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Abstract

Financial modelling especially in the field of stock market price prediction is a sophisticated process

because of the variation and dependency on a few of the parameters and technical indices. This project

Thesis examines the application of the Non-linear Kalman Filter in financial modeling.

The Kalman filter is a mathematical algorithm widely used in various fields that use state estima-

tion and prediction. This filter is commonly used in most engineering applications to filter out noise

from a measured signal. However, the Kalman filter has also been applied to estimate the value of

financial assets, predict asset prices, and manage portfolios in the financial market.

The Kalman filter has been employed for financial modeling with the aim of improving the ac-

curacy of prediction about stock prices, market trends, and other financial metrics. In return Stock

markets provide insights to traders to gain high profits.

The financial data of certain companies listed on the National Stock Exchange (NSE) India for

the year 2012 from the Yahoo Finance dataset of NSE are used. The prices of the stock for the

past days along with a few technical indices were used for the prediction of the price the next day.

In finance, the Kalman filter can be used for financial modeling by integrating historical data and

making predictions about future stock prices or market trends. To provide more accurate predictions

of the next day, the filter takes into account not only the current state of the market but also the

uncertainty in the measurements and the dynamics of the market. In this project report, the basics

of the Kalman filter have been reviewed, along with its application in the financial market including

portfolio optimization, risk management, and algorithmic trading.

The study begins by providing a brief overview of the Kalman filter and its mathematical formu-

lation. The Work then examines the application of the Kalman filter in finance, especially in asset

pricing and portfolio management. A step-by-step mathematical derivation of stock market predic-

tion using the Kalman Filter has been presented. The challenges and limitations of using the different

models as well as the Kalman filter in financial modeling are also discussed and some recent ad-

vances are presented in this field. The results of the study show that the Kalman filter is a useful tool

for financial modeling and can help investors and portfolio managers make more informed decisions.
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Chapter 1

Introduction

1.1 Introduction

In this project work, the propagation pattern of financial data such as stock market prediction using

historical data is studied, from a mathematical model perspective. Billions of people participate in

the stock market, and each one has unique knowledge and opinions about the value of a company

depending on whether they purchase or sell it. Most of it depends on intuition, with a small amount

of prediction supported by technology. This is due to the fact that the majority of prediction models

now in use are not trustworthy enough for humans to base decisions purely on model predictions.

Therefore, there is a need for more effective algorithms to predict stock market prices so that even the

average person with little financial knowledge may become independent enough to invest in it with

confidence and with the least amount of unanticipated risk and maximum profit.

The world of finance has always been about data. One could even argue that finance professionals

utilized data even before the advent of data science, machine learning, and artificial intelligence.

Here are the use cases where data science has helped finance professionals and financial institu-

tions to be more effective and efficient.

1. Fraud Detection and Prevention [64], [38], [57]: Machine learning algorithms can learn from

historical data and identify unusual behavior, patterns, or transactions. e.g. identifying theft, or

multiple accounts opened with similar KYC data.

2. Risk Assessment and Predictive Analysis [6], [70], [13]: It describes how likely is it that a par-

ticular borrower will depend on its future obligations, given its historical payment behavior and

other characteristics, e.g. income, family size, address, etc.

3. Forecasting Through Time Series Analysis [9], [49], [55], [68]: By adding an explicit order de-
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pendence between historical observations, a time series forecasting can attempt to predict the

values of a variable at a given future point in time, either with or without any other dependent

variables.

4. Customer Data Management and Analysis [2], [5], [69]: Financial institutions are inundated with

humongous data volumes both structured and unstructured, with the latter being more challeng-

ing to manage, process and gain insights from.

Stock price prediction is a crucial aspect of finance that involves the development of mathematical

models to analyze financial data to forecast future performance and make investment decisions. A

variety of purposes, including asset pricing, portfolio management, risk management, and trading can

be done using financial data modeling.

In this project, an attempt to predict the stock market using the Kalman filter (KF) algorithm

has been made. The KF is a linear state space model [25], [7], [31] that acts recursively on noisy

input data and produces a statistically optimum estimation of system data. The KF [75] is a very

commonly used signal processing tool [65] that uses a recursive algorithm for estimating the state

variables from noisy measurement and observation in linear and non-linear systems by eliminating

inaccuracies obtained due to noisy data produced by high fluctuations. Being a time series data set

with a high degree of dynamicity, the financial database is an ideal application for the nonlinear KF,

which has real-time target tracking capabilities.

In recent years, The KF [75], [76], [10] has emerged as a useful tool for financial data modeling

[41], particularly in the area of asset pricing and portfolio management [37]. It is a mathematical

algorithm that is widely used in engineering applications to estimate the state of a dynamic system in

the presence of noise. The KF has proven to be a powerful and useful tool in the stock market, allow-

ing investors and portfolio managers to better estimate asset values, predict asset prices and manage

portfolios. In financial market trading [18], KF are frequently employed to generate estimations of

prices and correlation. Instead of using the most current price, they build a price estimate using a time

frame of noisy prices that have been observed.
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1.2 Motivations

The motivations behind the proposed work are as follows:

• We always have to work with big data which sometimes proves to be cumbersome while re-

moving outliers using machine learning algorithms [63].

• There is no hard theory as to how exactly different factors like interest rates, and market shares

vary with utmost precision. So, without any shadow of a doubt, we can say it is a time-

consuming exercise that needs to be precise.

• Controlled experiments cannot be conducted, unlike the modeling of a physical system, using

the already existing models, so there was a need for a better algorithm that can reduce the error

of prediction.

• Collecting and aligning the assumptions that are to be used in the financial market [41] is also

not easy while working with the already existing model.

1.3 Application of Kalman Filter in Finance

KF has various applications in the field of finance [77], especially in the field of quantitative finance

[36], [61], [27]:

’

• Stock Market Prediction [27]: Non-linear KF can be used to predict stock market data using a

historical database based on a state-space model using some mathematical equation for predic-

tion and correction.

• Algorithmic Trading [48], [15]: KF can be easily applied in algorithmic trading [35] methods

in order to estimate hidden state variables of financial data, like the true value of an asset of the

market.

• Portfolio Optimization [26]: KF can help in balancing risk and return by optimizing the portfo-

lios by estimating and correcting the expected return of an asset [77].

• State estimation in Financial Models [66], [39], [47]: Unobservable variables such as interest

rate, volume, opening price, etc. in financial data, can be estimated using KF mathematical

state and measurement equation.
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1.4 Organization of the Thesis

The rest of this thesis is organized as follows: In chapter 2, the literature review of the previous

work done and the problem statement is discussed. Further, in chapter 3, the theory of predictive-

financial analysis, Gaussian estimation theory, stochastic process, differential equation, LSTM, Linear

Regression, and DMD are carried out. Chapter 4 shows the performance analysis of Linear and

Non-Linear Kalman filters using example problems. Next Chapter 5 includes the roadmap of the

mathematical model for finance data using a Non-linear KF i.e. CKF. Finally, Chapter 6 includes the

conclusion and scope of the future work of the research.
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Chapter 2

Review of Past Work and Problem

Formulation

2.1 Literature Review

Numerous research has been conducted to evaluate the algorithms that are now being utilized to

forecast stock market prices. The overfitting issue plagued artificial neural networks (ANNs), which

were frequently employed for stock prediction and financial modeling [40], [16], [51]. This was

caused by the numerous parameters and variables that had to be used and fixed and the user’s limited

prior understanding of the relevance of the inputs in the problem being studied. By memorizing

previous data, LSTM [63] was employed for numerous time series applications, and a similar method

is used to forecast the trend for the stock. Other machine learning [74] methods are also applied to

stock market forecasting [17], [34], [71]. There are no guidelines established by which the best option

for the stock market prediction can be selected. The DMD [52], which transforms a dataset from a

high-dimensional space to a low-dimensional space so that the low-dimensional representation retains

some significant properties of the original information, is also used for stock market forecasting.

