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Abstract

This M.Tech thesis explores the potential of Sentinel - 1 and Sentinel - 2 satellite data
for detecting deforestation in forests. The study employs a change detection algorithm
to identify and analyze changes in the forest cover. Both Sentinel - 1, which records data
in the C Band SAR, and Sentinel - 2, which is an optical satellite, provide multispectral
data for detecting changes in the forest cover. In this study, two bands of Sentinel - 1 and
four bands of Sentinel - 2 were found to be e↵ective in detecting forest and vegetation.
The change detection algorithm was applied to these bands and combinations of them
to determine which combination yielded the most e↵ective results. The accuracy of the
analysis was determined using ground truth data from two di↵erent sources. Additionally,
the accuracy of the analysis for di↵erent forest types and species was evaluated separately.
The results of the study demonstrate the potential of Sentinel - 1 and Sentinel - 2 satellite
data for accurately detecting deforestation in forested areas. The findings of this research
can be used to inform and improve forest management and conservation practices.
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Chapter 1

Introduction

Deforestation is a major environmental concern, and detecting changes in forest cover is
critical for e↵ective management and conservation. The use of satellite data has provided
a valuable tool for monitoring changes in forest cover over large areas. In particular, the
Sentinel - 1 and Sentinel - 2 satellites have the potential to provide valuable insights into
forest cover changes. Sentinel - 1, which is a C-band synthetic aperture radar (SAR)
satellite, is particularly useful in detecting changes in the presence and absence of trees,
as its backscatter is influenced by the ground conditions, including the structure of the
forest canopy.

Furthermore, Sentinel - 1 is not a↵ected by weather conditions, making it an ideal
tool for detecting changes in forest cover throughout the year. Sentinel - 2, which is an
optical satellite, can provide additional bands of data to improve the accuracy of change
detection algorithms, particularly in areas where the canopy structure is less dense. In
this project, we explore the potential of Sentinel - 1 and Sentinel - 2 satellite data for
detecting deforestation, using a change detection algorithm applied to the backscatter
data obtained from these satellites.

1.1 Objectives

• Analyze and process Sentinel - 1 and Sentinel - 2 satellite data for the study area.

• Evaluate the e↵ectiveness of di↵erent combinations of Sentinel - 1 and Sentinel - 2
bands for detecting deforestation using a change detection algorithm.

• Compare the accuracy of the change detection algorithm with ground-truth data
obtained from di↵erent sources.

• Perform accuracy analysis for species and forest type separately using the obtained
results.

• Identify areas of deforestation and characterize the spatial and temporal patterns
of forest cover changes in the study area.[8]

.
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1.2 Significiant Use Cases

• Monitor changes in forest cover over time: With the ability to analyze and process
Sentinel - 1 and Sentinel - 2 satellite data, your project can be used to monitor
changes in forest cover over time. By identifying areas of deforestation and charac-
terizing the spatial and temporal patterns of forest cover changes, your project can
help track changes in forest cover and inform forest management strategies.[19]

• Aids in estimating carbon stocks in forested areas: Deforestation is a major con-
tributor to greenhouse gas emissions and climate change. By identifying areas of
deforestation and tracking changes in forest cover, your project can be used to es-
timate carbon stocks in forested areas. This information can be used to inform
climate change mitigation strategies and support e↵orts to reduce greenhouse gas
emissions.[4]

• Identifies areas of high conservation value and informs conservation strategies:
Forests provide essential ecosystem services, including biodiversity conservation and
watershed protection. By identifying areas of high conservation value, your project
can inform conservation strategies and support e↵orts to protect and restore forest
ecosystems.[2]

• Helps monitor and combat illegal logging: Illegal logging is a major driver of de-
forestation, biodiversity loss, and carbon emissions. By identifying areas of defor-
estation and monitoring changes in forest cover, your project can support e↵orts to
combat illegal logging and promote sustainable forest management. Your project
can also help identify areas at high risk of illegal logging, enabling targeted inter-
ventions and enforcement e↵orts. [13]

.

1.3 Synopsis

• Chapter 2: This chapter focuses on the fundamentals of electromagnetic (EM) waves
and their interaction with physical structures. It provides a detailed discussion on
the polarizations of synthetic aperture radar (SAR), and how EM waves interact
with trees.

• Chapter 3: This chapter describes the area of interest and the materials used in
the study. It also provides information on the data sources and ground truth data
used for the research.

• Chapter 4: This chapter focuses on the preprocessing, calibration, and other steps
involved in analyzing the data. It describes the behavior of backscatter with changes
in ground conditions and provides insight into the cumsum method used in the
study. This chapter also includes backscatter plots and discussions on the products
generated.
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• Chapter 5: This chapter presents the change maps obtained for all the bands and
the combination of bands. It also provides an accuracy analysis of the results with
ground truth data. This chapter o↵ers insight into the e↵ectiveness of di↵erent com-
binations of bands in detecting deforestation using a change detection algorithm.

• Chapter 6: This chapter provides the conclusions derived from the present study.
It summarizes the main findings of the thesis, including the e↵ectiveness of SAR in
monitoring changes in forest cover, the importance of ground truth data, and the
utility of di↵erent combinations of bands in detecting deforestation.

