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Abstract

Hydraulic telescopic cylinders are commonly used in industry for various
applications and are often subjected to high-pressure working conditions.
This makes continuous monitoring for internal leakage in telescopic
cylinders necessary to accurately characterize the health of hydraulic
systems and maintain their efficiency and safety as failure can have costly
and even fatal consequences. In this study, a hydraulic telescopic cylinder
test rig with a maximum pressure of 210 bars is employved to simulate
internal fluid leakage in a two-stage telescopic cylinder. Internal leakage is
introduced by grinding the seals using a table-top grinding wheel. The
trends in the pressure signals from the telescopic cylinder and their relation
with the pressure signals from the loading cylinder are studied. The ratio of
pressures in the two cylinders is found to be equal to the inverse ratio of
their cross-sectional areas. The effect of increasing wear on the pressure
signals is also explored. Statistical time domain features are extracted from
the pressure signals from the two chambers of telescopic cylinder. The
features are ranked in decreasing order of their importance by using feature
ranking methods such mean decrease in impurity and permutation
importance and top eight features are identified. Four machine learning
classifiers, namely, Random Forest, SVM, logistic regression and gradient
boosting classifiers are developed and trained on these features to
automatically detect and categorize internal fluid leakage into proper
leakage severity level. A comparison is made between the classification
accuracies of the four algorithms and it is observed that Random Forest

classifier 1s the most accurate.
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Chapter 1: Introduction

Telescopic cylinders, also called as telescoping or multi-stage cylinders, are
hydraulic cylinders that comprise multiple tubes made of steel or aluminum.
These tubes, nested within one another, have decreasing diameters from the
outermost to the innermost. Each tube is known as a stage. The stage with
the largest diameter is referred to as the main stage or barrel, and the

smallest diameter stage referred to as the plunger.

Compared to the typical single stage hydraulic cylinder, telescopic cylinders
have a number of advantages primary of which is their capability to provide
a very long stroke while having a compact design. This enables it to reach
greater distances without the need for excessively long cylinders. They have
a nested tube construction, which allows it have a compact overall size when
retracted. Depending on how many stages are in the telescopic cylinder, the
retracted length typically ranges between 20-40% of the fully extended
length which makes it ideal for use in applications where limited space is
an issue, such as in mobile equipment or tight working environments.
Further, due to their ability to extend and retract individual stages,
telescopic cylinders provide flexibility in adjusting the working length. This
allows for precise positioning and optimizing the stroke length for specific
tasks. Telescopic cylinders are capable of handling a wide array of loads
and applications, from light-duty tasks to heavy-duty. Their nested tube
design provides the necessary strength and stability, allowing it for versatile

use in a variety of industries.

Telescopic cylinders are widely used in many different industries, including
construction, agriculture, material handling, and transportation, due to their
advantages. They are employed in a diverse range of equipment and

systems, such as aerial work platforms, hydraulic excavators, telescopic



handlers, dump trailers, missile launchers, aircraft landing mechanism and

more.

However, they also have some disadvantages compared to single-stage
hydraulic cylinders. They have a more complex design compared to single-
stage cylinders since they consist of multiple nested stages, which require
precise alignment and sealing. This complexity usually results in higher
manufacturing costs and maintenance challenges. Their nested design can
also cause them to have reduced rigidity and increased deflection under
heavy loads which limits their load-bearing capabilities. Thus, telescopic
cylinders are primarily used in applications where the piston bears minimal
side loading. Further, with the presence of multiple stages and sealing
points, telescopic cylinders may have a higher risk of hydraulic fluid
leakage compared to single-stage cylinders especially under high-pressure
applications. Proper sealing and maintenance are essential to minimize this

risk.

1.1 Construction of a telescopic cylinder
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Fig 1.1: Schematic diagram of a 2-stage double-acting telescopic hydraulic

cylinder



Fig 1.1 shows the schematic diagram of a cut section of a double-acting
2-stage telescopic hydraulic cylinder with internal construction and fluid
passage. The largest diameter cylinder, known as the main stage or barrel,
forms the outermost part of the telescopic cylinder. It provides structural
support and houses the inner stages. The main stage is usually made of
durable materials such as steel or aluminum to withstand the forces and
pressures involved. Nested within the main stage are the two inner stages,
which are cylinders of successively smaller diameters. Each inner stage has
two components: a piston and a piston rod. The piston rod of every stage
except the smallest stage is hollow. The piston rod of the smallest stage is

simply called rod or the plunger.

The end cap is the component located at one end of the telescopic cylinder.
It is also sometimes referred to as the base or head of the cylinder. It is
typically a solid or threaded structure that serves as a closure for the cylinder
and houses various internal components. The end cap provides a mounting
point for the cylinder and helps to maintain the structural integrity of the
cylinder assembly. It is designed to withstand the forces and pressures

generated during operation.

The gland is located at the opposite end of the cylinder from the end cap. It
serves as a housing for the sealing system that prevents leakage of hydraulic
fluid and maintains the integrity of the hydraulic system. It contains the
seals, O-rings, or other sealing elements that ensure a tight and reliable seal
between the stages of the telescopic cylinder. The gland also provides
support and guidance for the movement of the nested stages within the
cylinder. Oil transfer holes are present in the annulus region which allow
the working fluid to travel from one annulus region to the next if separate

retraction ports are not provided at each stage. [1]



The piston of each stage is fitted with a guide ring and a piston seal. The
guide ring helps absorb radial loads and maintain the axial alignment of the
piston rod. The piston seals prevent the fluid from crossing from one side
of the piston to another. The gland side of the stages contain wiper seals,
rod seals and guide rings. The wiper seal prevents the transmission of
contaminations from the outside of the cylinder to inside. The rod seals
ensure that the working fluid remains contained within the cylinder and does

not leak out.

1.2 Types of telescopic cylinders

Depending on whether the telescopic cylinder can actuate in both directions,

telescopic cylinders can be classified into two types [2]:

i.  Single-acting telescopic cylinders: They have a single hydraulic
port, usually for extraction, and are actuated in one direction. The
working fluid enters from the port and exerts pressure on the piston
from the end cap side due to which the cylinder extends. Usually,
the 1* stage of the cylinder extends first, followed by progressively
smaller pistons, but the order in which they extend depends on
dimensions and design of the telescopic cylinder. Single-acting
telescopic cylinder rely on external forces, usually gravity, for
retraction. They are often used in applications where there is always
some load acting on the cylinder such as dump trucks, cranes, and
material handling equipment.

ii. Double-acting telescopic cylinders: Double-acting telescopic
cylinders have hydraulic ports at both ends and can be actuated in
both directions. Depending on the location of extraction and
retraction ports, they can be divided into further 3 types. In the first
type, the extraction port is located on the main stage and the

retraction port on the plunger. Multiple retraction ports, one on each
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stage, can also be present as shown in Fig 1.1. In the second type,
both ports are located on the plunger in which case the plunger is
hollow and in the third type both are located on the main stage. Each
design type has its own advantages and disadvantages but the basic

working is the same.

