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Abstract 

The advancement in the microcontroller technology with time, have improved its processing power 

along with its power efficiency, in addition to enhanced memory and communication capabilities. These 

capabilities, opens the pathway for the integration and usage of Artificial Intelligence (AI) into the embedded 

systems, which enables its usage into the real-time applications of automotive Electric Vehicles (EVs). 

Accordingly, this thesis work highlights the behavior of enlisted Machine Learning (ML) algorithms, which 

when applied to the target vehicle i.e., Off-Road Vehicles such as electric tractors, to achieve application 

requirement needs. 

 Automotive industry is taking efforts to migrate towards EV, taking a step towards sustainability. 

Electric motor drives play a key role in the architecture of EV. With this importance of electric motor drives, 

need arises in terms of its safe operation during the lifecycle of the vehicle. Different vehicle protection 

measures are to be employed to prevent its failure due to thermal stress i.e., motor temperature. 

 Detection of abnormalities in terms of rise in temperature above warning or critical motor 

temperature, shall allow the longetivity of the motor and lead to vehicle performance under stress conditions 

both physically and internally. To achieve the same, ML models were identified after doing literature study 

and trained on available bench mark data and then applied to actual target vehicle. 

 Two ML algorithms i.e., Extreme gradient boosting (XGBoost) and Random Forest Regressor (RFR) 

along with two Deep-Learning (DL) i.e., Long Short-Term Memory (LSTM) and Convolutional Neural 

Network (CNN) algorithms are considered in this thesis work, to understand algorithms’ behaviour and 

evaluate algorithms’ performance in both ML and DL based models, when trained with real target vehicle 

datasets recorded from electric motor drives used in off-road vehicles. 

 XGBoost demonstrated the promising results when compared to targeted models and proved its 

feasibility in predicting the motor temperature when used for electric motor drives for off-road vehicles. This 

evaluation was done using the performance metrics such as Mean Absolute Error (MAE), Mean Squared 

Error (MSE), R Squared (R2)  and Root Mean Squared Error (RMSE). 

 

Index Terms: Electric Vehicles (EVs), Thermal Management, Motor Temperature, Time Series Analysis, 

Supervised Learning, Machine Learning (ML), Temperature Prediction 
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Chapter 1 

1 Introduction 

This thesis work aims to: 

• Use available machine learning (ML) or deep-learning (DL) regression-based predictive algorithms 

to assist the applications in taking action based on available data from the mounted sensors and 

motors. 

• Identify the key steps and different stages of the framework that enable the integration of machine 

learning (ML) concepts into real-world automotive applications. 

• Initially, targeted machine learning (ML) algorithms are fine-tuned and trained with the available 

data sets to prepare the development environment. Later, training and testing are done with the target 

vehicle datasets. 

1.1 Motivation 

Technological advancements are one of the key driving factors in the adoption of Electric Vehicles (EVs). 

The use of EVs has not only reduced vehicle emissions but also increased efficiency compared to internal 

combustion engines [4]. Accordingly, induction motors are used for the development of EVs. The use of 

electric motors, such as PMSM (Permanent Magnet Synchronous Motor) [1], may become exhaustive with 

vehicle drive time and conditions. This leads to the motivation of our first and second objectives, i.e., to 

manage the heat of the electric motor used in EV powertrain design and to identify factors that affect the 

motor's performance. 

Enhancements in the capabilities of the microcontroller, such as processing power, memory, and 

communications, have led to the adoption of artificial intelligence (AI) in real-time embedded applications in 

the automotive industry. These capabilities allow one to build a lightweight AI model that is compatible with 

available ECU resources or use edge computing along with IIoT and cloud services in machine learning 

(ML) applications [10]. The target vehicle aims to use the output from the lite model in decision-making as 

one of its features. This leads to the motivation for the third objective, i.e., to develop an AI-enabled feature 

that will predict the critical temperature and failure time of the motor. Based on this information, we reach 

our fourth objective, i.e., where the feature shall take corrective measures based on predicted behaviour. 
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1.2 Thesis Objectives In-Scope 

Key research objectives were identified that are within the scope of this thesis work. The above-mentioned 

brief background description, with the aim in Section 1 and motivation in Section 1.1, helps to list in-specific 

objectives leading to the building of the feature requirements and their implementation. 

The following list of objectives forms a high-level problem statement to build the required feature. 

• To manage heat from the contributing sources in an electric motor for off-road vehicles. 

• To identify determining factors on which temperature will affect (degrade) the performance of the 

motor. 

• To predict the behaviour of the target motor based on the above-identified attributes based on data 

received from sensors and motors by applying target AI algorithms. 

• To prevent thermal shutdown based on predicted behaviour, i.e., take corrective action when the 

warning temperature is reached. 
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1.3 High Level Feature Execution Layout 

Brief objectives, as listed in Section 1.2, give us an idea about the high-level requirements. These objectives 

help to define the problem statement i.e., to estimate the motor temperature of an electric motor for 

continuous time-series data. The end-to-end development stages of the application are illustrated in figure 1-

1.  

 

Figure 1-1: High-Level Block Diagram 

In the first stage (section 3.3.1), the communication interface for the target vehicle is identified, i.e., 

over the CAN bus (Controller Area Network). The ECU of the target motor controller uses this CAN bus to 

send the motor information to the requester application. This way, the required information is captured from 

the target motor and sensors. How the captured data is inferred and other steps are detailed later in 

Section 3.3.1. Later, in the second stage (section 3.3.2), the data set goes through pre-processing and feature 

engineering to prepare the model input that is required to execute model training. In this stage, the input and 

target feature attributes are selected or dropped based on the strong correlation matrix of the feature 

attributes [8]. 

In the initial stage of thesis work, research papers based on their relevance to the topic were sorted, 

and a comparative study of the AI algorithms was done where models were trained on data sets obtained 

from PMSM or Electric Motor. The models were sorted based on the type of supervised learning, i.e., ML or 
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DL, and their performance results as specified in different study works. Evaluation results were observed 

quite efficiently when decision-tree-based regression models, i.e., RFR and XGBoost, were employed. 

Similarly, LSTM and 1-D CNN were shortlisted based on their applicability even in applications of 

regression-based prediction. 

In the third stage (section 3.3.3), four models, i.e., RFR, XGBoost, LSTM, and 1-D CNN, are 

identified, and their hyperparameters are fine-tuned, trained, and evaluated to select an appropriate model 

that meets the objectives (section 1.2) efficiently. Their performance is evaluated based on four metrics, 

namely MAE, MSE, R2 score, and RMSE. These metrics were chosen to compare the results from available 

model applications in similar environments and with similar objectives. 

In the final stage (section 3.3.4), the trained model is then used to predict the motor temperature and 

the failure time. The vehicle ECU shall take corrective measures based on the prediction information. It may 

control the motor speed or turn it off based on threshold conditions, which prevents motor damage and 

enhances the longevity of the motor. This way, the application of target models is meant to satisfy the thesis 

objectives. 
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1.4 Organization of the Thesis 

The aim is to give the reader an idea of how the thesis is structured and its brief summary. The 

subsequent chapters of the thesis will contain a detailed and in-depth analysis of the research topic. 

Chapter 2: Provides a comprehensive review of the relevant literature on the thesis topic. Identifies the 

four models that can be used to achieve the objectives. 

Chapter 3: Industrially applied powertrain architecture is explained. Its detailed system overview is 

given and emphasizes the in-scope features to be considered for the application of the selected ML model. 

The deployment of the model in a real-time application is discussed with an end-to-end system architectural 

diagram. 

Chapter 4: This chapter selects the target models filtered from available research work with similar 

problem scopes. It explains, in brief, the selected four models. 

Chapter 5: This chapter details the design and how experiments are conducted. It first highlights in a 

procedural manner how analysis is done for the PMSM and target vehicle datasets. It then further discusses 

the results of the different models applied and their performance.  

Chapter 6: This chapter interprets the results of the implementation and discusses their implications for 

the research field. It also provides a critical reflection on the research process and identifies potential 

limitations and areas for future research. 

Chapter 7: Summarizes the main findings of the research and restates the contributions of the research 

work. It also discusses the significance of the research and its potential impact on the upcoming research 

benchmarking the empirical results obtained from the target vehicle. In the end, it highlights the areas where 

it can be further worked upon as a future scope. 

Overall, this section provides a roadmap for the reader, highlighting the key content of each chapter 

and how they fit together to satisfy the objectives of the project. 
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Chapter 2 

2 Literature Survey 

In the first part of this chapter, a review of research papers is done, and appropriately relevant models are 

identified based on their applicability to a similar problem statement as ours. Finally, we discuss several 

metrics used to evaluate the performance of our model, along with normalization techniques. 

2.1 Review of the Past Work 

In reviewing past work, our problem statement focuses on developing a system warning that is notified in 

case of any abnormality in the temperature of the electric motor used for off-road vehicles, i.e., electric 

tractors. Hence, our problem statement narrows down based on where it is applied, the application 

requirement, and the type of data. The data collected from our target vehicle is from different sensors 

internally and is continuous time-series data. The application is for the prediction task and is applied to 

embedded systems with Vehicular Controller Units (VCU). 

Similarly, the problem statement is addressed by Kirchgassner et al. for the prediction of 

abnormalities. Also, it highlights the challenges of applying deep learning to the prediction of temperature 

for monitoring purposes [6]. The research paper also benchmarked the state-of-the-art datasets captured from 

the Permanent Magnet Synchronous Motor (PMSM) for different test runs. This availability of datasets has 

allowed us to perform experiments on applying AI models using these datasets. Their performance with real-

time applications gives us the confidence to utilize the AI capabilities in our embedded systems with limited 

resources.  

Li et al., in their research study, proposed using deep learning-based LSTM models provided the 

input-output feature relationship is known [1]. Here, they used the average absolute correlation values to 

select attributes. Torque is dropped from the input features because of its low AvgAbsCorrCoef value of 

0.089. MSE is used as a critical evaluation metric. Their proposed LSTM-based models' MSE and MAE 

results are compared (section 6.1) with our experiment results to prepare our baseline project, which is 

applied to the target vehicle at a later stage. 

 Hosseini et al., in their research, have proposed LSTM and 1-D CNN based models applied to the 

same PMSM datasets [5]. The CNN model accurately predicted the desired target values with high precision 

and an average MSE of 2.64°𝐶2, as per their experimental results. 
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 Al-Gabalawy et al., in their research, have used SVM and XGBoost models for temperature 

prediction [4] and MSE and RMSE as the evaluation metrics. The test RMSE value of 0.589 for SVM was 

the lowest among the other applied models in their work. The XGBoost test and train RMSE values were 

found to be 0.829 and 1.226, respectively. 

Kim et al., in their research, have focused on developing an optimized predictive maintenance model 

based on LSTM for machinery's bearing components [8]. They have specifically worked on the tuning of 

LSTM design hyperparameters. 

Sampaio et al., in their research, have applied the Random Forest Regression model [2]. They have 

worked on the estimation of failure time. RMSE is used as an evaluation metric to examine performance. 

The study by Wallscheid et al. involved exploring the potential of recurrent neural networks (RNNs) 

to accurately predict the temperature of PMSMs. Particle swarm optimization was utilized in their work to 

determine appropriate hyper-parameters, such as the number of hidden layers and neurons. 

Savant et al.in their research, have applied SVM, Polynomial regression and RFR and evaluated the 

results using R-Squared metric for Stator Winding Temperature and Rotor temperature and Torque. Out of 

the three RFR performed better, R-Squared values of stator winding for the three were 0.936, 0.993, and 

0.932 respectively. 
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2.2 Normalization Techniques 

2.2.1 Standard Scaler 

Standard Scaler, also known as Z-score normalization, is a commonly used normalization technique in data 

preprocessing. It rescales the features in such a way that their standard deviation is one and their mean is 

zero, resulting in a distribution that is centered around zero. The mathematical expression [4] for the standard 

scaler is: 

 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
x𝑖−μ

𝜎
 (1) 

where mean (μ) is given by: 

 μ =
1

𝑁
∑ (𝑥𝑖)

𝑁
𝑖=1  (2) 

where standard deviation (𝜎) is given by: 

 𝜎 = √
1

𝑁
∑ (𝑥𝑖 −  μ)2𝑁

𝑖=1  (3) 

Here N, 𝑥𝑖, and i denote the number of samples, the original value, and the sample index. It helps reduce the 

effects of outliers and improves the performance of an optimization algorithm. 

2.2.2 Min-Max Scaler 

Min-Max Scaler is a popular normalization technique used in data preprocessing to rescale the values of a 

feature into a fixed range between 0 and 1. It transforms the data such that the minimum and maximum 

values are 0 and 1, respectively, with all other values scaled proportionally between these two values. The 

mathematical expression [8] is: 

 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
x − x𝑚𝑖𝑛

x𝑚𝑎𝑥  − x𝑚𝑖𝑛
 (4) 

Where  x𝑚𝑖𝑛 and  x𝑚𝑎𝑥 are the values of the attribute to be normalized, i.e., the original value (x). It can help 

improve the convergence of some optimization algorithms and reduce the effects of outliers. The Min-Max 

Scaler may not be suitable for datasets with extreme outliers or a non-normal distribution. Z-score (standard 

scaler) normalization may be used instead. It is recommended that it be applied separately to training and 

testing datasets to avoid data leakage and overfitting. 
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2.3 Evaluation Metrics 

MAE, MSE, RMSE, and R-squared are commonly used evaluation metrics in regression analysis to measure 

the performance of predictive models. Each metric provides unique insights into the strengths and 

weaknesses of a model. 

2.3.1 Mean Absolute Error (MAE) 

MAE is a metric used to measure the size of errors in a group of predictions. It's computed by finding the 

average absolute difference between the predicted and actual values. The formula for calculating MAE is: 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑁
𝑖=1   (5) 

Here N, 𝑦̂, 𝑦𝑖, and i denote the number of samples, the predicted value, the actual value, and the index of the 

sample. MAE is beneficial to evaluate a model's performance in the presence of outliers, as it is less affected 

by them than RMSE. A lower value of MAE indicates that the model is more accurate and better at 

predicting the target variable. 