.
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Chapter 2

Literature Review and Concept

Aquino, C., et al. ”Reliably Mapping the Location, Time and Magnitude of
Low-intensity Forest Disturbance using a Simple Satellite Radar Method.”
frontiers - This paper proposes a straightforward and e�cient approach for taking ad-
vantage of Sentinel-1 VV-polarized time data to identify small-scale disturbances in mul-
tistoried, thick tropical woods. The location, timing, and magnitude of the disturbances
were determined using the Cumulative Sum (CuSum) algorithm, and the findings were
confirmed by extremely precise in-situ measurements of forest canopy loss obtained using
a combination of UAV LiDAR, TLS, and field inventory surveys in two di↵erent tropical
forests located in Gabon and Peru. The project captured finer and more widespread
tropical forest disturbances than existing forest monitoring technologies like the SAR-
based RADD system and the Landsat-based GFW tool. The method can potentially be
applied to measure other kinds of forest dynamics, such regrowth in forests, and it could
be generalised to the regional scale. Overall, this study o↵ers insightful information for
managing and monitoring forests, particularly in light of the growing demand for agri-
cultural and forestry products throughout the world and the ensuing deforestation and
fragmentation.

The Sentinel-1 mission and its application capabilities - Torres et.al - Re-
searchgate - An overview of the Sentinel-1 mission, which was created by the European
Space Agency (ESA) in response to operational SAR data needs identified by the EU-
ESA Global Monitoring for Environment and Security (GMES) programme, is provided
in the article. Sentinel-1 is a constellation of imaging synthetic aperture radar satellites
operating in the C-band. The mission maintains essential instrument qualities including
stability and accurate, well-calibrated data outputs and draws on ESA’s legacy and ex-
pertise with the ERS and ENVISAT SAR sensors. It also provides continuity of C-Band
SAR data to applications. The paper emphasises the use of SAR data as an additional
or backup data source during bad weather when optical imaging is not available.

Performance Evaluation of UAVSAR and Simulated NISAR Data for Crop
and Noncrop Classification Over Stoneville, MS. S. Kraatz et.al - With the help
of data gathered by NASA’s airborne Uninhabited Aerial Vehicle SAR (UAVSAR) plat-
form and simulated NISAR data, this research assesses the NASA ISRO SAR (NISAR)
Cropland Area product. The study investigates crop/noncrop classifications at vari-
ous spatial resolutions and coe�cient of variation (CV) thresholds using mode 129A for
global-scale mapping. The analysis concludes that employing UAVSAR at 10 m resolu-
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tion results in the maximum accuracy of 85 %, while NISAR data at 30 m and 100 m
resolutions might match the mission accuracy requirement of 80 %. The work also demon-
strates that accurate agricultural products may be created at smaller spatial resolutions
and that overall accuracy may not be the most sensitive parameter for classification
performance.

2.1 Backscatter Mechanism

Figure 2.1: Optical vs. SAR side by side comparision.

When a radar beam hits a surface, it is both reflected and transmitted from the
surface. The magnitude of the reflection depends on the degree of discontinuity in the
dielectric constant at the surface. Additionally, the roughness and orientation of the
surface a↵ect the direction of reflection and the amount of energy scattered back to the
source. For example, in the case of water, the change in dielectric constant causes a
strong reflection. However, since the surface of water is relatively smooth, the reflection
is directed away from the source, resulting in low backscatter readings. The interaction
between a surface and microwave radiation depends on the wavelength of the microwave
and the angle at which the radar beam strikes the surface. When the surface is smooth
relative to the wavelength, most of the incident energy is scattered forward in a classical
reflection direction, while a small fraction is scattered back towards the radar, with
the amount of backscattering strongly dependent on the incident angle, especially at
small angles. However, as the surface becomes rougher relative to the wavelength, more
energy is reflected in di↵erent directions, including backwards towards the sensor. With
increasing surface roughness, the angular dependence of the backscattering decreases,
meaning that the amount of energy reflected back to the radar becomes less sensitive to
the incident angle.
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2.2 Backscatter Mechanism for VV and VH polar-
izations

The polarization of a radar signal a↵ects how it interacts with the elements of a target.
Vertically polarized signals are more likely to be scattered by vertical elements, while
horizontally polarized signals are more likely to be scattered by horizontal elements. The
complexity of the target also a↵ects the polarization of the scattered signal. For example,
a complex tree canopy will cause both vertically and horizontally polarized signals to
appear similar.

The angle of incidence of the radar signal also a↵ects the backscatter from a target.
Depolarization occurs when the scattered wave has a di↵erent polarization than the in-
cident wave. This can occur when there is multiple scattering within a target structure.
For a locally flat surface, backscatter only occurs at normal incidence. However, scat-
ter from surfaces that are the same size or smaller than the wavelength can also cause
depolarization. Canopy volume scattering is a significant source of depolarized scatter.

2.3 Behavour in forested areas

The backscatter from forested terrain can be contributed by several mechanisms. These
include crown-scattering, which involves multiple scattering within the crown and is re-
ferred to as crown volume scattering. Additionally, direct backscattering can occur from
the trunk and ground. Crown-ground and trunk-ground double bounces can occur in
both directions, and backscatter may occur from the ground to the tree and back to
the ground. However, backscatter from beneath the canopy is often attenuated as it
travels back towards the radar system. Factors such as surface roughness, soil moisture,
slope, and the presence of understory vegetation can influence the interaction of radar
signals with the ground. The magnitude of each backscatter component depends on radar
wavelength, polarization, angle of incidence, and various terrain and canopy parameters.

