in Fig. 5.1, we model the

received measurement yk as yk = α ′
kzk +αk

[
β ′

k(zk +∆k) + βkγ ′k ∑
d
i=1 Gd,k(i)zk−i

]
, which can be

further expressed as

yk = (1−αkβk)zk +αkβ
′
k∆k +αkβkγ

′
k

d

∑
i=1

Gd,k(i)zk−i. (5.6)

Table 5.1 demonstrates αk, βk, and γk values for different attacks.

To this end, the objective of this chapter is to re-derive the traditional Gaussian filtering method

for the modified measurement model (5.6).

5.3 Gaussian Filtering under Cyber-Attack

In this section, we derive the GFFTD for filtering with cyber-attacked measurements. As

the cyber-attacks influence only the measurements, we derive the GFFTD by re-deriving the tra-

ditional Gaussian filtering expressions, consisting of measurement. Interestingly, there are only

three such expressions: measurement estimate ẑk|k−1, measurement covariance Pzz
k|k−1, and cross-

covariance Pxz
k|k−1. We re-derive these expressions with respect to yk, giving ŷk|k−1, Pyy

k|k−1 and

Pxy
k|k−1. Consequently, the GFFTD is obtained by replacing ẑk|k−1, Pzz

k|k−1 and Pxz
k|k−1 with ŷk|k−1,

Pyy
k|k−1 and Pxy

k|k−1, respectively in the traditional Gaussian filtering.

We derive ŷk|k−1, Pyy
k|k−1, and Pxy

k|k−1 with respect to yk (modeled in Eq. (5.6)) through the three
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subsequent theorems.

Theorem 5.3.1 The estimate of the cyber-attacked measurement yk, i.e. ŷk|k−1, can be determined

as

ŷk|k−1 =(1− pn p f )ẑk|k−1 + pn p′f δ̂ + pn p f p′d
d

∑
i=1

Γiẑk−i|k−1. (5.7)

Proof: As ŷk|k−1 = E
[
yk|k−1

]
, for yk given in Eq. (5.7), we obtain

ŷk|k−1 = E
[
(1−αkβk)zk +αkβ

′
k∆k +αkβkγ

′
k

d

∑
i=1

Gd,k(i)zk−i

]
.

As αk, βk, γk, and Gd,k(i) characterize the occurrences of the measurement irregularities, they are

independent of zk and zk−i, depicting the measurement values. Thus, as E
[
zk|k−1

]
= ẑk|k−1, we get

ŷk|k−1 =E [1−αkβk] ẑk|k−1 +E
[
αkβ

′
k
]

δ̂ +E
[
αkβkγ

′
k
] k−1

∑
i=1

E [Gd,k(i)] ẑk−i|k−1.

Substituting E [αk], E [βk], E
[
γ ′k
]
, and E [Gd,k(i)] from Eqs. (5.3), (5.4) and (5.5) the above equa-

tion reduces to Eq. (5.7). □

Theorem 5.3.2 The covariance matrix Pyy
k|k−1 for yk can be given in the form of Eq. (5.8).

Pyy
k|k−1 =(1− pn p f )Pzz

k|k−1 +(1− pn p f )pn p f ẑk|k−1(ẑk|k−1)
T + p′f pnΣδ +(pn p′f − p2

n p′2f )

× δ̂ δ̂
T + pn p f p′d

d

∑
i=1

ΓiPzz
k−i|k−1 +

d

∑
i=1

(
pn p f p′dΓi(1− pn p f p′dΓi)

)
ẑk−i|k−1ẑT

k−i|k−1

+
d

∑
i ̸= j=1

(
pn p f p′d(p′g)

i+ j−2 p2
g(1− pn p f p′d(p′g)

i+ j−2 p2
g)
)

ẑk−i|k−1ẑT
k− j|k−1.

(5.8)

Proof: The covariance matrix Pyy
k|k−1 is given as

Pyy
k|k−1 =E

[
(yk − ŷk|k−1)(yk − ŷk|k−1)

T
]
. (5.9)

For yk and ŷk|k−1 given in Eqs. (5.6) and (5.7), respectively, we obtain yk − ŷk|k−1 in the form of

Eq. (5.10). Then, substituting yk − ŷk|k−1 from Eq. (5.10) into Eq. (5.11), we obtain Pyy
k|k−1 =
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yk − ŷk|k−1 =(1−αkβk)(zk − ẑk|k−1)︸ ︷︷ ︸
M1

+αkβ
′
k(∆k − δ̂ )︸ ︷︷ ︸
M2

+(pn p f −αkβk)ẑk|k−1︸ ︷︷ ︸
M3

+(αkβ
′
k − pn p′f )δ̂︸ ︷︷ ︸
M4

+αkβkγ
′
k

d

∑
i=1

Gd,k(i)(zk−i − ẑk−i|k−1)

︸ ︷︷ ︸
M5

+
d

∑
i=1

(
αkβkγ

′
kGd,k(i)− pn p f p′dΓi

)
ẑk−i|k−1

︸ ︷︷ ︸
M6

.

(5.10)

∑
6
i=1 ∑

6
j=1E

[
MiMT

j

]
. Using stochastic independence properties for independent random vari-

ables, we can trivially conclude E[MiMT
j ] = 0 ∀ i ̸= j, giving

Pyy
k|k−1 =

6

∑
i=1

E
[
MiMT

i
]
. (5.11)

We now derive E[MiMT
i ] ∀i ∈ {1,2, · · · ,6}, which we add later to obtain Pyy

k|k−1.

For M1 given in Eq. (5.10), we can write

E
[
M1MT

1
]
= E

[
(1−αkβk)

2(zk − ẑk|k−1)(zk − ẑk|k−1)
T ] .

Please note that αk and βk are independent of zk and ẑk|k−1. Moreover, as αk and βk are independent

Bernoulli random variables, we obtain E
[
(1−αkβk)

2
]
= (1− pn p f ). Following this, the above

equation is simplified as

E
[
M1MT

1
]
= (1− pn p f )Pzz

k|k−1. (5.12)

Similarly, for M2 given in Eq. (5.10), we obtain

E
[
M2MT

2
]
= E

[
α

2
k β

′2
k

]
E
[
(∆k − δ̂ )(∆k − δ̂ )T

]
.

As αk and βk are independent, we get

E
[
M2MT

2
]
= pn p′f Σδ . (5.13)
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Substituting M3 from Eq. (5.10) into E
[
M3MT

3
]
, and simplifying further, we get

E
[
M3MT

3
]
= pn p f (1− pn p f )ẑk|k−1ẑT

k|k−1. (5.14)

Substituting M4 from Eq. (5.10), we obtain E
[
M4MT

4
]

as

E
[
M4MT

4
]
= E

[
(αkβ

′
k − pn p′f )

2
]
E
[
δ̂ δ̂

T
]
,

which is further simplified as

E
[
M4MT

4
]
= (pn p′f − p2

n p′2f )δ̂ δ̂
T . (5.15)

We now substitute M5 from Eq. (5.10) into E
[
M5MT

5

]
to obtain

E
[
M5MT

5
]
=E
[
αkβkγ

′
k

d

∑
i=1

Gd,k(i)(zk−i − ẑk−i|k−1)αkβkγ
′
k

d

∑
j=1

Gd,k( j)(zk− j − ẑk− j|k−1)
T
]
.

Let us consider the following notes: i) zk−i and zk− j are independent ∀i ̸= j, ii) Gd,k(i) and Gd,k( j)

are independent ∀i ̸= j, and iii) αk, βk, and γk are independent of each other, and also, they are

independent of zk−i and Gd,k(i), ∀i ∈ {1,2, · · · ,d}. Applying their independent properties and

simplifying the above equation further, we obtain

E
[
M5MT

5
]
= pn p f p′d

d

∑
i=1

ΓiPzz
k−i|k−1. (5.16)

Finally, for M6 given in Eq. (5.10), we obtained as

E
[
M6MT

6
]
=

d

∑
i=1

E
[(

αkβkγ
′
kGd,k(i)− pn p f p′dΓi

)2
]
E
[
ẑk−i|k−1ẑT

k−i|k−1
]
+

d

∑
i ̸= j=1

E
[(

αkβkγ
′
k

Gd,k(i)− pn p f p′dΓi)
(
αkβkγ

′
kGd,k( j)− pn p f p′dΓ j

)]
E
[
ẑk−i|k−1ẑT

k− j|k−1

]
.

(5.17)

Further, applying various independence properties for various independent random variables,
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then Eq. (5.17) can be expressed as

E
[
M6MT

6
]
=

d

∑
i= j=1

pn p f p′dΓi(1− pn p f p′dΓi)ẑk−i|k−1ẑT
k−i|k−1 +

d

∑
i ̸= j=1

(
pn p f p′d(p′g)

i+ j−2 p2
g
)

(
1−
(

pn p f p′d(p′g)
i+ j−2 p2

g
))

ẑk−i|k−1ẑT
k− j|k−1.

(5.18)

Substituting E[M1MT
1 ], E[M2MT

2 ], E[M3MT
3 ], E[M4MT

4 ], E[M5MT
5 ], and E[M6MT

6 ] from Eqs.

