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Abstract

High Performance Computing (HPC) technology uses large number of powerful proces-
sors, working in parallel, to process large amounts of data and solve complex problems
at very high speeds. Processors used in the HPC systems were primarily Central Pro-
cessing Units (CPUs). As the data became multidimensional, the use Graphics Process-
ing Units (GPUs) as co-processors for CPUs in HPC systems became popular making
the HPC systems heterogeneous. GPUs process data parallelly with higher throughput
than the CPUs due to the large number of processing cores. CPUs have higher per-core
throughput compared to the GPUs. Keeping this in mind, the workload in a heteroge-
nous computing system is divided between the different processors in such a way to
provide maximum throughput. Field Programmable Gate Arrays (FPGAs) provide an
architecture with large number of programmable hardware components which facilitates
implementing various logic on the hardware.

This project deals with accelerating ANN based Molecular Dynamics cal-
culations by utilizing the hardware accelerators, GPU and FPGA. In the first phase of
the project, a heterogeneous computing system with one CPU and one GPU is used to
calculate the energy and force on each atom from their positions in a Au nanocluster.
The computed forces values are used to calculate the new coordinates of atoms, thereby
forming a closed loop. CUDA Programming Model is employed to program the work-
load onto the Heterogeneous Computing System. The sequential computations of the
workload are processed on the CPU and the parallel computations of the workload are
offloaded to the GPU for processing. This approach of offloading along with effectively
utilizing the GPU cores provides better throughput than computations on CPU system.

In the second phase of the project, the force and energy calculations are com-
puted on Genesys2 Kintex FPGA board. The coordinates are transferred from PC to
FPGA board via UART, the FPGA board does the required calculations and sends back
the force and energy values to the PC via UART. The required logic to be implemented
on FPGA is first packaged as an Intellectual Property (IP) block. Various techniques
like pipelining, unrolling etc., are employed to optimize the IP. System Design is done
including the IP block which is controlled by a Microblaze processor. The whole hard-
ware design is synthesized and implemented on the FPGA Board using Vivado Tools.
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Chapter 1

Introduction

This chapter provides an introduction to the various topics which are neces-
sary in understanding the work carried out.

1.1 High Performance Computing
High-performance computing (HPC) refers to the use of powerful comput-
ing resources to solve complex problems that would be too difficult or time-
consuming to tackle with traditional computing methods. HPC systems typi-
cally use parallel processing and distributed computing to execute tasks faster
and more efficiently than a single processor could. These systems often em-
ploy specialized software and hardware, such as graphics processing units
(GPUs) and field-programmable gate arrays (FPGAs), to perform calculations
in parallel. HPC has applications in a wide range of fields, from scientific re-
search to business analytics, and is essential for modelling complex phenom-
ena, simulating real-world events, and analysing large amounts of data. HPC
is a rapidly evolving field that continues to push the boundaries of computing
technology.

In HPC, heterogeneous computing is used to accelerate specific compo-
nents or aspects of complex simulations or calculations. For example, GPUs
may be used to accelerate molecular dynamics simulations or machine learn-
ing algorithms, while CPUs may be used for other computational tasks, such
as data analysis or visualization. HPC systems may also use specialized hard-
ware accelerators, such as FPGAs or ASICs, to perform specific computations
more efficiently. HPC and heterogeneous computing are complementary ap-
proaches that can be used to design highly efficient and scalable computing
systems for scientific and engineering applications.
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1.2 Heterogeneous Computing
Heterogeneous computing refers to the use of different types of com-

puting devices and architectures in a single system to optimize performance
and efficiency. Heterogeneous computing is typically used to accelerate spe-
cific tasks or computations, by offloading them to specialized devices that are
designed to perform these tasks more efficiently. Offloading tasks to special-
ized processing units can improve overall system performance by reducing
the workload on the main processor and leveraging the capabilities of spe-
cialized hardware. The main advantage of heterogeneous computing is that
it allows for more efficient use of resources and can significantly improve
performance. For example, GPUs are well-suited for tasks that require a large
amount of parallel processing, while CPUs are better at handling tasks that re-
quire a high level of sequential processing. By combining these two types of
processors, a system can be designed to handle both types of tasks efficiently.
Heterogeneous computing is widely used in scientific computing, data analy-
sis, machine learning, and other fields that require high-performance comput-
ing. The use of heterogeneous computing is expected to continue to grow as
the demand for more efficient and powerful computing systems increases.

Figure 1.1: Heterogeneous computing
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1.3 Molecular Dynamics
Molecular Dynamics (MD) is a computational simulation technique used to
study the dynamic behaviour of atoms and molecules over time. It provides
insights into the movements, interactions, and properties of these particles by
numerically solving their equations of motion. In MD simulations, the posi-
tions and velocities of individual atoms or molecules are tracked and updated
at discrete time steps. The behaviour of the system is governed by classical
mechanics, assuming that the atoms or molecules follow Newton’s laws of
motion. These laws describe how forces acting on the particles determine
their acceleration and subsequent motion.

To perform an MD simulation, the system is typically described
using a mathematical model called a force field. The force field includes
potential energy functions that represent the interactions between atoms or
molecules, accounting for factors such as bond stretching, angle bending, di-
hedral rotations, and non-bonded interactions (such as van der Waals forces
and electrostatic interactions). By integrating the equations of motion over
time, MD simulations generate a trajectory of the system’s behaviour. This
trajectory provides information about various properties, such as particle po-
sitions, velocities, energies, and structural changes. Additionally, statistical
analysis techniques can be applied to the trajectory to obtain thermodynamic
quantities, diffusion coefficients, reaction rates, and other dynamic properties.

MD simulations have broad applications in fields such as chemistry,
physics, materials science, and biology. They help researchers understand
the behaviour of complex systems at the molecular level, investigate reaction
mechanisms, predict thermodynamic properties, and provide insights into the
structure-function relationships of molecules and materials.

1.4 ANN-based Molecular Dynamics
ANN-based Molecular Dynamics (ANN-MD) is a computational approach
that combines artificial neural networks (ANNs) with traditional molecular
dynamics simulations. In this approach, ANNs are used to model the poten-
tial energy surface of a system, enabling accelerated simulations while main-
taining reasonable accuracy.

Here’s an overview of how ANN-MD works:

1. Training the ANN Potential: A large dataset of atomic configurations,
along with their corresponding energies and forces obtained from ref-
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erence calculations (e.g., DFT), is used to train an ANN. The ANN
learns to approximate the potential energy surface based on these input
configurations and reference data.

2. Input Representation: Atomic configurations, such as positions, veloc-
ities, and atomic species, are encoded as input features for the ANN.
Additional features like radial and angular descriptors can also be in-
corporated to capture the local atomic environment.

3. Architecture and Training: The architecture of the ANN, including the
number of layers and neurons, is designed. Training algorithms, such
as backpropagation and optimization techniques, are employed to ad-
just the ANN parameters and minimize the discrepancy between the
predicted and reference energies and forces.

4. MD Simulation: In each MD simulation step, the forces on the atoms
are calculated by evaluating the gradient of the potential energy surface
predicted by the ANN with respect to the atomic positions. Numerical
integration methods, such as the Verlet algorithm, are used to update
the atomic positions and velocities.

5. Ensemble and Temperature Control: Ensemble methods, such as the
NVE, NVT, or NPT ensembles, can be employed to control the system’s
thermodynamic properties during the MD simulation. These methods
ensure that the system reaches the desired temperature, pressure, or en-
ergy distribution.

6. Validation and Analysis: The accuracy and reliability of the ANN po-
tential are assessed by comparing simulation results with reference cal-
culations and experimental data. Analysis techniques, such as radial
distribution functions, diffusion coefficients, or structural properties,
are employed to study the system’s behaviour.

ANN-MD offers several advantages over traditional MD simulations. It
can significantly accelerate the simulations while maintaining reasonable ac-
curacy, enabling the study of larger and longer timescale systems. However,
careful validation of the ANN potential against reference data and experi-
mental observations is essential to ensure its reliability and applicability to
the specific system of interest.

4



1.5 Interatomic Descriptors
Interatomic descriptors are a class of features or properties that describe the
interactions between pairs of atoms in a molecular system. These descrip-
tors are used in computational chemistry and material science to analyse the
properties and behaviour of molecular systems. They are used in structural
analysis of molecular systems. In structural analysis of nanoparticle system
using Machine Learning, they are used as inputs to the neural networks to
predict energy and forces of atoms in the nanoparticle system. Though in-
teratomic descriptors are very useful, calculating them involves very complex
mathematical computations and is very time consuming. Accelerating the
calculation of the interatomic descriptors plays a huge role in speeding up the
whole process of predicting energy and forces of atoms in nanoparticle sys-
tem. In this project radial distribution function and power spectrum are used
as descriptors to define the local environment of the atoms in a nanoparticle.

1.6 Motivation
ANN-MD calculations involves calculating energy and force on atoms.The
calculation of energy and force experienced by atoms in a nanoparticle struc-
ture using Interatomic potentials involves repetitive computations and are very
time consuming if processed serially on a CPU. Parallelising these computa-
tions can hugely reduce the time taken for calculating the energy and force
values, thereby improve the performance of MD system. Hardware acceler-
ators like GPU and FPGA provides architecture to improve the throughput
of the calculations. GPU provides an architecture with large number of pro-
cessing cores to run large number of instructions in parallel at the same time.
Utilizing this architecture of the GPU can provide better throughput than the
CPU for calculating the energy and force values [1], [2], [3]. FPGA provides
an architecture with large number of programmable hardware components
which facilitates implementing various logic on the hardware which can be
used to accelerate the energy and force calculations [4].

1.7 Objective
The objective of the thesis work is to use heterogeneous computing system
with a hardware accelerator working along with a CPU to accelerate ANN-
MD calculations. The idea is to offload repetitive and time consuming energy
and force calculations onto the hardware accelerators while performing serial
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calculations on the CPU. Both GPU and FPGA provide different architectures
that can be used to accelerate the calculations. While achieving the objective
of accelerating the ANN-MD calculations, focus is given to optimizing the
acceleration results.

1.8 Organization of the Thesis
This section provides an overview of how the thesis is organized. The thesis
consists of five chapters whose contents are as follows:

Chapter 1 provides an introduction to the various topics which are neces-
sary in understanding the need for the thesis work. The chapter also describes
the motivation and objective of the thesis work.

Chapter 2 provides a comprehensive exploration of Graphics Processing
Units (GPUs) architecture and the memory hierarchy present in the GPUs. It
also discusses the CUDA Programming Model and various CUDA APIs used
while programming GPUs are also discussed along with examples.

Chapter 3 provides an exploration of Field Programmable Gate Arrays
(FPGAs). The FPGA architecture and the different programmable hardware
components in an FPGA are discussed in this chapter.

Chapter 4 discusses the methodology used in realizing the project objec-
tives. Methods used to parallelise the calculations to run on GPU and various
algorithms used in the project are also discussed in the chapter. The chap-
ter also discusses the steps involved in implementing the calculations on an
FPGA.

Chapter 5 discusses the results obtained from ANN-MD calculations on
CPU + GPU system for Au147 and Au309 systems.
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Chapter 2

Graphics Processing Units

Previously, Graphics Processing Units (GPUs) were primarily utilized for ren-
dering abstract geometric objects generated by various programs running on
the CPU. The GPU featured programmable shader units, namely the vertex
shader, responsible for processing the vertices of three-dimensional objects
provided by the user, and the fragment or pixel shader, used to apply colors
from textures and implement complex visual effects such as scene lighting for
each fragment or pixel. Both shader units were programmable and capable of
parallel processing.