Financial signal processing [58], [24], [3], [42] is often used in quantitative analysis to make the

best estimation of the movement of financial markets, such as stock prices, option prices, or other

types of derivatives. A signal is any sequence of numerical data that varies with respect to a fun-

damental independent variable mostly time [42]. Techniques in signal processing, particularly stock

market price prediction, have been more in demand in the finance sector as a result of the development

of digital technology and associated improvements in data storage and processing speed..

KF [54], [53], [32] a linear state space model [31] that operates recursively on noisy input data

and generates a statistically ideal assessment of the system state, was later introduced. The use of

5



the KF can assist us in locating a statistically optimal estimate in such a system due to the extremely

dynamic nature of stock markets that are also impacted by market noise. The two-stage KF algorithm

[30] represents the real worth of the market data by using linear regression within the data. It achieves

a balance between the original data and forecasts based on how much noise is there.

Let’s say you need to measure the temperature of a fiery path in a rocket booster, no sensor is going

to withstand that heat but you can take a measurement from the sensor a few inches hidden behind

the heat shell and using that measurement you can pretty closely estimate what the temperature in the

booster pathway is. KF does this in a way by minimizing the mean squared error. So, this is more

like a prediction algorithm. Therefore, a step has been taken to use a KF for prediction in finance that

is in the stock market.

To keep the testing environment consistent, the project analyses these algorithms using the same

volume of test and training data. This project thesis work also discusses and compares the relevant

parameters and widely utilized algorithms. Later in the study, a comparison of these algorithms based

on RMSE is shown. Any predictive model’s primary goal is to reduce error, and in the case of the

stock market, that goal is to reduce risk. According to certain recent developments in this sector, the

difficulties and restrictions associated with applying the KF to financial modeling [83], [79] are also

covered. Here, the project’s goal is to give a comprehensive overview of the KF’s use in financial

modeling.

6



2.2 Problem Statement

This project aims to dynamically improve the method of predicting financial distress [40] based on

Kalman filtering [30] which is an important area in corporate finance. also, this project report will

explain why and how the widely used discriminant models, currently used for financial distress, have

deficiencies in dynamics. Financial distress as in to generate sufficient revenues in order to improve

the return and reduce risk. The project also focuses on proposing advanced filtering algorithms using

KF that can outperform the existing methods like Linear regression, LSTM, etc. Another important

method, DMD has also been introduced for stock prediction which uses the dimensionality reduction

technique [44]. Later on, all these methods are compared on the basis of Mean square error (MSE). At

the end of the report, another important topic, the pros and cons of using the KF in financial analysis,

especially in stock market prediction will be analyzed on the basis of simulation results.
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Chapter 3

Theoretical Background

3.1 Predictive-Financial analysis

The predictive analysis circumscribes a variety of statistical methods and techniques from data mining

[29], [50], predictive modeling, and machine learning that actually analyzes current and historical

facts to make predictions of future events. In short, analytics helps in forecasting future performance

and results [12].

Fundamentally, a prediction is a calculated guess based on some prior knowledge in the form

of facts and pieces of evidence [12]. The stock market forecasting has been one of the buzz topics

attracting equally the attention of both researchers and traders who want to make a profit recently.

Now, let’s understand what is a financial model [41].

• It is a tool used for decision-making. Whenever there is a need to take a decision rather sensible

decision, we need data or information to support them in the form of a model.

• It is a kind of activity of preparing any entity’s future financial statements. These future financial

statements are sometimes known as financial models.

Consequently, historical data are essentially used to create a classifier or predictive [12] model or

a regressor that actually captures the important trend, and then the current data is used to predict what

will happen next and which further helps to take optimal outcomes.

8



Below is the basic process steps flow diagram to be followed during the process of predictive

financial modeling :

Figure 3.1: Predictive analysis process steps

Here, defining the problem statement and data collection are collectively called data exploration.

The data needs to be cleaned in order to get rid of redundancies i.e. data cleaning. Then the modeling

part is done which means after analyzing the data, a predictive model [59] is built followed by a

performance analysis through model validation and deployment.
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3.2 Bayesian Estimation

Bayesian estimation [84], [82], [8] uses prior data to estimate the value of an unknown parameter

[82]. The main objective of Bayesian estimation is to estimate the underlying probability distribution

of a random signal X(state) given noisy measurement data Y. This reduces the differences between

the estimated value and the actual value of the parameter. Bayesian algorithm [62], [45] is a family

of algorithms where all of them share a common principle i.e. every pair of features being classified

is independent of each other.

Baye’s theorem can be expressed as :

P(X |Y ) = P(Y |X)P(X)

P(Y )
(3.1)

where,

X: Random signal, Y: Noisy measurement data, p(Y|X) is the likelihood, P(X) is the prior distribution,

P(Y) is the evidence.

Bayesian methods allow us to estimate the model parameter, construct a model forecast, and

conduct model comparisons. In Bayesian signal processing [14], [80], the main area of interest is a

stochastic process.

Xt = x(t)|t ∈ N (3.2)

In these cases, generally, a Gauss-Markov chain [22] of 1st order in the states is assumed, where

the measurement is only dependent on the current state.So, A Gauss-Markov state-space model of the

process.

x(t) = a[x(t −1)]+b[u(t −1)]+ω(t −1) (3.3)

and the measurement

y(t) = c[x(t)]+ v(t) (3.4)

where,

ω ∼ N(0,Rww(t −1)), v ∼ N(0,Rvv(t −1)) are the process and measurement noises, u(t) is the input

and a(.), b(.) and c(.) are some known functions.

10



1. Analytic approach: It is used to find the analytic solutions for the posterior and perform statis-

tical inferences based on integrals.

E( f (x)) =
∫

f (x)P(X |Y )dx (3.5)

2. Monte carlo approach [11] [23]: It is used to find an analytic or approximate solution for the

posterior and perform statistical inferences based on sampling, which we going to use in our

project.

E( f (x))≈ f̂ =
1
N

N

∑
i=1

f (xi) (3.6)

The most common risk function used for Bayesian estimation is the MSE also called squared error

risk. MSE is defined by,

MSE = E[(θ̂(x)−θ)2] (3.7)

where the expectation is taken over the joint distribution of θ and x.

3.3 Stochastic Process

A stochastic process [78] [60] is a mathematical model that represents the evolution of a system or

phenomenon over time in a probabilistic manner. It is an assemblage of random variables indexed by

time or some other parameter. Stochastic processes are used in various fields, including mathematics,

statistics, physics, finance, and engineering, to model and analyze systems with inherent uncertainty.