(5.12), (5.13), (5.14), (5.15), (5.16), and (5.18), respectively, into Eq. (5.11), Pyy
k|k−1 can be ex-

pressed in the form of Eq. (5.9). □

Theorem 5.3.3 The cross-covariance matrix between xk and yk can be obtained as

Pxy
k|k−1 =(1− pn p f )Pxz

k|k−1 + pn p f p′d
d

∑
i=1

ΓiPxz
k−i|k−1. (5.19)

Proof: For yk − ŷk|k−1 given in Eq. (5.10), we get Pxy
k|k−1 = ∑

6
i=1E

[
(xk − x̂k|k−1)MT

i
]
. As ẑk|k−1,

ẑk−i|k−1, and δ̂k are constants and xk is independent of ∆k, we can conclude that ∑l E
[
(xk − x̂k|k−1)MT

i
]
=

0, ∀i ∈ {2,3,4,6}, giving

Pxy
k|k−1 = E

[
(xk − x̂k|k−1)MT

1
]
+E

[
(xk − x̂k|k−1)MT

5
]
. (5.20)

To this end, for M1 given in Eq. (5.10), we obtain

E
[
(xk − x̂k|k−1)MT

1
]
=E
[
(xk − x̂k|k−1)(1−αkβk)(zk − ẑk|k−1)

T ]

which is simplified as

E
[
(xk − x̂k|k−1)MT

1
]
= (1− pn p f )Pxz

k|k−1. (5.21)

Moreover, for M5 given in Eq. (5.10), we get

E
[(

xk − x̂k|k−1
)
MT

5
]
= E

[(
xk − x̂k|k−1

)(
αkβkγ

′
k

d

∑
i=1

Gd,k(i)(zk−i − ẑk−i|k−1)
T )].

Applying the independent property, we get the following after a few simplifications and rearrange-
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ments.

E
[
(xk − x̂k|k−1)MT

5
]
= E

[
αkβkγ

′
k
] d

∑
i=1

(
E [Gd,k(i)]E

[
(xk − x̂k|k−1)(zk−i − ẑk−i|k−1)

T ]).

As E
[
αkβkγ ′k

]
= pn p f p′d and E [Gd,k(i)] = Γi, we obtain

E
[
(xk − x̂k|k−1)MT

5
]
= pn p f p′d

d

∑
i=1

ΓiPxz
k−i|k−1. (5.22)

Substituting Eqs. (5.21) and (5.22) into Eq. (5.20), we get Pxy
k|k−1 in the form of Eq. (5.19).□

Recalling previous discussions, the GFFTD is designed by replacing ẑk|k−1, Pzz
k|k−1 and Pxz

k|k−1

with ŷk|k−1, Pyy
k|k−1 and Pxy

k|k−1, respectively, which are derived through the three theorems. As

ŷk|k−1, Pyy
k|k−1 and Pxy

k|k−1 account for cyber-attack, the GFFTD addresses the cyber-attacked mea-

surements.

Remark 5.3.1 The GFFTD utilizes some estimate and covariance expressions from past instants,

which increases its storage requirement.

5.4 Simulation and Results

In this section, we simulate the CKF-based formulation of the GFFTD for two nonlinear fil-

tering problems. The benchmark filters for comparison include: i) [48]: ordinary CKF, ii) [138]:

handling the FDI attack, iii) [95], [99], and [159]: handling the delayed measurements, depicting

the TAM attack, and iv) [106]: handling the missing measurements, depicting DoS attack. We

consider the CKF-based formulations of [138], [95], [99], and [159], abbreviated as CKF FA,

CKF 2D, MLCKF, and CKF GRD, respectively. Moreover, we consider EKF-based formulation

of [106], abbreviated as EKF M, as [106] is inapplicable for the CKF. The performance metric is

considered as root mean square error (RMSE).

Throughout the simulation, we assign ∆k = N (1,4). We also consider three different cases

with varying no-attack probabilities, as Case 1: pn = 0.8, Case 2: pn = 0.5, and Case 3: pn =

0.2. In the case of attack, we consider p f = pd = (1− pn)/3, giving the probability of DoS as

(1− pn)/3. Moreover, we assign pg = 0.2, pg = 0.8, and pg = 0.1 in the respective three cases to

characterize the instantaneous delays.
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Problem 1

In this problem, the state space model is considered similar to chapter 3. Here, we assign

am = 0.5, bm = 2.5, cm = 2, τ = 1, while Qk = 2 and Rk = 0.5. The initial true and estimate are

taken as x0|0 = 0.2 and x̂0 = 2N (x0|0,P0|0), respectively, with the initial covariance P0|0 = 1. The

simulation is performed for TS = 100 time steps and 500 Monte-Carlo runs.

Fig. 5.2(a) shows the box plots of RMSEs obtained for all filters, while we compare the

average RMSEs (ARMSE) of all filters under three different cases in Fig. 5.3(a). Please note that

the figures do not include the results for the MLCKF, as it failed to execute. The figures infer a

reduced RMSE of the GFFTD for all cases, which concludes the improved accuracy of the GFFTD

under different system environments. The relative computational times of CKF, EKF M, CKF 2D,

CKF FA, CKF GRD, and GFFTD are observed as 1, 0.9932, 1.0280, 1.0031, 1.0288, and 1.0291,

respectively, which conclude that the computational time of the GFFTD remains similar to the

existing filters.

Problem 2

This chapter also looks at a second simulation problem discussed in Chapter 3, whereas

τ = 0.25 ms is taken as the sampling time. We assign Qk = diag([σ2
f σ2

f σ2
f σ2

a σ2
a σ2

a ]) and Rk =

diag([σ2
r σ2

r ]), with σ f =
√

25 mHz, σa =
√

0.8 mV , and σr =
√

0.9 V . Moreover, we consider

x0 = [200,500,1000,3,4,3]T and x̂0|0 =N (x0,P0|0), while P0|0 = diag
([

20,20,20,0.5,0.5,0.5
])

.

The filters are implemented for TS = 400 time steps and 500 Monte-Carlo runs. In this problem,

we compute the RMSE as the mean of the RMSEs of the three sinusoids.

We show the box plots of the RMSEs of all filters in Figs. 5.2(b) and 5.2(c), while Fig. (5.3(b))

compares the ARMSEs of frequency for all filters under three different cases. The ARMSEs of

amplitude follow a similar pattern as the frequency, being the reason to exclude its plots. Similar

to Problem 1, the figures conclude the improved accuracy of the GFFTD in comparison to all

existing filters. The relative computation times of CKF, EKF M, CKF 2D, MLCKF, CKF FA,

CKF GD, and GFFTD are 1, 0.9847, 1.3254, 1.4937, 1.3253, 1.3278, and 1.3289, respectively.

This infers that the computational time of the GFFTD is marginally increased in comparison to

the traditional CKF, while the computational time remains similar to the existing extensions of the

CKF for handling different forms of cyber-attacks.
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Figure 5.2: Box plots of RMSEs with pn = p f = pd = 0.333 and pg = 0.5: a) Problem
1, b) Problem 2: frequency, and c) Problem 2: amplitude.
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Figure 5.3: ARMSE comparison all filters under three different cases: a) Problem 1, b)
Problem 2: frequency.

We further extend the comparative analysis for other popular and more accurate Gaussian

filters, including the CQKF and GHF. In this regard, in Table 5.2, we provide the ARMSEs ob-

tained for different filters for Case 1, other cases results resemble the expected outcome, where

GFFTD (CQKF) and GFFTD (GHF) denote the CQKF and GHF-based extensions of the GFFTD,

respectively. Note that CQKF and GHF are implemented using the second-order quadrature rule.

As expected, the table shows a reduced ARMSE for the CQKF and GHF-based extensions of

the GFFTD. The findings indicate that the efficacy of the GFFTD can be improved by refining

numerical computation approximation accuracy. This concludes our previous statement that any

of the existing Gaussian filters can be extended under the proposed method without loosing the
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generality.

Table 5.2: Case 1: Performance of Gaussian filters.
Filters Problem 1 Problem 2

FrequencyAmplitude
EKF M 2.4221 3.0987 0.8376
CKF 2.1880 3.1449 1.0110
MLCKF NA 10.7395 1.7170
CKF 2D 1.6217 2.9257 0.8714
CKF GD 1.6478 12.6911 3.2460

CKF FA 1.9759 2.9286 0.9563
GFFTD (CKF) 0.9988 2.4759 0.7118
GFFTD (CQKF) 0.9799 2.0920 0.6011
GFFTD (GHF) 0.9836 2.0919 0.6010
NA: Not Available

Performance analysis for Dos and TAM attacks only

As discussed previously, the DoS and TAM attacks cause delay and missing measurements,

respectively. Such measurement irregularities are caused not only due to cyber-attacks but they

may be caused due to other system and data processing faults as well. For example, as discussed

in chapter 2, the network faults may cause delay and missing measurements.

Interestingly, with some simplification, the GFFTD can be reformulated for handling DoS and

TAM attacks only, ignoring the FDI attacks. Alternatively, with some simplification, the GFFTD

can be reformulated to handle the delayed and missing measurements simultaneously. Let us name

this simplified filter as GFDM in its abbreviated form, representing Gaussian filtering with delayed

and missing measurements. The GFDM is also a significant development, as the existing methods

for handling the delayed and missing measurements can handle only one of these irregularities

and they fail for the simultaneous occurrences of the two irregularities. From Table 5.1, we can

infer that considering βk = 1 ensures the non-existence of the FDI attack. Thus, simplifying all

expressions of the GFFTD by conveniently substituting βk = 1 and p f = 1, wherever required, we

obtain GFDM.