2.3.2 Mean Squared Error (MSE) 

The real-value predictions are often evaluated by using an evaluation metric such as Mean Squared Error 

(MSE). The MSE is used to calculate the average of the squared difference between predicted and true 

values, and it is a standard metric for regression tasks. The mathematical expression for MSE is: 

  

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖 )

2𝑁

𝑖=1
  (6) 

Here N, 𝑦̂, 𝑦𝑖, and i denote the number of samples, the predicted value, the actual value, and the index of the 

sample. A lower value of MSE indicates that the model is more accurate and better at predicting the target 

variable. MSE is particularly useful when the data does not contain outliers, as it is more sensitive to outliers 

than MAE. MSE is a widely used metric in machine learning (ML) algorithms, as it can be used as a loss 

function to optimize the parameters of a model. 

2.3.3 R Squared (𝑅2
) 

R-squared is a statistical measure used to evaluate the goodness-of-fit of a regression model to the data. It 

helps to understand variance proportionality in the target and independent variables. It can take values 

between zero and one, where one indicates a perfect fit of the model to the data. The mathematical 

expression [4] for R-squared is: 
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 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖 )2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖 )2𝑁

𝑖=1

 (7) 

here N, 𝑦̂, 𝑦𝑖, 𝑦̅𝑖 and i denote the number of samples, the predicted value, the actual value, the mean value of 

the dependent variable, and the index of the sample. It must be noted that R-squared can be influenced by 

outliers and may not be appropriate in all situations, such as when the data is not normally distributed or 

when there are nonlinear relationships between the independent and dependent variables. 

2.3.4 Root Mean Squared Error (RMSE) 

A statistical method called Root Mean Squared Error (RMSE) is employed to evaluate the accuracy of a 

predictive model by measuring the average distance between the actual and predicted values. It calculates the 

square root of the average squared differences between them. The mathematical expression [2] for RMSE is: 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖 )2𝑁

𝑖=1   (8) 

Here N, 𝑦̂, 𝑦𝑖, and i denote the number of samples, the predicted value, the actual value, and the index of the 

sample. RMSE helps evaluate the performance of a predictive model because it measures the average 

magnitude of the errors in the model's predictions. It helps understand the spread of the errors and can be 

compared to the range of the target variable to determine the relative size of the errors. A lower value of 

RMSE indicates that the model is more accurate and better at predicting the target variable i.e., motor 

temperature. Similar to R-Squared, RMSE can also be influenced by outliers. 

2.4 Summary 

In this chapter, we have done a survey of the methods for normalization techniques and evaluation 

metrics that are to be used for estimating performance of the machine learning (ML) algorithms. Research 

papers with similar problem statement are studied to understand the different types of algorithms which have 

been used for estimation of motor temperature for continuous time-series data. Evaluation results from these 

research papers are to be further used in our thesis work to validate our experimental results from applied 

machine learning algorithms. PMSM datasets [10] are used for the initial experimentation because they will 

help evaluate the applied techniques and prevent any rework in the later stage for validation when compared 

proven results. 

Among the above-mentioned study work, except for Sampaio et al., all research papers have used the 

PMSM dataset for conducting experiments and have proposed different strategies at different stages of the 

development cycle. Their research studies clearly tell us that the estimation of the thermal temperature of an 
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electric motor can be achieved with precision and accuracy. Keeping this in mind, we consider these studies 

in the later stage to identify our target models, which are to be applied to target vehicles for off-road 

vehicles, i.e., electric tractors. 
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Chapter 3 

3 System Description 

This chapter follows the top-down approach in highlighting the requirement of the system. Aim is to 

highlight and explain where the AI algorithms are to be applied in the system and give reader clear insights 

about the target vehicle and its in-scope components. 

3.1 Powertrain Layout of Target Vehicle 

The two-motor variant powertrain design of the target electric vehicle is illustrated in figure 3-1. In a general 

study, it is observed that energy consumption for a dual motor is found to be better than that of a single 

motor, as in [12]. 

 

Figure 3-1: Powertrain layout of 2 Motor Variant 
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• Traction is equipped with a high-capacity lithium-ion battery that provides the necessary power to the 

motors. 

• Motor 1, i.e., the traction motor, is responsible for providing traction to the wheels, allowing vehicle 

movement. 

• Motor 2, i.e., the Power Take-Off (PTO) motor, is responsible for driving the PTO system, which 

allows the target vehicle, i.e., an electric tractor, to power various agricultural farm implements such 

as mowers, balers, and plows. 

• Two inverters are used to control the speed and torque of their respective motors. Their primary role 

is to convert direct current (DC) power from the battery to alternating current (AC) power used to 

drive the motor. 
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3.2 System Overview 

The system design of the target electric vehicle is illustrated in figure 3-2. The system has five main parts 

that work together to power two inverters. 

• There is an onboard charger (OBC) that charges the battery pack using electricity from an external 

power source. 

• The battery pack consists of two batteries connected in parallel and provides the DC power needed 

for the system. 

• The battery management system (BMS) manages and monitors the health and charge level of the 

batteries to keep them working safely. 

• The power distribution unit (PDU) distributes the DC power from the battery pack to different parts 

of the system, including the two inverters. 

• The battery thermal management system (BTMS) keeps the temperature of the batteries at safe levels 

and can even actively control the cooling or heating if necessary. 

All the specified parts work together to ensure the system can power the two inverters safely and efficiently. 

Combining these parts ensures the system operates without any problems or damage. 

 

Figure 3-2: System Overview of the target vehicle 
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3.2.1 Inverter and Motor Interface 

As shown in figure 3-1, this section narrows down the system to highlight the specific in-scope area of 

interest, i.e., inverter-motor interfacing, as shown in figure 3-3. When an inverter powers a motor, there are 

different ways they communicate with each other, as listed below. 

• The inverter sends electricity to the motor in a way that can control its speed and power. 

• The inverter sends control signals to the motor to turn it on or off, change its direction, speed, or 

power, and detect if there is a problem. 

• The information (such as phase voltage and current, position, and temperature sensor signals) is 

exchanged between the inverter and motor using different protocols like controller area network 

(CAN). Motor controllers receive the data from sensors and motors in the form of analog inputs. The 

motor controller transmits such signal information over the CAN bus. 

• Both the inverter and motor have protection signals that detect problems like overheating or 

overloading and can shut down the system to prevent damage. 

This way, the inverter, and motor communicate with each other to work together effectively and safely. 

Electric motors for such applications are often paired with controllers, such as the Curtis 1239E model data 

sheet [13], for reference purposes only. Refer to the user manual of the example controller to have a clearer 

understanding of the similar interfaces talked about in this section. Refer controller user manual for details 

[14] on transmitted and received signals from the motor controller. 

 

Figure 3-3: Interface diagram of the Motor and Inverter 
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3.2.2 Target Electric Motor Specifications 

The values of induction motors used in industrial applications, such as our target vehicle, with different 

parameter values in the range are specified in table 3-1. This information further helps in making design 

decisions with respect to controlling strategies of the motor when the abnormality is estimated. 

Table 3-1: Three Phase Induction Motor Specifications 

PARAMETER VALUE 

Operating Voltage 75-110 V 

Operating Speed 3000-8000 rpm 

Operating Torque 15-90 Nm 

Operating Power 5-15 kw 
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3.3 Step Flow Diagram 

This section elaborates on the high-level feature block diagram, as discussed in Section 1.3. An effort is 

made to provide detailed steps from data capture to model deployment. The first stage is to capture data, 

followed by its processing and extraction of features with which applied AI models (section 4) are trained. 

The trained models are then used for the critical motor temperature estimation with real-time data, and 

corrective actions are taken by the ECU application, as discussed in detail in Section 3.3.4.   

 

Figure 3-4: Sequential Block Diagram 
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3.3.1 Capture Data 

The process followed is to record and capture information and validate it for different load profiles. The 

following steps can be followed to capture data in a structural and systematic manner: 

 

Figure 3-5: Detailed Illustration for Raw Data Capturing 

• The scope is to run a motor with different loads, and its purpose is to capture the signal data as 

detailed in Section 3.2.1, which is relevant to the defined objectives (Section 1.3). 

• These signals (phases and temperature) are provided by sensors available in the motor. 

• Information is recorded using data acquisition tools when interfaced with the controller area network 

(CAN) bus. Signal data is distributed into different messages as per the specification of the target 

motor used. 

• Recorded CAN logs contain 8 bytes of informative data each, distributed in different message 

identifier frames. The ECU requests this signal data through control commands and receives the 

signal data over the bus. The periodicity of the received message frames can differ according to the 

requirements. It helps manage the CAN bus and central processing unit (CPU) utilization of the ECU. 

• Currently, available data for the target vehicle Motor 2, as detailed in Section 6.1.2, from the lab 

consists of four load profiles (based on the implements moving speeds in rpm, i.e., 350, 450, 540, and 

650). 
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• The data received is time-series data; hence, this should be taken into account while selecting the AI 

models to be applied to the given problem statement. 

• Since the received signal data is distributed into different CAN messages, the received signal shall be 

recorded sequentially, and its occurrence shall depend on the defined periodicity of its control signal 

command. Samples of the data set must be prepared from these logs so that all feature attributes 

information is available to be used as input. 

• Samples obtained are required to be filtered based on message identifiers to group similar signal data 

together in sequential order with respect to time. 

• The raw data set is prepared using these recorded messages from the identified attributes (Table 5-4). 

o Frames are filtered based on message identifiers for the respective signal information present 

in the respective messages.  

o Data frame format details are provided by motor controllers. Refer to an example motor 

controller user manual [14]. 

o This frame format (with unique message identifiers) information, along with data length and 

resolution, is used to extract all signal information, which constitutes a data set comprising 

data attributes. 

This way, raw data is clubbed together from recorded CAN bus logs and ready to be fed as input to the data 

processing stage. This is the first stage in the application of AI models, and the quality of the data does play 

an important role in the training of applied models. 

3.3.2 Data Pre-Processing and Feature Engineering 

The raw data made available from the data collection stage needs to be processed to prepare a final data set 

that has all required attributes and derived attributes. To yield an efficient result from data training, data must 

go through cleaning, smoothing, scaling, transformation, feature engineering, and splitting operations. These 

stages make it possible for data to be free from any outliers, overfitting, or underfitting. 

3.3.2.1 Integrate Raw Data 

Raw data from multiple load profiles and sources is combined into a single dataset with the desired 

formats and resolutions. The main aim here is to filter out inconsistencies and redundancies.  
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3.3.2.2 Data Cleaning 

The integrated data set needs to be processed in order to be ready for model training. For that purpose, the 

following steps are followed while performing the pre-processing data cleaning operation: 

• Duplicates are removed. 

• The missing data handling is done. Heat map visualization allows us to identify any pattern in 

missing values and determine the appropriate method for handling them, such as imputation or 

deletion. 

• Outliers’ detection is done by applying various techniques, as mentioned later in Section 5.4.1.3. Box 

plots are used for visualization purposes. 

• Detected attributes with outliers have to be cautiously analyzed based on the available information. 

They could be genuine extreme values, which can be kept as it is for consideration in modeling, while 

if they are incorrect values based on observation, then they must be removed or imputed. 

• Data smoothing is done using the rolling mean average method for the data [5]. The window size for 

each attribute varies based on the visualized data. 

• Data is imputed for nan values if present after smoothing. 

• There are various ways data is imputed based on its adjoining values in that attribute. Methods such 

as Mean, Median, KNN, and Bayesian Ridge are applied, and their performance is evaluated based 

on metrics as specified in Section 2.3. 

3.3.2.3 Data Transformation 

For data transformation, various methods, such as normalization and feature scaling, are used based 

on the nature of the data. The aim is to have a high-quality data set after transformation is applied without 

changing its original meaning, which helps in accurate analysis and trains quite well with applied models to 

predict motor temperature. 

Normalization of data is often required when attributes of a dataset have values with different units or 

ranges and, hence, are likely to vary in their distribution. Such different scales of data during model fitting 

may introduce bias. High bias during model fitting leads to underfitting. That means the model will not be 

able to capture relevant relationships between input and target features [5]. 

Scaling the data means scaling the values of attributes to a specific range or the common range (often 

used in the range 0 to 1) so that they can be compared and work better with applied algorithms (Section 4). 

The need to perform scaling operations solely depends on the nature of the data and the models to which they 

are applied. A tree-based model may not require scaling. 
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3.3.2.4 Feature Engineering 

The intent of doing feature engineering is to identify meaningful data concerning the domain it is applied to, 

i.e., in our case, data attributes are identified (Table 5-4) based on our main objective (Section 1.2). The aim 

is to estimate the motor temperature of the target vehicle, Motor 2. 

• The feature selection process is done to meet the problem statement, as mentioned above. Input 

features and target features are to be identified. 

• The target feature among all attributes is "Motor Temperature", which is received from the motor 

sensor as analog data and is requested by the Vehicular Control Unit (VCU). 

• ‘Motor Controller Temperature’ is intentionally chosen as an input feature. The idea is to use its 

information to predict the target motor temperature. 

• Inputs other than the identified target feature are considered input features for training purposes. 

• More input derived features can be created based on requirements. For now, in our case, the currently 

available feature attributes meet the objectives; hence, no such inputs were created or derived based 

on any domain-specific formula. 

• The major goal of feature engineering is to prepare the input required for model training by applying 

the models identified in Section 4. 

• The identified four models are RFR, XGBoost, LSTM, and 1-D CNN. 

• An input data set in a numerical matrix shape is required for RFR and XGBoost model fitting. 

• Three-dimensional input is required to be fed to the CNN model. Required data must be of 3-D shape 

with attributes such as the number of samples, time steps, and number of channels. 

• While for LSTM, the first input and output data of shape 2-D (samples, dimension) is prepared. Then 

input data is reshaped to 3-D (samples, time-steps, number of channels) for LSTM model needs. 

3.3.2.5 Data Splitting 

Engineered datasets are required to be divided based on features into two or more sub-sets. Splitting the data 

allows high performance in real-time application. Various points are to be taken into consideration while 

deciding the ratio with which train, test or validation data set. The sub-splitting helps in evaluation the 

performance and accuracy of the model. 

• Data set must be randomly separated so that sub data sets represent entire data set. 