The extraction mechanism is similar to that of a single acting
telescopic cylinder. Double acting telescopic cylinders are retracted
by pressuring the space between outer diameter of the current stage
and inner diameter of the next larger stage i.e., the annulus space.
Under the fluid pressure exerted on the piston from the gland end
side, that stage completely retracts and a pathway i.e., the oil transfer
hole to the annulus space of the next larger stage from that of the
current stage then becomes open and the process repeats. In this

way, the cylinder completely retracts. [1]

1.3 Thesis organization

The following is a chapter-by-chapter breakdown of the current work:

Chapter 1 deals with the introduction of the telescopic cylinder, its
advantages and disadvantages compared to a single stage hydraulic
cylinder, its applications in industry and the types of telescopic cylinders.
The working of the telescopic cylinder is also explained in brief. At the end,

the organization of the various chapters in the thesis is mentioned.

Chapter 2 discusses the past published work related to telescopic cylinders.
First, the common causes of failures of telescopic and hydraulic cylinders
are discussed followed by a discussion on the various maintenance
strategies employed in the industry to prevent and minimize the failures. In

the last section of the chapter, the various condition-monitoring methods

2]



developed in literature are discussed and the significance and scope of

current study is mentioned

Chapter 3 introduces the experimental facility used in this study and
explains its working in detail. The second half of the chapter discusses the
relations between the various pressure signals obtained through the data

acquisition system and explains the behaviours in the pressure signal plots.

Chapter 4 briefly explores the effect of increasing seal wear on the pressure
signals and discusses in detail the methodology used to develop four
machine learning classifiers for monitoring internal fluid leakage. The

classification accuracies of the four models is compared.

Chapter 5 concludes and summarizes the current research work. A brief

idea of the applications of current work and future scope is also discussed.
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Chapter 2: Literature Survey

2.1 Introduction

Telescopic cylinders are widely used in hydraulic systems for applications
such as construction equipment, material handling, and industrial
machinery. Despite their importance, these cylinders are susceptible to
various faults that can adversely affect their performance, reliability, and
lifespan. Understanding and identifying common faults in telescopic
cylinders is crucial for efficient maintenance, timely repairs, and overall

system integrity. The various faults commonly observed in industry are:

1) Fluid Leakage: One of the most prevalent faults in hydraulic and
telescopic cylinders is fluid leakage. According to Johny et al. [3]
approximately 42% of all problems in hydraulic systems arise due to fluid
leakages. Fluid leakage can be classified into two types: internal leakage
and external leakage [4]. Internal leakage occurs within the cylinder itself.
It involves fluid bypassing the normal flow path and leaking from the high-
pressure side of the cylinder to the low-pressure side or vice versa, without

exiting the cylinder to the external environment.

Internal leakage can happen due to worn seals, damaged piston or rod
surfaces, inadequate lubrication, or improper fluid flow control. It can result
in reduced cylinder efficiency, decreased force or load-holding capacity,

and potential instability in the hydraulic system [5][6].

External leakage refers to the escape of hydraulic fluid from the hydraulic
cylinder to the surrounding environment. It occurs when there is a breach in
the cylinder's seals, gaskets, or other components that are designed to
contain the fluid within the system [8]. This type of leakage not only leads

to a loss of fluid but can also result in environmental contamination, reduced
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system performance, and risk of injury, risk of health problems and risk of

fire hazards. [5][7].

In hydraulic cylinders, fluid leakage can occur due to number of factors
such as seal defects, quality of product assembly, design considerations,

casting imperfections, machining defects, and other related factors. [9]

Approximately 66% of all leakages are caused by seal defects [9]. Seal
defects can arise from various factors, including the aging of seal material,
dimensional changes caused by temperature and humidity fluctuations,
contamination of fluid, and high operating load and pressure [10]. Examples
of seal defects include seal hardening, scarring, seal extrusion, seal wear
etc. Fluid leakage due to defects during product assembly account for 17%
of total fluid leakages and that due to casting, machining or design defects
account for 14% of all fluid leakages [9]. Failure to replace a seal in a timely
manner can result in fluid leakage or fluid contamination by seal particles

or particles from the surrounding environment such as dust, water, dirt etc.

2) Piston misalignment: It is another relatively common fault in telescopic
cylinders. It can result from improper installation, mechanical stress, or
wear over time. Piston misalignment can cause uneven wear, increased

friction, and reduced operational efficiency [12].

3) Fluid contamination: Fluid contamination is a frequent issue in
hydraulic systems, including telescopic cylinders. Contaminants such as
dirt, moisture, air, or metal particles can enter the system, leading to
accelerated wear, seal degradation, and reduced component lifespan.
Presence of moisture can affect and change physical and chemical
properties of the fluid. Its presence alters physical properties of the fluid
such as its viscosity, its load-carrying capacity and its power-transfer

characteristics and provides a conducive environment for oxidation and
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corrosion which can result in deposition of sludge [13][14]. Particle
contamination in fluids is responsible for a large percentage of failures in
hydraulic systems [15]. Harder particle contaminants such as metal particles
can cause significant damage by scratching the seals of hydraulic cylinders
or creating scores on metal surfaces. Softer particle contaminants such as
fiber and textile particles can result in blockage of the hydraulic control
elements such as orifices, valves, ports, and filters. Thus, particle
contaminants degrade the fluid quality, clog filters, ports, valves, and
damage components, leading to reduced system performance, reduced
component lifespan and increased maintenance requirements. Particle
components which have very small particle sizes are highly abrasive and
thus can cause significant damage to the components of the hydraulic
system if they are present in sufficient quantity. According to [16], of all
component failures in hydraulic components, 90% are due to surface fatigue

and abrasive wear caused by particle contaminants.

4) Cylinder Drift: Cylinder drift refers to the unintended movement or
creeping of telescopic cylinders when the system is inactive. It can be
caused by internal leaks, valve malfunctions, or improper control system
adjustments. Internal leakage disrupts the balance of forces within the
cylinder, leading to drift. Malfunctioning valves in the hydraulic system can
contribute to cylinder drift. Control valves or directional valves play a
critical role in regulating fluid flow and pressure. If these valves do not
function correctly, they may not completely block fluid flow or maintain
proper pressure, causing unintended movement of the cylinder. Valve issues
can include improper seating, valve spool leakage, or valve stiction
[17][18]. Incorrect pressure settings, inadequate flow control, or suboptimal
adjustments of pressure regulators, flow control valves and proportional
valves can cause instability in the system. This instability can result in
uncontrolled fluid flow, leading to cylinder drift. Excessive external loads

applied to the cylinder can cause drift. When the cylinder is designed to hold
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a specific load, adding additional loads or imbalanced loading can create
additional forces on the cylinder. These forces can overcome the holding
force of the hydraulic system, causing the cylinder to move gradually over
time. Cylinder drift affects the accuracy and stability of the system
[19][20][21].