We assess the performance of the GFDM for its CKF-based formulation. The assessment is

performed for Problem 2, ignoring the single dimensional Problem 1. As the benchmark filters, in

addition to the above used ordinary CKF, CKF GRD, and MLCKF, we use [97] and [110], which

are particularly designed for handling the delayed and missing measurements. We abbreviate the
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CKF-based formulations of [97] and [110] as CKF RD and MDCKF, respectively.

For the performance assessment, we define two new scenarios as i) Case 1: pn = 0.2 and

pd = 0.8 and ii) Case 2: pn = 0.5 and pd = 0.9. Subsequently, we compare the ARMSEs for

all filters, choosing pg as 0.1, 0.5, and 0.8 for both scenarios. As can be seen in Table 5.3, the

ARMSEs increase as the large delay occurrences are more prevalent (the lower value of pg sug-

gests more frequent large delays). Alternatively, the filtering accuracy of all filters deteriorate if

the measurements are prone to large delay extents (which is an anticipated behavior). Apparently,

the ARMSEs for the GFDM remain significantly smaller than those of other filters. The reduced

ARMSE validates the improved accuracy of the GFDM in the presence of delayed and missing

measurements.

Table 5.3: ARMSE comparison against different values of pg (which dictates the recur-
rence of large delay occurrence).

States Filters
Case 1 Case 2

0.1 0.5 0.8 0.1 0.5 0.8

Amplitude

CKF 6.9180 4.2454 3.0408 4.6728 3.1245 2.2408
CKF RD 6.0307 3.3372 2.1806 2.5382 1.2919 0.9958
CKF GRD 1.9155 1.3569 1.2040 1.3633 1.1247 1.0047
MDCKF 5.8999 2.6472 1.3424 2.1868 1.1286 1.2681
MLCKF 5.0371 2.2541 1.9775 4.1684 1.9197 1.6509
GFDM 1.8859 1.2346 0.9836 1.3161 1.0941 0.9286

Frequency

CKF 27.1237 18.6639 15.1172 11.5302 11.6929 10.5876
CKF RD 21.5206 14.5804 11.4044 8.2715 5.0834 4.5953
CKF GRD 11.4831 6.3696 4.8383 6.1856 4.9796 4.3248
MDCKF 25.2176 15.2685 11.7082 8.3274 5.1715 4.5890
MLCKF 33.6225 10.8192 8.8122 24.8208 13.8789 8.2256
GFDM 10.4981 5.8550 4.6009 6.1780 4.9747 4.3197

5.5 Summary

In this chapter, a new Gaussian filtering method, abbreviated as GFFTD, is inferred for han-

dling simultaneously occurring FDI, TAM, and DoS forms of cyber-attack. The GFFTD re-derives

the traditional Gaussian filtering method for a new formulation of the measurement model, incor-

porating the different forms of cyber-attack. The GFFTD is probably the first nonlinear filter to

handle the simultaneously occurring FDI, TAM, and DoS attacks. The GFFTD is applicable for

any of the existing Gaussian filters, such as the UKF, CKF, and GHF. The improved accuracy of

the GFFTD is validated for two simulation problems.
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Chapter 6

Wrapped Particle Filtering for Angular

Data

6.1 Introduction

As discussed through Chapters 1 and 2, the particle filtering is a more accurate but compu-

tationally inefficient alternative of Gaussian filtering. It characterizes the desired posterior PDFs

with a weighted summation of stochastically generated particles. The particles are generated from

proposal density, characterizing the posterior PDFs. As the posterior PDFs are unknown, the pro-

posal density is often taken as Gaussian. Thereby, in order to reduce the degeneracy phenomena,

re-sampling techniques are adopted. The Gaussian-approximated proposal density is characterized

using the first two moments.

The proposal density may be defined locally or globally [78], [160][161]. A globally defined

proposal density generates all the particles at each time step [160]. Meanwhile, a locally defined

proposal density is used for generating a single particle and we require a bank of local proposal

densities for generating all the particles. Some of the popular particle filtering techniques, clas-

sified in terms of the underlying proposal density used, include the particle filter with transition

density as its proposal (PF) [75], unscented particle filter (UPF) [78], cubature particle filter (CPF)

[79], and Gauss-Hermite particle filter (GHPF) [80].

The particle filtering accuracy depends on the appropriateness of the proposal density and

the re-sampling techniques. The choice of proposal density is further affected by: i) whether its
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shape is close to the unknown posterior PDF and ii) whether any multivariate integrals involved

in computing its moments can be computed accurately in real time. The literature primarily uses

Gaussian shape for the proposal density, while many contributions appeared in the literature by

introducing different numerical approximation techniques [78, 79, 80, 77, 162, 161, 163]. Sim-

ilarly, the literature also witnesses many developments by advancing the resampling techniques

[164, 165]. As we will observe in the later parts of this chapter, our objective is to improve the

shape of the proposal density to better match the anticipated shape of the unknown PDFs. This

will also require to modify the numerical approximation technique for computing the moments

involved.

In all the above cases, Gaussian proposal density is over the entire real line as its support.

Conversely, Gaussian distribution fails to provide a close approximation of the proposal density,

if the variables themselves are constrained to a smaller support, e.g. (−π , π] [166]. Thus we need

a proposal density specifically designed for angular data.

As discussed in chapter 2, the literature behold some preliminary developments [147], [140],

[141], [142]. An early development [140] utilized a truncated Fourier series with wrapped normal

(WN) distribution. Nonetheless, finite-length truncation of the Fourier series affects estimation

accuracy. Some of the later developments [141], [142] are designed only for linear system models

in angular data. In a further development, Kurz et al. introduced a nonlinear circular filtering

method through a series of publications [144], [145], [147]. Moreover, this method is designed for

univariate systems, whereas many of the real-life filtering problems are multivariate. Considering

the several limitations of the existing methods, efficient angular filtering is still challenging.

In this chapter, we propose a novel particle filtering method for handling nonlinear multivariate

angular filtering problems. We represent the unknown angular proposal density appearing over

(−π , π] with WN distribution, which is a counterpart of the ordinary normal distribution in the

range (−π , π] [167]. The parameters of the WN distribution are the mean and the covariance.

In the proposed method, the computation of the mean and the covariance involves intractable

integrals of the form ‘nonlinear function × wrapped normal distribution’. We use univariate

Rogers-Szegő quadrature rule [168], [169] for approximating such intractable integrals and also

extend it to the multivariate case using the product rule. Subsequently, we name the proposed

filtering method as Rogers-Szegő particle filter (RSPF). We develop and test the RSPF for both

the locally and globally generated proposal densities. Further, we simulate the RSPF for two
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angular filtering problems and validate its improved accuracy relative to the existing Gaussian

proposal density filters from the simulation results.

Summarizing the above discussion, we highlight the following contributions of this chapter in

comparison to the existing literature on filtering.

• The RSPF considers wrapped normally distributed proposal density, instead of the Gaussian

proposal density which is most commonly used in the existing particle filtering algorithms.

• The RSPF utilizes Rogers-Szegő quadrature rule for the numerical approximation of the

integrals. To the author’s knowledge, this is the first use of this quadrature rule in particle

filtering context.

• We demonstrate through comprehensive numerical examples that the RSPF can accurately

handle angular data, where the existing filters underperform.

• We formulated the RSPF for both the locally and globally generated proposal density. To

the author’s knowledge, this is the first explicit comparison of the two different particle

filtering paradigms in the literature, which offer a compromise between estimation accuracy

and computational cost for the same chosen proposal density.

6.2 Problem Formulation

Our objective is to develop a particle filtering method that is suitable for angular data. The

underlying state space model is represented as

θk = φk−1(θk−1)+νk−1, (6.1)

yk = Ψk(θk)+ηk, (6.2)

where θk ∈ Dn and yk ∈ Dr, with D ∈ (−π,π], are state and measurement variables, respectively

at kth instant with k ∈ {1,2, · · ·}. φk : Dn → Dn and Ψk : Dn → Dr are general nonlinear functions,

representing the state dynamics and the measurement equation, respectively. Finally, νk ∈ Dn

and ηk ∈ Dr represent the process and measurement noises, respectively. Hence, the objective is

to recursively estimate θk ∀k ∈ {1,2, · · ·} from a sequentially received set of measurements yk

∀k ∈ {1,2, · · ·}.
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The estimation of θk from yk requires characterizing the PDF P(θk|y1:k) analytically. In this

regard, the particle filter [75] approximates P(θk|y1:k) as a weighted summation of stochastically

generated sample points, also known as particles. Particles are sampled from an appropriately

chosen proposal density q(θk|y1:k) for representing the unknown PDF P(θk|y1:k). We denote θi
k

and ω i
k, ∀i ∈ {1,2, · · · ,Np}, as the ith particle and the associated weight, respectively, at kth in-

stant. The weights are normalized, i.e., ∑
Np
i=1 ω i

k = 1. Subsequently, the desired PDF P(θk|y1:k) is

approximated as

P(θk|y1:k)≈
Np

∑
i=1

ω
i
kδ
(
θk −θi

k
)
, (6.3)

where P(yk|θi
k) represents the likelihood function, δ (·) represents dirac delta function, and Np

represents the number of particles. If q(θk|y1:k) is the same as the transition density P(θk|θk−1),

then the weights can be recursively updated as ω i
k ∝ ω i

k−1P(yk/θ
i
k).