As the semiconductor industry advanced, highly parallel processing units
were integrated into a unified central unit known as the Unified Shading Unit.
This higher-level abstraction combined the functionalities of the vertex and
fragment shaders. The Unified Shading Unit comprises a group of paral-
lel processing units, often referred to as multiprocessors. Each multiproces-
sor consists of multiple stream processors, as well as special function units
dedicated to memory access, instruction fetching, and scheduling. While
the initial shader unit operated in a single-instruction multiple data (SIMD)
fashion, subsequent developments introduced support for branching, result-
ing in the new streaming processors functioning as single-program multiple
data (SPMD) units [5].

Overall, the evolution of GPUs has seen a transition from separate ver-
tex and fragment shaders to a unified architecture, consolidating parallel pro-
cessing capabilities within multiprocessors and stream processors. These ad-
vancements have led to enhanced programmability and parallelism, enabling
GPUs to handle a wide range of computationally intensive tasks beyond tra-
ditional graphics rendering.
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2.1 GPU Architecture
GPU architecture is fundamentally different from that of traditional Central
Processing Units (CPUs). While CPUs are optimized for executing a few
tasks sequentially, GPUs are designed to handle a massive number of parallel
tasks simultaneously. This parallelism is achieved through the use of multiple
processing units and a specialized memory hierarchy.

Figure 2.1: Tesla T4 Architecture

2.1.1 Streaming Multiprocessors (SMs)
The primary processing units in a GPU are the Streaming Multiprocessors
(SMs). Each SM contains multiple CUDA (Compute Unified Device Archi-
tecture) cores, which are responsible for executing individual threads. The
number of SMs varies depending on the GPU model, and each SM can han-
dle a large number of threads concurrently.

2.1.2 CUDA Cores
CUDA Cores, also known as shaders or stream processors, are the basic pro-
cessing units within an SM. These cores are responsible for executing instruc-
tions in parallel and performing arithmetic and logic operations on data. Mod-
ern GPUs can have thousands of CUDA cores, enabling massive parallelism
and high computational throughput.
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2.2 Memory Hierarchy in GPUs
GPUs have a complex memory hierarchy that includes various types of mem-
ory with different access speeds and capacities. The primary memory compo-
nents in a GPU are:

Figure 2.2: CUDA enabled Graphics Processing Unit’s memory model

Global Memory
Global memory is the largest memory space in a GPU and is accessible by all
threads. It has high capacity but relatively high latency.

Shared Memory
Shared memory is a small, fast, and programmable memory space that is
shared among threads within an SM. It allows for efficient data sharing and
communication between threads.
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Texture memory
Texture memory is a specialized read-only memory optimized for 2D and
3D texture accesses. It provides high bandwidth and caching capabilities for
texture data.

Constant Memory
Constant memory is another read-only memory optimized for storing con-
stants and configuration data. It offers low latency and high bandwidth access
for frequently used data.

Register File
Each CUDA core has its own set of registers for storing intermediate data
during computations. Registers provide extremely fast access but have limited
capacity.

2.3 Parallel Processing in GPUs
Parallel processing is the cornerstone of GPU architecture and is achieved
through the execution of multiple threads in parallel. GPUs employ two pri-
mary types of parallelism:

2.3.1 Task-Level Parallelism
Task-level parallelism, also known as coarse-grained parallelism, involves ex-
ecuting multiple independent tasks concurrently. Each task can be assigned
to a separate thread, and the GPU can switch between threads to maximize
resource utilization. This type of parallelism is well-suited for applications
with independent computations, such as graphics rendering or data parallel
algorithms.

2.3.2 Data-Level Parallelism
Data-level parallelism, also known as fine-grained parallelism, involves per-
forming the same operation on multiple data elements simultaneously. GPUs
excel at data-level parallelism through the use of SIMD (Single Instruction,
Multiple Data) execution. SIMD allows a single instruction to be applied
to multiple data elements, leveraging the parallel execution capabilities of
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CUDA cores. This type of parallelism is particularly beneficial for algorithms
that process large datasets in parallel, such as matrix operations or image pro-
cessing.

2.4 Programming GPUs
To harness the power of GPUs, developers use programming frameworks such
as CUDA or OpenCL. These frameworks provide a software interface to ac-
cess and utilize the parallel computing capabilities of GPUs. They allow de-
velopers to write code that can be executed in parallel on the GPU, distributing
tasks across multiple threads and managing data transfers between the CPU
and GPU memory. In this project, CUDA framework is used to program an
Nvidia Tesla T4 GPU.

2.5 Advantages of GPU Architecture
• Parallelism and Performance: GPUs excel at executing a large num-

ber of parallel tasks simultaneously, leading to significantly higher com-
putational performance compared to CPUs for parallelizable workloads.

• Scalability: GPUs are highly scalable, allowing for the addition of
more GPUs to increase computational power. This scalability is es-
sential for large-scale simulations and data-intensive applications.

• General-Purpose Computing: With the advent of frameworks like
CUDA, GPUs have become increasingly versatile, enabling general-
purpose computing beyond graphics rendering. They are widely used
for scientific simulations, deep learning, data analytics, and more.

2.6 CUDA Programming Model
CUDA (Compute Unified Device Architecture) is a parallel computing plat-
form and programming model developed by NVIDIA for utilizing the com-
putational power of GPUs. It allows developers to write code that can be
executed on GPUs to accelerate parallel computations. This section provides
an overview of the CUDA programming model, along with code snippets and
examples to illustrate its usage.
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Figure 2.3: CUDA Programming Model

CUDA Programming Model Overview
The CUDA programming model consists of two main components: host code
(executed on the CPU) and device code (executed on the GPU). The host
code manages data transfers between the CPU and GPU, while the device
code performs computations in parallel on the GPU.

In CUDA, the grid, blocks, and threads are key components that define
the organization and execution of parallel computations on a GPU. They are
closely related to the hardware components of the GPU and play a crucial
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role in achieving efficient parallel processing. Let’s delve into each of these
components and their relationship with the GPU hardware.

2.6.1 Grid
The grid is the highest level of organization in CUDA and represents the over-
all execution configuration of a kernel. It consists of multiple blocks, and the
total number of blocks in a grid is specified during kernel invocation. The
grid provides a way to distribute computations across the available hardware
resources of the GPU.

In terms of GPU hardware, the grid aligns with the streaming multipro-
cessors (SMs). Each block within the grid can be assigned to a different SM,
allowing for concurrent execution of multiple blocks.

2.6.2 Blocks
A block is a logical unit of parallel computation within the grid. It represents
a group of threads that can be scheduled and executed together within an SM.
The number of threads per block is determined during kernel invocation.

Blocks are essential for achieving efficient memory access and synchro-
nization. They can be thought of as a mechanism for partitioning the work-
load into smaller manageable units, allowing for better resource utilization
and coordination within the GPU hardware.

2.6.3 Threads
Threads are the smallest units of execution in CUDA. They are individual
instances that perform computations in parallel. Threads within a block are
organized into a one-, two-, or three-dimensional structure, depending on the
problem’s nature.

Threads are executed in parallel within an SM, and each thread is assigned
a unique index. These indices are used to access data and perform computa-
tions in parallel.

In terms of GPU hardware, each thread is executed by a CUDA core (also
known as a shader or stream processor). Modern GPUs have a vast number of
CUDA cores, enabling massive parallelism and high computational through-
put.
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Relationship with GPU Hardware
The organization of grids, blocks, and threads in CUDA is closely related to
the underlying GPU hardware components, such as streaming multiprocessors
(SMs), CUDA cores, and memory hierarchy.

Figure 2.4: Relation between CUDA grid, block and thread to GPU Hardware

• Grids are mapped to the streaming multiprocessors (SMs) of the GPU.
Each block within the grid can be assigned to a separate SM, allow-
ing for concurrent execution of multiple blocks, leveraging the parallel
processing capabilities of the GPU.

• Blocks are scheduled and executed within the SMs. The SMs manage
the execution of threads within a block, assigning resources and coor-
dinating their execution.

• Threads are executed by individual CUDA cores within the SMs. Each
CUDA core performs computations independently on a single thread,
leveraging the parallelism provided by multiple CUDA cores.

The memory hierarchy of the GPU, including global memory, shared
memory, and registers, is also closely related to the organization of grids,
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blocks, and threads. Efficient memory access and synchronization within
blocks and threads are crucial for achieving high-performance parallel com-
putations on the GPU.

Figure 2.5: Relation between CUDA grid, block and thread to GPU Memory

2.6.4 CUDA Program Example
To write CUDA code, you need to define functions that will be executed on
the GPU, known as kernels. Kernels are invoked by the host code and run
in parallel by multiple threads on the GPU. These threads are organized into
blocks, and blocks are further grouped into a grid. A typical CUDA program
consists of the following steps:

1. Device Selection and Memory Management

2. Kernel Definition and Invocation

3. Memory Transfer and Synchronization
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Device Selection and Memory Management
• Select the GPU device(s) to use.

• Allocate and manage memory on the GPU.

cudaSetDevice(deviceId); //Device Selection
cudaMalloc((void**)&deviceInput, size); //Device Allocation

cudaMemcpy(deviceInput, hostInput, size, cudaMemcpyHostToDevice);
//Memory Copy from Host to Device

cudaMemcpy(hostInput, deviceInput, size, cudaMemcpyDeviceToHost);
//Memory Copy from Device to Host

The Host and Device memory allocation and de-allocation are controlled
by the host code (CPU Code). In previous versions of CUDA, separate host
variables and device variables were allocated memory using cudaHostMalloc
and cudaMalloc which are CUDA runtime APIs.

• cudaHostMalloc: This function is used to allocate pageable (host) mem-
ory. Pageable memory resides in the host (CPU) memory space and can
be accessed by both the host and the device (GPU). However, accessing
pageable memory from the device may incur additional latency due to
page faults.

• cudaMalloc: This function is used to allocate device memory. Device
memory resides in the memory space of the GPU and is accessible only
by the device. Accessing device memory is typically faster than access-
ing pageable memory.

//Host and Device Memory Management
void* hostPtr, devicePtr;
cudaHostMalloc(&hostPtr, size);
cudaMalloc(&devicePtr, size);
...
cudaHostFree(hostPtr);
cudaFree(devicePtr);

To copy data between the memory spaces,host memory (CPU) and device
memory (GPU) cudaMemcpy function is used. It provides a way to trans-
fer data back and forth between the host and the device. The syntax for the
function is as shown.
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cudaMemcpy(destination, source, size, cudaMemcpyKind);

• destination and source: Pointers to the destination memory and source
memory.

• size: Size in bytes of the data to be copied.

• cudaMemcpyKind: A flag that specifies the direction of the copy and
the memory spaces involved. The possible values for cudaMemcpyKind
are:

– cudaMemcpyHostToHost: Copy data from host memory to host
memory.

– cudaMemcpyHostToDevice: Copy data from host memory to de-
vice memory.

– cudaMemcpyDeviceToHost: Copy data from device memory to
host memory.

– cudaMemcpyDeviceToDevice: Copy data from device memory to
device memory.

An example to summarize the Memory Management is given below.

int* hostArray, deviceArray;
int size = 100 * sizeof(int);

// Allocate host and device memory
cudaHostMalloc(&hostArray, size);
cudaMalloc(&deviceArray, size);
// Initialize hostArray with some data

// Copy hostArray to deviceArray
cudaMemcpy(deviceArray, hostArray, size, cudaMemcpyHostToDevice);
// Perform computations on deviceArray

// Copy deviceArray back to hostArray
cudaMemcpy(hostArray, deviceArray, size, cudaMemcpyDeviceToHost);

// Free allocated memory
cudaHostfree(hostArray);
cudaFree(deviceArray);
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Kernel Definition and Invocation
Define the kernel function using the __global__ qualifier. Specify the grid
and block dimensions for thread organization. Invoke the kernel from the
host code.