5) Rod Scoring or Surface Damage: Scoring or surface damage refers to
the formation of scratches, grooves, or marks on the surface of the rod of
telescopic cylinders. It can occur due to abrasion, corrosion, insufficient
lubrication, or foreign particle intrusion. One of the primary causes of rod
scoring 1s the presence of contaminants in the hydraulic system which act
as abrasives, causing scratches and scoring when the rod moves within the
cylinder. Inadequate lubrication can also cause rod scoring. Insufficient
lubrication increases the friction between the rod and the cylinder wall,
resulting in metal-to-metal contact. This contact can cause the rod surface
to become scratched and scored over time. Neglecting proper maintenance
practices, such as inadequate cleaning of the system or rough handling of
the hydraulic cylinder, can contribute to rod scoring. Poor maintenance
allows contaminants to accumulate and increases the risk of damage to the
rod surface. Rough handling can cause external impacts or scratching,
leading to scoring. Such damage can result in increased friction, seal wear,

and reduced system efficiency [22][23].
6) Bent Rods or Cylinders: External impact, overloading, or mishandling
can cause bending of the rod or cylinder in telescopic cylinders. Bent

components can lead to uneven loading, increased friction, and limited

stroke length.

10
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2.2 Monitoring of hydraulic cylinders

Failures in hydraulic cylinders are mostly due to fluid leakage and
contamination. Apart from any structural damage to the hydraulic cylinder,
it is not easy to determine the condition of the fluid, seal, or other
components of the hydraulic cylinder through visual inspection alone
without first partially or completely disassembling the hydraulic system.
Unexpected failures increase maintenance cost, might cause damage to
other components of the hydraulic system, reducing the operation
availability and result in expensive repairs or replacement of critical
components which can have significant financial consequences

[24][25][26].

Different maintenance strategies can be used to lower costs both financially
and operationally and to improve the safety and reliability of the system.
Conventional maintenance strategies that are used in industry are reactive
or breakdown maintenance, proactive or reliability centered maintenance
and preventive or time-based maintenance [27]. Reactive maintenance
involves repairing or replacing hydraulic components only when they fail
or break down. This approach relies on reactive responses to equipment
failures and typically involves minimal planned maintenance. While this
approach may be suitable for non-critical systems or low-cost components,

it can result in unexpected downtime, higher repair costs, and potential

safety risks [28].

Preventive maintenance involves performing routine inspections, servicing,
and component replacements at predefined regular time intervals. This
strategy is carried out in a fixed time intervals, such as weekly, monthly, or
annually, regardless of the actual condition of the hydraulic system. This

helps identify potential issues early on, but it may also result in unnecessary

11
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maintenance actions and costs if components are still in good condition

[281[29].

Reliability based maintenance involves conducting risk assessments,
analyzing failure data, and prioritizing maintenance tasks based on the
criticality of components and uses techniques like failure mode and effects
analysis (FMEA) to minimize downtime and improve system reliability

[30].

Predictive maintenance, also known as condition-based maintenance 1s an
alternative to conventional maintenance. It relies on real-time monitoring
and analysis of key parameters to predict the condition of hydraulic
components [31]. It involves using sensors, data analysis, and condition
monitoring tools to track parameters like temperature, pressure, vibration
etc. and based on the values of these parameters, maintenance activities are
scheduled. Thus, maintenance of components is performed only when
required [32][33]. While the initial cost of implementation of condition-
based monitoring may be considerable initially, it can be offset in the long
run through savings on maintenance cost. Maintenance cost and cost
associated with sudden failure of equipment can be substantially reduced by
implementing predictive maintenance strategies for hydraulic systems [34].
Using real-time condition data enables the operator to schedule
maintenance activities depending on the equipment health thereby

eliminating unplanned maintenance time [35].

The health of a telescopic cylinder can be monitored directly or indirectly.
Direct methods include visual inspection of the components or measuring
deviations in the dimension of the components. Since most components of
the hydraulic cylinder are concealed within it, it is difficult to implement
these methods and involves partial or complete disassembly of the system

which reduces the availability of the system. Further, implementing visual

12
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inspection methods such as computer vision are not economically feasible

[36].

Indirect monitoring methods involve measuring parameters or
characteristics that are related to the performance or behavior of the
components but are not directly measured on the components themselves.
For a hydraulic system, these parameters can be pressure, temperature,

vibration, chemical and physical properties of the working fluid etc. [37]

2.3 Condition monitoring of fluid leakage

Numerous methodologies have emerged for detecting fluid leakage in
hydraulic and telescopic cylinders effectively, by monitoring parameters
such as pressure, temperature, acoustic emission, vibration, and torque [38].
These parameters can be monitored using various sensors such as pressure
and temperature sensors, accelerometers, acoustic emission sensors and
torque sensors. To analyze the data obtained from these sensors, various
signal processing techniques can be used such as time-domain analysis,

frequency-domain analysis, and time-frequency analysis.

Whenever there is leakage in the hydraulic cylinder, there is a pressure drop
in the chamber due to loss of fluid. This pressure drop can be read using
hydraulic pressure sensors indicating the presence of a leak. Hydraulic
pressure sensors measure pressure in the hydraulic system and give analog
electrical signals as output. There are several studies which have attempted
to detect fluid leakage using wavelet analysis by monitoring pressure
signals from hydraulic cylinders. Wavelet analysis involves decomposing a
signal into a set of basis functions called wavelets which are localized in
both time and frequency domains [39]. Goharizzi and Sepehri (2009) [40]
applied wavelet transformation to detect internal fluid leakage in hydraulic

actuators due to damaged seal. The hydraulic actuator was not subjected to
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any load and to detect healthy and faulty conditions, the root mean square
(RMS) of the level 2 detail coefficient was used as an indicator since its
magnitude dropped in presence of fluid leakage. In [42], the same method
was applied to detect leakage in a single stage hydraulic actuator under load
and RMS of level 2 detail coefficient was again found to be sensitive to
internal fluid leakage. In [41], wavelet transform was used for detecting
external fluid leakage in hydraulic actuators. RMS of level 4 detail
coefficient was shown to be responsive to external leakage with its value
decreasing as the leakage increased and was thus used as an indicator to
detect leakage. Zhao et al. [42] used wavelet packet analysis to detect
different fluid leakage levels. The energy variance of wavelet packets was
found to be the most sensitive, in comparison to other features, to fluid
leakage. [43] applied wavelet transforms to the pressure signal, and the
energy of the different frequency bands was calculated in eigenvector form
after wavelet decomposition. These eigenvectors were then input to train a
backpropagation neural network to detect fluid leakage in hydraulic
cylinders. [44] applied Hilbert Huang Transform (HHT) on the pressure
signals to monitor internal fluid leakage. The pressure signals were first
broken into intrinsic mode functions (IMFs) using the empirical mode
decomposition (EMD) technique. The instantaneous amplitudes and
frequencies of the IMFs were then obtained by applying the Hilbert
transform. It was found that internal fluid leakage was sensitive to the

instantaneous magnitude of the first IMF.

