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ABSTRACT

The verification of the AXI (Advanced eXtensible Interface) protocol and MPU

(Memory Protection Unit) in automotive microcontrollers is of paramount impor-

tance to ensure the reliability, safety, and security of these systems in the context

of Advanced Driver Assistance Systems (ADAS).

The AXI protocol, a popular interface in automotive microcontrollers, makes it

easier for different system peripherals and components to communicate with one

another. The AXI protocol’s compliance with specifications and industry standards

is verified using verification techniques such simulation, formal verification, and

protocol compliance testing.

On the other hand, the MPU is in charge of implementing memory access reg-

ulations and safeguarding private information and resources in the microcontroller.

To make sure that the MPU checks are appropriately implemented and successfully

enforce memory protection, it is verified through extensive testing, assertion-based

verification, and coverage analysis. The verification procedure aids in locating and

resolving problems including data corruption, unauthorised access, and boundary

violations. The AXI protocol and MPU verification have a big impact on ADAS

systems. Microcontrollers play a significant role in the management of crucial ADAS

processes, including sensor data processing, decision-making, and actuator control.

By successfully verifying the AXI protocol and MPU in automotive microcon-

trollers, potential issues and vulnerabilities can be identified and addressed early in

the development cycle. This proactive approach improves the overall reliability, per-

formance, and safety of ADAS systems, reducing the risk of failures, malfunctions,

and security breaches in real-world scenarios.
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Chapter 1

Introduction

1.1 Overview

This report provides a brief overview of the verification process for the AXI

protocol and MPU in automotive microcontrollers, with a specific focus on their rel-

evance in the context of Advanced Driver Assistance Systems (ADAS). The report

highlights the significance of verification techniques such as functional verification,

formal verification, and compliance testing in ensuring the reliability, safety, and

security of ADAS systems. By verifying the AXI protocol, potential issues such as

protocol violations, timing problems, and interoperability challenges can be identi-

fied and addressed, thereby improving the overall performance and compliance of

the system. Similarly, the verification of the MPU checks ensures the enforcement

of memory access rules and protection of sensitive data, mitigating risks related

to unauthorized access, boundary crossings, and data corruption. The impact of

these verification processes on ADAS is substantial, as they contribute to the trust-

worthiness, functionality, and compliance of the microcontrollers used in ADAS

applications. Through thorough verification, potential issues are identified early,

leading to enhanced reliability and safety in real-world ADAS scenarios.
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1.2 ADAS: Advanced Driver Assistance System

Human error is to blame for the majority of automobile collisions, which can be

prevented by using an ADAS system. Through a decrease in traffic accidents and a

lessening of their negative effects, ADAS seeks to avoid fatalities and injuries. A va-

riety of electronic technologies are referred to as advanced driver-assistance systems

(ADAS) and are used to help drivers with driving and parking tasks. By establish-

ing a safe interaction between people and machines, it aims to improve auto and

road safety. To detect barriers in the immediate area and pinpoint driver faults,

ADAS makes use of automated technologies such as vehicle sensors and cameras. It

then takes the proper action to ensure safety. Depending on the components built

into the car, the degree of autonomous driving varies. Since human error causes

the bulk of traffic accidents, ADAS is intended to automate, adapt, and enhance

vehicle technology to improve safety and driving. ADAS has been shown to reduce

traffic fatalities by minimising human error. By warning drivers of threats, putting

protective measures in place, and assuming control when necessary, ADAS safety

features assist in preventing crashes and accidents. These options may consist of

adaptive lighting, adaptive cruise control, collision avoidance systems, satellite nav-

igation, traffic warnings, obstacle alerts, lane departure and centering aids, as well

as traffic warnings and traffic warning systems.In 2021, a report by Canalys found

that ADAS features were present in about 33 percent of new cars sold in the US,

Europe, Japan, and China. The research also predicted that by 2030, 50 percent

of all on-road vehicles would be equipped with ADAS. Automobiles will become

increasingly important in the next wave of mobile-connected devices as autonomous

vehicles quickly emerge. System-on-chips (SoCs) are solutions for autonomous appli-

cations that connect sensors and actuators through interfaces and high-performance

electronic controller units (ECUs). To achieve a 360-degree field of view, self-driving

cars use a variety of near and far-field technologies and applications. In order to

match rising performance and physical footprint standards while consuming less

power, hardware designs are adopting more cutting-edge manufacturing nodes.

2



1.2.1 ADAS Applications

Prior to airbags and three-point seat belts, passive safety measures such as

shatter-resistant glass and airbags were the main focus of developments in automo-

bile safety. But with the addition of embedded vision, ADAS systems now actively

improve safety by lowering the frequency of collisions and occupant injuries. Vehicle

cameras have made it necessary to create a new AI function that uses sensor fusion

to recognise and analyse objects. Similar to how the human brain analyses informa-

tion, sensor fusion combines large volumes of data using image recognition software,

ultrasonic sensors, lidar, and radar. This technology enables real-time review of

streaming video, object detection, and decision-making because it can physically

react more quickly than a human driver. Several of the most widespread ADAS

applications include:

1. Adaptive Cruise Control: On highways, adaptive cruise control (ACC)

has a lot of advantages since it makes it easier for drivers to maintain speed and

keep an eye on other vehicles for extended periods of time. ACC can automatically

change the vehicle’s speed, decelerate, and even come to a complete stop when

necessary by analysing the movements of surrounding objects.

2. Glare-Free High Beam and Pixel Light: Modern lighting innovations

like Pixel Light and Glare-Free High Beam greatly increase nighttime visibility and

put driving safety first. The problem of standard high beams blinding approaching

vehicles is addressed with glare-free high beams, also known as adaptive high beams

or matrix high beams. With this clever adjustment, drivers can take advantage

of high beams’ improved vision without jeopardising other drivers’ safety. On the

other hand, Pixel Light is a cutting-edge lighting system that uses a variety of

unique LED components to provide accurate and adaptive illumination. Pixel Light

improves visibility, lowers glare, and ultimately increases overall driving safety by

offering focused and effective lighting.

3. Adaptive Light Control: A technology known as adaptive light control

allows a car’s headlights to automatically adjust to the ambient lighting. It dy-
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namically modifies the headlights’ intensity, direction, and alignment based on the

environment’s conditions and degree of darkness.

Figure 1.1: ADAS Applications

4. Automatic Parking: Automatic parking systems alert drivers to any

blind areas, which they can use to decide whether to move the steering wheel or not

and when to stop. Compared to vehicles with traditional side mirrors, those with

rearview cameras give drivers a greater sense of their surroundings. By merging

the data from several sensors, advanced systems can even complete parking moves

without the driver’s direct involvement.

5. Autonomous Valet Parking: Blind spots are alerted to drivers by auto-

matic parking systems, which helps them determine whether to move the steering

wheel and when to stop. The vision from a vehicle’s rearview camera is superior to

that of a vehicle’s standard side mirrors. Using information from several sensors,

sophisticated systems can even complete parking moves without the driver’s direct

involvement.

6. Navigation System: To help drivers navigate a route while keeping their

attention on the road, car navigation systems provide voice prompts and on-screen

cues. Additionally, some navigation systems have the capacity to show current

traffic data and, if necessary, recommend other routes to avoid gridlock.

Furthermore, in order to help drivers stay focused on the road, modern navigation

systems may include Heads-up Displays (HUDs).
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7. Night Vision: Drivers may now see objects that would normally be difficult

or impossible to notice at night thanks to night vision technology. There are two

types of night vision technology: passive night vision systems and active night vision

systems. The thermal energy that is emitted by numerous things, including vehicles,

animals, and other environmental factors, is what passive night vision devices use

to operate. These technologies produce a visual depiction by using the variations in

heat signatures.

8. Blind Spot Monitoring: Drivers can get important information from

blind spot detection systems that would be difficult or impossible to get any other

way. When a vehicle is trying to change lanes into an inhabited area, for example,

these sensors are vital in spotting objects that are in their blind spot. Certain

systems are made to go into alarm mode in such circumstances, warning the driver

of the potential risk.

9. Automatic Emergency Braking: In order to avoid collisions with other

vehicles or obstructions on the road, automatic emergency braking systems use sen-

sors. When a risk is discovered, these technologies are able to analyse the immediate

environment and warn the driver in a timely manner. Certain emergency braking

systems can implement proactive safety measures such as automatically tightening

seat belts, lowering vehicle speed, and applying adaptive steering strategies in order

to avoid an accident. A potential collision is avoided or its effects are reduced by

using these preventive measures.

10. Crosswind Stabilization: Vehicles are supported by the most recent

ADAS function when they come into heavy crosswinds. This technology can detect

high pressure being applied to the car while it is moving and react by applying

the brakes to the wheels being affected by the crosswinds. This action assists in

stabilising the car and reducing the force of the crosswind.

11. Driver Drowsiness Detection: Systems for detecting driver drowsiness

are created to spot indicators of sleepiness or other driving issues and send timely

alerts to the driver. The driver’s degree of concentration is measured using a variety

of techniques. As an illustration, sensors can examine the driver’s head motions

5



and heart rate to detect indicators of sleepiness. In order to keep the driver alert

and focused on the road, some systems also send driving alerts that resemble lane

departure warning signs. By using these methods, driver drowsiness monitoring sys-

tems help to improve driver safety and reduce accidents that result from distracted

driving.

