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ABSTRACT

Centrifugal pump is one of the crucial machinery used in many industries
ranging from petroleum exploration, oil and gas to nuclear power plants, as
well as other sectors like food and pulp, mining and agriculture processing
industry. The unexpected failure of pumps results in lengthy downtime,
expensive repairs, financial losses, and threat to the operator's safety. Any
failure in a non-redundant pumping system can halt the plant's entire
system, which contains the defective pump as its subsystem. So, the
availability and reliability of the pump are of high importance. Therefore,
health monitoring of the pump is essential to avoid any malfunction or
damage and promote optimal utilization of the pump's service life. The work
presented in this thesis focuses on different novel data-driven-based
machine learning (ML) approaches for monitoring the centrifugal pump
against blockages and mechanical faults. Initially, a dedicated test rig
developed for simulating and monitoring the pump for blockage faults
(suction, discharge and simultaneous occurrence of both) is presented.
These blockage faults are simulated by closing the butterfly valve installed
in both the suction and discharge lines. Experiments are conducted to
acquire pressure and flow rate signals for these blockage faults. At first,
twelve different statistical features are extracted from these signals for
monitoring the pump against suction and discharge blockage. A Butterfly
optimization algorithm 1is utilized to select optimized features by
eliminating irrelevant features. XGBoost - an ensemble classifier is used to
diagnose blockages in the centrifugal pump. The results reveal that
discharge pressure signals can classify blockage faults better than suction

pressure signals at an accuracy of 98.66%.

In the subsequent chapter, the discharge pressure signals are denoised using
the complementary ensemble empirical mode decomposition (CEEMD)
method and converted into binarized fuzzy recurrence plots. Convolutional

features are extracted from these plots through different pre-trained model's
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pooling layers. The pre-trained models used in this study are Inception,
Xception and GoogleNet. These extracted features are utilized to classify
the blockages namely, suction blockage, discharge blockage and
simultaneous occurrence of both suction—discharge blockages in the pump
through different shallow classifiers. The subspace discriminant achieves
the highest accuracy of 97.8% when trained using features from the initial

pooling layers of Xception model.

In the subsequent chapter, experiments are conducted to evaluate changes
in pump performance due to an increase in the severity of the blockage
faults. The pump performance degrades, and the operating condition of the
pump shifts towards the left side of the H-Q curve with an increase in the
blockage severity. Sequential learners such as LSTM and Bi-LSTM are
employed to classify the blockage fault in the centrifugal pump with its
severity. A customized non-convolution feature layer is employed in these
models to extract statistical features (SF), entropy-based parameters, and
Holder's exponent (HE) from the discharge pressure signal. Different
combination of these features is evaluated on LSTM and Bi-LSTM
classifier. It is found that LSTM trained with all sets of features provides

the highest accuracy and F1 score of 99.01% and 98.95%, respectively.

The vibration signals are used to monitor the pump to detect mechanical
faults such as impeller wear, bearing inner race wear, bearing outer race
wear, and bearing roller wear. The statistical features are extracted in the
signal's time and frequency domains. Three feature ranking methods,
namely, XGBoost, Chi-square and ReleifF are used to select the most
relevant features. The results reveal that the ANN model with features
selected through XGBoost, and Chi-square performed with a maximum

accuracy of 98.3 %.

Toward the last, a centrifugal pump model is developed on the Simscape
platform to predict the degradation in the pump's performance due to

leakage flow through increased wearing clearance. Similarly, a Simscape



model is developed to simulate the pump, which uses the flowrate signal of
the actual pump. This study further proposes a hybrid method that combines
model-based approaches with the data driven approaches. The statistical
features extracted from the experimental signal are ranked using XGBoost
and five features are selected from these features. Similar features are
extracted from the simulated signal too. These combined features are used
to train SVM classifier and achieve an accuracy of 89.33% for detecting

increased wear ring clearance.
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Chapter 1

Introduction

This chapter presents a brief history of the pump’s origin and evolution over
time. Further, this chapter puts forward the principle of working of a
centrifugal pump and its essential components. In the end, the thesis

organization is presented.

1.1 Introduction: History of pump

Transferring liquid against gravity has been a prime requirement since
ancient times. “Shadoof™ is the first known ancient wooden hand-operated
device employed to lift water from the river, well or canal (Yannopoulos et
al., 2015). It is a long wooden horizontal pole mounted as a sea- saw
comprising a container connected to the pole with a rope on one end and a
counterweight on the other. The operator pulls down the container in the
water by pulling the rope attached to the long end. fills the container, and
allows the counterweight to raise the filled container. This technology was
used by the Mesopotamians around 3000 BC. It was also used for crop
irrigation near lakes, canals, etc. Greeks invented a similar system called
Ctesibius for pumping fluid (Yannopoulos et al., 2015). The system was
refined by introducing the pulley and animal-based traction system for
lifting water from deep wells. This method is even used today for drinking

water purposes and irrigation of small agricultural fields.

The first waterwheel, known as the Egyptian wheel (Noria), was invented
around 600 — 700 BC (Yannopoulos et al., 2015). These are wooden wheels
fitted with buckets powered through water flow and lift the water for

irrigation in nearby lands.
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These water wheels and their different versions are considered as the
ancestors of the current dynamic water-lifting devices or modern
hydropower systems. The key principle of these machineries is to extract

the power from the flow of water (i.e., kinetic energy).

Another type of water-lifting device known as the “Archimedes screw™ was
mnvented by Archimedes around 287 — 212 BC (Yannopoulos et al., 2015).
It comprises a wooden shaft with thin, flexible curves to create a typical
screw which rotates in a wooden pipe. This complete device is placed in the
water at a slope of, say 30°. Along with the rotation of this screw, the water
trapped inside its coil lifts towards the upper end of the pipe. This is the first
known variant of the displacement pump. This system was powered by
humans or animals and raised water for land irrigation and fields. These
devices were also used in the ore mines of Spain. Further, the mining
activities during Middle Ages resulted in the development of the suction
pump (Piston) as described in De Re Metallica by Georgius Agricola. These
piston-cylinder arrangements are utilized for the force pumps used in

Greece to lift water from the wells.

The modern era of the pump’s history begins around the late 17 and early
18 centuries with the invention of the water pump that utilizes steam to
power the pump’s piston. These pumps are first used in mining ores. Yet,
the first centrifugal impeller that has straight vanes was developed by D.
Papin around 1689. The major contribution of Papin lies in understanding
the concept of creating a forced vortex in a circular casing through straight
vanes. In 1838, Comb’s presented a study on curved vanes and the effect of

curvature, which proved to be a breakthrough in developing centrifugal
pumps.

Further, W.H. Andrews presented a proper volute casing design in 1839 and
utilized the fully shrouded impeller inside the pump in 1846. In 1849, 1.5.

Gwynne invented the multistage centrifugal pump and instigated the first

systematic investigation of these pumps. J. Appold conducted a series of
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experiments to determine the best impeller design presented and concluded
that the impeller vanes™ curvature significantly affects the pump efficiency
(Girdhar & Moniz, 2011). In 1851, the centrifugal pump developed by
Appold with curved vanes achieved 68% overall efficiency, much higher
than other pump designs. Subsequently, other pumps, such as reciprocating
and rotary were also evolving with time (Bloch & Budris, 2004). An
overview of the evolution of centrifugal pumps is shown in Figure 1.1. The
development of centrifugal pump designs was rapidly increasing due to
their low-cost manufacturing and ability to handle a wide range of fluids.
Additionally, the popularity of centrifugal pumps grows due to the

invention of the electric motor, IC engine and steam turbine.

Diaphragm  Others

Rotary Pump

Centrifugal Pump

Figure 1. 2 Pump's market

Furthermore, the innovation of centrifugal pumps that started with their
application in agriculture spread to various domains such as chemical,
petroleum and mining. Currently, centrifugal pumps are employed in wide
applications compared to other types of pumps (Karassik et al., 2008;
Hamomd, 2018), as shown in Figure 1.2. As per the recent report on the
centrifugal pump market published on March 2021, the pump’s market in
2021 is around USD 31.58 billion. This market is projected to reach up to
USD 51.91 billion by 2030 (Centrifugal Pump Market Size USD 51.91
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Billion by 2030). Centrifugal pumps are widely used for their flexibility to
handle a wide range of flowrate and can even operate for low viscous fluids
at lower operational cost. The next section discusses the working of the
centrifugal pump and its components in detail.

Liquid Out
(High pressure )

EnergySource =-=--»  Driver = Pump (j: Liquid In

(Low pressure )
(a)
Drive shaft
(w, T)
Discharge side

Pump shaft
Impeller

Impelier eye Wear ring

Pump casing

Suction side

(b)

Figure 1. 3 (a) Block diagram of energy conversion in centrifugal pumps

and (b) Schematic diagram representing the working of the centrifugal

pump

1.2. Centrifugal pump

Centrifugal pumps are mainly used to increase the pressure of the working
fluid. Several energy conversions occur inside the pump to achieve this

purpose (Volk, 2013), as shown in Figure 1.3. (a).
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Figure 1. 4 Exploded view of centrifugal pump
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The input provided to the pumps is mainly employed to power the drive.
The most widely used energy source is the electricity to drive the motor
pump. This energy input to the pump is first converted into the rotating
mechanical energy which drives the output. It rotates the driver shaft
operating at a specific speed and transmitting specific torque, as shown in
Figure 1.3. (b). The power transmitted is defined as the product of rotating
speed and torque. Further, the remaining energy transformation occurs
inside the pump. The rotating shaft of the pump is connected to the impeller.
Therefore, this rotating impeller increases the velocity of the liquid entering
it through the suction side. This is the second energy transformation, as the
input power 1s converted into the kinetic energy of the liquid at this phase.
The final energy conversion occurs just before the liquid leaves the
impeller, known as the “diffusion process”. At this stage, the flow area’s
expansion results in reduced velocity, which is higher than its entrance
velocity and lower than its maximum velocity observed at its impeller tip.
This process converts the part of velocity energy into pressure energy,

increasing the fluid’s pressure (Volk, 2013).

1.2.1. Construction of centrifugal pump

The exploded view of the centrifugal pump is shown in Figure 1.4. The
induction motor drives the centrifugal pump. The major components of a
centrifugal pump are the impeller, casing, wear rings, driving shaft, bearing,
bearing housing, mechanical seal or lantern ring. These components are

described below 1n detail:

i. Impeller

The impeller is the pump’s rotating component that transforms the
mechanical rotation into the fluid’s velocity. The liquid enters the pump
through the impeller eye and is guided towards the outlet through the
impeller vanes. The shape and angle of these vanes depend on the required
flow rate. These vanes are usually cast with a back plate termed “Shroud on

the back cover” and a front plate termed “front cover”. Impellers are
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manufactured most of the time through the casting process. Impellers also
have balancing holes and back vanes to mitigate the axial thrust generated

through hydraulic pressure (Girdhar & Moniz,2011).

The impellers are categorized into three types: closed, semi-closed, and
open. In a closed impeller, radial vanes are enclosed by both sides through
two discs known as “shrouds™. They are equipped with wear rings on the
front shroud over the impeller eye, which is not mandatory on the back
shroud. These pumps are fitted with wear rings and thus have the highest
volumetric efficiency compared to other impellers. While in a semi-closed
impeller, the shroud is present only at the back side of the impeller
(Hamomd, 2018). The axial thrust produced in a semi-open impeller is more
significant than in a closed impeller. This impeller type is preferred for
liquid, including foreign particles and fibres. In an open impeller, vanes are
attached to the central hub without the shroud. This impeller type is the
perfect choice for a liquid that contains stingy materials and is highly
susceptible to clogging. The shortcomings of these types of impellers are
their structural weakness. So, if their vanes are too long, they must be
equipped with ribs or partial shrouds for strengthening. Therefore, they are

mainly employed in small and low-energy pumps only.
ii. Casing:

The casing has circular or volute geometry that encloses the impeller and
guides the fluid from the suction of the impeller towards the discharge side.
It is created as a circular funnel with an increased area at the discharge port.
It acts as a sealing component of the pump, restricting the contact of fluid
that enters the pump from the atmosphere. The primary intent of the casing
is to convert the liquid’s velocity head to pressure head by accumulating
liquid from the impeller’s periphery at high velocity and progressively

expanding the flow area to raise the pressure head.
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ni.  Wear ring

The impeller is the rotating equipment enclosed inside the stationary casing.
A specific clearance is essential at the periphery of the impeller inlet and
casing to reduce the frictional contact between them. The pressure
difference between the outlet of the impeller and the inlet causes fluid
recirculation through this clearance. This leakage further leads to
degradation in the pump’s efficiency If this clearance is kept low, it
improves the pump’s efficiency. Other advantages include less chance of
erosion at the suction side due to recirculation and improved rotor dynamics
stability, reducing the vibration in the pump. So, this clearance should be
maintained at an optimum value. The low value of this clearance increases
the chance of frictional contact between the impeller and casing, which can
lead to the loss of these expensive parts. This issue can be overcome by
installing wear rings at either or on both the impeller and casing to reduce
recirculation loss and enhance volumetric efficiency. The wear rings are
installed at the front side, as shown in Figure 1.3. (b) or both front and back
sides (Girdhar & Moniz,2011).

iv.  Shaft:

The torque for the rotation of the impeller is transmitted through the shaft.
Furthermore, the shaft and its supporting components align the rotor inside
its operating clearance and through the shaft seal. The shaft is strong enough
to survive against the starting load that occurs when the pump’s motor starts.
Also, deflection in the shaft can arise due to the weight of the rotor and
hydraulic loads generated during the operation. The design and material
selection of the shaft is selected considering these conditions (Karassik et

al, 2008).
v.  Bearing and bearing housing:

The shaft bearing allows the rotor to revolve while keeping proper

alignment between the rotor and the pump’s stationary portion under the
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action of radial and axial forces generated due to the weight of the rotor and
hydraulic forces on the impeller (Girdhar & Moniz,2011). These bearings
are enclosed in the bearing housing. The bearing housing comprises the oil
reservoir that enables the lubrication and hot dissipation from the bearings
(Hamomd, 2018). Damages to the bearing harm the other pump
components, namely, the impeller, mechanical seal and shaft. These further
escalate unnecessary breakdowns in the pump, increasing maintenance

CXPpENSsEs.
vi. Mechanical seal or lantern ring:

Mechanical seals usually seal the shaft at the pump’s casing side. It prevents
the leakage of the pressurized fluid from the backside of the casing at the
shaft’s pathway. It 1s installed in the chamber, which may or may not be
part of the pump casing, known as a sealed chamber or stuffing box. This
chamber is referred to as a sealed chamber when a mechanical seal 1s
employed for sealing, while it is a stuffing box if gland packing is used for
the sealing (Karassik et al., 2008). A mechanical seal is made up of two
utterly lapped mating surfaces, one of which is fixed and the other
revolving. Proper lubrication is much needed between these two mating
faces: otherwise, it will wear the seal. Damaged seal results in leakage from
the pump casing. Mostly, a sealant fluid is pumped at a specific pressure
into the seal housing for lubricating and cooling these mating faces

(Hamomd, 2018).

1.2.2. Centrifugal pump performance

The pump increases the fluid’s pressure head by converting kinetic energy
into pressure, as detailed in section 1.2. In actual circumstances, the pump
doesn’t convert the entire kinetic energy into the pressure energy as a
specific part of kinetic energy is lost in this complete process. Mainly,
certain energy dissipation occurs in three different areas and is not

converted into useful work (Srinivasan, 2008). Therefore, different pump
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efficiencies are defined to consider these losses. Pump efficiency is defined

as the multiplication of three efficiencies described below:
i.  Hydraulic efficiency (ny):

The actual head developed by the centrifugal pump is always less than the
theoretical head of the pump. The energy is lost in overcoming the frictional
resistance offered by the surface roughness at the impeller’s inner side and
due to the fluid’s recirculation. Hydraulic efficiency is defined as the ratio
of the actual head developed to the theoretical head of the pump
(Srimivasan, 2008).

_Hy (1.1)
Nu = Hy

ii.  Volumetric efficiency (1, ):

A certain clearance is provided at the wear rings of the front and rear sides
of the impeller to allow the impeller to rotate inside the stationary casing.
The fluid flows through these clearances due to the pressure difference at
outlet and the front or rear side of the impeller. Accordingly, the fluid

available at the discharge side ((J4) is less than the fluid passing through the
impeller (Q7).

Mathematically, volumetric efficiency is defined as the ratio of fluid
available at the discharge side to the actual fluid passed to the

impeller(Srinivasan, 2008).

_

= 1.2
Qr (-2

v

iii. = Mechanical efficiency (1) :

A certain amount of energy dissipates at the bearing, mechanical seal and

overcoming disk friction losses during rotation of the impeller in a volute

11
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casing filled with the fluid. Accordingly, the energy received at the impeller
side of the shaft for increasing the pressure of fluid i.e., actual power
received (N,) 1s always less than the energy provided at the coupling side
of the prime mover i.e., theoretical power (Ny).

Mathematically, mechanical efficiency is defined as the ratio of the actual

power used to the theoretical power supplied to the pump shaft (Srinivasan,

2008).

Ny
=— 1.3
MM N, (1.3)
Mathematically the overall efficiency of the pump is defined as:
N ="1umMv Nu (1.4)

The performance of the centrifugal pump degrades due to the occurrence of
any fault and further increases the downtime and maintenance cost
associated with the fault’s severity. Figure 1.5. shows that 35% of the total
life cycle cost of pumps is utilized to restore the pump to its original

condition so it can work at its optimum condition (Petrashko, 2011).

Purchase
Cost Operating &
Energy Cost

Installation

Maintenance
Cost

Figure 1. 5 Life cvcle cost of the centrifugal pump
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The fault that can occur in the pump is categorized into mechanical and
hydraulic faults. The mechanical faults mainly occur due to faulty
components in the pump, such as defects in the bearing, misaligned shaft,
crack in the impeller etc. In contrast, hydraulic faults occur due to flow
instability in the pump that can occur due to blockages, leakages, etc.
Furthermore, it is essential to recognize the type of fault before eliminating
and dismantling the pump for maintenance to rectify the main reason for the

occurrence of the specific fault.

1.3. Thesis organization

The chapter wise break up of the thesis is presented as follows:

Chapter 1 deals with the working of the centrifugal pump and the major

components of the centrifugal pump.

Chapter 2 briefly details the previously carried out monitoring study in the
field of centrifugal pumps. It also describes the importance and scope of the

current study.

Chapter 3 demonstrates the experimental facility developed for simulating
and monitoring the centrifugal pump against blockages. This chapter
introduces a butterfly optimization-based study to select the optimized
features and proposes XGBoost classifier-based monitoring strategy to

diagnose blockages in the centrifugal pump.

Chapter 4 shows the blockage diagnosis methodology based on the
discharge pressure signal’s fuzzy recurrence plots (FRP). The features are
extracted from FRP through three different pre-trained models, and

classification is carried out through shallow classifiers.

Chapter 5 presents the blockage diagnosis and severity identification in the
centrifugal pump through a discharge pressure signal based on Long short-
term memory (LSTM) and Bi-directional long short-term memory (Bi—

LSTM) classifier.
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Chapter 6 proposes a methodology to diagnose mechanical faults in the
centrifugal pump through vibration signals using SVM and ANN. This
study presents Chi-Square, ReleifF and XGBoost as feature ranking

techniques to select the features.

Chapter 7 presents a model-based study to predict the performance
degradation in the centrifugal pump with increasing wear ring clearance.
Furthermore, this study proposes a hybrid approach that combines model
based approach to data driven approach to detect wear ring clearance fault

in pump.

Chapter 8 describes the key conclusion and future scope of this study.
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Chapter 2

Literature Review

This chapter presents a comprehensive review of the studies carried out in
monitoring the centrifugal pump against different faults that degrade the
pump’s performance. This chapter also describes the importance and scope

of the current study.

2.1. Introduction

Centrifugal pump is one of the crucial machinery used in a plethora of
industries ranging from petroleum exploration, oil, and gas to nuclear power
plants, as well as other sectors like food and pulp, mining, agriculture
processing industry etc.(Sakthivel et al., 2010, Kléma et al., 2005).
Hundreds of centrifugal pumps are employed to transfer fluids in these
industries. The unexpected failure of pumps results in lengthy downtime,
expensive repairs, financial losses, and threat to the operator’s safety
(Ahmad et al., 2020). If the pumps operate for a prolonged period without
any maintenance, then faults propagate in the pump and can even damage
the entire assembly. Selvakumar & Natarajan (2015) surveyed centrifugal
pumps employed for industrial, agricultural, and domestic purposes to
analyze their cause of failure. The major problems associated with the
pumps are clogging at the suction side, no delivery, leakages, excessive
noise, excessive heat, and damage in components such as the impeller,
bearing, mechanical seal and shaft. The faults in components occur due to
excessive stress, reduced strength of components, poor design and variation
in load applied during the continuous operation of the pump. These faults
can induce uneven flow and pressure fluctuation in the pumping system,

which can deviate the pump from its desired operating condition and, in the
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worst case, result in a hazardous incident that can damage the whole

pumping system and the operator.

Suhane (2012) recognized different faults that can occur in a centrifugal
pump. These faults were categorized broadly in three types, namely,
mechanical faults, hydraulic faults, and others. Hydraulic faults mainly
comprise cavitation, blockages, pressure pulsation, axial or radial thrust,
suction or discharge recirculation and operation of impeller blades near the
cut section. Mechanical faults include seal failure, bearing failure, excessive
vibration, fatigue, and lubrication. Other faults include erosion, corrosion,
or excessive power consumption in the pump. These different faults also
have an interaction between them. For instance. the variation in pressure
and temperature of the fluid in the sealed chamber also affects its seal life.
So, the flow should be maintained between lower and higher accepted
values to lower mechanical failures in the pump. Furthermore, Figure 2.1
enlists the problems that can arise in a centrifugal pump and the possible
reasons for their occurrence (Rajakarunakaran et al., 2008; Sunal et al.,

2022).

Identifying these faults and restoring the pump to its original condition is
the prime objective of the maintenance personnel to ensure that the pump is
safely operating at its full efficiency without any fault. The maintenance
strategies employed in industry to restore any machinery to its original state
are categorized into three types (Beebe, 2004; McKee et al, 2014;
Mechefske, 2005.; Subbiah & Littleton, 2018):

I. Breakdown maintenance
il. Preventive maintenance

1il. Condition-based maintenance

In breakdown maintenance, the repair is performed after any equipment
failure occurs in the pump. In this maintenance strategy, unscheduled
maintenance increases and results in unpredictable machinery breakdown,

leading to higher maintenance costs (Beebe, 2004).
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Cause of the problem

Problems in centrifugal pump

Insufficient discharge pressure

Intermittent operation

Insufficient capacity

Mo liquid delivery

High bearing temperature
Short bearing life

Short mechanical seal life
High vibration

High noise levels
Excessive power demands

Mator trips

Elevated motor temperature

Elevated liquid temperature

Bent shaft

Distorted casing

Cavitation

Clogged impeller

Driver Imbalance

Electrical problems |Drivers)

Entrained air

Hydraulic instability

Improper mechanical seal

Strainer partially clogged

Insufficient flow through pump

Insufficient suction pressure

Insufficient suction volume

Internal wear

Leakage in pipe and valves

Mechanical defects, worn, rusted
and defective bearings

Misalignment

Misalignment (Driver and pump)

Mismatched pump in series

Nen-condensable liquid

Obstruction in lines or pump
housing

Raotor imbalance

Specific gravity too high

Speed too high

Speed to low

Head of pump higher than
prescribed limit

Head of pump lower than
prescribed limit

Unsuitable pump in parallel
operation

Viscosity too high

Wrong rotation

Figure 2.1 Possible problems and their causes in centrifugal pump
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While in the preventive maintenance strategy, maintenance is carried out
periodically after a certain time interval. It is based on the previous history
of component failure or suggested by the manufacturer, irrespective of the
status of the machine (Ruiz et al., 2007). General maintenance includes
replacing oil, lubrication, and components regardless of their current health
condition. The objective of this strategy is to reduce downtime frequency
leading to decreases in failure cost, production loss and improving the
machine’s performance. This approach mainly depends on the previous
experience ol the system’s history, as there is no standard procedure for this
type of maintenance. However, this approach is limited in the fields where
minimizing operational cost with maximizing machine performance is the
primary goal, as unnecessary maintenance of the component increases the
maintenance cost. The condition-based maintenance is a more efficient
approach as compared to the other two. In this approach, maintenance is
scheduled based on the machine’s health, 1 e , maintenance 1s only carried
out if any anomaly is noticed in the condition of the monitored components
(Mohanty, 2014). So, the unnecessary scheduled maintenances are reduced

in condition-based maintenance, which further lowers the maintenance cost.

2.2. Monitoring of centrifugal pumps

The condition monitoring of the centrifugal pump can be performed using

three different approaches as listed below (Shruti, 2019).

1. Visual assessment of data acquired through sensor:
ii. Mathematical model-based approach

ili. The data-driven approach based on the machine learning algorithm

2.2.1. Visual assessment of data acquired through sensor:

It is the traditional approach employed in the fault diagnosis area. In this
method, the obtained data is manually examined, certain statistical
charactenstics are retrieved, and a decision 1s made based on their variation

about the presence of the problem.
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i. Visual assessment of signal spectral

Almost every fault in any mechanical system exhibits a unique signature in
different forms based on the type of acquired signal. The operators and
maintenance personnel inspect the acquired signals to detect the presence
of any fault in the system based on their experiences. In vibration signals,
the most important frequencies are rotational frequency (RF), blade pass
frequency (BPF), line current frequency (LCF), and natural frequency of
the system (Shruti, 2019) Occurrence of any fault will increase the
amplitude of the associated frequency with the fault. For instance, if bubbles
are formed in the centrifugal pump, it will increase the amplitude of the BPF
as the bubble rotates with the impeller and leads to “rotating cavitation”
(Cudina & Prezelj, 2009). Tan and Leong (2008) acquired vibration signals
from the pump casing, bearing and flange at the suction and discharge side
to detect cavitation in the pump through envelope analysis of the acquired
signal. They revealed that the occurrence of cavitation increases the
amplitude at the half-order subharmonic of the BPF while (Abdulkarem et
al., 2014) acquired vibration signal to detect a crack in impeller blades with
their severity level in both time and frequency spectrum. They observed the
amplitude increment of power spectrum amplitude at the fault indication
frequencies. Hamomd et al. (2017) examined the mechanism associated
with excitation in vibration signals at three different pump conditions:
blockages in the impeller, bearing inner and outer race defects through the

modulation signal spectrum.

ii. Visual assessment through Statistical methods
Kamiel et al. (2005) carried out a study to detect the impeller’s fault through
vibration signals using principal component analysis-based monitoring
technique, which utilized the Hotelling T statistics value as the threshold
value for monitoring the pump against impeller fault in the pump. Further,

Halligan & Jagannathan (2011) utilized linear and Gaussian kernels to

diagnose various faults in pumps, such as failure of the seal, impeller, inlet
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pressure sensor and clogging in the impeller using a pressure sensor and
accelerometer. They revealed that Gaussian kernel PCA performed better

than linear PCA in segregating the cluster of different pump conditions.

The visual assessment methods are effective if the information regarding
the system’s characteristics frequency is known in advance. The success of
these methods also highly depends on the individual’s skills and expertise,
which limits its implication as it is tedious for an individual to monitor the
pump continuously. Furthermore, an appropriate filtering method is
essential to free the spectrum from noise. These constraints limit the use of

these approaches to a large extent in the industry.

2.2.2. Mathematical model-based approach

In the mathematical modeling approach, the system’s physical attributes are
defined systematically so that they nearly mimic the functioning of the
actual system. Fault detection using mathematical models depends on
residual generation, which acts as the fault indicator. These indicators are
obtained from the difference in individual attributes of the process from
process variables such as state variables or coefficients. The data acquired
from the system is compared to the data generated by the developed model
to establish the benchmark state. Further, the fault in the system is identified
by comparing the estimated residual through different judgment methods
such as threshold value, fuzzy decision-making, statistical decision theory,
etc. (Rapur & Tiwari, 2019). The limiting values for making the decision

should be selected judiciously so that the rate of false alarms is minimized.

Isermann Rolf (1984) reviewed various fault detection methods established
on modelling and estimation approaches that utilise determinate and
indeterminate parameters in their survey. These model utilizes the sensor
data to monitor each parameter and actuates the alarm if any of the
parameter’s values are outside the limiting value for the specific parameter.
But these models were insensitive to leakage fault. While in some other

approaches, subsytem are modleed to recognize mechanical parts and fluid
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parts (Kallesge et al., 2004, 2006; Samanipour et al., 2017). The models and
associated parameters were utilised and further residual was computed for
each sub-system. Wolfram et al. (2001) developed the pump’s model
comprising a centrifugal pump, pipe and mechanical sub-system to monitor
the pump against impeller defect, bearing friction, gap loss, blockages and
sensor fault. A distinct neural fuzzy model denoted the normal condition of
cach sub-system. Further, the residual was computed to implement the fault
detection process. The developed models were only sensitive to the faults
used in particular measurements and respective sub-process and were
insensitive to faults in other sub-processes and measurements. Kallesge et
al. (2004) in their study, modelled the centrifugal pump into four sub-
systems such that each sub-system is sensitive to subsets of the considered
fault. A separate residual observer was dedicated to each sub-system to
identify the system’s fault. The faults considered in the model were
clogging, leakages, cavitation, dry run and bearing fault. These faults were
monitored through shaft torque, head and flow of the pump. This model was
not able to distinguish between cavitation and dry run. Also, the developed
models were sensitive to the pump’s operating parameters. Further,
Kallesge et al. (2006) updated the centrifugal pump’s model, which utilizes
only two inputs or variable, namely electric motor parameters (motor
current, stator voltages) and pumps delivery pressure. The pump was
modelled in two separate sub-systems: mechanical and electrical. The same
fault setwere selected as in their previous study. These faults mainly affect
the second sub-system only, so analytical redundancy relation (ARR) is
developed for this sub-system to detect faults in the pump. A larger residual
value signifies the pump’s deviation from its actual condition, indicating the
presence of faults in the pump. The developed model assumes the pump
operates at a constant speed, making detecting fault at transient phases in
the system challenging. Samanipour et al. (2017) developed a centrifugal
pump model that comprises three blocks: mechanical part, hydraulic part

and induction motor for detecting cavitation in the pump. The developed
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models utilise torque, pressure value and performance curve to compute the
residual. The features were extracted from the residuals and fed to a self-

organizing map to detect the pump’s condition.