//Kernel Definition
__global__ void myKernel(int* input, int* output)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
output[tid] = input[tid] * input[tid];
}

//Kernel Invocation
int numBlocks = 256;
int blockSize = 256;
myKernel <<< numBlocks,blockSize >>>(deviceInput, deviceOut-
put);

On kernel invocation, multiple instances of kernel code are created and
assigned to a particular thread in the grid. This assigning is done by making
use of thread organization and thread indexing. CUDA uses a hierarchical
organization of threads, blocks, and grids. Each thread executes the kernel
code independently and is identified by its unique global index. Each thread
has the following indexing parameters associated with it.

• ‘threadIdx.x‘ represents the thread index within a block or local index.

• ‘blockIdx.x‘ represents the block index within a grid.

• ‘blockDim.x‘ represents the block size.

• ‘gridDim.x‘ represents the grid size.

Based on the above parameters, the global thread index is calculated as
shown below.

int tid = blockIdx.x * blockDim.x + threadIdx.x;

These indexing variables allow threads to access different data elements
and perform computations in parallel.
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Memory Transfer and Synchronization
• Transfer data between the CPU and GPU memory.

• Synchronize to ensure all GPU computations are completed before ac-
cessing results on the CPU.

//Memory Transfer
cudaMemcpy(hostOutput, deviceOutput, size, cudaMemcpyDeviceToHost);

//Device Synchronization
cudaDeviceSynchronize();

2.6.5 Unified Memory
In the latest versions of CUDA, Unified Memory model was introduced. Uni-
fied Memory in CUDA refers to a memory management model that provides
a unified address space for both the CPU (host) and the GPU (device) in a
CUDA-enabled system. It allows seamless access to memory by both sides
without explicit data transfers, simplifying memory management and improv-
ing programming productivity.

The ‘cudaMallocManaged‘ API in CUDA is used for allocating man-
aged memory that can be accessed by both the CPU and the GPU in a unified
memory model. It was introduced in CUDA 6.0 as part of the Unified Memory
feature. The ‘cudaMallocManaged‘ function allocates a region of managed
memory and returns a pointer to it. The allocated memory can be accessed
by both the CPU and the GPU without explicitly copying data between them.
The CUDA runtime automatically manages the data migration between the
CPU and the GPU based on the access patterns.

Here is the basic syntax of the ‘cudaMallocManaged‘ function:

cudaMallocManaged(void** devPtr, size_t size);

The ‘devPtr‘ parameter is a pointer to the pointer that will receive the
allocated memory. ‘size‘ specifies the size of the memory to be allocated in
bytes.

Here’s an example usage of ‘cudaMallocManaged‘:
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#include <cuda_runtime.h>
#include <iostream>
__global__ void incrementData(int* data, int n)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < n)
{
data[tid] += 1;
}
}
int main()
{
int n = 100;
int* data;
cudaMallocManaged(&data, n * sizeof(int));

// Access the allocated memory from CPU
for (int i = 0; i < n; i++)
{
data[i] = i;
}

// Perform GPU computations using the allocated memory
int blockSize = 256;
int numBlocks = (n + blockSize - 1) / blockSize;
incrementData«<numBlocks, blockSize»>(data, n);
cudaDeviceSynchronize();

// Access the modified memory from CPU
for (int i = 0; i < n; i++)
{
printf("%d",data[i]);
}
cudaFree(data);
return 0;
}

In this example, we allocate managed memory using cudaMallocMan-
aged for an array of n integers. Then, we access the allocated memory from
the CPU and initialize it with values from 0 to n-1. After that, we define
a GPU kernel incrementData that increments the values in the data array.
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We launch the kernel with an appropriate number of blocks and threads and
synchronize the device using cudaDeviceSynchronize() to ensure all GPU
computations are completed.

Finally, we access the modified memory from the CPU and print the val-
ues to verify that the GPU computations have taken effect. We release the
managed memory using cudaFree before exiting the program.

Managed memory provides the following features and benefits:

1. Unified Memory Space: Managed memory combines the CPU and
GPU memory spaces into a single, unified memory space. This elim-
inates the need for explicit data transfers between the host and the de-
vice, as data is automatically migrated between them as needed.

2. Automatic Data Migration: The CUDA runtime automatically han-
dles the migration of data between the CPU and the GPU. It determines
when data needs to be moved based on access patterns, ensuring that
frequently accessed data remains in the appropriate memory space to
minimize data transfer overhead.

3. Dynamic Memory Migration: The CUDA runtime dynamically mi-
grates data between the CPU and the GPU at runtime. It takes into
account factors such as data access patterns, available GPU memory,
and system-wide memory pressure. This dynamic migration optimizes
memory usage and improves overall performance.

4. Page Faulting: Managed memory supports transparent page faulting,
which means that memory pages are faulted into the GPU’s memory
space on-demand. This allows the GPU to access data directly from
system memory without requiring explicit data transfers, reducing the
need for manual data staging.

5. Portable Code: Managed memory simplifies code portability across
different CUDA-capable devices. The unified memory model abstracts
away the specifics of memory management, making it easier to write
code that can run on various GPUs with different memory configura-
tions.

One important thing to note is that the memory allocated with ‘cudaMal-
locManaged‘ has a unified memory space, meaning that it is subject to the
limitations of the available GPU memory. Therefore, if the memory require-
ments exceed the available GPU memory, the performance may be impacted
due to frequent data transfers between the CPU and the GPU.
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2.7 Nvidia CUDA Compiler
The NVIDIA CUDA compiler, commonly referred to as ‘nvcc‘, is a key com-
ponent of the CUDA development toolkit. It translates CUDA source code,
which contains both host (CPU) and device (GPU) code, into executable ma-
chine code that can be executed on NVIDIA GPUs.

‘nvcc‘ is the NVIDIA CUDA Compiler, a crucial component of the CUDA
development toolkit. It is a command-line compiler that translates CUDA
source code into executable machine code that can run on NVIDIA GPUs.
Here’s an overview of how ‘nvcc‘ works:

1. Source Code Parsing: ‘nvcc‘ parses the input CUDA source code files
(typically with a ‘.cu‘ extension) and identifies sections containing host
(CPU) code and device (GPU) code. Host code sections are typically
written in standard C/C++, while device code sections use the CUDA
C/C++ language extensions.

2. Host Code Compilation: The host code sections are handed over to
the host C/C++ compiler (e.g., GCC, MSVC) for compilation. The
host compiler treats the host code as regular C/C++ code and generates
object files or host-side object code.

3. Device Code Compilation: The device code sections, written in CUDA
C/C++ language, are processed by ‘nvcc‘ itself. It performs the follow-
ing steps to generate GPU-specific code:

(a) Preprocessing: ‘nvcc‘ preprocesses the device code sections, han-
dling directives specific to CUDA, such as ‘#include <cuda_runtime.h>‘
and CUDA-specific macro expansions.

(b) Device Code Translation: The CUDA device code is translated
into an intermediate representation called PTX (Parallel Thread
Execution). PTX is an architecture-independent assembly-like
code representation that provides flexibility for optimization.

(c) Optimization: ‘nvcc‘ applies various optimizations to the PTX
code, including instruction reordering, loop unrolling, memory
access optimizations, and more. The goal is to improve the per-
formance and efficiency of the generated GPU code.

(d) PTX to GPU-specific Code: The PTX code is further compiled
into GPU-specific machine code, known as SASS (CUDA assem-
bly language). SASS code is specific to a particular NVIDIA GPU
architecture and provides low-level instructions that can be exe-
cuted directly on the GPU.

22



4. Linking: Once the host and device code sections are compiled, ‘nvcc‘
performs the linking step to combine the host object code and the GPU-
specific SASS code. This step produces the final executable or shared
library that can be run on the target system.

‘nvcc‘ also provides additional features, such as the ability to specify GPU
architecture targets, control code generation options, link against CUDA li-
braries, and more. It offers a range of compiler flags and options to fine-tune
the compilation process and optimize performance.

It’s important to note that the ‘nvcc‘ compiler takes care of integrating
host and device code seamlessly and handles the necessary steps to compile
and optimize code for both the CPU and the GPU. This allows developers
to write CUDA programs with a mix of host and device code, leveraging the
parallel processing capabilities of NVIDIA GPUs.

2.8 Nvidia CUDA Profiler
‘nvprof‘ is a command-line profiling tool provided by NVIDIA that allows
developers to profile CUDA applications and analyze their performance. It
provides detailed information about GPU activities, kernel execution times,
memory transfers, CUDA API calls, and more. Here’s an overview of how
‘nvprof‘ works:

1. Instrumentation: When you run a CUDA application with ‘nvprof‘,
it automatically instruments the application to collect profiling data.
The instrumentation process inserts additional code into the application,
which captures information about GPU activities during execution.

2. Application Execution: The instrumented CUDA application is exe-
cuted, and ‘nvprof‘ collects profiling data as the application runs. It
captures information about GPU activities, such as kernel launches,
memory transfers, CUDA API calls, and synchronization events.

3. Profiling Data Collection: ‘nvprof‘ collects a wide range of profil-
ing data during the execution of the instrumented CUDA application.
This data includes GPU utilization, kernel execution times, memory
bandwidth, memory access patterns, and more. ‘nvprof‘ also captures
CUDA API call traces, which provide a detailed record of the CUDA
function calls made by the application.
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4. Profiling Output: After the instrumented CUDA application completes
execution, ‘nvprof‘ generates a profiling report that summarizes the
collected data. The report provides insights into the application’s per-
formance characteristics and helps identify areas for optimization.

5. Profiling Analysis: The ‘nvprof‘ tool offers various options and visu-
alizations to analyze the profiling data. It provides a command-line
interface with different commands and options to extract specific in-
formation from the profiling report. Additionally, ‘nvprof‘ can gener-
ate timeline views, kernel-level analysis, memory access patterns, and
other visualizations to aid in performance analysis.

6. Optimization: Based on the profiling results, developers can identify
performance bottlenecks and areas for improvement in their CUDA ap-
plication. They can then make modifications to the code, memory ac-
cess patterns, or GPU configurations to optimize performance.

‘nvprof‘ is a powerful tool for profiling and analyzing the performance
of CUDA applications. It provides detailed information about GPU activi-
ties and helps developers understand how their application utilizes GPU re-
sources. By leveraging the insights gained from ‘nvprof‘, developers can
optimize their CUDA code, memory usage, and GPU configurations to im-
prove the performance and efficiency of their applications.

The CUDA programming model provides a powerful and flexible frame-
work for harnessing the computational power of GPUs. By leveraging par-
allelism and the CUDA programming model, various computationally inten-
sive tasks can be accelerated and significant performance improvements can
be achieved. More information regarding CUDA programming model can
be found at [6]. [7] provides details of the various functions available in the
CUDA Library.
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Chapter 3

Field Programmable Gate Arrays

3.1 Introduction
Field-Programmable Gate Arrays (FPGAs) have emerged as powerful and
versatile hardware platforms for implementing digital systems. With their re-
configurable nature, FPGAs offer a flexible solution that can be customized
for a wide range of applications, from digital signal processing to embedded
systems and high-performance computing. This chapter provides an in-depth
exploration of FPGA technology, focusing on the architecture, programming
model, and key design considerations, with a specific emphasis on the config-
urable logic blocks (CLBs) within an FPGA.

3.2 FPGA Architecture
An FPGA consists of a large array of configurable logic blocks (CLBs) in-
terconnected by programmable routing resources. These components, along
with other supporting structures, form the overall architecture of the FPGA.
Understanding the CLBs and their functionality is crucial for comprehending
the inner workings of an FPGA.