Sharifi et al. [45] implemented support vector machine (SVM) with a linear
kernel to detect internal fluid leakage due to damaged seal and component
wear. The peaks of the pressure signals were used to extract features such
as location, width and height of the pressure peaks which reduced its
dimensionality significantly. These features were then used to train the
SVM. Lu et al. [46] used a fault diagnosis method for axial piston pumps

combining a two-step EMD along with fuzzy C-means (FCM) clustering.
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Hilbert marginal energy spectrum was calculated locally each IMF obtained
from the two-step EMD method and corresponding features vectors were
obtained which was then used in FCM algorithm. To measure the
degradation in bearing performance, Rai et al. [47] suggested an indicator
based on a self-organizing map. Support vector regression was used to
estimate the remaining useful life (RUL) of the bearings. Ramachandra et
al. [48] monitored fluid leakage caused by degradation of rotary seals by
implementing a multilayer perceptron (MLP) neural network. Time-domain
features were extracted from the friction torque signal. Recursive feature
elimination (RFE) was used to identify the features that contribute the most
to predictive accuracy and ranked RMS, mean, SRA and breakout torque as
the optimal feature subset. 10-fold cross validation was implemented to
prevent overfitting. The classification accuracy of the MLP neural network
model was compared with and observed to be higher than logistic regression
and random forest models. Prakash (2022) [54] developed a high-pressure
(210 bar) hydraulic test rig actuated by a 2-stage hydraulic cylinder. The
test rig can simulate various loading motions such as ramp loading, square
loading, semisoidal loading and triangular loading. A leakage detection
algorithm was developed based on transductive semi-supervised SVM (TS-

SVM) which was able to classify the internal leakage with 100% accuracy.

Cerrada et al. [49] designed a system to diagnose spur gears faults using a
two-step approach. First, several time-domain features, frequency-domain
features and wavelet transform features were obtained from the vibration
signal and following which a genetic algorithm was used to identify the
optimal feature subset. Random forest model was used to monitor and
diagnose different fault levels in spur gears. 179 classifiers were trained on
121 datasets by Ferndndez-Delgado et al. [52] and compared their accuracy
and efficiency. It was observed that Random Forest (RF) performed the best
on most of the datasets. Verikas et al. [50] conducted a comparative analysis

of the accuracy and complexity of Random Forest (RF) and other commonly

15

31



used classification algorithms in various domains, based on extensive
research findings available in the public literature. The results demonstrated
that RF consistently outperformed other techniques, irrespective of whether
the number of variables was large or small. Furthermore, instances where
RF was outperformed by other algorithms were relatively scarce. Chawte
[51] compared several classification algorithms such as OneR, ZeroR, J48,
PART, Naive Bayes and Random Forest for condition monitoring of
hydraulic systems. The algorithms were trained on time-domain features.
Random Forest was observed to have the highest accuracy followed by 148
algorithm. Studies focused on the monitoring and detection of fluid leakage
(internal) such as that by Li et al. [53] have used random forest classifier for
this purpose to get significant results. IMFs of inlet pressure, outlet pressure
and pressure difference were obtained by EMD method. Characteristic
features of IMFs were calculated and were used for training the random
forest classifier. Random Forest algorithm’s classification accuracy was
observed to be higher than that of the SVM algorithm trained with wavelet

features.

It is clear from the above literature survey that internal fluid leakage is a
major reason behind failures in hydraulic cylinders and thus it is important
to minimize it. Implementing maintenance strategies can help reduce these
failures. Condition-monitoring based maintenance strategies are becoming
popular as they allow real time monitoring of parameters of hydraulic
systems and thus maintenance activities can be planned in a more efficient
manner. There have been several studies which have used signal processing
techniques and data-driven methods for detecting internal leakage in
hydraulic cylinders. However, most of these studies have focused on
internal leakage in single stage hydraulic actuators. Further, these studies
have used artificial ways to simulate leakage and thus overlooks the actual

conditions of internal leakage in hydraulic cylinders.
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In this study, we will introduce leakage fault of different severities in a 2-
stage hydraulic telescopic cylinder in a specially designed test rig that
is capable of simulating various types of real-life loading scenarios. The
leakage is introduced by wearing the piston seal on the 1® stage or
intermediate stage of the telescopic cylinder. Using pressure sensors,
pressure data is obtained from both chambers of the telescopic cylinder
while it completes one cycle of extraction and retraction. Statistical time
domain features are calculated from the pressure signal data and feature
ranking methods are used to find the most relevant features. Four machine
learning models are trained on the dataset and their classification accuracies

are compared.
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Chapter 3: Experimental Setup and Working

3.1 Introduction

To study the effects of internal fluid leakage in telescopic cylinders, a
specially designed high-pressure (210 bar) hydraulic telescopic cylinder
experimental test facility is used. The experimental facility is capable of
replicating real-world loading conditions such as ramp wave loading, square
wave loading, impulse loading etc. Using various sensors such as pressure,
temperature, and flow rate sensors, we can monitor different parameters of

the hydraulic system.
3.2 Experimental Facility

The hydraulic experimental facility consists of a 2-stage telescopic
hydraulic cylinder which is the cylinder under test and a single stage
hydraulic cylinder which acts as the loading cylinder. The flow in the
hydraulic facility is created by a fixed displacement (external geared) pump
driven by an electric motor. The hydraulic fluid used in the circuit is HP
ENKLO 68. The fluid is stored in a reservoir which consists of filters and
filler breather to maintain the quality of oil and allow the flow of clean air
between the reservoir and surroundings thus maintaining atmospheric
pressure inside the reservoir. The amount of oil in the reservoir is also
indicated on one of the sides of the reservoir by an indicator which is
connected to a float. An unloading cum safety pressure relief valve set at a

maximum pressure of 210 bar ensures the safety of the system.

A 4/3 directional control valve(DCV) controls the flow to the telescopic
cylinder while the flow to the loading cylinder is controlled by a
proportional pressure relief valve and a 4/3 DCV. There are many sensors

in the experimental facility such as pressure sensors, temperature sensor,
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load cell, LVDT and flow meters which allow us to monitor parameters
such as pressure in both the chambers of the telescopic cylinder (rod-end
and cap-end), pressure in the two chambers of the loading cylinder, flow
rate, temperature of the hydraulic fluid, the position of the telescopic

cylinder, and the load acting on it.

Data is acquired using a data acquisition (DAQ) system which is of
HYDAC make. The whole setup is controlled by an electrical panel which
contains a HMI display and custom PLC code. The electrical panel consists
of various predefined input loading signals such as ramp wave, square wave,

triangular wave etc.

3.3 Working of the experimental facility

The electric motor mounted on top of the reservoir is the prime mover which
drives the fixed displacement pump due to which flow is created in the
circuit. The hydraulic oil rises from the reservoir, passes through a pressure
line filter with filtration capacity of 25 microns, and reaches the unloading
cum safety relief valve which is set at a pressure of 210 bars. If the pressure
in the circuit rises above this limit, the safety relief valve bypasses the flow
back to the reservoir after passing through the air cooler system and return
filter bar. If the pressure in the circuit is below this safety limit, the fluid
flows through another filter (check details in lab), a flow control valve and
an electronic flow rate transmitter which allows the measurement of flow
rate, temperature and pressure. The fluid reaches a junction from where it
splits and flows towards two different 4/3 directional control valves
(DCVs). One DCV is responsible for controlling the flow to the telescopic
cylinder while the other is responsible for controlling the flow to the loading

cylinder.
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The ports A and B of the 4/3 DC valve controlling the flow to the telescopic
cylinder are connected to the two ports of the telescopic cylinder - one at
the cap-end side of barrel (port A) and one at the rod-end side of the first
stage (port B2). One more port (port B1) is provided at the rod-end side of
the cylinder barrel to provide a uniform flow of oil to the two stages of the
telescopic cylinder during retraction. During the extraction stroke, the fluid
flows from the valve to the port A of the telescopic cylinder and from ports
B1 and B to the return line via the valve. During the retraction stroke, the
fluid flows from the valve to ports Bl and B2 of the telescopic cylinder and

from port A of the telescopic cylinder to the return line via the valve.