The mathematical model of pumps is helpful for insight into the actual
process during fault occurrence. However, it is difficult to model the
centrifugal pump accurately as each fault is modelled in the pump through
a separate function. As a result, simulating the combination of failures in a
pump is tedious. Furthermore, in most circumstances, the created models
are sensitive to shifts in operating conditions or noise. Moreover, the

selection of threshold value determines these method’s effectiveness.

2.2.3. Data-driven approach based on machine learning
(ML) algorithm

In this approach, an ample amount of data at different fault conditions and
healthy conditions of the system is much needed to train the machine
learning (ML) model for detecting the fault (Giro et al., 2021 Zhang et al.,
2015). First, different sensors, such as an accelerometer, pressure sensor,
acoustic sensor etc., can be employed to acquire the data at each condition
of the system. Next, ML-based algorithms are developed for fault detection,
which comprises feature extraction and data classification, where the former
steps influence the latter (Dutta et al., 2022). The ML algorithms trained on
the acquired dataset are further employed to monitor the system’s condition.
This data-driven approach based on machine learning is the state-of-the-art
method utilized for monitoring mechanical systems with minimum human
involvement. This method is quite popular after the revolution of industry
4.0, which supports automatized predictive maintenance strategy to ensure
the machine’s reliability, availability, and safety (Dutta et al., 2022). The
past research carried out in monitoring centrifugal pumps against
mechanical and hydraulic faults using this approach is discussed briefly in

the next section.
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2.3. Condition monitoring of centrifugal pump using

machine learning algorithms

2.3.1. Mechanical faults

Faults in components such as the impeller, bearing, mechanical seal, shaft,
etc., directly affect the centrifugal pump’s performance (Ahmad et al., 2020;
Muralidharan & Sugumaran, 2013). These faults further increase vibration
and noise in the pump, which contributes to the faults in other associated
components and leads to the breakdown of the pump. Fault detection in
these components at an initial stage can help avert catastrophic failures and

reduce system downtime (McKee et al., 2011).

For rotating machinery, the vibration signals acquired using an
accelerometer reflect the true state of an actual fault and, therefore, the
condition of the rotating system (Ebrahimi & Javidan, 2017; Farokhzad et
al., 2013: Rapur & Tiwari, 2019). The health of a rotating system can be
determined by applying intelligent ML-based techniques such as Decision
tree (DT), rough sets, Support Vector Machine (SVM), and Artificial
Neural Network (ANN) on the vibration signals (Kankar et al., 2011;
Mouralidharan et al., 2014; Sakthivel et al., 2010).

Sakthivel et al. (2010) utilized decision tree C4.5 to classify pump faults.
They considered impeller fault, seal fault, bearing fault, cavitation and a
combination of both impeller and bearing fault. The statistical features were
extracted from the vibration signal to describe the nodes in the decision tree
and achieved 100% classification accuracy. Muralidharan & Sugumaran
(2013) extracted energy features from the various wavelets through discrete
wavelet transform (DWT) and proposed a decision tree-based J48 classifier
to detect the same faults as considered by (Sakthivel et al., 2010). The rbio

1.5 wavelets achieved maximum accuracy of 99.84%.

Some researchers employed rule-based classifiers such as fuzzy logic and

rough set-based fuzzy technique for detecting a fault in centrifugal pump
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(Azadeh et al., 2013; Muralidharan & Sugumaran, 2013; Perovic et al.,
2001; Sakthivel et al., 2012, 2014).

Perovic et al. (2001) proposed a monitoring methodology based on fuzzy
logic, which utilizes motor current signals to detect mechanical and fluid
faults. The faults selected were impeller fault, discharge blockage and their
combination. The selected features were the current amplitude,
accumulative noise, slip and shaft speed amplitude. The classifier performs
with an accuracy of 83.7%. Azadeh et al. (2010) employed a fuzzy logic
method to detect faults: damaged seal, bent shaft, misalignment, bearing,
dirty seal, plugged seal, rubbing, cavitation and eccentricity in the shaft of
the pump. The fuzzy rules were generated based on parameters such as
discharge pressure, flow rate, vibration, brake horsepower, efficiency,
temperature and NPSHg. The proposed approach was also applied
successfully to the petrochemical industry to identify the fault in the
centrifugal pump. Sakthivel et al. (2010) assessed decision tree—fuzzy and
rough-set fuzzy. The decision tree-based method performed better, with an
accuracy of 99.33%.

Yuan & Chu (2006) applied multiclass SVM to identify various pump-rotor
faults in a centrifugal pump. Three kernels for classifiers were utilized:
polynomial, Gaussian RBF and multilayer perceptron. They divided the
signal’s frequency spectrum into nine bands and selected the average
amplitude value on each band as a feature in this methodology. The feature
dimension was reduced using PCA. Ebrahimi & Javidan (2017) used SVM
to detect impeller and seal faults. The method includes DWT-based
Daubechies wavelets to decompose the signal up to three levels and achieve

an accuracy of 96.67%.

Further, Kumar & Kumar (2017) employed a genetic algorithm to optimize
the SVM for detecting faults such as clogged and broken impellers, bearing

inner and outer races in a centrifugal pump. The features were acquired from
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the vibration signal and CWT. The classifier achieved an accuracy of

96.66% for detecting the fault.

Zouari et al. (2004) proposed a classifier based on a neural network and
neuro-fuzzy algorithm to detect faults in a centrifugal pump. The faults
considered in this study were partial flow, cavitation, misalignment, air
entrainment and loosening in front or rare attachment. Wang & Chen (2007)
proposed a defect detection system based on a partially linearized neural
network (PNN). The wavelet transform (WT) was employed to extract
features in the frequency range, and the rough set was used to acquire
knowledge for identification. The acquired knowledge helps the PNN
classifier’s learning. This method detected impeller damage. misalignment
and cavitation in the pump at an accuracy of ~ 98%. In their subsequent
study, Wang & Chen (2009) proposed a fault detection methodology in
which features were extracted through Rbio 2.8 wavelet based on DWT,
rough sets and PNN. Nasiri et al. (2011) attempted to diagnose cavitation
severity through vibration signal and Nural network. They also tried to
locate the most appropriate position of the sensor for detecting faults in the
pump. Their findings suggest that the accelerometer should be positioned at
the radial location of the pump. If more sensors are available, they should
be placed at the back and the front side of the pump, respectively. Farokhzad
et al. (2012) achieved approximately 100% accuracy in detecting seal
defects, impeller faults and cavitation using features extracted from
vibration signal and ANN algorithm. Jami & Heyns (2018) proposed a
wavelet packet transform (WPT) based ANN for impeller fault detection in
the pump. The faults selected were cracks and damages on the impeller with
three severity levels. A hacksaw and hammer blow were used to create these
faults on the impeller. The crack was produced at the impeller’s eye, and
the imbalance i1s made at the outside perimeter of the impeller. The
characteristics were retrieved in three domains: time, frequency, and time-

frequency domain.
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Azadeh et al. (2013) proposed hyperparameter tuning of SVM based on a
genetic algorithm (GA) and particle swarm optimization (PSO). The
features employed were flow rate, temperature, suction and discharge
pressure, velocity, and vibration signal. Further, they compared SVM with
the ANN classifier for detecting faults in centrifugal pumps in standard and
noisy environments. The SVM with tuned hyperparameters performed
better than ANN. Also, ALTobi et al. (2019) in their study proposed and
effectively applied a multilayer feedforward perceptron trained with back
propagation neural network using a genetic algorithm and SVM for
detecting faults in the pump. The faults selected in their study were
misalignment, mechanical looseness, unbalance, faulty impeller, faulty
bearing and cavitation. The features from the vibration signal were

extracted through Morlet, db8 and rbio 1.5 wavelet function of CWT.

Further, Sakthivel et al. (2014) extracted statistical features from the
vibration signal acquired for the different faults in pump components:
impeller, bearing, seal and cavitation. They employed a nonlinear method
and PCA to reduce the dimensionality of the feature dimensions. They
evaluated the decision tree model with Naive Bayes, Bayes Net and K-
Nearest Neighbor (KNN). The study suggests that dimensionality reduction
increases the robustness of the model and improves its classification
performance. The feature dimension increases with the initiation of new
features while patterns are limited, leading to increased repetition and
redundant and irrelevant information in the feature set. This problem is
termed as the “Curse of dimensionality”, which further increases the
computational burden (Tiwari & Chaturvedi, 2022). Therefore, feature
selection (FS) is an essential step in selecting only informative features by
reducing the dimension vector of features, which reduces the training time
and further improves the classifier’s accuracy (Tiwari & Chaturvedi, 2022).
Filter and wrapper-based methods are the two most widely used FS
approaches. Filter methods such as the Chi-square test, ReleifF, Fischer

score, mutual information, XGBoost etc., are commonly employed as
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feature ranking techniques (Prakash & Kankar, 2020; Sdnchez et al., 2018:
Vakharia et al., 2016). The filter-based method measures the relevancy of
the feature based on its correlation or other similarities with the dependent
variable. In contrast, the wrapper-based method trains the selected subsets
on the classifier, such as SVM, KNN, etc. (Too et al., 2021). These optimal
features can be utilized to train the machine learning model to detect and

classify the faults in rotating machines.

Bennekom et al. (2001) and Merkle et al. (2014) discussed case studies
regarding different failures and damages in the pump. Subsequently,
Gunerkar et al. (2019) the effect of wear in the pump. As the pump typically
works in critical and harsh environments, wear in pump components occurs
throughout their lifetime due to abrasion, corrosion, cavitation, and fatigue.
Lu et al. (2016) selected the wear fault in the impeller, bearing inner race,
bearing outer race, and roller race. They proposed a fault detection method
based on first converting these signals into bi-spectrum contour images. The
features are extracted from these images using a speed-up robust features
(SURF) algorithm, and dimensionality reduction is made through t-SNE
method. The classification was effectively carried through the PNN model.
Despite these extensive studies on faults in mechanical components,
condition monitoring is not much emphasized on wear related faults in
mechanical components such as impellers and bearings. Further, the
dimensionality reduction through selecting relevant features is also a

challenge in developing the monitoring strategy.

2.3.2. Hydraulic faults

Centrifugal pumps are susceptible to hydraulic faults that occur within the
fluid, such as variation in pressure inside the pipe or volute that changes the
pump’s temperature, pressure, velocity, and flow rate. These faults arise due
to transient or surges, turbulence, water hammer, cavitation, etc. Blockages
are the most common fault in the pump, which alter the pump’s flow

parameters such as pressure, velocity, and flow rate. But a, very few studies
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have explored the effect of blockage in suction and discharge lines and their
impact on pump performance. Some probable reasons for blockage include
plugging of toreign items such as loose rags, grass, natural detritus in the
foot valve/suction pipe, folded pipe liner, blocked strainer or filter and air
entrainment (Panda et al., 2018). The increase in the severity of suction
blockage leads to cavitation inside the pump. It further increases the pump’s
noise and vibration levels, leading to various other faults such as axial shaft
movement, cracking on the impeller shroud, shaft failure, etc. (Panda et al.,
2018). To mitigate this type of scenario in pump, suction blockage fault is
needed to diagnose at their toddler stages. Tiwari et al. (2021) used pressure
signals to detect blockage in the suction pipe. The developed methodology
was able to achieve accuracy greater than 94 % at higher speeds (= 3000
RPM), but at lower speeds (< 3000 RPM), it drops to 83%. Panda et al.
(2018) diagnosed the suction blockage fault at different severity levels in a
pump. This study extracted various statistical features from vibration
signals for fault diagnosis and achieved 86.53% accuracy using SVM
classifier in multiclass classification. Kumar et al. (2021) tried identifying
the pump’s suction blockage fault using vibration, pressure, and motor
current signal. They concluded that combining statistical features extracted
from different sensors helps in boosting the accuracy of the deep learning
model Their study’s maximum training and test accuracy using pressure
signals are 93.5% and 91.8%, respectively. The pressure sensor employed
in suction blockage identification (Kumar et al., 2021; Tiwari et al., 2021)
is mounted on the pump casing by pressure tapping. This is not practically
possible for all centrifugal pumps and is difficult in a submersible pump
surrounded by fluid. Also, the pump and other hydraulic machinery can be
monitored via vibration, a motor current signal, pressure signal, acoustic
signals, and thermographic images (Alshorman et al., 2020; AlShorman et
al., 2021; Glowacz, 2021; Rapur & Tiwari, 2018, 2018; Tiwari et al., 2021)
or their combination (Kumar et al., 2021). It eventually increases the cost

of monitoring. Any hydraulic fault changes fluid flow patterns, resulting in
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fluid pressure fluctuation. As a result, among the various signals, the
pressure signal is a viable alternative for monitoring the pump for the
existence of hydraulic defects (Tiwari et al., 2021). While monitoring
centrifugal pumps for blockage cases, the suction blockage is explored to
an extent, while the blockage at the discharge side of a pump has received
little attention. Discharge blockage occurs due to furring or deposition of
salt, flocculation of pulp, filter blockage, air entrainment, faulty valve etc.
(Nesbitt, 2006). These blockages restrict the flow toward the discharge side,
thereby initiating the fluid flow backwards toward the impeller. This results
in discharge cavitation at the pressure side of the impeller vane and impacts
the impeller until the shaft breaks. Rapur & Tiwari (2019) studied suction
and discharge blockage faults individually with other mechanical faults
using vibration and motor current signals. Statistical features from selected
coefficients from continuous wavelet transform (CWT) were extracted and
employed for training the SVM classifier. Although these studies have
focused on the suction and discharge blockage individually, blockage faults
can co-occur at both the suction and discharge sides. This type of fault arises
gradually over time due to furring or deposition of salt, blockage of strainer-
filter simultaneously, or failure to open the suction and discharge valve
owing to the valve or operator fault. Due to restricted flow, the kinetic
energy used to transport fluid is converted into heat as there is no flowing
fluid to remove the heat on either side. The liquid trapped inside the pump
tries to expand and develops significant pressure. If it remains unnoticed for
an extended period, it leads to a pump explosion. This case profoundly
concerns pumps employed in flammable, toxic liquids or chemicals. It is the
most sensitive and hazardous case reported by a few works of literature

(Gilet & Lodal™, 2001; Keto-Green-Paper-Centrifugal-Pump-Explosions).
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2.4. Degradation in pump performance due to

increasing wear-ring clearance

To monitor the operational health condition of a centrifugal pump the past
studies have relied on either vibration or pressure signals (ALTobi et al.,
2019; Bordoloi & Tiwari, 2017; Qiu et al., 2019) to investigate many
possible pump faults such as cavitation in impeller, faulty bearings, leaking
mechanical seals, and whirling of shafts (Ahmad et al., 2020; Kumar &
Kumar, 2017; L1 et al., 2018; Muralidharan et al., 2014; Muralidharan &
Sugumaran, 2012; Wang et al., 2021; Xu et al., 2021). However, one type
of internal fault has received little attention is the leakage flow past the wear
ring clearance. The leakage flow through the clearance drops the pump'’s
performance (DagigShirazi et al., 2018; Prakash et al., 2022; Zheng et al..
2020). Wear ring acts as the primary interface between the impeller
(rotating component) and the pump’s casing (stationary component), which
creates a leak-proof contact between the moving and stationary part (Abelin
et al., 2006). As their name suggests, the wear rings are a sacrificial part that
get worn down when the rotating part may contact the casing, and therefore,

protect both the casing and the impeller from damage.

APT 610/ISO 13709:2004 standard recommends a minimum clearance to
lower the pum pseizure but many maintenance shops increase the clearance
to minimize the risk of pump seizure. While this may reduce the contact
between the impeller and casing, it can decrease the volumetric efficiency
and increase the vibrations due to reduction in hydraulic damping. This in
turn can result in increased shaft deflection, which can induce larger wear
and tear on moving parts and result in frequent failures of seals and bearings
(Bachus & Custodio, 2003; Giilich, 2010). To this end, a few studies have
focused on the effect of wear ring clearance on the performance of a
centrifugal pump. For instance, Zheng et al. (2020) analyzed pump
performance with and without clearance flow using the shear stress

transport k — w model and demonstrated that the leakage flow past the wear
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ring clearance flow decreases the pressure inside the pump. This flow also
triggers collision with the mainstream flow and generates multiple vortices
at the entrance of the impeller. The head and the efficiency of the pump
drop by around 5 % and 20 %, respectively due to this leakage flow.

The main reason for the leakage flow through the wear ring clearance is the
pressure difference between the inlet and outlet of the clearance gap. This
leakage flow can significantly deteriorate the pump performance (Yan et
al., 2020).Chen et al. (2012) and Zhao et al. (2012) used RNG k — £ model
in their CFD analysis to monitor the effect of both front and back wear ring
clearance on the pump performance. Their results indicated that while the
pump performance degrades due to increased front and back swear ring
clearance, the effect is more pronounced in the front wear ring clearance
case. Uy & Brennen (1999) reported that different hydraulic forces are
produced in the side chambers due to the leakage flow (Brennen, 2011). Li
(2012,2013) adopted a combined experimental and modelling approach to
analyze the effect of both front and back wear ring clearance on the pump
performance due to the variations in the viscosity of the fluid. The results
indicate that increasing the front wear ring clearance deteriorates the pump
performance more significantly than the back wear ring clearance. This
effect weakens with increasing fluid wviscosity. Zhang et al. (2019)
developed an integrated mathematical model to illustrate the effect of radial
pressure distribution in the side chamber and the leakage flowrate through
wear ring clearance on the characteristic curve (pressure drop versus flow
rate) of a centrifugal pump as a function of the discharge flowrate. They
demonstrated that as the leakage flow past the wear ring clearance increases
the pump head reduces due to an increase in the net discharge flow (inlet
plus the leakage flow). In their model, the leakage flow through the radial
clearance was modelled as the pressure-driven flow between two infinitely
long parallel plates. This is a restrictive assumption given that the clearance
is an annulus; therefore, the leakage flow should be modelled as flow

through an annular cross-section.
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Despite these extensive studies focusing on the influence of wear ring
clearance, the results therein have been limited to arbitrarily chosen values
of the wear ring clearance (Lei et al., 2015; Li, 2013: Li, 2012) based on
which the leakage flow past the clearance was designated as permissible,
slight, or severe leakage. However, state-of-the-art pumps run reliably at
significantly reduced clearances owning to their wear rings made of non-
metallic and composite materials. Specifically, the pumps can operate
reliably at less than 50 % of the minimum clearances recommended by the
standard API 610/ISO 13709:2004 (Standard, A.P.1.,2010). For instance, a
pump installed with a Du-Pont Vespel CR-6100 (DuPont TM Vespel ® CR-
6100 Application and installation guide for centrifugal pump stationary
wear parts) carbon fibre reinforced wear ring has a running clearance of
0.187 mm for a 101.6 to 127 mm diameter of impeller hub compared to the
previously required 0.381 mm. Such reduced clearances have been shown
to double the pump’s life and improve the pump’s overall efficiency
between 2 —5 % (Aronen, 2011). With design improvements in composite
wear rings, and the trends shifting towards reducing wear ring clearances,
it is imperative to understand the trend of leakage flow at low magnitudes
of wear ring clearances, as commonly encountered in modern pumps. On
the other hand, a literature search also reveals the trends of leakage flow
past high wear ring clearances (greater than 0.85 mm), as encountered in
large diameter impellers of coolant water pumps in land and sea-based
power plants, is largely unexplored. There is a dearth of information in the
existing literature on the effect of increasing wear ring clearances over an

entire range of values ranging from a few microns up to a few millimetres.

In practice, transient conditions such as start-up/shutdown or the
maintenance operations such as the slow roll during alignment may result
in non-uniform contact between the rotating and the stationary parts. This
would cause the wear rings to be worn out non-uniformly along the
circumference and induce eccentricity i.e., an eccentric cross-section for

leakage flow compared to the case of Uniform wear clearance.
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2.5. Scope and objective of the dissertation

This dissertation proposes novel methods for monitoring centrifugal pumps
by acquiring different signals (pressure, flowrate, and vibration) and
utilizing machine learning algorithms. This dissertation also propose an
model-based approach for investigating the performance deterioration in
centrifugal pumps caused by an increase in wear ring clearance of the pump
from 10 microns to 2 mm. Furthermore, it also proposes a hybrid approach
that combines model-based approach with data driven approach to monitor

the pump. The following are the key objectives of this dissertation:

e  Development of an experimental facility to simulate blockage faults
in the centrifugal pump through butterfly valves installed in suction
and discharge line.

* Monitoring the centrifugal pump against different blockage faults
with their severity through machine learning algorithms.

¢ Developing methodology to select relevant features set to reduce the
computation cost of the machine learning models employed for fault
diagnosis.

e Detecting the mechanical faults such as impeller wear, bearing inner
and outer race wear, and bearing roller wear components in the
pump using machine learning algorithms.

s  Model based study of the centrifugal pump to investigate the pump’s

performance due to increase in wear ring clearance.
Different studies carried out to fulfill these objectives are listed below:

¢ Development of health monitoring methodology based on an
ensemble classifier- XGBoost to detect suction and discharge
blockages in the centrifugal pump through pressure sensor and
flowmeter signals. The feature dimensionality is reduced by
selecting the optimized feature through the butterfly optimization

algorithm.
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Development of blockage fault detection methodology based on the
fuzzy recurrence plot generated by denoised discharge pressure
signal. The automatic feature extraction process is carried through
pre-trained models such as Inception, Xception and GoogleNet and
further classification is performed through wvarious shallow
classifiers.

Development of a sequential learner-based methodology for
blockage detection along with their severity level through LSTM
and Bi -LSTM models. The customised feature layer is developed
to extract non-convolutional features dimension that consists of
statistical features, Holder exponent and entropy features.
Development of mechanical fault detection methodology based on
SVM and ANN classifiers by using vibration signals. Time and
frequency domain features have been extracted. Dimensionality of
features is reduced by implementing XGBoost, ReleifF and Chi-
square.

Proposal of a model-based approach for investigating the
performance degradation in centrifugal pumps due to increased wear
ring clearance. Development of hybrid approach by combining
model-based approach with data driven approach to detect wear ring

clearance fault in pump.
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Chapter 3

Monitoring suction and discharge blockages
faults in the pump using pressure and

flowmeter signal

This chapter presents the test rig of the centrifugal pump developed in the
lab that can mimic blockage faults in the system. Firstly, a detailed
description of the test rig, its components, the sensors utilized, and the
procedure for simulating blockages is presented. Secondly, this chapter
demonstrates an ensemble ML based approach for the early detection of
suction and discharge blockage in centrifugal pumps. The pump’s responses
under healthy and blockage conditions are captured. The pressure sensors
are installed at both suction and discharge, while a flowmeter is installed at
the discharge. Twelve different statistical features are extracted from each
signal. Subsequently, the relevance of these features is evaluated based on
the classification error rate and the feature selection ratio using the Butterfly
optimization technique. This technique reduces the feature vector space by
65 - 83% of the total extracted features. Subsequently, these selected
features are fed to the XGBoost ensemble classifier that detects the blockage
condition of the pump with a nominally high classification accuracy ranging

from 90 - 100%.

3.1. Introduction

Centrifugal pumps are among the most critical components utilized in
industries to provide high flow rates of the working fluid (Muralidharan &
Sugumaran, 2012). The blockage in the pump occurs due to clogging of
loose rags, grass, or other foreign elements, blocked strainer, or filter, which

develops flow instability in the pump (5 Ways to Prevent Sewage Pump
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Blockages; Most Common Causes of Burst Pipes; Most Common Causes
of Low Water Pressure; Panda et al., 2018). The blockage in the suction
side decreases the pressure next to the impeller's eye and results in
cavitation if the severity of the blockage increases. The imploding action of
bubbles formed due to cavitation increases the pump's noise and vibration,
endangering the pump components to various faults, such as the crack in the
impeller, bearing, shaft, etc. At the same time, blockages at the discharge
side limit the flow on the discharge side and initiate the backward flow
towards the impeller side. It leads to discharge cavitation if the velocity of
the backflow is high enough, resulting in low pressure at the vortex core.
Bubble formation near the housing wall occurs due to this low pressure and
collapsing of these bubbles impacts the impeller badly until the shaft breaks.
If the blockages are left unnoticed, these faults can reduce the pump’s
performance, which may lead to an early failure of the pump components.
Blockages become a severe problem when the pump's reliability and
availability are of utmost importance. The presence of blockages in the non-
redundant pumping system can put that complete system on hold (Pradhan
et al., 2020). Therefore, it is imperative to continuously monitor the pump
against the blockages to avoid a sudden breakdown in the machine, reduce

downtime costs, and improve the reliability of the pump.

The data-driven approach is one of the most common practices for
monitoring the pump. The data is acquired for the different operating
conditions of the machine through sensors installed at specified locations
(Dutta et al., 2022; Muralidharan et al., 2014). The sensors include an
accelerometer, pressure sensor, current sensor, or flowmeter (Pradhan et al.,
2020; Prakash et al., 2021; Sakthivel et al., 2010; Tiwari et al., 2021). In the
case of hydraulic systems, the pressure sensor and flowmeter sensor are
preferred over other sensors as they carry first-hand information about the
system's condition (Prakash et al., 2021; Tiwari et al., 2021). The existing
literature on fault diagnosis in pump recommend various techniques such as

decision tree, support vector machine, artificial neural network, deep neural
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network, ensemble method, etc. (Minhas et al., 202(); Prakash & Kankar,
2021; Sakthivel et al., 2010).

In these methods, feature extraction from the raw signal is one of the crucial
steps to determine the information required to indicate the system's
condition. The features extracted in the time domain, frequency domain,
wavelet-based features, etc., are proposed and employed successfully to
diagnose the fault in the system (Prakash & Kankar, 2020). The feature
dimension increases with the initiation of new features while patterns are
limited, leading to increased repetition and redundant and irrelevant
information in the feature set. This problem is termed the "Curse of
dimensionality”, which further increases the computational burden (Tiwari
& Chaturvedi, 2022). Therefore, feature selection (FS) is an essential step
in selecting only informative features by reducing the dimension vector of
features, which reduces the training time and further improves the
classification accuracy of the chosen classifier (Tiwari & Chaturvedi,
2022). The Butterfly optimization algorithm (BOA) is a newly developed
metaheuristic algorithm inspired by the foraging behavior of the butterfly
(Arora & Singh, 2019).

In this chapter, the experimental facility developed to mimic the blockage
fault and the procedure for simulating the blockage fault is described in
detail. Next, the pump is monitored for three conditions: Healthy condition,
Suction blockage (SB), and Discharge blockage (DB). The dimensionality
of the feature is reduced by employing BOA for feature selection. Further,
XGBoost 1s used to predict the pump's condition. The model's accuracy is
evaluated before and after employing the FS technique, and a further

reduction in feature vector dimensionality is also analyzed.
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Figure 3.1 Schematic diagram of the test rig developed for simulating

hvdraulic faults in centrifugal pump

3.2. Experimental facility

The schematic of the experimental facility for simulating blockage in a
centrifugal pump 1s presented in Figure 3.1. It consists of an electric motor-
driven single suction centrifugal pump (Mackwell: MCPP - 32/160). The
pump and motor are coupled through non-spacer type flexible coupling and
are mounted on the MS-fabricated base frame. Water is used as the working
fluid. In the suction line, a ball valve is attached to cut off or supply the
water to the pump from the tank. A butterfly valve with a fixed number of
notches is attached to the suction and discharge line to simulate the blockage
fault in the line. This fault is simulated by increasing the notches towards
the closing direction of the valve, as shown in Figure 3.2. The water from
the centrifugal pump is delivered to the water tank through the discharge

line.

Additionally, a bypass line is attached at the discharge side of the pump to
flush any rust or other impurities inside the pump before starting the
experiments. The bypass line can be cut off from the primary circuit with

the help of a ball valve fitted between the discharge and bypass sides.
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Table 3. 1 Technical description of the sensors

Pressure sensor Pressure sensor Flowmeter

(Suction side) (Discharge side)

Manufacturer/ WIKA/S-20  Scientific Scientific
Model No. Devices/ Devices/

MBS 30000 SMAG 300/40
Range -1 to 1.5 bar 0 -10 bar + 33 -333 Ipm
Accuracy +0.25% of FSD +0.25% of FSD  +0.5% of FSD
Output 4 —20 mA 4-20 mA 4—-20 mA

The CAD diagram of the circuit during the experiments (i.e., without bypass
line) is presented in Figure 3.3 (a), while the complete experimental setup
is shown in Figure 3.3 (b). The volumetric flow rate of water is measured at
the discharge side using a flowmeter. The flowmeter is positioned after the
butterfly valve to capture any changes in the flow rate due to the suction
and discharge blockage fault. Water's inlet and outlet pressure are measured
using the pressure sensor installed in the suction and discharge lines of the

pump. The technical detail of the sensors is shown in Table 3.1.
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The inlet pressure sensor is installed after the butterfly valve (close to the
pump side) in the suction line to capture the dynamic of pressure fluctuation
towards the inlet of the pump. While the discharge side sensor is installed
just before the butterfly valve in the line (close to the pump). This position
is selected intentionally to capture the pressure trends in the pump at the

delivery side due to blockage. Cables connect these sensors to the Data
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Acquisition (DAQ) System (HMG 4000, HYDAC). This DAQ system is an
8-channel portable data measuring and logging device. The signals are
acquired at a sampling rate of 10 kHz. Further, the recorded data on DAQ
is transferred to a computer for further processing. The sample image of the
suction pressure sensor, discharge pressure sensor, flowmeter, and HYDAC

is shown in Figure 3.4.