12. Driver Monitoring System: Another reliable way to assess a motorist’s

attentiveness is to use a driver monitoring system. This technology uses video

sensors to analyse whether the driver’s eyes are fixed on the road or if they are

prone to drifting. Drivers can be alerted to potential distractions using a variety

of alert techniques, including aural messages, steering wheel feedback, or visual

indicators like flashing lights. In extreme circumstances, the system might even

stop the car entirely in order to keep everyone safe. The installation of a driver

monitoring system offers an additional level of watchfulness to encourage focused

and responsible driving.

13. 5G and V2X: With greater reliability and reduced latency, this cutting-

edge 5G ADAS technology delivers enhanced V2X (vehicle-to-everything) communi-

cation capabilities, enabling seamless interaction between vehicles, pedestrians, and

infrastructure. As cellular networks are now used by millions of automobiles, this

feature revolutionises real-time navigation by delivering greater situational aware-

ness. It makes it easier to keep an eye on traffic conditions and adjust speed ac-

cordingly, and it provides real-time GPS map updates via established channels and

cellular networks.

A growing number of software-driven components in automobiles require over-

the-air (OTA) software updates, which can only be made possible by a V2X con-

nection. This contains essential updates, including map improvements, bug repairs,

security improvements, and more. Significant modifications in the automobile de-

sign process are necessary as automotive electronic hardware and software develop

in order to solve the convergence of competing goals:

1. Improving dependability 2. Cost-cutting 3. Cutting down on development

cycles

6



Figure 1.2: ADAS

A move away from decentralised ADAS domain controllers and towards cen-

tralised ADAS electronic controller units (ECUs) is now taking place in the auto-

motive industry. The need for fully autonomous vehicles that can independently

sense their environment and function without human interference is what is caus-

ing this transformation. As a result, to accommodate this developing technology,

automobiles’ electrical designs must be upgraded. The amount of data processed

grows in direct proportion to advancements in electronic design. The newly in-

tegrated domain controllers need better processing performance, less power, and

smaller packaging to handle this data. The use of 64-bit CPUs, neural networks,

and AI accelerators requires the use of cutting-edge semiconductor features, semi-

conductor process technologies, and connectivity technologies in order to enable

enhanced ADAS capabilities. Centralised computing systems become increasingly

important as the number of electronic components decreases, enabling the efficient

and effective integration of ADAS features.

1.3 Automotive Microcontroller

Due to the rising complexity of contemporary automobiles, the introduction of

ADAS has resulted in an increased reliance on automotive microcontrollers. The
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average number of microcontroller units (MCUs) found in modern medium-class cars

is between 50 and 60. These MCUs are used for a variety of functions, including

autonomous driving capabilities, powertrain control, brakes, radar systems, and

engine management.

A quiet revolution in automotive technology, notably in the area of in-vehicle

networking, has been sparked by the development of MCUs. This development has

made it possible to do away with the bulky wiring harnesses that were previously

required for control circuits. The entire system architecture has been simplified

by the incorporation of MCUs, enabling more effective and complex control and

communication inside the vehicle.

1.3.1 Basic Components of Automotive Micro-controller

Several masters, slaves, different AMBA protocol buses, a network on chip

(NOC), and a memory protection unit (MPU) are among the basic components of

an automotive microcontroller (shown in Figure 1.3). Together, these parts provide

smooth operation and improved functionality inside the microcontroller architec-

ture.

Figure 1.3: Basic Structure of Automotive Microcontroller

Let’s dive into each of them in detail:
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1. Masters: In the domain of electronic hardware, masters exert direct control

over one or more devices, acting as the controlling bodies and the targeted devices

as the controlled parties. Depending on the exact circumstance or need, the master

gadgets might also serve as slaves. Devices that frequently act as masters within a

system include several cores (processors) and DMA (Direct Memory Access).

2. Slaves: In the context of hardware components, slaves are things that

have a master over them. Multiple slaves can be commanded at once by a single

master. The terms RAM (Random Access Memory), ROM (Read-Only Memory),

NVM (Non-volatile memory), and others are frequently used to describe slaves.

Under the direction and control of the controlling master device, these physical

components function.

3. Bus Architecture: A key component of efficient on-chip communication

and controlling functional blocks in system-on-a-chip (SoC) designs is the open stan-

dard known as the ARM Advanced Microcontroller Bus Architecture (AMBA). It

offers a uniform foundation for smooth connectivity and coordination across different

components.

To meet various purposes, various AMBA protocols have been created, including:

APB (Advanced Peripheral Bus): This protocol is especially made to link low-

bandwidth peripherals to the system, ensuring effective and dependable communi-

cation.

AHB (Advanced High-performance Bus): AHB provides a high-performance bus

architecture that enables effective data transfer and enhances overall system perfor-

mance [1].

ASB (Advanced System Bus): ASB offers a dependable and expandable system

bus design that permits efficient communication between various system compo-

nents.

AXI (Advanced eXtensible Interface): AXI is a flexible and expandable interface

that satisfies the requirements of high-performance and complex systems, enabling

effective data transfer and boosting system-level performance.

These AMBA protocols play a crucial role in creating effective communication
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and coordination within SoC architectures, ensuring seamless interchange between

various functional blocks while fulfilling the unique needs of various systems.

4. Network-on-chip (NOC): System-on-Chip (SoC) components are linked

together by a Network-on-Chip (NoC), a communication subsystem based on a

network architecture. Determining the best communication routes for the system’s

masters and slaves is a critical task it completes, ensuring effective and optimised

data transport. In the SoC, the NoC serves as a central controller, intelligently

controlling the communication flow between various modules to provide smooth

connectivity and efficient data transmission.

5. Memory Protection Unit (MPU): Within the Network-on-Chip (NoC)

architecture, the Memory Protection Unit (MPU) is a crucial hardware element that

provides effective memory protection capabilities. The MPU is essential in control-

ling how accessible memory areas are for various masters in the system. It efficiently

handles the read and write permissions given to each master and regulates which

masters have access to particular memory regions. The MPU ensures secure and

regulated memory access by imposing access limitations, boosting system integrity,

and guarding against unauthorised access or data corruption.

1.4 AMBA Protocols

Intellectual Property (IP) is carefully developed to communicate with one an-

other through standardised interfaces in order to guarantee seamless integration into

the target system. The AMBA bus, offered by ARM, is one such commonly used

interface. Traditional system-on-chip (SoC) architectures based on AMBA use the

Advanced Peripheral Bus (APB) protocol for low-bandwidth peripheral intercon-

nections and the Advanced High-Performance Bus (AHB) or Advanced System Bus

(ASB) protocols for high-bandwidth interconnectivity [2]. Point-to-point connectiv-

ity is made possible by the Advanced Extensible Interface (AXI) protocol, which

was added in the later AMBA 3 iteration of the specification. The features and

performance of the interface were significantly improved in 2010 with the release of
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an improved version dubbed AXI 4.

Figure 1.4: AMBA Architecture

We will focus mostly on APB and AXI protocols:

1. APB Protocol: A clear, non-pipelined interface that allows many trans-

fer types is the APB (Advanced Peripheral Bus) protocol. Write operations with

or without wait states and read operations with or without wait states are both

included in these transfers. Basic Read and Write signals were a part of the APB

protocol in the older AMBA 2 version. Wait transfers (PREADY) and error response

(PSLVERR) were two new features added with the release of AMBA 3, more pre-

cisely APB3 (APB v1.0). Further improvements to the protocol were implemented

in the most recent version, AMBA 4 or APB4 (APB v2.0), including the inclusion

of protection signals (PPROT) and strobe signals (PSTRB). In order to facilitate

effective peripheral communication within the system, the APB protocol has seen

improvements across many AMBA versions, expanding its functionality.

2. AXI Protocol: Full AXI4, AXI-Lite, and AXI4-Stream are the three types

of AXI4 interfaces that AMBA4 defines.

In order to convey data effectively, the AXI4 interface has five different channels:

Write Address channel (AW) handles the transmission of address data, when

writing operations are carried out. It makes sure the target address is transmitted

correctly.

Write Data Channel (W) is used to send the real data to the designated tar-
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get address. By doing this, it makes sure that the right data is transmitted and

synchronised with the address channel.

The Write Response channel (B): responds with information about the write

operation’s progress towards completion. It provides the initiator with information

regarding the write transaction’s success or failure.

The Read Address channel (AR): is in charge of conveying the address from

which data needs to be fetched during read operations. It guarantees that the right

part of memory is accessible for reading.

Via the Read Data channel (R), the requested data is transferred from the given

address. In the event that the read operation is successful, it returns the data to

the initiator.

These five AXI4 channels ensure efficient and reliable communication between

various components in the system, enabling seamless data transfer and synchroniza-

tion.

1.5 Literature Survey

Verification of MPU and AXI units have been explored in literature thoroughly.