It can be written as,

µ(B) = P({ω ∈ Ω : X(ω) ∈ B}). (3.8)

The law of a stochastic process or a random variable(here ω) is also called the probability law, prob-

ability distribution, or distribution.

Formally, a stochastic process is defined as a collection of random variables {X(t) : t ∈ T}, where

T represents the index set (usually time) and X(t) represents the value of the random variable at time

t. The index set can be discrete (e.g., integers or time steps) or continuous (e.g., real numbers). The

random variables can be discrete (e.g., coin tosses) or continuous (e.g., stock prices)

Generally, there are three types of inferences that are of interest when considering state-space

models [31]

1. Prediction: This includes forecasting subsequent values of the state.

2. Filtering: Estimating the current values of the state from the past and current observations is

done in this step.
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3. Smoothening: This step covers estimating the past values of the state given the observations.

Filtering and smoothening [56], [21] are comparable, but they are not the same. The best way to

think of diversity is that with smoothening one can acknowledge what has happened with the states in

the past given the present knowledge, whereas with filtering one can know what is the circumstances

of that state right now.

A stochastic process, also known as a random process or random variable set, is a collection of

random variables that are each organized using a built-in set of time-representative indices. It is used

by traders to determine the performance of a portfolio of individual stocks using random probability

distributions.

3.4 Long Short-Term Memory

LSTM [28] is a recurrent neural network (RNN) architecture commonly used for stock price pre-

diction. LSTM networks are effective at capturing and learning from sequential data, making them

suitable for time series forecasting tasks such as stock price prediction [74].

The application of LSTM in stock price prediction involves the following steps:

1. Data Preparation: Historical stock price data is preprocessed and formatted to suit the LSTM

model’s input requirements. This typically involves normalizing the data, partitioning it into

input sequences (e.g., using a sliding window approach), and creating corresponding target

sequences.

2. LSTM Model Architecture: The LSTM model is constructed using one or more LSTM layers

followed by one or more fully connected (dense) layers. The LSTM layers capture temporal de-

pendencies and patterns in the input sequences, while the dense layers map the learned features

to the target variable, such as the future stock price.

3. Training: The LSTM model is trained using the prepared data. During training, the model

adjusts its internal parameters through backpropagation and gradient descent optimization to

minimize the difference between predicted and actual stock prices. MSE or a similar loss

function is typically used.

4. Testing and Evaluation: The trained model is evaluated on a separate test dataset to assess

its performance. Predicted stock prices are compared against the actual prices to calculate

evaluation metrics like mean absolute error (MAE), RMSE, or directional accuracy.
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5. Prediction: Once trained and evaluated, the LSTM model can be used to make future stock

price predictions. Given a new input sequence, the model generates predictions for subsequent

time steps.

To enhance LSTM’s performance in stock price prediction, additional techniques can be em-

ployed. These include incorporating extra features (e.g., technical indicators or news sentiment) into

the input data, tuning hyperparameters (e.g., number of LSTM layers, hidden units, learning rate),

and using regularization techniques (e.g., dropout) to mitigate overfitting.

The schematic diagram of predicting the stock market using the LSTM model was taken from

[63]:

It is important to note that while LSTM has shown promise in stock price prediction, accurate

forecasting of stock prices remains challenging due to the inherent uncertainty and complexity of

financial markets. Therefore, it is advisable to interpret predictions cautiously and consider them as

probabilistic estimates rather than definitive outcomes.

Implementation result of stock price prediction model of NTPC using LSTM for which

RMSE is 3.6251
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Figure 3.2: Stock price prediction model of NTPC using LSTM model

3.5 Linear regression

Predicting stock market prices using linear regression is a common approach in quantitative finance.

While linear regression can provide a basic framework for modeling relationships between variables,

it may not capture all the complexities and dynamics of the stock market. It is important to note

that stock prices are influenced by numerous factors, including economic conditions, company per-

formance, market sentiment, and geopolitical events, making accurate predictions challenging.

Let’s assume we want to predict the closing price of a particular stock based on its historical data.

Here’s a step-by-step process using Python and the sci-kit-learn library:

1. Data Preparation: It includes gathering historical data for the stock, including the closing prices

and any relevant features or indicators you want to consider as predictors. Split the data into

training and testing sets.

2. Feature Selection: It includes choosing the features you believe might have a relationship with

the stock price. For example, you could consider the opening price, trading volume, or the

previous day’s closing price.

3. Model Training: It includes fitting a linear regression model to the training data using the cho-

sen features as predictors and the closing price as the target variable.

4. Model Evaluation: It includes evaluating the performance of the model using appropriate met-

rics such as MSE, RMSE, or R-squared value. Additionally, consider visualizing the predicted

prices against the actual prices to gain insights
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5. Prediction: It uses the trained model to make predictions on the testing data or new, unseen

data.

It’s important to note that linear regression assumes a linear relationship between the predictors and

the target variable, which may not always hold in the stock market. Also, that stock price prediction

is a complex task, and relying solely on linear regression may not yield highly accurate results.

The idea for the schematic diagram of predicting the stock market using a linear regression

model was taken from the source (http://harry-nita.blogspot.com/2017/09/machine-learning-linear-

regression.html)

Implementation result of stock price prediction model of NTPC using linear regression for which

RMSE is 5.0291

Figure 3.3: Stock price prediction model of NTPC using linear regression model
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3.6 Dynamic Mode Decomposition

DMD is a data-driven technique used in stock market prediction to extract and analyze the underlying

dynamics of a time series [52]. DMD is particularly useful for identifying dominant modes or patterns

in the data and forecasting future behavior [43].

Here’s an overview of the application of DMD in stock market price prediction:

1. Data preparation: Historical stock market data is preprocessed and organized into a suitable

format for DMD analysis. This typically involves formatting the data as a matrix, where each

row represents a snapshot in time and each column represents a variable (e.g. stock prices or

market indices).

2. DMD: It decomposes the data matrix into a set of dynamic modes and associated temporal

behaviors. The DMD algorithm computes the eigenvalues and eigenvectors of the data matrix

and constructs a low-rank approximation of the system’s dynamics. These dynamic modes

capture the underlying oscillations or patterns present in the data.

3. Mode selection and analysis: From the DMD analysis, the dominant modes are identified based

on the magnitude of their associated eigenvalues. These modes represent the most influential

patterns in the stock market data. The associated eigenvectors provide insights into the structure

and importance of these modes.

4. Forecasting: Once the dominant modes are identified, they can be used to forecast future be-

havior. By projecting the modes forward in time, future stock market trends or patterns can be

predicted. This projection can be performed using the eigenvalues and eigenvectors obtained

from the DMD analysis.

It’s important to note that DMD is a purely data-driven technique and does not incorporate external

factors or fundamental analysis. Therefore, it may not capture complex relationships or causal factors

that impact stock market behavior. DMD-based predictions should be interpreted with caution and

considered alongside other relevant information and analysis methods.

DMD has its advantages in providing a low-dimensional representation of the dynamics and its

ability to capture non-linearity and transients. However, its effectiveness in stock market prediction

may vary depending on the specific characteristics and dynamics of the stock market data being

analyzed.