(b)

(c) (d)

Figure 3. 4 Images of the measuring equipment used (a) Suction pressure

sensor (b) Discharge pressure sensor (¢) Flowmeter (d) HY DAC System

3.2.1. Test procedure

Experiments are initiated after the primary circuit is enabled for fluid

circulation. The experiments are carried out for various conditions, such as
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healthy, suction blockage, and discharge blockage at 2000 RPM. The
butterfly valve with fixed notches is employed to simulate the blockage fault
installed at both the suction and discharge sides, as shown in Figure 3.2.
The blockage is simulated by increasing notches of the individual valve
towards the closing side, as shown in Figure 3.2. Pressure and flowrate
signals are recorded after the pump attains the steady state (the state at
which the effect of transient conditions due to ON/OFF or fault propagation

conditions in the pump disappears).

A steady state for the pump is defined as the condition at which the flow
rates mean value does not deviate more than 0.1 % for 30 s. This study
achieved a steady state after 30 s when the pump starts, or any fault is
simulated. The signals are acquired after the next 30 s when the system

reaches its steady state.

Table 3.2 Simulating blockage fault in centrifugal pump

Closing of Suction  Closing of Discharge

Type of fault side butterfly side butterfly valve (in
valve (in degree) degree)
Healthy 0° 0°
Suction blockage 107 0°
Discharge Blockage 0° 15°

3.2.2. Dataset

The data is acquired at a sampling rate of 10 kHz for 1 sec. For each pump
condition, 200 instances are recorded. Three pump conditions, mainly:
healthy condition, Suction blockage (SB), and Discharge Blockage (DB)

are selected in this study. The representative signal of all three-pump
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conditions is illustrated in Figure. 3.5. Further, the details of the blockage

simulation are illustrated in Table 3.2 and Figure 3.2.

3.3. Methodology

3.3.1. Feature extraction

The raw signals carry first-hand information about the condition of the
pump. Statistical features are extracted from the raw signals recorded,
which converts the signal into meaningful information. These features are
fed as input to the ML classifiers. Various statistical features extracted from
all the sensors employed, namely, suction pressure, discharge pressure, and

flowmeter, are described below:
1. Maximum Value (X, ): It indicates the extreme value in the signal
. Minimum Value (X,,;,): It indicates the least value in the signal
iii.  Range: It indicates the difference between the minimum and

maximum values of the signal.

Xrange = Xmax — Xmin (3.1)

iv.  Mean: It indicates the average value of the signal

Mean (%) = —2‘= alt (3.2)

v.  RMS: It indicates the square root of the mean of squared value of

the signal

— JA:}+J::§+---+J('$l (33}
Xrms = n
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vi.  Standard deviation: It indicates the content of energy in the signal.

Diza (6 — % )° 34

Standard deviation (o) = 1
n —_

vii.  Skewness: It determines the symmetry of the signal around the mean

value. It can be both positive and negative.

Iy (x-%)* (3.5)

n

Skewness =

viii.  Kurtosis: It determines the distribution of data around its arithmetic
mean value. It is the degree to which the data is distributed around

either of its tail in the distribution curve.

n (= %) (3.6)

=1 n

Kurtosis = >
a

ix.  Crest factor: It signifies the ratio of the signal's absolute maximum

value to the signal's RMS value.

Crest Factor = Zmax! 3.7

Xrms

Xx.  Shape indicator: It signifies the ratio of the signal's RMS value to

the mean value.

Shape Indicator = % (3.8)

xi.  Impulse indicator: It signifies the ratio of the signal's absolute

maximum value to the mean value.
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Impulse Indicator = % (3.9)

xii.  Clearance Indicator: It is depicted as the ratio of the absolute
maximum to the squared mean value of the square roots of the

absolute amplitude.

Clearance Indicator = ——— (3.10)

However, all extracted features are not equally important to detect blockage
faults in the pump. For instance, some features may be irrelevant, or some
features show similar trends and don't show unique information about the
system's health. Similar features increase the computational effort, while
non-relevant features even degrade the classification accuracy of the
selected model. Hence, choosing the optimized features for monitoring the
pump against blockage is essential to reduce computation effort and

improve the classifier's performance.

3.3.2 Butterfly optimization algorithm (BOA) for feature

selection

The BOA is among the recently developed metaheuristic algorithms
inspired by nature (Arora & Singh, 2019). This algorithm was compared
with other benchmarked optimization techniques such as ABC, CS, DE, FA,
GA, MBO, and PSO and is known to achieve promising results in solving
combinatorial problems. Feature selection is a type of complex
combinatorial optimization problem. For instance. if a dataset comprises
N’ number of features, then the total subset of features inspected to find the
best subset is 2N’ |, which becomes impractical to handle in a higher
dimension dataset (Too et al.,, 2021). The BOA optimizes the feature
dimension by selecting the best subset of features among all the mined

features, reducing the computation time significantly.
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This optimization technique mimics the food foraging approach followed
by butterflies based on the fragrance of food. The whole idea of sensing
fragrance and food searching is primarily based on three factors, namely,
the sensory modality (C"), stimulus intensity (I), and power exponent (a).
In sensory modality, sensory means measuring a specific quantity, while
modality refers to the raw sensory inputs such as smell, light, sound, etc. In
BOA, the modality implies fragrance, and [ represents the scale of the actual
or physical stimulus. Physically, I is related to the fitness of the butterfly,
which signifies that if a butterfly emits any fragrance, then the butterflies in
the nearby can sense it and get fascinated to it. The power exponent (a)
indicates the exponential rise in intensity. In BOA, the response
compression is used to assess the magnitude of I, which is based on the fact
that if the stimulus is stronger, the insects turn out to be less sensitive to any
changes in the stimulus. This means that if the fragrance (f) increases, then

the intensity I increases slowly.

The behavior of butterflies in response to the fragrance is focused on two
parameters: First, the deviation in I, and second, the formulation of f. In
BOA, I corresponds to the objective function, while f is a relative term used
to convey sensory information to the other butterflies. The fragrance can be

mathematically formulated as follows:

f=c'e (3.11)
The parameters a and €’ are considered in the range [0 1], where a = 1
signifies the extreme fitness value or intensity that stimulus attained, while
a = 0 represents the least fragrance value that any butterfly cannot perceive.

The parameter €' represents the convergence speed of this optimization

method.

Figure 3.6 depicts the flowchart outlining the steps of the BOA. The food
search strategy in BOA comprises of three phases: the initialization phase,
the iteration phase, and the final phase. These phases are shown marked in

Figure 3.6 and explained next.
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Initialization
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Iteration Phase
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Final Phase

Figure 3.6 Flowchart for butterfly optimization algorithm
Initialization phase

The main objective function and its solution space are defined within this
initialization phase. Next, values are allocated to the specific parameters
used in the BOA algorithm, and the initial population of the artificial
butterflies is created to enable optimization. The memory of a pre-

determined size 1s assigned to store the information as the butterfly’s
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number is set constant during the execution of BOA for a specific task. The
algorithm generates the random position of each butterfly in the search
space. Subsequently, fitness values and fragrances for each of the butterflies

are computed and stored.
Objective function

The objective function considers both classification error rate and the
number of features selected to assess the performance of the feature
selection algorithm. Therefore, the objective function is formulated as

(Chen et al., 2022):

F(x)=(a' XER)+ (B %X FSR), x = (x1,%2 -. .. %) (3.12)

Number of incorrect classifcation

where, the Error rate (ER) = ( ), and the

Total number of instances

Number of features selected

Feature selection ratio (FSR) =
( S ) Maximum number of features extracted

where, @' and 8’ are the thresholds that determine the proportion of ER and
RFS in the objective function, x represents the features employed from the
feature dimension. Here, @’ and ' are selected as 0.9 and 0.1, respectively
(Chen et al., 2022). In this objective function, higher weightage is given to
classification error, and lower weightage is given to the ratio of features
selected to reduce feature dimension without affecting the model's
classification accuracy. Moreover, ER and FSR should be minimized so
that the reduction in feature dimensions and the accuracy are both

optimized, which is the key objective of the study.

Initially, the KNN classifier with hold out validation is employed for
classification. The value of nearest neighbours (k) is selected as 5 to reduce
overfitting. The dataset is further split into 75% and 25% for training and
testing purposes, respectively(Too et al., 2021). The features selected are

evaluated based on the test data results of the KNN classifier.
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Feature selection

It is a pre-processing step that requires the selection of the feature subset
with the least number of features that can preserve almost every critical
information required to classify different classes with high accuracy. The
objective function's solution space is defined according to the number of
features. For each solution, the dimensions size d is equivalent to the
number of features, and every single dimension corresponds to the index of
that feature (Too et al., 2021). For instance, the solution space of dimension
100 corresponds to 100 different features extracted in the dataset. In each
solution of BOA, the dimension value is limited to [0 1]. Therefore, whether
a feature is selected or not depends on the value of a static threshold of 0.5,

as shown below (Too et al., 2021):

x{! > 0.5 Feature is selected (3.13)
xd < 0.5 Feature is not selected

here, xft refers to the solution { in dimension d.

Thus, the threshold of 0.5 is selected to consider the specific features based
on their fitness value in the respective feature subset employed for

classification.

Other parameters, such as the number of search agents, i.e., butterfly
population (n') is selected as 50, modular modality (C") is 0.01, and power
exponent (@) increases in intensity from 0.1 to (0.3 throughout the iterations

(Arora & Singh, 2019).
Iteration phase

Sewveral iterations are performed in this phase, and the fitness values of the
butterflies are assigned in the initialization phase and are simultaneously
assessed during the process. Every butterfly changes its position from its
initial location in the solution space during each iteration. The algorithm
calculates the fitness value of the butterflies at various places in the solution

space. Subsequently, these butterflies produce fragrance (f) at their
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locations (see Eq. 3.11.). Based on the value of f, the position of the
butterflies is updated using equation 3.14 for global search and equation
3.15 for local search, respectively (Arora & Singh, 2019; Tiwan &
Chaturvedi, 2022).

2t t=ot 4 (r" gt —af ) % i (3.14)
where, x} represents the solution vector for i*" butterfly after ¢t iterations,
g represents the best solution achieved among all solutions in the present
iteration, r"'represents a random number in space [0 1], and f; denotes the

fragrance of i" butterfly.

r2

Pt =xf+ (r'" xxf —xf ) % fi (3.15)

where, xf and x| represent j* and k" butterfly in the solution space.

The search process in this phase consists of two parts, namely, the local
search and the global search. The switching between these parts is
controlled by the switching probability p such that if "' < p, then BOA
will perform a global search, else it will perform a local search (Arora &
Singh, 2019). Here, the switching probability (p) is selected as (.8 (Arora
& Singh, 2019).

Final phase

The iteration phase continues until the stopping criterion is achieved.
Different stopping criteria such as maximum computation time, maximum
number of iterations or maximum iterations without no progress can be
employed. After the iteration phase, the algorithm computes the best fitness
value solution. The maximum iteration value of 100 is selected as stopping
criteria in this study as it is sufficient to attain the optimized result (Arora
& Singh, 2019). The best subset considered in this study minimizes the
objective function, and it is employed further to train the XGBoost

Classifier.
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3.3.3 XGBoost classifier

Extreme Gradient Boosting (XGBoost) is a supervised ML classifier
employed for fault diagnosis and classification problems. It is based on the
gradient boosting model, where the weak base learning models (mainly
decision trees) are ensembled into strong learners through an iterative

process (Chen & Guestrin, 2016).

For a given dataset D = {x;,y;}: i =12..nand x;eR™,y;eR, n
signifies the number of observations, and m signifies the number of
features. An ensemble tree method uses k additive functions to predict the

output(Chen & Guestrin, 2016).

k
i = Z fi(xi) , fueF (3.16)

where F = {f(X) = wq{x)}(qf R™ — T,weR" ) defines the space of the
regression trees. Here g represents the structure of each tree, T denotes the
total leaves in the tree, and each f;, denotes an individual tree structure g

with leaf weight w.

In a regression tree, each leaf contains a continuous score w;, which denotes
the score on the i*" leaf. The decision rules are employed in trees to classify
it into leaves, and the ultimate prediction is computed by adding the score
to corresponding leaves (w). To attain the optimized value of f, the
regularised function J is minimized (T. Chen & Guestrin, 2016), which is

given by:

n t
=) Lows) + ;ﬂm) G.17)

i=1
where L is a convex loss function that measures the difference between
targets (y;) and predicted value (%) and 0 is the regularisation term
employed to measure the model's complexity and given as(Chen &

Guestrin, 2016):
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1
Qi) =yT+3 2wl (3.18)

After t iterations, the predicted value can be expressed as (Chen & Guestrin,

2016):

=57+ ) (3.19)

The objective function is further updated as(Chen & Guestrin, 2016) :

J= Y LU+ AGD) + D00 (320
=1 k=1

Table 3.3 Parameters selected for XGBoost classifier

Parameters Default
learning rate 0.15
n_estimators 200
objective 'multi: softprob'
booster gbtree
min_child weight 1
max_depth 5
gamma 0
subsample |
colsample_bytree 1
reg_lambda |
reg_alpha 0

The Taylor expansion of second order is employed for calculating the loss
function in XGBoost, while first-order expansion is employed in gradient
boosting. Thus, the new objective function used in XGBoost has a higher

convergence rate and better accuracy than gradient boosting. Moreover, the
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final objective function formulated is expressed as (Chen & Guestrin,

2016):

mn t

1
f= Z Ly 551 + gife () + Eh.f.ﬁ:z{xi;' + kzzl Q(fi) (3.21)

i=1

where, g; is first and h; is second derivative of the loss function.
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Figure 3.7 Methodology emploved for blockage diagnosis in centrifugal

pump

The parameters selected for blockage identification in centrifugal pump

using XGBoost classifiers are listed in Table 3.3.
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3.4. Results and discussion

This study aims to select the best feature subset from the statistical features
extracted from the suction pressure signal, discharge pressure signal, and
flowmeter signal for blockage identification in a single suction centrifugal
pump. At first, twelve different statistical features are extracted from these
sensor signals individually at three different pump conditions, i.e., healthy,
suction blockage. and discharge blockage. Subsequently, the best feature
subset (optimized features) is selected using the BOA from the extracted
feature dimension. This feature selection procedure is further repeated for
36 (12 x 3) statistical features developed by combining the features from all
three sensors. These optimized features are then employed to train the
ensemble-based classifier, i.e.,, XGBoost to diagnose the blockages in the
pump. First, the holdout validation is used in which the acquired data is
divided into a 75:25 ratio for training and testing. Also, the proposed
approach is tested with ten-fold cross validation method to gain more
insight regarding the overall performance of the model. The complete
methodology adopted for detecting blockages in a centrifugal pump is

illustrated in Figure 3.7.

At first, all statistical features are extracted from suction pressure.
Afterward, feature selection through BOA is employed simultaneously to
predict the pump condition through the XGBoost classifier. The features
selected through BOA for each case are shown in Table 3.4. Tt is depicted
from this table that out of 12 statistical features extracted, only two features
are selected through BOA. Further, the effectiveness of BOA 1s evaluated
based on classification accuracy. The confusion matrix obtained for test
data is shown in Figure 3.8. It shows that 16 instances are misclassified
among 150 instances when all the extracted features from the suction
pressure signal are used to train the XGBoost classifier. In contrast, this
misclassification reduces to 14 when the features selected through BOA are

employed to train the classifier. The reduction in misclassification instances
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improves the accuracy of the classifier. This improvement in accuracy is

mainly because the feature selection through BOA eliminates the redundant

(or irrelevant) features from the feature dimension.

Table 3.4 Features selected through BOA for blockage classification

Name of the features selected through BOA

Suction Discharge
S. Flowmeter
Pressure (SP) Pressure All sensors
No. (F)
Sensor (DP) Sensor
Maximum Standard
1 Mean Mean
Value Deviation (SP)
Shape Standard
2 Shape Indicator _ o Range (SP)
Indicator Deviation
Standard
3 Range Skewness
Deviation (DP)
Impulse
4 Crest Factor
Indicator (DP)
5 Mean (F)
6 RMS (F)
i Crest factor (F)
Healthy | 58 DB Healthy | SB DB
] — o A ’ Z | Healthy | 42 ] 8
L L |
g |*® e 50 |0 g |se 0 50 |0
T 7 0 |43 = o & o |aa
Predicted Label Predicted Label
(a) (b)

Figure 3.8 Confusion matrix for (a) All extracted features (b) Feature

selected using BOA from the suction pressure signal
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The confusion matrix obtained for features extracted from the discharge
pressure sensor is presented in Figure 3.9. It shows two instances among all
the features extracted from the discharge pressure sensor that are
misclassified and selected by the BOA. Hence, classifier’s accuracy is same
if all extracted features or features selected through BOA are employed. But
the feature dimension is reduced to 3 from 12 through BOA, as shown in
Table 3.4. It shows that the BOA can reduce the irrelevant features from the

feature dimensions employed to train the classifier.

Healthy |SB | DB Healthy |58 | DB
< | Healthy | 50 0 0 3 Healthy | 50 0 q
: E]
E sB 0 a9 |1 y [ 0 a8 |1
* o8 0 1 |49 = [oe u 1 |a9
eradiciad tabel Predicted Label
(a) (b)

Figure 3.9 Confusion matrix for (a) All extracted features (b) Feature

selected using BOA from the discharge pressure signal

Healthy | 5B | DB Healthy SB | DB
% | Healthy | 50 0 0 "3" Healthy | 49 0 1
-]
L 3
w | 5B 0 50 |0 w | 5B 0 50 0
E g
= | pB 0 0 50 F | p8 0 1] 50

Predicted Label Predicted Label
(a) (b)

Figure 3. 10 Confusion matrix for (a) All extracted features (b) Feature

selected using BOA from the flowmeter

Further, the confusion matrix obtained for the flowrate signal is shown in
Figure 3.10. Figure 3.10 (a) shows that 100% accuracy is achieved if all the
features extracted from the flowrate signal are used. As revealed in Figure
3.10 (b), if features are selected through BOA, one of the instances is
misclassified. Similarly, 100% accuracy is achieved if the features from all

three sensors are used, as shown in Figure 3.11. In contrast, only one
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instance is misclassified if the features are selected through BOA from the

extracted features.

Healthy |SB | DB Healthy SB | DB
Fl Healthy | 50 0 0 E Healthy | 50 0 0
3 L
g 5B 0 50 |0 g S8 0 50 |0
~ [oe 0 0 |50 * [oe 1 0 |as
Predicted Label Predicted Label
(a) (b)

Figure 3. 11 Confusion matrix for (a) All extracted features (b) Feature
selected using BOA from suction pressure, discharge pressure, and

flowmeter

In the case of Figures 3.10 (b) and 3.11 (b), although the classifier
misclassifies a single instance, the feature dimension through BOA is
significantly reduced. The feature dimension for flowmeter signal is
reduced to 4 from 12. Similarly, the feature dimension created by combining

all sensors features is reduced to 7 from 36.

Figures 3.12 and 3.13, respectively, compare all the cases based on the test
accuracy and the degree of feature reduction obtained using BOA. Figure
3.12 shows that the XGBoost classifiers' accuracy for diagnosing the pump
blockages ranges between 90 — 100%. It also shows that the discharge
pressure sensor and the flowmeter are sufficient to diagnose the blockages
in the pump (accuracy > 98% ) compared to the suction pressure. Further, it
is illustrated in Figure 3.13 that BOA algorithm reduces the feature
dimension significantly by up to 66 —83% as compared to the total extracted
features. This reduced feature dimension performs with minimal or no

change in the model's classification accuracy (see Figure 3.12).
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Figure 3. 12 Classification accuracy using (a) Holdout validation and (b)
10-fold cross validation method for the total extracted features and features

selected through BOA from pressure sensor and flowmeter.
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Figure 3.14 Comparison of XGBoost with SVM classifier on features

selected through BOA

The features selected using BOA (listed in Table 3.4) are also implemented
on the SVM classifier to diagnose the pump's blockages. Figure 3.14
compares the classification accuracy obtained using the XGBoost classifier
versus the SVM. It illustrates that both SVM and XGBoost can diagnose
blockages with nominally high accuracy, ie., = 90%. However, the
performance of XGBoost is better as compared to SVM in each case except

for the suction pressure sensor. Therefore, the proposed methodology can
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be employed for blockage identification in the pump with higher accuracy

and lesser computation cost.

3.5. Conclusions

In this study. an experimental facility of a centrifugal pump is developed to
create a dataset for three conditions of the pump: healthy condition, suction
blockage, and discharge blockage. The blockages are simulated through a
butterfly valve installed in the suction and discharge line. The acquired
dataset comprises the pressure signals and flow signal. This study proposes
a methodology to detect blockage fault in a single suction centrifugal pump
by leveraging the feature reduction using the Butterfly optimization

technique. The key conclusions drawn from this study are as follows:

e The blockage detection in the centrifugal pump can be
effectively done by extracting statistical features from all the
acquired signals individually. Moreover, the discharge side
pressure sensor is more efficient in detecting blockage than the
suction side pressure sensor.

e Butterfly optimization is an effective technique for selecting the
optimized features from all the extracted features. This
technique significantly reduces the feature dimension without
sacrificing the classification performance of the classifier.
Specifically, the butterfly optimization algorithm reduces the
feature dimensions ranging from 65 - 83 % of the total extracted
features while maintaining the accuracy of the XGBoost
classifier in the range of 90 -100%.

¢ The XGBoost classifier can detect the pump’s blockages
effectively compared to the SVM classifier. These classifiers
can detect and categorize different conditions of the pump as
healthy, suction blockage, and discharge blockage with an

accuracy of > 90%.
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Chapter 4

Monitoring different blockages faults in the

pump using pressure signal

This chapter elaborates on data-driven methodology to identify the suction
blockage, discharge blockage, and simultaneous occurrence of both
blockages. The discharge pressure signals are acquired and denoised using
complementary ensemble empirical mode decomposition (CEEMD). The
fuzzy recurrence plots obtained from denoised signals are attempted to
classify using three pre-trained models: Xception, GoogleNet, and
Inception. None of these models are trained on such images. Thus, features
are extracted from different pooling layers, including shallow features. The
features extracted from different layers are fed to four shallow learning
classifiers: Quadratic support vector machine, Weighted K-nearest
neighbors, Narrow Neural network, and subspace discriminant classifier.
The study finds that the subspace discriminant achieves the highest
accuracy of 97.8% when trained using features from the second pooling
layer of the Xception model. This study demonstrates an efficient method

to identify pump blockage using pre-trained and shallow classifiers.

4.1. Introduction

Centrifugal pumps are susceptible to blockages that can occur in the pump
at any stage. Various studies have focused on developing the methodology
to identify blockage faults in the pump based on the data-driven approach,
as discussed in Chapter 3. Despite these extensive studies, there needs to be
more literature focused on the occurrence of blockage simultaneously at
both suction and discharge sides. This type of fault can arise due to
deposition of salt, blockage of strainer/filter, failure to open suction and

discharge valve, or entry of foreign objects in the fluid. In this fault, the
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fluid gets entrapped in the casing and is restricted from moving in either
direction. Further, the kinetic energy imparted to the fluid inside the pump
is converted into heat and pressure energy. The pressure of the fluid trapped
increases, and it tries to expand. If this type of fault remains unnoticed for
a prolonged time, it may result in a pump explosion. Few of the literature
has also reported that both suction—discharge side blockages lead to pump
failure, and accidents may occur if left unnoticed for a long time Connor &

Platinium, 2003; Gilet & Lodal, 2001).

Several studies have employed ML techniques such as KNN, SVM, ANN,
deep neural networks (DNN), etc., to detect the fault in the pumps (Kumar
et al., 2021; Tiwari et al., 2021). These techniques use statistical features or
features extracted in the time, frequency, and time-frequency domain of the
acquired signal to train the classifiers for fault diagnosis. Based on the
nature of the fault, these features often fail to classify the faults correctly.
One of the limitations of these features is that they cannot capture nonlinear
behavior related to the different health of the system. Moreover. the manual
extraction of features requires domain expertise to select the features. DNN-
based approaches are employed to overcome this limitation. In DNN based
approach, features can be automatically extracted, reducing the chances of
wrrelevant extraction and selection of the features (Hasan et al., 2021). While
the performance of the DNN model mainly depends on the type of
architecture selected. The architecture is generally selected by hit and trial,
extending the time required to develop the model. Thus, there is a scarce
chance of generalization of these models for another type of data. The
transfer learning methods can address this issue. The knowledge learned
from the source task is transferred to the targeted task, which is usually
closely related (Meng et al., 2022; Yu et al., 2022). Few researchers have
demonstrated that features extracted from these pre-trained models can be
effectively employed in shallow learner models for fault diagnosis
(Impedovo et al., 2021; Islam et al., 2021). Although it saves training time

and memory consumption, it can only be applied for image classification.
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Prakash et al. (Prakash et al., 2021) proposed a methodology to employ the
recurrence plot (RP) to monitor the degradation in hydraulic valves'
switching behavior. They extracted recurrence-based features from these
plots. The fuzzy recurrence plot (FRP), a modified version of the RP,
represents the system's phase space state as a grayscale texture. The
parameter selection is crucial in constructing RP, while this task is relaxed
in FRP construction. Also, FRP represents a more informative texture
pattern than RP and, thus, can be used for pattern recognition (Cantiirk,
2021; Pham, 2020). So, FRPs are employed as input for the pre-trained
model.

Therefore, this study uses a pre-trained model for feature extraction
followed by training the shallow classifier for blockage identification,
namely suction blockage, discharge blockage, and occurrence of both

suction—discharge blockages.

4.2. Methodology

4.2.1. Experimental setup and data acquisition

The experiments are conducted on the dedicated test rig developed for
simulating blockage faults, namely suction blockage, discharge blockage,
and the simultaneous occurrence of both suction and discharge blockage.

The schematic of the test rig is presented in Figure 3.1 in Chapter 3.

The experiments were conducted under four different conditions of pump
operating at 2000 RPM, namely, healthy condition, suction blockage (SB),
discharge blockage (DB), and simultaneous occurrence of both suction—
discharge blockage (SDB). Faults are mimicked using the butterfly valve
installed in both the suction and discharge line, as illustrated in Table 4.1,

and shown in Figure 4.1.
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Table 4.1 Simulating blockage fault in centrifugal pump

Type of fault Closing of Suction Closing of Discharge
side butterfly side butterfly valve
valve (in degree) (in degree)
Healthy 0" 0°
Suction blockage 507 0°
Discharge Blockage 0° 60°
Suction — Discharge 50° 60°

Blockage

Full Flow

Mmoj4 opn
Mmoj3 oN

(a) (b)

Figure 4.1 Butterfly valve at (a) Suction Side (b) Discharge side

The pressure signal at the discharge side is considered for monitoring the
pump. Any change in pump condition on either side is reflected in the
suction and discharge pressure sensors. So, monitoring any side reduces

computation effort and is enough to identify the blockage in a pump. The
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data from the pressure sensor is acquired at a sampling rate of 10 kHz for
four conditions of the pump: one healthy condition (baseline case) and three
fault conditions: SB, DB, and SDB. Two hundred twenty-four instances
with a sample length of 1 second are acquired for each pump condition. The
following section mentions that the acquired signals are denoised using

complementary ensemble empirical mode decomposition (CEEMD).

4.2.2 Denoising using complementary ensemble empirical

mode decomposition (CEEMD)

The reliability of any health monitoring system depends mainly on the
measured signals. In a piping system, the hydraulic pressure is greatly
affected by the noise. This noise in the pressure signal is due to power
supply interference, lousy contact between the sensor and apparatus,
environmental noise, or pulsating stress noise generated due to turbulence
(Xin-lei et al., 2008). This noise in the signal can be a significant challenge
during constructing a recurrence plot as it can further deviate and disrupt
the diagonal line, resulting in ambiguous conclusions (Wendi & Marwan,
2018). Therefore, the original signal must be further processed with the
denoising method. The Empirical mode decomposition (EMD) is a data-
adaptive and efficient decomposing method that is quite popular in
biomedical and fault diagnosis in bearing, gear, pump, etc., for denoising
(Liu et al., 2018). It decomposes the original signal x (t) into various
Intrinsic mode functions (IMFs). The IMFs of the signal must fulfill two
necessary conditions (i) Total number of peaks (Maxima and minima), and
zero crossings must be equal or differ by one only. (ii) The local mean
(defined as the mean of the upper and lower envelope) must be zero.
However, it has specific confines such as frequency resolution limitation
for frequency of ratio > 0.75, high sampling rate requirement for proper
decomposition, mode-mixing between intermittent signals, etc. These

1ssues are resolved in CEEMD. In CEEMD, a pair of white noise is added
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to the original signal (Liu et al., 2018; Minhas et al., 2021). Therefore, this
method is preferred for denoising the signal.

Algorithm for CEEMD

1. A pair of white noise is added and subtracted simultaneously from

the original time series signal x(t) to generate the noise-added

signal.
xt@)=x()+N (4.1)
xp ()=x({t)—N (4.2)

2. These signals are further decomposed completely using EMD to

generate two sets of IMFs from these signals denoted as ¢ (£) and

¢, (t).

—] -
N1 -

ck (=7 ) di (©) 4.3)
i=1
I
= 1 i
c (£) = T dy (t) (4.4)
i=1
cx +ci
= (4.5)
Ci >
3. Now the residue is computed from Eq. 4.6
R=x(t)—cp (4.6)
4. This residue becomes x(t) for the next iteration.
x()=R+N 4.7)

5. The steps from 1 -3 are repeated until the R satisfies the stopping

criterion.

The amplitude of white noise is selected as 0.25 times the original signal's
standard deviaton, and the number of trials 1s 100 (Minhas et al., 2021).