• Ratio of the split depends on the size of the data set. Generally, 70-80% is used for training and 

remaining 30-20% for testing. 
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Data pre-processing prepared data set is generalized and reliable because different analytical points 

such as missing values, outliers, smoothing, normalization and scaling along with feature selection and data 

splitting gives confidence that correct data-set is prepared which is ready for its application. 

3.3.3 Build Model 

Aim is to build the model which has high accuracy in predicting the motor temperature when real time data 

is received. After literature study and research comparison of similar problem statement four models are 

targeted for training and evaluation. Identified four models are namely RFR, XGBoost, LSTM and CNN 

(Section 4). Based on application needs and performance requirement appropriate model shall be selected for 

deployment purpose. 

• Hyper parameters tuning is done based on experimentation and empirical results of the fine-tuned 

parameters which produce high accuracy both in training and test data set. 

• All four models are trained with their respective hyper-parameters and this operation is iterated until 

optimal results are obtained while experimentation. 

• Hyper-parameters and their optimal values are detailed in section 6.4. 

• Model evaluation is done on test dataset and cross-validated to see the accuracy over the complete 

data sub set. 

• Evaluation metrics as identified in section 2.4, namely MAE, MSE, R2 score and RMSE are used to 

validate the results and performance. 

Model is selected based on its accuracy over test and training data set and performance as per evaluation 

metrics. The selected model after performance evaluation is used for the estimation of motor temperature, 

when new real time signal data is received for input features. 

3.3.4 Deploy Model 

Trained models are evaluated based on their performance and selected to be used to meet the objectives of 

this thesis work in this stage. At run time, the sensors signal data is received, this data is fed as input after 

transforming with resolution factor for respective signals, to the trained model and motor temperature is 

estimated along with the failure time. This estimated temperature is checked against the desired warning and 

critical temperature thresholds as per design. When warning temperature is predicted and is not critical than 

configured action is executed, for example, control the motor speed of the target motor. Whereas, if critical 

temperature is estimated which is hazardous for motor and vehicle, then ecu shut-down sequence is initiated. 
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Before turning off the motor, all necessary information which may be required n next power on cycle is 

saved in non-volatile memory. 

 

Figure 3-6:Flow Chart Representation of Trained Model Deployment 

3.4 Summary 

Details discussed earlier in the section gives user a clear idea like what is the target vehicle, where feature is 

to be utilized. Illustrations are made to explain the system overview and what is the area of interest i.e., 

inverter-motor and the process followed from capture of data to the deployment. Until now, reader can 

understand the system as a whole and similar framework can be applied to any embedded vehicular 

applications. Thermal management strategy is discussed through illustrated diagram (figure 3-6) in section 

3.3.4.  
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Chapter 4 

4 Target Algorithms 

During our literature review, we examined various research papers (section 2.1) that had similar objectives to 

ours. In Section 2.1, we discussed these papers and used the information gathered to decide which AI based 

models would be most suitable for our regression-based prediction task problem. Research has shown that 

Deep Neural Networks (DNNs) are effective in addressing industrial problems related to regression, as 

demonstrated in previous studies [1]. This helps us in selection of DNN techniques such as 1-D convolution 

and LSTM for their application in prediction of PMSM temperature. 

A data-driven approach such as a Neural Networks (NN) or black-box model which does not rely on 

motor data-sheet information [13] [14]. It is based solely on empirical measurements and can avoid 

estimation of errors even when physical model assumptions are not met during operation [10]. 

We have considered various factors, including the performance of the models on continuous time-

series data. To gain a better understanding of the behavior of these models when applied to real-time 

applications, we selected both ML and DL models. We ultimately chose four models as our target models, 

namely Random Forest Regression (RFR), Extreme Gradient Boosting (XGBoost), Long Short-Term 

Memory (LSTM), and 1-D Convolutional Neural Network (CNN). 

4.1 Random Forest Regressor 

Random Forest Regressor (RFR) is a supervised learning algorithm used for solving regression problems. It 

is a type of ensemble learning method that constructs a multitude of decision trees at training time and 

outputs the mean prediction of the individual trees as the final prediction. Basic steps of how RFR model 

works are as follows: 

1. Create a random sample of the original dataset using bootstrap sampling. 

2. Build a decision tree using the bootstrap sample, recursively splitting the data based on the feature 

that results in the largest reduction in variance. 

3. Repeat steps 1 and 2 for a specified number of trees, each trained on a different bootstrap sample and 

using a different subset of the available features. 

4. Output of the final prediction of the random forest is obtained by averaging the predictions of all 

individual trees. 
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RFR is a popular algorithm due to its ability to handle high-dimensional data with complex relationships 

between the features and the target variable. It is also resistant to overfitting, as each tree is constructed on a 

random subset of the data, and the final prediction is obtained by averaging the predictions of multiple trees. 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑁

𝑖=1
  (9) 

Where N denotes number of data points, i is data point, 𝑦̂𝑖 is the predicted value at each step for given input 

𝑦𝑖 . The mean squared error (MSE) is utilized to measure the deviation of the data from each node. 

Mentioned formula (Eq. 9), calculates the distance of each node from the predicted and actual value, which 

helps to determine the better decision branch for the forest. 

Hyperparameters of the RFR, such as the number of trees, the maximum depth of the trees, and the 

number of features to consider at each split, can be tuned to improve the performance of the algorithm on a 

given dataset. Cross-validation techniques are used to find the optimal values for these hyperparameters. 

Overall, RFR is a versatile and powerful algorithm that can be used for a wide range of regression tasks. 

4.2 Extreme Gradient Boosting 

XGBoost is an ensemble learning algorithm that utilizes gradient boosting with trees. Is widely recognized 

for its speedy execution time [18] and high-performing algorithm for supervised learning applications [4]. It 

is commonly utilized in regression prediction and has demonstrated exceptional performance in numerous 

ML evaluations. 

XGBoost is to be applied in the context of regression based supervised learning task, where the 

objective is to predict a target variable (𝑦𝑖) based on input training data (𝑥𝑖) that consists of multiple features. 

[16]. Objective function can be defined as: 

 𝑜𝑏𝑗(𝜃) = 𝐿(𝜃) + 𝛺(𝜃)  (10) 

where train loss function is denoted by L and regularization term is 𝛺. The measure of how well our model 

predicts the training data is referred to as the training loss. The mean squared error (MSE) is a commonly 

used metric (detailed in section 2.3.2) to calculate this loss. Whereas, the regularization component (𝛺) of 

the model regulates its complexity and helps to prevent overfitting. With MSE as loss function, objective 

function in eq. 10 can be written as: 

 𝑜𝑏𝑗(𝑡) = ∑ (𝑦𝑖 − (𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)))
2

𝑁

𝑖=1

+ ∑ 𝜔(𝑓𝑖)𝑡
𝑖=1   (11) 
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Where i, t, N, 𝑦𝑖, 𝑦̂, 𝑓𝑡, 𝑥𝑖 and 𝜔 are number of trees, iteration number, number of samples, actual output, 

predicted output, input data, and 𝑖𝑡ℎtree respectively. This way with the objective function we can determine 

how good the particular tree is. Taylor expansion of the loss function up to the second order for eq. 11 can be 

written as: 

 𝑜𝑏𝑗(𝑡) = ∑ [𝑙(𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]
𝑁

𝑖=1
+ 𝜔(𝑓𝑡) + constant  (12) 

Where 𝑔𝑖, and ℎ𝑖 are equated as: 

 𝑔𝑖 = 𝜕𝑦̂𝑖
𝑙(𝑦𝑖 , 𝑦̂𝑖

(𝑡−1)
) (13) 

 ℎ𝑖 = 𝜕𝑦̂𝑖

2 𝑙(𝑦𝑖, 𝑦̂𝑖
(𝑡−1)

) (14) 

First and second order gradients can be written as: 

 𝐺𝑖 = 𝛴𝑖∈𝐼𝑗
𝑔𝑖 (15) 

 𝐻𝑖 = 𝛴𝑖∈𝐼𝑗
𝑔ℎ𝑖 (16) 

Let us see in the tree structure perspective how gain score of a leaf when they are split using eq. 15 and 16, is 

determined. 

 𝐺𝑎𝑖𝑛 =
1

2
[

𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝜆  (17) 

Where 𝐺𝐿, 𝐺𝑅, 𝐻𝐿, and 𝐻𝑅 are first order and second order gradient statistics (eq. 15 and 16) on the loss 

function, and 𝜆 are additional leaf regularizations. Each component in eq. 17 determines score of new left 

leaf, score of new right leaf, original leaf and additional leaf regularization. It is worth noting (figure 4-1) 

that if the gain is less than γ, it would be more beneficial not to include that branch, which corresponds to the 

pruning methods used in tree-based models. 
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Figure 4-1: Tree Leaf Split 

Basic steps of how XGBoost model works are as follows: 

1. Initialize the model hyperparameters, such as the maximum tree depth, learning rate, regularization 

parameters, and the number of trees to be trained (detailed in section 5.5.2). 

2. Calculate the initial predictions for the target variable by computing the mean value of the target 

variable over the training dataset. 

3. Build a new decision tree to correct the errors of the previous trees, using a greedy strategy that 

chooses the split to maximize a gain function. 

4. Apply regularization techniques such as L1 and L2 regularization and early stopping to prevent 

overfitting. 

5. Update the predictions for the target variable by adding the predictions from the new tree to the 

previous predictions. 

6. Evaluate the performance of the model on a holdout validation dataset, using a loss function such as 

mean squared error (MSE) or log loss. 

7. Re-iterate through the steps 3-6 until a stopping criterion is met. 

8. Return the final model as the sum of the initial predictions and the predictions from each tree in the 

ensemble. 

The fundamental concept of XGBoost for regression prediction involves integrating numerous weak 

learners to generate a robust learner. Decision trees are implemented as the base learners and trained 

sequentially, with each tree added to the model one at a time. The weights of the training instances are 

adjusted so that the subsequent trees focus on the regions where the previous trees exhibited weaknesses. 
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XGBoost can learn complex nonlinear relationships between the input features and the target 

variable. XGBoost can be used with limited resources and it requires less computational time [4]. 

4.3 Long Short-Term Memory 

A Long Short-Term Memory (LSTM) cell is a type of Recurrent Neural Network (RNN) architecture that 

is designed to handle long-term dependencies in sequential data. It has a memory cell (figure 4-2) that can 

store information for an extended period and three gates: input gate, forget gate, and output gate, which 

control the flow of information into and out of the memory cell. 

 

Figure 4-2: Single Standard LSTM Cell Diagram 

The input gate (𝑖𝑡) controls the amount of new information that is added to the memory cell, while the 

forget gate (𝑓𝑡)  determines the information that should be discarded from the memory cell. Finally, the 

output gate (𝑜𝑡) controls the amount of information that is outputted from the memory cell to the next time 

step or the output layer. 

The key operations of an LSTM model along with relevant mathematical equations can be summarized 

as below. Where 𝑥𝑡, 𝐶𝑡, and 𝐻𝑡, is the time-series data input quantity, cell state, and hidden state, whereas 𝑖𝑡, 

𝑓𝑡, and 𝑜𝑡 are the LSTM cell gates all with timestamp t. Convolution kernels related to internal states and 

gates and convolution operator are denoted by W, ‘*’ and ′𝑜′ respectively. 

• The forget gate (eq. 18) takes the previous hidden state and decides which parts of it should be 

discarded from the memory cell. It computes a forget vector that determines the information to be 

removed from the cell. 
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𝑓𝑡 = 𝜎((𝑊𝑥𝑓 ∗ 𝑥𝑡) + (𝑊ℎ𝑓 ∗  𝐻𝑡−1) +  𝑏𝑓)  (18) 

• The input gate (eq. 19) takes the current input and decides which parts of it are important and should 

be added to the memory cell. It computes a candidate activation vector using the current input and the 

previous hidden state. 

𝑖𝑡 = 𝜎((𝑊𝑥𝑖 ∗ 𝑥𝑡) + (𝑊ℎ𝑖 ∗  𝐻𝑡−1) +  𝑏𝑖)  (19) 

• The memory cell (eq. 20) stores the relevant information from the previous input and the current input 

based on the input and forget gates (refer figure 4-2). 

𝐶𝑡 = 𝑓𝑡 ◦ 𝐶𝑡−1 + 𝑖𝑡 ◦ tanh (𝑊𝑥𝑐 ◦ 𝑥𝑡 +  𝑊ℎ𝑐 ◦ 𝐻𝑡−1 +  𝑏𝑐)  (20) 

• The output gate (eq. 21) determines how much of the data present in the memory cell will be utilised 

to produce the output. Based on the current input, the prior hidden state, and the information in the 

memory cell, it computes an output vector. 

𝑜𝑡 = 𝜎((𝑊𝑥𝑜 ∗ 𝐶𝑡−1) + (𝑊ℎ𝑜 ∗  𝐻𝑡−1) +  𝑏𝑜)  (21) 

• The hidden state (eq. 22) is the output of the LSTM cell that is passed to the next cell in the sequence. 

It is calculated using the output gate and the memory cell. 

 

𝐻𝑡 = tanh(𝐶𝑡)  ◦  (𝑜𝑡)  (22) 

• Backpropagation is used to train the LSTM model, which entails computing the gradient of the loss 

function relative to the model's parameters and changing those parameters as necessary. 

• The performance of the LSTM model is highly dependent on the choice of hyperparameters such as 

the number of LSTM cells, the learning rate, and the activation function. These hyperparameters are 

tuned using techniques such as grid search or random search to find the optimal combination that 

results in the best performance on the validation set. 

There are several hyperparameters that determine the proper training of an LSTM cell. Some of the 

critical hyperparameters are: 

• Define number of LSTM layers in the network. A network with more layers can capture more 

complex dependencies, but it may be more prone to overfitting. 

• Number of LSTM units in each layer. A network with more units can capture more fine-grained 

details in the data, but it may also increase the computational cost and the risk of overfitting. 

• Utilizing the activation function, nonlinearity is added to the network. LSTM cells frequently activate 

through sigmoid, hyperbolic tangent, and ReLU. 