From measurements and computation of a given system in time, the DMD method provides a

decomposition of data into a set of dynamic and robust modes that are derived. To illustrate the
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algorithm, we consider regularly spaced sampling in time.

The data collection process involves two parameters:

N = number of companies in a given portfolio, M = number of data snapshots taken

data collection times :

tm+1 = tm +∆t (3.9)

Data Snapshots :

X =
[
x(t1) x(t2) x(t3) . . . x(tM)

]
(3.10)

where, x represents the snapshots,and X is signal values at ith time instant

For the purposes of the DMD method, the following matrix includes columns j through k of the

original data matrix.

Xk
j =

[
[x(t j) x(t j+1) . . . x(tk)]

]
(3.11)

By splitting the data matrix into,

XM−1
1 =

[
[x1 x2 x3 . . . xM−1]

]
(3.12)

XM−1
2 =

[
[x1 Ax1 A2x1 . . . AM−2x1]

]
(3.13)

where XM−1
2 is one time slot shifted from XM−1

1

In the DMD technique, the final data point XM is represented

xM =
M−1

∑
m=1

bmxm + r (3.14)

where r is the residual vector.The steps involved in DMD of the time series xt is as following,

Computing SVD decomposition of XM−1
1

XM−1
1 =UΣV ∗ (3.15)

constructing the matrix A ,Koopman operator

AXM−1
1 ≈ XM

2 (3.16)

XM
2 = XM−1

1 S+ re∗M−1 (3.17)

where S is the companion matrix. & eM−1 is (m−1)th unit vector. Hence,

AX1 = X2 ≈ X1S (3.18)

The Matrix S can be computed and it’s eigen values and eigen vectors found, using these eigenvectors,

the state of the system can be reconstructed in decomposed form.
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3.6.1 Stock price prediction using DMD

A dynamic system is described using a governing set of differential equations:

∂ f
∂x

= F(x, t) (3.19)

Where F is an unknown non-linear function. At each state, we can make different kinds of mea-

surements of the observables. The measurement function can be denoted as:

G(x, tk) = 0 Where, k = 0,1,2,. . . . . . ,M (measurement time)

The initial condition is stated as, x(0) = x0.In the DMD procedure, approximate linear evolution

of the system :
∂ x̃
∂ t

= Ax̃ (3.20)

So, the solution of the above equation :

x̃ =
L

∑
k=1

bkΨkexp(ωkt) (3.21)

where, Ψk and ωk are eigenvectors and eigenvalues of matrix A. And x̃(t) defines the state of the

system at time t. Stock prices had been taken to represent the state of the system, so x(t) gives the

stock price at time t.

Figure 3.4: Stock price prediction of NTPC using DMD

Implementation result of Stock price prediction of NTPC using DMD using is shown for which

RMSE is 17.3625, where the blue line shows the true value and the red line is the predicted value.
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3.7 Kalman Filter

Kalman filter is a recursive mathematical algorithm used to estimate the state of a dynamic system

from a series of noisy measurements. It is widely applied in various fields, including engineering,

economics, robotics, and finance.

The Kalman filter operates by combining sensor measurements and mathematical model assump-

tions to get the best approximation of the system’s true state. It is based on a probabilistic model of

the dynamics of the system. It considers both the current measurement and the previously estimated

state to update the state estimate.

Here’s a high-level overview of the Kalman filter algorithm:

1. Initialization: The filter is initialized with an initial state estimate and covariance matrix. These

represent the best knowledge or prior information about the system’s state.

2. Prediction: The Kalman filter predicts the next state based on the dynamics model of the system.

It uses the previously estimated state and covariance matrix, along with the known system

dynamics equations, to make a prediction.

3. Update: The filter incorporates new measurements or observations into the state estimate. It

compares the predicted measurement from the predicted state with the actual measurement

from the sensor. The difference between the predicted and measured values, along with their

associated uncertainties, is used to update the state estimate and covariance matrix.

4. Iteration: The prediction and update steps are repeated recursively as new measurements be-

come available. Each iteration refines the state estimate based on the latest measurements,

continually improving the accuracy and reliability of the estimated state.

The KF is designed to handle systems that exhibit linear dynamics and Gaussian noise character-

istics. However, variations such as the extended Kalman filter (EKF), cubature Klaman filter (CKF),

and unscented Kalman filter (UKF) [72] have been developed to handle non-linear dynamics and

non-Gaussian noise scenarios.

In finance, the KF is commonly used for applications like portfolio optimization, asset allocation,

and estimation of hidden factors or variables in financial models. It helps in extracting valuable

information from noisy and incomplete market data to make more accurate predictions or decisions.

It’s worth noting that the effectiveness of the KF in financial applications depends on the under-

lying assumptions and the quality of the available data. Careful consideration of model selection,
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parameter tuning, and understanding the limitations of the filter is essential for obtaining meaningful

results in financial modeling and prediction.

The idea of the block diagram for the KF processing steps is necessary to generate the best state

estimate from the observations, as well as the underlying models taken from [75].

Iteratively producing the best assessments of the state vector Xk at distinct time tk where k = 1,2,..,n

based on observations y j at distant time t j where j = 1,2,..,k is the underlying notion behind the KF.

The Kalman filter’s key benefit over other recurrence filtering techniques is that the guess it generates

is optimal in the sense that they are linear, unbiased, and have the least amount of variance. In the

follow-up, the derivation is guided by these three distinctive and varied properties of the Kalman filter.

1. Linear Estimator: The best appraisal of the state vector at time tk is constructed as a linear

combination of x̃k and yk given the nearest prediction x̃k of xk and the most recent observation

at time tk.

x̃k = Lkx̃k +Kkyk (3.22)

where Lk and Kk are matrices that are properly specified. The well-known Kalman gain matrix

defines everything that the matrix Kk is, as will be shown subsequently.

2. Unbiased estimator: The statistical supposition of the variable or parameter being estimated

must be identical to its true value in order for an estimator to be considered impartial. Therefore,

the following definition of a state error vector, ek| j, is appropriate:

ek| j = xk| j − xk (3.23)

The estimation error is denoted by the error vector ek|k = x̂k when j = k, and when j = k-1, the

error vector is ek|k−1 = ẽk is assigned to as the one-step prediction error, often abbreviated to

just forecasting errors. Using the linear figurer or estimator, the error êk in the best rate and

estimate X̂k of the state vector xk is deduced to be [75]

êk = x̂k − xk = Lkx̃k +Kkyk − xk = Lk(ẽk + xk)+Kkyk − xk (3.24)

The yields obtained after simplifying the result by substituting for the observation yk from the

equation :

êk = Lk(ẽk + xk)+Kk(Hkxk + vk)− xk = Lkẽk +(Lk +Kk(Hkxk − I)xk +Kkvk) (3.25)

where I is an N ∗N identity matrix. Now, since the anticipated value of the observation noise

vk is considered to be zero, and since for an impartial estimator of the estimated and anticipated
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state errors ( êk and ẽk respectively) must have an expectation of zero, then the matrices Lk and

Kk must be chosen so that

Lk +KkHk − I = 0. (3.26)

Therefore, the matrix must be selected as follows for a linear unbiased estimator:

Lk = I −Kk (3.27)

Hk, and after doing this, the estimator equations and estimation error equations become

Estimation error

ẽk = (1−KkHk)ẽk +Kkvk (3.28)

Estimate

x̃k = (1−KkHk)x̃k +Kkyk = x̃k +Kk(yk −Hkk̃k) = x̃k +Kkzk (3.29)

where, Innovation

zk = yk +Hx̃k (3.30)

Innovation refers to the new information or particulars that results from a new observation, and

the term zk is used to describe this. [75] Standard usage for the KF is the label "z".