2.4 Trunk and Trunk-Ground interactions

In synthetic aperture radar (SAR) imaging of forested areas, direct scatter from the
trunks is usually minimal due to the large incident angles of the radar relative to the
vertical trunks and the smoothness of the trunk surface, particularly at the bark-wood
boundary. However, in some cases, the trunk-ground double bounce can be an important
or even dominant scattering interaction. Backscatter modeling studies have shown that
trunk-ground double bounce can significantly contribute to the total backscatter and
is sensitive to ground backscatter. Forest backscatter models provide insights into the
nature and magnitude of trunk-ground interactions. A tree trunk rising perpendicular
from a flat ground surface is often considered a dihedral corner reflector, resulting in
attenuated backscatter. [5]
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Figure 2.2: Backscatter magnitude from a cylinder with radius less than the wavelength
at di↵erent orientations with respect to incoming radar beam.

2.5 Crown - Ground interaction

This interaction occurs through volume scattering and surface scattering from the
branches. The magnitude of backscatter in this case is influenced by terrain factors
such as surface roughness and soil moisture, but is generally smaller compared to crown
volume backscatter and trunk-ground interaction. Unlike trunk-ground interaction which
exhibits a corner reflector e↵ect, the crown-ground backscatter includes a significant cross-
polarized component.[5]

2.6 Direct Backscatter from the Ground

The amount of direct backscatter from the ground is influenced by various factors,
such as the roughness of the surface, the moisture content, the type of ground material,
the local slope, and the presence of vegetation, deadfall, and other surface perturbations.
Rougher surfaces and materials with higher dielectric constants tend to produce greater
backscatter. The level of backscatter is also a↵ected by the penetration of radar waves
through the forest canopy, which depends on factors such as the thickness and openness
of the canopy. Additionally, the angle at which the radar is incident plays a crucial role in
the amount of direct ground scattering, with higher incident angles resulting in decreased
backscatter. Generally, direct ground backscatter is not a significant contributor to overall
backscatter at incident angles greater than 20 degrees, except in open forest stands.[5]

2.7 Sentinel - 2’s behavour

Sentinel-2 is a multispectral satellite system that can provide valuable information
on the characteristics of forests and vegetation. The bands 4 (red), 5 (near-infrared),
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and 6 (shortwave infrared) are particularly useful for monitoring vegetation health and
dynamics.[17] Band 4 is sensitive to chlorophyll content and can be used to estimate veg-
etation density and vigor. Band 5 is useful for vegetation indices such as the Normalized
Di↵erence Vegetation Index (NDVI) and can detect subtle changes in vegetation growth
and health. Band 6 is sensitive to moisture content in vegetation, making it useful for
detecting water stress and forest fires. The better resolution of Sentinel - 2 comes handy
in performing change detection.
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Chapter 3

Area of Interest and Materials Used

The project utilizes data from both Sentinel-1 and Sentinel-2 satellites to analyze the
Haldwani forest in Uttarakhand, India.[23] The forest is renowned for its managed logging
for industrial purposes, rendering it an ideal area for the analysis. The data utilized in the
study covers the period of 2017, and was captured by Sentinel-1 and Sentinel-2 satellites.
The data obtained from Sentinel-1 and Sentinel-2 for this project is particularly valuable,
as it is freely available and has a high temporal and spatial resolution.

3.1 Region of Interest

Here is a satellite image of the region of interest:

Figure 3.1: Optical Satellite Imagery (Top, credit: Google Earth) and SAR Imagery
(Bottom) depicting the logging activity throughout the year

The satellite image of the area of interest reveals that the region is divided into com-
partments where planned tree plantations take place. The trees in these compartments
are periodically logged, making this region an ideal site for change detection analysis.[25]
[16]
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The distinct compartments in the region facilitate the monitoring of changes in tree
cover and forest structure over time, providing valuable insights into forest management
practices. The periodic logging of trees in the compartments creates a unique opportunity
to analyze the e↵ects of logging on forest health and recovery.[1]

Moreover, the presence of logged areas in the region also allows for the assessment of
deforestation rates and the extent of forest degradation in the region. The use of satellite
data in this analysis enables the detection of changes in forest cover and structure that
may not be easily observable from ground-level surveys.

3.2 Sentinel - 1 Data

Sentinel - 1- It has two polarizations, Vertical Vertical (VV) and Vertical Horizontal
(VH), and o↵ers di↵erent image modes with varying spatial resolution and swath.[26] [6]

The spatial resolution for Sentinel-1 data ranges from 5 meters to 40 meters, de-
pending on the mode and polarization. The following are the central frequencies and
spatial resolutions for Sentinel-1 VV and VH bands, both the band are C band with 10m
resolution. [15]

3.3 Sentinel - 2 Data

Sentinel - 2- Sentinel-2 has a spatial resolution of 10 meters for its four visible and near-
infrared bands, which include bands 4, 5, 6, and 8.[15]

These four bands have the following central wavelengths and corresponding spatial
resolutions:

Band 4 (Red): 665 nm, 10 meters

Band 5 (Vegetation Red Edge): 705 nm, 10 meters

Band 6 (Vegetation Red Edge): 740 nm, 10 meters

Band 8 (Near Infrared): 842 nm, 10 meters

10



3.4 Ground Truth data

Figure 3.2: Hansen’s Global Forest cover map. The di↵erent colors depict di↵erent years

The map has a spatial resolution of 30 meters, which means that each pixel in the
map represents an area on the ground of 30 meters by 30 meters. The map covers the
entire globe, including both terrestrial and coastal forests.