After decomposing the signal into IMFs, the vital step lies in selecting the

IMFs to reconstruct the signal. The IMFs have been selected based on the
Hurst exponent value (Minhas et al., 2021).
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Figure 4.2 Methodology for denoising signal using CEEMD (a) Original
signal (b) Decomposition of signal into its IMFs (c) Selection of IMFs using

Hurst exponent (d) Reconstructed signal from IMFs
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Figure 4. 3 Original and filtered pressure signal of (a) Healthy condition
{b) Suction Blockage (c) Discharge Blockage (d) Suction — Discharge
Blockage

The Hurst exponent (@) is calculated for every obtained IMFs. If a = 0.5,
it indicates that the similarity is random and uncorrelated. If a < 0.5, it
indicates an anti-persistent time series which signifies that data is
uncorrelated as white noise, but if ¢ > 0.5, indicates a persistent time series
and signifies that a temporal correlation exists. The temporal relations at
different scales are higher as the fault occurs in the system (Minhas et al.,
2021). Thus, IMFs with & > 0.5 are critical IMFs, and ¢ = 0.5 is treated as
the threshold line. The selected IMFs are combined to form the original
denoised signal. This complete methodology is illustrated in Figure 4.2. The

obtained denoised signals and raw signals are shown in Figure 4.3.

4.2.3. Fuzzy recurrence plot
Almost all machinery used in engineering applications exhibits a

nonstationary trend based on the actual condition of the system. This trend
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in the system is deterministic to a small extent. However, it offers the
possibility to monitor the dynamic change in the system to some extent,
allowing maintenance professionals to predict the system's health condition.
The dynamic changes in the system can be detected using linear and
nonlinear mathematical methods. A linear method such as correlation, a
spectral analysis. or computing moments of the system can be employed to
determine the system's condition. However, the statistical interference
drawn from these linear methods does not closely resemble the system's
current status. Nonlinear methods based on topological analysis are widely
used in health monitoring to overcome the limitations of linear methods
(Prakash et al., 2021). Recurrence analysis proposed by Eckman is one of
the popular nonlinear time series methods. The recurrence plot (RP)
generated through this technique helps to determine the recurring behavior
of the dynamic system. This plot presents the recurrence of a particular state
at the time i and again occurred at any other time instance j using time-
dimensional square matrix R, which contains dots (black or white) in the

plot as per Eq. 4.8 (Marwan et al., 2007).
1, x; = x; (Black 4.8)
ij = ; i ; ) Lj=12.N (
0, x; # x; (White)
where N denotes the number of states considered and x; = x;means equality
up to an error € (or the following states have recurred approximately with

EITor €).

In the construction of symmetrical RP, the selection of threshold € is the
critical task. The fuzzy recurrence plot (FRP) proposed by Pham is the
extended version of the recurrence plot in which time series data is

converted into a textural image, as summarized in (Pham, 2016).

Let the phase space state and fuzzy clusters set of the system be denoted as
X = {x}and V = {v}. Then a fuzzy relation R is derived from X to V in the
subset of X X V characterized by fuzzy membership function g’ € [0,1].
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This membership function expresses the similarity between each pair (x, v7)

in R that possesses the following properties(Pham, 2016).
(i) Reflexivity: u" (x,x) =1

(i) Symmetry: p'(x,v) = u' (v,x)
(iii) Transitivity: ¢’ (x,2) =V, [ p(x,v) Au(v,2)|.Vx €X, VzeZ

The Fuzzy ¢ - means (FCM) algorithm is employed to calculate the fuzzy
cluster of the phase space state to compute the similarity between different
states and the center of their fuzzy clusters. The FCM algorithm tries to

minimize the following objective function (Pham, 2016):

(4.9)

0= Y )" )

i=1 j=1
where ¢ denotes the number of clusters (0 < ¢ < N),
m € [1 oo ) is the fuzzy weighing function,
U represents the matrix of the fuzzy - c partition,
Z signifies the vector containing the center of clusters like z; represents the
center of cluster j and d(x;, z;) represents the inner product of Euclidean
distance.
This objective function is subjected to (Pham, 2016):
£ (4.10)

Zulj=1

=1
whereu € [0,1],i=1,....Nandj=1,....c.

The function (U, Z) is minimized by the iteratively updating value of U and
Z until the convergence criterion is achieved. These values are updated

based on equations (4.11) and (4.12).

u; = L dgkge @.11)

d (x{,_zk_} (=1 ]

Ef=1[ d{xsz }
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N w
The convergence criterion for the objective function is ||[U* — U*Y|| < a
where a is a very small positive no (for this case a =0.00001). This
completes the procedure for FRP. Then, FRP is binarized using image

segmentation to obtain clear images(Pham, 2022).

The FRP obtained contains L levels of greyscale and p(t) = 1..L is the
histogram probability of these grey values of these images. Then binary
segmentation of these images can be derived from Otsu's method. Otsu's
method minimizes class variance (o2) in the greyscale image. This is

defined as a function of threshold (T) (Pham, 2022).

G3(T) = P, (T) 62 (T) + Py(T) 0 (T) @.13)
T
P(T)= ) p(®) (4.14)
t=1
L (4.15)
RM= ) p®)
t=T+1
T
1 ’ ; (4.16)
o2 =m;pm [t—u, (D]
L
1 R (4.17)
% =5 Z p(t) [t — i, (1]
T (4.18)
iy gn ;p( )
& (4.19)
-ub _P (T) EZFIP( }

The optimal value T* can be obtained by iterating the equation with all
values of T € [1,L] to find the threshold that minimizes the within class
variance. So, with the help of T*, the greyscale N x N of FRP is segmented
into a binary N x N FRP denoted as B (Pham, 2022).
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B =3 {'3: Rij <0 (20)
@n 1, Otherwise

The fuzzy recurrence plots obtained for the different pump conditions,
namely, healthy condition, suction blockage, discharge blockage, and
combination for both suction—discharge blockages, are shown in Figures.
4.3 and 4.4. The parameters embedding dimension, m = 3. time delay, T =
1, and the number of clusters, ¢ = 5, are selected for the FRP construction

(Pham, 2022).

Time (s} Time (s)
0 002 004 006 0.08 0.1 0 002 004 006 008 01

(a) (b)

Time (s) Time (s)
¢ 002 004 006 0.08 0.1

(©) (d)
Figure 4. 4 Fuzzy recurrence plot for (a) Healthy(b) Suction blockage (c)
Discharge Blockage (d) Suction — Discharge Blockage signal for 0.1 s

In Figure 4.4, the period of the signal selected is 0.1 s. These plots indicates
that as suction and discharge blockage occur, the black texture is
concentrated in the plot at a particular region. In case of suction blockage,

the concentrated black texture is on the top left side while in case of
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discharge blockage case, it is mainly located in the close vicinity to the
center of the plot as compared to the healthy condition of the pump. At the
same time, a slight change in pattern is observed in case of simultaneous
occurrence of both suction-discharge blockage and healthy condition. The
width of the black texture in the plot for this case drops as compared to the
healthy condition. The black texture observed in the binarized FRP signifies
that the state of these pairs is closely related to each other at some particular
instances while in other region the system is not related to the previous

condition of the pump.
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Figure 4.5 Fuzzy recurrence plot for (a) Healthyv(b) Suction blockage (c)
Discharge Blockage (d) Suction — Discharge Blockage signal for 1 s

The occurrence of suction and discharge blockage results in recurring
behavior of the pump at some instances but at other instances the pump’s

condition is not predictable. While, in case of occurrence of both suction —
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discharge blockage the reduction of width of black texture shows reduction
in the pump’s predictability. Thus, it 1s concluded from these plot that the
occurrence of theses faults reduces the periodicity of the pump condition
and makes the system less predictable. A fuzzy recurrence plot for a time
span of 0.1 s is presented to visualize the change in plots for different pump
conditions. However, a data sample for 1 s is selected to monitor the pump.
The obtained plots are shown in Figure 4.5. These plots are further
employed for monitoring the pump health as a larger sample size of the plot
increases the confidence in the obtained result. For the large sample size, as
considered in Figure 4.5, it is challenging for an individual to visualize the
plot and interpret the results. Thus, classifying these images through ML

models is a better choice.

4.2.4. Feature extraction and shallow learning classifier

Feature extraction

Raw signals have first-hand information about the machine's condition. The
feature extraction process is a data pre-processing technique to extract
meaningful information related to the machine's status from the signal.
Handcrafted features or numerous linear and nonlinear features employed
are often extracted manually. However, recently developed algorithms
based on Convolution neural network (CNN) can extract complex features
from the raw signals. These features are more relevant and efficient than
manual feature extraction. The relevance of the extracted features primarily
determines the classification performance of any ML employed. As a result,
extracting the relevant features from the raw signals is necessary. Thus,
CNN-based algorithms are used for feature extraction. A convolution neural
network consists of an input, some hidden layers, and an output layer. The
hidden layer comprises convolution layer (CL), activation layer, pooling

layer, and fully connected layer (Yu et al., 2022).
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Table 4.2 Details about the pooling layers in the selected pre-trained model

Jfor feature extraction

Pre— Input image  Number of Number of Total

Trained size Maximum Global pooling
Model pooling layer average layers
pooling layer
Googlenet 224 x 224 13 1 14
Inception 299 x 299 4 10 14
Xception 299 x 299 4 1 5

The convolution layer is the core of any CNN model and is responsible for
feature extraction. It convolves the input layer and extracts the high-level
features from the input images. These extracted features are passed into
different pooling layers, which reduces the feature vector's size and even
takes care of the overfitting model (Yu et al., 2022). The performance of
any CNN model mainly depends on the type of architecture of the model,
such as the depth of the employed model, number of CL, Pooling layers,
filter size, activation function selected, etc. A hit-and-trial approach selects
the model's architecture for a particular task. In contrast, pre-trained models.
such as Xception, GoogleNet, Inception, etc., are trained on a large dataset.
So, these models can be employed on any other image classification task by
retraining them on a smaller dataset keeping their weights as earlier. This
process is known as transfer learning. Also, computation time is the major
limitation of CNN models as they are trained from scratch (Chen et al.,
2022). All the pre-trained models are the deep connection of layers
(convolution, pooling, etc.) arranged differently. The convolution layer
extracts the features automatically. Therefore, these are optimal candidates
for feature extraction for a particular task. Additionally, it saves

computation effort.
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Table 4.3 Dimensions of the features extracted from the pooling lavers at

different levels

S

N- Google net Inception Xception
0
Feature Feature Feature
Layver name Layer name Layer name
Size " Size Size
1 Mnx‘imum 64 Mﬂx_imum Max‘imum 128
pooling layer pooling layer pooling layer
) Mmi‘imum 192 Maxlimum Max‘imum 256
pooling layer pooling layer pooling layer
3 Inception 192 Avcrlagc 192 Max‘imum 778
layer pooling layer pooling layer
Inception Average Maximum
4 256 , 256 s 1024
layer pooling layer pooling layer
5 Melx‘imum 480 Avcr_ﬂgc ) Average 2048
pooling layer pooling layer pooling layer
6 Inception 480 Mﬂx_imum 188
layer pooling layer
5 Inception 512 Avcr_ugc 168
layer pooling layer
g Inception 512 Avcr_ugc 168
layer pooling layer
9 Inception 512 Aver_ugc 168
layer pooling layer
10 Inception 578 Aver_ﬂgc 768
layer pooling layer
1 Max_imum 832 Max_imum 768
pooling layer pooling layer
12 Inception 832 Avcr_agc 1280
layer pooling layer
13 Inception 832 Avcrrugc 5
layer pooling layer
Global X
verage
14 average 1024 s 2048
: pooling layer
poling layer
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FRP images obtained using fuzzy recurrence analysis of the raw pressure
signal are fed into the pre-trained networks, such as Xception, GoogleNet,
and Inception. These images are resized based on the input size required by
the pre-trained model, as shown in Table 4.2. Different pooling layers
available in these models at different levels of the architecture are selected
to extract features from the pre-trained model. The dimension of the feature
set (feature size) extracted from different pooling layers is detailed in
Table.4.3. In the GoogleNet model, the output of the inception layer is
treated as the pooling layer only. So, features are also extracted from these

layers.

4.2.4 Shallow learning classifier

The dimension of selected features from different pooling layers is listed in
Table 4.3. These features are used as input to the shallow learning classifier,
such as SVM, ANN, KNN, and ensemble classifiers. The shallow learning
classifier 1s selected for blockage identification as it is a well-developed
model [16,17].

i. Quadratic support vector machine (SVM) classifier: Quadratic
SVM is a supervised SVM with a quadratic kernel for classification
problems. This algorithm creates a hyperplane or multiple
hyperplanes in high-dimension space. The nearest points to the
hyperplane are termed support vectors. The optimal hyperplane,
which classifies the different classes with maximum separation, is
selected for the classification task (Kankar et al., 2011). The
Quadratic SVM can separate nonlinear data and classify them into
the respective class labels (Dagher, 2008).

7. Weighted KNN: KNN is a non-parametric and instance-based
method based on proximity for classification purposes (S. Zhang et
al., 2018). This algorithm is divided into two phases: the training
phase and the test phase. The model is constructed based on the
training data in the training phase. The classification algorithm finds

a relationship between the target and predictors based on the
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iv.

similarity measure (i.e., minimum distance). In the test phase, the
model is evaluated based on the test data not used during the model's
training. Based on the value of k and distance, the classification of
the instance is computed (Gunerkar et al., 2019). The performance
of the KNN classifier mainly depends on the choice of k value. If
this value is too small, the model becomes sensitive to outliers (or
noise). However, if the k value is too large, the neighbourhood of
instances contains too many points from other classes, polluting the
selection criterion. This issue can be solved by weighing the votes
of the neighbour in the majority voting scheme of KINN based on the
inverse distance. In other words, more weight is assigned to the

nearby points and less weight to the far away (Geler et al., 2020).

. Narrow neural network (NNN) classifier: Itis a feed-forward and

fully connected neural network commonly used for classification
problems. The first fully connected layer in the model is connected
to the feature set (input). Further, each subsequent fully connected
layer relates to the previous layer, such that an activation function is
followed with each layer. The fully connected layer multiplies the
input based on the weight matrix followed by a bias value. However,
the last fully connected layer is followed by a SoftMax function that
generates the output of the model and prediction label. The output is
in terms of the prediction score (probability). The narrow neural
network signifies the single fully connected layer followed by the
final fully connected layer in the system (Khan et al., 2022).

Ensemble classifier (Subspace Discriminant classifier): The key
idea behind the ensemble classifier is to combine different weak
learners to form a strong learner. This study employs diverse linear
discriminant learners for the classification task. The learners follow
a random subspace ensemble method for training. In other words,
the random subset from the feature set is employed for training the

learners instead of the complete feature set. The majority voting rule
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is employed for selecting the learner for the classification task

(Ashour et al., 2018).

The complete methodology i1s summarised in Figure 4.6.

4.3. Results and discussion

In this study, three pre-trained models, namely Xception, GoogleNet, and
Inception, are employed as feature extractors. The features extracted from
the pre-trained model's pooling layers are used as input to the shallow
classifier with a 10-fold cross-validation method. Then pre-trained models
and shallow learning classifiers are evaluated in terms of the relevancy of

features extracted and classification accuracy, respectively.

Pre - processing Feature Extraction Fault classification

Pressure signal acquired at
discharge side

Figure 4.6 Description of the proposed methedology for blockage

identification in centrifugal pump
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Figure 4. 7 Comparison of classification accuracy of the shallow classifier

based on feature extracted from Xception model

At first, feature vectors from the Xception model are fed to the shallow
learning classifier. The classification accuracy obtained from these
classifiers is presented in Figure 4. 7. The figure illustrates that the features
extracted from the first three pooling layers achieve high accuracy of = 90%,
while accuracy after these layers decreases. The accuracy for the last
pooling layer is in the range of 55 -70%, except for the subspace
discriminant classifier, whose accuracy drops to 35.4%. Moreover, the
subspace discriminate classifier achieves the maximum accuracy of 97.8%
for the features extracted from the second pooling layer. The maximum
accuracy achieved in SVM., KNN, ANN, and subspace discriminant
classifiers are 96.9,.94.4, 95.9, and 97.8%, respectively.

Furthermore, the classification accuracy of the shallow classifier based on
features extracted from GoogleNet is presented in Figure 4.8. The result
shows that the SVM and subspace discriminant classifier achieves a good

accuracy (= 90 %) for the first three pooling layer of the GoogleNet, while
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at higher levels accuracy of the classifier decreases. However, in the case of
narrow NN and weighted KNN classifiers, the best accuracy is 90.4% and
88.7% at the first pooling layer. At the same time, both models have an
accuracy of less than 90% at other pooling layers. All shallow classifier for

features from the last layer attains an accuracy range of 50 — 70%.

Next, the classification accuracy of the shallow classifier based on features
extracted from the Inception model is presented in Figure 4.9. The accuracy
of shallow classifiers for the first eight pooling layver of Inception, except
for KNN, is greater than 90%. While in the case of KNN, the accuracy of
the first four pooling layer is greater than 90%. Furthermore, the model's
accuracy decreases to 55 — 70 % for the last pooling layer except for the
subspace discriminant classifier. Surprisingly, the Subspace discriminant
model achieves a good accuracy compared to other shallow classifiers at
initial pooling layers. However, this model performs at least accurately

33.9% for the features extracted from the last pooling layer.
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Figure 4.8 Comparison of classification accuracy of shallow classifier

based on feature extracted from GoogleNet model
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Figure 4.9 Comparison of classification accuracy of shallow classifier

based on feature extracted from Inception model

The features extracted from deep layers of the pre-trained model have more
ability to classify different class labels. These layers carry more semantic
information and further improve the accuracy of the selected model (Sun et
al., 2018). However, in this study, good classification accuracy is achieved
at the shallow layer, and further accuracy decreases at deeper layers. as
depicted in Figures 4.7 — 4.9. This may be due to the images used as pre-
trained layer input. In the general classification task, the interest of the
portion is focused on the particular part in the image frame. Therefore, the
initial pre-trained layers signify the global information related to the
images, while semantic information is extracted at the deeper layers (Sun et
al., 2018). While in this study, the FRP plot has information uniformly
distributed across the image. Therefore, global information is enough for

the classification of different class labels.

Further, at the deeper layer, the semantic features extracted are irrelevant

and ambiguous, leading to a decrease in the accuracy of the shallow learning
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classifiers. Also, the pre-trained model's success depends on the similarity
between the source and target tasks (Zhang et al., 2020). For instance, a
model trained on classification between dog and cat is necessarily unable to
perform effectively on the classification problem of socks and shoes.
Similarly, in this case, the weights used from the pre-trained model may not
resemble the target problem of classifying different pump conditions based
on a fuzzy recurrence plot. This study suggests that the initial features
extracted from the shallow layers of the pre-trained model can be effectively

used to identify different types of blockages in the pump.

The sub-space discriminant is an ensemble learner that combines various
weak discriminant learners to form a strong learner. Therefore, it
outperforms other shallow learning classifiers at features extracted from the
shallow pooling layers. Also, accuracy of subspace discriminant classifier
drops in the range of 30% — 40% for the features extracted from the last
pooling layers of Xception and inception as illustrated in Figures 4.7 and
4.9. The subspace discriminant analysis uses within class matrix for
computation of Fisher linear discriminant function for finding a linear
combination of features that maximally separates two or more classes of
data. The within-class scatter matrix is defined as the sum of the covariance
matrices of each class, weighted by the number of instances in each class.
If number of instances is less than number of features, the covariance matrix
of the class cannot be computed, and the within-class scatter matrix is rank-
deficient or singular. This singularity can lead to numerical instability and
may affect the accuracy of the classification model (Li et al., 2021).
Therefore, the possible reason for drop in performance of subspace
discriminant analysis 1s due to the small sample size, resulting in weak
robustness and efficiency of the discriminant model. For instance, at
pooling layer 14 and layer 7 of the Inception and Xception model, the
number of features extracted are 2048, while the total sample size of the
model is 896 considering all pump condition. The feature dimension is 2.2

times the total sample size in this case. While at pooling layer 14 in
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GoogleNet, the feature dimension is 1.14 times the sample size which is
nearly the same. This validates the reason for the sudden drop in the model's
accuracy at the last pooling layer of Inception and Xception. However, the
proposed methodology can monitor the pump against blockage at higher

accuracy for the initial pooling layer, as shown in Figures 4.7 — 4.9.

Table 4. 4 Simulating blockage fault in centrifugal pump at other case

Type of fault Closing of Suction  Closing of Discharge
side butterfly valve  side butterfly valve
(in degree) (in degree)
Healthy 0° 0°
Suction blockage 30° 0°
Discharge Blockage 0° 45°
Suction — Discharge 307 45"

Blockage

Furthermore, the proposed approach is implemented at different pump
blockage conditions, as shown in Table 4.4. In this case. the blockage level
intensity is kept low compared to the fault simulated in Table 4.1. As
discussed in Figure 4.6, the proposed methodology 1s repeated for this case,

and the obtained results are presented in Figures 4.10 —4.12.

Figure 4.10 illustrates that the subspace discriminant analysis achieves an
excellent accuracy of 93% for the first pooling layer of the Xception model.
Also, all the shallow classifiers reached nearly 90% accuracy. while
weighted KNN achieved 86% accuracy at the first pooling layer.
Furthermore, Figure 4.11 shows the accuracy of these models for the
features extracted through GoogleNet. The accuracy of all models for the
first pooling layer is greater than 85 %, while weighted KNN has an
accuracy of about 81% for the first pooling layer of GoogleNet. The
subspace discriminant outperforms other classifiers and achieves an

accuracy of 89.2% for the first pooling layer.
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Figure 4.10 Comparison of classification accuracy of the shallow classifier

based on feature extracted from Xception model
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Figure 4.12 Comparison of classification accuracy of shallow classifier

based on feature extracted from Inception model

Similarly, it is depicted in Figure 4.12 that the accuracy of all selected
shallow classifiers is near 90% except for weighted KNN (86.7%). In this
case, subspace discriminant analysis outperforms other models with an
accuracy of 92.5%. Moreover, the accuracy at the higher pooling layer
decreases, as depicted in Figure 4.12. This trend is similar to that observed
in Figures 4.7 — 4.9. The reason for this drop in accuracy at the higher
pooling layer is also discussed above. Therefore, this study shows that the
features extracted from the initial pooling layer of the Xception and
classification through subspace discriminant analysis achieve the maximum
accuracy. Also, the proposed approach is compared with some recent work

carried for detecting fault in centrifugal pump in Table 4.5.
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Table 4.5 Comparative study from present work and some existing literature on centrifugal pump

T 1§ Classificati
S.No. References Faults selected 3-(pe 9 No. of sensors Features selected Classifier used O
signal accuracy
Suction blockage. Shal_low
— Pischaisebloekice sl — Features extracted from pre- classifiers
1. g. _ & i 1 trained models (Xception, (Subspace 97% at 35 Hz
study both suction — Discharge signal . o
- Inception and GoogleNet) Discriminant
blockage :
Analysis)
- Tiwar et al., Suction blockage and Pressure 1 Mean, standard deviation, Dep learning 86.15% at <
' 2021 cavilation Signal kurtosis, and skewness classifier 35 Hz
Vibration 5
3, _‘Rap.ur & Blockage and impeller fault and Motor  (Accelerometer 17 different statistical features SYM l;::]?lg:k;{ie
Tiwar, 2018 = current - 2, current are extracted <35 Hy
signal probe — 3) k=
Panda et al Suction Blockage and Vibration 2 NEcam; Ske_wﬁess' Eartosis; Blockage:
4. s 5 (Accelerometer  standard deviation, crest factor, SVM
2018 cavitation Signal 86.53%
= -2) entropy
. Broken impeller, Clogged e 1 9 statistical features (Raw
A Km;‘:z? . impeller, Inner race defect, Vlsl;r.::;?n (Accelerometer signal) and 11 statistical GA -5VM 96.6%
Quter race Defect £ ) features (SMI graph signal)
1
Gongalves et Cavitation fault, rotor fault Vibration : "
6. al. 2021 and fixation fault Signal (Accele)romeler Markow parameters L2 distance 94.44%
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4.4. Conclusions
This study employs a classification strategy based on pre-trained models
and shallow learning classifiers for blockage diagnosis in a centrifugal

pump. The conclusion drawn from this study are as follows:

e The fuzzy recurrence plot presents a visualization of the changes
in the dynamic condition of the system and their recurrence.
Thus, used to obtain the visualization of the different blockage
faults in the pump, which are further utilized for diagnosis.

e The pre-trained models such as Inception, Xception, and Google
net can be effectively employed as feature extractors. This study
demonstrates that features can be extracted from any arbitrary
layer and are subsequently used to train ML algorithms.

e The present study shows shallow features from initial pooling
layers also contain more distinguishable information about the
system. Thus, the imtial pooling layers' accuracy is > 90% for
most cases.

e The subspace discriminant analysis outperforms other shallow
classifiers, namely quadratic SVM, weighted KNN, and NNN,
with an accuracy of 97.8% for features extracted from the
second pooling layer of the Xception model. Therefore, it can
identify pump blockage with the least number of

misclassifications.
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Chapter 5

Diagnosis of different pump blockages with

increasing severity

This chapter describes a methodology to identify blockage faults, namely
suction, discharge, and a combination of both at three increasing levels of
severity. Subsequently, a customised feature input layer is used in the
classifier that utilises non convolutional features such as statistical features,
holder exponent, and refined composite entropies are extracted from
acquired pressure signals to quantify the non-linearity in the system.
Furthermore, two different classifiers, 1.e., Long short-term memory
(LSTM) and Bi-directional LSTM, are employed to diagnose the type of
blockage and its severity. The performance of these models is measured in
terms of accuracy, precision, recall, F1 -score, and time required to train the
model for different feature combinations. It is observed that both classifiers
trained with features combination except entropy achieves accuracy higher
than 95%. The maximum test accuracy of 99.01% is achieved for LSTM
trained with the feature matrix comprised of statistical features, holder
exponent, and entropy features. The LSTM classifier has achieved better
accuracy and lower computation time than Bi — LSTM. Using LSTM and
Bi-LSTM classifiers, maintenance engineers can diagnose blockage faults

in pumps early and select the most appropriate maintenance approach.

5.1. Introduction

Blockages in the pump should be identified to ensure their appropriate
working for a prolonged time. These faults should be diagnosed accurately
with their severity in the system. Diagnosing the severity level of the pump
1s essential, as these faults at early stages may not be contributing to the

deterioration of the system, but the higher severity of these faults
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deteriorates the pump’s performance. For instance, an increase in the
severity of suction blockage leads to cavitation inside the pump. It further
increases the pump’s noise and vibration levels, leading to various other
faults such as axial shaft movement, cracking on the impeller shroud, shaft
failure, etc. (Panda et al., 2018). On another side, the discharge blockages
restrict the flow toward the discharge side, thereby initiating the fluid flow
backward toward the impeller. The increase in the severity level of this fault
results in discharge cavitation at the pressure side of the impeller vane and
impacts the impeller until the shaft breaks (Nesbitt, 2006). The
simultaneous occurrence of both suction and discharge blockage restricts
the fluid flow. The kinetic energy used to transport fluid is converted into
heat as there is no flowing fluid to remove the heat on either side. The
trapped fluid inside the pump tries to expand and develops significant
pressure. If the severity of this fault increases, it leads to a pump explosion.
This case profoundly concerns pumps employed in flammable, toxic liquids
or chemicals (Giles & Lodal, 2001; Keto-Green-Paper-Centrifugal-Pump-
Explosions, 2017). In chapters 3 and 4, monitoring of the centrifugal pump
against blockages is carried out using ML techniques effectively. However,
identifying blockages with their severity level will help the maintenance
personnel to plan the pumping system’s maintenance schedule based on the

fault’s seriousness.

The ML based monitoring technique is a data-driven approach comprising
two steps: feature extraction and data classification, where the former steps
influence the latter. So, the features employed are crucial for fault
classification (Dong et al., 2022; Sharma et al., 2017; Upadhyay & Kankar,
2018). In real-life scenarios, signals exhibit non-linear and non-stationary
trends, and statistical features cannot analyze the complex trend in signals
(Feng et al., 2013). A signal’s entropy quantifies the complex trend in the
signal. Sample entropy, Fuzzy entropy, and Dispersion entropy are the most
popular entropy-based approach for fault diagnosis in rotating machines

(Azami et al., 2017). The entropy determines the complexity at a single time
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scale and lacks some useful information at other time scales. To overcome
this issue. a refined composite multiscale entropy is computed (Azami et
al., 2017). The Holder exponent is a scalar quantity computed in wavelet
transform that characterizes the regularity of the signal. It can be an
excellent measure to indicate the condition of the system (Mohanraj et al.,
2021). The feature selection is followed by selecting an appropriate ML
model or models depending on the requirement. Many studies (Tobi et al.,
2019; Panda et al., 2018; Rapur & Tiwari, 2019; Sakthivel et al., 2010;
Sharma et al., 2017; Upadhyay & Kankar, 2018) have employed traditional
supervised ML models like SVM, Artificial Neural Network (ANN), etc.,
to detect the blockage and associated faults in the centrifugal pump. SVM
is one of the most popular and efficiently used algorithms for the fault
diagnosis of mechanical components. Although SVM provides better
generalization, it consumes considerable computation time for large
datasets. To work with high-dimensional data, Artificial Neural Network
(ANN) efficiently employs non-linear mapping of the data (Otchere et al.,
2021). ANN improves its learning accuracy through backpropagation. In
backpropagation, the information is also sent from right to left as feedback
to update the model weights until the model’s error can no longer be
updated. The loss function is generally used to monitor the process of
updating the model’s weight The process of updating the weights will
likely terminate as the value of the loss function tends to zero, commonly
referred to as the vanishing gradient problem. It leads to stagnation in
updating the parameters of the layers of the neural network as the algorithm
utilizes this gradient to compute its next step (Roodschild et al., 2020). The
recently developed LSTM and Bi-LSTM neural networks address this
concern of vanishing gradient. These methods provide a more robust and
reliable solution than others. LSTM and Bi-LSTM are equipped with
multiplicative gate units, enabling them to learn how to open or close these
gates based on the constant error propagating through time (Chen et al.,

2022; Gul et al., 2021; Shi et al., 2022).
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Figure 5. 1 Simulating blockage fault with different severity through increasing notches in butterfly valve towards closing side of valve

at Suction Side and Discharge side

94

124



Table 5. 1 Configuration of blockages simulated for various severities

f;"" Fault Name F““';ii:f”ty Blockage
H 0° Blockage of both
0 e - suction and
(Healthy Condition) o
SB1 107  Blockage of
1 (Suction Blockage 1 suction valve
) opening
SBII 30° Blockage of
2 (Suction Blockage II suction valve
II) opening
SB I 50° Blockage of
3 (Suction Blockage I suction valve
I11) opening
DB1 15° Blockage of
4 (Discharge 1 discharge valve
Blockage I) opening
DBII( 30° Blockage of
5 Discharge Blockage I discharge valve
II) opening
DB 111 457  Blockage of
6 (Discharge I discharge valve
Blockage III) opening
SDB 1 SB _I+DBII[lD°
: . Suction Blockage +
7 (Suction - Discharge 1 N i
BlockageT) 15 Discharge
Blockage)
SDB II 5B I_I + DB II (30°
- : Suction Blockage
8 (Suction -Discharge II ; i
Blockage I +30 Discharge
= Blockage)
B 1 S Hitagn
9 (Suction - Discharge I ;
Blockage III) = 45° Discharge
Blockage)
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Therefore, this chapter presents the implementation of LSTM and Bi-LSTM
for detecting blockage-related faults at three different levels of severity in
the centrifugal pump. The discharge pressure signals are acquired from the

developed experimental facility.