Like in [3], authors focuses on the verification of interconnection intellectual prop-

erty (IP) designed for automobile applications. The authors employ System Verilog

and Universal Verification Methodology (UVM) to validate the functionality and

reliability of the interconnection IP. They discuss the challenges specific to auto-

mobile applications and highlight the importance of thorough verification to ensure

the IP’s performance in real-world automotive environments. The paper presents

the design and implementation of the verification environment using System Verilog

and UVM, and it discusses the test scenarios and methodologies employed. The au-

thors evaluate the effectiveness of their approach through simulations and present

the results of the verification process. The research provides insights into the verifi-

cation techniques for interconnection IP in the context of automobile applications,

contributing to the development of reliable and safe automotive systems. [4] pro-
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vides a comprehensive guide to the various technologies and methodologies used

in functional design verification of Application-Specific Integrated Circuits (ASICs)

and System-on-Chip (SoC) designs. The author covers a wide range of topics, in-

cluding verification planning, testbench development, simulation, assertion-based

verification, hardware acceleration, and formal verification techniques. The book

aims to equip readers with a deep understanding of the challenges and best prac-

tices involved in functional design verification. It serves as a valuable resource for

engineers, researchers, and students in the field of ASIC and SoC design verification,

offering practical insights and guidance for ensuring the correctness and reliability of

complex integrated circuits. In [5], authors delve into the complexities of verifying

SoC designs, highlighting the growing gap between design complexity and verifica-

tion capabilities. They explore challenges such as scalability, functional correctness,

power and performance verification, and the impact of emerging technologies. The

paper provides valuable insights into the current state of SoC design verification and

offers a glimpse into the future trends in this field. [6] describes the challenges related

to efficiently supporting AXI4 transaction ordering requirements in many-core archi-

tectures. The authors propose a novel mechanism called ”Group-Based Dependency

Check” that enhances the AXI4 protocol to ensure correct transaction ordering in

a many-core system. They introduce a lightweight hardware component called the

Order Dependency Tracker (ODT) that efficiently tracks and resolves transaction

dependencies. The proposed solution improves system performance by reducing

the overhead of maintaining transaction order, and it achieves better scalability in

large-scale many-core systems. The paper provides valuable insights and practical

techniques for optimizing the AXI4 protocol in the context of many-core architec-

tures. In [7] explores the topic of predictable virtualization on microcontrollers with

a memory protection unit (MPU). The authors propose a novel approach that en-

ables predictable and efficient virtualization on MPUs. They introduce a framework

called ”PROVM” that leverages the MPU to enforce memory isolation between vir-

tual machines (VMs) while minimizing performance overhead. The paper discusses

the design and implementation of PROVM and evaluates its effectiveness through
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experiments on an ARM Cortex-M3 microcontroller. The results demonstrate that

PROVM achieves predictable VM execution and provides a foundation for build-

ing secure and efficient virtualized systems on resource-constrained microcontrollers.

The reference [8] examines the vulnerabilities of TrustZone technology on devices

that lack memory protection mechanisms. The authors explore potential security

vulnerabilities and attack vectors that can be exploited to compromise the integrity

and confidentiality of data stored within the TrustZone environment. They pro-

vide an in-depth analysis of various attack scenarios, including buffer overflows,

code injection, and privilege escalation techniques. The paper also discusses pos-

sible countermeasures to mitigate these vulnerabilities and enhance the security of

TrustZone on devices without memory protection. The research serves as a valu-

able resource for understanding the security challenges associated with TrustZone

technology and provides insights into potential attack vectors and defense strate-

gies. There are many ways of obtaining IO virtualization on resource-constrained

microcontrollers. As in [9], the authors propose a novel approach for achieving IO

virtualization on resource-constrained microcontrollers. They present a lightweight

virtualization framework that leverages the MPU to enforce isolation and provide

secure and efficient access to IO resources for multiple tasks or applications. The

paper discusses the design and implementation of the virtualization framework and

evaluates its performance through experiments on an MPU-enabled microcontroller.

The results demonstrate that the proposed approach effectively enables IO virtu-

alization while incurring minimal overhead. The research contributes to the de-

velopment of efficient virtualization techniques for microcontrollers, facilitating the

deployment of complex and secure embedded systems. In [10], the authors address

the challenge of providing memory protection across different hardware architec-

tures without sacrificing performance. They propose an interface that abstracts the

underlying memory protection mechanisms and provides a unified way of managing

memory protection in Tock. The paper discusses the design principles and imple-

mentation details of the interface, highlighting its compatibility with various archi-

tectures. The authors evaluate the performance of the interface using benchmarking
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experiments and demonstrate its effectiveness in achieving memory protection with

low overhead. This research contributes to the advancement of operating system

design by enabling architecture-agnostic memory protection in the context of the

Tock operating system.

1.6 Objectives

This report’s major goal is to give readers a thorough understanding of how

the AXI protocol and MPU are verified in automotive microcontrollers, notably

in the context of ADAS (Advanced Driver Assistance Systems). It highlights the

value of AXI protocol verification to guarantee seamless communication between

diverse parts and peripherals in automotive microcontrollers. To ensure dependable

and compliant operation, this entails locating and fixing protocol breaches, timing

problems, and interoperability problems. The research also aims to highlight the

significance of MPU verification in enforcing memory access regulations, safeguard-

ing sensitive data, and avoiding unauthorised access or corruption. The objective

is to guarantee the integrity and security of the memory of the microcontroller by

rigorously testing, assertion-based verification, and coverage analysis of the MPU

tests. This research intends to highlight the crucial role of verification in automo-

tive microcontrollers for ADAS applications by offering insights into the verification

process and its significance.

1.7 Organization of Thesis

The rest of the thesis is laid out as follows:

Chapter 2: This chapter discusses how the AXI Protocol’s Design Verification is

carried out, how master-slave communication is formed, and the many forms of axi

transactions.

Chapter 3: Design of Memory Protection Unit is discussed in this chapter. Fur-

thermore, IP wrapper of MPU is developed by writing verilog code and waveform
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results are seen.

Chapter 4: This chapter performs the verification of the memory protection

unit. This involves the formal and functional testing of the MPU. Following

the verification, the assertions and coverage results are analyzed to assess the

effectiveness of the verification techniques employed.

Chapter 5: In this chapter, Conclusion includes the verification of the Memory

Protection Unit (MPU) in automotive microcontrollers which is crucial for ensuring

reliable and secure operation in Advanced Driver Assistance Systems (ADAS)

applications.
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Chapter 2

Design Verification of AXI

Protocol

In the realm of System-on-Chip (SoC) design, seamless communication between

different components plays a pivotal role in maximizing the overall performance

of the system. To address this need, the Advanced eXtensible Interface (AXI)

protocol, developed by ARM, has emerged as a widely embraced industry standard

for interconnect protocols in SoC designs. This article explores the fundamental

design principles, notable features, and advantages of the AXI protocol, highlighting

its significance in enabling efficient communication and seamless integration within

the system.

2.1 Overview of the AXI Protocol

The AXI protocol plays a pivotal role as a foundational framework for facilitating

communication between IP blocks within a System-on-Chip (SoC). By offering a

standardized and high-performance interface, it enables smooth and efficient data

transfer and coordination among a wide range of components, including processors,

memory controllers, and peripherals. Built on a master-slave architecture with a

point-to-point connection, the AXI protocol supports concurrent data transfers,

thereby promoting system scalability and adaptability.
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Key design principles: The effectiveness of the AXI protocol in SoC com-

munication can be attributed to several key design principles:

a. Burst-Mode Data Transfer: The AXI protocol supports burst-mode data

transfers, allowing multiple data items to be transmitted in a single transaction.

This feature significantly reduces transactional overhead and enhances data through-

put by efficiently utilizing available bandwidth.

b. Separate Address and Data Channels: With the AXI protocol, the address and

data channels are kept separate, enabling concurrent transactions and pipelining.

This separation facilitates streamlined data streaming and reduces overall latency

in the system, enhancing overall performance.

c. Out-of-Order Transaction Support: The AXI protocol incorporates out-of-

order transaction execution, allowing the receiver to reorder transactions based on

data availability. By optimizing resource utilization and minimizing idle time, this

feature enhances system performance and efficiency.

d. Flexible Channels and Protocols: The AXI protocol offers a range of channel

widths and protocols, including AXI4, AXI4-Lite, and AXI4-Stream, to accommo-

date diverse communication requirements. This flexibility empowers designers to

customize the protocol to suit specific needs, ensuring optimal performance and

resource allocation.

2.2 Design of AXI protocol

The AXI (Advanced eXtensible Interface) protocol, created by ARM, embod-

ies a well-structured architecture tailored to enable streamlined and standardized

communication among IP (Intellectual Property) blocks within a System-on-Chip

(SoC) design. This protocol comprises several key components and channels, each

fulfilling a specific role in facilitating efficient data exchange and coordination.
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2.2.1 Master-slave communication:

The AXI protocol adopts a master-slave communication model, where a mas-

ter device takes the lead in initiating transactions with one or more slave devices.

Within this architecture, the master device assumes the responsibility of initiat-

ing read and write operations, while the slave devices promptly respond by either

providing or receiving the requested data. This collaborative framework ensures

efficient and synchronized data exchange between the master and slave components.

Figure 2.1: AXI Protocol Channels

Channels: The AXI protocol comprises different channels to facilitate the trans-

mission of specific types of information between the master and slave devices. These

channels include:

a. Address Channel:

Transmits address information from the master device to the slave device. Incor-

porates additional control signals, such as burst type, burst length, and transaction

attributes.

b. Data Channels:

Read Data Channel: Transfers data from the slave device to the master device

during read transactions [11].

Write Data Channel: Transfers data from the master device to the slave device

during write transactions. Both data channels include a data bus for the actual data
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transfer and associated control signals.

c. Response Channels:

Write Response Channel: Provides feedback from the slave device to the master

device, indicating the status of write transactions.