The dataset provides information on the extent and density of forest cover, as well as
changes in forest cover over time. This global forest cover map was created using optical
imagery.

In addition to using Hansen’s Global Forest Map, a shapefile was created in QGIS to
identify areas that have undergone changes and areas that have not. This was achieved
by analyzing both SAR and Optical imagery of the forest. The shapefile provides a visual
representation of the forest cover changes and allows for a more precise identification of
areas where forest cover has been a↵ected.
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Chapter 4

Methodology

In SAR remote sensing, the Interferometric Wide swath (IW) mode captures a wide
area of around 250 km at once. However, we are often interested in a smaller area within
this swath. Therefore, we take a subset of the area of interest. Before analyzing the
backscatter values of the SAR image, it is necessary to perform radiometric calibration
using tools like SNAP. This calibration process helps to convert the pixel values of the
SAR image into radar backscatter values of the scene. This conversion makes it easier to
interpret the data for scientific analysis. In addition, range Doppler terrain correction is
applied to account for foreshortening and overlay e↵ects that can occur in SAR imagery
due to topography. By performing these necessary steps, we can ensure accurate and
meaningful interpretation of the SAR data for various applications such as land cover
classification, change detection, and environmental monitoring. Here is a cropped version
of the region where the deforestation (and subsequent reduction of back-scatter) has
occurred. A Virtual Raster File (VRT) was created using the Geospatial Data Abstraction

Figure 4.1: Behavour of VV backscatter before and after logging of trees

Library (GDAL) for both Sentinel-1 and Sentinel-2 satellite images. Each layer of the
VRT file corresponded to a specific date of the satellite image capture. This allowed for
easier handling and organization of the large amounts of image data.
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4.1 Cummulative Sum

After calculating the residuals R by subtracting the smoothed time series from the orig-
inal time series, we calculate the cumulative sum of the residuals, S, which gives us an
indication of how much the time series has deviated from its long-term average over
time.[11] This helps to identify periods of anomalous behavior or significant changes in
the backscatter magnitude over the time period of interest [12].

In our case, S =
Pn

i=1 Ri

Figure 4.2: Cumsum of the Residuals

4.2 Backscatter Plots

We compute the mean backscatter coe�cient for each image, converts it to decibels (dB),
and then creates a time series plot of the mean backscatter coe�cient over time.[7] [24]

The time series plot shows the variation of the mean backscatter coe�cient over time,
with each data point representing the mean value for a particular SAR image. The x-axis
represents time, and the y-axis represents the mean backscatter coe�cient in decibels
(dB).[18]

Additionally, each data point is labeled with the corresponding band number, which
represents the order in which the SAR images were acquired.[10]

Overall, this time series plot can be useful for monitoring changes in the backscatter
coe�cient of the target area over time, which can in turn be used to infer changes in land
cover, moisture content, and other environmental factors. [3]

We can observe the backscatter over a smaller region and visualze it like this:
We first extract the subset of the SAR data based on the subset definition, and then
calculates the mean backscatter coe�cient for each time step along the time series axis

13



Figure 4.3: Mean Backsactter Plot

Figure 4.4: Backscatter plot on a subset

(axis=0), resulting in a 1D numpy array of mean backscatter values. The mean backscat-
ter values are then converted to dB and stored in a pandas time series object (ts) with
the datetime index.

The time series object (ts) can be plotted using the plot method of the time series
object, which generates a line plot of the mean backscatter values over time.

The time series of mean backscatter values can provide information on changes in the
backscatter coe�cient over time, which can be related to changes in land cover and other
surface properties.

14
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Figure 4.5: Backscatter values, measured in dB (dates on the left)

4.3 Residuals and Rolling Median

The time series data is first filtered using a rolling median filter with a window size of
5, and both the filtered and unfiltered data are plotted. The residual gives us the value
of R that we used in the Cusum formula This can be useful for visualizing the variation
of backscatter magnitude over time for a specific subset of data, and for identifying any
trends or patterns in the data. The comparison of the time series data with its mean can
also provide insights into any deviations or anomalies in the data.

Figure 4.6: Timeseries plot with rolling median filter

About rolling median filter: The rolling median function is a type of filter that is used
to smooth out time series data by reducing high frequency noise and random fluctuations.
The function calculates the median of a window of data points (in this case, a window

15



Figure 4.7: Residual Image

of size 5), and moves the window along the time series to create a filtered version of the
data.

The rolling median function is often used instead of other types of filters (such as the
rolling mean or moving average filters) when dealing with time series data that contains
extreme values or outliers, as the median is more robust to such values. It can also be
more e↵ective at preserving sharp transitions or edges in the data.