5.2. Data acquisition and analysis
5.2.1 Acquisition of pressure signals

The data for blockage fault is acquired from the experimental setup
described in Figure 3.1. The pressure sensor installed at the discharge side
is selected to monitor the pump’s health status. A total of ten different pump
conditions, as discussed in Table 5.1, are chosen in this study. These faults
are simulated using the butterfly valve with notches installed at both the
suction and discharge sides. The severity of faults is varied by increasing

the notches towards closing direction of the valve as shown in Figure 5.1.

Table 5. 2 Statistical description of the sample discharge pressure dataset

Summary Different pump condition
of sample SB DB SDB SDB SDB
Healthy SBI SBII DBI DB
data 11} 111} I I I
Mean 075 074 063 049 075 0776 1.12 074 064 099
Standard
0.1 009 008 008 009 008 008 013 011 0.10
Deviation
Min 01 01 01 01 01 -01 004 -01 01 01
25 % 0.7 068 06 047 07 073 107 066 0.6 095
50 % 076 074 064 05 075 078 112 074 064 099
75% 082 08 067 053 08l 082 117 082 068 103
Max 295 362 397 389 292 343 236 447 475 453
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Figure 5.2 Discharge pressure signal for different blockage faults namely,
{a) suction blockage (SB), (b) discharge blockage (DB) and (c) combination

of both suction — discharge blockage (SDB) with their severity compared

with the healthy signal

Table 5. 3 Dataset description

Total pump condition 10
Time span of each signal ls
Length of each signal 10,000 datapoints
Total instances of each pump condition 500
Total instances of the dataset 5000

The data is acquired at a sampling frequency of 10 kHz for 1s. The instances
selected for each pump condition is 500, so a total of 5000 instances are
chosen for this study. The sample signal of discharge pressure for each type
of pump condition compared with the healthy state is shown in Figure 5.2
The statistical description of these signals is illustrated in Table 5.2 to
provide a clear insight into the dataset. The complete description of the data

acquired is presented in Table 5.3.
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5.2.2 Pump performance analysis due to blockage faults in
pump

This section discusses the effect of blockage on the pump performance with
increasing blockage severity (SB, DB, and SDB). Figure 5.3. shows the
effect of blockage on flow rate, suction pressure, discharge pressure, and
pump head. These parameters are normalized with the healthy case. A
straight dashed line in black color on this plot compares the blockage fault
parameters to the healthy condition of the pump. The effect on pump
performance due to blockage severity level 1 are hardly noticeable. It is
observed that the discharge blockage fault is most closely related to the
healthy case as compared to the other two blockage faults. These blockage
faults are observed clearly as the blockage severity level increases. At
severity level 111, the effect of these faults on pump parameters is visible, as
depicted in Figure 5.3. It is apparent from Figure 5.3 (a) that pump’s flow
rate decreases with an increase in blockage severity level for all three types
of blockages considered in this manuscript. The magnitude of change in
flow rate varies with the type of fault. For instance, at blockage level III,
the flow rate reduction is around 55 % for the simultaneous occurrence of
blockage in both suction and discharge sides (Qgspg 1y = 0.45 Queareny )
45 % for discharge blockage (Qpg 5 = 0.55 Qheqieny) and 20% in the case
of suction blockage ( Qsg 15y = 0.8 Queqieny ) as compared to healthy case.
This result reveals that the simultaneous occurrence of both suction-
discharge and discharge blockages affects the pump’s flow rate badly
compared to suction blockage alone. The effect of blockages on pressure at
the suction and discharge sides of the pump is different, as discussed in this

section.

The suction blockage in a centrifugal pump is mimicked by restricting the
fluid from flowing through the suction side by a butterfly valve installed at
the suction side. It is apparent from Figure 5.3 (b) that suction pressure

decreases with an increase in suction blockage severity level.
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This pressure drops up to 8 times for SB 11l compared to the healthy baseline
case. The cross-section area at the suction side decreases with the blockage
severity level, which finally increases the resistance to flow. This increase
of resistance in the line leads to a decrease in pressure at the exit of the
suction line (termed as the pump’s inlet). Figure 5.3 (c) depicts the
discharge pressure decreasing with an increase in suction blockage severity
level. The discharge pressure decreases for SB III and reaches up to 0.6
times compared to the healthy case. A reduction in the pressure at the
suction side increases the work done by the pump, resulting in a decrease in
discharge side pressure. The total head of the pump increases with the

increased severity of the suction blockage, as shown in Figure 5.3 (d).

As the pump runs at constant RPM, its performance remains consistent
regarding its total head and flow rate. The pump’s flow rate decreases with
the blockage severity level, as shown in Figure 5.3 (a). The suction pressure
decreases more rapidly compared to discharge pressure with an increase in
suction blockage severity level, as seen in Figures 5.3 (b) and (c), resulting

in an overall increase in the pump’s head.

The discharge blockage in a pump is mimicked by restricting the fluid from
flowing through the discharge side by a butterfly valve installed at the
discharge side. The suction pressure increases with an increase in discharge
blockage severity, as shown in Figure 5.3 (b). The restriction offered in the
discharge line increases the pressure of the pump at the discharge side with
an increase in the severity level up to 1.4 times for DB III compared to the
healthy case. as shown in Figure 5.3 (c). This sudden increase of pressure
at the discharge side also results in the backflow of fluid towards the low-
pressure zone (suction side), further increasing pressure on the suction side,
as shown in Figure 5.3 (b). The total head of the pump increases with the
severity of discharge blockage due to the increase in fluid flow restriction

through the discharge line, as shown in Figure 5.3 (d).
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The combination of suction and discharge blockage in a pump is mimicked
by restricting the fluid to flow through both suction and discharge sides by
a butterfly valve installed in the line. The suction pressure first decreases up
to 4 times for SDB II compared to a healthy case of pump and then increases
for SDB III, as shown in Figure 5.3 (b). Similarly, discharge pressure first
decreases and is equal to 0.8 times for SDB II, then increases and attains
pressure up to 1.3 times for SDB III compared to a healthy case. The total
head increase with an increase in the severity of this blockage fault, as
shown in Figure 5.3 (d). The suction and discharge pressure trend for this
blockage fault behaves like a suction blockage until severity level IL
Afterward, it acts as a discharge blockage fault for all measured parameters,

as shown in Figure 5.3.

5.3. Blockage fault classification methodology
5.3.1 Feature extraction

Statistical features (SF)
A broad range of statistical features (Prakash et al., 2021; Prakash &
Kankar, 2020; Sharma et al., 2018) is mined from the pressure signal

installed at the discharge side, as detailed in Chapter 3 at section 3.3.1.

Holder’s exponent (HE)

Singularity and irregularity associated with signals carry vital information
regarding the health status of the machine. Holder exponent provides a
measure to describe the regularity of the signal to detect any discontinuity
that has occurred (Mallat & Hwang, 1992) . The number of continuous
derivatives possessed by the signal is called regularity. So, correct
quantification of local regularity in the signal is needed to detect singularity.
Holder exponent can be the best measure of this regularity (Sohn et al.,
2002.). Mallat and Hwang (Mallat & Hwang, 1992) proposed a

methodology to recognize the singularity in the recorded signal.
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Suppose a signal x(t) can be approximated locally at ¢, by a polynomial of

the form:

x()=Co+Ci(t—tr)+-+C(t—t, )" +C(t—t)" TS
=Bt —t,) +Clt —t,)|"
where P, is a polynomial of order n, and € denotes the coefficient. Then
terms associated with @ denote the residual that remains after the signal is

fitted by a polynomial of order n. The local regularity of the signal at t; can
be characterized by the “Holder Exponent™ (Mallat & Hwang, 1992):

|x(t) —B,(t—¢t,)| <Clt —¢t,|¢ (5.2)

A transformation is required to ignore the signal’s polynomial part to
compute the discontinuity in the signal. The wavelet transform (WT) can
ignore the polynomial with order n (Sohn et al., 2002)WT of eq. (5.2) with
at least n — vanishing moment provides the procedure to extract values of

holder exponent in time:

W, (u,5)| <C§ (5.3)

where W, (1, s) denotes the WT at time translation u and scale s. As WT
of a polynomial is zero, the remaining terms are WT of x(t) and error
between x(t) and a polynomial that relates to the regularity of the function.
A complex wavelet (Gaussian wavelet) is employed for WT, resulting in a
complex coefficient. Hence, the modulus of WT magnitude, known as
scalogram, is used to compute holder exponent (Mallat & Hwang, 1992;
Sohn et al., 2002). The steps included to calculate holder exponent from the

modulus of WT are as follows:

1. Take the signal's wavelet transform and the resulting coefficient's

absolute value to obtain the wavelet transform modulus.

L:x (t) % W (E ; ") dt

Wy (u,s) =

54)
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ii.  Arrange the coefficient in 2 D time scale matrix such that one
dimension of the time scale matrix (1) represents a different time point
in signal while the other denotes a different frequency scale (5).

u1.  Take the first column representing the frequency spectrum of the signal
at the first time point and plot the log of it vs the scale, s at which the

wavelet was calculated.

log|Wa (us)| _ a (5.5)

log|We (u,5)| = log(C) + a log(s) andm = ===

If the offset due to coefficient C is ignored, then slope m represents the
decay of wavelet modules across its scale. m is the holder exponent for the
first time point in a signal. The holder exponent at all time points is

calculated similarly at each time point of the wavelet modular matrix.

As holder exponent is calculated for each time step, it measures the
regularity of the signal which can further be used to detect discontinuity in
the signal too. For instance, a Holder exponent value less than or equal to 0
indicates a discontinuity at that location, whereas holder exponents greater
than or equal to 1 indicate that the signal is differentiable. Holder values
between 0 and 1 indicate continuous but not differentiable areas. They
indicate how close the signal at that sample is to being differentiable. Holder
exponents close to () indicate signal locations that are less differentiable than
locations with exponents closer to 1. The signal is smoother at locations
with higher local Holder exponents. Therefore, the smaller value of the

holder exponent signifies a more significant variation in the recorded signal.

Entropy-based feature (EF)

The signals recorded to monitor the system are generally non-linear and
non-stationary in behaviour which cannot be captured using statistical
features (Li et al., 2018). Three different entropies, namely sample entropy,
dispersion entropy, and fuzzy entropy, are computed for the discharge

pressure signal to overcome the limitations of statistical features. These
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entropies quantify the irregularity, expectation of the information, and

uncertainty of the system in the time-series signal.

Sample entropy: Sample entropy measures the irregularity of the time-
series signal. A larger sample entropy value represents higher signal
complexity, whereas lower signal complexity is represented by a smaller
value (Li et al., 2018). The sample entropy is computed as:
il ))

(5.6.)

Sample entropy = — ln( )

where, B™(r) represents the average value of pattern mean count. B™(r)

and B™*1(r) can be calculated as:

N-m+1 (57)
B ) = Y [um {dlx@,x()] <)

i=L2.,N—-m+1, i#]j

where ', m, and N symbolize the tolerance of time series, embedding
dimension, and signal’s length. The term num {d[x(i),x(j)] <r'}
symbolizes the counts of the gap between x (i) and x(j) that is lower than
the tolerance value (r'). Self-matches are not considered in sample entropy
(i #])

Dispersion entropy: Dispersion entropy based on Shannon entropy
determines the expectation of the quantity on information. This expectation
is an indicator to calculate the complexity (Rostaghi & Azami, 2016). A
significant limitation of Shannon entropy is its higher computational cost
which is addressed by dispersion entropy. Dispersion entropy is insensitive
to noise. Therefore, any small variation in the amplitude doesn’t affect its
class label (Azami et al., 2017). To compute dispersion entropy, given time
series signal (x(i),i=12, .., N}is mapped into to ¢ classes labelled from

1 to €. Then, x(i) is mapped to y(i) in the range 0 to 1 using a normal
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cumulative distribution function. Afterward, each y; is assigned an integer
value from | to ¢ based on the relation zj = R(c X y; + 0.5) where R

denotes rounding off the value (Rostaghi & Azami, 2016).

For given embedding dimension m and time delay d, the embedding vector

m,f T ' i [ - d Tﬂ,l: .
2" = 2§, Zf, go e ,zH(m_ﬂd] is formed. Then, each series from z;™" is

mapped into a dispersion pattern, m,,_, where, z{ = v, Z{14 =1 ,

“Vim-1
s zf+(m_ 1d = Vm-1 along with maximum patterns are less than ¢™. The
probability for each pattern is computed as:

Number of m,, .., Vy—, assigned to e
P (To,v,.00me0) = o

(5.8)

Then, the dispersion entropy is computed as (Rostaghi & Azami, 2016):

cTﬂ

Dispersion entropy = — Z p(my, v, ,)-In (p-(l'l'wﬂmvm_1 ]) (5.9)
m=1
Fuzzy entropy: Fuzzy entropy is used to measure the uncertainty of the
system. It uses the fuzzy degree as the quantitative index to show the degree

of fuzziness in the signal (Azami et al., 2017; Li et al., 2018). For a given
time series {x(i),i = 1,2, ..., N}, embedding dimension m , and similarity
tolerance r, a new embedded time series X{" = [x(i),x(i + 1), ....x(i +
m—1)—x,()], i=1..,N—-m+1 is formed where x,(i)=
m™ 5o x (L f).

The absolute distance between vector X;" and its neighbouring vector X;"
is denoted as d;; and fuzzy power n. Then, the similarity degree (D, ;) is
defined as:

di’;‘)
e
Dif =u' (dff nr')=e b ©:10)
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The fuzzy entropy for the given time series signal is computed by the

relation:

Fuzzy entropy (m,v',N) = In¢™(n,r') — Ingp™*! (n,r") (5.11)

where, ¢™ is computed as:

N

1 N-m 1 —m
L S e Z N-m-1 Z i R
i-1

f=1 J=i

These entropies are computed for a single time scale, but information
associated with the fault in the acquired signal may be embedded at multiple
scales. Valuable information regarding faults is ignored if entropy is
computed for the single scale. Therefore, entropy must be coupled with
multiscale to compute the signal complexity of the original signal over a
range of scales (Li et al., 2018). The key idea behind multiscale time series
is to down-sample the original time series to generate coarser time series.

The multiscale entropy is computed in two steps:

i. The coarse-graining for time series signal is denoted as
{x4, ., X;, ..., xy}, and computed by averaging the inside
consecutive in the time series sample. They should have non-
overlapping windows of length i. So, the original time series can be
distributed into numerous coarse-grained time series {y(ﬂ} using the

relation shown below.

jt
1 .
y,.m=; Z X, 1sj<— (5.13)
=(j-Dr+1

where T symbolize the scale factor and it should be a positive

integer. T = 1 i.e., {¥V'} denotes the original time series.

ii. The entropy is calculated for all these time series generated using a

coarse-graining procedure labeled as multiscale entropy.
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The multiscale approach for entropy suffers from a significant
drawback. The coarse-graining of the data length is reduced with
increasing scale factor, which can result in an incorrect estimation of
entropy (Li et al., 2018). The refined composite multiscale entropy is
introduced to overcome this limitation. Therefore, this study computed
the refined composite multiscale—sample entropy, dispersion entropy,
and Fuzzy entropy. The refined composite multiscale sample entropy
(RCMSE,) based on standard deviation (Azami et al., 2017) is
computed using eq. (5.14):

RCMSE, (x,7,m,r") = —In (w) (5.14)

B (r')
where, x denotes the input signal, and T denotes the scale factor.

In this study, values for m, r' are selected as 2 and 0.15 multiplied by

standard deviation, respectively.

The refined composite multiscale sample entropy (RCMSE) (Azami et
al., 2016) is computed using eq. (5.15):
Lo (5.15)
RCMDE (x,T,m,c) = — Z D (rr,,u_”,,.m_lj. In(p(ny,. v, ,))
m=1

here m and c are chosen as 2 and 6, respectively.

The refined composite multiscale fuzzy entropy (RCMFE,) based on

standard deviation (Azami et al., 2017) is computed using eq. (5.16):

m+1
RCMFE, (x,1,m,n,r') = —ln( [;;n ) (5.16)

where, m, n and r" are chosen as 2, 2 and 0.15 multiplied by standard

deviation, respectively.
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5.3.2. Significance of statistical and nonlinear features

The statistical features carry vital information about the system. For
instance, the inception of any blockage in the system changes the peak (also
maximum value and range) of the evaluated parameter (e.g., pressure), but
the RMS value remains nearly unchanged. But with the increase in blockage
severity, RMS changes significantly compared to peak values. Thus, the
ratio of peak to RMS (known as crest factor) is a preferable parameter to
monitor the system to detect a fault with its severity level at any stage
(Honarvar & Martin, 1997). Moreover, information about the system is
stored in the data distribution type, which is obtained by different statistical
moments of the distribution. The L. II, III, and IV moments of distribution
are known as mean, standard deviation. skewness. and kurtosis (Honarvar
& Martin, 1997). Mean indicates the average value of the measured
parameter (pressure) in the signal, while standard deviation represents the

dispersion of the acquired data around its mean.

Further skewness defines the symmetry of the acquired data about its mean.
The data can be either left skewed, right skewed, or symmetric about its
mean. Kurtosis represents the “peakedness™ of the data distribution. Shape
and impulse indicators are the signal’s peak and RMS ratio of its mean value
(Honarvar & Martin, 1997). It mainly measures the tradeoff of peak and
RMS of signal concerning its mean value based on the fault and severity
level. The signals are assumed to be stationary during extracting statistical
features. So, they cannot capture complex and non-linear trends in the

signal.

Furthermore, the signal exhibits variation in its irregularity based on
different conditions of the system. Holder exponents measure this change
in the irregularity of the signals to monitor the system’s condition. Entropy
features such as (sample entropy, fuzzy entropy, and dispersion entropy) are
used to measure non-linearity and uncertainty in the signal, which are the

limitations of the statistical features.

109

139



Thus, ML models are trained on four sets of features, namely enly statistical
features, onlv entropy features, statistical features with holder exponent,
and a combination of statistical features, holder exponent, and entropy
features (termed as all features). The effect of these combinations of
features is analyzed on the ML models for blockage fault diagnosis and

monitoring the pump’s health condition.

5.4. Machine learning model for fault diagnosis in
centrifugal pump

Deep learning is a state-of-the-art ML technique commonly employed for
monitoring bearings, gears, hydraulic systems, centrifugal pumps etc.
(Cortez et al., 2018). In the DNN classifier, the hidden state of every layer
is derived by transforming and activating the preceding layer’s hidden state.
The final reciprocal acquired during the backpropagation derivation
mcludes the multiplication of every step’s gradient, resulting in gradient
explosion or gradient vanishing (Guo et al., 2021). LSTM and Bi-LSTM
based ML models are efficient enough to overcome the issue of gradient
vanishing or explosion as they include memory cells that can maintain and
adjust information at every time step (Kara, 2021). The complete
architecture and tuning of hyperparameters of LSTM and Bi-LSTM for

blockage identification in a pump is discussed below.

5.4.1. Long short-term memory (LSTM)

LSTM is a special deep-learning model that deals with modeling sequential
data. In the deep learning approach, every part of the information in input
data is thoroughly examined based on the value of the previous output. The
repeating part in the DNN model is the only single tangent layer, while
LSTM consists of four different layers in the form of a repeating chain, as
shown in Figure 5.4. It demonstrates the single LSTM cell. This cell is
duplicated in the architecture of the LSTM network. Every LSTM cell
accepts a certain input signal (x), input gate signal (i), recurrent signal (h),
forget gate signal (f), and produces output gate signal (o). The
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conventional structure of the LSTM block comprises three layers: input,
forget and output layer. The first step in the LSTM architecture is the
decision to reject the information based on input X, and output h,_,. This
operation is performed using forget layer (f;) and sigmoid activation is
employed as an activation function (Hochreiter & Schmidhuber, 1997; Shi
et al., 2022; Tuncer & Bolat, 2022).

fo=0"(Wpx XX, + Wy X hey + by ) (5.17)

While in the second step, the latest information is determined in the input

layer of the cell. Here, the sigmoid function updates the input gate layer

(£e).

Then the value of the new candidate (lﬁ] that will create the latest

information is determined by tan h layer (Tuncer & Bolat, 2022).

At last output data (h,) is computed using eqs. (5.18) and (5.19) in output
layer (Shi et al., 2022)

0r =0"(Wox XX + Won Xhy_1+b,) (5.18)

h; = 0, % tanh(C,) (5.19)

where, o' (Sigmoid) and tanh are activation function.

Wi W Wi, Wi , We oy, W, W o, and W, are weights.
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Figure 5.4 The architecture of LSTM block

The process stated above is repeated several times during the model
training. In this process, weighted term W and bias term b are learned to

reduce the variation between the training data and LSTM output data
(Tuncer & Bolat, 2022).
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5.4.2. Bi- directional long short-term memory (Bi-LSTM)

Bi-LSTM 1is an advanced version of the LSTM network. The LSTM
network receives information from the forward side (past input information)
observations but doesn’t receive information from the backward side (future
input observations), as shown in Figure 5.5. Bi-LSTM comprises of two
LSTM networks that transmit information from the forward side to the
backward side and vice versa to collectively predict the output value (Hu et
al., 2020). In this way, Bi-LSTM initially learns from the impact of the
previous and subsequent data. Therefore, it performs the computation using
both forward and backward layers. The value of y;, weights, and the
conditional probability of states are computed before (a*) and after (a™)

input (Tuncer & Bolat, 2022).
ye= g (Wla*,a™']) + by (5.20)

The complete architecture of Bi-LSTM is shown in Fig. 5.6, with the LSTM

cell as the repeating structure.

These LSTM and Bi-LSTM networks are connected to various layers to
function as a classifier. The complete architecture of the classifier is shown

in Figure 5.4.

1. Customized feature input layer: This layer inputs the customized
feature data into the network and normalizes this data.
Normalization improves the training accuracy and prevents
degradation in the performance of the selected ML model when the
chosen parameters (or features) have different magnitudes. Here, Z
-score is used as normalization criteria (Peng, 2022) which is given
by:

X-X
a0

X' = (5.21)
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2. LSTM / Bi -LSTM layer: A single layer is used, which allows
sequential learning from input data. This layer is briefly explained
above in sections 5.4.1 and 5.4.2.

3. Dropout Layer: This layer is employed to reduce the chances of
overfitting in the classification model (Fu et al., 2019). This layer
randomly drops out the input element with a given probability.

4. Fully connected Layer: This layer is similar to ANN neurons, where
the neurons from the preceding layer are connected to the neurons
of the successive layer. This layer combines all the information
learned by previous layers to identify a larger pattern (Vashishtha &
Kumar, 2022).

5. SoftMax Layer: This layer computes the probability distribution of
the target class over all the possible target classes (Vashishtha &
Kumar, 2022). The expression for this layer is:

PO = o) o
f=1(3"j)

6. Classification Layer: In this layer, the cross-entropy loss is
computed for classification and weighted classification of a
mutually exclusive class. In this layer, the trained network takes out
values from the SoftMax layer and allocates each input to one of the

K mutually exclusive classes with the help of cross-entropy.
N K

1
loss = N Z Wi bt Inyy; (5.23)
1

n=1i=

where N denotes the number of instanes, k denotes the total classes,
w; denotes the weight for each class i, t,;; is the indicator that shows
that the n" the sample is from the i*" class, and y,; represents the

output of the sample n for class i, computed from the SoftMax layer.

Adaptive moment estimation (ADAM) is selected as the optimizer to train

the LSTM and Bi-LSTM-based classifiers. The training and test data is
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divided into 70:30 (Singh et al., 2021). From the selected test data, 50 % of

the data is used for validation purposes to track the fitting skill of the model.

The exact ratio for train and test data is selected for all cases in this study.
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Figure 5.6 Complete lavout of LSTM and Bi-LSTM-based classifier

5.4.3. Hyperparameter selection for LSTM/ Bi-LSTM model

Hyperparameter selection in deep learning algorithms is an essential task.

These parameters control the behaviour of the developed model. The most

relevant parameters involved in the LSTM and Bi -LSTM models are as
follows (Thoppil et al., 2022):

11

Batch size: It represents the number of samples propagating in the
network during each iteration. If the batch size value is smaller than
the total sample employed for training, it will utilize lesser memory
and faster training.

Number of neurons in LSTM layers: It denotes the network’s
representational power, i.e. the amount of information that can be
remembered between timestamps. It indicates the number of hidden
units or features that can be learned and used by the network for

prediction. Its value can vary from a few dozen to thousands.
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Increasing the values of neurons can help to learn more complex
data but can result in overfitting.

iii.  Initial learning rate: This is initially used to train the selected
algorithm. The lower side value of this learning rate leads to an
increase in training time, whereas a higher learning rate results in a
suboptimal result or diverged model training.

iv. Dropout rate: It randomly alters the value of certain input
parameters to zeros. Hence it can change the underlying network
architecture between the iterations. The large value signifies that
significant elements are dropped. It further reduces the chance of
overfitting and influences the model’s performance by enhancing 1ts
generalization capability.

v.  Epochs: These mainly represent the training algorithm’s entire pass

over the complete dataset.

In this study, the grid-search hyperparameter optimization is used to find
the best-suited values of hyperparameters. The grid search algorithm at the
initial level selects the user-defined inputs of hyperparameters, and then it
iterates at various combinations of the chosen hyperparameters. Finally, it
selects the best combination of hyperparameters at which the validation loss

18 minimum.

The complete set of experiments conducted is elaborated in Table 5.4. The
LSTM based network is tuned with the following values of
hyperparameters: Batch Size {16, 32, 64, 128, 256}, Number of neurons
{100, 150, 200, 250, 300}, Learning rate {0.001, 0.025, 0.05, 0.075,0.1},
Dropout rate {0.1, 0.2, 0.3, 0.4, 0.5} and no of Epoch {30, 50, 100, 150,
200}. In this case, experiment no 22 in Table has a minimum value of the
validation loss, and it is selected for the study. Thus, the optimal values of
hyperparameters are batch size-16, number of neurons-200, initial learning
rate-0.001, dropout rate-0.2, and 200 epochs. The methodology adopted in

this paper is summarised in Figure 5.7.
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Table 5. 4 Parameters considered for hyperparameter tuning of parameters in LSTM/Bi-LSTM model

Validation loss Validation loss

Experiment Batch size Neurons Learning rate Dropout rate Epoch (LSTM) (Bi - LSTM)
1 16 100 0.001 0.1 30 0.1527 0.1500
2 32 100 0.001 0.1 30 0.179 0.1630
3 64 100 0.001 0.1 30 0.2661 0.2165
4 128 100 0.001 0.1 30 0.2644 0.3423
5 256 100 0.001 0.1 30 0.833 0.6195
6 16 150 0.001 0.1 30 0.1522 0.1485
7 16 200 0.001 0.1 30 0.1499 0.1435
8 16 250 0.001 0.1 30 0.1504 0.1493
9 16 300 0.001 0.1 30 0.1517 0.1501
10 16 200 0.025 0.1 30 0.1534 0.1572
11 16 200 0.05 0.1 30 0.1702 0.2262
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12 16 200 0.075 0.1 30 0.2227 0.2438
13 16 200 0.1 0.1 30 0.2454 0.3587
14 16 200 0.001 0.2 30 0.1494 0.1457
15 16 200 0.001 0.3 30 0.1500 0.1470
16 16 200 0.001 04 30 0.1572 0.1477
17 16 200 0.001 0.5 30 0.1593 0.1489
18 16 200 0.001 0.2 30 0.1494 0.1457
19 16 200 0.001 0.2 50 0.1457 0.1451
20 16 200 0.001 0.2 100 0.1351 0.1423
21 16 200 0.001 0.2 150 0.1386 0.1422
22 16 200 0.001 0.2 200 0.1279 0.1342
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Figure 5.7 Methodology adopted for blockage fault identification in
centrifugal pump

5.4.4. Performance evaluation

The primary goal of this research is to identify the best feature combination
for the LSTM and Bi-LSTM classifiers that can identify the blockage fault
in the pump with high accuracy in a timely and cost-effective manner. A
confusion matrix is the most common decision-making tool for determining

the ML model’s performance. True positive (TP), True negative (TN), False
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positive (FP), and False negative (FN) in the confusion matrix are illustrated
in Table 5.5. Different parameters such as Accuracy, Precision, Recall, and
Fl -score are extracted from the confusion matrix to evaluate the
performance of the model (Shukla et al., 2021; Tuncer & Bolat, 2022) and
are described in equations (5.24) to (5.27). Accuracy represents the success
of the classification. It indicates the closeness of the predicted value to the
actual values at various iterations over the same dataset without any error.
Precision computes the ratio of correctly predicted samples to all predicted

samples for that class. It computes the quality of correct predictions.

In contrast, Recall, also known as the true positive rate, is defined as the
ratio of the correctly classified class samples (TP) to an overall number of
instances (TP + FN) of the same class. A higher value of Recall shows good
performance of the selected model. F1 — score is the harmonic mean of
Recall and precision, representing the trade between Recall and precision.