To this end, using transition density as a proposal ignores the information inferred from the

latest measurement, and can result in a poor approximation of P(θk|y1:k) [79]. Using the proposal

density resulting from approximate Gaussian filters such as the UKF [78] or the CKF [79], we

can include the latest measurements information during the generation of particles. There are two

fundamentally different approaches for generating particles. In local sampling, [78] we approxi-

mate q(θi
k|θi

0:k−1,y1:k) = P(θi
k|θi

k−1,y1:k) ≈ N (θ̂i
k|k,P

i
k|k) for each particle, where N (·) denotes

the Gaussian distribution and θ̂i
k|k, Pi

k|k, respectively, represent ith posterior mean and the posterior

covariance estimates at time k. This update of density for each individual particle effectively in-

volves running a bank of Np individual Gaussian filters. Alternatively, [160], we can approximate

q(θi
k|θi

0:k−1,y1:k) = P(θi
k|θi

k−1,y1:k) ≈ N (θ̂k|k,Pk|k) for all the particles. This requires a single

Gaussian proposal at each time step and is termed as global sampling. The author has not come

across an explicit comparison of global and local approaches to proposal density generation. Most

of the subsequent discussion in this chapter follows the local sampling strategy. Therefore, we

also compare our results using the global sampling strategy with those using the local sampling

strategy in simulation examples.

Note that Gaussian proposal density characterizes any data over the entire real line. This

is an inappropriate characterization of the angular data bounded within (−π,π] and can result

in poor accuracy for angular filtering. Here, we propose a novel particle filtering algorithm for

angular filtering by characterizing the angular PDFs over (−π , π] instead of the entire real line.

As discussed above, we also illustrate the developed particle filtering method for both the locally
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Figure 6.1: Wrapped normal distribution plot for zero-mean and unity-variance.

and globally defined proposal densities.

6.3 Rogers-Szegő Particle Filter

In this section, we introduce the RSPF, which has the potential to be far more accurate for

angular data appearing over (−π , π]. We approximate the unknown proposal density with wrapped

normal distribution [169], defined over (−π , π]. Before proceeding further, we briefly discuss this

distribution in the next sub-section.

6.3.1 Wrapped Normal Distribution

The wrapped normal distribution may be obtained by wrapping the horizontal axis of an or-

dinary normal distribution curve around a unit circle [147]. Similar to a normal distribution, a

wrapped normal distribution is also completely characterized by the mean and the variance. If θ

is wrapped normally distributed with mean µ and variance σ2, then the distribution of θ is given

as [144],

fWN(θ ; µ,σ2) =
1

σ
√

2π

∞

∑
l=−∞

exp
(−(θ −µ −2πl)2

2σ2

)
. (6.4)

The zero-mean and unit-variance wrapped normal distribution is plotted in Fig. 6.1. We refer to

[170, 144, 143] for a more detailed discussion on the wrapped normal distribution.
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6.3.2 Proposal Density Approximation

As stated in [170, 144], the wrapped normal distribution follows the circular central limit

theorem for angular data. Thus, we consider the following approximations.

• The prior and posterior distributions of θi
k are approximated as wrapped normally dis-

tributed, i.e., P(θi
k|yk−1)≈ fWN(θ

i
k; θ̂i

k|k−1,P
i
k|k−1) and P(θi

k|yk)≈ fWN(θ
i
k; θ̂i

k|k,

Pi
k|k), where fWN(·) represents multivariate wrapped normal distribution. Here, θ̂i

k|k, Pi
k|k,

respectively, represent the ith posterior mean and the posterior covariance of the state at

time k.

• We further approximate P(yi
k|yk−1) ≈ fWN(yi

k; ŷi
k|k−1,P

yyi
k|k−1), where ŷi

k|k−1 and Pyyi
k|k−1 de-

note the mean and the covariance of yi
k, respectively.

• The desired proposal density is approximated as wrapped normally distributed, i.e., q(θi
k|θi

0:k−1,y1:k)

≈ fWN(θ
i
k; θ̂i

k|k,P
i
k|k).

• The noises, ηk and ϑk, are approximated as fWN(0,Qk) and fWN(0,Rk), respectively, where

Qk and Rk are the covariances of the respective noises.

• Additionally, we assume that the noises, ηk and ϑk are independent of each other as well as

serially independent.

From the above assumptions, the proposal density can be characterized by mean θ̂i
k|k and

covariance Pi
k|k for each particle, which corresponds to local sampling in our earlier discussion.

As in any standard Gaussian filtering algorithm, we obtain θ̂i
k|k and Pi

k|k in two steps, prediction

and update. The prediction characterizes the PDF P(θi
k|yk−1) by computing the mean θ̂i

k|k−1 and

covariance Pi
k|k−1. The update characterizes the desired PDF P(θi

k|yk) by determining the mean

θ̂i
k|k and the covariance Pi

k|k approximately, using the formulae for conditional mean and the con-

ditional variance for Gaussian distributions, which is a step similar to other assumed Gaussian

density filters [22, 143]. We provide the computational aspects of these two steps in the following

discussion.
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Prediction

This step computes θ̂i
k|k−1 and Pi

k|k−1, respectively, as [80]

θ̂i
k|k−1=

∫

Dn
φk−1(θ

i
k−1)fWN(θ

i
k−1; θ̂i

k−1|k−1,P
i
k−1|k−1)dθ

i
k−1, (6.5)

Pi
k|k−1 =

∫

Dn
φk−1(θ

i
k−1)φ

T
k−1(θ

i
k−1)fWN(θ

i
k−1; θ̂i

k−1|k−1,P
i
k−1|k−1)dθ

i
k−1

− θ̂i
k−1|k−1θ̂

iT
k−1|k−1 +Qi

k.

(6.6)

Update

This step computes θ̂i
k|k and Pi

k|k, respectively, as [80]

θ̂i
k|k = θ̂i

k|k−1 +Ki
k(yk − ŷi

k|k−1), (6.7)

Pi
k|k = Pi

k|k−1 −Ki
kPyyi

k|k−1KiT
k , (6.8)

where ŷi
k|k−1, Pyyi

k|k−1, Pθyi
k|k−1, and Ki

k are determined, respectively, as [80]

ŷi
k|k−1 =

∫

Dn
Ψk(θ

i
k)fWN(θ

i
k; θ̂i

k|k−1,P
i
k|k−1)dθ

i
k, (6.9)

Pyyi
k|k−1 =

∫

Dn
Ψk(θ

i
k)Ψ

T
k (θ

i
k)fWN(θ

i
k; θ̂i

k|k−1,P
i
k|k−1)dθ

i
k − ŷi

k|k−1ŷiT
k|k−1 +Ri

k, (6.10)

Pθyi
k|k−1 =

∫

Dn
θi

kΨ
T
k (θ

i
k)fWN(θ

i
k; θ̂i

k|k−1,P
i
k|k−1)dθ

i
k − θ̂i

k|k−1ŷiT
k|k−1, (6.11)

Ki
k = Pθyi

k|k−1(P
yyi
k|k−1)

−1. (6.12)

Eqs. (6.5) to (6.12) give the steps needed to generate the ith mean-covariance pair
(
θ̂i

k|k,P
i
k|k

)
,

given
(
θ̂i

k−1|k−1,P
i
k−1|k−1

)
and the measurement yk. Note that these equations use the same ap-

proximate equations for prior and posterior distributions as in the case of other assumed Gaussian

density filters, apart from one crucial difference that wrapped normal density is used in place of

normal density for calculating moments.

The characterization of the proposal density using the above equations requires computing
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integrals of the form

In(F) =
∫

Dn
F(θ)fWN(θ; θ̂,P)dθ, (6.13)

where F : Dn → Dn is a general nonlinear function. As a closed-form solution is not available for

such integrals in general, the RSPF introduces Rogers-Szegő quadrature rule [169] for approximat-

ing such integrals. The integrals occurring here are different from those which occur in traditional

proposal densities or in approximate Gaussian filters [22] or in traditional proposal densities for

particle filters [79, 78, 80], since these involve a Gaussian density (rather than a wrapped normal

density).

6.3.3 Approximation of Integrals

In this section, we introduce the Rogers-Szegő quadrature rule for approximating the desired

intractable integral In(F). While the Rogers-Szegő quadrature rule is applicable only for univariate

systems, the desired integral In(F) is multivariate. We additionally use the product rule [60] for

extending the univariate Rogers-Szegő quadrature rule to the multivariate case.