The DC valve controlling the flow to the loading cylinder is connected to a
proportional pressure relief valve (PPRV) and the loading cylinder. Oil
from the DC valve flows to the PPRV as well as the loading cylinder. If the
PPRYV is open, oil flows back to the tank via the return line. If it is closed,
the pressure starts building up in the loading cylinder. The PPRV is used to
proportionally control the pressure according to the loading signal input in
the electrical panel by changing the current in the solenoid. The primary
port of the PPRV is connected to the DC valve while the secondary port is
connected to the return line. When the pressure becomes greater than that
set by the solenoid current, the valve opens, connection is established
between the primary and secondary ports and the o1l flows to the tank. By
changing the current in the solenoid, the pressure in the loading cylinder can

be controlled and made to change accordingly.

The entire facility is controlled via the electrical panel which contains a
Human Machine Interface (HMI) display. It controls both the DC valves as
well as the solenoid current in the PPRV. Predefined loading signals such
as square wave, ramp wave, triangular wave etc. and parameters such as

cycle time, amplitude can be input.
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During operation, the temperature of the oil can reach high levels which can
damage the seal and other components thus causing internal contamination.
The chemical and physical properties of the oil can also change in high
temperatures. To prevent this, an air cooler system is present in the return
line. The air cooler system contains a fan and a radiator which help cool the

oil before it enters the reservoir.

Fig 3.1: Hvdraulic telescopic cyvlinder experimental test facility

3.4 Data Acquisition

The data is acquired using a HYDAC made Data Acquisition (DAQ)
System (HMG 4000) which is an 8-channel portable data recorder. Five
signals are taken as input where two pressure signals are taken from the two
chambers of telescopic cylinder, two pressure signals are taken from the two
chambers of hydraulic cylinder, and a total flow rate signal. The pressure
sensors used are electronically compensated pressure transmitters that can
measure a maximum of 600 bars. They provide a 4-20 mA output and have
a operating temperature of -40°C to 100°C. These pressure sensors are
connected to the portable data recorder via cables. The acquired data can
then be conveniently transferred to the computer for subsequent processing

as and when required. The pressure signals are input at a sampling rate of
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10 kHz. The signals are taken for a full extraction-retraction cycle of the
telescopic cylinder. For our study, we have set the loading signal as a ramp

wave with 200 bar peak pressure and 0.1 seconds cycle time.

Pressure variation for complete extraction and retraction
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Fig 3.2: Pressure variation in both chambers of telescopic and loading
cylinders

Fig 3.2 shows the variation of pressure in the telescopic cylinder and the
loading cylinder in both its rear and front chamber when the seal is healthy
1.e., no leakage takes place. The graph can be subdivided into two distinct
segments: the extraction part and the retraction part. The extraction process
occurs between 0 and 9.5 seconds, whereas the retraction process occurs
between 9.5 and 15 seconds. To better understand the signals, we explore

them one by one.
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Pressure variation for complete extraction and retraction
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Fig 3.3: Pressure variation in both chambers of telescopic cylinder

Fig 3.3 shows the variation of pressure in both the chambers of the
telescopic cylinder for one complete cycle of extraction and retraction of
the telescopic cylinder. During extraction process, oil starts filling in the
rear chamber of the telescopic cylinder and hence the pressure starts
building up. We see that pressure initially varies approximately between 20
bars and 95 bars, and then the pressure rises and starts varying
approximately between 90 bars and 200 bars. This rise in the pressure can
be explained by the fact that initially the pressure of the oil is acting on the
combined cross-section of the 1* stage piston and 2" stage piston and thus
less pressure is needed to overcome the resisting force by the loading
cylinder as pressure times area equals force. After the 1* stage of the
telescopic cylinder has fully extracted, the pressure now acts only on the
cross-section of the 2™ piston due to which higher pressure is needed to
overcome the resisting force. The cycle of the loading signal is 0.1 seconds

i.e., pressure builds up in the loading cylinder and hence the telescopic

cylinder for (0.1 seconds and then drops before again rising. Near the end of
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the extraction of the second stage of telescopic cylinder, we see that the
lower limit of variation in pressure starts increasing even before the full
extraction has taken place. This is because of an inbuilt and pre-coded
feedback mechanism which uses LVDT sensor to sense the position of the
telescopic cylinder. Similarly, during retraction, we see that pressure
initially varies between 80 bar and 180 bar and then rises and varies between
100 bar and 200 bar. This is again because the pressure is initially acting on
a larger area and once the 1% stage cylinder has fully retracted, the area of
cross-section on which the pressure of oil acts reduces thereby needing a

higher pressure to overcome the resisting force.

Pressure variation for complete extraction and retraction
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Fig 3.4: Pressure variation in the rear chambers of telescopic cylinder and

loading cylinder

Fig 3.4 shows the pressure variation in the rear chambers of loading and
telescopic cylinder for one complete cycle of extraction and retraction. We
see that initially during the extraction of the 1* stage of the telescopic
cylinder, the pressure in the rear chambers of both the cylinders are almost

equal at each moment of time. This is because the cross-section area of the
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piston in the loading cylinder is equal to the combined area of cross-section
of both the pistons in the telescopic cylinder. Since the area is equal, the
pressure also becomes equal. Once the first stage of the telescopic cylinder
has fully extracted, the area of cross-section on which the oil pressure is
acting reduces and hence the pressure required to overcome the resisting
forces increases. The amplitude of the variation in pressure in the loading
cylinder decreases. The ratio of the pressure in the telescopic cylinder to the
pressure in the loading cylinder should be equal to the ratio of the area of
cross-section in the loading cylinder to the area of cross-section in the

telescopic cylinder.