The total time required to train the model is also computed in this study.

CCUTALY = m—————————
Y="PFN
TP .
Recall = ——— (5.25)
TP + FN
Precisision = —— (5.26)
TP+FP

Fj_ Crore =72 % (Pr‘echiun xREEEH) (52‘?}

Precision+Recall

Table 5. 5 Description of the Confusion matrix

Predicted
Class A Class B
Class A TP FN
Actual
Class B FP TN
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5.5. Results and discussion

This chapter aims to assess the performance of a cutting-edge ML model
(LSTM and Bi-LSTM based classifier) for blockage fault diagnosis in
centrifugal pumps at three levels of severity. Correct feature selection aids
in capturing and interpreting fault severity in a system, leading to improved
classifier performance. But there is no hard and fast rule for selecting
appropriate features for a given fault condition. So, LSTM and Bi-LSTM
classifiers are evaluated using the following four different feature

combinations:

1. Only Statistical features (SF)

11. Statistical features (SF) and Holder exponent (HE)
iii.  Only Entropy features (EF)
iv.  All Statistical features (SF, HE, EF)

5.5.1. Identification of blockage fault using LSTM based

classifier

The validation accuracy and loss curve for LSTM based classifier with all
extracted features (Statistical feature, Holder exponent, and Entropy
features) are shown Figure 5.8 (a and b), respectively. It is depicted that
losses reduce with increasing iterations (Epochs) and settle downs in a
narrow band till 20000 iterations (or 200 Epochs) are marked as *final” in
the plot. This plot also shows that accuracy and loss follow the same
trajectories, indicating that the model is not overfitted and has been
appropriately trained. Similar trends were observed for all other features in

LSTM based classifier in terms of validation accuracy and loss trajectories.
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Figure 5.8 Performance of LSTM based classifier for the combination of all

extracted features in terms of (a) Accuracy (b) Loss

The performance indicator for all four different feature combinations using
LSTM based classifier is shown in Figure 59 The model’s performance
cannot be justified based on a single run. Thus, the performance of models
is evaluated for minimum ten runs and the average value of the performance
parameters is presented in Figure 5.9. LSTM classifier trained with only
entropy features results in the least validation accuracy of 56.88%. While
the LSTM classifier trained with the remaining three feature combinations

achieved a decent accuracy of more than 97%.
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Figure 5.9 Comparison of performance of LSTM classification for different

feature combinations

The LSTM classifier trained with only statistical features achieves a
validation accuracy of 97.59 %, which is quite good as per the task’s
complexity in identifying blockage fault. The LSTM classifier trained with
the combination of all extracted features achieved the best validation
accuracy of 99.28%. Moreover, the test accuracy of this model is further
compared based on the obtained result. It is revealed from Figure 5.9 that
the test accuracy of the LSTM classifier improves from 97.44% to 99.01%
when statistical features are combined with holder exponent and entropy
features. The second-best model was based on statistical features and holder
exponent, achieving a test accuracy of 98.37%. The holder exponent
combined with statistical features improves the test accuracy by about ~1%
of the LSTM model. Further, Figure 5.9 shows the parameters for all four
LSTM models required to evaluate their performance, as discussed in
section 5.4.4. Overall, LSTM combined with all features achieves the
highest accuracy as the features used in this model contains both statistical
and non-linear information about the different blockage level of the pump,
which helps to classify these conditions.
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Figure 5.10 Confusion matrix for test data of (a) Statistical feature (b)
Statistical features and Holder exponent (c) Entropy features (d)
Combination of statistical feature, holder exponent and Entropy features by

LSTM based classifier.

Figure 5.10 presents the confusion matrix for LSTM based classifier
evaluated on the test data set. This confusion matrix shows the best results
obtained in ten trial runs for each case. The confusion matrix provides more
significant insights into the reduced accuracy of the classifier and error in
predicting the pump condition. As demonstrated in Figure 5.10 (a),
statistical features alone cannot completely distinguish healthy from DB 1,
and vice wversa. Also, musclassification occurs for SB II and SDB IL
However, using a holder exponent with the statistical features minimizes

the misclassification between SB II into SDB 11 and DB 1 and healthy
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condition, as shown in Figure 5.10 (b). Sdll, there is significant
misclassification in DB 1 into the healthy conditions, which marginally
improves the LSTM model’s accuracy. It happens as the holder exponent
can distinguish SB II from SDB II, but this feature is not efficient enough
to completely distinguish DB and healthy condition. DB I state is closely
related to the healthy condition and results in bare minimum
irregularity/change among these two- states. Figure 5.3 (c) represents the
normalized discharge pressure value for different pump conditions. It is also
depicted from this figure that pressure for DB I is almost the same as a
healthy case, increasing the chance of misclassifving DB [ into healthy and
vice versa. Till level II, SDB is closely related to SB, which leads to
misclassification between these two cases in some instances. Figure 5.10
(c) indicates that only entropy features cannot distinguish different blockage
conditions in a pump. Entropy features are enriched with information
related to the non-linearity of the pump condition. However, they lack the
statistical characteristics which are more dominant to classify blockage in
the pump. Entropy features combined with statistical features and holder
exponent eliminates the misclassification caused between SDB and SB, as
shown in Figure 5.10 (d). It boosts the test accuracy from 97.44% to
99.01%. The above results reveal that non-linear features alone are
insufficient to classify blockage fault in the pump but, if combined with

other features, help improve the ML model’s accuracy.

5.5.2. Identification of blockage fault using Bi-LSTM based
classifier

Figure 5.11 depicts the validation accuracy and loss curve for the Bi-LSTM-
based classifier with all extracted features (SF, HE, and EF). Similar trends
are observed compared to the LSTM-based classifier, showing that the
model has been successfully trained. Figure 5.11 shows the validation
accuracy for all four feature combinations using a Bi-LSTM-based

classifier. It also shows that the Bi-LSTM classifier trained with only the
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entropy feature has the lowest validation accuracy. Still, the Bi-LSTM
classifier trained with the other three feature combinations has a validation

accuracy greater than 96%.
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Figure 5.11 Training performance of Bi-LSTM based classifier (a)

Accuracy (b) Loss

Figure 5.12 also shows the performance parameters used to assess the Bi-
LSTM classifier. The maximum accuracy of 99.16% is attained when all
extracted features are used to train the Bi-LSTM classifier, but it is slightly
lower than the LSTM classifier. The confusion matrix for the Bi-LSTM
based classifier is shown in Figure 5.12. It reveals that the Bi-LSTM based
classifier cannot distinguish between normal and DB [ pump conditions in
many instances. Also, it sometimes misclassifies between SB II and SDB

I, DB I and DB 11.
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Figure 5.12 Comparison of performance for Bi-LSTM classification for

different feature combination

The misclassification rate between Healthy and DB 1 is more for the Bi —
LSTM classifier than the LSTM classifier when trained with all extracted
features. It is also inferred from the F1 — score for both models. F1 — score
is higher in most cases for LSTM than Bi-LSTM. These misclassifications
occur as there is very little difference between these faults, as shown in
Figure 5.13 (d), but the ML model employed can differentiate between these

faults 1n most cases.

Taylor's plots of the competitive models of LSTM and Bi—LSTM based on
the value of the Fl-score are shown in Figure 5.14 (a and b, respectively)
from 10 different trial runs. Taylor's plot does not include the LSTM and
Bi-LSTM models trained with only entropy features due to a low Fl-score
(< 60 %). The dashed black line in these plots represents the reference
model, 1.e., LSTM and Bi-LSTM model trained with only statistical
features. Figure 5.14 (a) shows that the LSTM model trained with all
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extracted features is highly correlated with the reference model and has a

low standard deviation, proving its superiority over the other two models.
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Figure 5.13 Confusion matrix for test data of (a) Statistical feature (b)
Statistical features and Holder exponent (c) Entropy features (d)
Combination of statistical feature, holder exponent and Entropy features by

Bi-LSTM based classifier.

Similarly, it 15 observed from Figure 5.14 (b) that the Bi-LSTM model
trained with statistical features and Holder exponent is highly correlated to
the reference model. Still, the model trained with all features has a very low
standard deviation and high Fl-score (as depicted in Figure 5.12),
demonstrating its high reliability. Also, the comparison between Taylor's
plot shown in Figure 5.14 depicts that the LSTM model has a low standard
deviation and high F1-score compared to Bi -LSTM models. It signifies the
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higher reliability of the LSTM model as compared to Bi-LSTM in case of

blockage detection in the pump.
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Figure 5. 14 Taylor's

diagrams for Fl-score of (a) LSTM and (b) Bi-LSTM

model trained with statistical feature (SF). Statistical features and Holders'

exponent (SHF) and all extracted features (AF)
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Figure 5.15 Comparison between training time of LSTM and Bi-LSTM

classifier

The training time for both LSTM and Bi-LSTM is presented in Figure 5.15.
It reveals that the training time for Bi — LSTM is much more than for LSTM
because Bi-LSTM employs two LSTM cells for each block, as explained in
section 5.4, to learn from both forward and backward input. In continuation,
the ablation study of the ML model is required to evaluate the impact of
various parameters on the model’s performance (Montaha et al.,, 2022).
Thus, the ablation study of the final proposed model i.e., LSTM model
trained with all extracted features is shown in Table 5.6. It is evident from
this table that learning rate have significant on the performance of the
proposed model while in other cases change in the performance of the

model is very less (< 2%).
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Table 5. 6. Ablation study regarding the LSTM model trained with all

extracted features

Case study 1 — Changing number of LSTM layers

S. Fl1- Findings
No. of LSTM Layer Accuracy
No score (Fl-score)
1 1 99.06 99 Highest
2 2 98.8 98.72 Modest
3 3 98.8 98.70 Modest
4 4 98.67 98.57 Lowest
Case study 2 — Changing number of hidden units
S. Fl- Findings
No. of hidden units Accuracy
No score (Fl-score)
1 250 98.84 98.93 Modest
2 200 99.06 99 Highest
3 150 98.53 98.43 Lowest
4 100 98.53 98.44 Modest
5 50 98.67 98.56 Modest
Case study 3 — Changing dropout rate
S. Fl- Findings
Dropout rate Accuracy
No score (Fl-score)
1 0.2 99.06 g9 Highest
2 0.3 98.53 98.46 Modest
3 04 98.53 98.42 Modest
4 0.5 98.27 98.15 Lowest
Case study 4 — Changing activation function of LSTM layer
S. State Gate F1- Findings
Accuracy
No activation activation score (Fl-score)
| tanh Sigmoid 99.06 99 Highest
2 Softsign Sigmoid 98.80 98.70 Modest
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Hard

3 Tanh 98.53 98.46 Modest
Sigmoid
Hard
=+ Softsign ; . 98.40 98.31 Lowest
Sigmoid

Case study 5 — Changing Batch Size

S. F1- Findings
Batch Size Accuracy
No score (Fl-score)
1 16 99.06 99 Highest
2 32 98.67 98.56 Modest
3 64 98.40 98.29 Modest
- 128 98.27 98.15 Lowest

Case study 6 — Learning rate

S. ) F1- Findings
Learning Rate Accuracy
No score (Fl-score)
1 0.001 99.06 99 Highest
Z 0.025 98.27 98.16 Modest
3 0.05 96.80 96.78 Modest
= 0.1 95.20 95 Lowest

Case study 7 — Different optimizer

S. ) Fl1- Findings
Name of optimizer Accuracy
No score (Fl-score)
1 adam 99.06 99 Highest
2 sgdmprop 97.33 97.10 Lowest
3 rmsprop 98.27 98.16 Modest

5.5.3. Comparison of the proposed approach

Comparison of the proposed approach with other ML algorithms
The proposed method (LSTM/ Bi — LSTM with all extracted features) is
compared with some pre-existing well-developed methods to identify

blockage faults in the pump. The features matrix selected for the analysis
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comprises statistical features, holder exponent, and entropy features. The
ML algorithms selected for comparison are SVM, SVM — Grid search
optimization (SVM — G5), SVM — Bayesian optimization (SVM — BO) and
an ensemble-based method, namely XGBoost (Bordoloi & Tiwari , 2017,
Prakash & Kankar, 2021; Kamiel et al., 2023; Minhas & Singh, 2021).
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Figure 5.16 Comparison of test accuracy of the proposed approach with

other ML algorithms

133

163



The hyperparameters of other benchmarked method used for comparison
are also tuned. The hyperparameters of SVM are tuned in their search space
for € {0.1, 1, 10}, ¥ {0., 1, 10} and Kernel function {rbf, poly} using
gird search and Bayesian optimization. The hyperparameters selected for
SVM through grid search optimization are € = 0.1, y =1 and kernel = 'poly'

while in Bayesian optimization € = 10, ¥ = 0.1 and kernel = 'rbf".

Table 5. 7 Comparison of statistical measures of test accuracy from the

proposed approach with ether ML algorithms

Maximum Minimum = Average

Accuracy  Accuracy  Accuracy Variance

Name of the

model
(o) (%) (%0)

SVM 97.6 95.7 96.99 0.32
SVM -GS 98.48 96.74 97.99 0.31
SVM -BO 98.48 96.96 97.95 0.21

XGBoost 98.04 97.17 97.56 0.11

LSTM classifier 99.20 98.80 99.01 0.01

Bi—LSTM 98.67 98.00 98.29 0.04
classifier

Further, XGBoost is tuned for better performance using four different
hyperparameters in the search space. These parameters have been assigned
numerous values for determining the best combination. The search space
variables are: number of estimators {100, 200, 300}, learning rate {0.1,
0.15,0.01, 0.015}, maximum depth {3, 5, 7, 9}, minimum samples required
to split {1, 5, 10}. In XGBoost, number of estimators, learning rate,
maximum depth, minimum samples required to split are selected as 200,

0.15, 5,1 respectively.

A total of ten different trials are conducted for each case, and their Fl-score
and test accuracy is compared in Figure 5.15. It is depicted from this figure
that LSTM has achieved the highest Fi-score and test accuracy as compared
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to other ML algorithms. Further, the maximum, minimum, and average
accuracy and their variance are presented in Table 5.7. It is evident from
this table that LSTM and Bi — LSTM models have higher accuracy and
lower variance than other well-established models. Also, the LSTM model

has higher accuracy and lower variance than the Bi -LSTM model.

Table 5. 8 Comparison of statistical measures of FI-score and test accuracy
from the proposed approach with other ML algorithms on common dataset

available in Ref. (Lu et al., 2016)

F1-score Accuracy
Statistical
SVM SVM
parameters LSTM XGBoost LSTM XGBoost
-GS -GS
Maximum  97.78 96.64  96.64 97.78 96.67 96.67
Minimum  96.54 94.47 0448 96.67 95 95

Average 97.16 95.93 96.20 9722 96.002  96.17
Variance 0.43 0.77 0.81 0.34 0.74 0.65

Comparison of the proposed approach on different dataset

This section evaluates the proposed approach on the common dataset
available (Lu et al., 2016). It is an open-source dataset of the centrifugal
pump, which mainly comprises five conditions of the pump: healthy
condition, impeller wear, and three bearing faults (inner race wear, outer
race wear, and roller race wear). The data at a sampling frequency of 10
kHz is acquired from the vibration sensor installed at the motor casing of
the bearing. This study uses this dataset to evaluate the best-proposed
methodology (i.e., LSTM with all features extracted). It is further compared
with XGBoost, and the best SVM algorithm (i.e., SVM -GS) obtained from
Table 5.7. The results are presented in Table 5.8.
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Table 5. 9 Comparative study between present work and some existing literature

5. o . . . ;
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Blockage entropy 8
Vilistion: 7 Mean, standard
deviation
Pres 1 s D .
2 Kumar et al., Suction T (Accelerometer — 2, kurtosis BE_P Training and
' 2021 blockage ¥ s Pressure sensaor -2 - wetp testing accurac 2
=l 2 kit Ting SSure sens " skewness. and clussifice sung ¥
sigrial current probe — 3) motor speed
Suction Mean, standard De
3 Tiwari et al., Blockage Pressure deviation, p Classification 86.15% at <
c blockage and : 1 : learning
2021 e level: 5 Signal kurtosis, and ; accuracy 35Hz
cavitation classifier
skewness
Vibration 17 different
- For Block
1 Rapur & Blockage and and motor Sl Acceloromeier statistical Classification RS
g vt . 5 2, current probe — SVM fault: 94.1 =
Tiwari, 2018 impeller fault current features are accuracy
] 3) 35Hz
signal extracted
136

166



Mean,

P Multiclass
Suct : e Blockage:
Panda et al., Heren Vibration 2! kurtosis, Classification poRee
Blockage and . SVM 86.53%
2018 ; Signal (Accelernmeter — 2) standard accuracy & :
cavitation T Cavitation:
R 99.38%
factor, entropy
Cavitation, —
a‘fg 2 Statistical
Bearing fault, arameters and
Muralidharan et Impeller fault, Vibration 1 (Accelerometer- P . Classification
; ; histogram SVM 99.84%
al., 2014 Bearing and signal 1) accuracy only.
Impeller fault feature from
pe CWT of signal
together
Bearing, Training time,
misalignment, L. Testrate,
6 statistical SVM and SVM:96.77
ALTobi et al., unbalance, Vibration B S Validation rate,
2019 impeller. signal ! fearures from MILP- Training rate and MLP-
% ! - CWT of signal GABP GABP:99.5
looseness, and = overall
cavitation classification rate

167

137



It is evident from the table that the LSTM algorithm achieves higher test
accuracy (and Fl-score) and lower variance compared with other
conventional methods used for classification. The average Fl-score and
accuracy obtamed by LSTM is 97.336%. Furthermore, the proposed model
is compared with the existing literature in Table 5.9. This comparison is
based on faults, the type of sensor used, features chosen, performance

parameters, and classification accuracy obtained in each paper.

This chapter proposed a methodology to detect the presence of any blockage
fault with its type and severity using discharge pressure only. The result
shows that the proposed method is successfully implemented with a higher
prediction rate. Therefore, using only pressure signals, the suggested
methodology can be utilised to detect the presence and severity of blockage
problems in centrifugal pumps. Timely detection of blockage faults will
reduce the failure of the pump or component, ensuring the system’s safe

operation and retaining the rated efficiency of a pump.

5.6. Conclusions

This chapter puts forward two sequential learners, LSTM and Bi-LSTM, as
supervised classification learners for identifying the blockages at suction,
discharge, and simultaneous blockages at both sides in a centrifugal pump.
Their limited capabilities to handle time series forecasting have been pushed
to classify pressure sensor signals by integrating a fully connected layer
right after the LSTM layer in the model. Also, this chapter presented a
customized non-convolutional layer for efficient feature extractions
(statistical and entropy-based features, Holder exponent). A different
combination of these features has been utilized for training the eight
different models. Subsequently, Taylor's plot demonstrates the correlation
and standard deviation of models having F1-score=90%. Towards the end,

the detailed ablation study is conducted for the better performing model,
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i.e., LSTM trained with all extracted features. The study also compared the
performance of the developed models with benchmark models like SVM,
SVM-GS, SVM-BO, and XGBoost based on Fl-score and found the
proposed model to be performing better. It points toward the novelty of the

presented work. The key conclusions from this study are as follows:

¢ The study presents a customized non-convolution feature layer to
extract a combination of statistical features (Skewness, Kurtosis,
eic.), entropy-based features (dispersion, fuzzy, and sample
entropies), and Holder's exponent. A different combination of these
features is used to train eight different models (four each of LSTM
and Bi-LSTM).

¢ The grid search optimization is subsequently used to tune the
hyperparameters of LSTM and Bi-LSTM. The best parameters are
listed in Table 5. For the best-tuned model, the minimum wvalues of
validation loss are noted as 0.1279 and 0.1342 for LSTM and Bi-
LSTM, respectively.

e It is demonstrated that the developed non-convolution feature layer
extracts useful features which altogether enhance the average
detection accuracy of the LSTM model to 99.01%, whereas in the
case of Bi-LSTM models, the best is 98.29% using test data.

* The ablation study of the LSTM model trained with all features is
conducted for seven different cases, and their findings are listed in
Table 9. It is concluded that the learning rate has a highly significant

effect on the model's performance
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Chapter 6

Vibration signal-based identification of

mechanical faults

This chapter presents the methodology to diagnose mechanical faults in a
centrifugal pump using two distinct machine learning (ML) techniques,
namely, Support vector machine (SVM) and Artificial neural network
(ANN). Different statistical features are extracted in the time and frequency
domain of the vibration signal for different working conditions of the pump.
Furthermore, different feature ranking (FR) methods, namely, Chi-square,
ReliefF and XGBoost are employed to decrease the dimensionality of the
obtained features. ANN technique is found to be more efficient in
classifying faults in a centrifugal pump as compared to the SVM. The results
presented in this chapter demonstrate that an ANN based ML approach with
Chi-square and XGBoost feature ranking techniques can be used effectively

for the fault diagnosis of a centrifugal pump.

6.1. Introduction

Centrifugal pump malfunction due to the presence of any mechanical or
hydraulic fault which further deteriorates performance and affects its
reliability. In chapter 3.4.5 we have developed different methodologies to
identify blockages in the pump. This chapter focuses on identifying faults
in mechanical components of the pump. Impeller and bearings are the two
major mechanical component of the pump that are susceptible to failure due
to erosion by slurry particles, corrosion due to reactive chemicals and
improper lubrication (Kumar & Kumar, 2017). Fault detection in these
components at an initial stage can help avert catastrophic failures and reduce
system downtime (McKee et al., 2011). In data-driven approach, the signals

of different parameters are analyzed such as the motor’s electrical signals,
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fluid pressure and temperature signals to identify the fault and determine its
root cause (Luo et al., 2015; Stan et al., 2018). While these signals aid in
fault diagnosis, they are still an indirect signature of the actual fault
condition in case of faults in mechanical components. For a rotating
machinery, the vibration signals acquired using an accelerometer reflects
the true state of an actual fault, and therefore, the condition of the rotating
system (Farokhzad et al.. 2013). By applying intelligent ML-based
techniques such as SVM, DT and ANN (Kankar et al., 2011; Muralidharan
et al., 2014; Sakthivel et al., 2010) on these vibration signals, the health of
a rotating system can be determined; via feature extraction from the signal
in time, frequency and time-frequency domains (Sharma et al., 2017).To
improve the computational efficiency of a ML-model, the dimensionality of
the features can be decreased by selecting optimal features. Different FR
techniques such as Chi-square, Fisher score, Information gain, Mutual
Information, ReliefF, Wilcoxon ranking, XGBoost have been employed by
previous studies for selecting the optimal features (Prakash & Kankar,
2020; Sharma et al., 2017; Vakharia et al., 2016). These optimal features
can be utilized to train the ML-model to detect and classify the faults in

rotating machines.

In this chapter, the SVM and ANN models have been used to diagnose and
categorize the faults in a centrifugal pump. The features embedded in the
raw signals have been extracted in time and frequency domain. These
feature vectors are then reduced by selecting the features using Chi-square,
ReliefF, and XGBoost methods. The features selected are employed as input
to these classifiers. The accuracies of two models are evaluated and
compared using three different FR techniques, and it is demonstrated that

ANN technique is more suitable for fault diagnosis and classification.

6.2. Experimental setup

The dataset of the self-centrifugal pump used in this study is obtained from
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(Lu et al., 2016). The accelerometer fixed on the pedestal above the motor
housing has been used to acquire the vibration signal, as shown in Figure

6.1.

Accelerometer Vibration signal DAQ
{on motor casing) (X, ¥, 2)

-
%
Il

~
Flow out .

Flow in

Centrifugal pump

Figure 6.1 A schematic representation of the experimental facility used for
acquiring vibration signals from the motor casing of a self-priming
centrifugal pump. Location of the accelerometer for data acquisition is

shown marked.

Table 6. I Different condition of centrifugal pump

S. No Conditions of pump
1 Normal condition
2 Bearing inner race wear
3 Bearing outer race wear
4 Bearing roller wear
5 Impeller wear
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Figure 6.2 Vibration signals for different working conditions of the
centrifugal pump: (a) normal working operation, (b) Bearing inner race
wear, (¢) Bearing outer race wear, (d) Bearing roller wear, and (e) Impeller

wear

144

174



The experiments were carried out at the rotational speed of 2900 RPM.
The vibration signals were recorded using an acceleration sensor at a
sampling rate of 10239 Hz. The vibration signals were obtained under five
different working conditions: normal operation, which is the base line case,
and four cases with faults; impeller wear, roller wear, bearing outer race
wear and bearing inner race wear. These five working conditions are listed
in Table 6.1. For each fault condition 5 instances were acquired, each with
a total sampling time of 2 5. One representative signal of the vibration for
the normal working condition and each type of faulty condition is
demonstrated in Figure 6.2. The raw data is distributed such that there are

60 datasets for each type of faults.

6.3. Feature extraction

Features are obtained from the vibration signals to detect and classify faults
in the system. For monitoring system’s health, the features from time-
domain are good indicators but to locate a particular fault in the system,
frequency-domain features show better results (Sharma et al., 2017).
Therefore, the accuracy of the model improves by combining the features

in both time and frequency domains.

Table 6.2 List of statistical features extracted from time domain signal

S. No Name of feature
1 Mean
2 Standard Deviation
3 RMS
4 Kurtosis
3 Skewness
6 Crest Factor

145

175



6.3.1. Time domain feature extraction

The different features that are extracted in the time domain of the vibration

signal as listed in table 6.2. The details of these features can be found in

section 3.3.1 in chapter 3.

6.3.2. Frequency domain feature extraction

In the frequency domain, various features extracted from the signal are as

follows:
1 Peak frequency: It represent the frequency where the power in the
signal 1s maximum.
2 RMS frequency: It is depicted as the square root of the arithmetic
mean of the squared value of the signal.
2
X
foms = [ ) (6.1)
n
3  Spectral centroid: It is depicted as the summation of frequency

values which are biased by the relative spectral magnitude of every
frequency component divided by the total spectral value.
n=1 f(M)|X(n)|

n=11X(m)|

Spectra roll-off: It represents the frequency in the signal below

o=

(6.2)

which 95% of the energy is concentrated. It is the frequency at which
the Power Spectral Density is more than (0 95, where “r’ is spectral

roll off point (in Hz) such that:

T N
Dlsal =k ) Isal
n=1 n=1

(6.3)
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6.4. Feature selection techniques

In each signal, the features contain information on the condition of the
system, however, some features are irrelevant, and they decrease the
discriminative efficiency of the model. Therefore, it is crucial to select only
the optimal features that help in fault diagnosis (Prakash & Kankar, 2020).
The optimal features are selected using the FR methods such as Chi-Square,
ReliefF, and XGBoost. These methods are also used to decrease the

dimensionality of the feature vector set for both time and frequency domain.
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Figure 6.3 FR of time-domain features

Figures 6.3 and 6.4 show the FR results for the time-domain and the
frequency-domain features respectively for three different FR techniques.
After employing the ranking methods, the features selected in both the

domains are combined to improve the accuracy of the model.

The dependency plot between the significant features selected using the FR
methods and the significant feature itself is shown in Figures 6.5, 6.6 and
6.7. The dependency plot includes a histogram when the significant feature

is compared to itself. The histogram obtained is generally bimodal i.e., it
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has two peaks. These plots show that there is no predefined relationship
between the selected features which signifies that these features are

independent of each other.
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5
4
3
2
1
0
£EgeT tgTd Eged
@ ccc O ccc 9 ccc
= o o =0 o a = o o a
S Reez azzz
] B R
A b L e W W e W
T vV o - UV X o UV =
BES BES B3
= = [=
[+ T] [ 1) (7]
(W] (s (]

Figure 6.4 FR of frequency domain features

The FR method decreases the dimensionality of the feature vector which
reduces the computational effort required for training the classification

model. The feature ranking methods used in this work are detailed below:

6.4.1. Chi-square

This ranking technique uses X2 statistics (Sharma et al., 2017)and the
importance of the feature is evaluated independently of the concerned
classes using the Chi-squared statistics. A high Chi-squared value indicates

that the feature is more relevant to a specified class.

A B Se* Ry T
¥ D.. |r,— .M (6.4)
xy U= S xR
i=1 j=1 M &
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Where, M represents instances, A represents intervals and B represent

classes, S; and R; represent the instances in x** and y"

respectively and D, represents the instances in yth
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Figure 6.5 Dependency plot for features selected using the Chi Square

method of feature extraction

6.4.2. ReliefF

It is a FR method that estimates the quality of a feature concerning other

features. The score of features is computed in ReliefF by allocating weight

to a feature depending on its capabilities to separate the sample from its

nearest neighbors of the same class and the opposite class.

P(C)

— P(class(R,)) s

k
VIA] = VIA] - Zd:ff{.q B D}

dsz((.d R; L(C)))I (6.5)

{m. k)

=1 c=class{#y)
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Figure 6.6 Dependency plot for features selected using ReliefF method of

Sfeature extraction

For the occurrence R;, this algorithm hunts the k'" closest member in the

1dentical class and 1s named as the closest hit Dj and k" closest member in

the different class is named as the nearest miss L;. The quality measure
V [A] is assigned a zero value at an initial stage and it updates for the mt"

iteration as shown in Equation (6.5).

This algorithm rewards a feature, when it gives different values to the
closest member from the other class, and it fines the feature, when it gives

the same value to the closest member from the other class. Using this
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algorithm, the features are ranked with respect to their weights. A feature

having a higher score is considered more useful as compared to others.
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Figure 6.7 Dependency plot for features selected using XGBoost method of

feature extraction

6.4.3. XGBoost

XGBoost i1s an ensemble technique that is based on the gradient boosting
tree and efficiently constructs the boosted trees that can operate in parallel.
Gradient boosting is used for FR because once the boosted decision trees
are constructed then it becomes easy to retrieve information related to the
feature from the model. The importance of the feature signifies the role of

the feature in constructing the decision tree (Prakash & Kankar, 2020).
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6.5. Machine learning (ML) techniques

While different ML techniques like SVM, ANN, genetic algorithm and
fuzzy logic are used in engineering applications. SVM and ANN (Sharma
et al., 2016) are the ones that are used most widely. These two techniques
are employed in this study and are briefly described below:

6.5.1. Support vector machine (SVM)

It is a supervised learning method that works on the principle of
minimization of structural risk. In general, SVM is employed to solve
problems related to regression and classification and it can solve both linear
and nonlinear classification problems (Kankar et al., 2011). In case of a
classification problem, a boundary is generated among two classes in SVM,

as shown in Figure 6.8.