Read Response Channel: Provides feedback from the slave device to the master

device, indicating the status of read transactions. Transaction Types:

2.2.2 AXI transaction types:

The AXI protocol supports various transaction types to accommodate different

communication requirements. These transaction types include:

a. Read Transactions: The master device initiates a data request from

the slave device, indicating the specific information it requires. In response, the

slave device promptly transfers the requested data through the designated read

data channel. This bidirectional communication ensures seamless and reliable data

exchange between the master and slave components, facilitating efficient operation

within the system

b. Write Transactions: The master device transmits data to the slave device

through the write data channel, providing the necessary information for further pro-

cessing. The slave device receives the data, interpreting it accordingly, and performs

the required actions based on the received information. This two-way communica-

tion between the master and slave components ensures effective data transfer and

enables the slave device to execute the appropriate operations as instructed by the

master device.

c. Exclusive Access Transactions: Ensure exclusive ownership of a des-

ignated memory location or resource, granting sole access to a single entity at a

time. Support atomic operations or critical sections within the system, ensuring

that these operations are executed as indivisible units without interference from

concurrent processes or threads.

AXI Protocol Versions:

Over time, the AXI protocol has undergone several iterations to adapt to evolv-
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ing design requirements. Prominent versions include AXI3, AXI4, and AXI4-Lite.

Each iteration introduces enhancements and additional features while ensuring com-

patibility with previous versions.

The architecture of the AXI protocol, characterized by its master-slave com-

munication model, separate channels for data and control signals, and support for

diverse transaction types, fosters efficient and dependable communication between

IP blocks in a System-on-Chip (SoC) design. This standardized architecture pro-

motes seamless interoperability, scalability, and reusability, enabling the seamless

integration of components from different vendors and facilitating the development

of sophisticated and high-performance SoCs.

2.3 Verification of AXI Protocol

IP verification is the process of validating the functionality and correctness of an

Intellectual Property (IP) block. It involves comprehensive testing and analysis to

ensure that the IP meets its design specifications and performs as intended. There

are two main approaches to IP verification:

Functional Verification:

Functional verification focuses on validating the functional behavior of the IP.

Test cases are designed to cover different scenarios and use cases, thoroughly exer-

cising the IP’s functionality. By simulating real-world conditions, functional verifi-

cation identifies and addresses any functional bugs or errors that may exist in the

IP design.

Formal Verification:

Formal verification utilizes mathematical algorithms and logic reasoning to verify

the correctness of the IP design. It involves creating formal models and properties,

and then using formal verification tools to mathematically analyze the design for

adherence to these properties. By exhaustively exploring all possible scenarios,

formal verification helps ensure that the IP design is free from logical errors and

satisfies the specified requirements.
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Both functional and formal verification approaches are crucial in IP verification,

complementing each other to provide comprehensive validation. Functional verifi-

cation validates the IP’s behavior in practical scenarios, while formal verification

provides mathematical proofs or counterexamples to verify the design’s correctness.

Together, these approaches enhance the reliability and quality of the IP.

Here for Verification of AXI Protocol, Functional verification is done using UVM

Methodology.

Snippet of UVM Code for AXI Protocol Verification

1 int main (void) {

2 INFO(STIMNAME , " Stimulus Starts");

3 write32(REG32 (0*60000044) ,0*12340000);

4 read_expected32(REG32 (0*60000044) ,0*12340000);

5

6 INFO(STINAME , " Stimulus Ends");

7 return 0;

8 }

Listing 2.1: Snippet of UVM Code for AXI Protocol Verification

Below is shown the waveform results for the same:

Figure 2.2: AXI Functional Verification Waveform
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Description: In the given scenario, the Master is attempting to write to a

memory location in the SRAM with a starting address of 32’h60000044. Before

sending this address, a handshaking process is carried out between the Master and

the memory interface.

The handshaking process involves two control signals: ARVALID and AR-

READY. ARVALID indicates that the Master is ready to send the address, while

ARREADY signifies that the memory interface is ready to receive the address. Both

signals need to be high simultaneously to ensure proper handshaking [12].

Once the handshaking is completed successfully, the Master sends the address

32’h60000044 to the memory interface, indicating the desired memory location for

the write operation.

Similarly, a handshaking process is performed before retrieving the RDATA (read

data) from the slave (SRAM). This handshaking process ensures that both the

Master and the memory interface are ready to transfer data.

Control fields other than the address, such as length and size, are used to deter-

mine the amount and format of data to be read from the specific memory location.

These control fields provide information about the length of the data transfer and

the size of each data element. This facilitates data transfer and ensures that the

correct data is read from or written to the intended memory location within the

SRAM.

2.4 Summary

AXI (Advanced eXtensible Interface) design verification involves making sure

the design complies with the specifications and requirements stated in the AXI

standard. It entails examining the AXI interface’s proper timing, functionality, and

protocol compliance within the architecture. The AXI protocol’s design verification

procedure is summarised as follows:

Functional Verification: In this phase, it is ensured that the design operates as

expected and functions in accordance with the requirements of the AXI protocol.
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Various scenarios, boundary cases, and corner cases are tested to make sure the

design appropriately addresses all potential input circumstances.

Protocol Conformity: The design is examined in accordance with the particu-

lar version of the AXI protocol it implements, such as AXI3 or AXI4. By doing

this verification, you can be sure that the design complies with the AXI protocol’s

established guidelines, signalling norms, and transaction ordering specifications.

Performance Verification: The performance of the design is assessed to make

sure it satisfies the expected throughput and latency criteria of the AXI protocol.

Data transfer rates, response times, and other metrics are evaluated as part of per-

formance testing to make sure the design performs within the expected performance

constraints.

Verification Environment: Testbenches, stimulus generation, and coverage anal-

ysis are all included in the creation of a thorough verification environment. In order

to identify and fix possible problems or faults, this environment is used to replicate

and validate the behaviour of the design.

In order to assure the design’s accuracy, compliance, timeliness, and perfor-

mance, the AXI protocol design verification procedure is demanding. The design

is proven to meet the criteria and specifications of the AXI protocol through de-

tailed functional testing, protocol compliance tests, timing verification, and a full

verification environment.
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Chapter 3

Design of Memory Protection Unit

3.1 Introduction to Memory Protection Unit

In the Network-on-Chip (NoC) architecture of an automotive microcontroller,

the Memory Protection Unit (MPU) is very important for memory protection and

access control. The MPU is in charge of enforcing stringent rules surrounding mem-

ory access throughout the system thanks to its integrated hardware design. It

administers and regulates the access rights granted to various NoC-connected com-

ponents, also referred to as Masters.

The MPU performs the following crucial tasks:

Memory Access Control: The MPU determines which Masters are permitted

to read from or write to particular memory locations by defining and enforcing access

rights. This makes sure that each component can only access the places that are

allowed by the rules that have been created.

Address Range Validation: By comparing them to established address

ranges, the MPU determines whether memory addresses requested by Masters are

valid. With the help of this validation procedure, the MPU can limit access depend-

ing on the designated memory regions.

Error Management:The MPU recognises and manages incorrect memory ac-

cess attempts, such as those that violate access restrictions or access prohibited

areas. Automotive microcontrollers create a safe and controlled environment for
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memory access by integrating an MPU into the NoC. This contributes to increased

safety in automotive applications by preventing unauthorised access, protecting

against data corruption, and maintaining the integrity and reliability of the sys-

tem. The MPU is in charge of enforcing memory protection and access permissions,

making sure that various memory areas are accessed in accordance with established

guidelines and limitations.

The MPU Design that is being discussed is a particular Memory Protection Unit

implementation or design. It consists of different blocks and logic that carry out

checks and validations to make sure that memory accesses follow the specified rules

and configurations. These checks include checking for border checks, multi-region

faults, access types, and VirtualID matching. With its check blocks, error generation

logic, and interface signals, the MPU Design attempts to improve system security

and safeguard memory by enforcing access limits and spotting any violations or

errors in memory accesses. To summarise, the MPU in the context in which it

is used stands for a Memory Protection Unit, a hardware element in charge of

maintaining memory access control and security in a system.

Figure 3.1: Memory Protection Unit

3.2 Block Design of MPU

The system in the MPU Design, as shown in Figure 3.2, is made up of a number

of interconnected blocks that cooperate to carry out checks and produce mistakes.

The APB interface is used to configure the MPU registers at the beginning of the

design process. These registers store data related to different parts of the system,
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including read/write accesses, VirtualID accesses, MasterID accesses, the type of

each region in the SRAM, the memory type, and read/write accesses. The system

receives input via the AXI interface, which is subsequently sent to the MPU check

blocks after the MPU registers have been configured.

Figure 3.2: MPU Block Design

These check blocks are in charge of carrying out the following five different checks:

Virtual Machine Matched or Mismatched: This check evaluates whether or not

the input’s VirtualID matches the relevant region’s VirtualID by comparing the two.

Memory Matched or Mismatched: This check determines whether the input’s

memory type corresponds to the anticipated memory type set up for the region.

Access Type (Read/Write/Execute): This check checks the input’s intended

access type (read, write, or execute) and verifies it using the access rights that have

been set up.

Multi-Region Error: This check keeps track of how many regions are accessed

and checks to see if many regions are being accessed at once, which may be an error.

Boundary Check: By making sure the address of the data access does not cross

the region’s border, this check guards against unauthorised access.
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The error generation logic block is then supplied with the results of these checks.

The error generating logic determines whether an error condition exists and produces

the appropriate error output based on the findings of the tests. The MPU registers

are configured, inputs are routed through check blocks, and the results are examined

by the error generating logic to produce error outputs. Overall, this MPU Design

follows a systematic sequence.

If Output Error 0 is 1: means MPU will stop Master from accessing Slave.

If Output Error 0 is 0: means MPU Check was passed and there is successful

transaction between Master and Slave.

3.2.1 Snippet of Verilog Code for MPU Design

1 assign VirtualID_ok = (( region_virtualID

2 [index_region]

3 == pkt_vmid) && pkt_vld) ?