3.2.1 Configurable Logic Blocks (CLBs)
Configurable Logic Blocks (CLBs) are the fundamental building blocks of an
FPGA. They are responsible for implementing the desired logic functions and
data storage within the device. Each CLB typically consists of the following
key components:
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Figure 3.1: FPGA Architecture

Figure 3.2: Configurable Logic Block

Lookup Table (LUT)

The Lookup Table (LUT) is a key component of the CLB and serves as a pro-
grammable logic element. It functions as a truth table, mapping input com-
binations to corresponding output values. LUTs are typically programmable
and can implement any combinational logic function. They provide flexibility
in creating custom digital circuits by enabling the implementation of various
logic functions, from simple gates to complex functions like adders and mul-
tiplexers.
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Flip-Flops or Latches

Flip-flops or latches within a CLB provide the ability to store and synchronize
data. They act as memory elements and allow the retention of state informa-
tion within the FPGA. Flip-flops or latches can be used to store intermediate
results, implement sequential logic, or create memory elements within the
digital circuit.

Multiplexer (MUX)

The multiplexer (MUX) within a CLB enables the selection of different inputs
based on control signals. It allows for the routing and connection of signals
from different sources to various elements within the CLB. The multiplexer
provides flexibility in choosing the appropriate input signals for specific op-
erations or conditions.

3.2.2 Interconnect Resources
Interconnect resources in an FPGA facilitate the routing and connection of
signals between different CLBs and other components. These resources con-
sist of a network of programmable routing switches, wires, and channels.
They enable the establishment of desired data paths, ensuring proper com-
munication between CLBs and forming the overall circuit functionality. The
interconnect resources play a crucial role in determining the performance and
flexibility of an FPGA design.

3.2.3 Input/Output Blocks (IOBs)
Input/Output Blocks (IOBs) provide the interface between the FPGA and ex-
ternal devices or systems. They are responsible for handling the input and
output signals of the FPGA. IOBs typically consist of input buffers, output
drivers, and programmable I/O standards. They allow the FPGA to commu-
nicate with other digital circuits or systems by providing configurable I/O
interfaces.

3.2.4 Configuration Memory
Configuration memory stores the design information and determines the func-
tionality of the FPGA. It typically comprises non-volatile memory, such as
flash memory. The configuration memory stores the configuration bitstream,
which is a binary file specifying the interconnections and functionality of
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the FPGA. During the configuration process, the bitstream is loaded into the
FPGA to configure the CLBs and establish the desired routing connections.

3.2.5 Clock Distribution Network
The clock distribution network in an FPGA ensures the proper distribution
and synchronization of clock signals throughout the device. It consists of
programmable clock routing resources that enable the precise control and dis-
tribution of clock signals to various components within the FPGA. The clock
distribution network plays a critical role in achieving reliable and synchro-
nized operation of the digital circuit implemented on the FPGA.

3.2.6 Embedded Memory
Many modern FPGAs also include embedded memory blocks, such as block
RAM (BRAM) or distributed RAM. These embedded memory blocks provide
additional storage capacity within the FPGA and can be used for various pur-
poses, such as data storage, lookup tables, or FIFO buffers. The presence of
embedded memory enhances the FPGA’s ability to implement complex and
data-intensive designs efficiently.

3.3 Programming Model for FPGA
The programming model for Field-Programmable Gate Arrays (FPGAs) in-
volves several steps to configure the device and implement the desired digital
circuit. Here is a detailed explanation of the FPGA programming model:

Hardware Description Languages (HDLs)
The FPGA programming process typically starts with the use of Hardware
Description Languages (HDLs) such as VHDL (VHSIC Hardware Descrip-
tion Language) or Verilog. These languages allow designers to describe the
behavior and structure of the digital circuit they want to implement. HDLs
provide a high-level abstraction that captures the functionality of the circuit,
including its inputs, outputs, internal components, and their interconnections.

Synthesis
Once the digital circuit is described in an HDL, the next step is synthesis.
Synthesis is the process of converting the high-level HDL code into a gate-
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level representation called a netlist. The synthesis tool analyzes the HDL
code and generates a netlist that represents the logical structure of the circuit
in terms of gates, flip-flops, and other standard digital components.

Place-and-Route
After synthesis, the netlist is fed into the place-and-route tool. The place-
and-route tool determines the physical placement of the circuit components
on the FPGA device and establishes the routing connections between them.
It maps the logical design onto the actual resources available on the FPGA,
such as CLBs, interconnects, and I/O blocks. The place-and-route tool aims
to optimize various factors, including performance, power consumption, and
resource utilization.

Bitstream Generation
Once the place-and-route process is completed, the next step is bitstream gen-
eration. The bitstream is a binary file that contains the configuration data
necessary to program the FPGA. It specifies the interconnections, function-
ality, and settings of the FPGA device based on the synthesized and placed
design. The bitstream generation tool takes the output of the place-and-route
process and generates the bitstream file.

Configuration
The final step in the FPGA programming model is the configuration of the
FPGA device. The bitstream file generated in the previous step is loaded
onto the FPGA, either through a configuration cable or via a configuration
interface on the target board. The bitstream configures the CLBs, intercon-
nects, and other components of the FPGA based on the desired design. Once
the configuration is complete, the FPGA is ready to execute the implemented
digital circuit.

3.4 Design Considerations
Designing for Field-Programmable Gate Arrays (FPGAs) involves several
considerations to ensure optimal performance, resource utilization, power
consumption, and reliability. Here is a detailed explanation of the design
considerations for FPGA-based designs:
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Timing Constraints
Timing constraints play a critical role in FPGA designs. It involves specify-
ing the desired clock frequency, setup and hold times, maximum propagation
delays, and other timing requirements. Meeting these constraints ensures that
the circuit operates reliably and within the desired performance specifications.
Designers must carefully analyze and optimize the critical paths in the design
to meet the timing requirements.

Resource Allocation
FPGAs have limited resources such as CLBs, memory blocks, and I/O pins.
Efficiently allocating these resources is crucial to ensure optimal utilization
and to avoid resource constraints. Careful consideration should be given to
mapping the design onto the available resources, avoiding unnecessary dupli-
cation, and efficiently utilizing the available resources to achieve the desired
functionality.

Power Consumption
Power consumption is an important consideration in FPGA designs, espe-
cially for portable or low-power applications. Designers should optimize
power usage by employing power-efficient techniques such as clock gating,
power gating, and using low-power components when possible. Power anal-
ysis tools can be utilized to estimate power consumption and guide power
optimization efforts.

3.5 Advantages and Limitations of FPGAs
FPGAs offer several advantages over traditional application-specific integrated
circuits (ASICs) and general-purpose processors (GPPs). These advantages
include reconfigurability, high performance, parallelism, and flexibility. How-
ever, FPGAs also have some limitations, such as higher cost compared to
ASICs, limited resources, and increased design complexity.
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Chapter 4

Methodology

This chapter presents the methodology used to achieve the project objectives.
It provides a clear picture on the various steps taken to achieve the results.

4.1 Problem Statement
The ANN based Molecular Dynamics mainly involves two major stages. First
one involves taking the position of atoms in the atomic system and calculating
the energy and force values experienced by each atom due to the remaining
atoms in the atomic system. This calculation involves calculating the inter
atomic descriptors of each atom and passing them as inputs to an ANN which
was already designed to predict the energy values of each atom. After calcu-
lating the energies of all the atoms in the atomic system, the energy values are
further processed to get the force values acting on each atom.

The second stage of the ANN based Molecular Dynamics involves calcu-
lating the new position of atoms in the next time step from the force values
obtained in the first stage. This stage involves employing a numerical method
to integrate the Newton’s Law of Motions to obtain the new position of atoms
from the respective force values. In our project Verlet Integration Algorithm
is employed for calculating the new position of atoms in the atomic system.

In the first stage of ANN-MD, calculation of energy of atoms from inter
atomic descriptors and thereby calculating the forces on atoms involves com-
plex mathematical calculations and is very time intensive. Accelerating this
stage of the ANN-MD will largely improve the performance of the ANN-MD
computations.This is the main focus of the project.

In this project Cartesian coordinates (x,y,z) are used to represent the po-
sition of atoms in the atomic system. Calculating forces on each atom from
the Cartesian coordinates and calculating new set of Cartesian coordinates of
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atoms from the forces is described as one cycle of MD. Carrying out the above
computations for large number of cycles gives an understanding of the atomic
system and helps in structural analysis of the atomic system. In this project,
the computations are carried out on two atomic systems, namely Au147 and
Au309.

4.2 Need For NN
If not for NN, the energy of the atoms in the nanocluster has to calculated
using Density Function Theory (DFT). DFT involves very complex mathe-
matical computations and takes a very large amount of time for calculations.
With the advent of NNs, it is now possible to predict the energy of atom in
a nanocluster from its local descriptors comparatively faster and very accu-
rately [8]. For this we need to fix a suitable NN architecture and then train
it with the DFT data. Keep changing the NN architecture until the RMS er-
ror between predicted energy values and energy values obtained from DFT is
very minimum. Once the architecture is finalized, the NN is tested with test
data to validate the predictions.

4.3 ANN Architecture
In general, NN consists of an input layer, hidden layers and an output layer
with each layer consisting of a certain number of nodes. Each node is con-
nected to all the other nodes in the next layer by means of branch. Each branch
has a quantity called bias weight associated to it. The number of nodes in each
layer and the number of hidden layers in the NN is specific to the application
that we what to predict. In our project, NN is used to predict the energy of
an atom by taking into account the inter atomic descriptors of that particular
atom. In order to take into account, the relative arrangement of atoms in the
atomic system along with the inter atomic distances of the atoms, two hidden
layers are used as proposed in [9]. For the pre-trained NN that is used, energy
of the nanocluster is fitted using Spherical harmonics based atomic environ-
ment descriptors [8].The number of nodes in the input layer and the hidden
layers are finalised by comparing the RMS error of the predictions with the
DFT results for different combinations of nodes for each layer. In this project
a pre trained NN is used for predicting energy values from atomic descrip-
tors. The NN has 59 input nodes, two hidden layers with 30 nodes each and
an output layer with a single node. Of the 59 inputs, first 9 are the radial de-
scriptor functions and the remaining 50 are the power spectrum of the atom.
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Sigmoid function defined in 4.1 is used as the activation function for the NN.
[10] provides a clear understanding on the implementation of neural network
and the various mathematical functions involved in neural networks.

σ(x) =
1

1+ e−x (4.1)

4.4 Energy Calculation
As described in the above section, inter atomic descriptors are calculated for
each atom from the Cartesian coordinates (x,y,z) of all atoms in the atomic
system. These inter atomic descriptors are fed as inputs to an ANN to predict
the energy of that particular atom. This process is continued to calculate the
energy of all the atoms in the atomic system.

Let look at the steps involved in calculating inter atomic descriptors from
the Cartesian coordinates.

Step 1: Calculating sperical coordinates (r,θ ,φ ) from Cartesian coordi-
nates (x,y,z).

ri j =
√
(xi − x j)2 +(yi − y j)2 +(zi − z j)2 (4.2)

θi j = cos−1 zi − z j

ri j
(4.3)

φi j = tan−1 yi − y j

xi − x j
(4.4)

Step 2: Calculating Associated Legendre Polynomials Pm
l (cosθ ) and Cut-

off function fc(ri j).

fc(ri j) =
1
2

[
cos
(

πri j

rc

)
+1
]

(4.5)

Step 3: Calculating the Radial Distribution function Ri
f using Cut-off

function and different falling rate η .