LY "
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Support Vectors

Figure 6.8 A schematic representation of the SVM model

The bordering points which are utilized to determine the margin are named
as support vectors. The key objective of this method is to increase the
margin between the two points on any side of the hyperplane. This is

obtained as a solution to this optimization problem as shown below:

Minimize: % Iwllz2 + AZL & (6.6)
Subjectto: y;(Wx; +b) =1—g andg =0, i=12 | (6.7)
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where A represents the penalty parameter, | represents the number of
samples, g is slack variable, y; is a data set, and D is the bias term.

6.5.2. Artificial neural network (ANN)

ANN is a collection of artificial nodes known as neurons. These neurons are
interconnected with each other. For information processing, these neurons
utilize computational or mathematical models and obtain a weighted set of
inputs. Hidden neurons are used to send information from the input neurons
to the output neurons. ANN is an adaptive system which modifies the
structure of its neurons as per the data that runs across the network. A
multilayer feed-forward back-propagation algorithm is generally employed
among the available architecture of the ANN for rotating machinery

components such as bearings and impeller as shown in Figure 6.9.

Normal Condition
[10000]

Bearing Inner Race Wear
[01000]

Features = / Bearing Outer Race Wear

[po100]

Input Layer Hidden Layer  OutputLayer

Figure 6.9 A schematic representation of the ANN model

ANN is used to solve complex problems such as fault classification and
detection, which are otherwise difficult to solve using a standard
computational or statistical approach. The problem solving is achieved
through pattern recognition, that helps in extracting information from a

complex looking data set. An artificial neuron is made of an activation

function, summing function and synapses. Mathematical representation of
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a neuron i$ shown in Equation 6.8 below, where wj; is the interconnection

weight of the input vector and the indices i and j represent the number of

elements.
;
K=2Z% Z wix; + q (6.8)
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Figure 6.10 Confusion matrix for the SVM using different FR methods:
{a) Chi sguare test, (b) ReliefF, and (c) XGBoost

6.6. Results and discussions

In this study, different faults in centrifugal pumps such as an impeller wear,
roller wear, outer race wear and inner race wear are considered. Different
statistical features of the signal are obtained from both time and frequency

domain. To remove irrelevant features and improve the model accuracy,
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three different ranking methods, namely, Chi-square test, ReliefF and
XGBoost are applied to time and frequency domain separately. Chi-square
test and XGBoost ranking methods show that the mean and the standard
deviation are more important features in the time domain, while the ReliefF
method shows that the mean and RMS are more important as compared to

other features.
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(a) (b)

True Class

Predicted Class

(c)
Figure 6.11 Confusion matrix for ANN technique using different FR
methods: (a) Chi square test, (b) ReliefF, and (c) XGBoost.

In the frequency domain, both Chi-square and ReliefF show agreement in
terms of the dominance of spectral centroid and spectral roll off, while
XGBoost displays spectral centroid and the peak frequency to be important
features. Among the extracted features, the two best features having the
highest feature importance are selected from both the domains and then

combined to form four features. For analysis in the classifier, these features
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are utilized as inputs for training purposes. Subsequently, a comparative
study of the SVM and ANN utilizing the FR method is conducted to
categorize the faults in the pump. Finally, a ten-fold cross-validation 1s
implemented to eliminate the chances of overfitting of the model. The
confusion matrix for SVM and ANN with three different FR techniques is

shown in Figures 6.10 and 6.1 Irespectively.

BSVM EANN

Accuracy (%)

Chi-Square ReliefF XGBoost

Figure 6. 12 Validation accuracy of SVM and ANN technigues using
different FR methods

Figure 6.12 shows that using the Chi-square test, the SVM and ANN
reached an accuracy of 97.3 % and 98.3 % respectively. The feature selected
using the ReliefF method classifies 293 instances correctly using the SVM
classifier and 296 instances using the ANN. The feature selected using the
XGBoost method classifies 293 instances correctly using SVM classifier
and 295 instances using the ANN. Features selection using ReliefF has a
highest accuracy of 97.7 % for SVM classifier, while in case of ANN, Chi-
square and XGBoost show the highest accuracy of 98.3 %. Figure 6.13
summarizes the entire methodology adopted for classifying faults in a

centrifugal pump.
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Figure 6.13 Methodology to classifv faults in centrifugal pump

6.7. Conclusions
In this chapter, the faults in the centrifugal pump have been classified using
two ML techniques, SVM and ANN. Different sets of statistical features
have been obtained from the raw vibration signal in the time and frequency
domain. Three distinct FR methods have been employed to rank these
features based on their importance. The extracted features are subsequently
utilized to train the ML models and the performance of these models has
been assessed. Based on the study, the following conclusions are drawn:

o The diagnosis and classification of mechanical faults in the

centrifugal pump can be performed by extracting statistical features

from the time and frequency domain of the vibration signals.
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XGBoost can be used as a feature ranking technique for selecting
relevant features. XGBoost and Chi-square can reduce irrelevant
features effectively without compromising the model’s prediction
accuracy or increasing computational effort.

SVM and ANN techniques perform efficiently to diagnose
mechanical faults in the pump. However, the performance of ANN
is slightly higher as compared to SVM.

The proposed methodology can diagnose mechanical faults in the
pump at an accuracy of 98.3 % for ANN classifier trained with

features dimension selected through Chi-square or XGBoost.
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Chapter 7

Model based study to characterize the internal
leakage past the wear ring clearance in the

centrifugal pump

Modern centrifugal pumps are installed with composite wear rings that run
under tight clearances to meet the size, weight, and performance demands.
Internal leakage flow past the wear ring clearance can significantly degrade
the pump's performance and limit its predictability and reliability. In this
chapter, a model-based approach is presented to elucidate the effect of wear
ring clearance on the pump's performance for increasing wear ring clearance
and at different levels of eccentricity. It is observed that the leakage flow
rate exhibits a non-linear trend with increasing wear ring clearance, which
is characterize by two threshold values. The leakage flow rate increases
rapidly beyond the first threshold value while it becomes constant after the
second threshold. The increase in eccentricity ratio amplifies this trend of
leakage flowrate and pump head. For a double suction pump, the effect of
different combinations of both the side wear ring clearances are
investigated. The result shows that for a fixed value of clearance on one
side, the leakage flowrate through that side decreases if the clearance on the
other side decreases. Furthermore, in this chapter a data driven strategy
based on SVM is proposed that combines the features from the experiment
signal and the signals simulated using model-based approach. The 10-fold
cross validation method is employed to evaluate the model and the proposed

model achieves an accuracy of 83.07%.
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7.1. Introduction

It is imperative to develop experimentally validated predictive tools that can
aid in determining safe working envelope and monitoring the pump's
performance. However, leakage flow past increased wear ring clearance in
pump has received little attention. The leakage flow through the clearance
drops the performance of the pump (DagigShirazi et al., 2018; Zheng, Chen,
Dou, etal., 2020: Zheng et al., 2020). Wear ring acts as the primary interface
between the impeller (rotating component) and the pump’s casing
(stationary component), which creates a leak-proof contact between the
moving and stationary part (Abelin et al., 2006). To lower the risk of pump
seizure, a minimum clearance i1s recommended by the API 610/ISO
13709:2004 standard but many maintenance shops increase the clearance to
minimize the risk of pump seizure. To this end, a few studies have focused
on the effect of wear ring clearance on the performance of a centrifugal
pump (Brennen Christopher E, 2011; Chen et al., 2012; Gevorkov et al..
2018; Krickis & Oleksijs, 2017; Kumar et al., 2021; Li, 2013; Li, 2012; Uy
& Brennen, 1999; Zhang et al., 2019; Zhao et al., 2012). These studies have
focused on the influence of wear ring clearance, but the results therein have
been limited to arbitrarily chosen values of the wear ring clearance (Lei et
al., 2015; Li, 2013; Li, 2012) based on which the leakage flow past the
clearance was designated as permissible, slight, or severe leakage.
However, state-of-the-art pumps run reliably at significantly reduced
clearances owning to their wear rings made of non-metallic and composite
materials. With design improvements in composite wear rings and the
trends shifting towards reducing wear ring clearances, it 1s imperative to
understand the trend of leakage flow at low magnitudes of wear ring

clearances, as commonly encountered in modern pumps.

In practise, transient conditions such as start-up/shut-down or maintenance
activities like slow-roll during alignment might cause non-uniform contact

between the rotating and stationary parts. This would cause the wear rings
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to be worn out non-uniformly throughout the circumference, resulting in
eccentricity, i.e., an eccentric cross-section for leakage flow. While the
effects of wear ring clearance on the hydraulic performance of single-
suction centrifugal pumps is explored to an extent, their effect in double-
suction impellers, which have liquid flowing symmetrically from both
sides, has received little attention. Double-suction impellers have wear rings
on either side, and therefore, an unequal wear (wear ring clearance is
different for the two wear rings) between them can lead to an uneven
leakage flow between the two sides. This in turn would lead to flow
maldistribution 1.e., an uneven flow distribution between the suction
pathways. With an increasing difference between the clearances on either
side, the severity of this flow maldistribution may increase, thereby creating
axially unbalanced forces in an otherwise balanced impeller (which initially

had no net axial thrust).

This chapter presents a model-based approach for performance prediction
of a single and double suction centrifugal pump using the Simscape
platform. Leakage flow past the wear ring clearance is a key indicator of the
degree of wear between the contact faces of the rotating and the stationary
part i.e., an increasing annular gap. Therefore, an increasing amount of
leakage flow rate is used to mimic/simulate the action of the wear ring at

varying degrees of wear.

7.2. Modelling approach and methodology:
7.2.1. System description

Figure. 7.1. shows a schematic diagram of the top-half cross section of a
centrifugal pump with the passage of leakage flow indicated by arrows. The
fluid being pumped leaks via the clearances at the outer and inner edges of
the impeller. At the outer edge, the fluid exiting the impeller moves past the
clearance C1 to the frontside chamber F, and at the inner edge, it moves past
the clearance space C2 into the suction side. This creates a closed-loop flow

of the short-circuited fluid around the front shroud of the impeller, moving
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from the suction space to the outside and via the clearances back to the
suction, as shown by the arrows. This leakage flow reduces the net
discharge, thereby incurring a loss of energy and increasing the pumping
power requirement. Note that a portion of the fluid also flows to the back
side chamber. However, it has been neglected in this study as it has been
found to have negligible effect on the pump performance (Zhao et al.,
2012); because the recirculation and mixing between the back chamber fluid

and the suction flow is suppressed to a large extent by the tiny dimensions

of the balance hole (Zhang et al., 2019).
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4: Entrance of the wear ring clearance == Wear ring

Figure 7.1 A top half cut section of the centrifugal pump showing the

passage of internal leakage flow via the wear ring clearance.

7.2.2 System flow network

A closed-loop flow network architecture involving a single or double
suction centrifugal pump is developed using Simscape, in the Simulink

environment of MATLAB 2020b. The leakage flow across the wear ring
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clearance is considered laminar flow through the annulus (Zhang et al.,
2019) which can account for a varying degree of leakage (i.e., increasing
annular clearance) ranging over four orders of magnitude: from 0.01 mm —
2mm. The flow is assumed laminar as the wear ring's clearance value is
small as compared to its radius or width. Moreover, fluid flow in the
circumferential direction of the wear ring has minimal impact on leakage
flowrate through the wear ring. Therefore, the major concern in flow
through wear ring is axial flow only. Thus, flow through wear ring clearance
can be simplified to facilitate the solution as laminar and incompressible
flow. The simulation results from this model are presented in terms of the
trends in the time-mean value of two flow parameters: the leakage flow rate
and the pressure head developed across the pump, as a function of
increasing wear ring clearance. These trends are presented for uniform and
eccentric clearance conditions for a single suction impeller while, for a
double suction impeller, the trends are shown for uniform but different wear

ring clearances on the two suction sides of the impeller.

The system network model comprises of a closed-loop flow circuit with a
centrifugal pump (single or double suction) alongside the flow and pressure
sensors at the pump outlet, and block representation of the physical
components. To simulate leakage flow past the wear ring clearance in single
and double suction impellers and evaluate pump's performance in response
to the increasing clearance, the leakage flow is modelled as flow past an
annulus (Uniform or eccentric) and integrated with the overall system

network model.

7.2.3. Block model for the flow network with single-suction
pump

To analyse the effect of leakage flow rate past the radial clearance (of the
front wear ring) on the performance of a centrifugal pump, a simple closed-
loop flow network is constructed in Simscape, as shown in Figure 7.2. It

consists of a centrifugal pump that draws fluid at low pressure and at a
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constant flow rate from the source tank and delivers it to the drain tank.
Here, the hydraulic reference in the circuit acts as both the source (Source
Tank), and the sink (Discharge Tank). The pressure head versus flow rate
characteristics of the centrifugal pump are modelled to mimic the load curve
of a single-stage, end-suction industrial pump (65Y60 type) with a specific
speed of 580, as detailed in Ref. (Li, 2012). For this performance curve, the
pump's best efficiency point (BEP) corresponds to a discharge flow rate of
25 m°/h, and a head of 60 m at the rotational speed of 2950 rpm. To simulate
the impeller rotation at 2950 rpm, the pump shaft is connected to an external
angular velocity block. The hydraulic fluid block is connected to the circuit
to simulate the fluid (water) properties, including constant density and
kinematic viscosity of 1000 kg/m?® and 1 mm?/s, respectively. To model the
leakage flow through the wear ring clearance, a bleed line is drawn from the
pump discharge and connected back to the pump suction via an annular
orifice. One block for the flow sensor is connected at the pump delivery line
downstream of the bleed line to measure the net flow rate at the pump
discharge, while the other is connected in the bleed line to measure the
leakage flow rate. The pressure head developed across the pump is
measured using the pressure sensor block placed between the suction and
discharge lines. The signals from these sensors are recorded on the scope
block, which acts as a display panel. This complete flow loop allows the
leakage flow through the wear ring clearance to be simulated and the pump's
performance to be analysed using the trends of leakage flow rate and
pressure head as a function of increasing wear ring clearance under uniform
and eccentric clearance conditions. The double suction pump is mimicked
with two different flow rate source and both side wear ring contributes

equally in pump performance as discussed in section 7.2.4.
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Figure 7.2 Block model of the flow network for simulation of internal
leakage via the uniform and eccentric wear ring clearance in a single

suction centrifugal pump.

Block model for the leakage flow path in a single-suction pump

The leakage flow path via the wear ring clearance is simulated using the
flow circuit, as shown in Figure 7.2. The high-pressure fluid leaving the
pump casing is divided into two pathways: a large part of fluid flows
towards the delivery side, while a small part of fluid short-circuits back to
the impeller eye (i.e., suction side) via the front side chamber and the front-
ring clearance. The latter represents the leakage flow, which is modelled as
the flow through an annular orifice. The annular orifice block model enables
the change in the wear ring clearance through changes in the outer and the
inner radius of the orifice. The low-pressure fluid at a pressure P; enters the
pump inlet from the suction side, and then drawn into the impeller through
the impeller eve. As the fluid exits the impeller its pressure is increased to
P,, such the pressure head across the pump increases to APy = P, —
P,. While a significant portion of fluid moves to the discharge side, a
portion of the fluids that circulates back to the suction due to the pressure

gradient; the pressure decreases from P; at the pump discharge to P; at the
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entrance of the front chamber, to pressure P, at the entrance of wear ring
clearance, and finally to pressure P, at the suction side. The difference
between P; and P; is minimal and therefore, it is assumed that P, ~ P; ( Li,

2013).

The leakage flow is purely driven by the pressure difference across two
sides of the wear ring clearance ie., AP, = P, — P;, and therefore, to
calculate the leakage flow it is imperative to determine the pressure Py The
magnitude of P, is governed by the pump’s operating condition on the
pressure head versus flowrate curve, and is determined as follows: The
pressure drop in the front chamber (AP. = P; — P, = P, — P,) is modelled
as constant value that depends on the pressure distribution coefficient Cp at
the location of the impeller hub, and is calculated using the following

expression (Poncet et al., 2005):

P,—P;=Cp (Tt)-%ﬁ (wry)? (7.1)

2 g " oA 0 "
where, Cp is the pressure coefficient, r* = —Is the normalized radius
2

(rpw is the radial position from the impeller axis, and 73 is the impeller
outer radius), g is the fluid density, and w is the angular velocity. Note that
value of C,is always negative because the pressure decreases in flow
direction (from impeller outer edge to the entrance of wear ring inside the
front chamber). The value of Cp found to vary between -0.2 to -1.2 (Poncet
et al., 2005) at small values of r* (r* < 0.5) for the flow through a
cylindrical cavity formed between a rotating circular disk and a stator. The
pressure coefficient is defined as the ratio of static to dynamic pressure and
is generally determined experimentally over the range of flow conditions.
Note that at entrance of the wear ring clearance (where the pressure is Py),
r* = 0.46. To determine P,, the range of values of Cp (-0.3 < Cp < -0.8)
corresponding to r* = 0.46 are first determined from Ref. (Poncet et al.,
2005). Subsequently, by varying Cp over this range in the model, a single

value of Cp, = — 0.7205 is determined, which best matches with the
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measured pressure head and leakage flow rate within the experimental
bounds over the entire range of wear ring clearances for model validation
with experiments conducted by ( Li, 2013). The pressure drops across the
front side chamber (P, — P5) is input to the pressure source block (see
Figure 7.2.) as a negative valued constant signal. The pressure source block
interfaces with the pump discharge line and the block representing the
leakage flow model. The mathematical formulation of the leakage model

for both the uniform and eccentric annular clearance is discussed later in

section 7.2.5.
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Figure 7.3 Model comparison with the (a) experimental value of pressure

head (Li, 2012) and (b) leakage value predicted by the model in (Li, 2013)

Model validation

The validity of the model discussed in section 7.2.3. is evaluated by its
comparison with the experimental data conducted from W.G. Li (Li, 2012)
and leakage model developed by them (Li, 2013). The industrial centrifugal
pump of type 65Y60 with a specific speed of 580 is used for the
experiments. At design point, the pump specifications are as follows: Q =
25m?/h, H = 60 m, n=2950 RPM. The eye diameter of pump is 72 mm and
impeller outer diameter is 213 mm. The standards diameter of the wear ring
15 100 mm. Imtal radial clearance of 0.25 mm. 1.e., (.5 mm diametral

clearance is considered and as per API standard 610/ ISO 13,709 minimum
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diametral clearance should be 0.38 mm for this case. Their study mainly
focussed on the change in pump performance at four different clearance
value 1.e., 0.25 mm, 0.45mm, 0.65 mm and 0.85 mm. Pump performance is
measured experimentally in terms of head ( Li, 2012) and leakage flow rate

is computed using the model developed by them (Li, 2013).

To simulate these cases with our model, the pump performance parameter
datasheet of the pump used in (Li, 2012) is used in our model to simulate
the pump behaviour. The model is simulated at wear ring clearance value
of 0 mm, 0.25 mm, 0.45 mm, 0.65 mm and 0.85 mm. The comparison
between the experimental and Simscape model is shown in Figure 7.3. The
mean absolute percentage error (MAPE) between the experimentally
measured (Li, 2012) and the model predicted pressure head is 14.17%,
while the leakage flow rate compared with their model (Li, 2013) is 13.11

% for any value of wear ring clearance.

7.2.4. Block model of the flow network for a double-suction
centrifugal pump

A closed-loop flow network developed in Simscape that is used to analyse
the effect of differential wear ring clearance (and hence uneven leakage
flow between the two sides; left and right) of a double-suction centrifugal
pump on its performance is shown in Figure 7.4. The two suction sides of
the centrifugal pump are simulated through two separate flow rate sources.
This representation mimics the inlet flow condition of a double-suction
impeller i.e., the flow from both directions combines inside the impeller and
leaves as a single discharge. Since a wear ring clearance on either side of a
double suction impeller may differ during operation, the pressure difference
across the wear rings, and hence, the leakage flow through the two sides
would also be different. Therefore, the leakage flow path for the two wear
rings is simulated individually via a separate bleed line from the discharge.
However, note that these parallel leakage paths are hydraulically coupled

via the same suction and discharge lines, and, therefore, subject to the same
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overall pressure drop boundary condition i.e., pressure head across the
pump.
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Figure 7.4 Block model for simulating leakage flow past a Uniform wear

ring clearance in a double suction centrifugal pump.

The fluid is considered water with a density of 1000 kg/m” and kinematic
viscosity of 1 mm?/s. The centrifugal pump selected for the simulation is
Grundfos LS 65 — 50 — 24. The pump's inlet flow rate is 40 m*/h (20 m’/h
from the left-side suction port + 20 m*/h from right-side suction port). The
performance curve used for this double suction centrifugal pump is
provided in(Htps://Product-Selection. Grundfos. Com/in/Products/Ls/Ls-
Small/Ls-65-50-241a-99484809?Tab=documentation). The pump is
considered to rotate at the fixed rotation of 2940 RPM. The impeller is
selected with a diameter of 213 mm. The casing diameter at the impeller

hub plane is selected to be 100.5 mm, as the base case.
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Table 7.1 System parameters used for simulating the leakage flow past

wear ring clearance in a centrifugal pump.

Parameter Symbol Single suction Double suction
pump pump
Fluid - Water Water
Density of the fluid P 1000 kg/m? 1000 kg/m’
Temperature T 15°C 15°C
Isothermal bulk
—— Ky 215x 10°Pa  2.15x 10°Pa
Kinematic viscosity v 1 mm?*/s 1 mm?*/s
Rotational speed w 2950 rpm 2940 rpm
Flowrate o 25 m’/h 40 m’/h
Casing radius R our 50.25 mm 50.25 mm

The simulations are performed in the MATLAB R2020b based modelling
environment (Simulink 10.2) using the backward-Euler implicit method
with a fixed time step of 0.001 s. For each test case, the simulation time is
1 s, corresponding to ~ 49 pumping cycles (0.0204 s per cycle) for a
rotational speed of 2940 rpm. The time-mean value of the simulated signals
of the pressure head, the net flow rate at discharge, and the leakage flow
rate are presented for all the test cases. The different parameters and
operating conditions that are used as inputs to the model are detailed in
Table 1. Note that majority of these initialization parameters are directly
based on the specifications of an industrial centrifugal pump, and its
characteristic curve, and therefore, representative of the pumping conditions
encountered in practice. A few others are determined to satisfy the

geometric constraints.

7.2.5. Leakage flow model

The leakage flow path is modelled as an annulus between the stationary

casing and the surface of wear ring, as shown schematically in Figure 7.5.
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For the range of wear ring clearances investigated in this chapter, the
leakage flow is assumed to be laminar. The resulting leakage model is
integrated with the system network model that will help to simulate the
leakage past the wear ring clearance from a single and double suction
impeller. The cross-section of leakage flow for a uniform and eccentric
annulus (with eccentricity e) are shown schematically in Figures 7.5 (a) and

(b) respectively.

Y

Wear ring
(a) clearance (b)

Figure 7.5 Schematic showing the annular cross-section under two different

cases: (a) uniform wear ring clearance, and (b) eccentric wear ring

clearance.

The following assumptions and simplifications are considered in
formulating the model for leakage flow past the wear ring clearance, which

1s either a uniform or an eccentric annulus:

1. The fluid properties such as density and kinematic viscosity are
temperature independent, and therefore, assumed to be constant for
pump operation.

2. The pump operates at a constant inlet flowrate and a constant rotational

speed.
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3. Various losses such as mechanical and hydraulic losses during operation
are neglected.

4. The leakage flow 1s considered only via the clearance past the wear ring.
Other leakages (or fluid losses) from any other source, such as back
wear ring, shaft seal leakage, etc., are neglected.

5. The flow is laminar, and the fluid inertia is negligible.

Leakage flow past annular clearance

An analytical model is developed to predict the leakage past an eccentric
wear ring clearance in single suction impeller of a centrifugal pump. To
incorporate eccentricity, the centre of the wear ring is shifted vertically by
a distance e below the centre compared to the case of uniform annular
clearance. In this new position, R;,represents the radius of wear ring
surface (inner surface of clearance) from the new centre 0, and parameter
¥ represents the distance from O to the casing surface (outer surface of

clearance).

The profile of casing can be represented in the cartesian coordinates as

follows (Manring & Fales, 2020):

X*3(r—e)r= Ry (7.2)
where, X = ¥y (cosf),and ¥ = ¥ (sin#), as shown in Figure 7.5 (b) The

radial clearance h varies with 8, and is givenby h= ¥ — R;,,.

By substituting X and Y in equation (7.2) , the quadratic equation that

describes the casing profile as a function of e and & is obtained as follows:

¥y2—(2esin@)y —(RZ,—e?)=0 (7.3)
Considering only the reasonable roots of Eq. (7.3), the solution of this

quadratic is given by:
¥ = R,y +esing (7.4)

For incompressible, laminar flow the momentum equation governing the

fluid flow is given by (Manring & Fales, 2020):
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uViu= Vp (7.5)

Neglecting gravity, the governing equation of 1D fluid flow in cartesian
coordinates, where the pressure varies in only z-direction, while the velocity
varies in the y-direction (variable r — R;,,) 1.e., normal to flow, is given by:

WL ... (7.6)
K —Rm?  dz

Integrating twice the above equation, the velocity profile is obtained to be:

1 [_Rn}zd W
u(r) =;—T ; £+ Ci(r —Ri) + Ca (7.7)

where, the constants Cyand C; can be calculated using the no-slip boundary
conditionatr = Ry, and r = y:

(Rin—Rin)* d
= Rm) =4 =iT}ﬁ+ Cl(Rf?l - an) +C =»C=0 (7.8)

1 (]" = Rn)zdp
u(r=y)=0=——————+C(y — Rin)

1d
C,= - Eﬁ (¥ —Rp) (7.9)
The final fluid velocity is defined as:
= —r)r—R.,)%E
u= 2# (]"’ 1")(7' R[n) dz
1 APy
u=—c —r)ir—Rp)—
2-“ (]" )( In:' L (7.10)

where, APy is the pressure difference across the wear ring clearance of
width L.
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In Eq. (7.10), the pressure varies in the z-direction, while ¥ is a function of
angular position 8. Once the velocity profile is known, the volumetric flow

rate through the clearance can be computed as (Manring & Fales, 2020):
2@ oY
Qreakage = fu.dﬁ = f f u.rdrdé (7.11)
[

The leakage flow is finally given by:

i H{Raut_Rin)g[Rout"'Rm) e Z Rout
QLea_kﬂge — T {1 +3 [th_ﬂi“] [Rnut+Rin] + (7.12)

4
3 [ € ] [Raut_REn]] APy
8 LRour—Rin Roue+Rin L

The Eq. (12) can be recast in terms of the eccentricity ratio € =

RouJ:_R!n‘
and the radius ratio { = :i as:
ot
_ R, (1-0)%(14¢) 2l 1 F 4 3 et
QLeukugE = —12F‘L [1 + 3¢ [1+C] + = € 1+§I} AP, (7.13)
Eq. (13) can be further recast as in terms of the flow resistance as:
AB, (7.14)

Qieakuge = E
”

12uL
where, the term E. = = =2 ] represents the

TRy (1= (1+0) {1+3£2 ﬁ +:1 E-:{

144
flow resistance, which depends primarily on the cross-section and width of
the wear ring clearance (for a constant fluid viscosity), and therefore, on the

geometry of the leakage flow path.

By substituting e = 0 (and therefore, € = 0) in Eq. (7.12), the expression

of leakage flow rate through a concentric annular path can be obtained as:

_ MRy Q-0 (1°-%) APy (7.15)
Qieakuge = 121 L

174

204



Equations (7.13) and (7.15) point to an important finding that for a same
pressure drop, the leakage flow rate under eccentric conditions would

always be larger compared to the uniform clearance conditions because of

the additional geometric factor: 1 + 32 [L] +2 e[ . which is greater
1+7) 8 14

than unity, and therefore, reduces the flow resistance in case of eccentric

clearance.

7.3. Effect of wear ring clearance on flow parameter
of pump
7.3.1. Single suction pump

Uniform wear ring clearance

Figure 7.6 shows the trends of leakage flow rate and the pressure head
across the pump with increasing wear ring clearance, ranging from 0 — 2000
pm (0 — 2 mm). It is apparent from Figure 7.6 that both the parameters vary
non-linearly with the increasing clearance such that the leakage flow
increases while the pressure head decreases. This is because as the leakage
flow increases the pump shifts to a new operating point with a total flow of
Q + Qear. However, the flow rate available at discharge is @ because the
Qieqr flow towards front wear ring clearance and mixes with the fluid at
flowrate ) coming from the suction side, resulting in the total flowrate on
which the pump is working as @ + Qeqr. Thus, creating a recirculation
inside the pump. So, the pressure head decreases with an increased value of
the leakage flow rate. This phenomenon is revealed from the pump
performance curve. The performance curve indicates that when the pump
operates at BEP (Best efficiency point), the further increase in flowrate
decreases the total available head at the discharge side when all other pump
parameters remain constant. This total head available at pump discharge

reduces due to this recirculation of fluid caused due to leakage.
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Figure 7. 6 The variation of leakage flowrate and the pump pressure head

with increasing wear ring clearance.