We will first approximate the standard form (zero-mean and unity-covariance) of In(F), given

as

In
0 (F) =

∫

Dn
F(θ)fWN(θ;0,In)dθ, (6.14)

where In represents the identity matrix. Further, the multivariate integral In
0 (F) can be expressed

as

In
0 (F) = I1

0 (F1)× I1
0 (F2)×·· ·× I1

0 (Fn), (6.15)

where the univariate integrals I1
0 (Fq) ∀q ∈ {1,2, · · · ,n} can be expressed as

I1
0 (Fq) =

∫
π

−π

F(θq) fWN(θq;0,1)dθq, (6.16)

with

fWN(θq;0,1) =

√
1

2π

∞

∑
l=−∞

exp
(
−(θq −2πl)2

2

)
. (6.17)

The univariate Rogers-Szegő quadrature rule is designed for approximating I1
0 (Fq) given in Eq.
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(6.16).

Univariate Rogers-Szegő quadrature rule

The Rogers-Szegő quadrature rule, designed for approximating I1
0 (Fq), is defined over unit

circle U [171]. We denote the unit circle as U = {Z ∈ C : |Z| = 1}, where Z = e jθq , while C

represents the set of all circles. The Rogers-Szegő quadrature rule utilizes Rogers-Szegő polyno-

mials [168], which are orthogonal with the weight function fWN(θq;0,1) on unit circle and also

normalized, i.e.,
∫

π

−π
fWN(θq;0,1)dθq = 1.

Let us denote the Rogers-Szegő polynomials as νm(Z), ∀m ∈ {1,2, · · ·}, which are defined

on unit circle U [168]. The orthogonality of νm(Z) is defined in terms of inner product of νm(Z)

induced by fWN(θq;0,1). The inner product must satisfy

< νm,νm̄ >=
1√
2π

∫
π

−π

νm(Z)νm(Z) fWN(θq;0,1)dθq =δm,m̄, (6.18)

where ν̄m(Z) represents the conjugate of νm(Z) and δm,m̄ denotes Kronecker delta.

The Rogers-Szegő polynomials satisfying Eq. (6.18) are obtained from monic sequences eval-

uated from iterative solutions of Rogers-Szegő forward recurrence relation [172]. Let us denote

γm(Z), ∀m ∈ {1,2, · · ·}, as the monic sequences of νm(Z), then the Rogers-Szegő forward recur-

rence relation is given as [173],




γm(Z)

γ∗m(Z)


=




Z βm

β̄mZ 1







γm−1(Z)

γ∗m−1(Z)


 , (6.19)

where m≥ 1, γ∗m(Z) is reciprocal of γm(Z), and βm = γm(0) ∀m≥ 0 is Verblunsky coefficient [169].

The reciprocal value γ∗m(Z) is obtained as γ∗m(Z) = Zmγm(1/Z̄), where γ̄m denotes the conjugate

of γm. As mentioned in [168], the recurrence relation can be initiated with γ0(Z) = γ∗0 (Z) =

1. Moreover, β0 = 1 and |βm| < 1 ∀m ≤ 1 [169]. The readers may refer to [168], [171] for a

detailed discussion on γm(Z), βm, and the properties of Rogers-Szegő polynomials for the family

of orthogonal polynomials on U.

The solution of the recurrence relation (6.19) corresponding to fWN(θq;0,1) gives the desired
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monic sequences in terms of s-binomial coefficient as [169]

γm(Z) =
m

∑
j=0

(−1)m− j




m

j




s

s
m− j

2 Z j, (6.20)

where s-binomial coefficient is




m

j




s

=
(m)s

( j)s(m− j)s
=

∏
m
k=m− j+1(1− sk)

∏
j
k=1(1− sk)

,

with 0 < s < 1 and

(0)s =




m

0




s

=




m

m




s

= 1.

After γm(Z) is obtained from Eq. (6.20), the mth Rogers-Szegő polynomial is obtained as

νm(Z) =
1√
(m)s

γm(Z), (6.21)

where

(m)s =
m

∏
i=1

(1− s j).

From [171], s = e−1 corresponds to the desired weight function fWN(θq;0,1). Utilizing the above

interpretations, [169] derives and states that the Nq number of desired Rogers-Szegő quadrature

points can be obtained as the phase of complex roots of the polynomial

ANq(Z) =
Nq

∑
j=0

B j

[
1+δm(−1)Nqs( j−Nq/2)

]
Z j, (6.22)

where |δm|= 1 and

B j = (−1)Nq− j




Nq

j




s

s
Nq− j

2 ,

with j ∈ {1,2, · · · ,Nq}. Let us denote the roots of ANq(Z) as λ j, ∀ j ∈ {1,2, · · · ,Nq}. Then, the

jth Rogers-Szegő quadrature point is obtained as ϒ j = ∠λ j ∀ j ∈ {1,2, · · · ,Nq}. Eventually, the

weight Wj associated with ϒ j can be obtained in terms of monic sequence γNq as [169]
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Wj =
(Nq)s

2Re[λ jγ
′
Nq
(λ j)γNq(λ j)]−Nq|γNq(λ j)|2

, (6.23)

where Re[·] represents the real part of complex number and γ ′ denotes the first derivative of γ .

After ϒ j and Wj are obtained, the univariate integral I1
0 (Fq) given in Eq. (6.16) can be approx-

imated as

I1
0 (Fq)≈

∫
π

−π

F(θq) fWN(θq)dθq ≈
Nq

∑
j=1

F(ϒ j)Wj. (6.24)

Table-6.1 illustrates the complex values of λ , the angular points ϒ, and the associated weights W

for eight-points univariate Rogers-Szegő quadrature rule with s = e−1. Please note that s = e−1 is

an essential requirement for the RSPF as mentioned above.

Table 6.1: Univariate quadrature points and associated weights for s = e−1 and Nq = 8.
λ ϒ = ∠λ W

- 0.82206297 ±0.56939659i ±2.5358 0.015354324

- 0.15523459 ±0.98787764i ±1.7267 0.066536929

0.52747007 ±0.849573610i ±1.0152 0.164552400

0.94424738 ±0.329236820i ±0.3355 0.253556350

Multivariate extension of Rogers-Szegő quadrature rule

In the above discussion, we introduced the univariate Rogers-Szegő rule for approximating

the univariate integral I1
0 (Fq). We now extend the univariate Rogers-Szegő rule for approximating

the multivariate integral In
0 (F).

The product rule states that given the univariate Rogers-Szegő quadrature points {ϒ1,ϒ2,

· · · ,ϒNq} and the associated weights {W1,W2, · · · ,WNq}, we can approximate In
0 (F) as

In
0 (F)≈

Nq

∑
j1=1

Nq

∑
j2=1

· · ·
Nq

∑
jn=1

F([ϒ j1 ,ϒ j2 , · · · ,ϒ jn ])
n

∏
l=1

Wjl , (6.25)

where j1, j2, · · · , jn ∈ {1,2, · · · ,Nq}.

Finally, we can approximate the desired intractable integral In corresponding to fWN(θ; θ̂,P),
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as

In ≈
Nq

∑
j1=1

Nq

∑
j2=1

· · ·
Nq

∑
jn=1

F
(
θ̂+Σ[ϒ j1 ,ϒ j2 , · · · ,ϒ jn ]

) n

∏
l=1

Wjl . (6.26)

We can rewrite the above expression as

In ≈
Ns

∑
j=1

F
(
θ̂+ΣΥ j

)
W j, (6.27)

where Ns = (Nq)
n denotes the number of the multivariate Rogers-Szegő quadrature points, while

Υ j = [ϒ j1ϒ j2 , · · · ,ϒ jn ] and W j = ∏
n
j=1Wjl , with j1, j2, · · · , jn ∈ {1,2, · · · ,Nq}, represent the mul-

tivariate quadrature points and weights, respectively. Moreover, Σ represents the Cholesky de-

composition of P, i.e., P =ΣΣT .

We can use the product rule-based multivariate Rogers-Szegő quadrature rule for approximat-

ing the intractable integrals that appeared through Eqs.(6.5) to (6.12). More specifically, we can

construct the proposal density q(θi
k|θi

0:k−1,y1:k)≈ fWN(θ
i
k; θ̂i

k|k,P
i
k|k) by determining the mean θ̂i

k|k

and the covariance Pi
k|k from Eqs. (6.5) and (6.12), respectively. Considering that the multivariate

quadrature points and weights, i.e., Υ j and Wj, ∀ j ∈ {1,2, · · · ,Nq}, are available, we refer to Ap-

pendix B for analytical steps used for implementing the prediction and update steps discussed in

Section 6.3.2.

6.3.4 Particle Filtering with Wrapped Proposal Distribution

We now introduce the RSPF using the wrapped normal distribution for handling angular data.

The RSPF uses the proposal density determined through the subsections 6.3.1-6.3.2 in particle

filtering. As discussed previously, we develop two filters, one for local sampling and another for

global sampling. We abbreviate the two filters as LRSPF and GRSPF, respectively. The previous

discussions of this section provides the formulations for the local sampling, i.e. for the LRSPF.

The formulation for GRSPF is similar, although simpler due to a single filter at each time step.

LRSPF

The implementation of the LRSPF comprises the following steps.
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• Initialization: We initialize the filter at k = 0 with initial state θ0 and initial covariance P0|0.

Subsequently, we generate the initial set of particles as {θ0}Np
i=1 ∼ P(θ0) and the associated

weights as {ω i
0}

Np
i=1 = 1/Np.