• Learning rate parameter determines the step size of the optimization algorithm during training. A 

high learning rate can cause the model to converge quickly but may lead to overshooting the optimal 

solution, while a low learning rate can lead to slow convergence and getting stuck in local minima. 
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• During training, units in the network are randomly removed using the regularization process known 

as Dropout. By lowering unit dependency, it can avoid overfitting. 

• Batch size hyperparameter controls how many samples are handled during each iteration. While a 

large batch size can result in high memory usage and quicker training times, it can also produce noisy 

gradients and slow convergence. 

Proper training of an LSTM cell involves selecting the appropriate hyperparameters and optimizing them 

through techniques such as grid search or random search. It also involves carefully initializing the weights 

and biases of the network, selecting an appropriate loss function, and monitoring the training process for 

signs of overfitting or underfitting. 

4.4 Convolutional Neural Networks 

One dimensional Convolutional Neural Networks (CNN) is a type of Deep Neural Network (DNN) that can 

also be used for time-series data analysis and prediction tasks, where the goal is to predict a continuous value 

instead of a discrete label. In a 1-D CNN layers, the final layer is a fully connected layer that outputs a single 

continuous value. One of the most significant advantages of CNNs is their spatial-local connectivity, which 

allows layers to share parameters, making them efficient learning models. It has been observed that CNNs 

not only provide superior performance but also exhibit dominant performance in sequential data analysis 

problems. The convolution layer in CNNs plays a crucial role in feature extraction, where data passing 

through this layer convolves with respective kernels in each layer. The convolution operation, which is 

essentially a dot product between the input data and kernels, generates a volume of feature maps [5]. 

In our case, the data is sequential and one-dimensional, each convolution layer receives a one-

dimensional input data, denoted as x(n). Then, a one-dimensional kernel w(n) convolves with the input data, 

producing a feature map, z(n), as given by eq. 23, where l represents the size of the kernel. 

𝑧𝑛 = 𝑥(𝑛) ∗ 𝑤(𝑛) =  ∑ 𝑥(𝑚) ∙ 𝑤(𝑛 − 𝑚)
𝑙

𝑚=−𝑙
 (23) 

The applied 1-D CNN-based layer architecture comprises of ten layers (Section 5.5.4). It is important to 

understand how input data is prepared to feed into CNN model. Figure 4-3 illustrates how CNN kernel 

strides over the time steps to capture features information. This input data of desired time-steps and number 

of features are made by creating batches from segregated input dataset of defined sequence length. 
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Figure 4-3:  Kernel Stride over dataset features 

The key hyperparameters that can affect the performance of a 1-D CNN model are: 

• The number of filters determines the number of features that the model can learn from the input data. 

A higher number of filters can result in more features being learned, which can lead to better model 

performance. However, a high number of filters can also lead to overfitting if the model is too 

complex for the given dataset. 

• The kernel size determines the width of the filter that is applied to the input data. A larger kernel size 

can result in a more global view of the input data, while a smaller kernel size can result in more local 

features being learned. 

• The stride size determines the step size of the filter as it is applied to the input data. A larger stride 

size can result in faster processing, while a smaller stride size can result in more detailed information 

being captured. 

• Padding is used to ensure that the output size of the convolutional layer matches the input size. There 

are two types of padding, ‘Valid’, and ‘Same’. ‘Valid’ padding means that no padding is added 

whereas, ‘Same’ padding means that padding is added to the input data to ensure that the output size 

is the same as the input size. 

• Dropout rate is a regularization technique that randomly drops out a certain percentage of nodes in 

the model during training to prevent overfitting. A higher dropout rate can result in better 

generalization performance, while a lower dropout rate can result in better training performance. 

• The learning rate determines the step size of the gradient descent algorithm during training. A higher 

learning rate can result in faster convergence, while a lower learning rate can result in better 
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convergence. However, if the learning rate is too high, the algorithm may overshoot the optimal 

solution and fail to converge. 

It is important to note that the appropriate hyperparameters can depend on the specific characteristics of 

the input data and the model architecture. Therefore, it is often necessary to perform hyperparameter tuning 

to find the optimal hyperparameters for a given task (section 5.5.4). 
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Chapter 5 

5 Design of Experiments 

The way the project objectives (Section 1.4) are to be achieved, depends on approach followed for 

conducting experiments, and how feasible its design is to accommodate the change in settings of the hyper-

parameters required by respective applied AI models. To incorporate all above factors rigorously and 

systematically, methodological strategy is followed such as design of experiments (DOE). 

5.1 Experiment Design Flow 

Intent is to highlight the design flow with which experiments are to be performed. As per figure 5-1, this 

section shall focus on experiments conducted on training and testing model with PMSM dataset [6]. While 

after experimentation with PMSM datasets, tests shall be performed using target vehicle datasets using the 

baselined optimal hyper-parameters as detailed in section 5.4. 

 

Figure 5-1:Experiment Design Flow with Data Sets 

  



34 

 

5.2 Problem Definition and Goal 

Detailed system design and its execution steps at each stage are discussed in section 3. Considering the 

system design, end result is to build an AI model to be capable of estimating the motor temperature at real 

time. To build such model, initially in literature study (Section 2.1) different research papers [3], [4], [1], [5], 

whose goal is similar to our objectives of this thesis work are studied and their evaluation results are taken 

into account to validate the end result for comparison purpose. 

• Target vehicle datasets were not available from the lab, during the early stages of project.  

• Design decision is taken to run experimental tests on data sets [10], [6] as specified in section 6.1.1, 

which were used in research papers [3], [4], [1], [5].  

• The data set contains information from sensors placed on a type of motor called a permanent magnet 

synchronous motor (PMSM). The motor was tested on a machine, and the data was recorded by the 

LEA department at Paderborn University [6]. 

• PMSM data set is used for experimentation purpose and model hyper parameters are tuned using the 

same. 

• Final goal of this experimentation is to build a model with tuned hyper-parameters.  

• After which when target vehicle data sets are applied, close to similar results should be obtained by 

using the same system AI pipeline framework. 

• Estimation of temperature for target Motor 2 is done using dataset prepared from input sensor data 

from target vehicle (As detailed in section 5.2.2). 

• Details of experimentation flow is illustrated in figure 5-1, which clearly gives information to the 

reader that baselining of hyper parameters and results were done using PMSM data. This baseline 

after performing test experiments helps the target vehicle to have reliable evaluation method. 
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5.3 Experiment Setup 

Target vehicle is attached with an implement, and that load is attached to the PTO as seen in figure 3.1. The 

PTO is powered by our target vehicle Motor 2. This load attached to the PTO is controlled by Vehicular 

Control Unit (VCU) which drives the implement or load at different speed i.e., 350/450/540/650 rpm. 

Vehicle logs for these implement controls are recorded separately for a period of time to observe its 

behavior. Process followed to capture these data logs are explained in detail in section 3.3.1. 

The PMSM motor is connected to the test bench setup where tests carried out by the LEA department 

at Paderborn University in the context of collecting sensors data from PMSM setup [10]. Datasets are 

described in further depth in section 5.3.2. 

5.3.1 Computation Platform 

Scripts of this thesis work to execute the different models were executed on local laptop machine. Online 

platform (Google Colab [19]) was used for the computation of Deep Neural Network (DNN) based 

algorithms and various occasions wherever execution time was high. 

Table 5-1: Computing Machine Specifications 

Specifics Configuration 

Processor 12th Gen Intel(R) Core (TM) i7-12700H, 2300 

Mhz, 14 Core(s), 20 Logical Processor(s) 

Google Colab GPU resources 

5.3.2 Dataset Used in Experiments 

This thesis work uses the dataset which is readily available and is used to meet similar objectives (Section 

1.2) i.e., had the data attributes which could be used for the estimation of motor temperature. 

Table 5-2: Dataset Samples Size 

Data Set Data Set Length 

PMSM 998070 

Target Motor 2 30276 
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5.3.2.1 Dataset from PMSM 

The dataset contains sensor data gathered from a test bench where a PMSM was deployed. The 

measurements from the test bench were obtained by the LEA department at Paderborn University. The 

dataset is partially anonymized [10]. 

 PMSM data sets were used for the study and to create baseline after training a model and fine-tunning 

its hyper parameters. 

Table 5-3:Attributes of the PMSM Data Set 

ATTRIBUTES DESCRIPTION 

profile_id Measurement session id. Each distinct measurement 

session can be identified through this integer id. 

ambient ambient temperature (°C) 

motor_speed Motor speed (rpm) 

torque Motor torque (Nm) 

stator_winding Stator winding temperature (°C) measured with 

thermocouples 

stator_yoke Stator yoke temperature (°C) measured with 

thermocouples 

stator_tooth Stator tooth temperature (°C) measured with 

thermocouples 

i_q Current q-component measurement in dq-coordinates 

u_q Voltage q-component measurement in dq-coordinates (V) 

coolant Coolant temperature (°C) 

pm Permanent magnet temperature (°C) measured with 

thermocouples and transmitted wirelessly via a 

thermography unit. 

u_d Voltage d-component measurement in dq-coordinates 

i_d Current d-component 
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5.3.2.2 Dataset from Target Vehicle 

The dataset contains the sensor data from the target motor controller ECU. Raw data of the target Motor 2 is 

received over CAN bus and recorded. 

Table 5-4: Identified attributes of the target vehicle 

ATTRIBUTES DESCRIPTION 

Motor Temperature Implement motor temperature read from motor 

temperature signal (°C) 

Motor Speed Implement Motor speed in rpm 

Motor Torque Implement Motor Torque in Nm 

Phase current Phase current (Amps) from the motor controller  

DC Bus Voltage Voltage recorded from the DC bus (Volts) 

DC Bus Current Current recorded from the DC bus (Amps) 

Max Drive Torque Maximum drive torque of the motor (Nm) 

Max Braking Torque Maximum drive braking of the motor (Nm) 

Motor Ctrl Temp Hydraulic Inverter Temperature (°C) 
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5.4 Experimentation Analysis 

The main aim of this portion is to inspect the outcomes of experiments using approaches for data pre-

processing (section 3.3.2) and model building (section 3.3.3) using datasets that are currently accessible. 

Perform experiments as highlighted in section 5.1. Detail the discussion points of the results of model and its 

explanation w.r.t target parameters. Idea is to understand the data and its features to identify the appropriate 

techniques to extract the correct information from it, while ignoring the faulty data or incorrect information. 

Exploratory data analysis (EDA) is an ideal approach for illustrating the unique and distinctive features of 

the data and the valuable insights that are included within it [4]. Datasets are processed and inspected based 

on different stages specified in figure 3-4. The points from data cleaning and transformation (section 3.3.2.2 

and 3.3.2.3) which are to be discussed in subsequent sections for accessible datasets (section 5.3.2) are listed 

below. 

5.4.1 Analysis Methodology Overview 

Methodological approach followed for experimentation in the sequential manner is briefly described in the 

following subsections. Exploratory data analysis is done followed by feature selection. Detailed subsections 

of data pre-processing are broken down to specific methods and are explained in sequential order. 

5.4.1.1 Data Samples Distribution 

Various ways are used to start the analysis of dataset. The histogram plot is used for the visualization to 

understand different aspects of the dataset. For instance, it can give the brief idea about the distribution of 

entire dataset and each variable. We can sort the test run with maximum samples to further analyze and filter 

the target variable. 

Analyzing the first n number of rows of samples in the dataset, can help to visually identify patterns 

or trends in the data, particularly if there are many columns or rows to consider. 

Statistical summary of the attributes of the dataset can help to identify key features of the dataset and 

for making decisions about its preprocessing and its analysis approach. The summary is sorted based on the 

standard deviation of the columns. It shows the descriptive statistics of each attribute, including count, mean, 

standard deviation, minimum, 25th percentile, 50th percentile (median), 75th percentile, and maximum. 

Overall, above approaches aim to capture key features information along with getting clear idea of 

the dataset, we are dealing with. These methods shall help in taking further decisions. 
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5.4.1.2 Redundant & Missing Data Handling 

When there are duplicate or null values in a dataset, it can affect the accuracy and reliability of any analysis 

or model built on it. Duplicate values can cause problems as they may result in incorrect counts, statistical 

analysis, and visualizations. On the other hand, null values (also known as missing values) can cause errors 

in calculations, as well as skew results, if not handled properly. 

To deal with duplicate values, one can remove them from the dataset, or combine them if necessary. 

However, it's important to make sure that removing or combining the duplicates doesn't result in a loss of 

important information or data. In some cases, duplicates might be intentional and represent multiple 

occurrences of the same event or entity. There are various methods to handle missing values in a dataset, 

such as: 

• Deleting rows with missing values: This method is useful when there are only a few missing values in 

the dataset, and removing them doesn't significantly affect the analysis or model. 

• Imputing missing values: This involves filling in the missing values with estimated values based on 

the available data. The estimated values could be the forward fill, backward fill, mean, median, or 

mode of the available data, or they could be predicted using machine learning (ML) models. 

• Treating missing values as a separate category: In some cases, missing values might represent a 

separate category or feature in the dataset. This method can be useful when the missing values are 

significant and cannot be ignored. 

Experiment is conducted to check whether there are any null or duplicate values in the dataset. 

Number of null values are calculated in each column of the dataset. Which provides information on which 

columns have the most missing data. Heatmap plot is used to visualize the null values in the dataset. The plot 

is used to display missing values as yellow cells, and non-missing values as purple cells. This plot helps to 

identify which columns have the most missing data and the distribution of the missing values throughout the 

dataset. 

5.4.1.3 Outliers’ Detection 

Outlier detection in a dataset is an important step in data preprocessing and analysis. Outliers are data points 

that deviate significantly from other observations in the dataset, and their presence can have a significant 

impact on statistical analysis, modeling, and decision making. Outliers can arise due to various reasons such 

as measurement errors, data entry errors, and true anomalies in the data. Outliers do-not affect median 

values, which makes them useful [4]. 
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Identifying and handling outliers is important because they can skew the results of statistical analysis, 

leading to incorrect conclusions or biased models. Outliers can also affect the accuracy of machine learning 

(ML) models, leading to overfitting or underfitting. Therefore, it is important to detect and handle outliers in 

a dataset before performing any analysis or modeling. 