4 1’b1 : 1’b0 ;

5 assign VirtualID_matched = vmid_ok & pkt_vld1;

6 assign mem_mismatched = mem_mismatch & pkt_vld ;

7 assign VirtualID_not_matched = (~ VirtualID _ok) &

8 pkt_vld1;

9 assign multi_region_error = (( region_hits > 6’d1) ?

10 1’b1 : 1’b0 ) ;

11 assign boundry_nok = (| bound_cross);

12 assign Error_intermediate = (VirtualID_not_matched |

13 mem_mismatched |

14 multi_region_error |

15 read_write_access |

16 boundry_nok) ;

17 always @ (posedge Clk) begin

18 if ( pkt_vld2 )

19 Error_0 = Error_intermediate ;

20 end

Listing 3.1: Snippet of Verilog Code for MPU Design
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Description:

The code first calculates individual checks or conditions (VirtualID not matched,

mem mismatched, multi region error, read write access, boundry nok) and then

combines their results using a logical OR operation. The combined result is assigned

to the variable Error intermediate. This variable represents the intermediate error

condition based on the combination of different checks. By combining these individ-

ual checks, the Error intermediate variable captures any error condition that occurs

in any of the checks. If any of the individual checks evaluate to true, indicating

an error, then Error intermediate will also be true. Otherwise, if all the individual

checks evaluate to false, Error intermediate will be false. The Error intermediate

value is then used in the subsequent logic or further processing, such as assigning

it to another variable (Error 0 in this case) based on certain conditions or events

(in this case, when pkt vld2 is true and triggered by the positive edge of the Clk

signal).

3.2.2 IP Wrapper of MPU

Upon generating the IP (Intellectual Property) wrapper for the Verilog code of

the MPU Design, an interface is provided to facilitate communication with the IP.

This interface includes the necessary AXI (Advanced eXtensible Interface) signals

as inputs to enable the execution of the checks within the IP [13].

The IP and the surrounding systems can communicate with one another through

the AXI interface signals. These signals enable the system to give the IP inputs

needed to carry out check procedures. Address signals, data signals, control signals,

and status signals are among the unique AXI signals needed for the MPU design.

The Advanced Peripheral Bus (APB) interface signals are included as inputs in

the MPU design in addition to the AXI interface signals. The setting of registers

inside the MPU block is made possible by these APB interface signals. The APB

interface signals are used for tasks including defining read/write accesses, VirtualID

accesses, and MasterID accesses, as well as setting the type of each area in SRAM

and designating the memory type. ese configurations are necessary to modify the
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Figure 3.3: IP wrapper of MPU

MPU Block’s behaviour and attributes in accordance with system requirements [14].

The IP wrapper enables the system to effectively communicate with and use the

MPU Design by using the AXI interface signals as inputs. It enables the system to

give the required inputs for the checks to be performed by the IP, simplifying the

verification of virtual machine matching, memory consistency, access types, multi-

region faults, and boundary checks as stated within the MPU Design.

3.2.3 Waveform results of MPU design

In Waveform 3.4, the behavior of the MPU Design is illustrated. Specifically,

when the check for VirtualID mismatch occurs, the Error 0 output is observed to

transition to a high state.

The timing and interactions of the signals inside the design during a simulation

or testing scenario are captured by the waveform. It aids in signal transmission and

system response visualisation.

When the VirtualID check determines a mismatch between the input VirtualID

and the corresponding region’s VirtualID, it triggers an error condition. As a result,
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Figure 3.4: Waveform results of MPU Design

the Error 0 output signal undergoes a transition, indicating the presence of an error.

Waveform 3.4 provides a clear representation of the response of the MPU Design

when encountering a VirtualID mismatch, highlighting the generation of the error

output, Error 0.

3.3 Summary

The MPU Design consists of multiple blocks and functionalities aimed at per-

forming various checks and generating error outputs. Here is a summary of the

design:

Configuration: The design begins with the configuration of MPU registers

through the APB interface. These registers store information about region types,

memory types, access types, VirtualID accesses, and MasterID accesses.

Check Blocks: The AXI interface receives inputs after register configuration,

which are then handled by the MPU check blocks. These blocks run five different

types of checks:

a. Virtual Machine Matched or Mismatched: Checks to see if the input VirtualID

matches the VirtualID for the associated area.

b. Memory Matched or Mismatched: Checks to see if the input’s memory type

corresponds to the region’s set memory type.
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c. Access Type (Read/Write/Execute): This check compares the desired access

type to the access permissions that have been set up.

d. Multi-Region Error: Tracks how many regions are accessed and recognises

when several regions are accessed at once.

e. Boundary Check: This step confirms that the data access address does not

go beyond the region’s border, preventing unauthorised access.

Error Generation: The outputs of the check blocks are fed into the error

generation logic. Based on the results of the checks, this logic determines if an error

condition exists and generates an appropriate error output.

IP Wrapper: Finally, an IP wrapper is generated to encapsulate the Verilog code

of the MPU Design. It provides an interface, including AXI signals, to allow external

systems to communicate with the IP and provide inputs necessary for the checks to

be performed.

In summary, the MPU Design includes configuration registers, check blocks for

different types of checks, error generation logic, and an IP wrapper with an AXI in-

terface. Together, these components enable the design to verify virtual machine

matching, memory consistency, access types, multi-region errors, and boundary

checks, generating error outputs based on the check results.
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Chapter 4

Verification of Memory Protection

Unit

Verification is the process of determining and validating whether a design or

system is accurate, functional, and compliant with its needs or specifications. In

order to make sure that the design fulfils the specified functionality and acts as

predicted, a variety of techniques, processes, and tools are used. Before the system

is deployed or manufactured, verification tries to find and fix design flaws, defects,

and functional problems.

Functional verification and formal verification are the two main types of verifi-

cation that are frequently employed in the industry.

Functional Verification: The goal of functional verification is to confirm that

a design is functionally sound. To replicate and evaluate the design under various

operating situations, test scenarios, test cases, and test benches must be created.

The objective is to guarantee that the design executes its intended functions accu-

rately and as intended.

Formal Verification: To ensure that a design is right, formal verification uses

formal procedures and mathematical reasoning. It entails building a mathematical

model of the design and thoroughly examining its behaviour and properties using

formal techniques like model checking, theorem proving, and equivalence checking.

A design’s accuracy and quality can be ensured through both functional and
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formal verification. While formal verification offers mathematical rigour to ver-

ify certain features or investigate all potential design states, functional verification

focuses on proving the design’s intended utility. confidence in the accuracy and

dependability of the design can be increased by combining the two approaches.

4.1 Introduction to Verification of MPU

An essential stage in ensuring the correct and dependable operation of a Memory

Protection Unit (MPU) in implementing memory protection and access control is the

verification of the MPU. Validating the MPU design’s performance, compliance, and

functionality is part of the verification process. Before the MPU is integrated into

the larger system, potential problems and faults can be found and fixed by carefully

testing the MPU against the defined requirements and confirming its behaviour in

various circumstances.

With reference to Figure 4.1, Four-phase verification cycle:

Development: A number of tasks are carried out during the development phase

to lay the groundwork for the verification process. The design of the MPU’s archi-

tecture includes a description of the memory regions, access control procedures,

and other pertinent characteristics. The development of test benches and sequences

creates a simulation environment for delivering test stimuli and confirming the be-

haviour of the MPU.

Figure 4.1: Verification Phases
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Simulation: Using the appropriate simulation tools, the generated testbenches

and sequences are executed during the simulation phase. To generate the simu-

lation model, the verification environment—which includes the testbench and se-

quences—is compiled and elaborated. Waveforms are produced during simulation

to simulate the behaviour of the MPU and other system parts. The simulation ap-

proach aids in validating the MPU’s behaviour and operations under various test

situations.

Debugging: The goal of the debugging phase is to find and fix problems that

arise during simulation. Investigating any anomalies, mistakes, or unusual behaviour

seen in the simulation waveforms is part of this process. To identify the source of

problems, debugging operations may require looking into transactional or signal-

level details. Design flaws, false assumptions, or problems in the MPU or testbench

can be found and addressed by diligent study and troubleshooting.

Coverage: Assessment of the efficiency and thoroughness of the verification

process is done during the coverage phase. To measure various aspects of verification,

several coverage metrics are used. Functional coverage measures how effectively the

verification tests use the MPU’s various features to test all planned behaviours.

Code coverage gauges how thoroughly the verification tests have put the RTL code

to the test. To evaluate the coverage of particular attributes or assertions defined in

the design, SystemVerilog Assertions (SVA) coverage can be used. The first step is

to receive input on the coverage findings, which is used to improve the verification

plans and methods moving forward.

The development, simulation, debugging, and coverage steps make up the itera-

tive verification cycle. The verification process is improved upon and repeated when

problems are found and fixed until the MPU design complies with the required re-

quirements, conforms to the intended behaviour, and satisfies the desired coverage

targets.
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4.2 Functional Verification of MPU Checks

The MPU check blocks’ ability to perform the five separate tests on the input

received through the AXI interface is confirmed through functional testing. Creating

test cases that cover numerous scenarios for each check, properly establishing the

MPU registers, and running the tests are all steps in the verification process. The

checks are verified by matching the input’s VirtualID with the VirtualID of the

pertinent region, confirming the access type, keeping track of multi-region accesses,

and applying boundary checks to prevent unauthorised access. Functional testing

guarantees that the MPU check blocks effectively enforce the expected behaviour

and offer trustworthy protection for memory accesses [15].