Ratio of pressure at telescopic rear chamber to pressure at loading rear chamber
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Fig 3.5: Ratio of pressure in rear chamber of telescopic cylinder to pressure

in rear chamber of loading cvlinder

Fig 3.5 shows the variation in ratio of pressure at telescopic rear chamber
to pressure at loading rear chamber. During the extraction of 1* stage of
telescopic cylinder, the ratio varies approximately from 1.09 to 1.16 and

during the extraction of the 2™ stage of telescopic cylinder, the ratio varies
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approximately from 2.8 to 2.97. Ideally, the ratio should be equal to the
inverse ratio of cross-section areas of the pistons of the two cylinders. The

F
area of cross-section of the piston of loading cylinder (4, ,) is equal to @

mm”. During the extraction of 1% stage of telescopic cylinder, the oil
pressure is acting on the combined area of the 1* stage piston and 2™ stage

2
n[in) mm”. After the 1* stage of telescopic cylinder

piston and is equal to
has fully extracted, the pressure acts only on the 2™ piston and thus the area

n(50)? 2
n =

of cross-section (A4, ) is equal to mm

Thus, we have,

(ﬂ) = 1and (“1—’) =256
Atr stage | Avr stage 11

Since, the force exerted from both sides must be equal and force is equal to

pressure times area, we have,

P, rAt,r = Pl,rfql,r

Per _ A

ar,
Pir At,r

Thus, ideally, we should have the ratio as follows,

(‘“'—*) =1and (&) =2.56
Ptr/ stage | Purs stage 11

But experimentally we get a higher ratio. If we let (?) = k(::l—'r), then in
Lr tr

both stages, k varies from 1.09-1.16.
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This higher k value could be because of the mass times acceleration term
which was not taken into account, or a slight delay in response of the
pressure in the telescopic cylinder to the change in pressure in the loading

cylinder.
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Chapter 4: Internal leakage detection and

classification

4.1 Introduction

Condition-based monitoring techniques are essential to monitor the health
of a telescopic cylinder in real time and alert the operator in case any internal
leakage fault develops. This requires monitoring change in one or more

parameters of the hydraulic system to detect internal leakage.

In this study, leakage is introduced internally in the telescopic cylinder by
wearing the seal. The effect of increasing seal wear on pressure signal from
telescopic cylinder is studied. Various statistical time-domain features are
calculated from the pressure signal to capture various aspects of the data.
Four machine learning classifiers are trained to detect and characterize

internal leakage of different severities.
4.2 Effect of increasing seal wear

The pressure sensor data is collected to examine three distinct levels of
leakage severity. These severities are categorized as follows: a) No leakage
b) Slight leakage ¢) Moderate leakage. To introduce these varied levels of
leakage, the piston seals are ground to different lengths. For our study, the
piston seal of the 1* stage piston of the telescopic cylinder is ground. A
grind of 1.6 mm i.e., 2% of nominal diameter (80 mm) on the piston seal
simulates slight leakage whereas a grind of 2.4 mm i.e., 3% of nominal
diameter on the piston seal simulates moderate leakage condition. Thus, by
replacing the piston seals on the 1% stage piston of the telescopic cylinder,

we simulate different leakage conditions.
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Fig 4.1 (a): Piston seal with guide rings (b) Real view of piston and seal

Fig 4.1.a shows the picture of the seal along with guide seals. Fig 4.1.b
shows the seal on the 1¥ stage piston of the telescopic cylinder. The seal in
the middle with the grooves is the piston seal to which we introduce wears.
The wear was introduced in increments of 0.8 mm through a table-top
grinding wheel. Change in the pressure signals was seen from 1.6 mm wear
onwards. At a wear of 3.2 mm, there was severe leakage in the telescopic

cylinder where the cylinder was able to extract but unable to retract.
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Pressure variation for no wear
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Fig 4.2: (a) Pressure variation in telescopic cylinder for no wear condition;
(b) Pressure variation in telescopic cylinder for 1.6 mm seal wear; (c)

Pressure variation in telescopic cyvlinder for 2.4 mm seal wear;

Figure 4.2 shows the variation of pressure signal with increasing wear. For
no wear condition i.e., no leakage, the variation in pressure in the telescopic

rear and telescopic front chamber is shown in Fig 4.2.a. As the wear
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increases to 1.6 mm (2% of nominal diameter), a slight drop in pressure
values is seen in both the chambers. In the telescopic rear chamber, a
pressure drop of 2-3 bar is observed during the extraction of the 1% stage
and the 2" stage of the telescopic cylinder. At 2.4 mm wear (3% of nominal
diameter), a significant pressure drop is observed in both the telescopic rear
and telescopic front chamber during the extraction and retraction of 1* stage
of the telescopic cylinder respectively. During the extraction of the 1* stage
of the telescopic cylinder, a pressure drop of 10 bar is observed in the
telescopic rear chamber whereas during retraction, a pressure drop of 20 bar
is observed in the telescopic front chamber. This is because as the wear is
increased, the leakage between the telescopic rear and telescopic front
chamber increases, and the rate of pressure build up in the chambers
decreases. As the cycle time of loading signal is 0.1 seconds, the pressure
is not able to reach its no wear levels in time due to decreased pressure build
up rate and thus results in a pressure drop. The total time taken for
completing one cycle of extraction and retraction also increases as the seal
wear increases. For no wear level, the cycle is completed in approximately
15 seconds. For 1.6 mm wear level, the cycle completion time slightly
increases to 15.3-15.4 seconds and for 2.4 mm wear level, the cycle
completion time increases to around 18 seconds i.e., 3 seconds more than

that for no wear level.
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4.3 Workflow

Experimental data from
pressure sensors

L
Statistical time-domain
feature extraction

L
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~ Random Forest
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training | - VM
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Leakage severity
classification

Fig 4.3: Flowchart for internal leakage detection and classification

Fig 4.3 shows the procedure followed for internal leakage detection and
classification based on four machine learning classification algorithms.
Pressure data is gathered from the experimental test facility for three
different leakage severities: no leakage (0 mm wear), slight leakage (1.6
mm wear), and moderate leakage (2.4 mm wear). Statistical time domain
features are calculated from the pressure data. Feature ranking methods are
used to obtain the eight most relevant features. A dataset is created with
these features and is divided into two parts: training data and testing data in

the ration 8:2. The training data is used to train 4 different machine learning
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based classifiers and its accuracy is checked on the testing data for detection

and classification of leakage severity.
4.4 Statistical time-domain feature extraction

To analyze and gain insight from the pressure signals, we can extract several
statistical features from the signal. Statistical features provide and
summarize valuable information about the signal, and a greater
understanding of its characteristics and behavior. Further, they help analyze
the distribution of data such as the central tendency, outliers, and overall

variability of the signal.

Therefore, as a preliminary step, we extract the following nine distinct

statistical time-domain features from each pressure signal:

i. Mean: Mean is a measure of central tendency that represents the
arithmetic average of all the values in the signals. It indicates the
average level of the signal and is commonly used as a basic
statistical descriptor to understand the overall magnitude or
baseline of a signal. Mathematically, it is defined as follows:

Di=1Xi
n

=

ii. Standard deviation (¢): The standard deviation of a signal is a
measure of the dispersion or variability of the values in the signal.
It quantifies how much the values deviate from the mean of the
signal. The mathematical formula for standard deviation is as

follows:
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iii.

iv.

Root mean square (RMS): The root mean square (RMS) value of
a signal provides information about the overall magnitude or
amplitude of the signal. The RMS value is calculated by taking the
square root of the mean of the squared values of the pressure signal.
The RMS value is useful in quantifying the effective power or
energy contained in the signal. It is defined mathematically as

below:

-

RMS =

no 3
Zi=1 Xy
n

Kurtosis: The kurtosis of a signal describes the peakedness of the
probability distribution of the signal’s values. It quantifies the
extent to which the distribution of the signal deviates from a normal
distribution and provides information about the tails of the
distribution and whether they are heavier or lighter than those of a
normal distribution. Positive kurtosis indicates that a signal has
heavier tales and a sharper peak while a negative kurtosis indicates
that a signal has lighter tales and a flatter peak. Its mathematical
formula is given below:

HOMRCEED

3

a

Kurtosis =

Skewness: Skewness of a signal quantifies the asymmetry of the
signal’s distribution around its mean_ It indicates whether the tail of
the distribution leans towards the left (negative skewness) or to the
right (positive skewness). A skewness value of 0 indicates a
perfectly symmetric distribution. Skewness can be calculated

mathematically by the following formula:

st - 9?)