From the boxplot, we can infer several pieces of information about the distribution of each numerical 

column. The box in the plot represents the interquartile range (IQR), which constitutes of middle 50% of the 

data in the range between the 25th (Lower Quartile) and 75th (Upper Quartile) percentile. The line inside the 

box represents the median of the data. The whiskers of the plot represent the range of the data outside the 

IQR, up to a maximum of 1.5 times the IQR. Any points outside this range are considered outliers and are 

plotted as individual points. 

Using the boxplot, we can see the range of values for each column, as well as any potential outliers. 

We can also compare the distributions of different columns and identify any columns with similar 

distributions. This can help us identify potential relationships between variables which in turn helps in the 

data cleaning and modeling processes. 

5.4.1.4 Variable Distribution 

Distribution of dataset can be graphically represented through usage of density plots. They show the density 

of data points along the y-axis, with the x-axis representing the range of values in the data set. The density 

plot can help in identifying the shape of the distribution, such as whether it is unimodal or bimodal, as well 

as the location and spread of the data. Density plots can provide valuable insights into the distribution and 

structure of the data, which can help in understanding the data and making informed decisions. 

5.4.1.5 Variable Correlation 

Attributes data analysis is done using different visualizations methods such as heat map and attributes pair 

plot matrix (figure 5-6 and 5-7) of the given dataset. It helps in identifying the pairs of variables that have 

high correlation coefficients. Pearson correlation coefficient is used to measure the linear relationship 

between the variables. Lists of variables are identified by filtering the indices of correlation matrix with 

threshold. By this method highly correlated variables are identified. 

The average absolute correlation coefficient (AvgAbsCorrCoef) between all pairs of variables in the 

dataset helps to understand the degree of correlation among the variables. Whereas the AvgAbsCorrCoef for 

each attributes helps to understand which attributes are highly correlated with other variables attributes. This 

way such correlation information can be useful in feature selection (section 3.3.2.4). It also helps in finding 

multicollinearity in regression models. 
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Scatter Plots (section 5.6.2.6) is another pictorial method used to deep dive into getting insights of the 

relationships between variables. These plots show how one variable changes in relation to another. Positive 

correlations are indicated by a trend upward from left to right. While negative correlations are indicated by a 

downward trend. No correlation is indicated by a lack of trend or scattered dots. Pairwise relationships 

between all the variables in the dataset is plotted.  

To infer from the scatter plot, we can examine the patterns and trends that emerge from the plot, 

including any linear or nonlinear relationships, clusters or outliers. These insights can help identify potential 

predictors for the dependent variable and highlight areas where further exploration or analysis may be 

needed. 

5.4.1.6 Data Scaling Techniques 

Normalization techniques are used to transform the values of numerical features to a common scale, which 

helps to improve the performance and accuracy of the applied models. There are several benefits of applying 

normalization technique: 

• It improves accuracy bringing all the features to the same scale, which avoids giving undue 

importance to any particular feature. This leads to more accurate predictions. 

• It helps in faster convergence of the gradient descent algorithm, which is used to optimize the model 

parameters. This is because it allows the algorithm to take larger steps towards the global minimum, 

which leads to faster convergence. 

• Normalization techniques such as Min-Max scaling and Z-score normalization help in reducing the 

impact of outliers on the model performance. This is because they bring the values of the features 

within a smaller range, which makes them less sensitive to outliers. 

• It also helps in better interpretability of the model parameters. This is because the coefficients 

associated with normalized features represent the relative importance of each feature in predicting the 

target variable. 

5.4.1.7 Input and Target Data Preparation 

For model to train with datasets, it must be prepared such that it is ready to be fed to build model stage. Here, 

mainly data is split into desired training and test or validation set (as discussed in section 3.3.2.5), and 

processed into desired shape as per the given model. 
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5.4.2 Analysis using PMSM Dataset 

In this section experiments analysis is done using PMSM datasets (dataset info detailed in section 5.5.1). 

This dataset is analyzed and transformed to prepare the data, ready to be fed for model training. Observations 

of the experimental tests are described below, which are followed based on the sequential methodological 

approach detailed in section 5.4.1. 

5.4.2.1 Data Samples Analysis 

The histogram plot for the entire dataset shows the distribution of each variable across all test runs identified 

by the 'profile_id' column. Dataset is visualized to understand the sample size of different test runs in the 

entire dataset. 

• Histogram as illustrated in the figure 5-2 is the visual representation of distribution of data size. 

• It highlights the size limit of each test run. 

• Test run with ‘profile_id’, 20 has the maximum number of samples recorded. Distribution of data for 

this test run in histogram (figure 5-2) shall help to identify and choose one of the predictor dependent 

target variables or variable out of multiple redundant variables as observed later in section 5.4.2.4. 

• We can filter specific samples based on size, which could be later used for the validation of the 

model. 

 

Figure 5-2: Dataset Histogram 

• The first n number of rows of samples in the dataset are as listed in table 5-5.  It helps us to observe 

the dataset for any patterns or trends in the data, particularly when there are many columns or rows to 

consider. 

• Visualize and understand the range of values and any anomalies are present in the given list of the 

dataset for all attributes. 
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• We can see that in this dataset, most of the values lie between -2 and 2, with only a few outliers with 

values below -2 or above 2. 

• The lack of references to the units used for each of the samples in the dataset description makes it 

more difficult to understand the values measured. 

Table 5-5: Dataset Samples List 

 

  The sorted statistical summary based on the standard deviation of each attribute in the dataset can be 

seen in the table 5-6. This table can be useful for quickly identifying key features of the dataset and for 

making decisions about how to preprocess and analyze the data.  

• The descriptive statistics features including count, mean, standard deviation, minimum, 25th 

percentile, 50th percentile (median), 75th percentile, and maximum, of each attribute is shown in the 

table 5-6. 

• The attributes ‘ambient’ and ‘torque’ have the largest standard deviations of 0.99 and 1.00 

respectively, indicating that their values are widely dispersed from the mean. 

• The ‘ambient’ attribute has the lowest minimum value of -8.57, which is considerably lower than the 

other attributes. This suggests that there are outliers or errors in the data for this attribute. 

• Similarly, the ‘torque’ attribute has the highest maximum value of 3.02, which is significantly higher 

than the other attributes. This means that there are outliers or errors in the data for this attribute. 

• We can see that the mean of each variable is close to zero, indicating that the data is centered around 

zero. The standard deviation of each variable is close to one, indicating that the data is spread out. 

Overall, it is certain that the variables are normalized or standardized in the dataset. 

• The minimum and maximum values for each variable vary across a wide range, which suggests that 

the variables have different scales and ranges. 

Therefore, to address the abnormalities or outliers in the ‘ambient’ and ‘torque’ attributes, it may be 

necessary to investigate the data further and remove any erroneous or outlier data. 
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Table 5-6: Statistical Analysis of Data Attributes 
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5.4.2.2 Redundant & Missing Data Samples 

PMSM Dataset is checked for any duplicate samples and null values. Strategies discussed in section 5.4.1.2 

can be used to fix the issues related to redundancy and missing data samples. Incorporating proper strategy 

based on dataset prevents the presence of outliers in the data samples. 

• PMSM dataset does not contain any duplicate data samples across the entire dataset. 

• The heatmap plot (figure 5-3) displays that no yellow samples were observed. It denotes that it is a 

clean plot with no missing values or null values. 

 

Figure 5-3: Missing Values Visualization through Heat Map 
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5.4.2.3 Outliers’ Detection Analysis 

Boxplot is a graphical representation (as represented in figure 5-4) of the distribution of a dataset that 

visually displays the range, median, quartiles, and outliers of the data. Outliers in the data are detected using 

boxplots. 

 

Figure 5-4: Box-Plots Representation 

• We can see whiskers for the attributes ‘ambient’, ‘pm’, ‘u_d’, ‘i_q’ and ‘torque’. 

• Most of the attributes show equal variance along the median line such as ‘coolant’, ‘u_q’, 

‘motor_speed’, ‘i_d’, ‘stator_winding’, ‘stator_tooth’ and ‘stator_yoke’. 
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5.4.2.4 Variable Distribution 

Density plots shows the distribution of variables as displayed in figure 5-5 for all attributes of dataset.  

 

Figure 5-5: Data Distribution Density Plots 

Looking at the histograms following observations are found: 
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• We can see that some variables, such as ‘coolant’, ‘motor_speed’, and ‘u_q’ skewed on the positive 

side because long tail is in the positive direction. In case of positive skews mean is larger than the 

median. There will be some large values that pull the mean towards the right causing the skewedness. 

• Whereas ‘ambient’ and ‘i_d’ attributes are negatively skewed. That means skewed on the negative 

side, i.e., long tail is in negative direction. Here median is larger than the mean. There will be some 

large values that pull the mean towards the left causing the skewedness. 

• Attributes ‘stator_yoke’, ‘stator_tooth’, and ‘stator_winding’ have a relatively similar and normal 

distribution, with most of the data clustered around the mean. 

• The histogram plot also shows the distribution of each variable for each test run, which are identified 

by the "profile_id" variable. We can see that the distribution of some variables, such as ‘coolant’, 

‘u_q’ and "motor_speed," varies depending on the test run, indicating that these variables may be 

affected by the conditions of the test. 

Overall, the density plot gives us a visual representation of the distribution of each variable and how 

they vary across the different test runs. It gives us an idea of how the variables may be related to each other. 
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5.4.2.5 Variable Correlation Analysis 

Attributes correlation coefficients are highlighted in the heatmap illustrated as in the figure 5-6.  

• The correlation coefficients are calculated between all pairs of variables in the dataset and it identifies 

the pairs of variables that have a correlation coefficient greater than 0.8 in absolute value. 

[('coolant', 'stator_yoke'), ('u_d', 'torque'), ('torque', 'i_q'), ('stator_yoke', 'stator_tooth'), ('stator_yoke', 

'stator_winding'), ('stator_tooth', 'stator_winding')] 

• The absolute average correlation coefficient (AbsAvgCorrCoef) between all pairs of variables in the 

dataset is 0.311, which suggests that there is a moderate degree of correlation among the variables. 

• The AbsAvgCorrCoef for each attribute of the dataset are given below respectively: 

[(ambient: 0.331), (coolant: 0.388), (u_d: 0.329), (u_q: 0.216), (motor_speed: 0.338),  

(torque: 0.319), (i_d: 0.352), (i_q: 0.312), (pm: 0.425), (stator_yoke: 0.460),  

(stator_tooth: 0.479), (stator_winding: 0.475)] 

• For instance, ‘stator_yoke’, ‘stator_tooth’, and ‘stator_winding’ have high AbsAvgCorrCoef, which 

implies that they are highly correlated with other variables in the dataset. Two or more variables with 

high AbsAvgCorrCoef values, may indicate that they are measuring the same underlying concept and 

could potentially be combined or one of them may need to be removed. On this basis, we consider 

‘stator_winding’ temperature as our target variable and ignore others since ‘stator_yoke’ and 

‘stator_tooth’ attributes are redundant. 

• On the other hand, ‘u_q’ has a low absolute average correlation coefficient, indicating that it is 

weakly correlated with other attributes in the dataset. Low value may indicate that it is not related to 

the other variables and may not be useful for analysis. 

These findings are valuable for understanding the relationships between variables and take actions based 

on this information. We are using this inference from AbsAvgCorrCoef values, in the selection of the 

attributes. 
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Figure 5-6: Data Correlation Matrix 

Pairwise relationships between all the variables in the dataset is plotted using scatterplots. The 

diagonal plots show distribution of each variable. 

• Variables ‘stator_winding’, ‘stator_yoke’ and ‘stator_tooth’, can be seen to have the direct strong 

linear relationship with each other. Hence, Predictor variables for anyone of them shall help to get the 
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output for another variable. That’s the reason, ‘stator_winding’ is further analyzed, assuming based 

on above inferences, that they are linearly related. 

• Similarly, ‘i_q’ and ‘torque’ are linearly related. 

• Curvilinear relationship can be observed between ‘i_d’ and ‘i_q’. 

 

Figure 5-7: Attribute Pairs Plot Diagram 
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5.4.2.6 Feature Selection 

After performing data pre-processing, analysis is done based on data distribution, outliers and variable 

correlation of attributes on the dataset.  

• Inferences from boxplots, density plots and heatmap correlation matrix suggest the strong linear 

relationship between the stator temperatures i.e., ‘stator_winding’, ‘stator_tooth’ and ‘stator_yoke’ 

attributes. 

• In order to gain a deeper understanding of the correlation among the three stator temperatures, we 

evaluate the plots (figure 5-8) representing the feature values for a selection of randomly chosen test 

runs.  

• The subplots validate that the three temperature features have a similar pattern. Amongst the three, 

the stator winding temperature exhibits the highest variability, followed by the stator tooth and stator 

yoke temperatures. This disparity becomes prominent when there is a considerable fluctuation in the 

stator winding temperature. 

 

Figure 5-8: Stator Temperatures Analysis across test runs 
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• It can be inferred from the observed pattern of stator temperatures, that they are influenced in the 

same manner based on behavior of the predictor variables. 

 

Figure 5-9: Stator Temperatures Spread for a test run 

• Hence, lets recheck the selected target feature i.e., ‘stator_winding’ distribution over entire dataset (as 

in figure 5-9). Data is symmetrically distributed. 

 

Figure 5-10: Stator Winding Data Distribution Plot 

• We analyze the target feature i.e., stator winding vs input features such as torque and motor speed (as 

in figure 5-11). 
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• Relation can be observed between the stator winding, torque and motor speed. When motor speed or 

torque is varied, the change in stator winding temperature is observed. 

 

Figure 5-11: Stator Winding vs Motor Speed or Torque Plot 

Once, input and target features are identified, dataset is required to be split into train and test data for the 

model training and validation purpose. Input data shape for model training is different for different model. 
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5.4.3 Analysis using Target Vehicle Dataset 

In the prior stage the experiments were conducted to perform data preprocessing and feature selection using 

PMSM dataset (section 5.3.2.1).  Inferences, results and model performances are baselined after they are 

compared with available research study. Baselined hyper-parameters (section 5.5) and target models (section 

4) are then again pre-processed and trained with target vehicle i.e., off-road vehicle dataset. 