Ri
f =

atoms

∑
i ̸= j

e−ηr2
i j fc(ri j) (4.6)
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Figure 4.1: Radial Distribution Function Calculation

Step 4: Calculating Spherical Harmonics function Ym
l (θ ,φ ).

Y m
l (θ ,φ) =

{
NlmPm

l (cosθ)e−imφ when m < 0
(−1m)NlmPm

l (cosθ)eimφ when m ≥ 0
(4.7)

Nlm =

√
2l +1

4π

(l −|m|)!
(l + |m|)!

− l ≤ m ≤ l (4.8)

Step 5: Calculating Spherical Harmonics Coefficients cnlm using Cut-off
function and different Gaussian parameter ζ .

cnlm = ∑
i̸= j

e−ζ r2
i j fc(ri j)Y m∗

l (θ ,φ) (4.9)

Step 6: Calculating Power Spectrum Pnl .

Pnl =
4π

2l +1

l

∑
m=−l

c∗nlmcnlm (4.10)
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Figure 4.2: Power Spectrum Calculation

The Radial Distribution functions Ri
f and Power Spectrum Pnl are used as

radial and angular descriptors of atoms. The number of radial and angular de-
scriptors depends on the distinct values of falling rate η , Gaussian parameter
ζ and frequency l which are determined while designing and fitting the NN
using DFT data. For the NN being used, η takes 9 values giving rise to 9 dis-
tinct radial distribution functions and ζ takes 5 values, l takes 10 values giving
rise to 50 distinct Power Spectrum. This results in a total of 59 descriptors for
each atom in the nanocluster. These 59 descriptors are normalized and then
fed to the ANN to predict the energy of the particular atom which is calcu-
lated as in 4.11. This process is followed to calculate the energy of remaining
atoms in the nanocluster.

Ei =
Nnh

∑
a=1

W23
a1.f

2
a

[
Wb2

a +
Nnh

∑
b=1

W12
ba.f

1
b

(
Wb1

b +
Ninp

∑
s=1

W01
sb .Dis

)]
(4.11)

where, Ei is energy of ith atom and Nnh is number of hidden nodes. Dis
is normalized input descriptor functions of length Ninp for ith atom. W01

sb ,
W12

ba and W23
a1 are weights connecting from input layer to hidden layer one,

hidden layer one to hidden layer two and hidden layer two to output layer
respectively. Wb2

a, Wb1
b are bias weights in hidden layer one and hidden layer

two respectively. f2a and f1b represents sigmoid function for activation of net-
work. The total energy (E) of a nanoparticle is computed by summation all
the atomic energies.
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E = ∑
i

Ei (4.12)

Figure 4.3: NN Architecture

4.5 Force Calculation
The force acting on each atom in the nanocluster depends on the energy of the
atoms in the nanocluster and is defined as in 4.13 where k ∈ (x,y,z).

Fk =−
∂Enanoparticle

∂k
=−

atoms

∑
i=1

∂Ei

∂k
(4.13)

=−
atoms

∑
i=1

inputs

∑
s=1

∂Ei

∂Dis

∂Dis

∂k
(4.14)

In 4.14, the first gradient term represents the gradient of energy with re-
spect to the input descriptors. This is obtained from the NN in the following
steps:

1. Calculate gradient of Sigmoid of each node value in HD1 and HD2
while calculating the energy.

2. The gradient of node values calculated are fed forward to the NN to
predict the gradient of energy at the output node.
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The second gradient term represents the gradient of input descriptors with
respect to the coordinates x,y and z. Between both the partial derivative terms,
calculating the gradient of descriptors with respect to x, y and z requires the
spherical harmonics coefficients cnlm calculated during the energy calcula-
tions. Due to this, the force calculations require all the energy calculations
to be completed. Moreover, calculating the gradient of Power Spectrum is a
tedious task as it involves calculating the partial derivative of multiple com-
ponents as shown in 4.15.

dPi
nl

dxi
=

l

∑
m=−l

(
dci

nlm
dxi

ci∗
nlm + ci

nlm
dci∗

nlm
dxi

)
(4.15)

dci
nlm

dxi
= ∑

i ̸= j

(
d(e−ηr2

i j)

dxi
Y m

l (ri j) fc(ri j)+
dY m

l (ri j)

dxi
e−ηr2

i j fc(ri j)+
d( fc(ri j))

dxi
Y m

l (ri j)e
−ηr2

i j

)
(4.16)

Note: If coefficient of an atom i is differentiated with respect to coordinate
of atom j then, sum over all atoms vanish

dci
nlm

dx j
=

(
d(e−ηr2

i j)

dx j
Y m

l (ri j) fc(ri j)+
dY m

l (ri j)

dx j
e−ηr2

i j fc(ri j)+
d( fc(ri j))

dx j
Y m

l (ri j)e
−ηr2

i j

)
(4.17)

Solving the derivatives in 4.16 results in the following equations.

d(e−ηr2
i j)

dxi
= e−ηr2

i j(−η2ri j)

(
2xi j

2ri j

)
=−2ηe−ηr2

i jxi j (4.18)

d( fc(ri j))

dxi
=−0.5

(
πxi j

rcri j

)
sin

πri j

rc
(4.19)

dY m
l (ri j)

dxi
=

dY m
l

dθ(ri j)

dθ(ri j)

dxi
+

dY m
l

dφ(ri j)

dφ(ri j)

dxi
(4.20)

The above equation is solved using the Ym
l (θ ,φ) definition in 4.7.

After calculating the gradient of energy and gradient of descriptors using
the above equations they are multiplied and summation is applied over the
entire inputs and the entire atoms as in 4.14 to give the force experinced by
a particular atom in the nanocluster. This processed is followed for all the
atoms in the nanocluster to get the force on each atom.
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4.6 Verlet Algorithm
The Verlet algorithm is a numerical integration method commonly used for
simulating the motion of particles. It is particularly useful in molecular dy-
namics simulations.

The equations for the Verlet algorithm are as follows:

r(t +∆t) = 2r(t)− r(t −∆t)+a(t)∆t2 (4.21)

v(t) =
r(t +∆t)− r(t −∆t)

2∆t
(4.22)

In Equation 4.21, r(t) represents the position of the particle at time t, a(t) is
the acceleration at time t, and ∆t is the time step. This equation updates the
position of the particle based on the previous two positions and the accelera-
tion.

Equation 4.22 calculates the velocity of the particle at time t based on the
updated positions at t +∆t and t −∆t. It uses the central difference approxi-
mation to estimate the velocity.

These equations can be iteratively applied to simulate the motion of parti-
cles over time using the Verlet algorithm.

The Taylor series expansion of the Verlet algorithm equations can be writ-
ten as follows:

r(t +∆t) = r(t)+v(t)∆t +
a(t)∆t2

2
+

j(t)∆t3

6
+O(∆t4) (4.23)

v(t) = v(t −∆t)+
a(t)∆t

2
+

j(t)∆t2

6
+O(∆t3) (4.24)

In Equation 4.23, r(t) represents the position of the particle at time t, v(t)
is the velocity at time t, a(t) is the acceleration at time t, and j(t) is the jerk
(rate of change of acceleration) at time t. The terms involving higher-order
derivatives represent the additional terms in the Taylor series expansion.

Equation 4.24 shows the Taylor series expansion of the velocity equation,
incorporating the acceleration and jerk terms.

The force acting on a particle can often be expressed in terms of the gra-
dient of a scalar potential function. Mathematically, it can be written as:

F =−∇V (4.25)

where F represents the force vector acting on the particle.

38



∇ (del) is the gradient operator, which operates on the scalar potential
function V.

V is the scalar potential function, which depends on the position coordi-
nates.

According to Newton’s laws of motion, F is related to mass (m) of the
particle and its acceleration a(t) as in 4.26

F = m.a(t) (4.26)

From 4.25 and 4.26, a(t) can be written in terms of gradient of scalar
potential function V from 4.27

a(t) =
−∇V

m
(4.27)

In our project, ∆t is very small, in order of 0.03 pico second. In eqautions
4.23 and 4.24, the higher-degree terms of ∆t can be ignored and the equation
is approximated as in 4.29 and 4.28.

v(t) = v(t −∆t)+
a(t)∆t

2
(4.28)

r(t +∆t) = r(t)+v(t)∆t +
a(t)∆t2

2
(4.29)

The above equations 4.27,4.28 and 4.29 are used to calculated the new set
of positions of atoms in the nanocluster. The ∇V is the force obtained from
the force calculations discussed in the previous section.

4.7 Algorithms

Associated Legendre Polynomial Algorithm
Associated Legendre polynomials Pm

l (x) are used in Spherical Harmonics cal-
culations where x=cos(θ ), l and m are the degree and order of the polynomial
respectively. Associated Legendre polynomials Pm

l (x) can be calculated using
the following recursive equations.

Pl+1
l+1 (x) =−(2l +1)

√
1− x2Pl

l (x) (4.30)

Pm−1
l (x) =

1
(l +m)(l −m+1)

(
−2mxPm

l (x)
√

1− x2
−Pm+1

l (x)
)

(4.31)
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In 4.31, Pm+1
l (x) becomes zero for m>(l-1) and it reduces to 4.32.

Pm−1
l (x) =

1
(l +m)(l −m+1)

−2mxPm
l (x)

√
1− x2

(4.32)

In our project, the range of l is 0≤ l ≤ 9 and the range of m is -l≤ m ≤ l.

Algorithm 1 Pm
l cos(θ ) Calculation

Initialize variables
for each pair of atoms do

Calculate (r,θ ,φ ) from (x,y,z)
for each l ∈ [0,9] do

Calculate Pl
l cos(θ ) as in 4.31

for each m ∈ [-l,l-1] from l-1 to -l do
Calculate Pm

l cos(θ ) as in 4.32
end for

end for
end for

Radial Distribution Function Algorithm
The Radial Distribution function Ri

f is used to calculate the distribution of
atoms in the nanocluster. Ri

f for an atom i is given as sum of Gaussian func-
tions with different falling rate η with respect to ri j , the inter-atomic distance
between atom i and j. The interaction of an atom with other atoms decreases
as we go farther away from the atom in consideration. So a cut-off function
fc(ri j) with a cut-off radius of 8 Å is chosen and atoms within the cut-off ra-
dius (r_cut) are only considered for Ri

f calculation. In our project, 9 η values
are used for Ri

f calculation.
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Algorithm 2 Ri
f Calculation

Initialize variables, Sum = 0
for each of 9 η values do

for each pair of atoms do
Calculate (r,θ ,φ ) from (x,y,z)
if r≤ r_cut then

Calculate fc(ri j) as in ??
else

fc(ri j) = 0
end if
Calculate e−ηr2

i j fc(ri j)

Sum += e−ηr2
i j fc(ri j)

end for
Ri

f = Sum
end for

Power Spectrum Algorithm
The Power Spectrum (Pnl) calculations requires the calculation of Spherical
Harmonics function (Ym

l (ri j)) and Spherical Harmonics coefficients (cnlm)
both of which are complex quantities. The complex term in both the equa-
tions, e−imφ is calculated as sum of real and imaginary parts as shown in 4.33.

e−imφ = cos(−imφ)+ i.sin(−imφ) (4.33)

In our program, the complex term is calculated as separate real term and
imaginary term. This type of representation makes it easy while implemented
the program on GPU as the use of complex data types is not straight-forward
and requires additional libraries.
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Algorithm 3 Pnl Calculation
Initialize variables, Sum1 = 0, Sum2 = 0
for each pair of atoms do

Calculate Pm
l cos(θ )

end for
for each of 5 ζ values do

for each l ∈ [0,9] do
for each m ∈ [-l,l] from -l to l do

for each pair of atoms do
Calculate (r,θ ,φ ) from (x,y,z)
if r≤ r_cut then

Calculate fc(ri j) as in ??
else

fc(ri j) = 0
end if
Calculate e−ζ r2

i j . fc(ri j)
Calculate Ylm(ri j) as in 4.7

Sum1 += e−ζ r2
i j . fc(ri j).Y∗

lm(ri j)
end for
cnlm = Sum1
Sum2 += c∗nlm.cnlm

end for
Pnl = [4π/(2l +1)].Sum2
end for

end for

Energy Algorithm
As discussed earlier, the energy values are predicted using ANN by feeding
inter-atomic descriptors as inputs to the ANN. The ANN used in our project
has an input layer, two hidden layers and one output layer with 59 nodes, 30
nodes, 30 nodes and 1 node respectively. The nodes in a layer are connected
to every nodes in the next layer via weights. Each node in both the hidden
layers has a bias component linked to it.