3. Minimum variance estimator: The estimation error êk has a low variance because the Kalman

gain matrix Kk at time instant tk is selected accordingly. The prediction error and estimation

error covariance matrices are defined as follows to demonstrate how this can be done:

Estimation error covariance

P̂k = E(êkêT
k ) (3.31)

Prediction error covariance

P̃k = E(ẽkẽT
k ) (3.32)

After substituting for the calculated error vector obtained in the preceding subsection, the esti-

mation error covariance can be symbolized in terms of the prediction error covariance:

P̂k = E[{(I −KkHk)ẽk +Kkvk}{(I −KkHk)ẽk +Kkvk}T ] (3.33)

P̂k = E[(I−KkHk)ẽkẽT
k (I−KkHk)

T +KkvkvT
k KT

k ]+E[(I−KkHk)ẽkvT
k KT

k +KkvkẽT
k (I−KkHk)

T ]

(3.34)
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Firstly, consider the second assumption in order to simplify this formula. The forecasting error

ẽk is based on received facts up to time tk−1, whereas vk is the inspection error associated with

measurement and calculation made at time tk. From the supposition that the state vector noise

wk and the observation vector noise vk are independent, spectrally white, and zero means, the

supposition of the product will be zero, and hence the second assumption in the last equation

is zero. The first presumption can be expressed in terms of formerly expressed covariance

matrices to give [75]

P̂k = E[{(I −KkHk)P̃k(I −KkHk)
T +KkRkKT

k ] (3.35)

The variances of the various parts of the estimate error vector ek must meet the specified min-

imal variance requirement. It will be sufficient to select the Kalman gain Kk to minimize the

sum of these variances because variances are unavoidably non-negative. As a result, their sum

is just the trace of the matrix Pk, which is represented as Tr(P̂k). The components on the main

diagonal of the presumption error covariance matrix Pk are now exactly the variances of the

various components of the estimation error ek.

4. Prediction error covariance: The state at time tk+1 can be best predicted from the state equation.

is given by

x̃k+1 = Φkx̂k (3.36)

and the corresponding prediction error is indicated by

ẽk+1 = Φkx̂k − xk+1 = Φk(êk + xk)− xk+1 (3.37)

ẽk+1 = Φkêk +Φkxk − xk+1 = Φkêk −wk (3.38)

Consequently, the prediction error covariance may be determined using

P̃k+1 = E[ẽk+1ẽT
k+1] = E[(Φkêk −wk)(Φkêk −wk)

T ] (3.39)

P̃k+1 = ΦkE[êkêT
k ]Φ

T
k +E[wkwT

k ]−ΦkE[êkwT
k ]−E[wkêT

k ]Φ
T
k (3.40)

P̃k+1 = ΦkP̂kΦ
T
k +Qk (3.41)

In acquiring the last step, use was made of the actuality that êk and wk are not varying together

i.e. uncorrelated. That this is so is easily revealed, since êk is the presumption error for xk at time

22



tk whereas wk is the noise associated with the state at the later time of tk+1. The last equation

provides a way to calculate P̃k+1 recursively, and this adequately completes the set of equations

required to calculate the Kalman gain repeatedly, and hence to process the observations yk to

produce appraisal x̂k of the state vector xk which are linear, unbiased and have least variance.

3.7.1 Linear Kalman Filter

3.7.1.1 Simple Kalman Filter

The SKF is a variant of the LKF algorithm that is specifically designed for systems with linear dy-

namics and Gaussian noise. It is a recursive and repeated estimator that combines predictions and

forecasting from a linear system model with measurements to provide an optimal or ideal estimate of

the true state of the system [75].

Here’s an overview of the LKF algorithm:

1. Initialization: The filter is initialized with an initial estimate of the state vector and the corre-

sponding covariance matrix. These represent the prior knowledge or best guess of the system’s

initial state.

2. Prediction: The filter predicts the next state of the system based on the linear system dynamics

model. The prediction is made using the state transition matrix, which describes how the state

evolves over time, and the control input, if applicable. The covariance matrix of the prediction

is also updated using the process noise covariance matrix, which captures the uncertainty in the

system dynamics.

3. Update: The filter incorporates measurements from sensors or observations to update the state

estimate. It compares the predicted measurement, obtained by multiplying the state prediction

by the measurement matrix, with the actual measured value. The measurement noise covariance

matrix captures the uncertainty in the measurements. The Kalman gain, computed using the

prediction and measurement covariance matrices, determines the weight given to the prediction

and measurement in the update step. The state estimate and its covariance matrix are updated

based on the Kalman gain and the measurement residual.

4. Iteration: The prediction and update steps are repeated recursively as new measurements be-

come available. Each iteration refines the state estimate based on the latest measurements,

leading to an improved estimate of the true state of the system.
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Given the linear Gaussian assumptions, the LKF provides an optimal estimate of the state in terms

of minimizing the mean squared error between the estimated state and the true state. It is widely used

in various applications such as navigation, tracking, and control systems.

It’s important to note that the LKF assumes linearity and Gaussian noise characteristics, which

may not always hold in real-world systems. In cases where non-linearities or non-Gaussian noise

exist, extensions such as the EKF or UKF [72] can be used to handle these scenarios.

Application of LKF [75]

Using multiple standard deviation sigma values for target acceleration, a computer simulation was

carried out for tracking a target subjected to a known acceleration.

The following circumstances resulted in the generation of a one-dimensional target motion [75]:

• remaining still for 5 seconds between t = 0 and t = 5 seconds

• From t = 5 through t = 15, there is a steady acceleration of 10 m/s2 for 10 seconds.

• From t = 15 to t = 30, the speed remains steady for a further 15 seconds.

At intervals of 10 ms, or T =0.01 s, simulated measurements of the target’s position and speed were

created. The normal distribution of measurement errors was presumed, in addition to independent

samples and a mean of 0. We presumed that the standard error for location measurements was 100 m

and the standard error for velocity was 4 m/s.

The measurements were passed on to a KF, which used the simulated measurements to estimate

the target motion. The initially anticipated covariance matrix was somewhat at random set to be X0 =

(0,0,0)T , and the filter state was initialized to that value.

The findings from the simulation can be seen in the image using two distinct values for the desired

acceleration’s standard deviation, σ .
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Figure 3.5: True value of position, velocity, and acceleration of target
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Figure 3.6: Predicted value of target using linear Kalman filter for σ = 0.003 m/s2
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Figure 3.7: Predicted value of target using linear Kalman filter for σ = 3 m/s2
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The target’s simulated position, velocity, and acceleration are shown in the first figure. The amount

of error in the KF estimate of these parameters is depicted in the second figure when the standard

deviation of the target’s acceleration is assumed to be sigma (σ) = 0.03 m/s2, and the same quantities

are shown in the third figure if the value of sigma (σ) used is 3 m/s2.