Figure 4.2: Functional Verification

4.2.1 Virtual Machine matched or mismatched check

Virtualization is a term used to describe the ability of hardware to simultaneously

run several operating systems (OS). With its assistance, one can construct virtual

machines (VMs), which are independent instances of an OS running on a single

physical computer. A hypervisor, is a software that is responsible for creating and

managing VMs. The hypervisor controls how the virtual machines are allocated

CPU, memory, storage, and network resources. A hypervisor is a boss software that

decides which type of permission the OS have on the particular resource [16].

The ”Virtual Machine Matched or Mismatched” check is an essential part of

the verification process in the context of virtualization. It evaluates whether the
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Figure 4.3: SoC interaction with Operating Systems

VirtualID assigned to an input matches the relevant region’s VirtualID, thereby

determining if the virtual machine accessing the resource is authorized. The idea of

virtualization is the creation and operation of numerous virtual computers (VMs) on

a single physical hardware. A VirtualID, a special identity given to each Operating

System, is used to isolate and distinguish one VM from another. The hypervisor,

which serves as the boss programme, is in charge of setting up and overseeing these

virtual computers.

The system checks to see if the VirtualID associated with the incoming request

matches the VirtualID associated with the pertinent area or resource during the

”Virtual Machine Matched or Mismatched” check. If there is a match, it signifies

that the requesting VM is authorized to access the particular resource. However, if

there is a mismatch, it implies that the VM does not have the necessary permissions

to access the resource, and the request is denied.

This check ensures that each VM operates within its designated boundaries and

prevents unauthorized access to resources. It contributes to maintaining isolation

and security in a virtualized environment by enforcing access control and preventing

interference between different virtual machines.

Overall, virtualization allows for the simultaneous execution of multiple oper-

ating systems or applications on a single physical machine. Through the use of

VirtualIDs and associated checks like ”Virtual Machine Matched or Mismatched,”
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virtualization ensures that each virtual machine operates securely within its des-

ignated boundaries. Each OS is assigned a distinct VirtualID by the hypervisor

according to the system architecture.

Figure 4.4: Virtual Machine Matched and Mismatched

With reference to Figure 4.4, VirtualID 0 is given to OS 0 and then assigned to

CORE 0. The MPU registers are configured through the APB interface to manage

access rights. In particular, access to SRAM 0 by CORE 0 with VirtualID 0 is

permitted by the MPU register setup, whereas access to SRAM 1 by CORE 0 with

VirtualID 0 is limited.

Snippet of UVM code for Virtual Machine matched or mismatched:

1 class VM_match_mismatch_test extends mpu_test;

2 VM_match_mismatch_seq_h VM_match_mismatch_seq_t;

3 ‘uvm_component_utils(VM_match_mismatch_test)

4

5 function new(string name = " VM_match_mismatch_test",

uvm_component parent);

6 super.new(name ,parent);

7 endfunction: new

8

9 VM_match_mismatch_pkt_seq_t :: get_type ());

10 VM_match_mismatch_seq_t= VM_match_mismatch_seq_h :: type_id :: create(

" VM_match_mismatch_seq_t");
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11 task run_phase(uvm_phase phase);

12 VM_match_mismatch_seq_t.mpu_base_class = mpu_base_class;

13 VM_match_mismatch_seq_t.start(dut_top_env_t.vs);

14 endtask: run_phase

15 endclass: VM_match_mismatch_test

Listing 4.1: Snippet of UVM Code for Virtual Machine Matched or Mismatched

Description: The MPU permits access when Master CORE 0 tries to access

an area in Slave SRAM 0 in accordance with the setup. The MPU approves the

operation since CORE 0 has been given VirtualID 0, which is permitted access to

SRAM 0. By comparing the VirtualID of the requesting entity with the configured

permissions, the MPU conducts a verification and decides as a result. However,

the MPU blocks Master CORE 0 from accessing a region of Slave SRAM 1 when

it attempts. The MPU register setting expressly states that CORE 0, associated

with VirtualID 0, does not have permission to access SRAM 1 as the cause of the

denial. In order to avoid any unauthorized access or potential security flaws, the

MPU carefully enforces the configured limitations.

Virtual Machine matched waveform:

Figure 4.5: Virtual Machine Matched Waveform

A specific area of the SRAM in the provided waveform 4.5, is set up to only

permit access to VirtualID = 8’hA6, as specified in the MPU (Memory Protection

Unit) register. A ”Virtual Machine matched” scenario is confirmed when the wave-

form shows that the VirtualID 8’hA6 is attempting to access the SRAM region.
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This indicates that the expected VirtualID that has been set up for the SRAM area

and the VirtualID connected with the accessing entity are same.

The access is therefore regarded as legitimate and authorised. The VirtualID

8’hA6 can easily access the SRAM region thanks to the technology. This matching

VirtualID makes ensuring that the operating system or virtual machine that is ac-

cessing the resources in the designated SRAM area has the required authorizations.

Virtual Machine mismatched waveform:

Figure 4.6: Virtual Machine Mismatched Waveform

A specific area of the SRAM in the provided waveform 4.6 is set up to only

permit access to VirtualID = 8’hA6, as specified in the MPU (Memory Protection

Unit) register. The waveform, however, suggests a ”Virtual Machine mismatched”

scenario when VirtualID 8’h9B is trying to access the SRAM area. This indicates

that the intended VirtualID (8’hA6) defined for the SRAM region does not match

the VirtualID (8’h9B) associated with the accessing entity. The access is therefore

seen as being illegitimate and unauthorised. The SRAM area is not accessible

to the VirtualID 8’h9B by the system. This mismatched VirtualID shows that

the operating system or virtual machine that is accessing the resources within the

specified SRAM area does not have the requisite permissions.

In conclusion, this waveform shows an example of virtual machine mismatch,

where the accessing entity’s virtual ID (8’h9B) differs from the virtual ID (8’hA6)

that is defined in the MPU register for the SRAM area. This helps to maintain

the security and integrity of the virtualized system by ensuring that attempts at

unauthorised access are thwarted.
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4.2.2 Memory-type matched Or mismatched check

Memories can be broadly classified into two types:

1. Normal Memory

2. Device memory

Normal memory includes RAM, ROM, NVM, and Flash memories, while de-

vice memory refers to the registers present in cores. Additionally, memories can

have different characteristics such as cacheable, non-cacheable, bufferable, and non-

bufferable, which determine their behavior and accessibility.

Figure 4.7: Memory-type Matched Or Mismatched

In the context of Memory-type matched Or mismatched checks, the first step

involves configuring the MPU Config register for each slave (SRAM) region. With

reference to Figure 4.7, configuration specifies the type of memory associated with

that particular region. When the master initiates an access by sending the axi mem

signal, it indicates the desired memory type that the master wants to access. The

MPU checks this axi mem signal and compares it with the memory type written in

its Config register for the corresponding slave region. If there is a match between

the axi mem signal and the configured memory type, it signifies a ”Memory type

Match” case, indicating that the desired memory type matches the configured type.

In this case, the check is considered successful (pass), and the MPU allows the

transaction to proceed to the slave for accessing the memory region.
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On the other hand, if there is a mismatch between the axi mem signal and the

configured memory type, it represents a ”Memory type Mismatch” case. This indi-

cates that the desired memory type does not match the configured type in the MPU

Config register. As a result, the check fails, and the MPU prevents the transac-

tion from progressing to the slave, effectively halting the transaction. The Memory

type match/mismatched check ensures that the desired memory type specified by

the master aligns with the configured memory type in the MPU Config register.

This validation helps in maintaining consistency and preventing unauthorized or

incompatible memory accesses within the system.

Snippet of UVM Code for Memory-type matched Or mismatched:

1 class Memtype_match_mismatch_test extends mpu_test;

2 Memtype_match_mismatch_seq_h Memtype_match_mismatch_seq_t;

3 ‘uvm_component_utils(Memtype_match_mismatch_test)

4

5 function new(string name = " Memtype_match_mismatch_test",

uvm_component parent);

6 super.new(name ,parent);

7 endfunction: new

8

9 Memtype_match_mismatch_pkt_seq_t :: get_type ());

10 Memtype_match_mismatch_seq_t= Memtype_match_mismatch_seq_h ::

type_id :: create(" Memtype_match_mismatch_seq_t");

11 task run_phase(uvm_phase phase);

12 Memtype_match_mismatch_seq_t.mpu_base_class = mpu_base_class;

13 Memtype_match_mismatch_seq_t.start(dut_top_env_t.vs);

14 endtask: run_phase

15 endclass: Memtype_match_mismatch_test

Listing 4.2: Snippet of UVM Code for Memory-type Matched Or Mismatched

Description:

In the provided waveform 4.8, there is a specific signal called mem mismatched

that goes high at a certain point in time. This signal indicates a memory type
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mismatch, suggesting that the desired memory type requested by the master does

not match the configured memory type in the MPU.

When the mem mismatched signal goes high, it triggers the error generation logic

within the MPU. The error generation logic detects the mismatch and identifies it

as an error condition. In the subsequent clock cycle, the Error 0 signal is raised,

indicating the occurrence of an error.

The rising of the Error 0 signal serves as a notification to the system or external

entities that a memory type mismatch error has occurred. This signal can be cap-

tured by error handling mechanisms or used to trigger specific actions within the

system, such as error logging, interrupt generation, or system reset.

Memory-type mismatched waveform:

Figure 4.8: Memory-type Matched Or Mismatched

By observing the waveform 4.8 and the sequence of events, it becomes evident

that the mem mismatched signal acts as a trigger for error detection, while the Er-

ror 0 signal reflects the occurrence of a memory type mismatch error. These signals

play a crucial role in the verification process of the MPU, allowing for the identifi-

cation and handling of memory type mismatch scenarios to ensure the integrity and

reliability of memory access within the system.