• Particles and weights calculation at kth instant (k ≥ 1):

Construct the initialization for kth instant from the latest particles and covariance (assign

θ̂i
k−1|k−1 and Pi

k−1|k−1), and follow the steps below.

– Propagate θ̂i
k−1|k−1 and Pi

k−1|k−1 through Eqs. (6.5) to (6.12) to obtain θ̂i
k|k and Pi

k|k

for each particle. Then, the particles are updated by sampling from wrapped normal

distribution as θ̃i
k|k ∼ fWN(θ

i
k; θ̂i

k|k,P
i
k|k).

– Subsequently, the weights are updated as

ω
i
k ∝ ω

i
k−1

P(yk|θ̃i
k|k)P(θ̃

i
k|k|θi

k−1)

q(θ̃i
k|θi

0:k−1,y1:k)
. (6.28)

• Weight normalization: The weights are normalized as

ω
i
k =

ω i
k

∑
N
i=1 ω i

k
, (6.29)

and determine the effective sample size Ne f f as

Ne f f ≈
1

∑
N
i=1(ω

i
k)

2
. (6.30)

• Re-sampling: If Ne f f is below a preassigned threshold value Nth, then we perform re-

sampling [79] and a new set of θi
k ∀i ∈ {1,2, · · · ,Np} is generated from the current set

of particles θ̃i
k ∀i ∈ {1,2, · · · ,Np}. In general, we consider Nth = 2/3Np. Furthermore,

newly updated weights are obtained as, ω i
k = 1/Np.

• Estimation: Finally, the desired estimate and covariance are obtained as

θ̃k|k ≈
Np

∑
i=1

ω
i
kθ

i
k, (6.31)

P̃k|k ≈
Np

∑
i=1

ω
i
k
(
θi

k − θ̃k|k
)(

θi
k − θ̃k|k

)T
. (6.32)
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The LRSPF requires implementing the algorithm discussed through Eqs. 6.5 to 6.12 implemented

once for each particle, which increases the computational demand.

GRSPF

In an alternate method to the LRSPF, a single proposal density is globally defined in order to

reduce the computational demand. This single proposal density is used for generating all particles.

The steps for implementing the GRSPF is provided below.

• Initialization: This step is the same as the LRSPF, which can be followed from the previous

discussion.

• Compute the mean and covariance of particles at kth instant (k ≥ 1):

θ̂k−1|k−1 ≈
Np

∑
i=1

ω
i
k−1θ

i
k−1, (6.33)

Pk−1|k−1 ≈
Np

∑
j=1

ω
i
k−1
(
θi

k−1 − θ̂k−1|k−1
)(

θi
k−1 − θ̂k−1|k−1

)T
. (6.34)

– Propagate θ̂k−1|k−1 and Pk−1|k−1 through the algorithm discussed in Section 6.3.2 to

obtain θ̂k|k and Pk|k for single mean and covariances.

• Compute particles: Generate the desired particles as {θ̃i
k}

Np
i=1 ∼ fWN(θ̂k|k,Pk|k).

• Compute weights: Update the weights

ω
i
k ∝ ω

i
k−1

P(yk|θ̃i
k|k)P(θ̃

i
k|k|θi

k−1)

q(θ̃i
k|θi

0:k−1,y1:k)
. (6.35)

• The remaining steps are the same as those discussed for LRSPF.

For angular data, the RSPF with wrapped normal proposal and Rogers-Szegő quadrature rule

for integration is more accurate than the numerical approximation methods used in the state-of-

art particle filters such as the UPF, CPF, and GHPF under assumed Gaussian density, as amply

illustrated in the next section. The LRSPF is slightly more accurate than the GRSPF due to the

local sampling and may be preferred if a computational budget is available.

An appropriate distribution for angular data is probably the wrapped normal distribution, for

which numerical methods can be used to approximate multivariate integrals. We have used this
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intuition to develop a new particle filtering algorithm. In the next section, we demonstrate its

superior performance using simulation examples on multivariate nonlinear systems where data is

inherently angular.

6.4 Simulation Examples

In this section, we validate the performance of the RSPF for two angular filtering problems.

We compare the performance of the LRSPF and GRSPF with various existing filters, including the

particle filter with transition density as its proposal (referred to as PF) [75], unscented particle filter

or the UPF [78], cubature particle filter or the CPF [79], and Gauss-Hermite particle filter or the

GHPF [80], and the existing nonlinear circular filter (CF) [147]. The existing filters, UPF, CPF,

and GHPF are implemented with local sampling to characterize them with their best accuracy.

Note that CF is applicable only for univariate systems. Thus, it will be included in the comparison

for the first simulation problem only, as the second problem is multivariate.

The LRSPF, GRSPF, and GHPF are implemented with two univariate quadrature points. The

parameter κ̄ for implementing the UPF is assigned as κ̄ = 4. Finally, CF is applied by considering

a three-point wrapped Dirac mixture distribution.

The performance analysis and comparison are based on angular root mean square error (RMSE)

between the true and estimated states. Note that the true and the estimated states may often fall

beyond the angle range (−π , π] due to noise. In such cases, we perform aliasing to obtain the

equivalent angle within (−π , π]. The angular root mean square error (RMSE) is expressed as,

RMSEk =

√
1

Tmc

Tmc

∑
i=1

(
min

(
|θ̃ i

k|k −θ i
k|,2π −|θ̃ i

k|k −θ i
k|
))2

, (6.36)

where θ i
k and θ̃ i

k|k are the true and the estimated states at kth time-step and in ith simulation run,

and Tmc is the number of Monte-carlo simulations.

6.4.1 Problem 1

This is an angle estimation problem of a robot’s arm [147], which has applications in robotics

often require closed-loop position control of the robot arm, requiring a measurement of the current

angle of the arm as feedback. This, in turn, involves an estimate of an angular quantity from noisy
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sensor measurements. The dynamic state space model of the system is given as [147]

θk = θk−1 +d1 sin(θk−1)+d2 +ηk−1, (6.37)

yk =




sin(θ k)

cos(θk)


+ϑk, (6.38)

where d1 and d2 are constants.

The initial true and estimated states are taken as θ0 = 0 and θ̃0|0 = π , respectively, while

the initial variance is taken as P0|0 = 2. We assign d1 = 0.1, d2 = 0.15, Qk = 0.1, and Rk =

diag(0.2,0.2). The simulation is performed for 200 time-steps and angular RMSEs are computed

by implementing 1000 Monte-Carlo simulations.

Fig. 6.2 shows the angular RMSE plots and Table-6.2 shows the average angular RMSEs of

the LRSPF, GRSPF, and the existing filters using different numbers of particles. The figure and

table together indicate that RMSE is significantly reduced for both the LRSPF and GRSPF, as

compared to the existing choices of proposal densities, viz PF, UPF, CPF, and GHPF. However, it

is also interesting to note that the existing circular filter CF outperforms the other existing filters.

The RMSE of the GRSPF is higher than the LRSPF, as expected. However, even global sam-

pling using wrapped normal distribution as a proposal (i.e. the GRSPF) leads to a better estimation

accuracy than Gaussian density proposal filters using local sampling, even as local sampling leads

to a significantly higher computational cost.

Relative computational times of different filters are listed in Table 6.3. Thus, the computa-

tional time for the GRSPF is lower than all the algorithms which require local sampling, while it

still delivers a superior estimation performance compared to PF, UPF, CPF, and GHPF. CF is not a

particle filtering algorithm and has a constant computational cost as well as constant RMSE, rela-

tive to the number of particles. Note that global sampling in UPF, CPF, and GHPF leads to poorer

accuracy than that using local sampling, and hence, the results of the global sampling for these

algorithms are omitted. LRSPF further increases the accuracy of our algorithm, at the expense of

somewhat higher computational cost.
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Figure 6.2: Problem 1: Angular RMSE plot with time for the proposed and the existing
filters.

Table 6.2: Problem 1: Average angular RMSEs obtained for the proposed filter and the
existing filters with varying number of particles.

Filters 10 particles 50 particles 100 particles
PF 0.838 0.827 0.809

UPF 0.937 0.927 0.883
CPF 0.865 0.855 0.810

GHPF 0.911 0.900 0.830
CF 0.684 0.684 0.684

GRSPF 0.698 0.679 0.663
LRSPF 0.674 0.655 0.595

Table 6.3: Problem 1: Relative computational times for the proposed filter and the existing
filters with varying number of particles.

Filters 10 particles 50 particles 100 particles
PF 1 1 1

UPF 2.19 2.13 2.02
CPF 1.93 1.83 1.71

GHPF 1.85 1.83 1.72
CF 4.53 1.22 0.63

GRSPF 1.47 1.44 1.33
LRSPF 1.83 1.85 1.74

6.4.2 Problem 2

The second problem considered is a general multivariate nonlinear angular estimation problem

[97]. In this problem, the state dynamics are of oscillatory nature, while the measurement equation
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Table 6.4: Problem 2: Average angular RMSEs obtained for the proposed filter and the
existing filters with varying number of particles.