As can be seen, a lower sigma value produces an increased presumption error than a higher sigma

value does. Furthermore, for the lower amount of sigma, the errors are smoother than they are for the

higher value of sigma(σ).

The tracking error is significantly lower than the measurement error, despite the KF failing to

correctly reflect the target’s deterministic acceleration.

3.7.2 Non-Linear Kalman Filter

3.7.2.1 Extended Kalaman Filter

The EKF is an extension of the KF algorithm that is designed to handle systems with non-linear

dynamics and non-Gaussian noise. It is a recursive and repetitive estimation algorithm that combines

predictions from a non-linear system model with measurements to provide an optimal or ideal estimate

of the true state of the system.

Here’s an overview of the EKF algorithm:

1. Initialization: Similar to the KF, the EKF is initialized with an initial estimate of the state vector

and the corresponding covariance matrix.

2. Prediction: The EKF predicts the next state of the system based on a non-linear system dy-

namics model. The prediction is made by applying a non-linear function to the previous state

estimate and incorporating the process noise covariance matrix. The Jacobian matrix of the

non-linear function is used to linearize the system dynamics around the current state estimate,

allowing for a linear prediction step. The covariance matrix of the prediction is also updated

using the linearized dynamics.

3. Update: The filter incorporates measurements from sensors or observations to update the state

estimate. Similar to the KF, the EKF compares the predicted measurement, obtained by apply-

ing a non-linear function to the predicted state, with the actual measured value. The Jacobian

matrix of the non-linear function is used to linearize the measurement function around the pre-

dicted state, enabling a linear update step. The measurement noise covariance matrix is also

used in the update step. The Kalman gain is computed based on the linearized dynamics and

measurement functions to determine the weight given to the prediction and measurement in the
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update step. The state estimate and its covariance matrix are updated using the Kalman gain

and the measurement residual.

4. Iteration: The prediction and update steps are repeated recursively as new measurements be-

come available. Each iteration refines the state estimate based on the latest measurements,

leading to an improved estimate of the true state of the system.

Summary of EKF [73]

Model and observation:

xk = f (xk−1)+wk−1 (3.42)

zk = h(xk)+ vk (3.43)

Initialization:

xa
0 = µ0 with error covariance P0

Model forecast step/predictor:

x f
k ≈ f (xa

k−1) (3.44)

P f
k = J f (xa

k−1)Pk−1JT
f (x

a
k−1)+Qk−1 (3.45)

Data assimilation step/corrector:

xa
k ≈ x f

k +Kk(zk −h(x f
k )) (3.46)

Kk = P f
k JT

h (x
f
k )(Jh(x

f
k )P

f
k JT

h (x
f
k )+Rk)

−1 (3.47)

Pk = (1−KkJh(x
f
k ))P

f
k (3.48)

The EKF is a widely used technique for state estimation in non-linear systems. However, it has

limitations, such as the accuracy of the linearization process and the assumption of Gaussian noise. If

the non-linearities in the system are significant, or the noise is non-Gaussian, alternative approaches

like the CKF, UKF, or particle filter may be more suitable.
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It’s important to note that the success of the EKF depends on the choice of the non-linear sys-

tem model and the accuracy of the linearization process. Careful consideration of these factors and

understanding the limitations of the EKF are crucial for obtaining reliable estimates in practical ap-

plications.

A complete picture of the operation of the extended KF can be understood from the source [73]

Application of Extended Kalman Filter

Below is the simulation result of Target tracking using the EKF. Here, is the Time history of

estimation results for 1st order non-linear dynamics of a vehicle. position error and velocity error of

the true and estimated value is shown where the EKF proves to be successful in tracking the position

of the target while the error for the velocity of the vehicle between the true and estimated value is

increased for some portion of the graph due to high non-linearities.

Figure 3.8: Position error of true and estimated value using EKF
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Figure 3.9: Velocity error of true and estimated value using EKF

3.7.2.2 Cubature Kalman Filter

The CKF is a variant of the KF algorithm that approximates the propagation of probability distri-

butions in non-linear systems without explicitly linearizing the system dynamics. It is a recursive

estimation algorithm that combines predictions from a non-linear system model with measurements

to provide an optimal estimate of the true state of the system.

It is a nonlinear filter used for high-dimensional state estimation. A set of cubature points scaling

linearly with the state-vector dimension is offered by this filter’s third-degree spherical-radial cubature

rule [4].

Process equation :

Xk = f (Xk−1,Uk−1)+Vk−1 (3.49)

Measurement equation :

Zk = h(Xk,Uk)+Wk (3.50)

where, Xk is the state of the dynamic system at a discrete time, f and h are some known functions,

{Vk−1} and Wk are independent processes and measurements of Gaussian noise [4].
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Here’s an overview of the CKF algorithm:

1. Initialization: Similar to other KF variants, the CKF is initialized with an initial estimate of the

state vector and the corresponding covariance matrix.

2. Cubature Points Generation: The CKF generates a set of cubature points that capture the statis-

tics of the current state estimate and covariance matrix. Cubature points are derived by consid-

ering a sigma point transformation of the Gaussian distribution associated with the current state

estimate.

3. Prediction: The CKF propagates the cubature points through the non-linear system dynam-

ics model to obtain predicted cubature points for the next time step. The prediction step is

performed by applying the non-linear function to each cubature point and incorporating the

process noise covariance matrix.

p(xk|Dk−1) =
∫

Rnx
p(xk,xk−1|Dk−1)dxk−1 (3.51)

p(xk|Dk−1) =
∫

Rnx
p(xk−1|Dk−1)p(xk|xk−1,uk−1)dxk−1 (3.52)

4. Covariance Estimation: The CKF estimates the covariance of the predicted cubature points and

computes the predicted state estimate and its covariance matrix based on the propagated points.

5. Measurement Update: The CKF compares the predicted cubature points, obtained from the

predicted state estimate, with the actual measured value. The measurement update step is per-

formed by applying the non-linear measurement function to each predicted cubature point. The

measurement noise covariance matrix is also incorporated. The weighted sum of the trans-

formed points provides an updated state estimate and covariance matrix.

p(xk|Dk) = p(xk|Dk−1,uk,zk) (3.53)

p(xk|Dk) =
1
ck

p(xk|Dk−1,uk)p(zk|xk,uk) (3.54)

6. Iteration: The prediction and update steps are repeated recursively as new measurements be-

come available. Each iteration refines the state estimate based on the latest measurements,

leading to an improved estimate of the true state of the system.
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p(uk|Dk−1,xk) = p(u|Dk−1) (3.55)

The CKF provides an approximation of the true probability distribution of the system state with-

out explicitly linearizing the system dynamics, making it suitable for non-linear systems. It offers

improved accuracy over linearization-based approaches like the EKF and can handle a wider range of

non-linearities.

However, the CKF may require a higher computational cost compared to other KF variants, as

it involves the propagation of multiple and distinct cubature points through the non-linear system

model.