In this specific project, the rolling median function is used to smooth out the time
series data and make any trends or patterns more apparent, while reducing the e↵ect
of noise or random fluctuations in the data. The filtered and unfiltered data are both
plotted for comparison purposes, to help visualize the impact of the filter on the time
series.

4.4 Bootstrapping

The bootstrap method was used to estimate the distribution of the maximum di↵erence
in the cumulative sum of residuals (Sdi↵) that could be obtained by chance, assuming
that there was no real change point in the data. This was done by randomly permuting
the time series data (i.e., randomly shu✏ing the residuals), and then calculating the
Sdi↵ for each permuted series. By repeating this process multiple times (here, n number
of bootstraps=200), we obtained a distribution of Sdi↵ values that could be expected
by chance. We could then compare the observed Sdi↵ value (calculated earlier for the
original, unpermuted data) to this distribution to estimate the probability of obtaining
such a large Sdi↵ value by chance alone. If this probability was small (e.g., less than
0.05), we could conclude that there was likely a real change point in the data.
Confidence Level for change point 99.5 percent
Change point significance metric: 0.8246569366095272
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Figure 4.8: Bootstrap for 200 values

4.5 Threshold and Change Map

We calculate the cumulative sum of the residuals (R), and then calculate the maximum
and minimum cumulative sum along the time axis.[22] The di↵erence between these two
values (Smax and Smin) gives the maximum change in cumulative sum between any two
time points, which is then stored in Sdi↵. [21]

The code then creates a figure with three subplots, each showing a di↵erent image:
Smax, Smin, and Sdi↵. The vmin and vmax arguments set the minimum and maximum
values for the color scale of the images, respectively.[14]

Finally, a histogram of the values in Sdi↵ is generated using the hist function from
matplotlib.pyplot. The x-axis represents the range of values for the Sdi↵ variable and the
y-axis represents the frequency of occurrence for each bin in the histogram. [20]

Figure 4.9: Histogram

We can set the threshold value for the change point detection algorithm to a certain
percentile of the histogram of the Sdi↵ values.
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Alternatively, we can manually assign the value of threshold at maximum accuracy,
if we have the ground truth data. [9]

Here is what the Sdi↵ looks after the masking:

Figure 4.10: S values after masking

The second bootstrap was done to estimate the confidence level and significance of the
change point detection. In this case, a masked array was used to exclude time periods
that were not significant. The randomization was done by shu✏ing the time index of
the masked array. The maximum and minimum cumulative sums of the residuals were
calculated for each bootstrapped sample, and the maximum di↵erence between the two
was computed as the Sdi↵ value.

The maximum Sdi↵ value was then compared with the previous maximum value, and
if it was greater, it was assigned as the new maximum value. Additionally, a count was
kept of how many times the bootstrapped Sdi↵ value was less than the original Sdi↵ value.
This count was used to estimate the confidence level of the change point detection.

Finally, the product of the confidence level and the significance of the change point
detection was obtained by multiplying the confidence level and the significance values
computed in the previous step. This product was plotted as a heatmap to visualize the
regions where the change point was significant with high confidence.

Figure 4.11: Product plotted as a heatmap to visualize the regions where the change
point was significant with high confidence

The code generates a binary image where pixels with a value less than cp-thres are
set to True (white). The input to plt.imshow is the boolean array CL*CP-significance
¡ cp-thres, which is the element-wise multiplication of the confidence level (CL) and
significance arrays, compared with the threshold value cp-thres. The resulting image can
be used to identify regions with significant change points in the data.
The index of the maximum value along the time axis is then computed for each pixel in
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Figure 4.12: Regions with significiant change points in the data

the array. The resulting indices are then used to find the dates of change by looking up
the dates from the time index array (tindex). The resulting change indices and dates are
stored in the variables change-indices and change-dates, respectively.

Finally, a color map is chosen, and a figure with an image plot of the change index
array (CP-index) and a color bar are created using plt.subplots and plt.imshow. The tick
labels for the color bar are set to the change dates, and the orientation of the color bar is
set to horizontal. The resulting image plot shows the dates of significant change points
in the time series data.

Figure 4.13: Change Map, color coded according to the dates
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4.6 Accuracy Ground truths

1. Hansen Global Forest cover:
Hansen Global Forest cover was used for accuracy analysis as ground truth. This data
was in several layers, each representing a di↵erent year. Hansen Forest Change map (hfc)
that are less than 17 or greater than or equal to 18 are set to zero. This means that all
the layers of the map, except layer 17, are masked out. Then, the values that are equal to
17 are set to 1, e↵ectively creating a binary mask of layer 17. Finally, plt.imshow is used
to display this binary mask, with a gray colormap, showing the areas with deforestation
in 2017 as white and the non-deforested areas as black. This is a common technique to
visualize specific layers or bands of multi-band images, and this is how the data of 2017
was extracted.

Figure 4.14: Hansen Global Forest Cover Map
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2. QGIS validation map:
To obtain another reference point for ground truth, a shapefile was generated using QGIS
to distinguish between areas that have undergone changes and areas that have not. This
was achieved by examining both SAR and Optical imagery of the forest, which enabled
a more accurate identification of regions where forest cover has been impacted. The
resulting shapefile provides a visual representation of the forest cover changes.