In this section experiments analysis is done using target vehicle i.e., Off-Road vehicle datasets (dataset 

info detailed in section 5.3.2.2). This dataset is analyzed and transformed to prepare the data, ready to be fed 

for model training. Observations of the experimental tests are described below, which are followed based on 

the sequential methodological approach detailed in section 5.4.1. 

5.4.3.1 Data Samples Analysis 

The histogram plot for the complete dataset displays the distribution of each variable over all test 

runs specified by the load profile column. The full dataset is visualized to help comprehend the sample size 

of the various test runs. 

• Histogram as illustrated in the figure 5-12 is the visual representation of distribution of data size. 

• It highlights the size limit of each load profile run. 

• Test run with load profile, 450 has the maximum number of samples recorded. Distribution of data 

for this load profile in histogram shall help to identify and choose one of the predictor dependent 

target variables or variable out of multiple redundant variables as observed later in section 5.6.3.6. 

• We can filter specific samples based on size, which could be later used for the validation of the 

model. 

 

Figure 5-12: Target Vehicle Dataset Histogram 
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• The first n number of rows of samples in the dataset are as listed in table 5-7.  It helps us to observe 

the dataset for any patterns or trends in the data, particularly when there are many columns or rows to 

consider. 

• Visualize and understand the range of values and any anomalies present in the given list of the dataset 

for all attributes. 

• We can see that the range of values for each variable is quite large, for example, ‘MotorSpeedRpm’ 

ranges from 271.75 to 7183.62. This suggests that the data is varying and may require normalization 

or scaling before analysis.  

• In general, it can be seen that this dataset contains attributes with varying ranges based on the given 

units. It is for certain that input features must be scaled and normalized to achieve better accuracy. 

Table 5-7: Target Vehicle Dataset Samples List 

 

  The sorted statistical summary based on the standard deviation of each attribute in the target vehicle 

dataset can be seen in the table 5-8. This table can be useful for quickly identifying key features of the 

dataset and for making decisions about how to preprocess and analyze the data.  

• The descriptive statistics features including count, mean, standard deviation, minimum, 25th 

percentile, 50th percentile (median), 75th percentile, and maximum, of each attribute is shown in the 

table 5-8. 

• The minimum and maximum values for each variable vary across a wide range, which suggests that 

the variables have different scales and ranges. 

• There is significant variation the values which needs to be normalized to draw much better 

inferences. 

• The dataset contains non-null values of 30276 samples/observations. 

• The high standard deviation values for ‘MotorTorqueNm’, ‘MotorSpeedRpm’, 

‘PhaseCurrentsAmps’, ‘MaxDriveTorqueNm’ and ‘MaxBrakingTorqueNm’, indicates that the data is 

widely dispersed and there may be some outliers. These attributes have relatively higher mean and 

maximum values compared to the other features. This suggests that they might be related which 

eventually could help in accurate estimation of target feature. 
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• The min and max values for ‘DCBusVoltage’ are also concerning, as they suggest that there may be 

some extreme values in the dataset that could skew the analysis. 

Table 5-8: Statistical Analysis of Target Vehicle Data Attributes 

 

Table 5-9: Normalized Statistical Summary of Target Vehicle Data Attributes 

 

The statistical summary of target vehicle dataset after applying normalization technique can be seen in the 

table 5-9. 

• The negative min values for some variables, such as ‘MotorSpeedRpm’, suggest that there may be 

some issues with the data collection process, such as incorrect sensor readings. 
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• All the attributes have the standard deviations of 1.0, indicating that their values are widely dispersed 

from the mean. Means that data is spread out but not too widely. 

• The ‘MaxDriveTorqueNm’ and ‘MaxBrakingTorqueNm’ attributes have the lowest minimum value 

of -4.66, which is considerably lower than the other attributes. This suggests that there are outliers or 

errors in the data for this attribute. This can further be analyzed using box-plots (as in section 

5.6.3.3). 

• We can see that the mean of each variable is close to zero, indicating that the data is centered around 

zero. The standard deviation of each variable is close to one, indicating that the data is spread out. 

Overall, it is certain that the variables are normalized or standardized with z-score method (standard 

scalar). 

• To mitigate these issues, it may be necessary to perform some data cleaning and preprocessing steps, 

such as identifying and removing outliers, correcting erroneous sensor readings, and ensuring that the 

data is properly scaled and normalized. 

Therefore, to address the abnormalities or outliers in the inferred attributes, it may be necessary to 

perform some data cleaning and preprocessing steps, such as identifying and removing outliers, correcting 

erroneous sensor readings, and ensuring that the data is properly scaled and normalized. 
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5.4.3.2 Redundant & Missing Data Samples 

Target vehicle dataset is checked for the duplicate samples and for any null values which helps in further 

improving the dataset for the model. 

• Motor2 dataset is checked for the duplicate samples. It contains the missing data samples (figure 5-

13A) in each column across the entire dataset. These missing values are known because the raw data 

attributes are recorded from messages with different periodicity. 

• Forward fill imputation method is used to fill the missing rows of specific attribute. Other methods 

such as mean, median and interpolation can also be employed. Backward fill is not applicable in case 

of time-series data. 

• The heatmap is plotted (figure 5-13 B) after applied imputation technique to recheck if any missing 

values are left. The dataset is clean plot with no missing values or null values. 

 

Figure 5-13: Missing Values Visualization through Heat Map for Target Vehicle Dataset 
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5.4.3.3 Outliers’ Detection Analysis 

Observations such as type of variance and the presence of outliers are inferred from the graphical boxplot 

representation of the target vehicle dataset (figure 5-14). 

 

Figure 5-14: Target Vehicle Box-Plots Representation 

• We can see whiskers for the attributes ‘MaxDriveTorqueNm’ and ‘MaxBrakingTorqueNm’. 

Indicating the presence of outliers or genuine wide range of values. As be manually investigated and 

decided accordingly. 

• Few attributes show equal variance along the median line such as ‘MotorSpeedRpm’ and 

‘DCBusCurrentAmps’. 
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5.4.3.4 Variable Distribution 

Density plots shows the distribution of variables as displayed in figure 5-15 for all attributes of target vehicle 

dataset.  

 

Figure 5-15: Target Vehicle Data Distribution Density Plots 

Looking at the histograms following observations are found: 
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• We can see that some variables, such as ‘MotorTorqueNm’, ‘DCBusCurrentAmps’, and 

‘PhaseCurrentAmps’ are skewed on the positive side because long tail is in the positive direction. In 

case of positive skews mean is larger than the median. There will be some large values that pull the 

mean towards the right causing the skewedness. 

• Whereas ‘DCBusVoltage’ and ‘MotorTempDC’ attributes are negatively skewed. That means 

skewed on the negative side, i.e., long tail is in negative direction. Here median is larger than the 

mean. There will be some large values that pull the mean towards the left causing the skewedness. 

• Attributes ‘MotorCtrlTempDC’ and ‘MotorTempDC’ have a relatively similar and normal 

distribution, with most of the data clustered around the mean. 

• The histogram plot also shows the distribution of each variable for each load profile, which are 

identified by the ‘Profile’ variable. We can see that the distribution of some variables, such as 

‘DCBusCurrentAmps’, ‘PhaseCurrentAmps’ and ‘MotorTorqueNm’ varies depending on the load 

profile, indicating that these variables may be affected by the conditions of the test. This helps in 

identifying the strong predictors for target variable. 

Overall, the density plot gives us a visual representation of the distribution of each variable and how 

they vary across the different load profiles. It gives us an idea of how the variables may be related to each 

other. 

5.4.3.5 Variable Correlation Analysis 

Attributes correlation coefficients are highlighted in the heatmap illustrated as in the figure 5-16.  

• The correlation coefficients are calculated between all pairs of variables in the dataset and it identifies 

the pairs of variables that have a correlation coefficient greater than 0.5 in absolute value. 

[('MaxDriveTorqueNm', 'MaxBrakingTorqueNm'), ('MaxDriveTorqueNm', 'MotorTempDC'), 

('MaxBrakingTorqueNm', 'MotorTempDC'), ('MotorCtrlTempDC', 'MotorTempDC')] 

• The absolute average correlation coefficient (AbsAvgCorrCoef) between all pairs of variables in the 

dataset is 0.2004, which suggests that there is a moderate degree of correlation among the variables. 

This suggests that some of the variables may be dependent on others and may not provide 

independent information. 

• The AbsAvgCorrCoef for each attribute of the dataset are given below respectively: 

[(MotorSpeedRpm: 0.120), (MotorTorqueNm: 0.248), (DCBusVoltage: 0.268), 

(DCBusCurrentAmps: 0.196), (PhaseCurrentAmps: 0.178), (MaxDriveTorqueNm: 0.399), 

(MaxBrakingTorqueNm: 0.399), (MotorCtrlTempDC: 0.357), (MotorTempDC: 0.438)] 
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• Looking at the AbsAvgCorrCoef for each attribute, it can be seen that the attributes ‘MotorTempDC’ 

and ‘MotorCtrlTempDC’ have relatively high correlation coefficients (0.357-0.438). 

• For instance, ‘MotorTempDC’ and ‘MotorCtrlTempDC’ have high AbsAvgCorrCoef i.e., 0.357-0.438 

respectively, which implies that they are highly correlated with other variables in the dataset. Two or 

more variables with high AbsAvgCorrCoef values, may indicate that they both follow similar pattern. 

And we know that attributes are temperature readings of motor and its controller temperature 

measured in °C. 

• On the other hand, ‘MotorSpeedRpm’, ‘PhaseCurrentAmps’, and ‘DCBusCurrentAmps’ have 

relatively low absolute average correlation coefficient, indicating that it is weakly correlated with 

other attributes in the dataset. Low value may indicate that it is not related to the other variables and 

may not be useful for analysis. 

• It may be necessary to use algorithms that are less sensitive to multicollinearity, such as decision 

trees and random forest. 

These findings are valuable for understanding the relationships between variables and take actions based 

on this information. To mitigate potential issues caused by the high correlation among some attributes, it 

may be necessary to perform feature selection or feature engineering. This involves removing highly 

correlated variables or combining variables to create new features that are less correlated. We are using this 

inference from AbsAvgCorrCoef values, in the selection of the attributes. 
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Figure 5-16: Data Correlation Matrix 

Pairwise relationships between all the variables in the dataset is plotted using scatterplots as 

illustrated in figure 5-17. The diagonal plots show distribution of each variable. 

• Variables ‘MotorCtrlTempDC’, and ‘MotorTempDC’, can be seen to have the direct strong linear 

relationship with each other. Hence, Predictor variables for anyone of them shall help to get the 
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output for another variable. That’s the reason, ‘MotorCtrlTempDC’ is recommended to be used as 

predictor variable, assuming based on above inferences, that they are linearly related. 

• Similarly, ‘MaxDriveTorqueNm’ and ‘MaxBrakingTorqueNm’ are linearly related. 

 

Figure 5-17: Attribute Pairs Plot Diagram 
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Figure 5-18: Scatter Plot for Input Features vs Target variable 

5.4.3.6 Data Scaling Techniques Analysis 

Target vehicle dataset is not normalized as we could see in previous analysis from table 5-7 that all the 

attributes have varied range of values in Motor2 dataset. Large variation in range of values is not desired 

when machine learning (ML) algorithms are applied reason being it would increase the computation time. 

Table 5-10: Target Vehicle Dataset Normalized Samples List 

 

• Standard scaler or the Z-score technique evaluates to have a better performance with lowest Mean 

Squared Error (MSE) of 117.25 when compared to other techniques (figure 5-19) such as Min-Max 

scaler, Robust scaler, Max Abs Scaler, and Power transformer with MSE values as specified in table 

5-11. 

• Normalized dataset attributes can be seen in the table 5-10. 
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Table 5-11: Data Scaling Evaluation Results 

Data Scaling MSE 

Min Max Scaler 117.25 

Standard Scaler 117.05 

Robust Scaler 117.57 

Max Abs Scaler 117.45 

Power Transformer 122.28 

 

 

Figure 5-19: Scaling Techniques MSE evaluation 

5.4.3.7 Feature Selection 

After performing data pre-processing, analysis is done based on data distribution, outliers and variable 

correlation of attributes on the dataset.  

• Inferences from boxplots, density plots and heatmap correlation matrix suggest the strong linear 

relationship between the attributes denoting temperatures readings i.e., ‘MotorCtrlTempDC’, and 

‘MotorTempDC’ attributes. 
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• In order to gain a deeper understanding of the correlation among the two temperatures, we evaluate 

the plots (figure 5-20) representing the feature values for a selection of randomly chosen load 

profiles.  

• The subplots validate that the two temperature features have a similar pattern. Amongst the two, the 

motor temperature exhibits the highest variability, followed by motor controller temperature. This 

disparity becomes prominent when there is a considerable fluctuation in the motor temperature. 

 

Figure 5-20: Motor Temperatures analysis across all load profiles 

• It can be inferred from the observed pattern of two temperatures i.e., ‘MotorCtrlTempDC’, and 

‘MotorTempDC’, that they are influenced in the same manner based on behavior of the predictor 

variables. Both the temperature readings are from separate sources signifying sensors reading of 

target motor and its controller hence, design decision is taken that this correlated variable must be 

used as an input feature which will behave as one of the strongest predictors of the target variable. 
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• Hence, lets observe the target feature i.e., ‘MotorTempDC’ distribution over entire dataset (as in 

figure 5-20). Data values seems to be driven by load profiles and the torque, that’s the reason for 

varied temperature values across the plot. 

 

Figure 5-21: Motor Temperature of Target Vehicle Data Distribution Plot 

• We analyze the target feature i.e., motor controller temperature vs input features such as torque and 

motor speed (as in figure 5-21). 

• Relation can be observed between the motor temperature and torque (as in figure 5-22). When torque 

is varied, the change in motor temperature is observed. 

 

Figure 5-22: Motor Temperature vs Motor Speed or Torque Plot 
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5.5 Optimal Hyper Parameters 

Experiments are performed using PMSM and Motor2 datasets (Section 5.3.2) and after multiple rounds of 

model training for targeted algorithms (section 4), optimal hyper-parameters are empirically obtained. The 

empirical parametric values are listed in the following sections for PMSM and Motor2 datasets. 