It’s important to note that the success of the CKF depends on the choice of the non-linear system

model and the accuracy of the cubature points generation process. Careful consideration of these

factors and understanding the limitations of the CKF are crucial for obtaining reliable estimates in

practical applications.

Application of CKF [4]:

An airplane performs maneuvering and steers turn in a horizontal plane at a steady and continuous

but indeterminate turn rate. This is an example of a standard air traffic control structure Ω. A non-

linear process equation is used to model the kinematics of the turning motion. Using the CKF where

the state of the aircraft is given by the equation

x =
[
ξk ξ ′

k ηk η ′
k Ωk

]
(3.56)

where ξk and ηk denote positions, and ξ ′
k and η ′

k represent velocities in the x and y directions,

respectively, T is the time interval between two sequential measurements , position and velocity

estimates in both the x and y directions have been shown
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where the non-linear process equation is as follows :

xk =



1 sinΩT
Ω

0 −(1−cosΩT
Ω

) 0

0 cosΩT 0 −sinΩT 0

0 (1−cosΩT
Ω

) 1 sinΩT
Ω

0

0 sinΩT 0 cosΩT 0

0 0 0 0 1


xk−1 + vk (3.57)

True initial state :

x0 =
[
1000m 300ms−1 1000m 0ms−1 −3os−1

]T
(3.58)

and the associated covariance matrix:

P0/0 =
[
100m2 10m2s−2 1000m2 10m2s−2 100mrad2s−2

]T
(3.59)
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Figure 3.10: Position estimate along X axis using CKF
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Figure 3.11: Position estimate along Y axis using CKF
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Figure 3.12: Velocity estimate along X axis using CKF
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Figure 3.13: Velocity estimate along Y axis using CKF

38



Figure 3.14: Angle estimate using CKF
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Figure 3.15: RMSE in position estimation using CKF
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Figure 3.16: RMSE in velocity estimation using CKF
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Chapter 4

Roadmap of Mathematical Model and

Finance Dataset

This section includes dataset collection, model creation, and methodology using the KF process equa-

tion for stock market price prediction.

4.1 Dataset

For the purpose of getting historical datasets on the stock market, yahoo finance happens to be a good

source due to its real-time nature [67]. Those datasets include data from trusted finance authorities.

The financial dataset of a few companies listed on the National Stock Exchange (NSE) India for the

year 2012 from yahoo finance.

The database is chosen so that it has a low standard deviation and should take usual behavior into

consideration. It was crucial to choose a time period over which there are no abrupt spikes in the

stock market’s value (either positive or negative). A historical database is offered by yahoo finance

and can be utilized for training.

The historical database of stock consists of the following important parameters :

Date: The date per day when the following values were collected.

OpenPrice: The opening value of the stock market

ClosePrice: The stock’s closing price that day

HighPrice: The stock’s highest price that day

LowPrice: The stock’s lowest value that day

AdjClose: A stock’s closing price before the market opens the following day, modified to compensate

for corporate actions and distributions.
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Volume: Total amount of shares traded on that day.

4.2 Technical Indices

Technical indices help us to decide when to buy any stock using historical data for forecasting the

direction of prices.

1. Stock Momentum [46]: It measures the rate at which the price of a specific stock fluctuates i.e.

we can analyze the speed of the fall or rise in the particular price. It is the average of the last

N days’ momentum of the stock where momentum is calculated as 1 if there is a price increase

and -1 if there is a price decrease from the previous day.

2. Moving Average Convergence Divergence [1]: The MACD is a momentum trend-following in-

dicator that depicts the association between two price moving averages. Increased market mo-

mentum, whether up or down, is indicated by a wider gap between the 12- and 26-period expo-

nential moving averages.

MACD = EMA12 −EMA26 (4.1)

where, EMA12 and EMA26 respectively are the 12th and 26th day estimated moving averages.

3. Relative Strength Index [33]: The average price gains and losses over a specified time period

are calculated by RSI. These two indicators are frequently combined to give analysts a more

thorough technical view of the market, these two indicators are often combined.

RSI = 100− 100
1+EMAN

up

EMAN
down

(4.2)

4.3 Data Preprocessing

Data preprocessing is a crucial step in stock prediction as it helps ensure the quality and suitability

of data for analysis. These are some common data preprocessing techniques used in stock prediction.

The choice of techniques depends on the specific characteristics of the dataset and the requirements

of the prediction model being used.

Here are some common techniques used in data preprocessing for stock prediction:
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1. Data Cleaning: This involves handling missing values, outliers, and inconsistent data. Miss-

ing values can be imputed using methods such as mean imputation, forward filling, or back-

ward filling. Outliers can be detected and treated using statistical techniques like z-score or

percentile-based methods. Inconsistent data, such as conflicting stock prices, can be resolved

by taking the average or applying data correction techniques.

2. Feature Selection: It is important to identify the relevant features that are most influential in

stock prediction. Techniques like correlation analysis, information gain, or feature importance

from machine learning models can help identify the most important features. Removing irrele-

vant or redundant features can improve model performance and reduce complexity.

3. Feature Scaling: Scaling the features to a similar range can help avoid bias towards variables

with larger values. Common scaling techniques include standardization (0 mean and 1 as stan-

dard deviation) or normalization (scaling to a specific range, e.g., 0 to 1).

4. Time Series Resampling: Stock data is often sampled at irregular time intervals. resampling

techniques, such as upsampling or downsampling, can be used to convert the data into a consis-

tent frequency (e.g., daily, weekly, monthly) for easier analysis and modeling [81]. Common

methods include interpolation, averaging, or taking the last value within the desired time frame.

5. Handling Imbalanced Data: In stock prediction, there may be a class imbalance between up-

ward and downward movements in stock prices. Techniques like oversampling (e.g., SMOTE)

or undersampling can be used to balance the classes and improve model performance.

6. Handling Sequential Data: Stock data is often sequential in nature, and the order of the data can

be important. Techniques such as time lagging or windowing can be applied to create lagged

features or sliding windows to capture temporal patterns in the data.

7. Splitting the Dataset: It is crucial to split the dataset into validation, training, and testing sets.

The training dataset is used to train the model, the validation dataset is used for hyperparameter

tuning, and the testing dataset is used for evaluating the final model’s performance. The split

can be done randomly or based on a specific time period to account for temporal dependencies

in stock data.
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4.4 Proposed Model

Here is a thorough explanation of how the Kalman filter works in a dynamic financial state that is

stock market price prediction.

Figure 4.1: A complete picture of the working steps of the Kalman filter for stock market price

prediction

We have considered that the highest price of the security (stock) i.e. mt k on the next day is

determined by certain factors like opening price, previous day’s closing price, etc., and is linearly

dependent on these factors.