Skewness = L

a3
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vi.

Crest Factor: The crest factor of a signal is a measure of the peak-
to-average amplitude ratio. It quantifies the extent of peak values in
relation to the average or RMS value of the signal. A higher crest
factor indicates a signal with larger peak values compared to its
average or RMS value, indicating a more "peaky" or "spiky"
waveform whereas a lower crest factor indicates a signal with a
relatively smaller difference between the peak and average or RMS
values, suggesting a “smoother” or "uniform" waveform. The

mathematical formula for crest factor 1s as follows:

Peak value

Crest Factor = —————
rest Factor RMS value

Clearance factor: Clearance factor of a signal is mathematically
defined as the absolute peak value of the signal divided by the
squared mean value of the square roots of the absolute values of
amplitudes. The mathematical formula for clearance factor is as
follows:

max(|x;|)

n 2
>
i=1
n

Clearance factor =

Shape factor: Shape factor is defined as the ratio of the root mean
square to mean of absolute value of the signal. It provides
information about a signal’s shape i.e., whether is more peaky or
more rounded. The mathematical formula for shape factor is as

follows:

RMS value
Average absolute value

Shape Factor =
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ix. Impulse factor: The impulse factor of a signal is a measure of its
peak amplitude relative to its energy content. A higher impulse
factor indicates that the signal has a sharper or more impulsive
shape, with a larger peak amplitude relative to its energy. On the
other hand, a lower impulse factor suggests a more spread out or
less impulsive signal. The mathematical formula for impulse factor
15 as follows:

Peak value

Impulse Factor =
P Average absolute value

4.5 Feature selection

Statistical features can be used to identify the most relevant and informative
aspects of the signal. This aids in decreasing the dimensionality of the data
and determining the most important features for further analysis or
modeling. There are various common types of feature selection methods
used in machine learning and data analysis. They can be segregated into
three main categories: a) filter methods; b) wrapper methods; and c)
embedded methods. Feature selection is carried out by embedded models as
part of the model training process to optimize both feature selection and
model parameters simultaneously. Embedded methods are usually more
robust, efficient and tend to produce more generalizable feature subsets
compared to the other two types of methods. Tree-based methods fall in this
category. Tree-based models like Decision Trees (DT), Random Forests
(RF) and Gradient Boosting Machines have built-in feature importance
measures that rank the features based on their contribution to the model’s

predictive performance.
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4.5.1 Feature ranking using MDI method

The feature importance in Random Forest is typically computed based on
the collective behavior of the decision trees in the ensemble. Random Forest
calculates feature importance by considering how much each feature
decreases the impurity or randomness in the forest’s predictions. When a
decision tree splits the data based on a feature, it evaluates the improvement
in impurity achieved by that split. The feature importance is then
determined by averaging the impurity reduction across all trees in the
Random Forest. The feature importance values are typically normalized to
sum up to 1. Features that consistently lead to a significant reduction in
impurity across the ensemble are considered more important. Higher values
indicate a stronger contribution of a feature to the model's predictive
performance. The feature importance values can be used to rank the features
in descending order, where the most important features have higher values.

Thus, features are ranked based on mean decrease in impurity (MDI).
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Fig 4.4: Feature importances using MDI
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Fig 4.4 shows the various features in descending order of mean decrease in
impurity. The number “17 and “2” at the end of the features indicate that the
features have been calculated using the pressure signals in the rear and front
chamber of the telescopic cylinder respectively. From this graph, it is clear
that the features extracted from the pressure signal from the front chamber
of the telescopic cylinder have much more significant than those extracted

from the rear chamber of the telescopic cylinder.

4.5.2 Feature ranking using permutation feature importance

Permutation feature importance is another method used to evaluate the
importance of each feature in a machine learning model. It measures the
impact of shuffling or permuting the values of a feature on the model's
performance thereby breaking their relationship with the target variable. By
evaluating the change in model performance when a feature's values are
randomly permuted and comparing it to pre-permutation performance, we
can determine the importance of that feature in making accurate predictions.
This is repeated for each feature in the dataset, independently shuffling and
evaluating their performance. The importance scores are then ranked to

identify the most important features.
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Feature importances using permutation on full model
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Fig 4.5: Feature importances using permutation on full model

Figure 4.5 demonstrates that both methods identify the same set of features
as being of utmost importance, albeit with varying degrees of relative
importance. Furthermore, it is observed that the MDI method exhibits a
higher tendency to retain all features, unlike permutation importance which

has a higher likelihood of excluding certain features entirely.

ML models are trained using the 8 most important features as identified in

Fig 4.5, namely, ShapeFactor2, ClearanceFactor2, Skewness2, RMS2,

Std2, ImpulseFactor2, Kurtosis2 and Mean2.
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4.6 Scatterplot matrix
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Fig 4.6: Scatterplot matrix of top 4 ranked features

Fig 4.6 shows the scatter plot matrix of the four most important features as
ranked by the feature ranking methods, namely, ShapeFactor2,
ClearanceFactor2, RMS2, Skewness2. On the diagonal elements of the
matrix, we see the distribution of the features. Most of the features follow
the normal distribution. On the non-diagonal elements of the matrix, we see
that the scatter plot of the feature against other features. The data in blue
colour in the above scatter plots indicates the no wear data, the data in
orange colour indicates the 1.6 mm wear data and the data in green colour
indicates the 2.4 mm wear data. From the scatter plots, we see that the data
for moderate leakage forms larger and more spread-out clusters unlike the

close clusters formed by data for slight leakage and no leakage. Further,
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there is significant overlap between the clusters which makes the
classification based simply on these features hard. From the scatter plots,
information about correlation between different features can also be
extracted. The features ShapeFactor2 and ClearanceFactor2 are negatively
correlated while ShapeFactor2 and RMS2 are positively correlated. For
other features, there is no clear correlation between them. For better and
more accurate classification based on these features, four machine learning
models have been trained on the data and comparison has been done

between their accuracies.

4.7 Machine Learning Models

Four machine learning models have been used in this study to predict and
classify the severity of leakage in the telescopic cylinder. A comparison

between their accuracies has been done.

4.7.1 Random Forest

Random Forest is an ensemble learning method that combines multiple
decision trees to make predictions. It belongs to the family of tree-based
models and is an extension of the decision tree algorithm. However, unlike
a single decision tree, which can be prone to overfitting, Random Forest
mitigates overfitting and provides better generalization by introducing

randomness into the model.