Consider Inputi, HD1 j, HD2k and Output be the nodes in each layer of the
ANN. WeightIHD1i j, WeightHD1HD2 jk and WeightHD2Ok be the weights
between the respective layers. The respective nodes in each layer are calcu-
lated as shown in figure 4.5 where Sigmoid is the activation function.
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Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

HD1 j = Sigmoid
(
∑i Inputi ·WeightIHD1i j +BiasHD1i

)
HD2k = Sigmoid

(
∑ j HD1 j ·WeightHD1HD2 jk +BiasHD2 j

)
Output = Sigmoid (∑k HD2k ·WeightHD2Ok)

0 ≤ i ≤ 59, 0 ≤ j ≤ 30, 0 ≤ k ≤ 30

Figure 4.4: Energy Prediction using ANN

Algorithm 4 Energy Calculation
Initialize variables
Calculate Ri

f
Calculate Pnl
for each node in Hidden Layer 1 do

Calculate HD1 j
end for
for each node in Hidden Layer 2 do

Calculate HD2k
end for
Calculate Output

The Output is the predicted energy of the atom for the set of input descrip-
tors by the ANN.

Force Algorithm
As discussed in the force calculation section, the force values are calculated
as the product of gradient of energy with respect to input descriptors and the
gradient of input descriptors with respect to x,y and z as shown in 4.14.

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

HD1 j = Sigmoid
(
∑i Inputi ·WeightIHD1i j +BiasHD1i

)
grad_HD1 j = HD1 j ∗ (1−HD1 j)

HD2k = Sigmoid
(
∑ j HD1 j ·WeightHD1HD2 jk +BiasHD2 j

)
grad_HD2k = HD2k ∗ (1−HD2k)

Figure 4.5: Gradient of Energy Prediction using ANN
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Algorithm 5 Force Calculation
Initialize variables
Calculate Gradient of Ri

f
Calculate Gradient of Pnl
Calculate grad_HD1 j and grad_HD2k
for each node in Hidden layer 1 and Hidden layer 2 do

Fed Forward grad_HD1 j and grad_HD2k
Calculate Gradient of Energy

end for
Calculate Force by multiplying gradient of energy and gradient of descrip-
tors.

4.8 CPU Implementation
The algorithms discussed above are converted into C code for calculating the
energy and force on atoms in Au147 and Au309 clusters. In our project, pre-
viously available code for the above calculations is optimized and modified
so that the code can be easily parallelized to be implemented on the GPU later.

The above mentioned C code is tested to check the correctness of the re-
sults obtained. On successful testing of energy and forces values, this C code
is integrated with a FORTRAN code which implements the Verlet algorithm
to generate new set of coordinates for the atoms in Au147 (Au309) cluster using
the old coordinates and the force values as discussed in 4.6.

Figure 4.6: CPU Flow
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4.9 GPU Implementation
Implementing the ANN based energy and force calculations on GPU by of-
floading these calculations from CPU to GPU using CUDA programming
model provides better throughput because of the highly parallel architecture
of the GPU. To implement the energy and force calculations on the GPU, the
C code implemented on the CPU is parallelized and written as kernels to be
executed on the GPU. In kernel, thread indexing is used to assign a task to a
particular thread. The execution of the algorithm begins at CPU and the tasks
to be executed in parallel are offloaded onto the GPU. The CPU takes care of
the other tasks like memory management, kernel call, threads synchronization
etc. In general, the CPU and GPU are connected onboard via PCIe, through
which high speed data transfers happen.

Figure 4.7: GPU Flow

Kernels
As discussed in the force calculations section, to calculate the force on atoms
we require the Spherical Harmonics coefficients cnlm of all the atoms in the
nanocluster. Due to this it is not possible to include both energy and force
calculations into a single kernel. So the following approach is employed:

1. Two Kernels are used in the CUDA C program.

2. One Kernel calculates the energy of each atom in the nanocluster using
the coordinates.

3. Another Kernel calculates the force on each atom in the nanocluster
using the cnlm data and gradient of energy data calculated by the energy
kernel.
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4.9.1 Energy Kernel
Number of Au Atoms in the Nanocluster : 147 (309).

• Kernel Input Pointers:

– Coordinates Pointer - size: 441 (927) float values
– Nlm Pointer - size: 100 float values
– Normalization Pointers - size: 59 values each

* meangtot_f

* gtotmin_f

* gtotmax_f

– Neural Network Weight Pointers

* a01 - Input Layer to HD1 - size: 1800 float values

* a12 - HD1 to HD2 - size: 930 float values

* a23 - HD2 to Output Layer - size: 30 float values

• Kernel Output Pointers:

– Energy Pointer - size: 147 (309) float values
– Gradient of Energy Pointer - size: 8673 (18,231) float values
– cnlm Pointer - size: 147000 (309000) float values

4.9.2 Force Kernel
Number of Au Atoms in the Nanocluster : 147 (309).

• Kernel Input Pointers:

– Coordinates Pointer - size: 441 (927) float values
– Nlm Pointer - size: 100 float values
– Normalization Pointers - size: 59 values each

* meangtot_f

* gtotmin_f

* gtotmax_f

– Gradient of Energy Pointer - size: 8673 (18,231) float values
– cnlm Pointer - size: 147000 (309000) float values

• Kernel Output Pointers:

– Force Pointer - size: 441 (927) float values
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__global__ energy(float *inputs, float *outputs)//Energy Kernel
{
// Declare and Initialize variables
...
//Thread Indexing
int h=blockIdx.x*blockDim.x+threadIdx.x;

// N = 147 (309)
if(h<N)
{
// Pm

l (cosθ ) calculation
...
// Ri

f calculation
...
// cnlm,Pnl calculation
...
// Energy and it’s gradient calculation
...
} }

__global__ force(float *inputs, float *outputs) //Force Kernel
{
// Declare and Initialize variables
...
//Thread Indexing
int h=blockIdx.x*blockDim.x+threadIdx.x;

// N = 147 (309)
if(h<N)
{
// Pm

l (cosθ ) calculation
...
// Gradient of Ri

f calculation
...
// Gradient of Pnl calculation using cnlm calculated by energy kernel
...
// Force calculation using gradients of Ri

f , Pnl and energy
...
} }
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4.9.3 Memory Management
In our project, Unified Memory model is used to allocate and deallocate man-
aged memory for Input/Output pointers. The below code shows the memory
allocation and deallocation functions for all the variables used in this project.

// Variables Declaration
float* xyz;
float* meangtot, * gtotmin, * gtotmax;
float* nlm, * a01, * a12, * a23;
float* ene, * grad_e;
float* t_cnlm, * force;

// Unified Memory Allocation
cudaMallocManaged(&xyz,size_xyz*sizeof(float));
cudaMallocManaged(&nlm,size_nlm*sizeof(float));
cudaMallocManaged(&meangtot,size_meangtot*sizeof(float));
cudaMallocManaged(&gtotmin,size_gtotmin*sizeof(float));
cudaMallocManaged(&gtotmax,size_gtotmax*sizeof(float));
cudaMallocManaged(&a01,size_a01*sizeof(float));
cudaMallocManaged(&a12,size_a12*sizeof(float));
cudaMallocManaged(&a23,size_a23*sizeof(float));
cudaMallocManaged(&ene,size_ene*sizeof(float));
cudaMallocManaged(&grad_e,size_grad_e*sizeof(float));
cudaMallocManaged(&t_cnlm,size_t_cnlm*sizeof(float));
cudaMallocManaged(&force,size_force*sizeof(float));

//Unified Memory Deallocation
cudaFree(xyz);
cudaFree(nlm);
cudaFree(meangtot);
cudaFree(gtotmin);
cudaFree(gtotmax);
cudaFree(a01);
cudaFree(a12);
cudaFree(a23);
cudaFree(ene);
cudaFree(grad_e);
cudaFree(t_cnlm);
cudaFree(force);
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The size of each variable used in the CUDA program is listed below.
Number of Au Atoms in the Nanocluster : 147 (309).

• Size of Input/Output Pointers

– size_xyz: 441 (927)

– size_nlm: 100

– size_meangtot: 59

– size_gtotmin: 59

– size_gtotmax: 59

– size_a01: 1800

– size_a12: 930

– size_a23: 30

– size_ene: 147 (309)

– size_grad_E: 8673 (18,231)

– size_t_cnlm: 147000 (309000)

– size_force: 441 (927)

4.9.4 Kernel Configuration
In our project, each kernel is programmed in such a way that each instance of
the kernel calculates energy or force of a single atom in the nanocluster. So the
number of instances of kernel required depends on the number of atoms in the
nanocluster.Calculations are carried out for two structures of gold nanocluster,
namely Au147 and Au309 each with 147 and 309 atoms respectively. So the
kernel configuration ,i.e., the number of Blocks and the number of Threads per
Block are chosen in such a way that required number of threads are available
with better resource management for optimized performance of the Kernel.
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Figure 4.8: Kernel Call

// Variables for Kernel Configuration
int n_blocks;
int n_threadsperblock;

// Kernel Call and Synchronization

// Energy Kernel Call
energy <<< n_blocks,n_threadsperblock >>> (inputs, outputs);
cudaDeviceSynchronize();

// Force Kernel Call
force <<< n_blocks,n_threadsperblock >>> (inputs, outputs);
cudaDeviceSynchronize();

4.9.5 Code Compilation
The entire host code and device code are packaged in .cu CUDA file. The
host C/C++ compiler cannot compile the entire code in the .cu file. The host
C/C++ compiler compiles host code and the device code is compiled by the
’nvcc’ compiler. Steps involved in code compilation by ’nvcc’ Compiler is
discussed in detail in 2.7. The ’nvcc’ compiler converts the device code into
fat-binary images which are added to object file produced after compiling host
code by the host C/C++ compiler. This is packaged into a single object file
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that runs on the host (CPU). While executing, whenever the host encounters
the fat-binary images the execution is offloaded onto the device (GPU) and
the remaining code is executed on the host.

Figure 4.9: CUDA Code Compilation

4.9.6 Code Profiling
Code profiling helps in analysing the code and the performance of various
APIs. While .cu file is compiled and executed, a number of CUDA run time
APIs are invoked automatically during the code run-time. Profiling the code
using ’nvprof’ CUDA profiling tool provides an analysis of all the APIs in-
voked during the code run-time. The output of ’nvprof’ tool for our force and
energy calculation is as shown below. The steps involved in profiling the code
using ’nvprof’ tool is discussed in 2.8.