4.2.3 Access type (Read/Write/Execute) check

In the given scenario, the MPU (Memory Protection Unit) contains separate

registers for each slave (SRAM) region, and each register is associated with a specific
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MasterID. These registers define the permissions granted to each master for accessing

the corresponding SRAM region.

Figure 4.9: Access Type (Read/Write/Execute)

For instance, with reference to Figure 4.9 the MasterID 8’h00, which corresponds

to CORE 0 master, has permissions to write, read, and execute in a particular region

of the SRAM (region number 29) as specified in the MPU register. This means that

CORE 0 is authorized to perform read, write, and execute operations in region 29

of the SRAM.

On the other hand, the MasterID 8’h12, corresponding to CORE 1 master, is

granted only read permission in the same region (region 29) of the SRAM. CORE 1

is allowed to read data from region 29, but it does not have the permission to write

to or execute code from that region.

Now, if CORE 1 attempts to write to the memory region 29 of the SRAM, it

will encounter an error. The MPU performs checks based on the MasterID and the

desired operation. Since CORE 1 does not have write permission for region 29, the

MPU detects a violation and terminates the transaction, preventing CORE 1 from

performing the unauthorized write operation.

However, when CORE 0 tries to write to memory region 29 of the SRAM, the

MPU recognizes that CORE 0 has the necessary write permission for that region

based on its MasterID. As a result, the MPU allows the transaction to proceed, and

the write operation is successfully executed in the designated memory region.
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Snippet of UVM Code for Access type (Read/Write/Execute):

1 class write_access_error_test extends mpu_test ;

2 write_access_error_packet_t;

3 write_access_error_seq_t write_access_error_seq_h;

4 ‘uvm_component_utils(write_access_error_test)

5

6 function new(string name = " write_access_error_test",

uvm_component parent);

7 super.new(name ,parent);

8 endfunction : new

9

10 virtual function void build_phase(uvm_phase phase);

11 write_access_error_seq_h = write_access_error_seq_t :: type_id ::

create(" write_access_error_seq_h");

12

13 super.build_phase(phase);

14 endfunction : build_phase

15 virtual task run_phase(uvm_phase phase);

16 write_access_error_seq_h.mpu_base_class = mpu_base_class;

17 endtask : run_phase

18 endclass: write_access_error_test

Listing 4.3: Access Type (Read/Write/Execute)

Description:

In summary, the MPU’s separate registers for each slave region, along with

specific permissions assigned to different MasterIDs, enable controlled and secure

access to memory resources. The MPU verifies the permissions associated with

the MasterID and the requested operation, ensuring that unauthorized accesses are

detected and prevented, thus maintaining the integrity and security of the system.

A write operation to the 29th area of the SRAM, started by Master CORE 1, can

be seen in the waveform 4.10. To verify the access privileges for that particular

area and MasterID combination, the MPU registers in place carry out a permission

check.
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Access Type (Read/Write/Execute) waveform:

Figure 4.10: Access Type (Read/Write/Execute)

The MPU finds that CORE 1 does not have the necessary permissions to write to

the specified region after performing the permission check. The MPU consequently

recognises this as an incorrect scenario.

The MPU generates an error ID in response to the error detection, letting

CORE 1 know that the access attempt was not authorised. The error ID is used as

a point of reference to find the specific MasterID connected to the violation.

The master who allowed unapproved access is effectively highlighted by the MPU

by reporting the error ID, assisting in problem identification and resolution. This

error reporting mechanism plays a crucial role in preserving the system’s integrity

and security by quickly identifying and stopping unlawful entry attempts.

4.2.4 Multiple regions access check

The Multi-Region Error check in the MPU ensures that at any given time, a

master can only access a single region of the SRAM. If multiple regions are accessed

simultaneously by the same master, it is considered a violation of this rule and is

flagged as a multi-region hit error.

In the provided scenario, Figure 4.11, when CORE 0 attempts to access more

than one region of the SRAM simultaneously, the MPU detects this violation. As a

result, the MPU triggers the multi-region hit error, indicating that CORE 0 has ac-
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Figure 4.11: Multiple Regions Access

cessed multiple regions concurrently. To rectify the situation, the MPU takes action

to terminate both transactions initiated by CORE 0 that involve accessing multiple

SRAM regions simultaneously. By terminating these transactions, the MPU ensures

compliance with the rule of allowing access to only a single region at a time.

Snippet of UVM Code for multiple regions access:

1 class multi_access_error_test extends mpu_test ;

2 multi_access_error_packet_t;

3 multi_access_error_seq_t multi_access_error_seq_h;

4 ‘uvm_component_utils(multi_access_error_test)

5 function new(string name = " multi_access_error_test",

uvm_component parent);

6 super.new(name ,parent);

7 endfunction : new

8

9 virtual function void build_phase(uvm_phase phase);

10 multi_access_error_seq_h = multi_access_error_seq_t :: type_id ::

create(" multi_access_error_seq_h");

11 endfunction : build_phase

12 virtual task run_phase(uvm_phase phase);

13 multi_access_error_seq_h.mpu_base_class = mpu_base_class;

14 endtask : run_phase

15 endclass: multi_access_error_test

Listing 4.4: Multiple Regions Access
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Description:

The purpose of the Multi-Region Error check is to enforce proper access behav-

ior and prevent potential conflicts or inconsistencies that may arise from accessing

multiple regions simultaneously. By identifying and addressing such violations, the

MPU contributes to maintaining the integrity and reliability of the system’s memory

access operations

In the provided waveform 4.12, it can be observed that Master CORE 0 at-

tempts to access two different slave addresses simultaneously. The slave addresses

in question are 32’h60000040 and 32’h60000500.

Multiple Regions access waveform:

Figure 4.12: Multiple Regions Access

However, the MPU has a rule that allows a master to access only one region at a

time. When CORE 0 tries to access both slave addresses simultaneously, it violates

this rule, resulting in a multi-region error.

Upon detecting the multi-region error, the MPU takes action to halt the ongoing

transaction. It stops the transaction from proceeding further to ensure compliance

with the rule of accessing only a single region at a time.

The MPU ceases the transaction to avoid any potential conflicts or inconsisten-

cies that might result from simultaneously accessing several areas. This provides

correct coordination between the master and slave components as well as the relia-

bility of the system’s memory access operations.

The multi-region error detection and transaction termination tasks carried out

by the MPU support effective memory management and thwart illegal or conflicting
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access attempts. These actions add to the system’s overall safety and dependability.

4.2.5 Boundary cross check

In the boundary cross check scenario, the purpose is to ensure that memory

accesses stay within the defined boundaries of a specific region. The check involves

verifying whether the correct region is being accessed by the master device or com-

ponent. However, it’s important to consider two additional factors: the start address

of the transaction and the data length.

Even if the master correctly identifies and targets the intended region, a bound-

ary cross error can occur if either the start address of the transaction or the com-

bination of the start address and data length causes the transaction to cross the

boundary of that region.

Figure 4.13: Boundary Cross check

Let’s illustrate this with an example: Suppose there is a memory region with a

start address of 0x1000 and an end address of 0x2000. If the master device attempts

to access this region, but the start address of the transaction is 0x1FF0 and the data

length is such that it extends beyond the region’s boundary, a boundary cross error

will be triggered.

The purpose of this check is to prevent unintended access beyond the boundaries

of a region. Crossing these boundaries could lead to data corruption, security vul-

nerabilities, or unexpected system behavior. By reporting the boundary cross error,

the MPU (Memory Protection Unit) or the system can take appropriate actions to
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handle or prevent such scenarios. These actions may include halting the transaction,

generating an interrupt, or notifying the master device about the error so that it

can be addressed accordingly.

Snippet of UVM Code for Boundary cross:

1 class boundary_check_test extends mpu_test;

2 typedef boundary_seq #( mpu_params) boundary_seq_t;

3 typedef mpu_packet #( mpu_params) mpu_packet_t;

4

5 boundary_seq_t boundary_seq_h;

6 ‘uvm_component_utils(boundary_check_test)

7

8 function new(string name = "boundary_check_test",uvm_component

parent);

9 super.new(name ,parent);

10 endfunction : new

11 virtual function void build_phase(uvm_phase phase);

12 boundary_seq_h = boundary_seq_t :: type_id :: create("

boundary_seq_h");

13 super.build_phase(phase);

14 endfunction : build_phase

15 virtual task run_phase(uvm_phase phase);

16 boundary_seq_h.mpu_base_class = mpu_base_class;

17 endtask : run_phase

18 endclass: boundary_check_test

Listing 4.5: Boundary Cross

Description:

In the given scenario, there is a waveform 4.14 representing the access of the

second region of SRAM by CORE 0 in a system. The region is defined by a range

of addresses from 32’h20000000 to 32’h2FFFFFFF, representing region number 2.

For a specific transaction initiated by CORE 0, the start address is

32’h2FFFFEFF, and the data length is 12’h2FF. To determine the end address,
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we add the start address and the data length, resulting in 16’h300001FE.

Since the end address, 16’h300001FE, exceeds the upper boundary of the given

region (32’h2FFFFFFF), the transaction crosses the boundary. This means that

the transaction initiated by CORE 0 extends beyond the allowed memory range for

region number 2.

When a transaction crosses the boundary of a memory region, a boundary cross

signal is triggered and becomes high. This signal is detected by the MPU (Memory

Protection Unit) in the system, which is responsible for monitoring and enforcing

memory access rules.