5.5.1 RFR Parameters Configuration  

List of model parameters for Random Forest Regressor (RFR) algorithm [15] are detailed in table 5-12. 

Table 5-12: Hyperparameters for Random Forest Regressor 

PARAMETER 

NAME 

DESCRIPTION DEFAULT VALUE 

(PMSM) 

VALUE 

(Motor2) 

N Estimators Defines the number of trees in the 

forest. 

100 100 200 

Criterion 

Function used to measure split 

quality. 

MSE MSE MSE 

Max Sample 

Determines the portion of the initial 

dataset assigned to each tree. 

None None None 

Max Features 

The maximum number of features 

assigned to individual trees 

1.0 1 4 

Max Depth Defines depth limit of each tree None None None 

Min Sample 

Split 

Required minimum number of 

samples for splitting the tree 

2 2 2 

Max Leaf 

Nodes 

To limit the further growth of nodes. None None None 

Min Samples 

Leaf 

Allowed maximum number of 

samples in each node 

1 1 1 

Bootstrap 

Set the samples to be used for 

training either random samples or the 

whole dataset is to be used to build 

each tree. 

True False False 

(Whole 

data set 

is used) 

Random State Randomness of both the None 0 1 
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bootstrapping of the samples used for 

building trees and the selection of 

features considered for finding the 

best split at each node. 

5.5.2 XGBoost Parameters Configuration  

List of model parameters for Extreme Gradient Boosting (XGBoost) model [16] are detailed in table 5-13. 

Table 5-13: Hyperparameters for Extreme Gradient Boosting 

PARAMETER 

NAME 

DESCRIPTION DEFAULT VALUE 

(PMSM) 

VALUE 

(Motor2) 

Learning rate 

(eta) 

Define the step size. Range [0,1] 0.3 0.3 0.3 

Min Split Loss 

(gamma) 

Leaf node is partitioned only in case 

of minimum loss reduction. Range 

[0,∞] 

0 0 0 

Max Depth Defines the max allowed depth of a 

tree. Higher value may lead to 

overfitting. Range [0,∞] 

6 6 6 

N Estimators Number of runs for model to learn 100 400 400 

Sub Sample Randomly sampling training data in 

the given ratio [0,1] 

1 0.5 0.5 

Column sample 

by tree 

Ratio of sub sample when tree is 

constructed 

1 0.9 0.9 

Min Child 

Weight 

Minimum required sum of instance 

weight for partitioning [0,∞] 

1 1 1 

Reg Alpha Weights L1 regularization [0,∞] 0 0.3 0.3 

Reg Lambda Weights L2 regularization [0,∞] 1 0.7 0.7 

Scale Pos 

Weight 

Used to balance the weights. 1 03 03 
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5.5.3 LSTM Parameters Configuration 

Hyper Parameters for LSTM configuration are briefly discussed in section 4.3, Experiments were conducted 

referring to different set of hyperparameters combinations used by prior research studies and our 

understanding while observing the empirical results. Figure 5-23 and 5-24 are the illustrations created using 

Netron library which shows the layers of LSTM model used for the prediction of motor temperature. It 

highlights the details like activation function, layer type, its units, along with the shape [5]. 

 

Figure 5-23: LSTM Model Layer Architecture when using PMSM Dataset 

 

Figure 5-24:LSTM Model Layers Architecture when using Target Vehicle Dataset 

List of model parameters for Long Short-Term Memory (LSTM) model are detailed in table 5-14. 

Table 5-14: Hyperparameters for LSTM 

PARAMETER 

NAME 

DESCRIPTION VALUE 

(PMSM) 

VALUE 

(Motor2) 

Loss function 

Function used to the accuracy of predicted values 

against actual values. MSE MSE 

Input sequence 

length Length of input sequence fed to the network. 180 180 

Hidden dimension 

Number of memory cells used to capture temporal 

dependencies in the input sequence. 100 100 

Output dimension Number of neurons in the output layer. 1 * 4 1 * 1 
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Batch size (β) 

The number of samples to use in each training 

batch. 64 64 

Optimizer 

Used to optimize loss function and update model 

weights during training. Adam Adam 

Learning rate The step size used in the weight updates. 0.0005 0.0005 

Hidden Layer 

Activation Function 

Utilized to introduce non-linearity into the network 

and increase learning capacity. 

Tanh Tanh 

Dropout It is used for regularization and determines what 

fraction of inputs are to be randomly set to zero 

during training. Purpose is to prevent overfitting 

and improve generalization. 

0.1 0.1 

 

5.5.4 CNN Parameters Configuration 

Experiments were conducted for 1-D CNN, referring to different set of hyperparameters combinations used 

by prior research studies and our understanding while observing the empirical results. Figure 5-25 and 5-26, 

illustrates (created using Netron library) the layers of LSTM model used for the prediction of motor 

temperature. It highlights the details like activation function, layer type, its units, along with the shape [5]. 

 

Figure 5-25: 1-D CNN Model Layer Architecture when using PMSM Dataset 
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Figure 5-26: 1-D CNN Model Layers Architecture when using Target Vehicle Dataset 

List of model parameters for Convolutional Neural Networks (CNN) model [5] are detailed in table 5-15. 

Table 5-15: Hyperparameters for CNN 

PARAMETER 

NAME 

DESCRIPTION VALUE 

(PMSM) 

VALUE 

(Motor2) 

Loss function 

Measures the prediction error and adjusts model 

parameters during training to minimize the 

difference between predicted and actual outputs. MSE MSE 

Input sequence length Defines the size of the input sequence. 190 190 

Hidden dimension 

Determines the number of filters in each layer. Figure  

5-25 

Figure  

5-26 

Output dimension Number of filters in each layer of network. 3 1 

Batch size (β) 

Number of samples presented to the network at 

once during each training iteration. 603 603 

Optimizer 

Used to optimize loss function and update model 

weights during training. Adam Adam 

Learning rate The step size used in the weight updates. 0.05 0.05 

Hidden layers 

activation function 

Utilized to introduce non-linearity into the network 

and increase learning capacity. 

Figure  

5-25 

Figure  

5-26 

Kernel Size 

Utilized to control the size of the receptive field 

and extract features from input data. 2 2 
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Random State 

Used to initialize the internal random number 

generator to ensure reproducibility and consistency 

of the results. 42 42 

Epochs 

The number of times the entire dataset is used to 

train the model. 50 50 

 

5.6 Conclusion 

In conclusion, this study conducted a design of experiments using two datasets: a PMSM dataset for 

experimentation and a target vehicle dataset for model building. The four models trained namely RFR, 

XGBoost, LSTM, and CNN, were evaluated for their performance in predicting the target variable. Based on 

the results, it can be concluded that each model has its strengths and weaknesses in terms of accuracy, 

efficiency, and interpretability. Overall, this study provides valuable insights into the use of different models 

in predicting the target variable, which can be used to inform future research and decision-making in this 

field. 

In data analysis it is observed that, dataset has some pre-normalization done as detailed in section 5.4.2.4. 

It is important to carefully handle duplicate and null values in a dataset to ensure accurate and reliable 

analysis and modeling. Within short-period of time XGBoost model produces high outcome within limited 

computational resources needs. 
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Chapter 6 

6 Results and Discussions 

This chapter analysis the visualizations results of the models and compares the model performance of the 

experiments conducted with the available research papers. Upon completion of model training, the 

algorithms (which are detailed in section 4) are assessed based on identified evaluation metrics (as discussed 

in section 2.3). 

6.1 Applied Model Results 

Earlier in the sections, data pre-processing and feature selection is done to prepare the input and target 

features, which are fed to the targeted algorithms (section 4). Targeted algorithms are trained using optimal 

hyper-parameters (section 5.5) with prepared input and target features. Let us examine the results of different 

models when trained with PMSM and Target Vehicle Motor2 datasets (detailed in section 5.3.2). 

One of the approaches used to determine the model training and how well the model fits the data is by 

analyzing residual plots. The residual plot is a scatter plot that displays the residuals (the difference between 

the actual and predicted values) on the y-axis and the predicted values on the x-axis. Residual errors variance 

score is a statistical measure that represents the proportion of the variance in the dependent variable that is 

predictable from the independent variables. 

6.1.1 Random Forest Regressor 

Now that the Random Forest Regression (RFR) model has been fitted, its performance can be examined by 

doing the analysis of different plots and metrics. Such as residual plots for train and test dataset, along with 

the actual vs predicted plot for the target feature. 

• The illustrated plots as in figure 6-1 and 6-4, helps us visualize the distribution of errors and identify 

patterns and trends in the residuals for the RFR model. 

• The residual plot is a scatter plot that displays the residuals (the difference between the actual and 

predicted values) on the y-axis and the predicted values i.e., target feature attribute on the x-axis. 

• Another way to evaluate the performance of an RFR model is to create actual vs predicted graphs for 

four random test runs samples. The graph plots the number of samples on the x-axis whereas the 

motor temperature on the y-axis. This plot (figure 6-2 and 6-5) helps to determine how accurately the 

model predicts the target feature i.e., Stator winding and Motor2 temperature from trained models of 

respective datasets. 



77 

 

• Figure 6-2 and 6-5 depicts the graph for four test runs samples randomly chosen from all test runs of 

dataset. 

• On the first column of figure 6-2 and 6-5, graph is drawn for test data. Noise or fluctuations in the 

form of scattered red line can be observed in the predicted temperature when there is a variation 

observed in the actual signal value.  

• The spread red lines (figure 6-2 and 6-5) shows variability in predicted value. The variability in 

predicted value is smoothened (second column of figure 6-2 and 6-5) by applying moving average 

method on the predicted values to improve the accuracy and performance of the model.  

6.1.1.1 PMSM Dataset Results for RFR 

• The residual scatter plot is plotted w.r.t predicted values i.e., stator winding temperature on the x-

axis. It must be noted that dataset is normalized.  

• The residual plot looks to be ideal as it shows the random scatter, indicating that the model is 

accurately capturing the variability in the data. 

• The residual plot does not show any patterns or trends, which suggests that model is capturing the 

variable data accurately. 

 

Figure 6-1: Residual Error Plot for RFR 

• Overall MSE evaluation for RFR model is 0.006. 

• Moving average method is used to smooth out the fluctuations in the predicted data. Here, window 

size of 100 is used. 
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Figure 6-2: RFR Actual Vs Predicted for Random Samples (With and Without Smoothing) 

• Test run with profile id 76, is chosen for the validation purpose and its results are compared with 

research papers [2], [3]. Figure 6-3 shows the actual vs predicted plot for the same. 

 

Figure 6-3: RFR Actual Vs Predicted (With and Without Smoothing) 

6.1.1.2 Target Vehicle Dataset Results for RFR 

After examining the experimental dataset results, let us now observe the behavior of the Random Forest 

Regression (RFR) model with target vehicle dataset (section 5.3.2.2). 
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• Target vehicle dataset is normalized during the data pre-processing stage as detailed in section 

5.4.3.6. 

• The residual plot (figure 6-4) looks to be ideal as it shows the random scatter, indicating that the 

model is accurately capturing the variability in the data. In some instances, negative values such as -

0.3, -0.5, and -0.8 shows that they may be underfitting the results. 

• Residual errors variance score for train and test data is 0.999 and 0.997 respectively. This means that 

model explains a very high proportion of the variability in both the training and test data. This 

suggests that the model is likely to be a good fit for the data and is able to predict the dependent 

variable with a high degree of accuracy. However, it is important to note that the performance of the 

model on new data (i.e., the test data) is not as good as the training data. 

 

Figure 6-4: Residual Error Scatter Plot for RFR (Target Vehicle) 

• Overall MSE evaluation for RFR model is 0.1140. 

• The noise or fluctuations in the predicted values is smoothened with moving average method with 

window size of 10, the size is kept minimal since the number of samples in the dataset are less. 

• Load profile 450, is chosen for the validation purpose. Figure 6-6 shows the actual vs predicted plot 

for the target vehicle motor temperature prediction. 
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Figure 6-5: RFR Actual Vs Predicted for all load profiles (With and Without Smoothing) 

 

Figure 6-6: RFR Actual Vs Predicted (With and Without Smoothing) 
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6.1.2 Extreme Gradient Boosting 

Trained model i.e., Extreme Gradient Boosting (XGBoost) must be evaluated. Its performance can be 

analyzed by examining different plots and metrics. Such as residual plots for train and test dataset, along 

with the actual vs predicted for the target feature. 

• The illustrated plots as in figure 6-7 and 6-9, helps us visualize the distribution of errors and identify 

patterns and trends in the residuals for the trained XGBoost model. 

• The residual scatter plot illustrates the residuals (the difference between the actual and predicted 

values) on the y-axis and the predicted values i.e., target feature attribute on the x-axis. 

• XGBoost model performance is visualized by plotting the graphs with number of samples on the x-

axis whereas the motor temperature on the y-axis. This plot (figure 6-7 and 6-9) helps to determine 

how accurately the model predicts the target feature i.e., Stator winding and Motor2 temperature from 

trained models of respective datasets. 

• Figure 6-8 and 6-10 depicts the graph for actual vs predicted stator temperature of the respective 

datasets for the XGBoost model. 

6.1.2.1 PMSM Dataset Results for XGBoost 

• The residual scatter plot is plotted w.r.t predicted values i.e., stator winding temperature on the x-

axis. It must be noted that dataset is normalized. 

• The residual plot does not show any patterns or trends, which suggests that model is capturing the 

variable data accurately. 

• Minimal variability is observed around 60 and 70 (°C) in the figure 6-7 and does not affect the model 

performance. 

• Residual errors variance score for train and test data is 0.9987 and 0.9975 respectively. This means 

that model explains a very high proportion of the variability in both the training and test data. This 

suggests that the model is likely to be a good fit for the data and is able to predict the dependent 

variable with a high degree of accuracy. However, it is important to note that the variance score of 

the model on new data (i.e., the test data) is not as good as the training data. 

• Train and Test accuracy of the model is 99.87 % and 99.75 % respectively. 