Filters 10-particles 50-particles 100-particles
State 1 State 2 State 3 State 1 State 2 State 3 State 1 State 2 State 3

PF 0.768 0.748 0.761 0.666 0.648 0.660 0.641 0.625 0.633
UPF 0.681 0.665 0.672 0.621 0.604 0.610 0.607 0.591 0.601
CPF 0.663 0.646 0.658 0.613 0.599 0.605 0.603 0.587 0.598
GHPF 0.668 0.649 0.656 0.615 0.599 0.605 0.604 0.588 0.597
GRSPF 0.580 0.564 0.589 0.539 0.521 0.543 0.524 0.508 0.522
LRSPF 0.553 0.535 0.542 0.509 0.490 0.500 0.500 0.487 0.495

is a monotone increasing function of arguments (e.g. a positive quadratic form or its positive

square root). The state-space model of this problem can be written as [138, 158],

θk = |2cos(θk−1)|+ηk−1, (6.39)

yk =
√

(1+θT
k θk)+ϑk. (6.40)

We consider a three-dimensional system (θk ∈D3, yk ∈D) and assign the initial true and estimated

states as θ0 = [0,−π,π]T and θ̃0|0 = [−π,π,π/2]T , respectively, while initial error covariance

is taken as P0|0 = 2In. The noise covariances are assigned as Qk = diag([0.05,0.05,0.05]) and

Rk = 0.1. The states are estimated for 200 time-steps and the results are evaluated by performing

1000 Monte-Carlo runs.

Fig. 6.3 shows the angular RMSE plots of the three states obtained using the LRSPF, GRSPF,

and the existing filters. Moreover, Table-6.4 shows the average angular RMSEs obtained using

each filter for varying number of particles. Note that the figures and table do not include the

results for CF, as this problem is multivariate. As in the case of problem 1, LRSPF and GRSPF

yield lower average angular RMSE than all the other filters examined. The order of computational

times of all filters was observed similar to the order reported for the first problem. In this case, as

well, GRSPF gives better accuracy than existing Gaussian proposal filters at a lower computational

cost.
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Figure 6.3: Problem 2: Angular RMSE plot with time for the proposed and the existing
filters: (a) State 1, (b) State 2, and (2) State 3.
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Figure 6.4: Problem 1: Comparison of the average angular RMSEs for the proposed RSPF
and the existing filters under three different scenarios.
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Figure 6.5: Problem 2: Comparison of the average angular RMSEs for the proposed RSPF
and the existing filters under three different scenarios.

6.4.3 Effect of noise variations

We further study the effect of varying process and measurement noise parameters on the per-

formance of the RSPF. In this regard, we define three different scenarios by varying the process

and measurement noise covariances Qk and Rk. For the first problem, the three different scenarios

are defined as: Scenario 1: Qk = 0.05, and Rk = diag(0.02,0.02), Scenario 2: Qk = 0.1, and

Rk = diag(0.2,0.2), and Scenario 3: Qk = 0.5, and Rk = diag(1,1). Similarly, we define the three

scenarios for the second problem as: Scenario 1: Qk = diag([0.05,0.05,0.05]) and Rk = 0.1, Sce-

nario 2: Qk = diag([0.25,0.25,0.25]) and Rk = 0.5, and Scenario 3: Qk = diag([0.5,0.5,0.5]) and

Rk = 1. We draw the bar charts of the average angular RMSEs obtained for the proposed and the
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existing filters for all three scenarios in Fig. 6.4 for Problem 1 and in Fig. 6.5 for Problem 2. In

all the cases, the average angular RMSE is lower for the LRSPF and the GRSPF as compared to

the other filters.

6.4.4 Result Discussion

The simulation results infer that the RSPF outperforms the traditional PF, the existing exten-

sions of the PF (such as the UPF, CPF, and GHPF), and the circular filter CF for angular data.

Interestingly, the RSPF could outperform all the existing forms of PF at a lower computational de-

mand. We also introduce two forms of the RSPF, abbreviated as LRSPF and GRSPF. They can be

used to achieve a different trade-off between the accuracy and computational demand, particularly

if the number of particles is high. We also observe that the RSPF outperforms all the existing filters

for various noisy environments, which validates the improved accuracy of the proposed method

under different practical scenarios.

6.5 Summary

The particle filtering is a popular and widely accepted nonlinear filtering method available in

the literature. A crucial determinant of its performance is the choice of proposal density. Most

existing particle filters use the Gaussian proposal and tend to perform poorly for the estimation of

angular quantities on a restricted domain. The RSPF uses wrapped normal distribution instead of

the ordinary normal distribution as the proposal density. Subsequently, it closely represents the

proposal density for angular data. Further, we propose to use (i) conditional density approxima-

tion similar to the Gaussian filtering case to derive posterior densities and (ii) use Rogers-Szegő

quadrature rule along with the product rule for approximating the integrals involved. We compare

the performance of two variants of the new filter (with local sampling and with global sampling)

with existing Gaussian filters. In two different simulation examples, the proposed filter is shown

to outperform Gaussian proposal filters comprehensively. We show that even a global sampling

variant of our filter is more accurate than the local sampling versions of existing Gaussian filters,

even though global sampling leads to a significantly reduced computational cost. Local sampling

version of the RSPF can lead to somewhat increased accuracy at the cost of a higher computa-

tional load. Additionally, the product rule suffers from the curse of dimensionality problem [61].

114



However, the practitioners may replace the product rule with the Smolyak rule [61] and adaptive

sparse-grid method [62] to partially address this problem.
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Chapter 7

Discussion and Conclusion

7.1 Discussion

The filtering algorithms provide strong stochastic mathematical tools for handling the core

computational problems that appear in tracking, modeling, monitoring, diagnosis, prognosis, etc.

As a result, the filtering algorithms are widely applicable in the fields of target tracking, financial

modeling and monitoring, biomedical diagnosis and monitoring, remaining useful-life prediction

of industrial equipment, fault diagnosis and prognosis, etc.

Despite the widespread applications of the filtering algorithms, the literature lacks an optimal

filtering method for nonlinear dynamical systems. Regardless, a variety of nonlinear filters are

available with varying accuracy levels and requiring different computational budget. The existing

nonlinear filters can be, in general, broadly categorized into Gaussian filters and particle filters.

Thankfully, ignoring the limitations on the computational budget, the existing nonlinear filters are

adequately accurate for general real-life applications as long as the measurements do not consist

of serious irregularities. Nevertheless, the presence of measurement irregularities can severely

damage the accuracy, limiting the practical applicability of filtering algorithms.

This thesis is motivated to develop advanced nonlinear filtering algorithms to handle various

measurement irregularities. The particular irregularities of interest include time-delayed mea-

surements, non-Gaussian measurement noises, cyber-attacked measurements, and range-limited

angular data.

The detailed literature review introduced some filtering methods to handle the above-mentioned

measurement irregularities. Nonetheless, they suffer from various limitations. For example, the
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existing delay filters require a large number of delay probabilities, which are often ambiguously

assigned during the filtering. Thus, the possibility of a wrong selection of delay probabilities in-

creases with the increasing number of the prerequisite delay probabilities. Similarly, the existing

filters can handle only one measurement irregularity and they eventually underperform or fail if

multiple measurement irregularities appear simultaneously. Furthermore, existing filters for han-

dling the cyber-attacked measurements are designed to handle only one of the FDI, TAM, and

DoS attacks, while their simultaneous occurrences can not be denied. Finally, the existing filters

mostly consider the data spread over infinite-range and underperform for finite-range data, such as

angular data. The research is ongoing to mitigate these limitations of the existing methods.

7.1.1 Limitations

Below are some major limitations of this thesis that have been highlighted.

• Chapter 3 involves the use of two probabilistic pieces of information to handle larger delays

(computing this probabilistic information in formerly is a major restraint) with a require-

ment of high memory storage demands.

• Chapter 4 presented the idea of dealing with multiple measurement irregularities, such as

delay and non-Gaussian noises, simultaneously. Hence, this approach faces significant

challenges, including high memory storage requirements and substantial computational de-

mands in comparison to the conventional Gaussian filter.

• Chapter 5 devised a filtering algorithm that mandates preprocessing of data to enable the

compensation of an FDI attack using a suitable Gaussian PDF. Thus, this preprocessing

relies on several assumptions and approximations, which can potentially negatively impact

accuracy.

• Chapter 6 presented a filtering technique that is susceptible to the curse of dimensionality

issue. As the number of dimensions increases, the computational demands of this method

grow exponentially.
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7.2 Conclusion

• The accuracy of the existing filters for delayed measurement is improved by introducing

an advanced Gaussian filtering method, which reduces the number of prerequisite delay

probabilities. The number of the prerequisite delay probabilities is reduced by utilizing a

geometric random variable in place of the traditionally used sequence of Bernoulli random

variables.

• An advanced Gaussian filtering method is designed for handling the delayed measurements

and non-Gaussian measurement noises simultaneously. To handle the delayed measure-

ments, the proposed method identifies the unknown delay stochastically and restructures

the traditional Gaussian filtering method accordingly. Moreover, for handling the non-

Gaussian measurement noises, the proposed method is designed under the MC criterion in

place of the traditionally used MMSE criterion.