Thus the highest price of the stock on the next day can be expressed as :

mk =
N

∑
i=0

ak−ixk(i) (4.3)

where, ak: market indices at time tk, xk: unknown parameter, N: number of previous days under

consideration

The dynamics of xk can be mathematically represented as :

xk = Ixk−1 +ηk (4.4)

where, I: Identity matrix, η : mean zero Gaussian process with covariance Qk

and the measurement equation is :

mk =
N

∑
i=0

ak−ixk(i)+ vk (4.5)
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where, vk : measurement error and approximate as zero-mean Gaussian process with covariance

R.

equations (4.4) and (4.5) can be represented by generalized state-space model equations that are :

xk = Fkxk−1 +ωk (4.6)

zk = Hkxk +ζk (4.7)

The measurement update for the (k+1)th day is done after the prediction of the highest price of

the stock for the (k+1)th day i.e. mk+1|k based on xk and availability of the true value of the highest

price of the stock, mk+1|k+1.

The Highest stock market price (HSMP) can be modeled as

λ
p
k = αk(0)θ

op
k +

δn

∑
i=1

αk(d)λ t
k−d +αk(δn +1)θ (MACD,N1)

k +αk(δn +2)θ (RSI,N1)
k +αk(δn +3)θ (SM,N1)

k

(4.8)

Where, λ
p
k , λ t

k, and xk is a vector representing the corresponding unknown linear coefficient,

estimated on the kth day with KF. And,

xk+1(i) ∈ Xk+1 =



xk+1(0)

xk+1(1)

.

.

.

xk+1(N +3)


(4.9)

and Xk+1 is a vector corresponding to the unknown linear coefficients that were estimated on the

(K +1)th day, and N is the total number of days that have been taken into account.
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4.5 Simulation Results

For the simulation of the proposed mathematical model, the algorithm is applied to the data of certain

companies listed on the national stock exchange of the Indian stock market.

The parameters for a period of 70 samples are trained. i.e. 70 days with a period of 7 days for the

previous measurement. N=7. After the prediction of the highest price of the stock on the next day’s

price for the next 30 days, those parameters are updated.

We assign the initial value of the parameters as:

a0 = [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

for the prediction and measurement equation following are the assumptions made :

• The state is the previous day’s indices and measurement is the highest price of the current day.

• Given the opening price of today, the highest price of today is estimated.

• number of state variables considered in the state matrix is 8. While The number of measurement

variables in the measurement matrix is 1.

• here, the highest value of the stock the next day is predicted as a linear function of F(past highest

values, today’s opening value, technical indices [19]), and the estimated moving average (EMA)

of the previous day is being day is used as a parameter.
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Below are the simulation results for the stock price prediction of a few companies:

Figure 4.2: True and predicted stock price of BHEL

48



Figure 4.3: True and predicted stock price of GAIL
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Figure 4.4: True and predicted stock price of IOCL
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Figure 4.5: True and predicted stock price of COAL INDIA
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Figure 4.6: True and predicted stock price of NTPC

The simulation results of stock prices of 5 companies are shown in the above figures. It can

be observed from the figures that The prediction on the test data, data after the 70th day, is closely

following the true price of the stocks with only a little deviation.
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Here are the Bar graph plots for percentage accurate relative jump (PARJ) under 30 % error and

percentage accurate share prediction (PASP) under 1 % error bound, for different companies:
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Figure 4.7: Percentage Accurate Share Prediction under 1 % error bound for different companies

Figure 4.8: Percentage Accurate Relative Jump under 30 % for different companies
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4.5.1 Comparison plots on the basis of different types of errors

Comparison analysis in the stock price prediction is done for a few companies on the basis of different

types of errors which are listed below :

1. RMSE: It stands for root mean squared error which provides a measure of how much the

predicted values deviate from the actual values on an average.

The formula for RMSE is as follows:

RMSE =

√
1
n
∗

n

∑
i=1

((predictedi − actuali)2) (4.10)

Where:

n is the number of data points or samples, predictedi is the predicted value for the ith sample,

actuali is the actual or true value for the ith sample.
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Figure 4.9: RMSE plots for different companies
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2. MSE: It stands for mean squared error which provides a measure of the average squared devi-

ation between the predicted values and the actual values.

The formula for MSE is as follows:

MSE =
1
n
∗

n

∑
i=1

((predictedi − actuali)2) (4.11)

Where:

n is the number of data points or samples, predictedi is the predicted value for the ith sample,

actuali is the actual or true value for the ith sample.

57



Figure 4.10: MSE plots for different companies
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3. MAE: It stands for mean absolute error which provides a measure of the average absolute

deviation between the predicted values and the actual values.

The formula for MAE is as follows:

MAE =
1
n
∗

n

∑
i=1

(predictedi − actuali) (4.12)

Where:

n is the number of data points or samples, predictedi is the predicted value for the ith sample,

actuali is the actual or true value for the ith sample.
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Figure 4.11: MAE plots for different companies
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4. MARD: It stands for mean absolute relative difference which provides a measure of the average

relative deviation between the predicted values and the actual values.

The formula for MARD is as follows:

MARD =
1
n
∗

n

∑
i=1

(|(predictedi − actuali)
actuali

|) (4.13)

Where:

n is the number of data points or samples, predictedi is the predicted value for the ith sample,

actuali is the actual or true value for the ith sample.

|x| represents the absolute value of x.
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Figure 4.12: MARD plots for different companies
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Chapter 5

Conclusions and Future Works

The thesis examines the performance of the following four system models: LSTM, Linear Regres-

sion, DMD, and the KF. The derived closed-form expressions for performance metrics are validated

by Monte-Carlo-based simulations.

5.1 Conclusions

Through this Project, one can observe a few Machine Learning Techniques, The KF, and DMD are

used to predict and compare the prices of the stock market. with reasonable accuracy the result shows

how historical data are used to predict stock movement based on the RMSE obtained using different

algorithms. So, on a concluding note, the following points can be said:

• Kalman Filter can be a powerful tool for financial modeling when used properly. Since the

RMSE obtained is the lowest among all other algorithms used.

• The Kalman filter is computationally efficient, making it a suitable tool for real-time applica-

tions. Because the iterative process of measurement and estimation continues until we find the

optimal state.

• LSTM is a good choice when the requirement is better accuracy and low variance but it is

comparatively slower.

• Collecting and aligning the assumptions that are to be used in the financial market is also not

easy, as it requires a lot of time and energy.

• It has been observed that the DMD algorithm can capture the original trend only when the

exogenous variables such as government policies are not considered.
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• Linear regression works on the principle that the variables assumed are linearly related to the

stock market variables which sometimes leads to failure in the financial market because of its

dynamic nature.

Below is the comparison table for stock price prediction based on RMSE for NTPC. we can see

that the error obtained in the case of the Kalman filter is minimal, which proves to be an efficient

method in finance, especially in stock market price prediction.

Figure 5.1: Comparison table of stock price prediction for NTPC based on RMSE
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5.2 Future Works

The implemented method is based on the KF to predict the stock market price. And the simulation

result has shown that the Kalman filter is best among the other three methods used for prediction.

• As of now, we have incorporated the predictive analysis assuming the coefficients to be linearly

varying. So, the future scope might be improved by extending the process equation of the

parameters to non-linear modeling.

• Future Work might be done by considering other external factors like government policies,

political decisions, etc which are some important factors to affect the market data.

• We will be incorporating and evaluating the impact of technical indices such as the Popularity

Index (AR), Willingness Index (BR), Sentiment Analysis [20], etc.

• One can improve the prediction by Identifying a further suitable process equation of the param-

eters for increased accuracy.
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