• Overall MSE evaluation for XGBoost model is 2.0529. 
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Figure 6-7: Residual Error Plot for XGBoost 

 

Figure 6-8: Actual vs Predicted Temperature for XGBoost 
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6.1.2.2 Target Vehicle Results for XGBoost 

Experimental dataset results of the Extreme Gradient Boosting (XGBoost) model with target vehicle dataset 

(section 5.3.2.2) are listed below. 

• Target vehicle dataset is normalized during the data pre-processing stage as detailed in section 

5.4.3.6. 

• The residual plot is equally scattered around zero, indicating that the model is accurately capturing 

the variability in the data. In some instances, negative values of test data shows that they may be 

underfitting the results buts its quite minimal hence may not impact the overall accuracy of the 

model. 

• The residual plot does not show any patterns or trends, which suggests that model is capturing the 

variable data accurately. 

• Variability is high at 1 on the x-axis, which shows that predicted values are lower than the actual. 

Occurrence of variability is less frequent, so impact is considered to be minimal. 

 

Figure 6-9: Residual Error Scatter Plot for XGBoost (Target Vehicle) 
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• Residual errors variance score for train and test data is 0.9999 and 0.9995 respectively. This means 

that model explains a very high proportion of the variability in both the training and test data. This 

suggests that the model is likely to be a good fit for the data and is able to predict the dependent 

variable with a high degree of accuracy. However, it is important to note that the performance of the 

model on new data (i.e., the test data) is not as good as the training data. 

• Train and Test accuracy of the model is 99.99 % and 99.95 % respectively. 

• Overall MSE evaluation for XGBoost model is 0.0007. 

Table 6-1: Actual Vs Predicted with XGBoost (Target Vehicle) 

Original Temperature Predicted Temperature 

157.0 156.979599 

157.0 157.003693 

87.0 86.589165 

156.0 156.175079 

158.0 157.925110 

 

 

Figure 6-10: Actual vs Predicted Temperature for XGBoost 
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6.1.3 Long Short-Term Memory 

LSTM model is trained for sequence prediction task. When training an LSTM model, it's important to keep 

track of two things: accuracy and loss. The accuracy tells us how well the model is doing at making 

predictions, while the loss tells us how far off those predictions are from the correct values. During training, 

the model's accuracy and loss are continuously updated as it sees more data. By plotting the accuracy and 

loss against the number of training epochs (or iterations), we can see how the model is improving over time. 

The loss plot (figure 6-11 and 6-13) shows how the model's loss decreases over time. We want the loss to 

get as low as possible, indicating that the model is making accurate predictions. However, if the loss is low 

on the training data but high on the validation data, it may be overfitting, meaning it's too specialized to the 

training data and doesn't generalize well to new data. 

The plot of MSE (or accuracy) vs epoch is called the ‘history’ of the LSTM model during training. This 

plot (figure 6-11 and 6-13) shows how the model's accuracy changes over the course of training, with the 

training accuracy shown in blue and the validation accuracy shown in red. 

 

Figure 6-11: LSTM Accuracy and Model Loss vs Epoch Graph 

6.1.3.1 PMSM Dataset Results for LSTM 

• We can see in the figure 6-11, that the training accuracy improves over time and converges to a stable 

value, indicating that the model is learning to make accurate predictions on the training data. 

Similarly, we observe that validation accuracy does not follow similar pattern, it rather varies and it 

can be seen that it does not converge to a stable value, indicating that the model is not able to 

generalize well to new, unseen data. 
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• Training accuracy converges well and becomes stable hence it is not overfitting, hence able to 

generalize well to new data. 

 

Figure 6-12: Actual vs Predicted Temperature for LSTM 

• Figure 6-12 shows the pictorial representation of actual vs predicted stator winding temperature for 

test run profile id 76. 

• Loss can be seen bit high on validation data as compared to training. It seems to be overfitting, 

meaning it's too specialized to the training data and doesn't generalize well to new unseen data. 

Overall, the plot of MSE vs epoch provides important insights into the behavior of the LSTM model 

during training, and can help guide adjustments to the model architecture and training process to improve its 

performance. 

6.1.3.2 Target Vehicle Results for LSTM 

LSTM model is trained with target vehicle data sets. One of the key metrics to evaluate its performance is 

model’s training and validation accuracy, which is often measured by the mean squared error (MSE). 

 

Figure 6-13: LSTM Accuracy and Model Loss vs Epoch Graph 
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• We can see in the figure 6-13, that the training accuracy converges to a stable value, but the number 

iterations is quite less that means, that means model did not learn well. 

• The loss plot (figure 6-13) shows how the model's loss decreases over time. The loss decreases with 

number of epochs as low as possible, indicating that the model converges in a very small number of 

iterations. MSE of total test loss is 0.0020. 

• Figure 6-14 shows the pictorial representation of actual vs predicted motor temperature for all load 

profiles. 

• We can see that currently the results are overfitting as per the graphs. 

Overall, the plot of MSE vs epoch can provide important insights into the behavior of the LSTM model 

during training, and can help guide adjustments to the model architecture and training process to improve its 

performance. 
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Figure 6-14: Actual vs Predicted Temperature for LSTM 
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6.1.4 Convolutional Neural Networks 

6.1.4.1 PMSM Dataset Results for CNN 

The Convolutional Neural Network (CNN) model is trained on the PMSM dataset (section 5.3.2.1), with a 

specific configuration as described in table 5-15, the results of model and its explanation w.r.t target 

parameters i.e., stator temperatures. The testing stage is then conducted, and the results are visualized to 

evaluate the model's performance. 

• The plot in the figure 6-15, shows the training and validation mean squared errors (MSE) for each 

epoch of training.  

• It helps to visualize the training process of the model, showing the trend of the training and validation 

MSE across epochs. The purpose of this graph is to visualize the performance based on training 

process of the model. In addition to monitoring if the model is overfitting or underfitting. 

• We can see that, the training error (green dots) are not considerably lower, than the validation error 

(blue line), which indicates that the model might be slightly overfitting, but not significant. 

 

Figure 6-15: MSE at Training and Testing Stage for CNN 

• The plot in the figure 6-16, shows a scatter plot for each target column comparing the predicted 

values to the actual values. Each scatter plot also shows the R2 score, MSE, and RMSE for the target 

column. The plot provides a visual representation of how well the model is predicting the target stator 

temperatures. 

• The R2 score measured is 94 %, which tells how well the model is able to explain the variance in the 

actual target stator winding values, while the MSE (0.059) and RMSE (0.24) indicate the magnitude 

of the errors between the predicted and actual stator winding temperature values. 
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Figure 6-16: Actual vs Predicted Temperature for CNN 

6.1.4.2 Target Vehicle Results for CNN 

The Convolutional Neural Network (CNN) model is trained on the target vehicle Motor2 dataset (section 

5.3.2.2), with a specific configuration as described in table 5-15, the results of model and its explanation 

w.r.t target parameters i.e., stator temperatures. The testing stage is then conducted, and the results are 

visualized to evaluate the model's performance. 

• The plot in the figure 6-17, shows the training and validation mean squared errors (MSE) for each 

epoch of training. 

• It helps to visualize the training process of the model, showing the trend of the training and validation 

MSE across epochs. The purpose of this graph is to visualize the performance based on training 

process of the model and monitor whether the model is overfitting or underfitting. 

 

Figure 6-17: MSE at Training and Testing Stage for CNN (Target Vehicle) 
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• We can see that the training error (green dots) are aligned with the validation error (blue line), which 

indicates that the model might has fitted well. 

• The plot in the figure 6-18, shows a scatter plot for each target column comparing the predicted 

values to the actual values. Each scatter plot also shows the R2 score, MSE, and RMSE for the target 

column. The plot provides a visual representation of how well the model is predicting the target stator 

temperatures. 

• The R2 score measured is 99.30 %, which tells how well the model is able to explain the variance in 

the actual target motor temperature values, while the MSE (0.007) indicate the magnitude of the 

errors between the predicted and actual motor temperature values. 

 

Figure 6-18: Actual vs Predicted Temperature for CNN (Target Vehicle) 
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6.2 Performance Evaluation 

6.2.1 PMSM dataset Performance 

Analysis of model training results with PMSM data set (section 5.3.2.1) is listed in table 6-2 with different 

evaluation metrics. These are overall test set performance results. They are compared with available research 

studies done on similar problem statement as ours, i.e., stator temperatures prediction of electric motor 

temperature. 

Table 6-2: Comparative results for PMSM data set 

MODEL MAE MSE R2 Score RMSE 

RFR 0.0635 0.0065 99.01 % 0.25 

RFR-Sampaio et al. [2] - - - 0.0026 (TRAIN) 

0.092 (TEST) 

RFR-Savant et al. [3] - - 99.30 % - 

XGBOOST 0.0373 0.0026 99.74 % 0.19 

XGBoost-Al-Gabalawy et 

al. [4] 

- - - 1.226 (TRAIN) 

0.8291 (TEST) 

LSTM 0.1592 0.0360 94.41 % 0.40 

LSTM-Hosseini et al. [5] - 5.62 - - 

Global Attention-based 

EnDec LSTM-Li et al. [1] 

8.75 2.82 - - 

Cen et al. [20] 0.2222   0.2674 

CNN 0.0974 0.0204 97.95 % 0.31 

CNN-Hosseini et al. [5] - 3.34 99.54 % - 

• Evaluation results of applied models are compared with available research as in table 6-1. 

• R2 Score for RFR 99.01%, which may not be better than available research [3] but still gives good 

results provided its robustness to outliers. Hence, always a preferable choice to go for. 

• XGBoost out performs the results of Al-Gabalawy et al. with approximately more than 70% 

improvement in RMSE metric with test set. 

• Computational time for CNN was observed to be more with large dataset. 
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6.2.2 Target Vehicle dataset Performance 

Model training results with Target Vehicle Motor2 data set (section 5.3.2.2) are listed in table 6-3 with 

different evaluation metrics. These are overall test set performance results. They are compared with available 

research studies done on similar problem statement as ours, i.e., prediction of abnormalities in motor 

temperature. 

Table 6-3: Evaluation Metrics results for Target Vehicle data set 

MODEL MAE MSE R2 Score RMSE 

RFR 0.0037 0.0003 99.97 % 0.06 

XGBOOST 0.0104 0.0007 99.95 % 0.10 

LSTM 0.0079 0.0020 99.16 % 0.17 

CNN 0.0554 0.0204 99.30 % 0.22 

• RFR and XGBoost results outperformed the other models in terms of RMSE and R2 Score. 

• In-spite of CNN having better evaluation metric values of MAE and MSE, XGBoost or RFR would 

be preferred reason being the computational time and resource needs of deep neural network models 

is high. It is not wise to use such resources for less complex systems. Though, it also depends how 

the models are going to be applied. In case its one-time training then even CNN can be used. 

Graphical user interface is created for demonstration purpose below as shown in the figure 6-19. 

 

Figure 6-19: Graphical Interface for the Demonstration 
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Chapter 7 

7 Conclusions and Future Work 

This chapter concludes the thesis work and it highlights the areas where there is scope of improvement. 

7.1 Conclusion 

This thesis work has covered many areas in terms of architecture of the system, its state of art performance 

results and in what way it can actually be applied to the real time embedded software for off-road electric 

vehicles (EVs), which is our main objective (objectives detailed in section 1.2) of the thesis work. 

 This thesis work details the system architectural flow stages (section 1.3), and its sub processes 

(section 3.3) which when followed can lead to the ease of using AI based models to fulfill application needs 

and boost the approaches which can assist for example in our case the thermal management of electric motor 

drives when any abnormality warning or critical temperature rise is detected (section 3.3.4). 

 ML and DL models were trained initially with PMSM dataset (section 5.3.2.1)  for experimentation 

to find optimal hyper-parameters (as listed in section 5.5), which were used as the starting point to use them 

and start building model with the target vehicle Motor2 dataset (section 5.3.2.2). It is to be noted that, in our 

project scope we had two motors one for traction and another for driving implements. As of date, raw data 

for Motor2 which is used to drive implements were available from the lab. Both of the motors are controlled 

separately hence, do-not seem to have any dependency. Design of experiments conducted is highlighted in 

figure 5-1. 

 Since the requirement need is not complex, such kind of problems can be dealt with one time model 

training which is then used for the prediction of motor temperature when real time sensor data is fed as input 

to the trained model. With less complex problem and time-series data. Ensemble regression based extreme 

gradient boosting (XGBoost) model outperforms in short period of execution time and within limited 

computational resources.  

Evaluation metric results (table 6-3) obtained by application of targeted models i.e., RFR, XGBoost, 

LSTM and CNN, to the actual vehicle data-sets (section 5.3.2.2) of target off-road vehicle i.e., electric 

tractor, shall enrich the use-case of artificial intelligence-based algorithms. The objective of these evaluation 

results is to achieve a state-of-the-art study work of performance results which is one of its kind, and they 

will serve as valuable benchmarks for researchers who wish to compare the performance of various AI 

models applied to off-road vehicles. 
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7.2 Future Work 

• Data capture process (as detailed in section 3.3.1) needs to be automated to incorporate new captured 

records and prepare raw data at ease. This shall help in many ways, i.e., ease of preparing dataset 

from the new lab results to minimize the manual integration errors to improve model accuracy in 

prediction. 

• Development and deployment operations to be integrated with embedded system architecture design 

shall help to more accurately understand the AI model performance. 

• Enhancement to the deployment can be made where Edge AI and IoT can be used together to address 

complex problems where model is expected to train at run-time with new set of real time sensor data. 

Such applications demand architectural updates in existing hardware for any vehicle. Reason being 

one part of computation i.e., reading sensors data on the vehicle, preparing raw data out of it and then 

sending this data to cloud. Second part of computation i.e., training with new data shall be done using 

cloud services which shall then send the predicted information back to the vehicle. 

• Trained model with optimal hyper-parameters must be integrated with embedded eco-system to 

deploy it to the actual vehicle, in turn see the results of our AI application into off-road electric 

vehicles (EVs) at run-time. 

• Currently models are trained with “Measured Input” attributes as is from the sensors recorded data. 

These measured inputs can further be used to extract more “Derived Input” features. Work needs to 

on this side dependent on domain knowledge and inclined with application requirement needs.  
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