The Random Forest algorithm works by creating an ensemble of decision
trees. Each tree in the forest is trained on a randomly sampled subset of the
training data (known as bootstrapping) and uses a random subset of features
for each split. These randomization procedures introduce diversity among
the trees, reducing their correlation. To make predictions, it aggregates the

predictions of all individual trees and the class with the majority vote among
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the trees is selected. Random Forest model is resistant to overfitting due to
the randomness introduced in the sampling and feature selection processes.
It can handle high-dimensional data and large datasets effectively and

requires little data pre-processing.

4.7.2 Gradient Boosting

Gradient Boosting is an ensemble learning method. It creates a strong
predictive model by combining together relatively weak predictive models.
The key idea behind Gradient Boosting is to iteratively build a sequence of
models, each one focusing on correcting the mistakes made by the previous
models. An initial model, typically a decision tree, is created first which
serves as the starting point of the algorithm. This model is then used to make
predictions on the training data. The differences between the predicted
values and the actual target values are calculated. These differences
represent the residuals or errors of the initial model. These residuals then
become the new target values for the subsequent model to predict. In this
way each new model is trained to reduce and minimize the error of the
previous model by fitting the negative gradient of the loss function. In this
study, the log loss function has been used as the loss function for gradient
boosting algorithm. To get the final prediction, the predictions from all the
weak learners are combined by summing the predictions of all the models,
weighted by a learning rate that controls the contribution of each model.
The learning rate acts as a regularization parameter, preventing overfitting

and allowing better generalization.

4.7.3 Logistic Regression

Logistic Regression is a type of generalized linear model that predicts the

probability of an observation belonging to either of two classes or outcomes

typically represented by 0 and 1. It estimates the probability of the
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dependent variable being in the positive class (1) given the values of the
independent variables. The Logistic Regression model uses the sigmoid
function to map the linear combination of the independent variables to a
probability value between 0 and 1. Thus logistic regression inherently
performs binary classification. It can be extended to perform multi-class
classification using the “One-vs-Rest” approach where a separate logistic
regression model is trained for each class, considering it as the positive class
and the rest of the classes as the negative class. This results in as many
logistic regression models as the number of classes, each producing a
probability estimate for its respective class. During prediction, the class

with the highest probability is selected as the predicted class.

4.7.4 Support Vector Machine (SVM)

SVM is a supervised machine learning model that aims to find an optimal
hyperplane that best separates the data points of different classes in the
feature space. The hyperplane is calculated in a way that maximizes the
margin. Margin is the distance between the hyperplane and the closest data
points from each class. Those data points that are closest to the hyperplane
are called support vectors. Support vector machines can handle both linearly
separable and non-linearly separable data by using a technique called the
kernel trick. The kernel trick allows SVM model to transform the original
feature space into a higher-dimensional feature space, where the data may

become linearly separable. In this study, we use the quadratic kernel.

4.8 Comparison of performance of machine learning models

The machine learning models were trained on the eight most important
features as identified by the feature ranking by permutation method. 10-fold
cross-validation was implemented on the training data to prevent

overfitting. The performance of classification machine learning models is
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studied using evaluation metrics such as accuracy, confusion matrix,
precision and recall etc. A confusion matrix provides a detailed breakdown
of the model's predictions for each class. It shows the number of true
positives, true negatives, false positives, and false negatives. From the
confusion matrix, other metrics such as precision, recall, and F1 score can

be derived.
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Fig 4.7: Confusion matrices for Random Forest, SVM, Gradient Boosting

and Logistic Regression classifiers

Fig 4.7 shows the confusion matrices for the four machine learning
algorithms. The number on the i row and j* column of a confusion matrix
represents the number of observations which belonged to class 1 but was
predicted by the model to belong to class j. Thus, numbers on the diagonals

represent the number of correct classifications while the non-diagonal

45

61



numbers represent the incorrect predictions by the model. From Fig 4.7, it
was observed that Random Forest had the highest number of correct
predictions followed by Gradient Boosting. SVM had the highest number

of mis-classifications.

Table 4.1: Comparison of test and cross-validation accuracies for four
machine learning classifiers

ML Model Test Accuracy (%) Cross-validation
accuracy (%)
Gradient Boosting 94.21 96.51
SVM 85.95 90.43
Random Forest 95.04 95.78
Logistic Regression 93.38 97.36

Accuracy is a popular evaluation metric that gives a measure of the overall
correctness of the model’s predictions. It is calculated by dividing the
number of correct predictions by total number of predictions. We can derive
it from the confusion matrix as the sum of the diagonal elements divided by
total number of elements in the matrix. Table 4.1 shows the test accuracy
and cross validation accuracy of the various machine learning models. We
see that Random Forest was most accurate in predicting the severity of
leakage with an accuracy of 95.04%. The SVM algorithm had the lowest
accuracy of 85.95%. This could be because of the inherent nature of SVM
algorithm which makes it very good for binary classification but not for
multi-class classification. In general, tree-based classifiers such as Gradient
Boosting and Random Forest performed better than non-tree-based

classifiers.
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Chapter 5: Conclusion and Scope for future work

5.1 Conclusion

In this study, four classification-based methods for condition monitoring of
hydraulic telescopic cylinders to detect fluid leakage of two different
severities (2% and 3% of nominal diameter) were developed. A high
pressure (210 bar) hydraulic telescopic cylinder test rig was used to study
and simulate the effect of internal fluid leakage in a two-stage telescopic
cylinder. The pressure signals from the two chambers of telescopic cylinder
were studied and it was seen that pressure values were lower during
extraction or retraction of the 1* stage of telescopic cylinder than that during
the extraction or retraction of 2™ stage. The relation between the pressure
signals from the loading cylinder and the pressure signals from the
telescopic cylinder was explored where it was seen that the signals vary
such that the ratio of pressure in the cylinders is equal to the inverse ratio of
their areas of cross-section on which the fluid pressure is acting. The effect
of increasing wear on the pressure signals was observed that as the seal wear
increased there was a pressure drop in the signals and the time for extraction
and retraction increased. Statistical time domain features were extracted
from the pressure signals and feature ranking methods were applied to
identify the most relevant features for detecting internal fluid leakage in the
cylinder. Shape factor of the pressure signals from the front chamber of
telescopic cylinder was identified as the most relevant feature. Four
classifiers were trained on these features to detect and identify the severity
of internal leakage. The accuracy of the random forest classifier was the
highest with 95.04% accuracy followed by gradient boosting, logistic
regression and SVM. The SVM-based classifier had the lowest accuracy
with 85.95% accuracy. Leakage was detected using only the pressure

signals from the two chambers of the telescopic cylinder.
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5.2 Future scope

The results of the study highlight that internal leakage can be detected in
telescopic cylinders with good accuracy (95%) using only the pressure
signals from the two chambers of the telescopic cylinder with little data
preprocessing. This has good potential for use in industry as it can reduce
the cost and complexity of the monitoring framework. Using online
condition monitoring, severity of internal leakage can be identified in
telescopic cylinders in real time and accordingly maintenance can be

scheduled before the severity increases further.
Future studies can focus on frequency domain analysis of internal leakage
faults in telescopic cylinders and effect of different loading conditions on

leakage severity. Further, the current study can be extended to estimate the

remaining useful life (RUL) of the seal.
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