The code for compiling a .cu file using ’nvcc’ compiler and profiling the
executable file using ’nvprof’ profiler tool is as shown below.

nvcc force.cu -o force
nvprof ./force

By running the above commands, the ’nvcc’ tool compiles the force.cu file
and outputs an executable file force. this executable file force is profiled by
the ’nvprof’ profiler reulting in the following profiling information.
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==1601== Profiling application: ./force
==1601== Profiling result:

Type Time(%) Time Calls Avg Min Max Name
GPU activities: 68.76% 312.85ms 1 312.85ms 312.85ms 312.85ms forcee(float* variables)

31.24% 142.11ms 1 142.11ms 142.11ms 142.11ms energy(float* variables)
API calls: 64.85% 454.97ms 2 227.49ms 142.11ms 312.86ms cudaDeviceSynchronize

33.99% 238.50ms 12 19.875ms 3.6360us 238.44ms cudaMallocManaged
1.11% 7.7930ms 2 3.8965ms 33.971us 7.7590ms cudaLaunchKernel
0.02% 161.21us 12 17.912us 9.5790us 64.722us cudaFree
0.02% 116.07us 101 1.1490us 136ns 48.313us cuDeviceGetAttribute
0.00% 23.940us 1 23.940us 23.940us 23.940us cuDeviceGetName
0.00% 5.2640us 1 5.2640us 5.2640us 5.2640us cuDeviceGetPCIBusId
0.00% 1.9960us 3 665ns 215ns 1.4330us cuDeviceGetCount
0.00% 952ns 2 476ns 239ns 713ns cuDeviceGet
0.00% 456ns 1 456ns 456ns 456ns cuModuleGetLoadingMode
0.00% 392ns 1 392ns 392ns 392ns cuDeviceTotalMem
0.00% 238ns 1 238ns 238ns 238ns cuDeviceGetUuid

==1601== Unified Memory profiling result:
Device "Tesla T4 (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
3 21.333KB 4.0000KB 56.000KB 64.00000KB 12.67200us Host To Device

15 68.267KB 4.0000KB 384.00KB 1.000000MB 99.07200us Device To Host
7 - - - - 738.8680us Gpu page fault groups

Total CPU Page faults: 7
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4.10 FPGA Implementation
Performing ANN based energy and force calculations on the FPGA involves
the following steps:

1. Transfer coordinate values of atoms from host (CPU) to the FPGA eval-
uation board and store the coordinates data in on-board DDR Memory.

2. Energy and force values on atoms are calculated using the coordinate
values of atoms and store back in the on-board DDR Memory.

3. Transfer the energy and force values from FPGA evaluation board to
the host (CPU).

Figure 4.10: FPGA Flow

The force values received from the FPGA evaluation board are processed
by the host (CPU) using verlet algorithm to generate new coordinates of
atoms. The new coordinates are again transferred to the FPGA board to cal-
culate new energy and force values on atoms. This process is carried out for
large number of cycles to study the MD of nanocluster. Various communi-
cation methods like UART, Ethernet and PCIe can be used to transfer data
between FPGA board and the host. UART communication protocol is used in
our project.

Implementation of ANN based energy and force calculations on the FPGA
involves the following steps:

1. Package the ANN based energy and force calculations into a custom IP
for the particular FPGA family.
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2. Design a system containing microblaze IP, the custom IP, UART IP and
necessary IP blocks required for FPGA implementation.

3. FPGA is programmed using SDK to control the system for carrying out
the necessary tasks.

4.10.1 Custom IP Design
Implementation of ANN based energy and force calculations on the FPGA
is carried out by initially packaging the ANN based energy and force calcu-
lations into a custom IP for the particular FPGA family. Vivado HLS tool
is used for this purpose. Vivado HLS (High-Level Synthesis) is a high-level
synthesis tool provided by Xilinx. It allows designers to create hardware de-
signs using high-level programming languages such as C, C++, and SystemC,
instead of traditional hardware description languages (HDLs) like VHDL or
Verilog. Packaging the necessary logic into an IP using Vivado HLS tool
involves the following steps:

1. Use Vivado HLS directives to guide the synthesis process and optimize
the generated hardware. Directives include specifying data types, array
partitioning, loop unrolling, pipelining, and interface pragmas.

2. Launch the C synthesis process in Vivado HLS. This process converts
the C code into RTL (Register Transfer Level) hardware description.

3. Analyze the synthesis report to evaluate the performance, resource uti-
lization, and other metrics of the generated hardware. Identify opportu-
nities for optimization and refine the design directives accordingly.

4. Iterate the process of modifying design directives, running synthesis,
and analyzing the results to achieve the desired performance and re-
source utilization.

5. Once satisfied with the synthesized design, export it as hardware IP.
This generates IP files, including the RTL description, testbench, and
associated files required for integration into a larger FPGA design.

The necessary methods like pipelining, array partitioning etc. are used to
reduce the latency of the IP. Optimizing the latency of the IP depends on the
FPGA resources and is particular to the FPGA used. In our project, Genesys2
FPGA board with Kintex FPGA with part number xc7k325tffg900-2.

54



Figure 4.11: Vivado HLS Design Flow

In our IP design, two interface pointers input and output are used to com-
municate with other IPs. These interfaces are used to exchange data and con-
trol signals. The input and output interfaces are configured to be memory-
mapped AXI4 (m_axi) interfaces which can be configured as direct or slave
for assigning the memory offset for the m_axi interface. With direct the offset
is set during the system design and with slave the offset can be set while pro-
gramming using SDK. In our design,m_axi interfaces are configured as slave.
The C code snippet for implementing the energy and force calculations as an
IP using HLS directives is shown below.

int force_kishore_pipeline(float *input, float *output)
{
#pragma HLS INTERFACE s_axilite port=return
#pragma HLS INTERFACE m_axi depth=in_depth port=output offset=slave
#pragma HLS INTERFACE m_axi depth=out_depth port=input offset=slave
//Copy Coordinates from DDR Memory
memcpy(xyz,(float *)(input),input_size*sizeof(float));

//Energy and Force Calculations

//Copy energy and force values into DDR Memory
memcpy((float *)(output),Force,output_size*sizeof(float));
return 0;
}

The in_depth, out_depth, input_size and output_size depends on the num-
ber of atoms in the nanocluster and are different for Au147 and Au309.
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The status signals specifying the state of the IP are bundled into a return port.
In our IP design, The return port is configured as AXI4-Lite slave (s_axilite)
interface. When an s_axilite interface is implemented in Vivado HLS, a set
of C driver files are automatically created. These C driver files provide a set
of APIs that can be integrated into any software running on a CPU and used
to communicate with the device via the s_axilite interface. All the AXI pe-
ripheral ports follow the RTL timing as shown below. Detailed information
on Vivado HLS can be found at [11].

Figure 4.12: RTL Port Timing

Figure 4.13 shows the IP for energy and force calculations packaged using
Vivado HLS. The input and output m_axi interfaces are bundled into a single
m_axi_gmem interface. The return port is represented as s_axi_AXILiteS in-
terface. ap_clk and ap_rst_n represents the clock and active low reset signal
port respectively.

Figure 4.13: IP for Energy and Force Calculations
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4.10.2 System-Level Design
System-Level Design refers to the process of designing a system with all the
necessary blocks to enable the system to carry out a specific task. System-
Level Design allows us to develop complex systems by utilizing pre-designed
IP blocks, enabling faster development cycles. Xilinx Vivado 2017.4 is used
to design the system as a block design. In our project, the System-Level
design includes the following IP blocks:

1. Custom IP: This is the IP designed and packaged using Vivado HLS.
This IP takes coordinates data from the DDR Memory, calculates the
energy and forces values and stores the values back into the DDR Mem-
ory.

2. MIG 7 Series IP: Memory Interface Generator (MIG) IP is used to cre-
ate a memory interface to the DDR memory on the FPGA board.

3. UARTlite IP: UARTlite IP is used for serial communication with the
FPGA board. This IP is used to receive the coordinates values from the
host and send the energy and force values to the host.

4. MicroBlaze IP: MicroBlaze is a soft processor core developed by Xil-
inx. It is a configurable and customizable 32-bit RISC (Reduced In-
struction Set Computer) processor that can be implemented in Xilinx
FPGAs for use in embedded system design. It is used for initializing
and configuring the IPs in the system.

5. Additional IP blocks: Apart from the IP blocks mentioned above, addi-
tional blocks such as System Reset IP, Debug IP, AXI SmartConnect IP
and AXI Interconnect IP are included in the design.

AXI SmartConnect IP is used to interface the MIG 7 IP with the custom IP
and the MicroBlaze IP whereas AXI Interconnect IP is used to interface all
the remaining IPs with each other. System Reset IP is used to generate a reset
signal that is reset the corresponding IP to which it is connected. Debug IP is
used to debug the MicroBlaze IP.

Clock Frequency
All the above mentioned IPs require a clock signal to function. The Genesys2
FPGA board has differential system clock of 100MHz. In our system design
the system clock is connected to the MIG 7 series IP. The MIG 7 series IP is

57



capable of generating multiple clock frequencies. MIG 7 series IP is config-
ured to generate a 100MHz clock signal which is used as clock signal by all
the other IPs in the system. DDR Memory works at 200MHz clock frequency.

Once all the IPs are added and necessary connections are made, the design
is validated to check for any design violations. On successful validation, the
design is synthesized, implemented and bitstream is generated. Once done,
the necessary files and information required to program and configure the
FPGA hardware are generated by exporting the hardware in Vivado.

4.10.3 FPGA Programming using SDK
Once the system design is completed and the necessary files required to pro-
gram the FPGA are generated, an application is created to specify the task
to the FPGA. This includes initializing and configuring the various IP blocks
needed to carry out the necessary task. The task at hand is to receive the coor-
dinates values via UART and store in DDR, run the force IP, send the values
from DDR to host via UART. This is to be carried out for multiple cycles.

Before initializing and configuring the various IP blocks, the necessary
files are included and necessary variables are declared as shown below.

#include "xil_io.h"
#include "xuartlite.h"
#include "xforce_kishore_pipeline.h"
#include "xparameters.h"

XForce_kishore_pipeline force_ip;
XUartLite uart_ip;

#define force_ip_id XPAR_FORCE_KISHORE_PIPELINE_0_DEVICE_ID
#define uart_ip_id XPAR_AXI_UARTLITE_0_DEVICE_ID
#define ddr_base XPAR_MIG_7SERIES_0_BASEADDR

The xparameters.h file contains parameters related to all IPs in the system.
The xforce_kishore_pipeline.h and xuartlite.h files contain the functions re-
quired to use the force IP and UART IP respectively. The xil_io.h file contains
the functions required for memory I/O operations.
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To initialize the UART and force IP, the following functions are used.

XUartLite_Initialize(&uart_ip,uart_ip_id);
XForce_kishore_pipeline_Initialize(&force_ip,force_ip_id);

To send and receive data over UART, the following functions are used.

while(1)
{
RecvCount+=XUartLite_Recv(&uart_ip,(u8 *)input_offset + RecvCount,
1764 - RecvCount);
if(RecvCount == 1764)
break;
}

while(1)
{
SendCount+=XUartLite_Send(&uart_ip,(u8 *)output_offset + SendCount,
1768 - SendCount);
if(SendCount == 1768)
break;
}

The numbers 1764 (441*4) and 1768 (442*4) represent number of bytes re-
ceived and sent. Each floating point value is represented as 4 bytes as per
IEEE 754 Standard.

To set the memory offset for m_axi interface configured as slave, the fol-
lowing functions are used.

XForce_kishore_pipeline_Set_input_r(&force_ip,input_offset);
XForce_kishore_pipeline_Set_output_r(&force_ip,output_offset);

To start the force IP and wait for the Done signal from the IP, the following
functions are used.