Boundary Cross check waveform:

Figure 4.14: Boundary Cross check

With reference to waveform 4.14, upon detecting the high boundary cross sig-

nal, the MPU recognizes that the transaction has violated the memory region’s

boundaries. As a result, the MPU reports an error, indicating that the transaction

initiated by CORE 0 has exceeded the permitted limits of the memory region.

The system or master device is alerted by the error that the MPU reports that

the accessible memory has crossed the boundaries. The acceptable responses to this

error may include stopping the transaction, stopping the operation, or alerting the

relevant components to the violation, allowing for additional handling or problem-

solving.
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4.3 Formal Verification of MPU

SystemVerilog assertions are developed to validate each of the five checks as part

of the MPU’s formal verification procedure. By establishing an equivalent model

for the MPU through these claims, its functionality may be verified.

The objective of writing assertions for formal verification is to account for all

potential inputs and guarantee that the MPU’s behaviour adheres to the expected

requirements. You are effectively defining the intended attributes and limitations

that the MPU should follow by asserting all tests.

Following the writing of the assertions, coverage code is often added to monitor

the verification process. By counting the number of assertions that pass or fail,

coverage code aids in assessing how thorough the verification process was. It offers

a measure to evaluate how successfully the MPU checks have been verified.

4.3.1 Assertions for MPU Checks

1 asrt_check_vm_error_status : assert property (

2 @(posedge Clk)

3 disable iff (reset)

4 (vm[8:0] == errorID_status [8:0]) & config_reg |-> ##4

Type_status_reg [0] );

Listing 4.6: Assertion for VM match/mismatch

1 asrt_check_mem_mismatch_status : assert property (

2 @(posedge Clk)

3 disable iff (reset)

4 invalid_trans & config_reg |-> ##4 mem_mismatch );

Listing 4.7: Assertion for Memory match/mismatch
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1 asrt_check_write_acc_status : assert property (

2 @(posedge Clk)

3 disable iff (reset)

4 (master_id [5:0] == errorID_status [14:9] & config_reg |-> ##4

Type_status_reg [1] );

Listing 4.8: Assertion for write access check

1 asrt_check_multi_region_access_status : assert property (

2 @(posedge Clk)

3 disable iff (reset)

4 (vm[8:0] == errorID_status [8:0]) & config_reg |-> ##4

Type_status_reg [1] );

Listing 4.9: Assertion for multi region access

1 asrt_check_boundary__status : assert property (

2 @(posedge Clk)

3 disable iff (reset)

4 invalid_trans & config_reg |-> ##4 boundry_nok );

Listing 4.10: Assertion for boundary check

4.3.2 Assertions Results

Description:

As assertions 4.15 is successful, the MPU tests have been successfully checked

for all potential inputs, satisfying the given requirements and limitations. Passing

assertions imply that the MPU’s behaviour fits the assertions’ description of the

MPU’s behaviour.

It is crucial to remember that gaining code coverage and passing assertions do

not ensure the exclusion of all potential errors or corner cases. Even though formal
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Figure 4.15: Assertions Results

verification is a potent tool, it is still important to take into account other types of

testing, including functional testing, to guarantee the overall accuracy and reliability

of the MPU implementation.

4.3.3 Coverage Results

After writing the assertions for the MPU and performing coverage analysis, it

is found that the coverage result is 91 percent, as shown in the figure provided.

This coverage result indicates the percentage of assertions that have been covered

during the verification process. In other words, it represents the extent to which the

behavior of the MPU has been exercised and verified.

Figure 4.16: Coverage Results
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According to Figure 4.16, since the coverage result is 91 percent, it suggests that

there are still some assertions missing or not fully covered. To improve the coverage

and ensure a more thorough verification, additional assertions need to be added.

To increase the coverage, modifications can be made to the existing assertions or

new assertions can be introduced. These additional assertions should aim to cover

the remaining unverified aspects of the MPU, including checks and other block

behaviors that have not been adequately exercised [17].

Figure 4.17: Modified Coverage Results

By modifying the existing assertions and adding new ones, the coverage result

can be improved to 95 percent, as shown in the provided figure 4.17. This signifies

that a larger portion of the MPU’s behavior has been successfully verified.

However, the future aim in the MPU coverage analysis is to achieve even higher

coverage levels of 97-98 percent. This means that further efforts are required to

add more assertions and enhance the verification process. The additional asser-

tions should focus on addressing the remaining unverified scenarios, edge cases, and

potential corner cases that might impact the behavior of the MPU.

By continuously refining and expanding the set of assertions, as well as closely

analyzing the coverage results, the aim of achieving 97-98 percent coverage can

be pursued. This ongoing verification process helps in ensuring the correctness,

robustness, and reliability of the MPU implementation.
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4.4 Summary

For the Memory Protection Unit (MPU) in automotive microcontrollers to per-

form correctly and dependably, both functional and formal verification are essential.

To ensure that the MPU’s functionality, adherence to requirements, and effective

application of memory protection rules are all present and valid, functional verifica-

tion entails comprehensive testing of the MPU’s behaviour in a variety of scenarios.

The development and execution of test cases that cover various access patterns,

transaction kinds, and error circumstances are part of the verification process.

On the other hand, formal verification makes use of mathematical modelling and

analysis methods to formally demonstrate the accuracy and consistency of the MPU

design. It entails creating claims, properties, and invariants that describe the desired

behaviour of the MPU and the lack of mistakes or weaknesses. To thoroughly exam-

ine the design and find any violations or corner cases, formal verification techniques

like model checking and symbolic execution are used.

A thorough method for validating the behaviour of the MPU and guaranteeing its

dependability, safety, and security is provided by the combination of functional and

formal verification. Potential problems including boundary crossings, unauthorised

access, and data corruption can be recognised and dealt with by doing exhaustive

testing, analysis of claims, and formal verification. The MPU is appropriate for

use in automotive microcontrollers for applications like Advanced Driver Assistance

Systems (ADAS) because of the verification process’ contribution to the MPU’s

overall quality and dependability.
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Chapter 5

Conclusion

5.1 Work Conclusion

In conclusion, a crucial step in ensuring the dependability, safety, and compliance

of these systems is the verification of the AXI (Advanced eXtensible Interface) pro-

tocol in automotive microcontrollers. Microcontrollers are significantly used in the

automobile sector to manage numerous electronic systems in cars. These microcon-

trollers frequently employ the AXI protocol to streamline communication between

various parts, including CPUs, memory, and peripherals. To confirm that the AXI

protocol complies with the unique specifications and norms of the automobile indus-

try, thorough testing and validation are performed on automotive microcontrollers.

This verification procedure is necessary to identify and address any potential prob-

lems that could result in functional errors, security flaws, or safety risks. Potential

problems, such as data integrity concerns, timing infractions, or interoperability

difficulties, can be found and resolved early in the development cycle by correctly

validating the AXI protocol in automotive microcontrollers. This lowers the like-

lihood of malfunctions and ensures correct operation in actual vehicle conditions,

improving the microcontroller’s overall reliability and safety.

To make sure the MPU checks are accurate and consistent, formal verification

approaches including assertion-based verification and mathematical proof are used.

Formal verification aids in demonstrating that implemented checks correspond to the
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stated requirements and are in compliance with applicable automotive standards,

laws, and safety guidelines. Verifying the MPU checks in automotive microcon-

trollers can be done in a strong and all-encompassing way thanks to the combined

efforts of functional and formal verification. Potential problems like unauthorised

access, memory corruption, or security vulnerabilities can be found and fixed early

in the development process by checking the MPU checks.

To confirm that the MPU checks work as intended, the verification method en-

tails creating and writing assertions, running test cases, analysing coverage, and

conducting thorough testing. These efforts are supplemented by formal verification

approaches, which offer logical justification and mathematical proofs to ensure the

accuracy and integrity of the implemented checks. The safe and secure operation of

crucial systems within automobiles is aided by the verification of MPU checks in au-

tomotive microcontrollers. It helps the industry satisfy standards like ISO 26262 for

functional safety. Automotive microcontrollers can work dependably in real-world

circumstances by successfully confirming the MPU tests, providing the essential pro-

tection for crucial functions, reducing risks, and guaranteeing the general safety and

security of vehicles and their occupants.

In conclusion, a critical step in ensuring the accurate and secure operation of

these systems is the functional and formal verification of MPU checks in automotive

microcontrollers. Potential problems are found and addressed by thorough testing,

analysis, and formal verification procedures, guaranteeing that the microcontroller

complies with safety regulations and meets the demanding standards of the auto-

motive industry.

5.2 Future Scope of Work

Achieving higher coverage percentages of 97-98 percent is the long-term goal of

the MPU coverage analysis. This necessitates further work to improve the verifica-

tion process by introducing more assertions and addressing the remaining unresolved

situations, edge cases, and hypothetical corner cases that might affect the MPU’s
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behaviour. The emphasis will be on continuously growing and improving the col-

lection of assertions in order to cover a greater variety of test situations in order to

meet this objective. The various memory access patterns, transaction kinds, and

error scenarios are taken into account in this. The overall coverage level can be

raised by paying close attention to the aspects that have low coverage and thor-

oughly analysing the coverage data to find those areas. The goal is to guarantee the

accuracy, dependability, and robustness of the MPU implementation through these

ongoing testing activities. In order to reduce potential hazards and vulnerabilities

in automotive microcontrollers used in ADAS applications, better coverage levels

must be attained. This will increase confidence in the MPU’s performance.
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