Figure 4.15: Validation Map created using QGIS
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4.7 Confusion Matrix

Overall Accuracy:
The frequency with which the classifier properly identifies the data is expressed as the

overall accuracy (OA). It is determined by dividing the overall number of samples that
were correctly categorised (true positives and true negatives) by the overall number of
samples.

OA =
TN + TP

TP + FN + FP + TN
(4.1)

User Accuracy:
When a sample belongs to a certain class, the user accuracy (UA) is a measurement

of how frequently the classifier correctly recognises that class. It is computed by dividing
the total of true positives and false negatives for a given class by the number of true
positives for that class.

UAi =
TPi

TPi + FNi
(4.2)

Producer Accuracy:
When the real class is that particular class, the producer accuracy (PA) is a mea-

surement of how frequently the classifier correctly identifies that particular class. It is
determined by dividing the total of true positives and false positives for a given class by
the number of true positives for that class.

PAi =
TPi

TPi + FPi
(4.3)

Kappa Coe�cient:
The degree of agreement that may happen by chance is taken into account when

calculating the kappa coe�cient, which measures the agreement between the true and
projected class labels. It has a range of -1 to 1, with values nearer to 1 denoting greater
agreement. It is derived by subtracting the marginal totals (sums of rows and columns)
from the observed agreement (TP + TN) and comparing it to the predicted agreement
(based on chance).

 =
N(TN + TP )� (FP + TP )(FP + TN)

N2 � (FP + TP )(FP + TN)
(4.4)
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Chapter 5

Results and Discussion

5.1 Sentinel-1

In this study, we evaluated the accuracy and kappa values of Sentinel-1 SAR data for two
individual bands, VH and VV, as well as their combinations. The results are summarized
in Table 5.1. Overall, the combination of VH and VV bands yielded the highest accuracy
(VH/VV) and kappa values.

Table 5.1: Summary of Accuracy Analysis of Sentinel-1

However, further in-depth analysis of the individual bands and their combinations is
provided below along with the change maps.
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5.1.1 VV band - Sentinel - 1

Figure 5.1: Change map obtained from Sentinel - 1 - VV Band

The VV band here is more sensitive to vertical structures compared to the VH band.
This is because the VV polarization corresponds to vertical transmit and receive signals.
Therefore, the VV band is more sensitive to the changes in trunk and upper branches of
vegetation, which tend to have a more vertical orientation. As a result, a change map
generated using the VV band can provide a more detailed and accurate representation of
changes in vegetation cover, particularly those related to the vertical structures of trees
and vegetation.
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5.1.2 VH band - Sentinel - 1

Figure 5.2: Change map obtained from Sentinel - 1 - VH Band

The VH (Vertical and Horizontal) band in SAR imaging is more sensitive to horizontal
structures such as the canopy and the horizontal branches of vegetation. This is because
the polarization of the signal is transmitted vertically and received horizontally, which
makes it more sensitive to changes in the orientation of the canopy and the orientation
of the branches relative to the radar beam. As a result, the VH band can be useful in
identifying changes in the canopy and the horizontal branches of vegetation, which tend
to be more horizontally oriented.

25



5.1.3 VH / VV - Sentinel - 1

Figure 5.3: Change map obtained from Sentinel - 1 - VH/VV

The VV/VH ratio of Sentinel-1 is particularly significant for forest and vegetation
mapping as it provides a measure of the structural complexity and moisture content
of vegetation. This ratio is better than individual VV or VH readings as it takes into
account the di↵erences in sensitivity of the two polarizations to di↵erent types of forest
and vegetation structures. In addition, the ratio is less a↵ected by speckle noise, which
can be a problem with individual readings, allowing for more accurate mapping of forest
cover changes over time.
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5.1.4 VH/[VV(VH-VV)] and (VH-VV)/(VH+VV) - Sentinel -
1

Figure 5.4: Change map for VH/[VV(VH-VV)

Despite varying the threshold, the VH/[VV(VH-VV)] ratio did not yield any signif-
icant results in detecting changes in forest cover. The accuracy of the results was low,
despite using more manual and statistical methods to vary the thresholds.

Accuracy - 59 %

Kappa Coe�cient - 0.18

For (VH-VV)/(VH+VV) -

Figure 5.5: Change map for (VH-VV)/(VH+VV)

Similar to (VH-VV)/(VH+VV), the accuracy obtained in this case was very low,
despite varying the threshold.

Accuracy - 55 %

Kappa Coe�cient - 0.11
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5.2 Sentinel-2

In this study, we evaluated the accuracy and kappa values of Sentinel-2 data for 4 indi-
vidual bands, namely Band-4, Band-5, Band-6, Band-8, and NDVI, as shown in Table
5.2 . Overall, Band-6 had the highest accuracy and kappa values, with an accuracy of
75.17 % and kappa of 0.42.