XForce_kishore_pipeline_Start(&force_ip);
while(1)
{
if(XForce_kishore_pipeline_IsDone(&force_ip)==XST_SUCCESS)
break;
}
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Communication between Host and FPGA
The communication between the host system (PC) and the FPGA system is
acheived on the host side with the help of a python program. The python
program does the following tasks:

1. Read floating point coordinates data from .txt file.

2. Convert the floating data into bytes and transmit the data byte by byte
over UART using Serial library.

3. Receive the energy and force values, convert the received data in bytes
to floating values and save as .txt file.

60



Chapter 5

Results and Analysis

This chapter presents the results obtained from implementing the ANN-MD
System on CPU, GPU and FPGA. The results are analysed and a compara-
tive study is carried out on results obtained from implementing the ANN-MD
System on CPU, GPU and FPGA.

5.1 Data Analysis
The ANN-MD calculations are carried out on CPU, GPU and FPGA. The
specifications of the CPU, GPU and FPGA used are given below.

CPU GPU
CPU Name Intel Xeon GPU Name Nvidia Tesla T4
RAM Size 12GB RAM Size 16 GB
CPU Cores 1 GPU Cores 2560
Frequency 2.3 GHz Frequency 585 MHz

FPGA
Board Name Genesys2 FPGA Board
FPGA Architecture Kintex - 7
FPGA Part xc7k325fttg900 - 2

Hardware Components of FPGA
CLBs 50,950
DSPs 840
BRAM (18KB) 890
FFs 4,07,600
LUTs 2,03,800
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Note:

1. Each CLB consists of four LUTs and eight flipflops.

2. Each DSP consists of a pre-adder, a 25 x 18 multiplier, an adder, and an
accumulator.

5.2 GPU Results
Google Colab platform is used to utilize the GPU services. Google Colab pro-
vides Nvidia Tesla T4 GPU for research purpose free of cost. The energy and
force calculations are performed on the Tesla T4 GPU using Google Colab.
Colab is a cloud platform that provides free access to computing resources,
including GPUs and TPUs. It’s environment is based on Jupyter Notebook
and has CUDA preinstalled in it. A couple of steps are required to configure
Colab so as to run CUDA programs on GPU using Colab.

1. Change Runtime configuration to use GPU services

• In the Runtime tab, select Change Runtime Type and opt for GPU
in the Hardware accelerator options.

2. Install and load nvcc extension for Jupyter Notebook

The following code is used to install and load the nvcc extension for
Jupyter Notebook

!pip install git+https://github.com/andreinechaev/nvcc4jupyter.git
%load_ext nvcc_plugin

The first line installs the NVCCPlugin from the github repository men-
tioned. The second line uses %load_ext cell magic command to load the
installed extension.

To check the version of CUDA available the following command is used.

!nvcc –version

Output:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Cuda compilation tools, release 11.8, V11.8.89
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Kernel Configuration
In CUDA code, the energy and force kernels are written in such a way that
each instance of kernel calculates energy and force of one particular atom
which is decided by thread indexing. So the total number of kernel instances
required for Au147 and Au309 are 147 and 309 respectively. Different ker-
nel configurations of blocks and threads per block for the required number of
kernel instances are used and there performance is studied. The kernel com-
bination which gives better timing results is choosen. Combinations from 1
block with 147 threads (1,147) to 147 blocks with 1 thread each (147,1) are
used. All the configurations have shown similar timing results with no larger
deviations. Since each block executes on a single streaming multiprocessor
(SM), for better SM utilization 147 blocks with 1 thread per block configuar-
tion is choosen for Au147 calculations. Similarly, 309 blocks with 1 thread
per block configuartion is choosen for Au309 calculations.

int nB; // Number of blocks
int nTpB; //Number of threads per block

energy <<< nB,nT pB >>>(xyz,nlm,meangtot,gtotmin,gtotmax,
a01,a12,a23,t_cnlm,grad_e,ene);
cudaDeviceSynchronize();

forcee<<< nB,nT pB>>>(xyz,nlm,meangtot,gtotmin,gtotmax,t_cnlm,
grad_e,force);
cudaDeviceSynchronize();

* (nB,nTpB) is choosen as (147,1) and (309,1) for Au147 and Au309 cal-
culations respectively

Once the kernel configuration is set, the energy and force calculations and
integrated with the verlet algorithm and run for multiple MD steps and the
energy values are verified.

Energy and Force Calculations
The energy and force calculations are performed on single CPU system and
a heterogeneous (CPU + GPU) system. The calculations on both the sys-
tems are verified by comparing the sum of energies of all the atoms in the
nanocluster.
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Figure 5.1: Au147 Energy Plot

Figure 5.2: Au309 Energy Plot

Figures 5.1 and 5.2 show that the energy values for Au147 and Au309 ob-
tained CPU system and heterogeneous (CPU + GPU) system are same upto
two decimal point values. The above graphs indicate the correctness of en-
ergy and force calculations on the CPU + GPU system.

After verifying the energy values, the ANN-MD system is run for multi-
ple MD steps (MD Cycles) on the heterogeneous (CPU + GPU) system. The
timings results obtained for 1, 100 and 500 MD steps are represented as GPU
timings in the table below. The GPU timing results are compared with timing
results presented in [12] obtained by running the ANN-MD calculations on a
HPC Server. In [12], the calculations are carried out using the HPC Server
consisting of 7 CPUs by parallelising the calculations using Message Passing
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Interface (MPI).

Before running the ANN-MD system for multiple steps, the MD system
has to be initialized. This step add a MD step overhead to the total MD steps.
The below timing results includes the mentioned one MD initialization step
overhead. In the following table, the timing results of Au147 system are rep-
resented without parenthesis and the timing results of Au309 system are rep-
resented in parenthesis for 1, 100 and 500 MD steps.

MD Steps HPC Server Timings GPU Timings
1 4.18 sec 1.22 sec

(16.75 sec) (3.26 sec)
100 3.51 min 61.91 sec

(14.08 min) (164.31 sec)
500 17.43 min 307.19 sec

(69.94 min) (817.83 sec)

The above comparative study shows that an acceleration of 3.4 times is
achieved by the heterogeneous (CPU + GPU) system in comparison with the
HPC Server with 7 CPUs for ANN-MD calculations of Au147 system. For
Au309 system, an acceleration of 5.1 times is achieved by the heterogeneous
(CPU + GPU) system in comparison with the HPC Server with 7 CPUs.

5.3 FPGA Results

IP Design for FPGA
The ANN based energy and force calculations are packaged into an IP using
Vivado HLS. The C code for ANN based energy and force calculations is syn-
thesized initially without any directives and the synthesis report is shown in
the table below. The C code is then optimized to reduce the latency by adding
required directives as discussed in section 4.10.1 and the synthesis report for
Au147 calculations is shown in the table below.
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Without Pipeline Directive - Au147
Latency (Clock Cycles)
Minimum Maximum
120,589,559 10,137,028,292

Resource Utilization
BRAM_18KB DSP FF LUT

Used 282 133 25,138 40,763
Available 890 840 407,600 203,800
Utilization (%) 31 15 6 20

With Pipeline Directive - Au147
Latency (Clock Cycles)
Minimum Maximum
16,236,170 204,895,970

Resource Utilization
BRAM_18KB DSP FF LUT

Used 287 361 114,619 102,027
Available 890 840 407,600 203,800
Utilization (%) 32 42 28 50

Similar to Au147 calculations, Au309 calculations are also packaged into
an IP and optimized to reduce the latency by adding required directives. The
synthesis report for Au309 calculations is shown in the table below.

Without Pipeline Directive - Au309
Latency (Clock Cycles)
Minimum Maximum
295,283,201 44,538,963,998

Resource Utilization
BRAM_18KB DSP FF LUT

Used 562 133 25,306 41,224
Available 890 840 407,600 203,800
Utilization (%) 63 15 6 20
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With Pipeline Directive - Au309
Latency (Clock Cycles)
Minimum Maximum
61,160,390 818,148,590

Resource Utilization
BRAM_18KB DSP FF LUT

Used 568 361 114,795 102,227
Available 890 840 407,600 203,800
Utilization (%) 64 42 28 50

Note:

1. The C code contains arrays of large dimensions and many nested loops.

2. ARRAY_PARTITION directive is used to partition the arrays to imple-
ment using the BRAMs.

3. PIPELINE directive is used to pipeline the nested loops so as to reduce
the latency of the loops.

4. Adding an extra PIPELINE directive has resulted in the resource uti-
lization percentage of some FPGA components to go beyond 100%.

Energy and Force Calculations
Using the optimized IPs, a system-level design is implemented on the Genesys2
FPGA board for calculating the energy and force values of Au147 and Au309
systems. The following system-level configurations are used:

• System Operating Frequency: 100 MHz

• Communication Protocol: Universal Asynchronous Receiver-Transmitter
(UART)

• UART Baud Rate: 115200 Bits per second (bps)

• UART Frame:

Start Bit D0 D1 D2 D3 D4 D5 D6 D7 Stop Bit
logic 0 logic 1
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Using the mentioned configuration, the coordinates are sent to the FPGA
system via UART in the form of bytes.The FPGA system receives these values
and stores them in the DDR Memory. After all the coordinates are received
and stored in DDR, the IP is started to perform the energy and force calcu-
lations. The IP copies the coordinates data from the DDR memory, does the
required calculations and copies the energy and force values into the DDR
Memory. Once the IP has completed its calculations, the FPGA system sends
the energy and force values from DDR memory to the host (CPU) via UART.

• Number of Bytes received by the FPGA System:
441*4=1764 (927*4=3708)

• Number of Bytes sent by the FPGA System:
442*4=1768 (928*4=3712)

Bytes Received Bytes Sent Time
Au147 System 1764 1768 0.32 sec
Au309 System 3708 3712 0.66 sec

The received energy and force values matched with the energy and force
values obtained from GPU for a single cycle. On verifying the correctness
of the data received,the FPGA system for energy and force calculations was
integrated with the verlet algorithm running on the CPU to compute ANN-
MD calculations for multiple MD steps. Running the system for multiple MD
steps resulted in the following:

• Energy values received for different MD steps do not match the energy
values obtained using GPU shown in figures 5.1 and 5.2.

• Two consecutive MD steps have the same energies.

Since the correctness of the IP calculations are verified, the above obser-
vations should be due to the communication between the CPU and the FPGA
system. This arises due to the continues and fast nature of the transmissions
between both the CPU and FPGA system. The lack of synchronization be-
tween the CPU and FPGA system may also be a reason for such outcomes.
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Chapter 6

Conclusion

6.1 Contributions
ANN-MD calculations have been implemented for multiple MD steps on a
heterogeneous (CPU + GPU) system for Au147 and Au309 clusters. This has
been achieved by offloading the energy and force calculations onto the GPU
for parallel processing. The coordinate values for next time step are calcu-
lated on the CPU using the energy and force values calculated by the GPU.
The timing results obtained for multiple MD steps have been compared with
HPC Server timings in [12]. An acceleration of 3.4 times and 5.1 times com-
pared to the HPC Server, has been achieved for Au147 system and Au309 sys-
tem respectively. The energy and force calculations for Au147 system and
Au309 system are also implemented on an FPGA and the timing results for
the calculations are presented.

6.2 Future Work
In FPGA implementation, communication between host (CPU) and FPGA
board plays a major role in deciding the overall system performance. In this
project, while running the ANN-MD calculations for multiple steps on FPGA,
the energy values for both Au147 and Au309 systems do not follow the graphs
shown in figure 5.1 and 5.2 respectively. One reason could be the lack of
proper data synchronization mechanism between the host and FPGA. Anal-
ysis can be done to investigate the reasons behind the deviation of energy
values. Adopting an efficient data synchronization mechanism between the
host and the FPGA board which can be used with different communication
protocols (UART, Ethernet, PCIe etc) can help in rectifying the issue.
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