These trends can be demarcated into five regimes as marked in Figure 7.6.
Regime I is characterized by nominally low values of wear ring clearance
(h < 0.06 mm) where the leakage flow rate is negligibly small and remains
constant. With further increase in clearance (regime IT: 0.06 mm < h <
0.12 mm) the leakage flow begins to increase. This means that there exists
a threshold value of the wear ring clearance below which the pump
performance will say put as in the healthy condition, because the leakage
flow is negligible. For the pump specifications and the operating conditions
in this chapter, this value is ~ 0.06 mm. The trend of leakage flow rate in
regimes I and II can be understood based on the variation of the two terms
in Eq. (7.14) with increasing clearance i.e., the driving pressure difference
across the wear ring (AP, ) and the resistance to leakage flow (F,.), as shown
in Figure 7.7. In regime (I), although a finite driving pressure difference
exists across the wear ring clearance, the flow resistance is orders of
magnitudes higher compared to APy, and therefore, the leakage flow rate is
negligibly small. However, with an increase in clearance to ~ (.06 mm
(onset of regime I1), the flow resistance reduces such that F. and the pressure

difference APy, come to within the same order of magnitude.
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Figure 7.7 Flow resistance plot for different radial clearance

At ~ 0.12 mm the flow resistance reduces to a point where the magnitude
of F.and APy, become equal. This point marks the onset of regime I1I (0.12
mm < h < 0.45 mm). In regime 111 both the driving APy, and the opposing
E.reduce but the rate of decrease of flow resistance is higher compared to
that of the pressure difference. Specifically, in regime III, the flow
resistance reduces by two orders of magnitude while the pressure difference
decreases by one order. This indicates that in regime III the difference
between APy, and F. grows with increasing clearance, and consequently,
the leakage flow rate increases significantly by ~ ninefold. In regime IV
(0.45 mm < h < 0.75 mm), while both AP,y and F, continue to decrease,
the flow resistance reduces at a much slower rate compared to regime 111
and tends towards that of APy,,. With APy, and F.reducing at the nearly the
same rate (with increasing clearance), the rate at which the leakage flow
rate increases with clearance declines in regime IV. This is seen by the
flattening of the leakage flow curve (see Figure 7.6) in regime IV which is
characterized by a nominally small increase in the leakage flow rate; from
7.8 — 8.7 m*/h. Finally, beyond a clearance of 0.75 mm, the magnitude of
AP, and F, continues to reduce but the rate of reduction is extremely small,

which is nearly same for both, as seen by a constant difference between the
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curves. As a result, the magnitude of leakage flow rate stagnates and
becomes independent of wear ring clearance; the leakage flow rate varies
from 8.7 — 8.9 m*/h in regime V which spans from 0.75 mm - 2 mm. In this
regime, the leakage flow rate amounts to one-third of the inlet flow rate due
to which the pressure head developed by the pump is reduced significantly.
In this regard, the wear ring clearance of (.75 mm represents an upper
threshold beyond which the leakage flow rate reaches its highest magnitude
while the pump's pressure head is at its least value and becomes constant.
In summary, the leakage flow rate increases non-linearly with increasing
wear ring clearance in five stages. With respect to the performance of a
single suction pump, regime [ corresponds to a healthy pump condition
where the leakage flow is negligibly small, regimes II, Il and IV correspond
to leakage fault condition where the leakage severity increases with
clearance, and regime V represents a severe leakage fault condition where
the pump head drops substantially due to a large leakage flow. Further, the
trend of leakage flow rate with five regimes indicates that two threshold
values of wear ring clearance exist for a single suction centrifugal pump, a
first threshold at A = 0.06 mm: the threshold value below which the
leakage flow rate is negligibly small, and therefore, this value must be
reached before any increase in the leakage flow rate or drop in the pump’s
pressure head can be observed. The second threshold occurs at h = 0.75
mm; the critical value beyond which the leakage flow rate is significantly
high. thereby resulting in a significantly low pump pressure head, and both
the leakage flow and the pressure head become independent of wear ring
clearance. Note that while the two threshold values exist for a single suction
pump, their absolute values would depend on the pump specifications, and

therefore, may differ from one pump to another.
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Figure 7. 8 The variation of leakage flow rate with wear ring clearance at

different levels of eccentricity. The magnified view of the curves is shown in

the bottom.

Eccentric wear ring clearance

The leakage flow past a Uniform wear ring clearance is the simplest case of
leakage fault in a centrifugal pump and allowed a detailed explanation of
the effect of increasing clearance on the trends of leakage flow rate and the
pump pressure head. However, in practical applications, a centrifugal pump
often runs under eccentric wear ring clearances due to off-design operating
conditions such as the zero-flow discharge, dry running, and external events

such as faulty bearing, which complicates the process of predicting the
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magnitude of leakage flow. Therefore, this section presents a mechanistic
understanding of the effect of eccentric wear ring clearance on the trends of
leakage flow rate; as a function of increasing eccentricity. Figure 7.8 shows
the variation of leakage flow rate as a function of increasing wear ring
clearance under eccentric conditions. In this plot, the black curve represents
the baseline case of uniform wear ring clearance, while the blue curves

represent the leakage flow rate trends at different eccentricity levels.

The level of eccentricity to which the wear ring clearance is subjected for a

given total wear ring clearance h is quantified through the eccentricity ratio:

e
T I (7.16)

Roue — Rin
With this definition, € = 0 corresponds to a case of uniform wear ring
clearance while € — | represents a case of extreme eccentricity, where the
flow cross-section is highly asymmetric about the horizontal plane through
the axis. For brevity, the results in Figure 7.8 are shown for four levels of

eccentricity (e = 0, 0.1, 0.5, and 0.9).

In comparing the trends of leakage flow rate for uniform versus eccentric
cases (Figure 7.6 and 7 8), it 1s apparent that the leakage flow rate is
adversely impacted by increasing eccentricity. For instance, in comparing
the cases with € = 0 and € = 0.9, the leakage flow rate follows the same
trend (with the same five regimes) with increasing wear ring clearance but

1s higher under eccentric clearance across all five regimes. Recall from

section 2.3.1 that the additional geometric factor: 1+ 3e® [$]+

E e* [5 that appears in the Eq. (7.13) for the leakage flow past eccentric

clearance is responsible for decreasing the flow resistance and increasing
the leakage flow rate compared to the case of uniform clearance The way
this occurs physically is that at lower values of eccentric ratio, wherein the
flow cross-section is uniform, the flow is distributed uniformly in azimuthal

direction, however, under eccentric conditions the flow cross-section
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becomes non-uniform, and therefore, more flow is diverted via the larger
area 1.e., the low resistance path compared to squeezed area i.e., the high

resistance path.

Further, the difference in leakage flow rate between the eccentric versus
uniform case increases with increasing eccentricity ratio and follows a non-
monotonic trend with wear ring clearance. Specifically, the difference in the
leakage flow rate between the two cases is suppressed significantly both
below the first threshold (h ~ 0.06 mm) and above the second threshold
(h ~ 0.75 mm), while the maximum difference is observed at h ~ 0.2 mm.
This is an important implication of Figure 7.8; that the leakage flow tends
to be independent of the level of eccentricity at very small as well as very

large values of the wear ring clearance.

7.3.2. Double suction pump

A double suction centrifugal pump presents an interesting case where wear
ring is present on either side of the impeller, and therefore, leakage flow
from both sides contributes to the total leakage flow rate and the pump’s
pressure head. Recall from section 7.3.1 (for a single wear ring) that the
leakage flow rate varies with increasing wear clearance, which is spread
across five regimes. Therefore, in a general case of a double suction pump
with two wear rings, there are 5% (N=2: number of wear rings) different
leakage flow rate distributions possible; each wear ring can operate in one
of the five regimes: I, IL, III, IV and V. To obtain the leakage flow rate
distribution for these combinations, the wear ring clearances on the two
sides can be varied either simultaneously (both the clearances are equal and
cither increased or decreased simultanecously) or differentially (the
clearances on either side are unequal). The extent to which the wear ring
clearances between the two sides of a double suction impeller differ is
quantified by the differential clearance parameter:

h -h
a' = left :r'.u;-.'u.T 1<a' <1 (7.17)
Rpepe+hrigne
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where, h refers to the wear ring clearance, and the subscripts left and right
refer to the two sides of the double suction impeller. With this definition,
a" = 0 corresponds to a case of equal wear ring clearance on both sides,
while @'’ # 0 represents a case of unequal clearance between two sides. The
positive values of differential clearance parameter means that the wear ring
clearance of left side is more compared to right, while the negative value
corresponds to the vice-versa condition. Further, @” = 1 and -1 represent
extreme cases where clearance on one side is maximum while the other is
at minimum.
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Figure 7.9 Leakage flow rate fraction through left and right-side wear ring

clearance

The leakage flow distribution (between the two clearances) is visualized as
a graph of leakage flow rate fraction through each clearance as a function
of the differential clearance parameter, as shown Figure. 7.9. The leakage
flow rate fractions of both the clearances are shown simultaneously such
that the sum of the leakage flow rate fractions equals unity. The leakage
flow is equal on both sides when the flow rate fraction for each clearance is
0.5, corresponding to the horizontal dotted line in Figure 7.9, otherwise, the

leakage flow is unequal between the two sides. Note that for a given value
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of the differential clearance parameter the total leakage flow rate can take
multiple values, and therefore, the leakage flow rate fractions corresponding
to each @ are obtained by dividing the leakage flow rates with their
respective total leakage flow rate. It 1s apparent from Figure 7.9 that the
leakage flow rate through the two clearances exhibit opposing trends over
the entire range of @', meaning that when the leakage flow rate through one
of the clearances increases, the leakage flow through the other decreases.
As the differential clearance increases to higher magnitudes (@’ —1 or
@'’ —-1), most of the leakage flows goes past the side with a higher
clearance, while it is significantly reduced through the other (side with low
clearance). This is because the two parallel suction branches (left and right)
are hydraulically coupled via a common inlet (inlet line to the pump) and a
common discharge (outlet line from the pump), and therefore, subject to an
equal pressure drop boundary condition i.e., APy = P, — Py 15 same across
both the paths. Specifically, when the wear ring clearance (and hence the
leakage flow rate) on one side (say left side) increases, the suction flow rate
in that branch increases. With an increase in the total flow rate the pump
curve demands that the pump pressure head reduces. The reduction in the
pressure head means that the pressure difference across the wear ring
clearance (AR, ) on the other side (the right side) will reduce, and as a result,
the leakage flow rate on that side will also reduce. In this way, an increase
in the wear ring clearance on one side causes the leakage flow on the other

side to readjust to satisfy the equal pressure drop boundary condition.
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Figure 7.10 The variation of leakage flow rate through the left-side
clearance as function of the left-side clearance (h;) at fixed increments of

the right-side clearance (hg).

While Figure 7.9 provides a mechanistic understanding of the leakage flow
distribution resulting from the differential wear ring clearance, it does not
provide a quantitative account or capture the trends of variation in leakage
flow rate with increasing clearance on one side (say left side) as a function
of the other side clearance (right-side). The effect of right-side clearance on
the trends of the left-side leakage flow can be analysed by comparing the
leakage flow rate curves at two extreme values of hy ie., by =0.01 mm
and hp = 2 mm, as shown in Figure 7.10. A qualitative assessment of the
results of Figure 7.10 indicates that while the left-side leakage flow rate
increases with increasing left-side clearance (h;), its rate of increase
depends on the value of right-side clearance (hy). In comparing the trends
at hy = 0.01 mm and hy = 2 mm, the rate at which the left-side leakage
increases reduces noticeably with an increasing hp. For instance, the
average rate of increase in left-side leakage flow rate over the entire range
of h, is 11.1 m*/h/mm at h, = 0.01 mm, which is approximately twice the

value of 5.6 m*/h/mm at h;, = 2 mm.
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Figure 7.11 Leakage flow rate and flow resistance through left side wear

ring clearance (hy) at hy (a) 0.01mm and (b) 2 mm
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Figure 7.12 The variation of (a) net leakage flow rate and (b)the pump
pressure head (right) as fimction of both left-side clearance (h; ) and right-

side clearance (hg). Black line represents the curve where both the
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clearances are increased simultaneously by equal amount

Further, the maximum value of left-side leakage flow rate at hg = 0.01 mm
is 22.35 m*h while at h = 2 mm is 11.2 m*h, which is significantly
smaller. Furthermore, the leakage flow trend at hy = 0.01 mm is same as
that of a single suction pump (see Figure 7.6 in section 7.3.1) which is
spread across five regimes. In contrast, the trend at hg = 2 mm comprises

of just three regimes i.e., regimes I, Il and III. This difference in the leakage

186

216



flow trends observed at hy = 0.01 mm versus hy = 2 mm can be explained
using the respective flow resistance (Fp) and driving pressure difference
(AP,,) curves, as shown in Figure 7.11. A comparison of Figure 7.11 shows
that the flow resistance curves for both the cases are the same because they
depend on the geometry of the flow cross-section, which is a function of

left-side clearance h,, and therefore, independent of hy,.

In contrast, the pressure drop AP, is affected by both hp and h;, and
therefore, it is different for the two cases i.e., hp = 0.01 mm and 2 mm.
Specifically, for a fixed h; of 0.01 mm APB,, is approximately 0.6 bar at h, =
0.01 mm (see Figure 7.11) while at h;; = 2 mm, AP, is approximately 0.05
bar (see Figure 7.11) which is two orders of magnitude smaller. This is
expected because a large hp will result is a larger leakage and increase the
total flow rate, which in turn will reduce the pump pressure head, and hence,
the pressure drops across the wear ring clearance. Further, Figure 7.11
shows that the pressure drop AP, reduces with increasing h; but its value
at hy = 2 mm always remains significantly smaller compared to its value at
hyp = 0.01 mm. Due to the lower values of AP, there is a downward shift
in the AP, curve at hy; = 2 mm compared to the curve at hy = 0.01 mm.
Since the flow resistance curve remains same for both the cases but the AB,,
curve shifts downwards for hp = 2 mm, the point where the flow resistance
(F.) and pressure drop (AP,,) become equal (i.e., the threshold value of h; )
shifts to a higher value of h, for h; = 2 mm compared to that at hy, = 0.01
mm. Due to this shift in the threshold h; to a higher value, the leakage flow
trend is restricted to just three regimes at h; = 2 mm instead of five regimes

which are observed at hy = (.01 mm

The combined effect of lett and the right-side wear ring clearances on the
total leakage flow rate and the pump pressure head are compared in Figure
7.12. The plots indicate that the performance of a double-suction pump
depends on a combination of right and left wear ring clearance. This 1s

because the leakage flow from both individual wear ring clearances
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contributes to the total leakage flow rate i.e., Qpeqp ;. + Qrearr- As aresult,
as along as the sum of both the clearances increases the pump pressure head
decreases, which is expected because similar to a single suction pump, a
double suction pump also has a drooping load curve, and therefore, with
increase in discharge flow due to leakage the pressure head would reduce.
However, unlike a single suction pump, the threshold value where the
maximum leakage is observed in a double suction pump can occur for any
combination of left and right-side wear ring clearances. Once this threshold
combination is achieved (shown by red colour), then further increase in the
clearance value on either side will show no change in the pump parameters

i.e.. the net leakage flow rate and the head.

7.4. Combining model based and data driven

methods to detect wear ring clearance faults in pump

This section discusses the monitoring strategy to detect wear ring clearance
fault in the pump by combining model-based approach with data drive
approach. At first, experiments are carried on the centrifugal pump test rig
described in Figure 3.3 of chapter 3. The casing of this pump is fitted with
the wear ring as shown in Figure 7.13 which is the sacrificial component in
the pump. In this study, three different wear ring clearance is selected
(including the healthy condition). The radial wear ring clearance of healthy
case is 0.25 mm whereas two different severity of increased wear ring
clearance are termed as WC I and WC II with radial clearance of 0.75 mm
and 1.75 mm. The outer diameter of all three-wear ring clearance is same
as they are fitted in the casing of the pump. Therefore, clearance fault is
seeded in the pump by increasing the internal diameter of the wear ring. The
diameter of the impeller hub used in pump has diameter of 59 mm, so the
inner diameter of wear rings are 59.5 mm, 60.5 mm and 62.5 mm as shown
schematically in Figure 7.14. Further, suction pressure, discharge pressure

and flowrate signals are acquired at these three different conditions.
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Pump casing

Wear ring

Figure 7. 13 Description of pump casing installed with wear ring

0= Tlmm

Healthy condition wcl wcil

Figure 7. 14 Schematic description of wear rings

Afterwards, the complete system network diagram to model the pump
system on Simscape is shown in Figure 7.15. In this network, centrifugal
pump block models the actual pump using pump performance curve (H-Q
curve and P-Q curve) of the pump (Model No: MCPP 32/160) provided by
the manufacturer at 2900 rpm as shown in Figure 7.16. The simulated model
is synchronised with actual system by providing its flowrate signal to the
flowrate source block. The complete description of other different blocks

used in this flow network diagram are detailed in section 7.2. The pressure
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head signal of the model is recorded by the differential pressure sensor as

shown in Figure 7.15.
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Figure 7. 15 Centrifugal pump model developed on Simscape platform
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Figure 7. 16 Pump performance curve (a) H-Q curve and (b) P-Q curve at
2900 rpm

7.4.1 Dataset description and methodology

The data for wear ring clearance fault is acquired from the experimental
setup described in Chapter 3. The pressure sensor installed at the suction
side and discharge side are used to compute the pressure head of the pump.

This pressure head signal is used to monitor the pump’s health status.

Pressure head = Discharge Pressure — Suction Pressure (7.18)
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Figure 7. 17 Representative signals of (a) Pressure head and (b) Flowrate

of centrifugal pump
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Total three different pump conditions, namely Healthy, WC I and WC 11 are
chosen in this study. The data is acquired at a sampling frequency of 10 kHz
for 1s. The instances selected for each pump condition 1s 250, so a total of
750 instances are chosen for this study. The representative signal of pressure
head and flowrate for WC 1 and WC II with the healthy state is shown in
Figure 7.17 (a) and (b). Afterwards, based on the flowrate signal of the
actual pump, pressure head is computed from the pump model shown in

Figure 7.17 (b) and the representative signals are shown in Figure 7.18.

e |

;:?” i r]mummw " g

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7. 18 Representative signal of Pressure head of centrifugal pump

model developed in Simscape platform.

Feature extraction is essential task to extract meaningful information from
the raw signal which contains the first hand information about the machine’s
condition. Ten different statistical features are extracted from the raw
pressure head signal obtained from experimental facility. These extracted
features are further ranked using XGBoost algorithm to select relevant
features and remove irrelevant features as discussed in Chapter 6. In this
study top five features are selected from all the ranked features. Further,

similar features are extracted from pressure head signal acquired from the
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centrifugal pump model. The features extracted from both, model-based
approach and actual system are combined to form complete feature
dimension which is used to detect the wear ring clearance fault in the pump.
In this way, this study combines model-based approach with data driven
approach to monitor the pump. The complete methodology is described in
Figure 7.19. Furthermore, the performance of the model is evaluated using

10-fold cross validation approach.

Efault simulation I,—.I wm }—-I Real final state (H,Q) I

H-Q curve, P-Q curve—s

dataset

Selecting the
same features

e m===d

r

Hyperparameter tuni +— 10-fold cross validation method

Figure 7. 19 Proposed methodology 1o detect wear ring clearance fault in

pump

7.4.2 Results and Discussion

In this study, a hybrid approach is effectively implemented to detect wear
ring clearance fault in pump. At first, statistical features are extracted from
the raw pressure head signal of the pump. These features are then ranked
using XGBoost classifier as shown in Figure 7.20. Top five features are

selected namely mean, crest factor, range, minimum value and shape
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indicator. Similarly, these five features are also extracted from pressure

head signal acquired from the model-based system.

Mean

Crest Factor
Range
Minimum Value

Shape Indicator

Name of Feature

0 2 4 b 8 10 12
Rank of Features

Figure 7. 20 Ranking of features extracted from pressure head signal of

actual pump using XGBoos!.

Finally, feature dimension of total 10 features is created by combining the
features from the experimental data and model of the pump system. These
features are then used by the SVM classifier to detect the wear ring
clearance fault. 10-fold cross validation method 1s used to evaluate the SVM
classifier. The confusion matrix obtained from proposed approach using
SVM for monitoring pump to detect wear ring clearance fault is shown in
Figure 7.21. In this case, SVM classifier achieves an average accuracy of
89.33%. Furthermore, the proposed approach is compared with SVM
trained on all the statistical features extracted using experimental signal and
model-based signal as shown in Figure 7.22. The results reveal that the

proposed approach outperforms the other approaches.
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Figure 7. 21 Confusion matrix obtained from proposed approach
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Figure 7.22 Comparison of the proposed approach with all the features

extracted using experimental signal and model based signal

7.5. Conclusions

The flow network model is developed on the MATLAB platform to
investigate the effect of wear ring clearance on the performance of pump

parameters. In a single-suction centrifugal pump, the effect of uniform and
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eccentric radial clearance of the front wear ring are studied for the range of
0.01 — 2 mm. In the double suction centrifugal pump, the effect of uniform
left and right-side wear ring clearance and their different combinations are
studied. Furthermore, a Simscape model of centrifugal pump is proposed
that computes the pressure head of the pump based on the flowrate of actual
pump provided to it. A hybrid approach is proposed that combines the
statistical features extracted from the pressure head signal of model and
actual system to detect wear ring clearance faults in the pump with two
different severity level. The conclusions for the study carried out in this

chapter are as follows:

o The leakage flowrate past wear ring clearance shows a non-linear
trend with an increase in wear ring clearance. Two threshold values
exist over the range of increasing wear ring clearance. The leakage
flow rate increases only after crossing the first threshold value.
However, the change in leakage flow rate becomes nearly constant
after the second threshold is touched.

* This non-linear trend can be segregated into five regions for the
range of increasing clearances. No changes in leakage flow rate is
observed in Region L. This region ends when the first threshold value
is crossed. In Region I, 11T and IV flow resistance decrease which
results in increase of leakage flowrate. In Region V| the leakage flow
rate stagnates as the driving pressure becomes minimal in this
region. This region starts when second threshold is crossed.

e The leakage flow rate amplifies with an increase in eccentricity
ratio. The non-linear trend for leakage flow rate remains the same as
attained for uniform clearance cases. Also, the effect of eccentricity
exists only between these threshold values.

* In the case of a double suction pump, the leakage flow rate is
function of both the left and right-side clearance value. The pump
performance and the threshold value depend on the combination of

these clearance value.
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The centrifugal pump can be modeled based on its pump
performance curve (H-Q curve and P-Q curve) on Simscape
platform. Further, the pump model can be synchronised with the
actual system by providing its flowrate to the model for computing
the pressure head of the pump.

It is demonstrated that hybrid-based approach that combines the
model-based approach with data driven approach can effectively be
used to detect wear ring clearance fault in the pump. In this study
SVM classifier trained on this hybrid approach achieves a maximum
accuracy of 89.33%.

The statistical features extracted from the pressure head signal of
actual system and the model can be used to detect wear ring
clearance faults with its severity level in the pump.

XGBoost is an effective feature ranking technique that can be used

to select relevant features.
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Chapter 8

Conclusions and future scope

This chapter presents the conclusion and significant contribution of the
thesis toward different methodologies developed for monitoring the
hydraulic and mechanical faults in a centrifugal pump. This chapter also

enlists the suggestion that can be implemented as an extension of this work.

8.1. Major conclusions

This thesis presents various data-driven methodologies to monitor blockage
faults and mechanical faults in the centrifugal pump. Additionally, a model-
based study is also carried out to evaluate the degradation of the pump due
to an increase in the wear ring clearance. Further, model-based study is
integrated with data driven methodology to detect wear ring clearance faults
in the pump.

Towards the initiation of this thesis, centrifugal pumps are investigated
against suction and discharge blockage using statistical features from the
experimentally acquired pressure sensor and flowmeter signal. For this, a
bio-inspired algorithm-butterfly optimization combined with KNN is
proposed to reduce feature dimension followed by classification of
blockages using XGBoost. Also, the performance of the proposed model is
evaluated on individual sensor and their combination. Simultaneous
occurrence of suction—discharge blockage is a type of critical fault that can
even lead to the explosion of the pumps. Thus, this fault is also included for
monitoring the pump in the subsequent chapter. In this study, a
methodology is proposed to extract convolutional feature from the fuzzy
recurrence plots of the pressure signal at different pump conditions using
pre-trained models. Followed to this, shallow classifiers are further trained

on these extracted features to monitor the pump's operating condition.
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Further, sequential classifiers namely LSTM and Bi -LSTM are used to
detect blockage fault with their severities. In these classifiers, a customized
feature input layer is proposed to extract non convolutional features such as
statistical features, Holder exponent, and entropy-based features. In the
subsequent chapter, the centrifugal pump is monitored against mechanical
faults such as impeller wear, bearing inner race wear, outer race wear, and
roller race wear using SVM and ANN. In this study, features dimension is
combined using statistical features extracted from time domain and
frequency domain. The features from each domain are selected feature
ranking algorithms namely, Chi square test, ReliefF and XGBoost. The
features selected through each ranking algorithm are further evaluated by
training both SVM and ANN classifier. Towards the end, a Simscape-based
analytical model of the centrifugal pump is developed to analyze the
degradation in pump performance due to an increase in wear ring clearance.
Furthermore, a hybrid methodology is proposed in this study that combines
the model-based approach with data driven approach. The statistical
features extracted from the pressure head signal of the actual system and the
model-based system are combined for monitoring the wear ring clearance
fault in the pump using SVM classifier. The major conclusions drawn from
this study are as follows:

e A testrig is developed to monitor the centrifugal pump for various
hydraulic and mechanical faults. The developed test rig can mimic
different blockage faults (SB, DB, and SDB) in the pump. These
faults are simulated using a butterfly valve installed at both the
suction and discharge sides of the pump. The signals (pressure, flow,
vibrations) can be acquired fusing suitable sensors installed in the
test rig.

e Statistical features extracted from pressure and flowmeter signals
are good indicators for diagnosing blockages (SB and DB) in the

pump. Moreover, the discharge side pressure sensor is more
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efficient in diagnosing blockage than the suction side pressure
SENSOor.

The XGBoost classifier successfully diagnoses the suction and
discharge side blockages with high accuracy.

The fuzzy recurrence plot presents a visualization of the changes in
the dynamic condition of the system and their recurrence pattern.
Further, the feature extracted from these plots of the different
blockage faults in the pump can be utilized for diagnosis.

The pre-trained models such as Inception, Xception, and Google net
can be effectively emploved as feature extractors. The features from
these models can be extracted from any arbitrary layer and are
subsequently used to train machine-learning algorithms.

The shallow features from initial pooling layers contain more
distinguishable information about the system. The subspace
discriminant analysis from shallow classifier can be effectively
trained with features extracted from the initial pooling layer of the
pre-trained models for pump blockages diagnosis.

The blockage severity can be effectively mimicked by closing the
butterfly valve at different notches.

The pump's flow rate decreases as the severity of blockages
increases, irrespective of the type of blockage. However, the flow
rate change magnitude is different for individual blockage faults
compared to healthy conditions.

The pressure at both, pump inlet and outlet decrease with an increase
in the severity of suction blockage while it increases in case of the
discharge blockage severity.

The variation in suction side and discharge side for a combination
of both suction and discharge blockage is similar to suction blockage
till level II. However, for severity level IIL, it follows the trend of

discharge blockage.
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Sequential learners such as LSTM and Bi-LSTM can be used
effectively for classifying pump blockage with their severity level.
Further, the computation time for training the LSTM is always less
than Bi-LSTM for diagnosing blockages in the pump.

Grid search optimization can be employed to tune the
hyperparameters of the LSTM and Bi-LSTM classifiers.

The mechanical fault diagnosis in a centrifugal pump can be
performed by acquring its vibration signals. Statistical features in
signal's time and frequency domain can be efficiently employed
with SVM and ANN classifiers for mechanical fault diagnosis.

The feature ranking technique effectively reduces irrelevant features
without compromising the models' prediction accuracy or increasing
computational effort. The butterfly optimization technique can be
used effectively for reducing the feature dimensions without
sacrificing the accuracy of the classifier. Similarly, XGBoost and
Chi-square is an effective feature ranking technique for mechanical
fault diagnosis in the centrifugal pump.

The analytical model of the centrifugal pump can be developed in
the Simscape platform available with MATLAB. This model can
effectively analyze the amount of degradation in pump performance
due to changes in wear ring clearance.

The leakage flowrate past wear ring clearance shows a non-linear
trend with an increase in wear ring clearance. Two threshold values
exist over the range of increasing wear ring clearance. The leakage
flow rate increases only after crossing the first threshold value.
However, the change in leakage flow rate becomes nearly constant
after the second threshold is touched.

This non-linear trend can be segregated into five regions for the
range of increasing clearances. No changes in leakage flow rate is
observed in Region L. This region ends when the first threshold value

is crossed. In Regions II, III, and IV, flow resistance decreases,
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increasing the leakage flow rate. In Region V, the leakage flow rate
stagnates as the driving pressure becomes minimal in this region.
This region starts when the second threshold is crossed.

The leakage flow rate amplifies with an increase in the eccentricity
ratio. The non-linear trend for leakage flow rate remains the same as
attained for uniform clearance cases. Also, the effect of eccentricity
exists only between these threshold values.

In the case of a double suction pump, the leakage flow rate is the
function of both the left and right-side clearance values. The pump
performance and the threshold value depend on the combination of
these clearance values.

The model of centrifugal pump can be developed on Simscape
platform of MATLAB using pump performance curve of the
respective pump. This model can be further synchronized with
actual pump using its real time flowrate for computing pressure head
of pump at that respective flowrate.

A hybrid-based monitoring developed by integrating the model-
based approach with data driven approach can be effectively used to

detect wear ring clearance fault in the pump.

This presented thesis attempted to provide substantial contributions and

inputs that will benefit the pump operators, engineers, and organizations

involved/working in the fail-proof operation of centrifugal pump by

implementing predictive maintenance practices.

8.2. Future scopes

Computational fluid dynamics analysis of the pump can be carried
out to understand the mechanism and impact of different potential
faults on the system.

The developed methodology can be assessed to diagnose coexisting

mechanical and hydraulic faults.
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The proposed methods can be evaluated at the different types of
fluid in the pump such as chemicals, oil and slurries with solid
particles.

The proposed methodology can be applied to diagnose faults in
other pumps, such as gear pumps, axial piston pumps, etc.
Proposed algorithms can be assessed, or new algorithms can be
developed that can effectively be trained with a limited data for
faults as compared to healthy data.

Thermographic images can be employed to diagnose faults in the

centrifugal pump, such as blockages, leakages, cavitation etc.
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