Table 5.2: Summary of Accuracy Analysis of Sentinel-2

However, further in-depth analysis of the individual bands and their combinations is
provided below along with the change maps.
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5.2.1 Band 4 - Sentinel - 2

Figure 5.6: Change map obtained from Sentinel-2, Band 4

Sentinel-2’s band 4 is sensitive to red-edge radiation, which can be useful for detecting
changes in forest cover due to deforestation. As healthy vegetation reflects more red-edge
radiation than unhealthy or bare land, changes in the red-edge reflectance can indicate
changes in forest cover. By analyzing the change in band 4 reflectance over time, a change
map can be generated to identify areas where deforestation has occurred. The interaction
of band 4 with the forest is crucial for accurate detection of changes. In a healthy forest,
band 4 reflectance will be relatively stable over time, while in deforested areas, there will
be a significant decrease in reflectance due to the loss of vegetation cover.
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5.2.2 Band 5 - Sentinel - 2

Figure 5.7: Change map obtained from Sentinel - 2, Band 5

Band 5 is sensitive to shortwave infrared radiation and is mainly used for detecting
moisture content. While changes in vegetation water stress can indicate changes in forest
health, it may not be as reliable for detecting deforestation as band 4. The interaction of
band 5 with the forest can provide information on vegetation water content and health,
which can be useful for monitoring forest health and identifying areas where deforestation
may be occurring.
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5.2.3 Band 6 - Sentinel - 2

Figure 5.8: Change map obtained from Sentinel - 2 - Band 6

The interaction of band 6 with the forest can provide information on the amount of
water stored in the leaves and stems of the vegetation, which can indicate the health
and vigor of the forest. Healthy vegetation typically has high moisture content, while
dry vegetation can indicate stress or damage. In forests, the moisture content of the
vegetation can vary depending on factors such as seasonality, vegetation type, and canopy
structure. By analyzing changes in the moisture content of the vegetation over time, it
is possible to detect changes in forest health and identify areas where deforestation or
other disturbances may be occurring.
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5.2.4 Band 8 - Sentinel - 2

Figure 5.9: Change map obtained from Sentinel - 2 - Band 8

Sentinel-2’s band 8 is sensitive to the near-infrared radiation and is widely used in
remote sensing applications for monitoring land use and land cover changes. In particular,
band 8 can be used for detecting changes in vegetation cover due to deforestation. The
interaction of band 8 with the forest can provide information on the density and health
of the vegetation, which can be used to detect changes in forest cover over time. In
healthy vegetation, band 8 reflectance is relatively high due to the high density of leaves
and the chlorophyll content in the plant cells. However, in areas where deforestation
has occurred, there will be a significant decrease in band 8 reflectance due to the loss of
vegetation cover.
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5.2.5 NDVI (Band 8 - Band 4 / Band 8 + Band 4 ) - Sentinel
- 2

Figure 5.10: Change map obtained from Sentinel - 2 - NDVI

NDVI is calculated by taking the di↵erence between the near-infrared (band 8) and
red (band 4) reflectance and dividing it by their sum. The use of NDVI for generating
change maps for deforestation can be an e↵ective approach, as changes in vegetation
cover due to deforestation will result in a significant decrease in NDVI values over time.
The NDVI change map can be used to identify areas where deforestation has occurred,
allowing for e↵ective management and conservation of forest resources.
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5.3 Accuracy Analysis Based on Type of Forest

Following an analysis of change detection accuracy across di↵erent bands of Sentinel-1 and
Sentinel-2, the accuracy of identifying Forest Type and Forest Species was determined. A
forest type refers to a specific classification of forest based on its ecological and biological
characteristics, such as the dominant tree species, forest structure, and climate conditions.
For instance, Dry Shivalik Sal and Moist Tarai Sal are examples of forest types found in
India, where the dominant tree species in each type is Sal (Shorea robusta), but the former
is characterized by dry and hilly terrain, while the latter is found in lowland areas with a
high level of moisture. Forest types are useful in understanding the di↵erent ecosystems,
their biodiversity, and the services they provide, and can aid in the development of
sustainable forest management practices. Three distinct forest types were selected from
the study area, and the behavior of multiple bands of Sentinel-1 and Sentinel-2 was
analyzed, along with accuracy assessments for each of these forest types.

Figure 5.11: Types of forests in the Area of Interest
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5.3.1 Plantation

Table 5.3: Accuracy Analysis of Plantation type of trees in the forest - Accuracy in %

Based on our analysis, the forest type under consideration demonstrated the highest
accuracy and kappa values when using the VH band of Sentinel-1 and Band 6 of Sentinel-
2. Specifically, the VH band of Sentinel-1 yielded the highest accuracy and kappa values.
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5.3.2 Dry Shivalik Sal

Table 5.4: Accuracy Analysis of Dry Shivalik Sal type of trees in the forest

Based on our analysis, the forest type under consideration demonstrated the highest
accuracy and kappa values when using the VH/VV of Sentinel-1 and Band 5 of Sentinel-2.
Both of these bands provide almost equally good accuracy.
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5.3.3 Moist Tarai Sal

Table 5.5: Accuracy Analysis of Moist Tarai Sal type of trees in the forest

Based on our analysis, the forest type under consideration demonstrated the highest
accuracy and kappa values when using the VH/VV of Sentinel-1 and Band 6 of Sentinel-2.
Specifically, the Band-6 of Sentinel-2 yielded the highest accuracy and kappa values.
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5.4 Accuracy Analysis Based on the Species

In order to gain a more comprehensive understanding of the forested region under study,
we conducted a species-level analysis on the three most abundant tree species: Teak,
Cottonwood / Poplar, and Mixed Plantation. These species were selected for analysis
due to their prevalence in the area and their ecological significance. The forested region
is composed of numerous compartments, each with multiple species present. Our analysis
focused on the compartments where these three species were found in abundance. By
analyzing the accuracy of detection of these species within each compartment, we were
able to gain insights into the performance of di↵erent bands of Sentinel - 1 and Sentinel -
2 for detecting each species. This analysis helps us to better understand the distribution
and abundance of each species within the region.