• The traditional Gaussian filtering method is redesigned for handling cyber-attacked mea-

surements. Interestingly, the proposed method can simultaneously handle multiple forms

of attack, including the FDI, TAM, and DoS attacks. To design the filter, the traditional

measurement model is reformulated for incorporating the possibilities of appearing the dif-

ferent forms of attack. Subsequently, the traditional Gaussian filtering method is re-derived

for the modified measurement model.

• The traditional particle filtering method is redesigned for handling angular data, which

is a class of range-limited data. In this regard, the proposal density is taken as wrapped

Gaussian. Thereon, an advanced numerical approximation method is introduced for ap-

proximating the numerical integrals that appear in characterizing the wrapped Gaussian

approximated proposal density.

• The improved accuracies of the above discussed filters are validated through the simulation

results obtained for two simulation problems.
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7.3 Future Research Scope

The contributions of this thesis may be extended further in several aspects to further improve

the accuracy, reliability, and applicability. Some of the possible extensions are highlighted below.

• The existing delay filters, including the one proposed in Chapter 3, require a set of prob-

abilistic information about the delay. The future research scope of this work may be to

develop an advanced filtering method, which derives the PDF of delay, and then, handles

the delay accordingly.

• This thesis, particularly Chapter 4, introduced the concept of simultaneously handling more

than one measurement irregularities, including the delay and non-Gaussian noises. The

future research scope may be to handle more than two irregularities simultaneously.

• The filtering algorithm designed in Chapter 5 requires some preprocessing of data to ensure

that the FDI attack can be compensated with an appropriate Gaussian PDF. Such prepro-

cessing ultimately requires various assumptions and approximations, which often influence

the accuracy adversely. In the future research, the proposed method can be extended further

to relax the need of such data preprocessing.

• The filtering method introduced in Chapter 6 suffers from the curse of dimensionality prob-

lem, as its computational demand increases exponentially with increasing dimension. The

future research objective may be to reduce the computational demand without harming the

accuracy considerably.

• Depending on the application, state dynamics may be complex or unknown. Therefore,

machine learning or deep learning techniques can be useful to identify these dynamics, and

the above solutions can also be applied to unknown dynamics.
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Appendix A

Simplifying Eq. (4.25) in terms of Eq.

(4.26)

Let us expand
(
WT

g̃,d̃S
t−1
g̃,d̃

Wg̃,d̃

)−1 and
(
WT

g̃,d̃S
t−1
g̃,d̃

Dg̃,d̃

)
. To expand

(
WT

g̃,d̃S
t−1
g̃,d̃

Wg̃,d̃

)−1, we rewrite

Wg̃,d̃ given in Eq. (4.20) by substituting Ωg̃,d̃ from Eq. (4.18). Then, given Sg̃,d̃ = diag
(
Sx,(g̃,d̃),Sz,(g̃,d̃)

)

and the resulting Wg̃,d̃ expression, we obtain
(
WT

g̃,d̃S
t−1
g̃,d̃

Wg̃,d̃

)−1 in the form of Eq. (A.1).

(
WT

g̃,d̃S
t−1
g̃,d̃

Wg̃,d̃

)−1
=
(
(ΩnT

g̃,d̃)
−1St−1

x,(g̃,d̃)
(Ωn

g̃,d̃)
−1 +HT

g̃,d̃(Ω
rT
g̃,d̃)

−1St−1
z,(g̃,d̃)

(Ωr
g̃,d̃)

−1Hg̃,d̃

)−1
. (A.1)

To further simplify Eq. (A.1), let us consider the following notations





A = (ΩnT
g̃,d̃

)−1St−1
x,(g̃,d̃)

(Ωn
g̃,d̃

)−1, C =HT
g̃,d̃

D = (ΩrT
g̃,d̃)

−1St−1
z,(g̃,d̃)

(Ωr
g̃,d̃)

−1, E =Hg̃,d̃

(A.2)

Considering Woodbury matrix identity, (A+CDE)−1 = A−1 −A−1C(D−1 +EA−1C)−1

EA−1, which gives
(
WT

g̃,d̃S
t−1
g̃,d̃

Wg̃,d̃

)−1 expression in the form of Eq. (A.3).

(
WT

g̃,d̃S
t−1
g̃,d̃

Wg̃,d̃

)−1
=Ω

n
g̃,d̃(S

t−1
x,(g̃,d̃)

)−1
Ω

nT
g̃,d̃ −Ω

n
g̃,d̃(S

t−1
x,(g̃,d̃)

)−1
Ω

nT
g̃,d̃H

T
g̃,d̃

(
Ω

r
g̃,d̃(S

t−1
z,(g̃,d̃)

)−1
Ω

rT
g̃,d̃

+Hg̃,d̃Ω
n
g̃,d̃(S

t−1
x,(g̃,d̃)

)−1
Ω

nT
g̃,d̃H

T
g̃,d̃

)−1
Hg̃,d̃Ω

n
g̃,d̃(S

t−1
x,(g̃,d̃)

)−1
Ω

nT
g̃,d̃ .

(A.3)

To obtain WT
g̃,d̃S

t−1
g̃,d̃

Dg̃,d̃ , let us rewrite Dg̃,d̃ by substituting Ωg̃,d̃ from Eq. (4.18) into Eq.

122



(4.19) and expressed as

Dg̃,d̃ =




(Ωn
g̃,d̃

)−1x̂g̃,d̃|k−1

(Ωn
g̃,d̃

)−1
(
zk − ẑg̃,d̃|k−1 +Hg̃,d̃ x̂g̃,d̃|k−1

)


 . (A.4)

Then, for the resulting expression of Dg̃,d̃ , Wg̃,d̃ , and St−1
g̃,d̃

, we get WT
g̃,d̃S

t−1
g̃,d̃

Dg̃,d̃ in the form of Eq.

(A.5).

WT
g̃,d̃S

t−1
g̃,d̃

Dg̃,d̃ =(ΩnT
g̃,d̃)

−1St−1
x,(g̃,d̃)

(Ωn
g̃,d̃)

−1x̂g̃,d̃|k−1 +HT
g̃,d̃(Ω

rT
g̃,d̃)

−1St−1
z,(g̃,d̃)

(Ωr
g̃,d̃)

−1(zk

− ẑg̃,d̃|k−1 +Hg̃,d̃ x̂g̃,d̃|k−1

)
.

(A.5)

To this end, substituting
(
WT

g̃,d̃S
t−1
g̃,d̃

Wg̃,d̃

)−1 and
(
WT

g̃,d̃S
t−1
g̃,d̃

Dg̃,d̃

)
from Eqs. (A.3) and (A.5), re-

spectively into Eq. (4.25), we obtain the desired x̂t
g̃,d̃|k in the form of Eq. (4.26) for Kt−1

g̃,d̃|k, P̄t−1
g̃,d̃|k−1,

and R̄t−1
g̃,d̃|k given in Eqs. (4.27), (4.28), and (4.29), respectively.

123



Appendix B

Analytical Steps of Filtering

Sample points and Weights:

Compute the deterministic sample points and weights using numerical approximation method:

Υi and Wi ∀i ∈ {1,2, · · · ,Ns}.

Prediction:

• Determine the Cholesky decomposition of initial error covariance

Pk−1|k−1 =Σk−1|k−1Σ
T
k−1|k−1,

where Σk−1|k−1 = chol(Pk−1|k−1, lower)

• Compute the transformed sampling points

ζi,k−1|k−1 =Σk−1|k−1Υi + x̂k−1|k−1

• Propagate ζi,k−1|k−1 through process model

ζ ∗
i,k−1|k−1 = φk−1(ζi,k−1|k−1).

• Estimate the predicated mean

x̂k|k−1 = ∑
Ns
i=1Wiζ

∗
i,k−1|k−1.

• Compute the predicated error covariance

Pk|k−1 = ∑
Ns
ji=1Wiζ

∗
i,k−1|k−1ζ ∗T

i,k−1|k−1 − x̂k|k−1x̂T
k|k−1 +Qk.
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Update:

• Determine the Cholesky decomposition of predicted error covariance

Pk−1|k =Σk−1|kΣT
k−1|k,

where Σk−1|k = chol(Pk−1|k, lower)

• Compute the transformed sample points

ζi,k|k−1 =Σk|k−1Υi + x̂k|k−1

• Propagate ζi,k|k−1 through measurement model

ζ ∗
i,k|k−1 = Ψk(ζi,k|k−1)

• Compute the predicted measurement

ẑk|k−1 = ∑
Ns
j=1Wiζ

∗
i,k|k−1

• Compute the innovation error covariance

Pzz
k|k−1 = ∑

Ns
i=1Wiζ

∗
i,k|k−1ζ ∗T

i,k|k−1 − ẑk|k−1ẑT
k|k−1 +Rk

• Compute the cross-covariance

Pxz
k|k−1 = ∑

Ns
i=1Wiζi,k|k−1ζ ∗T

i,k|k−1 − x̂k|k−1ẑT
k|k−1

• Determine the Kalman gain

Kk = Pxz
k|k−1(P

zz
k|k−1)

−1

• Compute the updated estimate of state

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1)

• Compute the updated error covariance of state

Pk|k = Pk|k−1 −KkPzz
k|k−1KT

k
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of szegő polynomials to the computation of certain weighted integrals on the real line.

Numerical algorithms, 52(3):273–293, 2009.
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