Figure 5.12: Distribution of various species in the forest, the lines depict the seperation
between 2 compartments
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5.4.1 Teak

Table 5.6: Accuracy Analysis of Teak trees in the forest

Based on our analysis, the forest species under consideration demonstrated the highest
accuracy and kappa values when using the VH of Sentinel-1 and Band 5 of Sentinel-2.
Specifically, the VH of Sentinel-1 yielded the highest accuracy and kappa values.
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5.4.2 Cottonwood / Poplar

Table 5.7: Accuracy Analysis of Cottonwood / Poplar trees in the forest,

Based on our analysis, the forest type under consideration demonstrated the highest
accuracy and kappa values when using the VV of Sentinel-1 and Band 6 of Sentinel-2.
Specifically, the VV Band of Sentinel-1 yielded the highest accuracy and kappa values.
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5.4.3 Mixed-Plantation

Table 5.8: Accuracy Analysis of mixed plantation type of trees in the forest, accuracy in
%

Based on our analysis, the forest type under consideration demonstrated the highest
accuracy and kappa values when using the VH of Sentinel-1 and Band 6 of Sentinel-2.
Specifically, the VH of Sentinel-1 yielded the highest accuracy and kappa values.
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Chapter 6

Summary & Conclusion

In conclusion, the results of this study demonstrate the potential of Sentinel - 1 and
Sentinel - 2 data for high-resolution monitoring and detection of forest logging and de-
forestation. The use of both Sentinel - 1 and Sentinel - 2 data provides complementary
information, allowing for more comprehensive and accurate detection of forest changes.
Our analysis revealed that certain bands and combinations of bands provided higher ac-
curacy of change detection, highlighting the importance of careful selection of data for
monitoring purposes. The results of this study provide insights into the distribution and
abundance of di↵erent forest types and tree species, which can inform e↵ective forest
management and conservation strategies. Overall, the use of Sentinel - 1 and Sentinel -
2 data for forest monitoring has significant implications for sustainable management of
natural resources and conservation e↵orts.

Summary of Accuracy obtained for Forest-Types and Species - Higher ones are high-
lighted:

Table 6.1: Summary of Type and Species-wise accuracy

The analysis of forest types and species using Sentinel - 1 and Sentinel - 2 data
revealed interesting insights into the performance of di↵erent bands for detecting changes
in forest cover. For forest types, Sentinel - 1 showed superior performance for Mixed
Plantation/TOF and Dry Shivalik, while certain bands of Sentinel - 2 provided better
outputs for Mixed Tarai. However, overall Sentinel - 1 tended to provide better accuracy
than Sentinel - 2 for most of the bands. On the other hand, for forest species, Sentinel
- 1 provided better accuracy by a significant margin for Teak and Cottonwood / Poplar,
while Sentinel - 2 tended to perform better for Mixed Plantation.

Sentinel-1 through clouds, rain, and fog, allowing for all-weather and day-night mon-
itoring. This capability is especially important for forest and vegetation mapping, as
clouds and precipitation frequently cover forested areas, hindering optical satellite data
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acquisition. Sentinel-1 SAR data can detect the structure of vegetation and provide infor-
mation on the density, height, and biomass of forests, even in areas with dense canopies
or tropical forests with limited access due to heavy cloud cover.

Figure 6.1: Change map obtained from Sentinel - 2 - Band 8 - in presence and absence
of cloud cover

On the other hand, Sentinel-2 uses multispectral imaging with 13 spectral bands
that cover the visible and near-infrared range, providing high-resolution images of the
Earth’s surface. However, its readings are a↵ected by cloud cover, causing them to
be less reliable than Sentinel-1. Clouds can obscure the surface and lead to errors in
the classification of land cover and changes in vegetation over time, making it di�cult
to monitor deforestation. Moreover, Sentinel-2’s data acquisition is limited to daytime
operations, which further reduces its e↵ectiveness in monitoring forest and vegetation
changes.

Creating a change map for deforestation using Sentinel-2 data requires removing the
layers of cloud from the Virtual Raster Tile (VRT) file. This process involves using cloud
masks to remove areas that are a↵ected by clouds or shadows, so that only cloud-free
pixels are used in the analysis. This can be a challenging and time-consuming task,
especially in areas with persistent cloud cover or frequent changes in weather patterns.

In summary, while both Sentinel-1 and Sentinel-2 can be used for forest and vegetation
mapping, Sentinel-1’s SAR technology allows for all-weather and day-night monitoring,
making it more reliable for detecting changes in forest cover and deforestation. Sentinel-
2’s readings are less accurate and are a↵ected by cloud cover, making it less reliable for
monitoring forest and vegetation changes, especially in regions with persistent cloud cover.
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